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Synopsis

Introduction

This thesis examines four distinct problems in Quantum State Discrimination (QSD). Two

of these problems are in Minimum Error Discrimination (MED) and the remaining two

in local distinguishability of quantum states.

Let H be the Hilbert space of an n dimensional quantum system; then a quantum state

of this system is represented by a density operator ρ, which is an observable on H , with

the properties ρ ≥ 0 and Tr(ρ) = 1. In a typical QSD problem one is given an unknown

quantum state ρi with some probability pi from an apriori agreed upon ensemble of quan-

tum states P̃ = {pi, ρi}
m
i=1, and one is then tasked with determining the value of i using

measurement. Different kinds of QSD problems arise by imposing different kinds of con-

straints on the measurement-strategy. This thesis examines problems arising out of two

different kinds of measurement constraints.

Minimum Error Discrimination: In this case the measurement strategy involves

performing only one measurement, whose POVM elements Ei are in a one-to-one

correspondence with the states ρi in the ensemble P̃ in the sense that if the measure-

ment yields the i-th measurement outcome, then it is inferred that one was given

the i-th state ρi from P̃. Note that Tr(ρiE j) corresponds to the event where the j-th

measurement outcome was obtained, conditioned on the fact that the i-th state was

given. Such an event corresponds to an error. The average probability of error is

given by Pe =
∑m

i, j=1
i, j

piTr
(
ρiE j

)
. The scenario corresponding to success is when the

i-th state is supplied and the i-th measurement outcome is obtained. The average

probability of success is then given by

Ps =

m∑
i=1

piTr (ρiEi) . (1)
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It is easily seen that Ps + Pe = 1. This implies that every trial, in which a state is

supplied and a measurement is performed, is either a success or results in an error.

For the MED of a given ensemble of states P̃, the goal is to maximize the average

probability of success Ps over the space of m-element POVMs (m-POVMs). The

maximum success probability, denoted by Pmax
s , is given by

Pmax
s = Max

{
Ps|

{
E j

}m

j=1
is an m-POVM

}
. (2)

Discrimination by Local Operations and Classical Communication: A situa-

tion often encountered in problems in QSD is when ρ1, ρ2, · · · , ρm are bipartite or

multipartite states of a composite system, whose subsystems are physically sepa-

rated from each other. This physical separation imposes the constraint that parties

possessing subsystems can only make local measurements on these subsystems and

communicate classically their respective measurement outcomes to their peers. Pro-

tocols of this type are known as Local Operations and Classical Communication

(LOCC) protocols. A significant question in QSD is to determine under what con-

ditions can bipartite/multipartite states in an ensemble be discriminated amongst

using an LOCC protocol, or in other words, can be discriminated locally?

Consider the instance where the composite system is bipartite, the Hilbert spaces

of whose subsystems are given by HA and HB; the Hilbert space of the composite

system is then given byHA⊗HB. Let Alice be in possession of the subsystem whose

Hilbert space isHA and Bob the system whose Hilbert space isHB. LOCC protocols

are classified as 1-LOCC, 2-LOCC, · · · , N-LOCC - where N stands for the number

of rounds of communication which the protocol demands Alice and Bob engage in.

In this thesis, I have taken up two problems each in minimum error discrimination and in

local distinguishability of quantum states. I will summarize all the four problems over the

coming sections of this synopsis.
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After the introductory chapter, the second chapter covers problems which I worked on in

the topic of minimum error discrimination. The third chapter covers problems which I

worked on in the topic of local distinguishability of quantum states.

Minimum Error Discrimination

Minimum Error Discrimination is one of the oldest problems in QSD. There are very few

ensembles for which MED has been solved analytically. The MED problem for ensem-

bles of linearly independent (LI) pure states has an interesting structure which relates the

ensemble to its optimal POVM. This was discovered by Belavkin and Maslov [1, 2] and

Mochon [3] independently. Before our work, this structure wasn’t used to obtain the op-

timal POVM for the MED of an ensemble (of LI pure states). Our1 efforts were directed

to use this structure to obtain the optimal POVM for the MED of an ensemble of LI pure

states. Furthermore we were interested to see if a similar structure could also be found for

the MED problem of other classes of ensembles, and when found, if said structure could

then be exploited to obtain the optimal POVM for ensembles in those classes.

Minimum Error Discrimination for Linearly Independent Pure States

The work in this section is based on the following paper: “Minimum Error Discrimina-

tion for an Ensemble of Linearly Independent Pure States”, Tanmay Singal, and Sibasish

Ghosh. This paper has been published in Journal of Physics A: Mathematical and Theo-

retical2.

Structure of the MED problem for ensembles of LI pure states: The MED problem

for ensembles of LI pure states is known to have two interesting properties. Let P̃ =

{pi, |ψi〉〈ψi |}
m
i=1 be an ensemble of states, where |ψ1〉, |ψ2〉, · · · , |ψm〉 ∈ H are LI and span

H . Then the number of states in P̃ is equal to dimH , i.e., m = n. Said properties of the

MED problem for P̃ are:
1 Myself and Sibasish Ghosh
2 http://dx.doi.org/10.1088/1751-8113/49/16/165304

http://dx.doi.org/10.1088/1751-8113/49/16/165304
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(i) The optimal POVM is a unique rank one projective measurement [4, 5, 3].

(ii) The optimal POVM for MED of P̃ is the pretty good measurement (PGM) of an-

other ensemble, Q̃ ≡ {qi > 0, |ψi〉〈ψi|}
n
i=1 [1, 2, 3]. Note that the i-th states in P̃ and

Q̃ are the same, whereas the probabilities are generally not. Additionally, in [3], it

is explicitly shown that the ensemble pair (P̃, Q̃) are related through an invertible

map.

To emphasize: it is the fact that P̃ and Q̃ are related by an invertible map that makes the

mathematical structure of MED of LI pure state ensembles richer than that of MED of

general ensembles. To formalize the invertible relation between P̃ and Q̃ we will now

define certains sets and functions over these sets.

(1) E is the set of all ensembles of the form P̃ = {pi > 0, |ψi〉〈ψi|}
n
i=1 of d LI pure states

|ψ1〉, |ψ2〉, · · · , |ψn〉 which spanH . (2) P is the set of rank one projective measurements;

an element in P is of the form {|vi〉〈vi|}
n
i=1 where 〈vi|v j〉 = δi j, ∀ 1 ≤ i, j ≤ n. (3)

P : E −→ P is such that P
(
P̃
)

is the optimal POVM for the MED of P̃ ∈ E. (4) Let

PGM denote the PGM map, i.e., PGM : E −→ P is such that PGM
(
Q̃
)

is the PGM of

any Q̃ ∈ E, PGM(Q̃) =

{
ρ
− 1

2
q qi|ψi〉〈ψi|ρ

− 1
2

q

}n

i=1
, where ρq =

∑n
i=1 qi|ψi〉〈ψi|.

The point (ii) above says that there exists an invertible map, R : E −→ E such that

P
(
P̃
)

= PGM
(
R

(
P̃
))
, ∀ P̃ ∈ E. (3)

Knowing the action of R on a general point P̃ in E solves the MED problem for LI pure

state ensembles. While the action of R on a general point in E isn’t known, the action of

R−1 on any general point in E was derived in [2, 1, 3].

Motivation: To see if the knowledge of the action of R−1 on E could enable us to find

the action of R on E.
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Brief Summary of Work: Our motivation naturally guided us to use the inverse func-

tion theorem - a well-known result in functional analysis - to find the action of the inverse

of R−1, i.e., to find the action of R, on any point of E. To do this we reformulated the

MED problem in a rotationally invariant form. This was done in two steps:

(i.) The necessary and sufficient conditions, which a POVM must satisfy to maximize

Ps for a fixed ensemble of LI pure state ensembles, was reformulated in a rotation-

ally invariant form. While P̃ itself doesn’t feature in these rotationally invariant

conditions, the gram matrix G, of the ensemble P̃, does. The matrix elements of G

are given by

Gi j =
√

pi p j〈ψi|ψ j〉, ∀ 1 ≤ i, j ≤ n.

(ii.) R is a rotationally covariant function on E, i.e.,

R
({

pi,U |ψi〉〈ψi |U†
}n

i=1

)
=

{
qi,U |ψi〉〈ψi |U†

}n

i=1
,

∀ unitaries U acting onH . Using the rotationally invariant necessary and sufficient

condition, we define the rotationally invariant version of R - denoted by RG - on

the set G of gram matrices for all ensembles in E. In other words, if R
(
P̃
)

= Q̃,

then R (G) (G) = Gq, where G is the gram matrix for P̃ and Gq is the gram matrix for

Q̃.

Just as we don’t know the action of R on any P̃ ∈ E, we don’t know the action of R (G)

on any G ∈ G. Similarly, just as we know the action of R−1 on any Q̃ ∈ E, we know the

action of
(
RG

)−1 on any Gq ∈ G. We then employ the implicit function theorem, which

is the equivalent of the inverse function theorem, to obtain the inverse of the action of

(R (G))−1, i.e., of R (G), on any G ∈ G.

Further on, since the present technique is specific to the problem of MED for n-LI pure

state ensembles, it is expected that the algorithm our technique offers is computationally
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as expensive as or less expensive than existing techniques. We show that this is indeed

the case.

Significance: It is seen that the computational complexity (time and space) of this algo-

rithm is as efficient as those given by standard semidefinite programming methods, while

being simpler to implement.

Analytic Structure of the Minimum Error Discrimination Problem for Linearly In-

dependent Mixed States

The work in this section is based on the following paper: “Algebraic Structure of the Mini-

mum Error Discrimination Problem for Linearly Independent Density Matrices”, Tanmay

Singal, and Sibasish Ghosh. This paper has been uploaded on the arxiv3, and will soon be

sent for publication.

Motivation: It has been previously seen that the mathematical structure of the MED

problem for LI pure state ensembles can be exploited to solve the corresponding MED

problem. In this section we undertake the exercise to generalize the same structure to the

MED problem of ensembles whose states are LI mixed states. We call a set of quantum

states {ρi}
m
i=1 LI if any set of non-zero vectors {|ψi〉}

m
i=1, such that |ψ1〉 ∈ supp (ρ1) , |ψ2〉 ∈

supp (ρ2) , · · · , |ψm〉 ∈ supp (ρm), are LI [6]. Here the span of
⋃m

i=1 supp(ρi) is equal toH .

Let ri ≡ rank(ρi), ∀ 1 ≤ i ≤ m. Then
∑m

i=1 ri = n.

Brief Summary of Work: The basic ingredients required for this mathematical struc-

ture are as follows:

(i) The set of all ensembles of LI mixed states in which the i-th state has rank ri. We

denote this set by E
~
r, where

~
r = (r1, r2, · · · , rm).

3 http://arxiv.org/abs/1412.7174

http://arxiv.org/abs/1412.7174
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(ii) The set of projective measurements, such that the rank of the i-th projector is ri. We

denote this set by P
~
r.

(iii) It has been shown that the optimal POVM for the MED of an ensemble of LI mixed

states P̃
~
r ∈ E

~
r is a unique projective measurement {Πi}

m
i=1 ∈ P

~
r [6, 7]. The unique-

ness of the optimal POVM allows us to define P
~
r : E

~
r −→ P

~
r as the optimal POVM

map on E
~
r. Thus, P

~
r

(
P̃
~
r

)
is the unique optimal POVM in P

~
r for the MED of any

ensemble P̃
~
r ∈ E

~
r.

(iv) PGM
~
r : E

~
r −→ P

~
r is the PGM map on E

~
r. So if PGM

~
r

(
Q̃
~
r

)
= {Πi}

m
i=1 then

Πi =
(
ρq

)− 1
2 qiρi

(
ρq

)− 1
2
,

where ρq =
∑n

j=1 q jρ j.

Thus the objective of this work is to prove that for any positive integers r1, r2, · · · , rm such

that
∑m

i=1 ri = n, there exists an invertible map R
~
r : E

~
r −→ E

~
r such that the following

equation holds true for all P̃
~
r ∈ E

~
r.

P
~
r

(
P̃
~
r

)
= PGM

~
r

(
Q̃
~
r

)
= PGM

~
r

(
R
~
r

(
P̃
~
r

))
. (4)

Equation (4) is the mixed state version of the equation (3). We say that this is a gener-

alization of the pure state case because for the pure state case, i.e., for the case ri = 1,

∀ 1 ≤ i ≤ n, we know that such a function R exists [1, 2, 3].

Next are listed the sequence of steps which we go through to prove the existence of the

function R
~
r.

(i) It is shown that the necessary and sufficient conditions for the MED of LI states

(mixed or pure) are actually simpler than for the general case.
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(ii) Rotationally invariant form of these simplified necessary and sufficient conditions

for MED of LI states are then obtained.

(iii) Using the rotationally invariant conditions, it is shown that for each ensemble P̃
~
r

in E
~
r one can associate another unique ensemble Q̃

~
r, also in E

~
r, and such that it

satisfies

PGM
~
r

(
Q̃
~
r

)
= P

~
r

(
P̃
~
r

)
.

This allows us to define R
~
r : E

~
r −→ E

~
r such that

R
~
r

(
P̃
~
r

)
= Q̃

~
r

and

P
~
r

(
P̃
~
r

)
= PGM

~
r

(
Q̃
~
r

)
.

(iv) Many results from above are used to prove that R
~
r is one-to-one and onto, i.e., R

~
r

is invertible. A closed form expression for R−1

~
r is then easily obtained.

(v) Finally it is shown that the rotationally invariant necessary and sufficient conditions

suggest a numerical technique to obtain solve the MED problem for any ensemble

P̃
~
r ∈ E

~
r. This technique is seen to be as computationally efficient as the barrier type

interior point method, which is a standard SDP technique.

Significance: It is seen that the computational complexity (time and space) of this al-

gorithm is as efficient as those given by standard SDP methods, while being simpler to

implement.

Local Distinguishability of Quantum States

Finding the protocol which optimally discriminates among multipartite states using only

LOCC is harder than doing so without the LOCC restriction. The reason for this is that

the structure of LOCC isn’t fully understood, and hence remains unexploited. Due to
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this difficulty a significant amount of effort is limited to establishing when a set of pair-

wise orthogonal states, which are perfectly distinguishable under global operations, are

distinguishable or indistinguishable under LOCC.

Motivation: Despite significant advances in the topic of local distinguishability of

quantum states, very few results are independent of the dimension of the systems for

which they are proven. Underlying our curiosity about the local (in)distinguishability of

quantum states, is the belief that results independent of dimension do exist, and we sought

to find a few such results.

Necessary Condition for Local Distinguishability of Maximally Entangled States

In [8], Badziag et al. introduced a Holevo-like-upper-bound, χlocc, for the locally acces-

sible information - information retrievable by performing only LOCC - of an ensemble

of bipartite states. In the present work4 we5 show that χlocc plays a significant role in the

perfect local distinguishability of maximally entangled states (MES).

Brief Summary of Work: The fundamental principle underlying the work is that dis-

tinguishing among m orthogonal bipartite states {|ψi〉AB}
m
i=1 by LOCC requires extracting

log2m bit of classical information from the set {|ψi〉AB}
m
i=1 through some LOCC protocol.

When the states are maximally entangled states (MES) we encounter three important fea-

tures:

(i) The Holevo-like upper bound on any set of m orthogonal bipartite MES {|ψi〉AB}
m
i=1

in Cn ⊗Cn is χlocc
(
{|ψi〉AB}

m
i=1

)
= log2m bit.

(ii) The first measurement cannot rule out any state from the set {|ψi〉AB}
m
i=1. Thus af-

ter the first measurement of the LOCC protocol, both parties still need to extract

4 http://arxiv.org/abs/1506.03667, sent for review to Journal of Physics A: Mathematical and Theoreti-
cal.

5 Myself, Ramij Rahaman, Sibasish Ghosh, Guruprasad Kar

http://arxiv.org/abs/1506.03667
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log2m bit of classical information from the set of post-measurement states.

(iii) Let Alice be the party who initiates the LOCC protocol, and let α be the index

corresponding to the outcome of her measurement. Let the post-measurement joint

state be denoted by |ψi,α〉AB
6, and let ρ(B)

α
denote the average post-measurement re-

duced state (PMRS) on Bob’s side, i.e., ρ(B)
α

= 1
m

∑m
i=1 TrA

(
|ψi,α〉〈ψi,α |

)
. We show that

after the first measurement, the Holevo like upper bound for the post-measurement

states, {|ψi,α〉AB}
m
i=1 is given by χlocc

(
{|ψi,α〉AB}

m
i=1

)
= S

(
ρ(B)
α

)
.

Thus, a necessary condition for the local distinguishability of the states {|ψi〉AB}
m
i=1 is:

χlocc
(
{|ψi,α〉AB}

m
i=1

)
= S

(
ρ(B)
α

)
≥ log2m bit, for all α outcomes.

When m = n, S
(
ρ(B)
α

)
should be log2n bit exactly, which implies that the average PMRS on

Bob’s side should be maximally mixed, i.e., ρ(B)
α

= 1
d1B, where 1B is the identity operator

on Bob’s subsystem. The condition ρ(B)
α

= 1
d1B imposes constraints on the α-th POVM

effect of Alice’s starting POVM. As a result of imposing the condition, if the α-th POVM

effect is constrainted to be a multiple of 1A, the only measurement Alice can perform

is one whose POVM effects are multiples of the identity, i.e., she can only perform a

trivial measurement. Hence a necessary condition for the local distinguishability of these

n orthogonal bipartite MES is that the POVM - constrainted to satisfy the condition ρ(B)
α

=

1
d1B - should not be trival.

The next question to ask is how strong this necessary condition is. We tested this condi-

tion for the local distinguishability of all sets of four Generalized Bell States inC4⊗C4. A

significant number of sets (of four Generalized Bell states inC4⊗C4) failed the necessary

condition, implying that they are locally indistinguishable. All remaining sets satisfied the

necessary condition, but that does not imply that they are locally distinguishable. There-

fore it comes as a big surprise that these sets, which satisfy the necessary condition, are

indeed locally distinguishable, and that too by one-way LOCC and using only projective

6 For the α-th outcome, the measurement transforms the state as: |ψi〉AB

α-th outcome
−−−−−−→ |ψi,α〉AB.
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measurements; we proved this by finding LOCC protocols for all sets each of which satis-

fies the necessary condition. This implies that for four Generalized Bell states inC4⊗C4,

this condition is sufficient as well as necessary. This gives an indication that this necessary

condition can be pretty powerful.

Significance: MES have acquired an elevated status in quantum information, partic-

ularly in quantum communication. Consequentially, when properties ascribable to an

ensemble of quantum states are studied, there is a special focus on those cases wherein

the ensemble comprises of MES. It is this that makes the perfect local distinguishability

of MES a significant problem. The Holevo-liked upper bound χlocc tells us that no more

than n bit of classical information can be extracted from an ensemble of MES inCn ⊗Cn

systems [9]. Hence, it is of particular interest to know when this upper limit can be at-

tained, which is why the local distinguishability of n MES in Cn ⊗Cn systems is among

one of the more significant problems in the field of local distinguishability. Given this

context, the significance of this work is as follows: hithero, the only known constraint on

the measurements of the LOCC protocols were that they have to be orthogonality preserv-

ing. In this work, we have introduced a stronger constraint which subsumes orthogonality

preservation.

Framework for Distinguishability of Orthogonal Bipartite States by Local Opera-

tions and One-Round of Classical Communication

In this work7 I propose a framework for the distinguishability of orthogonal bipartite

states by local operations and one-round of classical communication. This is based on

work previously done by Ye et al. [10] and arguments made by Michael Nathanson [11].

Brief Summary of Work: For a given set of orthogonal bipartite states in n⊗n systems,

each party of the bipartite system is associated with a subspace of n×n hermitian matrices,

7 http://dx.doi.org/10.1103/PhysRevA.93.030301

http://dx.doi.org/10.1103/PhysRevA.93.030301


32

denoted byT⊥; T⊥ contains information of all one-way LOCC protocols (1-LOCC) which

this associated party can initiate to locally distinguish (probabilistic or perfectly) the given

set of orthogonal bipartite states. I show that techniques and algorithms to extract such

information from T⊥ vary depending on dimT⊥. This gives a natural criterion to partition

the set of all sets of orthogonal bipartite states in n⊗ n into n2 different classes, so that the

dimension of T⊥, corresponding to a fixed party, is constant over all sets of orthogonal

bipartite states in a class. It is seen that sweeping results for the local distinguishability

of orthogonal quantum states in n ⊗ n systems have already been given for classes corre-

sponding to the upper and lower extreme values of dimT⊥: Walgate et al’s result [12] cor-

responds to the class for which n2−2 ≤ dimT⊥ ≤ n2 and Ye et al’s result [10] corresponds

to the case dimT⊥ = 1. I give similarly sweeping results for the local distinguishability by

one-way LOCC for sets of orthogonal bipartite states which lie in classes corresponding

to some intermediary values of dimT⊥, i.e., for 2 ≤ dimT⊥ ≤
√

3n2 − 3n + 1
4 + 3

2 ; some

of these results are necessary and sufficient conditions for local (in)distinguishability of

all sets of orthogonal states in a class, while others are necessary but not sufficient. A sig-

nificant corollary of one among the aforementioned results is the necessary and sufficient

condition for the 1-LOCC distinguishability of almost all sets of n orthogonal bipartite

pure states in Cn ⊗Cn.

Significance: While a lot of work has been done in the field of local distinguishability

of orthogonal quantum states, most of these appear to be scattered because no underlying

framework which these results emerge from, has been identified. Some very significant

results in the local distinguishability of orthogonal quantum states [12, 13] are seen to

emerge from the framework proposed here. This framework also gives general necessary

and sufficient conditions for the 1-LOCC distinguishability for a large class of sets of

orthogonal bipartite quantum states. Particularly, it gives the necessary and sufficient

conditions for the 1-LOCC distinguishability of almost all sets of n orthogonal bipartite

pure states in Cn ⊗ Cn. To add a final comment on the usefulness of this framework:
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note that in [13], Cohen used the same structure to show that almost all sets of ≥ n + 1

orthogonal N-qudit multipartite states (in (Cn)⊗N) are indistinguishable by LOCC.
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Chapter 1

Introduction

In information theory, a message is encoded into a physical system, which is then trans-

mitted by a sender across an information channel, and then decoded by a receiver to ob-

tain the original message. Different messages are encoded as different states of the same

system. For instance in radio communication, a carrier signal is modulated to encode

different messages which need to be transmitted. Hence decoding the signal depends on

the receiver’s ability to distinguish among various states of the same physical system.

In quantum information theory, messages are encoded into states of a quantum system.

These quantum states are then sent across through a quantum channel, and must finally

be decoded by a receiver. If the quantum states don’t lie on orthogonal supports, one has

to distinguish among them by performing a measurement on them, whose measurement

outcomes should yield the distinguishing criteria. To perfectly distinguish between differ-

ent quantum states (i.e., successfully discriminate between quantum states in each trial)

one requires that the quantum states should be orthogonal. Often, the states which come

out of the channel aren’t orthogonal to each other, owing to which they cannot be per-

fectly discriminated. In such a scenario one can choose one of many different imperfect

strategies to try and distinguish among the states. Imperfect strategies of discrimination

refer to strategies which can result in either errors or inconclusive outcomes. The field of

37
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distinguishing non-orthogonal quantum states is known as Quantum State Discrimination

(QSD).

Scenario in QSD: Technically, the scenario in QSD is as follows. Let H be the Hilbert

space of an n dimensional quantum system; then a quantum state of this system is repre-

sented by a density operator ρ, which is a linear operator onH , with the properties ρ ≥ 0

and Tr(ρ) = 1. In a typical QSD problem one is given an unknown quantum state ρi from

an apriori agreed upon ensemble of quantum states P̃ = {pi, ρi}
m
i=1. pi is the probability

with which ρi is selected from P̃. Note that 0 < pi < 1 and
∑m

i=1 pi = 1. One has to

perform a quantum measurement on the unknown quantum state ρi to obtain information

about it. We now describe quantum measurements.

Quantum Measurements: Under a quantum measurement, the state of a quantum sys-

tem ρi undergoes an instantaneous and, generally, a discontinuous transformation - a jump

- to one among d number of other quantum states, i.e.,

ρi −→
1

Tr
(
M jρiM

†

j

)M jρiM
†

j , (1.1)

where {M j}
d
j=1 is a set of operators acting onH , with the property

∑d
i=1 M†

j M j = 1, where

1 is the identity operator acting onH . The operators {M j}
d
j=1 are specific, but not unique

to the measurement, and are called its Kraus operators. Note that there are as many

measurement outcomes as there are Kraus operators for a quantum measurement. The

jump in equation (1.1) is a random process . Given the state ρi, the probability that the

measurement will transform ρi to 1
Tr

(
M jρi M

†

j

) M jρiM
†

j is given by Born’s rule.

p j|i = Tr
(
M†

j M jρi

)
= Tr

(
E jρi

)
, (1.2)

where

p j|i is the probability of obtaining the j-th outcome 1
Tr

(
M jρi M

†

j

) M jρiM
†

j , conditioned
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upon being given the i-th state from the ensemble P̃, and

E j are positive semidefinite operators acting on H , defined by E j ≡ M†

j M j. This

implies that
∑d

j=1 E j = 1.

The set of observables {Ei}
d
i=1 associated with the same measurement is known as a

Positive Operator Valued Measure (POVM). Often measurements are merely given in

their POVM form, rather than their Kraus operator form. For the purpose of quantum

state discrimination, we will need to use the POVM form more often than the Kraus op-

erator form.

1.1 Kinds of QSD Problems

Being able to perfectly distinguish among the ρi’s requires that each measurement out-

come corresponds to some unique state ρi from the ensemble. There don’t always exist

measurement strategies that always yield distinct outcomes for distinct states provided.

In fact, as was mentioned in the beginning of this chapter, such a measurement strategy

exists only when the ρi’s in P̃ are orthogonal, i.e., Tr(ρiρ j) = 0, when i , j. When any

two ρi’s in P̃ are non-orthogonal, there is inevitably some measurement outcome which

corresponds to two or more of the ρi’s. In such a scenario, there are different strategies to

decode the measurement outcome to know which of the ρi’s was sent. Usually, each strat-

egy is associated with a real function f , which is a function of the ρi’s, and the POVM

elements Ei’s. f measures how well the Ei’s can distinguish among the ρi’s. One can

compare the distinguishing power of two distinct POVMs {Ei}
d
i=1 and {E′i }

d
i=1, based on

the value f takes over them, while keeping the ρi’s fixed. Finding the POVM which op-

timizes the value of f is then the goal of the QSD problem. There are different choices

for distinguishability functions f . All such f ’s are required to satisfy the condition that

in the limit that the ρi’s are orthogonal, they are perfectly distinguishable, and the per-

fect distinguishability is achieved by the measurement {Ei}
m
i=1, where Ei is a projector on
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supp(piρi).

Different f ’s correspond to different QSD problems. In the following we list three differ-

ent kinds of QSD problems.

1.1.1 Minimum Error Discrimination

In the class of quantum state discrimination problems, minimum error discrimination

(MED) is one of the oldest. The setting in MED is as follows. Alice has a fixed en-

semble of states P̃ = {pi, ρi}. She selects one of these states (ρi, say) with probability

pi and gives it to Bob without telling him which state she gave him. Bob knows that

Alice has selected the state from the set {ρi}
m
i=1 with apriori probabilities pi and his job is

to figure out which state he has been given using an m-element POVM. In MED, Bob’s

measurement strategy is constrained in the following way: there is a one-to-one corre-

spondence between elements in Alice’s ensemble {pi, ρi}
m
i=1 and Bob’s POVM elements

{Ei}
m
i=1, so that when the i-th measurement outcome clicks, Bob infers Alice gave him the

i-th state from her ensemble. When ρ1, ρ2, · · · , ρm are not orthogonal, errors are likely to

occur. Bob’s job is to find the optimal POVM for minimizing the average probability of

this error or equivalently maximizing the average probability of success.

History: The problem of MED was studied during a time which predates the time when

quantum information came to be recognized as a field in its own right. The problem for

two states was introduced by Bakut and Schurov in 1968. This was solved by Helstrom

[5] in the 70’s. Thereafter problems in MED of a more general nature were studied by

Yuen et al. [14], Kennedy [4], Holevo [15] and Belavkin [1, 2] in the 70’s, and have

since been analytically solved for very few number of different kinds of ensembles. One

notable example of this kind is an ensemble of geometrically uniform set of states [16]. A

more complete list of the major developments in MED will be given in the introduction of

chapter 2. Minimum error discrimination is alternatively referred to as Quantum Hypoth-



1.1. KINDS OF QSD PROBLEMS 41

esis Testing. One of the reasons why this problem acquired significance in the 70’s was

that while radio communication systems could be modeled based on a classical descrip-

tion of electromagnetic radio waves, quantum mechanical description of light is necessary

to accurately describe optical communication systems. The theories of classical hypoth-

esis testing are incompatible with quantum optics, owing to which a completely new

theory, based on the non-commutativity of measurement receptors had to be developed

[5]. That said, MED also acquires significance in the classical wave pattern recognition

problem. This was because of the incompatibility of optical filters to distinguish among

non-orthogonal incoming signals reliably [2].

1.1.2 Unambiguous State Discrimination

For the unambiguous state discrimination of an ensemble of m states P̃ = {pi, ρi}
m
i=1, the

measurement performed is such that it has m + 1 outcomes, i.e., the POVM is of the form

{Ei}
m+1
i=1 , and is such that if the i-th state is given, the measurement yields either the i-th

outcome or the (m + 1)-th outcome. This implies that p j|i = 0, when j , m + 1 and

j , i. Thus if the measurement yields any of the first m outcomes one can conclude

- without ambiguity - which state was provided, but if it yields the (m + 1)-th outcome

then one states that the protocol is inconclusive. The average probability of yielding the

inconclusive outcome will be denoted by Pin, and it is given by

Pin =

m∑
i=1

piTr (ρiEm+1) , (1.3)

and similarly the average probability of yielding a conclusive outcome, which will be

denoted by Pc, is given by

Pc = 1 −
m∑

i=1

piTr (ρiEm+1) =

m∑
i=1

piTr(ρiEi). (1.4)
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In the unambiguous state discrimination problem the distinguishability-measure for an

ensemble of quantum states P̃ is Pc. Hence, the goal in unambiguous state discrimination

is to find where Pc takes its maximum value over that subset of all (m + 1)-POVMs which

is also constrained so that p j|i = 0, for all j , m + 1, j , i and 1 ≤ i ≤ m. This subset

within the set of all (m + 1)-POVMs is called the feasible region.

History and Significant Results: In contrast to the MED problem, the unambiguous

state discrimination problem acquired significance primarily out of theoretical interest,

rather than practical concerns. The problem of unambiguous state discrimination was

first proposed for an ensemble of two pure states by Ivanovic in [17] in 1987. In 1988,

Dieks and Peres separately obtained the minimum value of Pin for an ensemble of two

equiprobable pure states [18, 19]. In 1995, Jaegar and Shimoney obtained the minimum

value of Pin for any ensemble of two pure states [20]. In 1998, Chefles showed that any set

of n pure states can be unambiguously discriminated among only when they are linearly

independent [21]. He and Barnett also gave the optimum unambiguous state discrimina-

tion strategy for pure linearly independent symmetric states [22]. Also, in 1998, Peres

and Terno gave the optimal distinguishing strategy for any set of three states [23]. In

2001, Sun, Bergou and Hillery solved the problem for an ensemble of a mixed state and

a pure states in two dimensions [24], and in 2003, Bergou, Herzog and Hillery solved

it for general n pure states in [25]. In 2004, Eldar et al. reformulated unambiguous

state discrimination into a semidefinite programming problem [26]. In 2005, Herzog and

Bergou considered the problem for two mixed states [27]. In 2007, Rayden and Lutken-

häus considered the unambiguous state discrimination problem for two mixed states and

obtained a second class of solutions [28]. Other significant developments can be found in

[29, 30, 31, 32, 33, 34].
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1.1.3 Discrimination by Local Operations and Classical Communi-

cation

A situation often encountered in quantum information is that the ρi’s are bipartite or multi-

partite states of a composite system, whose subsystems are geographically separated from

each other thus disallowing joint operations to be performed on the composite system. If

various parties in charge of their respective subsystems already share non-local resources

- entanglement, for instance - among themselves they can use this non-locality to their ad-

vantage to discriminate the set of states. For example let the states be bipartite qubit states

and let the two parties, Alice and Bob, share a single ebit of entanglement. Then Alice

can teleport her state to Bob and he can perform all possible global operations on the joint

system in his lab. In the absence of any non-local resources all parties can perform only

local measurements on their respective subsystems and communicate classically their re-

spective measurement outcomes to their peers. Protocols of this type are known as Local

O perations and Classical Communication (LOCC) protocols. LOCC protocols play an

integral role in quantum information, for example, LOCC gives the underlying argument

which determines when a state is separable and when a state is entangled [35]. A sig-

nificant question in QSD is to determine under what conditions can bipartite/multipartite

states in an ensemble be discriminated amongst using an LOCC protocol. In QIT par-

lance this question is often phrased as “are the states locally distinguishable or locally

indistinguishable?”.

Consider the instance where the composite system is bipartite, the Hilbert spaces of whose

subsystems are given by HA and HB; the Hilbert space of the composite system is then

given by HA ⊗ HB. Let Alice be in possession of the subsystem whose Hilbert space is

HA and Bob the system whose Hilbert space isHB. The LOCC protocols for this bipartite

system can be classified as follows. In all the cases below we assume that Alice starts the

protocol (someone has to start), but each of the situations referred to below also hold for

protocols which Bob initiates. There is no loss of generality assumed in Alice starting the
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protocol (as is assumed throughout this thesis); it is merely a convention that is followed

in quantum information theory and theoretical computer science.

(i) 1-LOCC: Alice starts the protocol by performing a measurement on her subsystem,

whose outcome she communicates to Bob (classical communication), who then

performs a local measurement which is based on Alice’s measurement outcome,

and after which the protocol stops. This involves a single round of communication

between Alice and Bob (in this case Alice to Bob).

(ii) 2-LOCC: This proceeds the same way as 1-LOCC, with the difference that the

protocol doesn’t stop after Bob’s measurement. Bob communicates his measure-

ment outcome to Alice, who performs another local measurement which depends

on Bob’s measurement outcome and Alice’s measurement outcome before that. The

protocol stops after Alice’s second measurement. The entire protocol involves two

rounds of communication (Alice to Bob and Bob to Alice)

(iii) General N-LOCC: Alice and Bob take turns to perform measurements on their re-

spective subsystems and communicate their respective measurement outcomes to

each other in the same way as in 1-LOCC and 2-LOCC. The protocol ends when

there have been N instances of messages being communicated between Alice and

Bob.

(iv) Asymptotic LOCC: This refers to the closure of the set of N-LOCC where N is any

natural number.

Sets of pairwise orthogonal states are always perfectly distinguishable under global op-

erations (i.e., operations subsuming all possible joint measurements on the composite

system) but are generally indistinguisable under LOCC operations. Since even pairwise

orthogonal states cannot generally be perfectly distinguished using LOCC, a significant

amount of focus in the literature has been on the deficit between perfect global distin-

guishability and local (in)distinguishability of the same sets of pairwise orthogonal states.
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History: The first paper in the topic of local distinguishability of quantum states was by

Peres and Wootters [36]. Interestingly, a discussion over this paper lead to the discovery of

quantum teleportation [37]. The question that lead the authors to the quantum teleporation

paper was whether Alice and Bob could distinguish between two biparite qubit states

better if they shared an ebit of entanglement1. That said, it was only in the early 2000s

when the problem started attracting more serious attention from researchers the world

over due to the discovery of non-locality without entanglement [38] and the discovery

that any two multipartite orthogonal pure states are locally distinguishable. A key feature

of the progress made over the past one and a half decades is that most results have been

limited to ensembles of states with certain symmetries, or systems whose dimensions are

of specific values, rather than for general ensembles. A longer list of significant results in

the topic is presented in chapter 3.

More comprehensive reviews on the aforementioned topics in QSD can be found in [39,

40, 41].

1.2 Outline of Thesis

This thesis examines four problems in all, two of which are in the topic of MED and the

remaining two of which are in the topic of local distinguishability of quantum states. I

will summarize all the four problems over the coming sections of this thesis.

The second chapter of the thesis covers problems which deal with the topic of minimum

error discrimination. It is divided into six sections: in the first section I describe the MED

problem with all relevant technical details, and make explicit the goal of the problem; in

the second section I present the optimality conditions, in the third section I describe the

structure of the problem as discovered by Belavkin and Maslov; in the fourth section I

1 E. Chitambar, Local Distinguishability of Quantum States, Lecture 1, Institute of Mathematical Sci-
ences, Chennai, 2014, January 27.

https://youtu.be/gbS_GHzmOoU?t=1141
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show how the mathematical structure of the MED of LI pure state ensembles, which is

richer than the mathematical structure of general ensembles, is used to obtain the corre-

sponding optimal POVM; in the fifth section I show how the richer mathematical struc-

ture, which relates a LI pure state ensemble to its optimal POVM, can be generalized to

an ensemble of LI mixed states, and then be used to obtain the optimal POVM for MED

of an ensemble of LI mixed states. In the final section of this chapter I briefly summarize

the contents of the chapter and then describe future directions which emerge out of the

problems considered in it.

The third chapter covers problems which I worked on in the topic of local distinguishabil-

ity of quantum states. This chapter is divided into two sections: the first section details the

derivation of a necessary condition for the local distinguishability of m pairwise orthog-

onal maximally entangled states in Cn ⊗ Cn systems, where m ≤ n, and, also, provides

examples of how strong the necessary condition is for certain classes of Lattice states,

known as Generalized Bell states. The second section proposes a framework for the 1-

LOCC distinguishability of sets of pairwise orthogonal bipartite states in an n⊗n bipartite

system. It is shown that the results in Walgate et al’s paper [12] 2, and the result in Co-

hen’s paper [13]3 emerge out of this framework. Additionally, I also show that from the

framework emerges, among other results, the necessary and sufficient conditions for the

1-LOCC distinguishability of almost all sets of n pairwise orthogonal bipartite states in

C
n⊗Cn systems. At the end of each section I propose future directions which the content

of the corresponding section could lead me to.

The fourth chapter summarizes the work in the thesis and discusses the relevance of this

work in the field of quantum information community. After that I list more general prob-

2 In this paper, Walgate et al. showed that any two orthogonal bipartite pure states are always distin-
guishable by 1-LOCC. In fact, the result by Walgate et al. is more general: they prove that any two
orthogonal multipartite pure states are always locally distinguishable, but the result for the multipar-
tite case follows trivially from the result for the bipartite case, which they establish earlier on in their
paper.

3 In this paper Cohen showed that almost all sets of m ≥ n+1 orthogonal multipartite states from (Cn)⊗N

systems are locally indistinguishable.
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lems which I would like to pursue.

Some technical details of the third chapter are provided in the appendices A and B.
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Chapter 2

Minimum Error Discrimination

2.1 Introduction

Minimum Error Discrimination (MED) is a kind of quantum state discrimination problem.

The problem involves an n-dimensional quantum system, whose Hilbert space we will

denote by H . The setting is as follows: Alice selects a quantum state ρi (with ρi ≥ 0,

and Tr(ρi) = 1) with probability pi from an ensemble of m such states, P̃ ≡ {pi, ρi}
m
i=1

(where 0 < pi < 1 and
∑m

i=1 pi = 1), and sends it to Bob, who has to find the value of i

by performing measurement on the state ρi. This measurement is a generalized POVM of

m elements, E = {Πi}
m
i=1, where Πi ≥ 0 and

∑m
i=1 Πi = 1 (1 is the identity operator acting

on H). Furthermore his measurement strategy is based on a one-to-one correspondence

between states in the ensemble P̃ and POVM elements {Ei}
m
i=1, i.e., ρi ↔ Πi, such that

if the measurement yields the i-th outcome, he will assume that he is given the i-th state

from the ensemble P̃. When the states ρ1, ρ2, , · · · , ρm are not all pairwise orthogonal, they

aren’t perfectly distinguishable, i.e., there exists no measurement such that Tr(ρiΠ j) = 0,

when i , j, ∀ 1 ≤ i, j ≤ m. This implies that there may arise a situation where Alice

sends the i-th state, ρi, but Bob concludes he was given the j-th state where j , i. This

happens when even upon being given ρi, Bob’s measurement yields the j-th outcome.

49
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Such a scenario corresponds to an error. The average probability of such errors is given

by

Pe =

m∑
i, j=1
i, j

piTr(ρiΠ j). (2.1)

Correspondingly, successful discrimination is when Bob is given the i-th state ρi and he

also concludes that he was given the i-th state; this is happens when his measurement

outcome is i. The average probability of success is given by

Ps =

m∑
i=1

piTr(ρiΠi). (2.2)

It is easy to see that Ps + Pe = 1.

The central objective in MED is to find the m-POVM(s) which maximize the value of

Ps.

Pmax
s = Max

Ps

∣∣∣∣∣∣ {Πi}
m
i=1 where Πi ≥ 0,

∑
i

Πi = 1

 (2.3)

Developments in the MED problem: necessary and sufficient conditions for the op-

timal POVM for any ensemble were given by Holevo [15] and Yuen et al [14] indepen-

dently. Yuen et al. cast MED into a convex optimization problem for which numerical

solutions are given in polynomial time1. While there are quite a number of numerical

techniques to obtain the optimal POVM [42, 43, 44, 45], for very few ensembles has the

MED problem been solved analytically. Some of these include an ensemble of two states

[5], ensembles whose density matrix is maximally mixed state [14], equiprobable ensem-

bles that lie on the orbit of a unitary, [16, 46, 47], and mixed qubit states [48, 49]. In [50],

many interesting properties of the MED problem have been elucidated using geometry of

1 That is, polynomial in dimH , which is denoted by n here.
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N qudit states. Elsewhere, an upper bound for the optimal success probability has been

given [75].

2.2 Optimality Conditions

The set of m-POVMs is convex, i.e., if {Ei}
m
i=1 and {E′i }

m
i=1 are m-POVMs, then so is {pEi +

(1− p)E′i }
m
i=1, ∀ 0 ≤ p ≤ 1. Hence MED is a constrained convex optimization problem. To

every such a constrained convex optimization problem (called the primal problem) there

is a corresponding dual problem which provides a lower bound (if the primal problem is

a constrained minimization) or an upper bound (if the primal problem is a constrained

maximization) to the quantity being optimized (called the objective function). Under

certain conditions these bounds are tight implying that one can obtain the solution for

the primal problem from its dual. We then say that there is no duality gap between both

problems. For MED, there is no duality gap between the primal and dual problems; thus

the dual problem can be solved to obtain the optimal POVM [14]. The dual problem is

given as follows [14]:

Min Tr(Z), subject to: Z ≥ piρi , ∀ 1 ≤ i ≤ m. (2.4)

Then Pmax
s is given by Pmax

s = Min Tr(Z).

Also the optimal m-POVM, {Ei}
m
i=1 will satisfy the complementary slackness condition:

(Z − piρi)Ei = 0, ∀ 1 ≤ i ≤ m. (2.5)

Now summing over i in equation (2.5) and using the fact that
∑m

i=1 Ei = 1n we get the

following.
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Z =

m∑
i=1

piρiEi =

m∑
i=1

Ei piρi. (2.6)

From equation (2.5) we get

E j

(
p jρ j − piρi

)
Ei = 0, ∀ 1 ≤ i, j ≤ m. (2.7)

Conditions (2.5) and (2.7) are equivalent to each other. Z, given by equation (2.6), has to

satisfy another condition

Z ≥ piρi, ∀ 1 ≤ i ≤ m. (2.8)

Thus the necessary and sufficient conditions for the m-element POVM {Ei}
m
i=1 to maximize

Ps are given by conditions (2.7) (or (2.5)) and (2.8) together.

2.3 Structure of MED

Belavkin and Maslov [1, 2] discovered a mathematical structure for the MED of general

ensembles of states - a structure which relates said ensembles to their respective optimal

POVM(s).

Let P̃ = {pi, ρi}
m
i=1 be an ensemble of quantum states for whose MED we seek the cor-

responding optimal POVM(s); let the (an) optimal POVM(s) be denoted by {Ei}
m
i=1. The

mathematical structure relates P̃ to another ensemble of quantum states Q̃ ≡ {qi, σi}
m
i=1,

which has the following properties.

(i.) {qi}
m
i=1 is a probability (with 0 ≤ q1, q2, · · · , qn < 1, and

∑m
i=1 qi = 1), and

(ii.) σi are density operators on H such that supp(qiσi) is a subspace of supp(piρi),
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∀ 1 ≤ i ≤ m,

(iii) The Ei can be written in terms of the states in the ensemble {qi, σi}
m
i=1.

Ei =

 m∑
j=1

qiσi


− 1

2

qiσi

 m∑
k=1

qiσi

−
1
2

, ∀ 1 ≤ i ≤ m. (2.9)

For a given ensemble of states {qi, ρi}
m
i=1, the POVM {Ei}

m
i=1, whose POVM elements

are given by equation (2.9), is called the Pretty Good Measurement of the ensemble

{qi, σi}
m
i=1.

2.4 MED for LI Pure States

(The work in this section can be found in a paper authored by myself and Sibasish Ghosh,

and has been published in Journal of Physics A: Mathematical and Theoretical2 [51].

The previous section ended with the salient features of the mathematical structure of the

MED problem for general ensembles, i.e., ensembles whose states have no special prop-

erties. In case the states are pure and LI, said mathematical structure of the problem

becomes richer. Note thatH , here, is the space which is spanned by the pure states, since

any more dimensions of the quantum system won’t play any active role in the problem.

Thus for the MED of LI pure states, the number of states in the ensemble m is equal to

the dimension of the Hilbert space, i.e., m = n.

Structure of the MED problem for ensembles of LI pure states: The MED problem

for ensembles of LI pure states is known to have two interesting properties. Let P̃ =

{pi, |ψi〉〈ψi |}
n
i=1 be an ensemble of states, where |ψ1〉, |ψ2〉, · · · , |ψn〉 ∈ H are LI. Then

said properties of the MED problem for P̃ are:

(i) The optimal POVM is a unique rank one projective measurement [4, 5, 3].

2 http://dx.doi.org/10.1088/1751-8113/49/16/165304

http://dx.doi.org/10.1088/1751-8113/49/16/165304
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(ii) The optimal POVM for MED of P̃ is the pretty good measurement (PGM) of an-

other ensemble, Q̃ ≡ {qi > 0, |ψi〉〈ψi|}
n
i=1 [1, 2, 3]. Note that the i-th states in P̃ and

Q̃ are the same, whereas the probabilities are generally not. Additionally, in [3], it

is explicitly shown that the ensemble pair (P̃, Q̃) are related through an invertible

map.

To formalize this invertible relation between P̃ and Q̃ we will now introduce a few defini-

tions.

Definition 2.4.1. E is the set of all ensembles comprising of n LI pure states. Hence, any

ensemble in E is of the form P̃ = {pi > 0, |ψi〉〈ψi|}
n
i=1 where |ψ1〉, |ψ2〉, · · · , |ψn〉 are LI.

E is a (2n2 − n − 1) real parameter set.

Definition 2.4.2. P is the set of all rank one projective measurements on the states ofH ;

an element in P is of the form {|vi〉〈vi|}
n
i=1 where 〈vi|v j〉 = δi j, ∀ 1 ≤ i, j ≤ n.

P is an n(n − 1) real parameter set. From point (i) above we see that the optimal POVM

for P̃ ∈ E is a unique element in P. Thus, one can define the optimal POVM map, P , in

the following way:

Definition 2.4.3. P : E −→ P is such that P
(
P̃
)

is the optimal POVM for MED of

P̃ ∈ E.

Let PGM denote the PGM map, i.e., PGM : E −→ P is such that PGM
(
Q̃
)

is the PGM

of Q̃ ∈ E, i.e. (refer to [3]), PGM
(
Q̃
)

=

{
ρ
− 1

2
q qi|ψi〉〈ψi|ρ

− 1
2

q

}n

i=1
, where ρq =

∑n
i=1 qi|ψi〉〈ψi|

(see equation (2.9)).

Then (ii) above says that there exists an invertible map, which we label by R, which can

be defined in the following way:

Definition 2.4.4. R : E −→ E is a bijection such that

P
(
P̃
)

= PGM
(
R

(
P̃
))
, ∀ P̃ ∈ E. (2.10)
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Knowing R would solve the problem of MED for LI pure state ensembles. While the

existence of the invertible function R has been proven [1, 3], unfortunately, it isn’t known

- neither analytically nor computationally for arbitrary ensemble P̃. Fortunately R−1 is

known [2, 1, 3] i.e., having fixed the states {|ψi〉}
n
i=1 one can give pi in terms of the qi:

let Gq > 0 represent the gram matrix of the ensemble Q̃, i.e.,
(
Gq

)
i j

=
√qiq j〈ψi|ψ j〉,

and let Gq
1
2 represent the positive square root of Gq; let G denote the gram matrix of P̃,

i.e., Gi j =
√pi p j〈ψi|ψ j〉, ∀ 1 ≤ i, j ≤ n; then diagonal elements of G can be written as

functions of qi and matrix elements of G
1
2
q

Gii = pi = C
qi(

Gq
1
2

)
ii

, ∀ 1 ≤ i ≤ n, (2.11)

where C is the normalization constant3,

C =

 n∑
j=1

q j(
Gq

1
2

)
j j


−1

.

This tells us what R−1 is:

R−1 (
{qi, |ψi〉〈ψi|}

n
i=1

)
= {pi, |ψi〉〈ψi|}

n
i=1 ,

where pi and qi are related by equation (2.11).

It is more convenient to define R−1 and R on the set of gram matrices, which we will

denote by G.

Definition 2.4.5. G is the set of all positive definite n × n matrices of trace one.

Note4 that G is convex and is also open in Rn2−1.
3 qi > 0, ∀ 1 ≤ i ≤ n. This comes from the definition of E and that {qi, |ψi〉〈ψi|}

n
i=1 ∈ E. Also,(

G
1
2

)
ii
> 0, ∀ 1 ≤ i ≤ n. This is because G

1
2 , being the positive square root of G (gram matrix for the

linearly independent vectors {
√

qi|ψi〉}
n
i=1) is positive definite and the diagonal elements of a positive

definite matrix have to be greater than zero.
4 Associating each G ∈ G with an n×n density matrix of rank n, we see that G is the same as the interior

of the generalized Bloch sphere for n dimensional systems. Hence G ⊂ Rn2−1.
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Define R (G)−1 : G −→ G by R (G)−1(Gq) = G, using relation (2.11). This is possible in

the following manner: The matrix elements of Gq are given by (Gq)i j =
√qiq j〈ψi|ψ j〉 and

that of G are given by Gi j =
√pi p j〈ψi|ψ j〉, thus Gq and G are related by the following

congruence transformation:

G = D′′GqD′′,

where D′′ is a diagonal matrix whose matrix elements are given by

(D′′)i j = δi j

√
pi

qi
,

where the pi’s are obtained from the qi’s using equation (2.11). This defines R (G)−1 unam-

biguously.

We know that R−1 is invertible on E (from [3]); this implies that R (G)−1 is invertible on G,

i.e., R (G) exists. Equation (2.11) tells us that R (G)−1 is continuous in G. Since G ⊂ Rn2−1

is open5, the invariance of domain theorem [52] tells us that R (G)−1 is a homeomorphism

on G. This means that R (G) is also continuous on G.

To be able to express what R is one needs to be able to solve the n equations (2.11) for

qi in terms of p j’s and |ψ j〉’s. These equations are too complicated for one to hope to

solve: to begin with one doesn’t even have an explicit closed form expression for G
1
2 in

terms of the matrix elements of G for arbitrary n. Even for the cases when n = 3, 4,

where one can obtain such a closed form expression for G
1
2 , the nature of the equations

is too complicated to solve analytically. This tells us that it is hopeless to obtain qi as a

closed form expression in terms of {pi, |ψi〉}
n
i=1. A similar sentiment was expressed earlier

[53]. While a closed form expression of the solution seems too difficult to obtain (and

even if obtained, too cumbersome to appreciate) giving an efficient technique to compute

qi from {pi, |ψi〉}
n
i=1 establishes that the equation (2.10) along with technique (to compute

qi) provides a solution for MED of an ensemble of n-LIPs.

5 The topology of G is that which is induced on it by the Hilbert-Schmidt norm. Note that this is
equivalent to the Euclidean metric ofRn2−1
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To achieve such a technique we recast the MED problem for any ensemble P̃ in terms

of a matrix equation and a matrix inequality using the gram matrix G of P̃. The matrix

equation and the inequality are equivalent to the optimality conditions that the optimal

POVM has to satisfy, i.e., the optimal conditions given by Yuen et al [14]. Recasting the

problem in this form gives us three distinct benefits.

(1) It helps us to explicitly establish that the optimal POVM for P̃ is given by the PGM

of another ensemble of the form Q̃ (i.e., relation in equation (2.10) is made explicit

in the matrix equality and matrix inequality conditions).

(2) MED is actually a rotationally invariant problem, i.e., the optimal POVM, {Ei}
n
i=1,

varies covariantly under a unitary transformation, U, of the states:

|ψi〉〈ψi| → U |ψi〉〈ψi|U† =⇒ Ei → UEiU†.

This makes it desirable to subtract out the rotationally covariant aspect of the so-

lution and, so, cast the problem in a rotationally invariant form. This is achieved

through the aforesaid matrix equality and inequality.

(3) It gives us a technique to compute qi.

For (3) we need to compute R (G)(G) for a given G ∈ G. This is done by using the analytic

implicit function theorem which tells us that R (G) is an analytic function on G. Specifi-

cally, we will vary G from one point in G, at which we know what the action of R (G) is, to

another point in G, at which we want to know what the action of R (G) is.

Further on, since our technique rests on the theory of the MED problem for n-LIP ensem-

bles, it is expected that the algorithm our technique offers is computationally as efficient

as or more efficient than existing techniques. We show that this is indeed the case, partic-

ularly by directly employing Newton’s method to solve the matrix inequality. This adds

to the utility of our technique.
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The section for MED of LI pure states is divided into the following subsections: In sub-

section 2.4.1 we recast the MED problem for LI pure states in a rotationally invariant

form. In subsection 2.4.2 IFT is employed to solve the rotationally invariant conditions,

which were developed in the previous subsection; in subsubsection 2.4.2 of subsection

2.4.2 the computational complexity of our algorithm is compared with a standard SDP

technique. We conclude this work in subsection 2.4.3.

2.4.1 Rotationally Invariant Necessary and Sufficient Conditions for

MED

We wish to obtain the optimal POVM (which is a rank-one projective measurement)

for MED of an ensemble P̃ = {pi, |ψi〉〈ψi|}
n
i=1, where {|ψi〉}

n
i=1 is a LI set. Let | ψ̃i〉 ≡

√
pi|ψi〉, ∀ 1 ≤ i ≤ n. Since {| ψ̃i〉}

n
i=1 is a LI set, corresponding to this set there exists a

unique set of vectors {| ũi〉}
n
i=1 ⊂ H such that6:

〈ψ̃i |̃u j〉 = δi j, ∀ 1 ≤ i, j ≤ n. (2.12)

Let G denote the gram matrix of
{
| ψ̃i〉

}n

i=1
. The matrix elements of G are hence given by

Gi j = 〈ψ̃i|ψ̃ j〉, ∀ 1 ≤ i, j ≤ n. (2.13)

Tr(G) = 1. Since
{
| ψ̃i〉

}n

i=1
is a LI set, G > 0. Any orthonormal basis {| vi〉}

n
i=1 ofH can be

represented as:

| vi〉 =

n∑
j=1

(
G

1
2 U

)
ji
| ũ j〉, (2.14)

6 Given a set of n LI vectors
{
| ψ̃i〉

}n

i=1
one can obtain the corresponding set of vectors {| ũi〉}

n
i=1 in the

following way: fix a basis to work in, arrange 〈ψ̃i| as rows in a matrix which we call V . V is invertible
since its rows are LI. The columns of V−1 correspond to the vectors | ũi〉 in our chosen basis.
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where G
1
2 is the positive square root of G and U is an n × n unitary matrix. This can be

seen from the following: the gram matrix corresponding to the set {| ũi〉}
n
i=1 is G−17. Using

this, it can easily be verified that 〈vi|v j〉 = δi j, for all 1 ≤ i, j ≤ n. Note that U captures

the unitary degree of freedom of the orthonormal basis {| vi〉}
n
i=1, in the sense that using

different U’s will yield different ONBs {| vi〉}
n
i=1. Any such orthonormal basis corresponds

to a rank-one projective measurement:

{| vi〉}
n
i=1 −→ {|vi〉〈vi|}

n
i=1. (2.15)

Using this rank-one projective measurment for MED, the average probability of success

is given by:

Ps =

n∑
i=1

|〈ψ̃i|vi〉|
2 =

n∑
i=1

∣∣∣∣(G 1
2 U

)
ii

∣∣∣∣2 . (2.16)

Let {|wi〉〈wi|}
n
i=1 be a rank-one projective measurement, which is also a solution for the

n-POVM {Ei}
n
i=1 in condition (2.7). Here 〈wi|w j〉 = δi j for i, j = 1, 2, · · · , n. Let an n × n

unitary matrix W be related to the rank-one projective measurement {|wi〉〈wi|}
n
i=1 in the

following way.

|wi〉 =

n∑
j=1

(
G

1
2 W

)
ji
| ũ j〉. (2.17)

The unitary matrix W is fixed upto right-multiplication with a diagonal unitary matrix,

which changes the phases of |wi〉. We will soon fix the phases of |wi〉 which will ensure

that W will be unique.

Thus equation (2.7) can be rewritten as:

7 Note that
∑n

j=1〈̃ui |̃u j〉〈ψ̃ j|ψ̃k〉 = δik, since
∑n

j=1 |̃u j〉〈ψ̃ j| = 1. This can be seen from the fact that if

| η〉 =
∑n

j=1 α j| ũ j〉 is any vector inH , then
(∑n

j=1 |̃u j〉〈ψ̃ j|
)
| η〉 = | η〉.
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〈w j |
(
|ψ̃ j〉〈ψ̃ j| − |ψ̃i〉〈ψ̃i|

)
|wi〉 = 0, ∀ 1 ≤ i, j ≤ n. (2.18)

Using equation (2.17) in equation (2.18):

(
G

1
2 W

)∗
j j

(
G

1
2 W

)
ji

=
(
G

1
2 W

)∗
i j

(
G

1
2 W

)
ii
, ∀ 1 ≤ i, j ≤ n. (2.19)

The diagonal elements of the matrix G
1
2 W can be made non-negative by appropriately fix-

ing the phases of the |wi〉 vectors in the following way: right-multiply W with a diagonal

unitary W ′, whose diagonal elements will be phases. From equation (2.17) it is seen that

right-multiplying W with W ′ merely changes the phases of the ONB vectors |wi〉, and that

they will still satisfy equation (2.18). We can vary the phases in W ′ so that the diagonals

of G
1
2 WW ′ are non-negative. We absorb W ′ into W. After this absorption, the n×n unitary

W which is associated with the rank-one projective measurement {|wi〉〈wi|}
n
i=1, is unique.

Continuing, we see that equations (2.19) now take the following form.

(
G

1
2 W

)
j j

(
G

1
2 W

)
ji

=
(
G

1
2 W

)
ii

(
G

1
2 W

)∗
i j
, ∀ 1 ≤ i, j ≤ n. (2.20)

Let D = Diag(d11, d22, · · · , dnn) be the real diagonal matrix of G
1
2 W, i.e.,

dii =
(
G

1
2 W

)
ii
, ∀ 1 ≤ i ≤ n. (2.21)

From equation (2.20) and the fact that the diagonals of G
1
2 W are all real, we infer that the

matrix DG
1
2 W is hermitian.

DG
1
2 W −W†G

1
2 D = 0. (2.22)

Left multiplying the LHS and RHS by DG
1
2 W gives
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(
DG

1
2 W

)2
− DGD = 0

=⇒ X2 − DGD = 0, (2.23)

where X ≡ DG
1
2 W, X† = X and (note that) D2 is the diagonal of X.

In the MED problem, we are given the gram matrix G of the ensemble P̃. To solve

condition (2.7) for MED of P̃ we need to solve for X in equation (2.23). Knowing X tells

us what G
1
2 W is, which can be used in equation (2.17) to obtain {|wi〉〈wi|}

n
i=1. Equation

(2.23) came from assuming that {|wi〉〈wi|}
n
i=1 represented some n-POVM which satisfied

condition (2.7). For {|wi〉〈wi|}
n
i=1 to be the optimal POVM it needs to satisfy condition

(2.8) too; this will impose another condition on the solution for X in equation (2.23).

Theorem 2.4.1. Let X be a solution for X in equation (2.23). Then X corresponds to the

optimal POVM for MED of P̃ if it is positive definite. Also, R (G)(G) =
1

Tr(D2G)
DGD,

where D is the square root of the diagonal of X.

Proof. We relate dii, defined in equation (2.21), to the probability qi mentioned in equation

(2.11). In the introduction of this section it was mentioned that the optimal POVM for

MED of P̃ is the PGM of an ensemble R
(
P̃
)

= Q̃ = {qi, |ψi〉〈ψi|}
n
i=1 (see definition (2.4.4)).

This means that [1]

|wi〉 =

 n∑
j=1

|ψ̃′ j〉〈ψ̃
′

j|


−1/2

| ψ̃′i〉, ∀ 1 ≤ i ≤ n, (2.24)

where | ψ̃′i〉 ≡
√

qi|ψi〉 and
(∑n

j=1 |ψ̃
′

j〉〈ψ̃
′

j|
)−1/2

> 0. Define | ũ′i〉 to be such that 〈ψ̃′i|ũ′ j〉 =

δi j, ∀ 1 ≤ i, j ≤ n. Gq is the gram matrix corresponding to the ensemble Q̃. It can be

verified that G−1
q is the gram matrix of the vectors {| ũ′i〉}ni=1, i.e.,

(
G−1

q

)
i j

= 〈ũ′i|ũ′ j〉, ∀ 1 ≤

i, j ≤ n. This implies that
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 n∑
j=1

|ψ̃′ j〉〈ψ̃
′

j|


−1/2

=

 n∑
j=1

|ũ′ j〉〈ũ′ j|


1/2

=

n∑
i, j=1

(
G

1
2
q

)
i j
|ũ′i〉〈ũ′ j|. (2.25)

Note that since the LHS in equation (2.25) is positive definite, the RHS in equation (2.25)

should also be positive definite and that can only be true if G
1
2
q > 0. One can verify the

above equation by squaring on both sides 8. Substituting the above in equation (2.24)

gives

|wi〉 =

n∑
j=1

(
G

1
2
q

)
ji
| ũ′ j〉

=

n∑
j=1

√p j
√q j

(
G

1
2
q

)
ji
| ũ j〉, ∀ 1 ≤ i ≤ n, (2.26)

where | ũ′i〉 =
√

pi
√

qi
| ũi〉, ∀ 1 ≤ i ≤ n (since | ψ̃′i〉 =

√
qi
√

pi
| ψ̃i〉). Since {| ũi〉}

n
i=1 is a basis forH ,

on comparing equations (2.26) and (2.17) we obtain

(
G

1
2 W

)
ji

=

√p j
√q j

(
G

1
2
q

)
ji
, ∀ 1 ≤ i, j,≤ n, (2.27a)

=⇒ d j j =

√p j
√q j

(
G

1
2
q

)
j j
, ∀ 1 ≤ j ≤ n. (2.27b)

Using equation (2.11) we get that

d j j

√p j
√q j

=
p j

q j

(
G

1
2
q

)
j j

= C, ∀ 1 ≤ j ≤ n, (2.28)

8 That | ψ̃′i〉 and | ũ′ j〉 are related by 〈ψ̃′i|ũ′ j〉 = δi j implies that
∑n

j=1 |ũ′ j〉〈ψ̃′ j| = 1n. That∑n
j=1 |ũ′ j〉〈ψ̃′ j| = 1n is true implies that

(∑n
j=1 |ũ′ j〉〈ũ′ j|

) (∑n
k=1 |ψ̃

′
k〉〈ψ̃

′
k |
)

= 1n. Hence
∑n

j=1 |ũ′ j〉〈ũ′ j|

is the inverse of
∑n

k=1 |ψ̃
′
k〉〈ψ̃

′
k |. Also, since Gq is the gram matrix of

{
| ψ̃′ j〉

}n

j=1
and G−1

q is the gram

matrix of
{
| ũ′ j〉

}n

j=1
we get that

(∑n
i, j=1

(
G

1
2
q

)
i j
|ũ′i〉〈ũ′ j|

)2

=
∑n

j=1 |ũ′ j〉〈ũ′ j|.
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where C is the positive constant that appears in equation (2.11). Since d j j

√p j
√q j

= C, ∀ 1 ≤

j ≤ n, using equations (2.27a) and (2.28) we get that

(X) ji =
(
DG

1
2 W

)
ji

= d j j

(
G

1
2 W

)
ji

= C ×
(
G

1
2
q

)
ji
, ∀ 1 ≤ i, j,≤ n,

that is, X is equal to the product of a positive constant C and G
1
2
q , which implies that

X > 0. Also from equation (2.23) it follows that DGD = C2 ×Gq, i.e., the gram matrix of

R
(
P̃
)

= Q̃ is given by DGD
Tr(D2G) , i.e.,

R (G)(G) =
X2

Tr
(
X2) =

DGD
Tr(D2G)

. (2.29)

�

The converse of theorem 2.4.1 is proved in the following.

Theorem 2.4.2. If X is a solution for X in equation (2.23) and X is positive definite, then

X corresponds to the optimal POVM for MED of the ensemble P̃. Also, X is unique, i.e.,

there is no other X′ such that it is a solution for X in equation (2.23) and X′ > 0.

Proof. LetX be a solution for X in equation (2.23) and letX be positive definite. Equating

D−1X with G
1
2 W (see below equation (2.23)) and employing it in equation (2.17), we

obtain {|wi〉〈wi|}
n
i=1 to be the rank-one projective measurement corresponding to solution

X. We want to prove that {|wi〉〈wi|}
n
i=1 is the optimal POVM. For this purpose we borrow

a result from Mochon’s paper. Equation (33) in Mochon’s paper [3] tells us that the

positive operator Z, defined in equation (2.6), is a scalar times the positive square root of

the density matrix of the ensemble R
(
P̃
)
, i.e.,

Z = C

 n∑
i=1

qi|ψi〉〈ψi|


1
2

. (2.30)

We will compute
∑n

i=1 pi|wi〉〈wi|ψi〉〈ψi| and show that it is equal to C(
∑n

i=1 qi|ψi〉〈ψi|)
1
2 ,
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thereby proving that
∑n

i=1 pi|wi〉〈wi|ψi〉〈ψi| is equal to Z. This will show that {|wi〉〈wi|}
n
i=1 is

the optimal POVM.

Since |wi〉 =
∑n

k=1(D−1X)ki| ũk〉 and | ũk〉 =
∑n

j=1(G−1) jk| ψ̃ j〉, using equation (2.23) it’s

easily verified that |wi〉 =
∑n

j=1

(
DX−1

)
ji
| ψ̃ j〉. Then

n∑
i=1

|wi〉〈wi|ψ̃i〉〈ψ̃i| =

n∑
j,i=1

(
DX−1D

)
ji
|ψ̃ j〉〈ψ̃i| > 0. (2.31)

Squaring the RHS in equation (2.31) and employing equation (2.23) we get that

 n∑
i, j=1

(
DX−1D

)
i j
|ψ̃i〉〈ψ̃ j|


2

=

n∑
i, j=1

d2
ii|ψ̃i〉〈ψ̃i|. (2.32)

Consider the probability ki ≡
d2

ii pi∑n
j=1 d2

j j p j
, ∀ 1 ≤ i ≤ n. Thus

∑n
i=1 ki|ψi〉〈ψi| is the average

state of the ensemble K̃ = {ki, |ψi〉〈ψi|}
n
i=1. The matrix elements of the gram matrix, Gk of

K̃ are then given by

(Gk)i j =

√
kik j〈ψi|ψ j〉 =

1∑n
l=1 d2

ll pl
dii〈ψ̃i|ψ̃ j〉d j j.

This tells us that Gk = 1
Tr(D2G) DGD; using equation (2.23) we get that the positive square

root of Gk is G
1
2
k = 1√

Tr(D2G)
X and, hence, d2

ii = Xii =
√

Tr(D2G)
(
G

1
2
k

)
ii

(see equation

(2.21)). Thus ki and pi are related by the equation

pi = C′
ki(

G
1
2
k

)
ii

, ∀ 1 ≤ i ≤ n, (2.33)

where C′ is the normalization constant given by C′ =
√

Tr(D2G). We see that pi are

related to the ki in the exact same way that pi are related to qi from equation (2.11).

Below definition (2.10), it was mentioned that if P̃ and K̃ are two ensembles with the
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same states with apriori probabilities pi and ki, which are related by equation (2.33), we

get that R−1
(
K̃
)

= P̃. Since R−1 is a bijection, this implies that K̃ = R
(
P̃
)

= Q̃ and

ki = qi, ∀ 1 ≤ i ≤ n, where qi is the apriori probability of states in Q̃ as given in equation

(2.11). This also implies that C′ = C.

From equation (2.30) we get that the RHS of equation (2.32) equates to

 n∑
i=1

|wi〉〈wi|ψ̃i〉〈ψ̃i|

2

=

n∑
i=1

d2
ii|ψ̃i〉〈ψ̃i| = C2

 n∑
i=1

qi|ψi〉〈ψi|

 = Z2.

Then the fact that
∑n

i=1 |wi〉〈wi|ψ̃i〉〈ψ̃i| is positive definite tells us that

n∑
i=1

|wi〉〈wi|ψ̃i〉〈ψ̃i| = C

 n∑
i=1

qi|ψi〉〈ψi|


1
2

= Z. (2.34)

Note that the ONB {|wi〉}
n
i=1 was constructed fromX, which solves for X in equation (2.23)

and which is positive definite. That
∑n

i=1 |wi〉〈wi|ψ̃i〉〈ψ̃i| is equal to C
(∑n

i=1 qi|ψi〉〈ψi|
) 1

2 ,

which we already know is equal to Z [3], implies that {|wi〉〈wi|}
n
i=1 is the optimal POVM.

Thus {|wi〉〈wi|}
n
i=1 is the optimal POVM. Since {|wi〉〈wi|}

n
i=1 is the unique optimal POVM

for MED of P̃ so is the n tuple (d11, d22, · · · , dnn) unique to the MED of P̃, 9. This implies

that D = Diag(d11, d22, · · · , dnn) is unique, which implies that DGD is unique and since

the positive square root of DGD is also unique, that tells us that X is unique too. �

Theorem (3.2.7) tells us that for MED of any P̃ ∈ E, X is unique. But note that if |ψi〉

underwent a rotation by unitary U then it can be inferred from equation (2.23) that the

solution for X won’t change since G doesn’t change. This implies that X is a function of

G in G.

Let the matrix elements of X be given by the following equation

9 Note that dii = 〈wi|ψ̃i〉, thus if {|wi〉〈wi|}
n
i=1 is unique, so must the n-tuple (d11, d22, · · · , dnn).
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X =



d11
2 d12 + id21 d13 + id31 · · · d1n + idn1

d12 − id21 d22
2 d23 + id32 · · · d2n + idn2

d13 − id31 d23 − id32 d33
2

· · · d3n + idn3

...
...

...
. . .

...

d1n − idn1 d2n − idn2 d3n − idn3 · · · dnn
2


, (2.35)

where dkl are the real and imaginary parts of the matrix elements of X. Since X is a

function on G, dkl are also functions on G.

Definition 2.4.6. Let Q denote the set of all positive definite n × n matrices.

Thus G ⊂ Q. Using G and Q we formalize X as a function on G.

Definition 2.4.7. X : G −→ Q is such that X(G) solves equation (2.23)

(X(G))2
− D(G) G D(G) = 0. (2.36a)

Let’s denote dkl : G −→ R to be the real and imaginary parts of matrix elements of X(G),

i.e.,

dkl (G) ≡ Re ((X (G))kl) , ∀ 1 ≤ k < l ≤ n, (2.36b)

dii (G) ≡
√

(X (G))ii, ∀ 1 ≤ i ≤ n, (2.36c)

dkl (G) ≡ Im ((X (G))lk) , ∀ 1 ≤ l < k ≤ n, (2.36d)

and D(G) ≡ Diag(d11(G), d22(G), · · · , dnn(G)).

Note that if one knows the real n-tuple (d11(G), d22(G), · · · , dnn(G)), then using equation

(2.23) one can compute X(G). Thus we have reformulated the MED problem for linearly

independent pure states in a rotationally invariant way:

Rotationally Invariant Necessary and Sufficient Conditions: Let G be the gram matrix
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corresponding to an n-LIP: {pi, |ψi〉〈ψi|}
n
i=1. To solve MED for this n-LIP, one needs to find

real and positive n-tuple (d11(G), d22(G), · · · , dnn(G)) such that, when arranged in the

diagonal matrix D(G) = Diag(d11(G), d22(G), · · · , dnn(G)), the diagonal of the positive

square root of D(G)GD(G)is (D(G))2.

2.4.2 Solution for the MED of LI Pure State Ensembles

X is a function on G such that X(G) is a solution for X in equation (2.23), and is positive

definite. We need to compute X(G) for a given G ∈ G. We employ the Implicit Function

Theorem (IFT) for this.

Functions and Variables for IFT

In this subsubsection, we will introduce the functions and variables which are part of the

IFT technique.

Let the unknown hermitian matrix X in equation (2.23) be represented by

X =



x2
11 x12 + ix21 x13 + ix31 · · · x1n + ixn1

x12 − ix21 x2
22 x23 + ix32 · · · x2n + ixn2

x13 − ix31 x23 − ix32 x2
33 · · · x3n + ixn3

...
...

...
. . .

...

x1n − ixn1 x2n − ixn2 x3n − ixn3 · · · x2
nn


, (2.37)

where xkl ∈ R, ∀ 1 ≤ k, l ≤ n.

Define F on G ×Hn, whereHn is the real vector space of all n × n hermitian matrices.

Definition 2.4.8.

F(G, X) ≡ X2 − D(X)GD(X), (2.38)

where X is of the form given in equation (2.37) and D(X) ≡ Diag (x11, x22, · · · , xnn).
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We define the matrix elements of F as functions of G and xi j, ∀ 1 ≤ i, j ≤ n.

F =



f11 f12 + i f21 f13 + i f31 · · · f1n + i fn1

f12 − i f21 f22 f23 + i f32 · · · f2n + i fn2

f13 − i f31 f23 − i f32 f33 · · · f3n + i fn3

...
...

...
. . .

...

f1n − i fn1 f2n − i fn2 f3n − i fn3 · · · fnn


, (2.39)

where, for i < j, fi j and f ji represent the real and imaginary parts of Fi j respectively, and

fii represents the diagonal element Fii, and for j < i, f ji and − fi j represent the real and

imaginary parts of Fi j respectively. Then using definition (2.38) and equation (2.37) we

get for i < j

fi j (G,
~
x) =

i−1∑
k=1

(
xkixk j + xiky jk

)
+

j−1∑
k=i+1

(
xikxk j − xkix jk

)
+

n∑
k= j+1

(
xikx jk + xkixk j

)
+xi j

(
x2

ii + x2
j j

)
− xiix j jRe

(
Gi j

)
, (2.40a)

f ji (G,
~
x) =

i−1∑
k=1

(
xkix jk − xikxk j

)
+

j−1∑
k=i+1

(
xikx jk + xkixk j

)
+

n∑
k= j+1

(
−xikxk j + xkix jk

)
+x ji

(
x2

ii + x2
j j

)
− xiix j jIm

(
Gi j

)
, (2.40b)

and for the diagonal elements we get

fii (G,
~
x) =

i−1∑
k=1

(
x2

ki + x2
ik

)
+

n∑
k=i+1

(
x2

ik + x2
ki

)
+ 2x4

ii − x2
iiGii, (2.40c)

where
~
x ≡ (x11, x12, · · · , xnn) (i.e.,

~
x is the real n2-tuple of the xi j-variables).
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Finally, we define the Jacobian of the functions fi j with respect to the variables xi j; this

Jacobian matrix has the matrix elements

(J (G,
~
x))i j,kl ≡

∂ fi j (G,
~
x)

∂xkl
, ∀ 1 ≤ i, j, k, l ≤ n. (2.41)

Note that since the fi j functions and the xi j variables are both n2 in number, this Jacobian

matrix is an n2 × n2 square matrix.

Implementing IFT

Let G(0) ∈ G be a gram matrix whose MED for which we know the solution, that is, we

know the values of xi j = di j(G(0)), ∀ 1 ≤ i, j ≤ n (see definition (2.4.7)). Substituting

xi j = di j(G(0)), ∀ 1 ≤ i, j ≤ n in equation (2.37) gives us that X = X(G(0)) (see equations

(2.35) and definition (2.4.7)), and substituting X = X(G(0)) into equation (2.38) gives (see

theorem 3.2.7),

(i.) F
(
G(0), X = X(G(0))

)
= 0. This equation tells us that X = X(G(0)) is a solution for X

in equation (2.23) when G = G(0).

(ii.) X = X(G(0)) > 0.

IFT, which is a well known result in functional analysis [54], then tells us the following.

Implicit Function Theorem: Consider the following inequality:

Det
(
J(G(0),

~
d(G(0)))

)
, 0, (2.42)

where

~
d(G(0)) =

(
d11(G(0)), d12(G(0)), · · · , d1n(G(0)), d21(G(0)), · · · , dnn(G(0))

)
.
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If the inequality (2.42) is true, then IFT tells us that there exists an open neighbourhood

IG(0) in G containing G(0), such that for each i, j, where 1 ≤ i, j ≤ n, there exists an open

interval Ii j inR containing the real number di j(G(0)), such that one can define the function

φi j : IG(0) −→ Ii j, such that

1. φi j’s are continuously differentiable in IG(0) ,

2. φi j(G(0)) = di j(G(0)), ∀ 1 ≤ i, j ≤ n, and

3. the following equation holds true for ∀ 1 ≤ i, j ≤ n and ∀ G ∈ IG(0):

fi j

(
G,
~
φ(G)

)
= 0, where

~
φ(G) = (φ11(G), φ12(G), · · · , φnn(G)). (2.43)

Thus to use the IFT for our purpose we need to prove the following.

Theorem 2.4.3. Det
(
J
(
G,
~
d(G)

))
, 0, ∀ G ∈ G.

Proof. This proof is divided into two parts:

(a.) To show that J(G,
~
d(G)) is a linear transformation on the real space Hn of n × n

complex hermitian matrices:

Proof of (a.): First note that J(G,
~
d(G)) is the Jacobian of the function F with respect

to the variable X (equation (2.38)).

Let xi j be assigned the value di j(G) for all 1 ≤ i, j ≤ n. Now let xi j = di j(G) −→

xi j = di j(G) + εδxi j be an arbitrary perturbation, where ε is an infinitesimal positive

real number and δxi j are real, ∀ 1 ≤ i, j ≤ n. As a result of this perturbation we

have the following

(i) (xii(G))2 = (dii(G))2
−→ (dii(G))2 + 2εdii(G)δxii + O(ε2), and
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(ii) X = X(G) −→ X = X(G) + εδX + O(ε2) where

δX =



2d11(G)δx11 δx12 + iδx21 δx13 + iδx31 · · · δx1n + iδxn1

δx12 − iδx21 2d22(G)δx22 δx23 + iδx32 · · · δx2n + iδxn2

δx13 − iδx31 δx23 − iδx32 2d33(G)δx33 · · · δx3n + iδxn3

...
...

...
. . .

...

δx1n − iδxn1 δx2n − iδxn2 δx3n − iδxn3 · · · 2dnn(G)δxnn


. (2.44a)

For the sake of brevity, for the rest of this proof, we will denote D(G) by D,

X(G) by X, and J(G,
~
d(G)) by JG. Define:

Dδ ≡ Diag(δx11, δx22, · · · , δxnn). (2.44b)

Thus we get the following.

F (G,X + εδX)

= F (G,X) + ε (δXX + XδX − DδGD − DGDδ) + O(ε2)

= ε
(
δXX − DδD−1X2 + XδX − X2D−1Dδ

)
+ O(ε2)

= εJG (δX) + O(ε2), (2.44c)

where equation (2.23) was employed in the second step above, and

JG (δX) = δXX − DδD−1X2 + XδX − X2D−1Dδ

=
(
δXX − DδD−1X2

)
+

(
δXX − DδD−1X2

)†
.

(2.44d)

Thus it is seen that JG is a linear transformation on the space of n × n complex

hermitian matricesHn.

(b.) If the action of J(G,
~
d(G)) on some n× n complex hermitian matrix δX is 0 then δX
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itself must be 0.

Proof of (b.): From equation (2.44d) it is clear that JG (δX) = 0 if and only if δXX−

DδD−1X2 is anti-hermitian. Let’s assume that δXX − DδD−1X2 is anti-hermitian.

That is,

δXX − DδD−1X2 = −XδX + X2D−1Dδ

=⇒ X−1δX − X−1DδD−1X = −δXX−1 + XD−1DδX
−1. (2.45a)

Let X =
∑n

i=1 gi|gi〉〈gi| be the spectral decomposition of X. Then the i j-th matrix

element of the matrix in equation (2.45a), in the {| gi〉}
n
i=1 basis, is given by

1
gi
〈gi | δX |g j〉 −

g j

gi
〈gi |DδD−1 |g j〉

= −
1
g j
〈gi | δX |g j〉 +

gi

g j
〈gi |DδD−1 |g j〉

=⇒ 〈gi | δX |g j〉 =

g2
i + g2

j

gi + g j

 〈gi |DδD−1 |g j〉. (2.45b)

Multiplying the above number by |gi〉〈g j| and summing over i, j from 1 to n gives

δX =

n∑
i, j=1

〈gi |DδD−1 |g j〉
g2

i + g2
j

gi + g j
|gi〉〈g j|. (2.45c)

Let {| k〉}nk=1 represent the standard basis, then 〈k|g j〉 is complex number occuring in

the k-th entry of | g j〉. Using equations (2.44b) and (2.44a) we get 〈gi |DδD−1 |g j〉 =

1
2

∑n
l=1〈gi | l〉〈l | g j〉

(δX)ll

dll(G)2 . The diagonal elements of δX are then given by

(δX)kk =

n∑
l=1

1
2

n∑
i, j=1

〈k | gi〉〈g j | k〉
g2

i + g2
j

gi + g j
〈gi | l〉〈l | g j〉

 (δX)ll

(dll(G))2

=

n∑
l=1

1
2

(
OΛO†

)
kl

(δX)ll

(dll(G))2 ,

(2.45d)
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where O is an n × n2 matrix with matrix elements given by Ok,i j = 〈k | gi〉〈g j | k〉, Λ

is an n2 × n2 diagonal matrix with matrix elements Λi j,kl = δikδ jl

g2
i + g2

j

gi + g j
. It is easy

to check that rows of O are orthogonal. Since Λ > 0 and O is of rank n, the matrix
1
2

OΛO† positive definite.

Consider

|DδX〉 ≡



(δX)11

(δX)22

...

(δX)nn


. (2.45e)

Then equation (2.45d) can be rewritten as

(
1 −

1
2

OΛO†D−2
)
|DδX〉 = 0

=⇒

(
D2 −

1
2

OΛO†
)

D−2|DδX〉 = 0 (2.45f)

Let Λ′ be an n2 × n2 diagonal matrix whose matrix elements are given by Λ′i j,kl =

δikδ jl
2gig j

gi + g j
. Since Λ′ > 0,

1
2

OΛ′O† is positive definite. After some amount of

tedious algebra we find that the following equation holds true.

D2 =
1
2

O
(
Λ + Λ′

)
O†. (2.45g)

Hence D2 −
1
2

OΛO† =
1
2

OΛ′O† > 0. This implies that for equation (2.45f) to be

true |DδX〉 = 0. This implies (see equation (2.45e)) (δX)ii = 0, which implies that

2dii(G)δxii = 0, which implies that xii = 0, i.e., Dδ = 0. Substituting Dδ = 0 in

equation (2.45c) gives δX = 0.

Hence, demanding JG (δX) = 0 leads to the conclusion that δX = 0.

This means that JG is non-singular, which then implies that Det (JG) , 0. This proves the
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theorem. �

Theorem 2.4.3 implies that IFT holds true for all G(0) ∈ G, i.e., for all G(0) ∈ G one can

define these φi j functions so that the points 1., 2. and 3. mentioned in IFT are satisfied.

The third point in IFT, i.e., equation (2.43), tells us that for any G ∈ IG(0) , F(G, X) = 0,

when xi j = φi j(G), ∀ 1 ≤ i, j ≤ n. This is equivalent to stating that if one obtains the

φi j functions, defined in some open neighbourhood IG(0) of G(0), then xi j = φi j(G), ∀ 1 ≤

i, j ≤ n, gives us some solution for X in equation (2.23) for any G ∈ IG(0) . If it is true that

assigning xi j = φi j(G), ∀ 1 ≤ i, j ≤ n, implies that X > 0, then obtaining the φi j functions

in some open neighbourhood IG(0) of G(0) gives us the solution for MED of all G ∈ IG(0) .

Theorem 2.4.4. When G ∈ IG(0) and xi j = φi j(G), ∀ 1 ≤ i, j ≤ n, then X > 0.

Proof. Suppose not.

Let there be some G(1) ∈ IG(0) such that when xi j = φi j(G(1)), ∀ 1 ≤ i, j ≤ n, then X has

some non-positive eigenvalues.

Let G(t) ≡ (1 − t)G(0) + tG(1) be a linear trajectory in G. G(t) starts from G0 when t = 0

and ends at G(1) when t = 1. Note that eigenvalues of X are continuous functions of xi j,

and when restricting xi j to be such that xi j = φi j(G), ∀ 1 ≤ i, j ≤ n, then xi j are continuous

functions over IG(0) . Thus the eigenvalues of X are continuous over IG(0) , whenever xi j =

φi j(G).

This implies the following.

(i.) When xi j = φi j(G(0)) ∀ 1 ≤ i, j ≤ n, all eigenvalues of X are positive.

(ii.) When xi j = φi j(G(1)) ∀ 1 ≤ i, j ≤ n, some eigenvalues of X are non-positive.

The intermediate value theorem tells us that since φi j’s are continuous over IG(0) , (i.) and

(ii.) imply that there must be some t′ ∈ (0, 1], such that



2.4. MED FOR LI PURE STATES 75

(i.) X > 0, when xi j = φi j(G(t)), for all t ∈ [0, t′),

(ii.) for all t ∈ (t′, 1], X is not necessarily positive definite, when xi j = φi j(G(t)), and

finally

(iii.) X has some 0 eigenvalue(s) when xi j = φi j(G(t′)), i.e., when t = t′.

When t < t′ then X > 0, which also implies that X = X(G(t)) holds true for the interval

t ∈ [0, t′). Since (X(G))2

Tr((X(G))2) = R (G)(G) 10 we get that X2

Tr(X2) = R (G) (G(t)), when t < t′.

Since R (G) is continuous on G 11 and eigenvalues of X are continuous in IG(0) , it follows

that when t = t′, X2

Tr(X2) = R (G) (G(t′)). From (iii.) above it is seen that when t = t′, X is

singular; this implies that R (G) (G(t′)) is singular as well, which is a contradiction since we

know that R (G) is a function from G to G and all gram matrices in G are positive definite.

This contradiction arose from the assumption that when xi j = φi j(G(1)), X is not positive

definite. This proves the theorem. �

Theorem 2.4.4 tells us that for any starting point G(0) ∈ G, if we take any point G ∈ IG(0) ,

the φi j’s obey the equality: φi j(G) = di j(G), ∀ 1 ≤ i, j ≤ n. Given this fact, from here

onwards, we will represent the implicit functional dependence φi j by di j itself.

We can make a stronger statement about the behaviour of the functions di j on G. It is

easier to do so if we define trajectories, like the one defined in the proof of theorem 2.4.4

in G, and prove results about the behaviour of the di j’s with respect to the independent

variable t. For that purpose, let G(0),G(1) ∈ G be distinct; define a linear trajectory in G

from G(0) to G(1), G : [0, 1] −→ G as

G(t) = (1 − t)G(0) + tG(1). (2.46)

We now apply the implicit function theorem to F(G(t), X), where X represents the vari-

ables whose implicit dependence we seek and t is the independent variable.
10 See equation (2.29) in the proof of theorem 2.4.1 in subsection 2.4.1.
11 See description below definition 2.4.5 in the beginning of this section.
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The analytic implicit function theorem [54] tells us that if fi j (G(t),
~
x) are analytic func-

tions of the variables t and xkl, then φkl(G(t)) (which are equal to dkl(G(t))) should also be

analytic functions of the variable t ∈ [0, 1]. Equations (2.40a), (2.40b) and (2.40c) tell us

that fi j(G(t),
~
x) are multivariate polynomials in the variables t and xkl, which implies that

the fi j’s are analytic functions of t and xkl. Thus dkl(G(t)) are analytic functions of the

variable t. This implies that, more generally, dkl are analytic functions over G.

Taylor Series and Analytic Continuation

The fact that dkl are analytic functions on G allows us to Taylor expand dkl from some

point in G to another point. Let us assume that we want to find the solution for MED of

some gram matrix G(1) ∈ G, and that we know the solution for MED of G(0) ∈ G. Then we

define a trajectory as was done in equation (2.46). We will now show that using equation

(2.36a) we can obtain the derivatives of dkl(G(t)), upto any order, with respect to t; this

allows us to Taylor expand the dkl(G(t)) function about the point t = 0. Analytically

continuing from t = 0 to t = 1 allows us to obtain the values of dkl(G(t)) at t = 1.

First we show how to obtain the first order derivatives of dkl(G(.)) with respect to t. We will

abbreviate D(G(t)) = (d11(G(t)), d22(G(t)), · · · , dnn(G(t))) as D(t) for convenience. Simi-

larly X(G(t)) will be abbreviated as X(t). It will be useful to denote separately the matrix

of off-diagonal elements of X(t). Thus define N(t) ≡ X(t) − (D(t))2. Equation (2.36a) can

be re-written as
(
D(t)2 + N(t)

)2
= D(t)G(t)D(t). Let ∆ ≡

dG(t)
dt = G(1) − G(0). Taking the

total first order derivative on both sides of equation (2.36a) gives

(
D(t)2 + N(t)

) (
2D(t)

dD(t)
dt

+
dN(t)

dt

)
+

(
2D(t)

dD(t)
dt

+
dN(t)

dt

) (
D(t)2 + N(t)

)
− (D(t)G(t))

dD(t)
dt
−

dD(t)
dt

G(t)D(t)
= D(t)∆D(t),

(2.47)

where

dD(t)
dt

=

(
d (d11(t))

dt
,

d (d22(t))
dt

, · · · ,
d (dnn(t))

dt

)
,
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dN(t)

dt

)
kl

=
d
dt

(dkl(t) + idlk(t)) (when k < l),

(
dN(t)

dt

)
ii

= 0 and,

(
dN(t)

dt

)
kl

=
d
dt

(dlk(t) − idkl(t)) (when k > l).

Thus we get n2 coupled ordinary differential equations. By substituting the values of

dkl(0) in equation (2.47) one can solve for d dkl(t)
dt |t=0.

The second order derivatives can be obtained in a similar fashion: taking the total deriva-

tive of LHS and RHS of the equation (2.47) with respect to t (i.e. the second order deriva-

tive of the LHS of equation (2.36a)) we get a set of n2 coupled second order differential

equations. Setting t = 0 and using the values of dkl(0) and d dkl(t)
dt |t=0, one can solve the

resulting (linear) equations to obtain the values of the unknowns n2 dkl(t)
dt2 |t=0.

Continuing in this manner one can obtain the values of the derivatives of dkl(t) upto any

order, at the point t = 0. In the following equation we give the k-th order derivative of

equation (2.36a) for this purpose.

(
D(t)2 + N(t)

)(
2D(t)

dkD(t)
dtk +

dkN(t)
dtk

)
+

(
2D(t)

dkD(t)
dtk +

dkN(t)
dtk

)(
D(t)2 + N(t)

)
− (D(t)G(t))

dkD(t)
dtk −

dkD(t)
dtk G(t)D(t)

= −

((
D(t)2 + N(t)

)( k−1∑
l1=1

(
k
l1

)(
(

d
dt

)l1 D(t)
)(

(
d
dt

)k−l1 D(t)
))

+ h.c.
)

−

k−1∑
l2=1

(
k
l2

)(
(

d
dt

)k1(D(t)2 + N(t))
)(

(
d
dt

)k−k1(D(t)2 + N(t))
)

+

k−1∑
m1=1

(
k

m1

)(
(

d
dt

)m1 D(t)
)
G(t)

(
(

d
dt

)k−m1 D(t)
)

+ k
k−1∑

m2=0

(
k

m2

)(
(

d
dt

)m2 D(t)
)
∆
(
(

d
dt

)k−m2 D(t)
)
.

(2.48)
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By substituting the values of all derivatives at t = 0, one can expand the dkl functions about

the point t = 0. Analytic continuation is straightforward: by using the aforementioned

Taylor expansion about t = 0, one obtains the value of dkl at some t = δt > 0; one can

then use the aforementioned method to obtain the values of derivatives of dkl at t = δt and

Taylor expand the dkl functions from δt to t > δt. In this manner one can Taylor expand

and analytically continue dkl’s from t = 0 to the point t = 1.

The need for analytic continuation raises the following question: what is the radius of

convergence for the Taylor series about some point t in the interval [0, 1]? The LHS of

equations (2.47) and (2.48) gives us a hint: dkD(t)
dtk and dkN(t)

dtk scale proportionally to the k-th

power of ∆ i.e.,

∆ −→ ν∆ =⇒

(
dkD(t)

dtk ,
dkN(t)

dtk

)
→

(
νk dkD(t)

dtk , νk dkN(t)
dtk

)
. (2.49)

This tells us that we need to keep ||∆||2 small to ensure that either G(1) falls within the radius

of convergence of the dkl functions when expanded about the point G(0) or the number of

times one is required to analytically continue from t = 0 to t = 1 is low. It is very difficult

to obtain the exact radius of convergence for every point in G since the value of the radius

of convergence differs for different points in G12.

For a given G(1) for which we wish to find the solution, it is desirable to find a G(0) so that

G(1) falls within the radius of convergence of the dkl functions, when expanded about G(0).

In the following we give a method to find such a G(0) for a given G(1).

Starting point which generally doesn’t require analytic continuation: Let G(0) ∈ G

be some gram matrix with the property that the diagonal of the positive definite square

root of G(0), i.e., G(0)
1
2 has the property

(
G(0)

1
2
)

11
=

(
G(0)

1
2
)

22
= · · · =

(
G(0)

1
2
)

nn
. Substituting

12 Particularly as one gets closer to points near the boundary of G (which lies outside G), the radius of
convergence becomes smaller.
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G
1
2 = G(0)

1
2 , along with W = 1n and D =

(
G(0)

1
2
)

11
1n in the LHS of equation (2.22) gives

us the RHS of equation (2.22), i.e., they all satisfy equation (2.22). It is also seen that

when D =
(
G(0)

1
2
)

11
1n, then X = DG(0)

1
2 is a solution for the equation (2.23) for G = G(0),

and since D is a multiple of 1n, X > 0. Thus, when the diagonal of G(0)
1
2 is a multiple of

1n, the solution for the MED of corresponding gram matrix G(0) is known13.

Thus for a given G(1), we want to find a starting point G(0) such that the diagonal elements

of G(0)
1
2 are all equal. For this purpose expand the positive square root of G(1) i.e., G(1)

1
2 in

an ONB ofHn, which comprises of 1
√

n and the generalized Gell-Man matrices σlk√
2

where

1 ≤ l, k ≤ n[55]. Here the σlk matrices are defined as

σlk =



|l〉〈k| + |k〉〈l|, when l < k,

i|l〉〈k| − i|k〉〈l|), when l > k,

√
2

l(l+1)

(∑l
j=1 | j〉〈 j| − l|l + 1〉〈l + 1|

)
δlk, when 1 ≤ l ≤ n − 1

(2.50)

All generalized Gell-Mann matrices in equation (2.50) have Hilbert-Schmidt norm
√

2.

Let G(1)
1
2 have the following expansion in these Gell-Mann matrices.

G(1)
1
2 = γ

1
√

n
+

n−1∑
j=1

β j
σ j j
√

2
+

n∑
l,k=1

l,k

ζlk
σlk
√

2
, (2.51)

where ζlk, β j, γ are real numbers. Note that γ > 0 s G(1)
1
2 . Based upon this define G(0)

1
2 as

G(0)
1
2 = κ

1
√

n
+

∑
l,k

ζlk
σlk
√

2
, (2.52)

where κ =
√
γ2 +

∑
j β

2
j .

13 This result is well known. It corresponds to those cases when mathscrR
(
P̃
)

= P̃.
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It is easily verified that Tr(G(0)) = 1. One needs to check if G(0)
1
2 > 0 or not. Generally,

it is true that G(0)
1
2 > 0. But if some eigenvalues of G(1) are close to 0, this may not hold.

Suppose it holds (as is generally the case), dii(0) = κ, dkl(0) = Re
((

G(0)
1
2
)

kl

)
, when k <

l, dkl(0) = Im
((

G(0)
1
2
)

lk

)
, when k > l. G(1) generally falls within the radius of convergence

of all dkl functions about the starting point G(0). In such circumstances one doesn’t need

analytic continuation; one can straightforwardly calculate dkl(1) from the Taylor series

about t = 0. If G(0)
1
2 , obtained this way, isn’t positive definite, then this method fails and

one needs another starting point.

Starting points which generally require analytic continuation: Another possible start-

ing point is an ensemble of equiprobable orthogonal states; this ensemble’s gram matrix

is G(0) = 1

n where di j(0) = δi j
1
√

n . To drag the solution from G(0) to G(1) one needs to divide

the [0, 1] interval into subintervals and analytically continue the dkl’s from the starting

point of each subinterval to its corresponding ending point. Here it needs to be ensured

that one doesn’t overshoot beyond the radius of convergence of any of the dkl functions

at the starting point of each subinterval. For this purpose it was found that it generally

suffices to divide [0, 1] into dn2||∆||2esubintervals. Generally the smaller the intervals, the

lower the value of error.

Error-Estimation: There is a simple method to estimate the degree of error in the pro-

cess; this is based on the fact that when the solution, i.e., dkl(1)’s are substituted in the

LHS of equation (2.23) one should obtain the zero matrix, which isn’t what we get due to

errors. Thus the value of the Hilbert-Schmidt norm of the quantity on the LHS, i.e., the

value of ||(D(1)2 + N(1))2 − D(1)G(1)D(1))||2 gives us an estimate of the degree of error

which has accumulated into the solution. The closer ||
(
D(1)2 + N(1)

)2
−D(1)G(1)D(1))||2

is to 0, the lower the error. Note that one cannot decrease the error significantly by in-

creasing the order upto which the Taylor series is expanded beyond a order of expansion.

On the other hand error rates can be substantially reduced by decreasing the size of the

subintervals.
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Thus having solved for dkl(1) with a high degree of accuracy, one can now obtain the

optimal POVM. In the following we present an example for n = 5. Note that while

the precision of the starting point is upto 20 significant digits, only the first 6 significant

digits have been displayed. For lack of space sometimes quantities have been displayed

with upto only 4 significant digits.

| ψ̃1〉 =



0.320457

0.123687 + i0.0117558

0.117838 + i − 0.027942

0.109674 + i0.0167151

0.0860555 + i0.00780123


| ψ̃2〉 =



0.123687 − i0.0117558

0.397851

0.169692 − i0.0506685

0.125198 − i0.0244774

0.124106 − i0.0261114



| ψ̃3〉 =



0.117838 + i0.027942

0.169692 + i0.0506685

0.404725

0.13847 + i0.0177653

0.122277 − i0.0249506


| ψ̃4〉 =



0.109674 − i0.0167151

0.125198 + i0.0244774

0.13847 − i0.0177653

0.373791

0.110387 − i0.013984



| ψ̃5〉 =



0.0860555 − i0.00780123

0.124106 + i0.0261114

0.122277 + i0.0249506

0.110387 + i0.013984

0.33677


.

The corresponding | ũi〉 states are given by:
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| ũ1〉 =



3.93887

−0.668108 + i0.0313699

−0.553671 + i0.331697

−0.611991 − i0.234777

−0.375925 − i0.264517


| ũ2〉 =



−0.668108 − i0.0313699

3.52494

−0.939093 + i0.353801

−0.418308 + i0.204928

−0.685643 + i0.0142212



| ũ3〉 =



−0.553671 − i0.331697

−0.939093 − i0.353801

3.50731

−0.634577 − i0.0903887

−0.554402 + i0.418281


| ũ4〉 =



−0.611991 + i0.234777

−0.418308 − i0.204928

−0.634577 + i0.0903887

3.42828

−0.568152 + i0.0597921



| ũ5〉 =



−0.375925 + i0.264517

−0.685643 − i0.0142212

−0.554402 − i0.418281

−0.568152 − i0.0597921

3.74634


.

The gram matrix for the ensemble {| ψ̃i〉}
5
i=1, i.e., G(1) is given by:

G(1) =

0.15257 0.13405 -i0.017665 0.13285+ i0.021068 0.11811-i0.010337 0.098267+ i0.0026888

0.13405 + i0.017665 0.23744 0.18316+ i0.051216 0.14883+ i0.02325 0.13487+ i0.034111

0.13285 -i0.021068 0.18316 -i0.051216 0.24489 0.15659-i0.020010 0.13850+ i0.013294

0.11811 + i0.010337 0.14883 -i0.023258 0.15659+ i0.020010 0.20017 0.12067+ i0.016377

0.098267 -i0.0026888 0.13487 -i0.034111 0.13850-i0.013294 0.12067-i0.016377 0.16492
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Then using equation (2.52), we have

G(0)
1
2 =

0.36821 0.12368 -i0.011755 0.11783+ i0.02794 0.10967-i0.016715 0.086055-i0.0078012

0.12368 + i0.011755 0.36821 0.16969+ i0.050668 0.12519+ i0.024477 0.12410+ i0.026111

0.11783 -i0.02794 0.16969-i0.050668 0.36821 0.13847-i0.017765 0.12227+ i0.024950

0.10967 + i0.016715 0.12519 -i0.024477 0.13847+ i0.017765 0.36821 0.11038+ i0.013984

0.086055 + i0.0078012 0.12410 -i0.026111 0.12227-i0.024950 0.11038-i0.01398 0.36821

We see that all the diagonal elements of G(0)
1
2 are all equal. Also G(0)

1
2 > 0. Thus dii(0) is

equal to the diagonal elements of G(0)
1
2 and dkl(0) are assigned values of the off-diagonal

elements of G(0)
1
2 (when i , j).

Here ||∆||2 = ||G(1) −G(0)||2 = 0.058777 ∼ 1/52 ( = 0.04 ). This gives us the indication that
t = 1 lies within the radius of convergence of the implicitly defined functions dkl about
the point t = 0 and that no analytic continuation is required at any intermittent point.
Upon employing the Taylor series expansion and expanding the series upto 10-th term,
we obtain the solution for X(1) = D(1)2 + N(1):

X(1) = D(1)2 + N(1) =

0.09627 0.04197 -i0.00407 0.04054+ i0.009487 0.03528-i0.005896 0.02484-i0.003121

0.04197 + i0.00407 0.1635 0.07237+ i0.02128 0.04981+ i0.009339 0.04439+ i0.008852

0.04054 -i0.009487 0.07237 -i0.02128 0.1710 0.05580 -i0.00729 0.04424+ i0.008926

0.03528 + i0.005896 0.04981 -i0.009339 0.05580+ i0.00729 0.1399 0.03732+ i0.004563

0.02484 + i0.003121 0.04439 + i-0.008852 0.04424-i0.008926 0.03732-i0.004563 0.1083

X(1) > 0 holds true.

d11(1) = 0.310278, d22(1) = 0.404377, d33(1) = 0.413591, d44(1) = 0.374064, d55(1) =

0.329225.

The maximum success probability, Pmax
s =

∑n
i=1(dii(1))2 = 0.679164.

||(X(1))2 − D(1)G(1)D(1)||2 = 2.92337 × 10−9.

For lack of space the projectors |wi〉〈wi| aren’t given here. Instead we give the ONB

{|wi〉}
n
i=1:
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|w1〉 =



0.998902 − i0.000902941

−0.0294294 − i0.00140465

−0.0281464 + i0.0114238

−0.0185558 − i0.00595048

−0.00450716 − i0.00157192


|w2〉 =



0.0295208 − i0.00161874

0.999231 − i0.000890303

−0.00479151 + i0.00107801

0.00760396 − i0.00239694

0.0239121 − i0.00195944



|w3〉 =



0.0285947 + i0.0113073

0.00328547 + i0.000850588

0.999104 + i0.000230941

0.0125773 + i0.00210581

0.0237566 − i0.0103508


|w4〉 =



0.0179661 − i0.00612077

−0.00850615 − i0.00226113

−0.0132936 + i0.00235778

0.999616 + i0.00060647

0.0121594 − i0.000373086



|w5〉 =



0.00301285 − i0.00208885

−0.0240121 − i0.00194482

−0.0235693 − i0.0103215

−0.0127196 − i0.000528417

0.99929 + i0.000965318


.

Despite having satisfied the rotationally invariant conditions (refer theorem 3.2.7), we

would like to see if both the conditions (2.7) and (2.8) are satisfied. Instead of checking

condition (2.7) we check if Z, from equation (2.6), is hermitian or not. We first use

{|wi〉}
n
i=1 to compute the operator Z. We measure the non-hermiticity of Z as 1

2 ||Z − Z†||2,

which takes the value 2.22059× 10−10 for our example. That Z is hermitian (within error)

and satisfies equation (2.6) implies that equations (2.5) or equivalently equations (2.7) are

satisfied. Additionally we find that ∀ 1 ≤ i ≤ n, all except one eigenvalue of Z − pi|ψi〉〈ψi|

are positive. For each i = 1, 2, · · · , n the non-positive eigenvalue of Z − pi|ψi〉〈ψi| is either

0 or of the order 10−10, showing that the condition (2.8) is also satisfied. Thus we have

demonstrated an example of obtaining the optimal POVM for MED of an ensemble of 5

LI states.
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Algorithms: Computational Complexity

In the following we outline the algorithm for the Taylor series expansion method, which

gives us the solution for the MED of a given n-LIP ensemble. The method has already

been elucidated in detail in subsubsection 2.4.2. After giving the algorithm, we give its

time complexity14 and space complexity15. The acceptable tolerance error being assumed

here is of the order 10−9, and the time and space complexities are computed corresponding

to this acceptable error margin.

Algorithm 1: Taylor Series The algorithm of the Taylor series method (subsubsection

2.4.2) is given in the following steps.

(1) Construct the gram matrix G(1) from the given ensemble P̃. Choose an appropriate

starting point G(0) = G(0) (for which the solution di j(0), for all 1 ≤ i, j ≤ n, is

known) and define the function G(t) = (1 − t)G(0) + tG(1). If ||∆||2n2 ∼ 1 then there’s

no need to divide the interval [0, 1] into subintervals, but otherwise divide [0, 1] into

L ≡
⌈
||∆||2n2

⌉
intervals.

(2) For l = 0, 1, 2, · · · , L − 1, set tl =
l
L

and iterate over each interval in the following

manner:

(2.1) For k = 1 through k = K iterate the following: solve eqn (2.48) for
dkdi j

dtk |t=tl ,

for all 1 ≤ i, j ≤ n, by using values of lower order derivatives as explained in

subsubsection 2.4.2.
14 The time complexity of any algorithm is given by the order of the total number of elementary steps

involved in completing said algorithm. In this work, each of the following are regarded as elementary
steps: basic arithmetic operations (addition, subtraction, multiplication, division) of floating point
variables,assigning a value to a floating-point variable, checking a condition and retrieving the value
of a variable stored in memory.

15 The space complexity is the count of the total number of variables and constants used in algorithms.
These variables and constants can be of floating point type, integer type, binary etc; in this work we
treat them all alike while adding the number of variables to give us the final count. Similar to the case
of the time complexity, space complexity too is given in terms of the order of the count, rather than
the exact number.
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(2.2) Having obtained the values of derivatives
dkdi j

dtk |t=tl upto K-th order for all

1 ≤ i, j ≤ n, substitute these derivatives in an expression of the Taylor se-

ries expansion of the di j functions about the point t = tl, when expanded to

K-th order. The resulting expressions will give K-th degree polynomials in the

variable t for each 1 ≤ i, j ≤ n, i.e, for each di j. Obtain the value of di j(tl+1)

by computing the value these polynomials take at t = tl+1. Then increment t

to tl+1, go to (2) and iterate. Stop when l = L.

In the following table we give the time and space complexity of various steps in the

aforementioned algorithm.

Step in the algorithm Time
Complexity

Space
Complexity

1. Computing G(1) from P̃ O(n3) O(n2)
2. Computing G(0) from G(1), as in subsubsection 2.4.2 O(n3) O(n3)

3. Solving for dk di j

dtk |t=tl for k = 1, 2, · · · ,K O(Kn6) O(Kn4)
4. Computing Taylor series expansion of di j(t − tl) upto

K-th order at t = tl+1

O(Kn2) O(n2)

5. Repeating steps 3. and 4. over L ' n2||∆||2 times O(K2n8) O(n6)

Table 2.1: Time and space complexity of various steps in the Taylor series algorithm.

Note that the algorithm is polynomial in n. It is expected that to maintain the acceptable

error margin (i.e., ||
(
D(1)2 + N(1)

)2
− D(1)G(1)D(1)||2 . 10−9) as n increases, one would

have to increase the value of K as well. While the numerical examples we checked support

this hypothesis, the required increment of K to compensate the increase in the value of

n is seen to be significant only over large variations of values of n (when n varies over

a range of 20). Indeed, it remains almost constant for n = 3 to n = 10 for the error to

remain within the margin of the order of 10−9. As in the example given in the end of

subsubsection 2.4.2, choosing K = 10 suffices to maintain the error within said margin.

If ||∆||2n2 ' 1, analytic continuation isn’t required and then the total time complexity of

the algorithm is O(n6) and the total space complexity of the algorithm is O(n4). In case

||∆||2n2 > 1, since the maximum value of ||∆||2 ≤ 2, analytic continuation is required, and
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in that case, the worst case time and space complexities16 are given by O(n8) and O(n6)

respectively.

While the Taylor series method is polynomial in time with a relatively low computational

complexity, it is seen that directly employing Newton’s method is simpler and more com-

putationally efficient. We will now explain how to employ Newton’s method.

Algorithm 2: Newton’s Method This is a well known numerical technique for solving

non-linear equations. We use it here to solve the equations fi j(G,
~
x) = 0, ∀ 1 ≤ i, j ≤ n,

(see (2.40a), (2.40b) and (2.40c) for fi j) where G is the gram matrix of the ensemble

P̃ whose MED we want to solve for, and
~
x are the variables which - we demand - will

converge to the solution
~
d(G). This convergence is achieved over a few iterations which

are part of the algorithm. The technique is based on a very simple principle which we will

now elaborate.

The Taylor expansion of the fi j(G, .) functions, when expanded about the point
~
d(G), can

be approximated by the first order terms for small perturbations
~
d(G) −→

~
d(G) + δ

~
x as

seen in the equation below.

fi j(G,
~
d(G) + δ

~
x) ≈ fi j(G,

~
d(G)) +

n∑
k,l=1

(
∂ fi j(G,

~
x)

∂xkl
|
~
x=
~
d(G)

)
δxkl

=

n∑
k,l=1

(JG)i j,kl δxkl,

(2.53)

where we have used fi j(G,
~
d(G)) = 0, ∀ 1 ≤ i, j ≤ n, and where we denote (JG)i j,kl ≡

∂ fi j(G,
~
x)

∂xkl
|
~
x=
~
d(G).

We want to obtain the value of the solution
~
d(G). We assume that our starting point is

~
d(G) + δ

~
x which is close to

~
d(G), so that fi j(G,

~
d(G) + δ

~
x) can be approximated as the

RHS of equation (2.53). Denote the inverse of the Jacobian J
(
G,
~
d(G)

)
by (JG)−117. Then

16 That is, worst-case corresponding to the value of ||∆||2.
17 In theorem (2.4.3) we proved that the Jacobian is non-singular, so we know that the inverse will exist.
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we get

n∑
k,l=1

(
(JG)−1

)
i j,kl

fkl(G,
~
d(G) + δ

~
x) ≈ δxi j, ∀ 1 ≤ i, j ≤ n. (2.54)

Subtracting δ
~
x from

~
d(G)+δ

~
x gives us

~
d(G), which is the required solution. The catch here

is that since we do not know the solution
~
d(G) to start with, we cannot compute the Jaco-

bian J(G,
~
d(G)). But since

~
d(G) + δ

~
x is close to

~
d(G), we can approximate J(G,

~
d(G)) by

J(G,
~
d(G)+δ

~
x), which we can compute. So we use J(G,

~
d(G)+δ

~
x) in place of J(G,

~
d(G)) in

the algorithm, particularly, instead of using (JG)−1, computed at
~
d(G), in equation (2.54),

we use it when computed at the point
~
d(G) + δ

~
x.

The description of the principle behind Newton’s method clarifies the algorithm, whose

steps we list below.

Starting with x(0)
i j =

1
√

n
δi j (for all 1 ≤ i, j ≤ n), k = 1 and assuming ε = 10−9, iterate

(1) Substitute x(k−1)
i j into the functions fi j(G, .) defined in equations (2.40a), (2.40b) and

(2.40c). Arrange all the fi j’s in a single column, which will have n2 rows; we will

denote this n2-row long column by γ(k−1).

(2) Stop when ||γ(k−1)||2 < ε.

(2.1) Compute the Jacobian, J(k−1)
G , where

(
J(k−1)

G

)
i j,st

=
∂ fi j(G,

~
x)

∂xst
at the point

~
x =

~
x(k−1).

(2.2) Compute the the inverse of J(k−1)
G i.e.

(
J(k−1)

G

)−1
.

(2.3) x(k)
i j = x(k−1)

i j −

((
J(k−1)

G

)−1
γ(k−1)

)
i j

.

For each n = 3 to n = 20, we tested approximately twenty-thousand different examples,

each of which for we obtained the required solution within the margin error. What’s

more, it was also seen that the maximum number of iterations required to maintain the

error tolerance was constant over this range of n, more specifically, for each of these
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examples we required the number of iterations to be ten. Since the number of iterations

required doesn’t increase with n (or increases very slowly), the computational complexity

(time and space) of this algorithm is determined by the cost of steps within an iteration.

Keeping this in mind, we give the computational complexity (time and space) of this

algorithm in the following table.

Step in the algorithm Time
Complexity

Space
Complexity

1. Computing fi j(G,
~
x(k−1)), by substituting

~
x(k−1) into

equations (2.40a),(2.40b) and (2.40c), for all 1 ≤ i, j ≤
n

O(n2) O(n2)

2. Computing the Jacobian, J(k−1)
G at the point

~
x(k−1) O(n4) O(n4)

3. Computing the inverse of the Jacobian
(
J(k−1)

G

)−1
from

the Jacobian, at the point
~
x(k−1)

O(n6) O(n4)

4. Computing
~
x(k) using

(
J(k−1)

G

)−1
and

~
x(k−1) (point 2.3 in

the list of steps of this algorithm above)
O(n4) O(n2)

Table 2.2: Time and space complexity of various steps in Newton’s method.

Thus we see that the time complexity of Newton’s method is O(n6) and the space com-

plexity is O(n4). The number of steps involved are lower than in the Taylor series method,

making this algorithm simpler, and also the computational complexity (both time and

space) of Newton’s method is lower than that of the Taylor series’ method when one

cannot find a close enough starting point G(0) to the given point G(1) in the latter method.

Let’s compare the efficiency of these methods to that of an SDP algorithm. We will

employ an SDP algorithm known as the Barrier-type Interior Point Method (IPM) [56].

Algorithm 3: Barrier-type IPM (SDP) The SDP problem corresponding to MED is

given by (2.4). The objective of this problem is to minimize the value of Tr(Z) subject to

the constraints: Z ≥ pi|ψi〉〈ψi|, ∀ i = 1, 2, · · · , n.

In this method we obtain Z which solves (2.4) over a series of iterations, known as outer

iterations. One starts the k-th such iteration with an input Z(k−1) - a candidate for Z - and

ends with an output Z(k), which will serve as the input for the next iteration. The Z(k),

which are successive approximations for Z, take values within the feasible region, i.e, the
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region given by the set {Z is n × n, positive definite | Z ≥ pi|ψi〉〈ψi|, ∀ 1 ≤ i ≤ n}. If Z

lies in the interior of this feasible region then it is such that Z > pi|ψi〉〈ψi|, ∀ 1 ≤ i ≤ n,

whereas if Z is a boundary point of the feasible region then there is some i = 1, 2, · · · , n

such that Z − pi|ψi〉〈ψi| has at least one zero eigenvalue.

In the first iteration, one starts with some strictly feasible Z = Z(0), i.e., some Z(0) which

lies in the interior of the feasible region. To ensure that Z(k) remains within the feasible re-

gion one perturbs the objective function which is being minimized: instead of performing

an unconstrained minimization of Tr(Z), one performs an unconstrained minimization of

Tr(Z) −
1
w

∑n
i=1 Log(Det(Z − pi|ψi〉〈ψi|)), where

1
w

is a weight factor. The reason behind

subtracting the expression
1
w

∑n
i=1 Log(Det(Z − pi|ψi〉〈ψi|)) from Tr(Z) for unconstrained

minimization, is that the expression Log(Det(Z − pi|ψi〉〈ψi|)) tends to infinity as Z ap-

proaches the boundary of the feasible region. Thus performing unconstrained minimiza-

tion of Tr(Z) −
1
w

∑n
i=1 Log(Det(Z − pi|ψi〉〈ψi|)) will ensure that while the candidates for

Z, viz, Z(k), may inch closer to the boundary of the feasible region, they will never cross

it.

The unconstrained minimization of Tr(Z) −
1
w

∑n
i=1 Log(Det(Z − pi|ψi〉〈ψi|)) is performed

using Newton’s method. The iterations within Newton’s method are known as inner itera-

tions. Newton’s Method is performed as follows: using the generalized Gell-Mann basis,

expand Z =
∑n

i, j=1 yi j
σi j
√

2
, where σnn =

√
2
n1n. Obtain the equations

hkl(
~
y) ≡

∂

(
Tr(Z) −

1
w

∑n
i=1 Log(Det(Z − pi|ψi〉〈ψi|))

)
∂ ykl

=
√

nδk,nδl,n −
1
w

n∑
i=1

Tr
(
(Z − pi|ψi〉〈ψi|)−1 σkl

√
2

)
.

(2.55)

We want to solve for the equations hi j = 0, ∀ 1 ≤ i, j ≤ n using Newton’s method. The

algorithm is the same as the one described above. These equations give the stationary

points of the functions hi j, ∀ 1 ≤ i, j ≤ n. The matrix elements of the Jacobian of the hi j
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functions with respect to the ykl variables take the following form18.

Hkl,st ≡
∂ hkl(

~
y)

∂ yst
=

∂2

(
Tr(Z) −

1
w

∑n
i=1 Log(Det(Z − pi|ψi〉〈ψi|))

)
∂ ykl∂ yst

=
1
w

n∑
i=1

Tr
(
(Z − pi|ψi〉〈ψi|)−1 σkl

√
2

(Z − pi|ψi〉〈ψi|)−1 σst
√

2

)
,

(2.56)

where Hkl,st are the matrix elements of the Jacobian, as can be seen from equation (2.56).

Let
~
α ∈ Cn2

be some non-zero complex n2-tuple, and let A ≡
∑n

i, j=1 αi j
σi j
√

2
. Then we have

the equality

n∑
k,l,s,t=1

α∗klHkl,stαst (2.57)

=
1
w

n∑
i=1

Tr
((

(Z − pi|ψi〉〈ψi|)−
1
2 A†(Z − pi|ψi〉〈ψi|)−

1
2

) (
(Z − pi|ψi〉〈ψi|)−

1
2 A(Z − pi|ψi〉〈ψi|)−

1
2

))
> 0.

This inequality is true for all non-zero
~
α ∈ Cn2

. Thus the Jacobian H, whose matrix

elements are given in equation (2.56), is positive definite throughout the feasible region.

Thus the only stationary points in the feasible region can be local minima. But since

H > 0 throughout the feasible region, there can only be one local minima in said region,

i.e., the stationary point gives the minima which we are searching for19.

Thus the inner iterations give us the minima point Z(k) =
∑n

i, j=1 y(k)
i j

σi j
√

2
corresponding

to some weight factor 1
w(k−1) . After having found the minima point Z(k) in the k-th it-

eraction, the k + 1-th iteration is commenced with changing the weight of the barrier

function, i.e., w(k−1) −→ w(k) > w(k−1), and performing an unconstrained minimization of

Tr(Z) −
1

w(k)

∑n
i=1 Log(Det(Z − pi|ψi〉〈ψi|)), starting from the point Z(k). These iterations

are continued until the weight of the barrier function decreases to an insignificantly small

18 This isn’t difficult to derive; alternately the Barrier-type IPM algorithm for MED is also given in
section 11.8.3 in [56] (p. 618), wherein expression for the matrix elements of the Jacobian has been
explicitly given.

19 There is another way to appreciate this: since the function Tr(Z) − 1
w
∑n

i=1 Log (Det (Z − pi|ψi〉〈ψi|))
is a convex function over the feasible region, there can only be one minima in said region, which
corresponds to the point we want. The convexity of the Log-Determinant function −Log (Det(X))
over the space {all n × n matrices X|X ≥ 0} is established in section 3.1 on p. 73 in [56].



92 CHAPTER 2. MINIMUM ERROR DISCRIMINATION

number (i.e. given by the error tolerance). The final approximation Z(k f ) is then declared

as the solution.

We briefly outline the steps in the algorithm below.

Let ε be the error tolerance for the algorithm. For starting the algorithm choose the fol-

lowing: the value of µ between ∼ 3 to 100, the weight w(0) ∼ 10, the initial starting point

for Z as Z(0) = 1n, then set k = 1 and iterate the following.

(1) Perform unconstrained minimization of the function Tr(Z) −
1

w(k−1)

∑n
i=1 Log(Det(Z −

pi|ψi〉〈ψi|)) with starting point as Z = Z(k−1) (using Newton’s Method).

(2) Store the solution as Z(k). Update w(k) = µw(k−1).

(3) Stop when w(k) =
n
ε

.

The number of outer iterations for a given error tolerance is constant over n, but can

vary with the factor µ by which the weights w(k−1) vary over the steps. 20. Thus the

computational complexity of the algorithm is decided by the computational complexity

of Newton’s method within the inner iterations. In the following table we list the different

steps as part of Newton’s algorithm and give the computational complexity (time and

space) for each step.

Step in the algorithm Time
Complexity

Space
Complexity

1. Computing values of hi j(
~
y(k−1)), by substituting

~
y(k−1)

into equations (2.55), for all 1 ≤ i, j ≤ n.
O(n2) O(n2)

2. Computing the Jacobian H, at the point
~
y(k−1) O(n5) O(n4)

3. Computing the inverse of H at the point
~
y(k−1) O(n6) O(n4)

4. Computing y(k)
i j = y(k−1)

i j −
∑n

s,t=1

(
H−1

)
i j,st

h(k−1)
st , ∀ i, j,≤

n
O(n4) O(n2)

Table 2.3: Time and space complexity of steps in Barrier-Type Interior Point Method

20 See section 11.5.3 of [56] for an upper bound on the number of outer iterations; particularly note figure
11.14. Also see the second example of section 11.6.3., figure 11.16 reveals the variation of the number
of outer iterations with µ.
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Comparing Different Methods: The table above shows that the computational complex-

ity of the Barrier-type IPM is as costly as the direct application of Newton’s method. In

fact, a closer analysis shows that directly applying Newton’s method is less costly than

the SDP method, along with the advantage of being simpler to implement. Also, the Tay-

lor series method is as costly as both Newton’s method and the SDP method, when one

can find a gram matrix G(0) in the close vicinity of the given gram matrix G(1). If one is

interested in a one-time calculation for an ensemble of LI pure states Newton’s method is

the most desirable method to implement among all the three examined here.

2.4.3 Remarks and Conclusion

We showed how the mathematical structure of the MED problem for LI pure state en-

sembles could be used to obtain the solution for said problem. This was done by casting

the necessary and sufficient conditions (2.7) and (2.8) into a rotationally invariant form

which was employed to obtain the solution by using the implicit function theorem. We

also showed that this technique is simpler to implement than standard SDP techniques.

As mentioned in the beginning of this section, for fixed states |ψ1〉, |ψ2〉, · · · , |ψn〉, R

induces an invertible map on the space of probabilities, {pi}
n
i=1 −→ {qi}

n
i=1. This naturally

begs a question on whether there is a relation between the two probabilities, for example

does one majorize the other? Or, more generally, is the entropy of {qi}
n
i=1 always larger

than the entropy of {pi}
n
i=1 or vice versa? The answer to this question is that there doesn’t

seem to be any simple property relating these two probabilities, vis-a-vis, one majorizing

the other or that the ({pi}
n
i=1, {qi}

n
i=1)-pair are either related by H(pi) ≥ H(qi) or H(pi) <

H(qi); examples of both cases can be found. This is particularly easy to corroborate from

for the cases n = 2.

In this work we studied only about the case for n-LIP ensembles. Naturally there is the

question if a similar theory holds for more general ensembles. For the case of m-linearly
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dependent pure state ensembles (where m > dimH = n): it is explicitly shown that, while

a map like R−1 exists on the space of m linearly dependent pure (LDP) state ensembles,

R−1 isn’t one-to-one [3]21. From the analysis in our work, it is clear that the one-to-

one nature of the map R−1 (for n-LIPs) plays a crucial in formulating the rotationally

invariant necessary and sufficient conditions for MED of said ensemble of states; thus it

also plays a crucial role in the application of this necessary and sufficient condition to

obtain the solution for MED of said ensemble. The non-invertibility of R−1 also shows

that the optimal POVM won’t necessarily vary smoothly as one varies the ensemble from

one m-LDP to another m-LDP. C. Mochon gave algebraic arguments for this [3] in his

paper, and Ha et al. showed the same using the geometrical arguments for ensembles of

three qubit states, as an example [49]. This has been shown for general qudits as well

[50]. Besides this, there is also the fact that there are some LDPs for which the optimal

POVM isn’t even unique, i.e., two or more distinct POVMs give the maximum success

probability for MED. This means that as the ensemble is varied in the neighbourhood of

said ensemble, the optimal POVM can undergo discontinuous jumps. Hence, we conclude

that such the technique which was used in subsection 2.4.2 for n-LIPs can’t be generalized

to m-LDPs. In the next section we see that such a technique can be generalized to mixed

state ensembles of linearly independent states.

2.5 MED for Ensembles of LI Mixed States

The work done in this section has been detailed in a paper titled "Algebraic Structure

of the Minimum Error Discrimination Problem for Linearly Independent Density Matri-

ces", which has been uploaded on the arxiv at quant-ph/14127174 [57]. This paper is in

preparation to be sent for publication soon.

In section 2.3 I gave the salient features of the mathematical structure which relates to

21 In that sense it defeats the purpose of denoting such a map by R−1, because R−1 doesn’t have an
inverse.

http://arxiv.org/abs/1412.7174
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any general ensemble of quantum states P̃, another ensemble of quantum states Q̃, whose

PGM is the optimal POVM for the MED of P̃. In section 2.4 it was seen that if the states

in P̃ were restricted to being LI and pure, then P̃ and Q̃ can be related by a bijection R

(see equation (2.10)). In this section we generalize the result for ensembles of LI pure

states to ensembles of LI mixed states.

Let {ri}
m
i=1 ⊂ Z

+ be a subset of m real positive integers, with the property22

m∑
i=1

ri = n. (2.58)

Let {ρi}
m
i=1 be a set of m quantum states such that rank(ρi) = ri, ∀ 1 ≤ i ≤ m. We say

that ρ1, ρ2, · · · , ρm are LI if the following is true: ∀ 1 ≤ i ≤ m, let |ψ〉i ∈ supp(ρi) be

non-zero vectors, then |ψ〉1, |ψ〉2, · · · , |ψ〉m are LI. Define
~
r ≡ (r1, r2, · · · , rm). From [6]

we know that the optimal POVM for an ensemble of mixed states, like P̃
~
r = {pi, ρi}

m
i=1,

is a unique projective measurement {Πi}
m
i=1, with ΠiΠ j = δi jΠi, ∀ 1 ≤ i, j ≤ m, and

rank(Πi) = rank(ρi) = ri, ∀ 1 ≤ i ≤ m. Consider the following two definitions.

Definition 2.5.1. E
~
r is the set of LI ensembles, such that if P̃

~
r ∈ E

~
r, then ρi = ri, ∀ 1 ≤

i ≤ m. E
~
r is a 2n2 −

∑m
i=1 r2

i − 1 dimensional real manifold. If rk = rk+1 = · · · = rk+s−1, then

a single ensemble can be represented by s! points in the set E
~
r, which differ only by the

order in which states and corresponding probabilities are indexed23.

Definition 2.5.2. Define P
~
r to be the set of all m-element projective measurements, so

that if {Πi}
m
i=1 ∈ P

~
r, then ΠiΠ j = δi jΠi, ∀ 1 ≤ i, j ≤ m, and rank(Πi) = ri, ∀ 1 ≤ i ≤ m. P

~
r

is an n2 −
∑m

i=1 r2
i dimensional real manifold.

Then, just like we defined the optimal POVM map P
~
1 : E

~
1 −→ P

~
1 for LI pure state

ensembles, we can define the optimal POVM map P
~
r : E

~
r −→ P

~
r for LI mixed state

22 The reason for keeping rank(ρi) = ri fixed, and for instance not allowing, say, rank(ρi) ≤ ri is will be
made clear later (see equation (2.77)).

23 Retaining this multiplicity is merely a matter of convenience, i.e., one could adopt more criteria to do
away with such multiplicities but that complicates the description of E

~
r; this is avoided to keep things

simple.
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ensembles.

Definition 2.5.3. P
~
r : E

~
r −→ P

~
r is the optimal POVM map on E

~
r. Thus P

~
r(P̃

~
r) is the

unique optimal POVM for the MED of any ensemble P̃
~
r ∈ E

~
r.

One can trivially generalize the pretty good measurement map as well.

Definition 2.5.4. PGM
~
r : E

~
r −→ P

~
r is the pretty good measurement map on E

~
r. So

PGM
~
r

(
Q̃
~
r

)
= {Πi}

m
i=1 is the PGM associated with the ensemble Q̃

~
r = {qi, σi}

m
i=1, where Πi

is given by

Πi =

 m∑
j=1

q jσ j


−1/2

qiσi

 m∑
k=1

qkσk

−1/2

, ∀ 1 ≤ i ≤ m. (2.59)

In this work we show that one can define a map R
~
r : E

~
r −→ E

~
r, which allows us to

generalize the relation (4) for arbitrary
~
r 24.

In the process we also show that R
~
r is invertible over E

~
r, and we give a closed-form

expression for R−1

~
r . The functions R

~
r exhibit the mathematical structure of the problem

of MED for ensembles in E
~
r. We relate R

~
r to R

~
1, which will show how the problem of

the MED of ensembles in E
~
r is related to the problem of MED of ensembles in E

~
1.

The work is divided into various subsections as follows: subsection 2.5.1 establishes the

main result of the work in the following steps: we first simplify the known optimality

conditions for the MED of an ensemble of LI mixed states and then, use these conditions

to arrive at the rotationally invariant necessary and sufficient conditions for MED of said

ensemble; using the rotationally invariant optimality conditions we define the function R
~
r,

which is related to P
~
r by equation (4). We also prove that R

~
r is an invertible function

and give the action of R−1

~
r on any ensemble of LI mixed states in E

~
r. In subsection 2.5.2

we compare the problem of MED for general LI mixed ensembles with the problem of

MED for LI pure state ensembles. In subsection 2.5.3, we use the results from subsection

24

~
r should satisfy equation (2.58).
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2.5.1 to give an efficient and simple numerical technique to obtain the optimal POVM for

the MED of any LI ensemble. Section 2.5.4 concludes the work.

2.5.1 Mathematical Structure for MED of Ensembles of LI States

Let U be some unitary acting onH . It is easy to see that

P
~
r

(
{pi,U†ρiU}mi=1

)
= {U†ΠiU}mi=1.

Thus MED is a rotationally covariant problem. To strip the problem of its rotational

covariance and to retain only the rotationally invariant aspect of the problem, we will now

recast the optimality conditions given in section 2.2 in a rotationally invariant form.

Rotationally Invariant Conditions for MED of an Ensemble of LI Mixed States

First we define the index sets Ii ≡ {(i, j) | 1 ≤ j ≤ ri}, ∀ 1 ≤ i ≤ m. Thus when
~
i ∈ Ii,

then it takes the form
~
i = (i, j), where 1 ≤ j ≤ ri. Also define the index set I =

⋃m
i=1 Ii.

We will use this indicing convention throughout this work. This convention will also be

used to denote matrix elements of ri × ri′ matrices, where 1 ≤ i, i′ ≤ m or n × n matrices.

For instance if Xii′ is an ri × ri′ matrix, and if
~
i = (i, j) and

~
i′ = (i′, j′), then (Xii′)

~
i
~
i′ will

be the matrix element occuring at the intersubsection of the j-th row and j′-th column

of Xii′ . Similarly, if G is an n × n matrix, then G
~
i
~
i′ is the matrix element occuring at the

intersubsection of the
(∑i−1

k=1 rk + j
)
-th row and

(∑i′−1
k=1 rk + j′

)
-th column.

Consider a spectral decomposition for Πi, for all 1 ≤ i ≤ m.

Πi =
∑
~
i∈Ii

|w
~
i〉〈w

~
i|. (2.60)

Then {|w
~
i〉}
~
i∈I is an ONB forH , i.e., 〈w

~
i|w

~
i′〉 = δ

~
i
~
i′ , for all

~
i,
~
i′ ∈ I. If ri ≥ 2, Πi is degen-

erate and hence there is a U (ri) degree of freedom in choosing the spectral decomposition
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of Πi, i.e., when

|w′
~
i〉 =

∑
~
j∈Ii

(Ui)
~
j
~
i |w

~
j〉, ∀

~
i ∈ Ii, (2.61a)

where Ui is an ri × ri unitary matrix, then

Πi =
∑
~
i∈Ii

|w′
~
i〉〈w

′

~
i |, ∀ 1 ≤ i ≤ m. (2.61b)

For now assume that the choice of spectral decomposition of Πi is arbitrary for all 1 ≤

i ≤ m. Later in this subsection, a special choice of spectral decomposition of Πi for each

1 ≤ i ≤ m will be made.

Consider a pure state decomposition of the unnormalized states piρi:

piρi =
∑
~
i∈Ii

|ψ̃
~
i〉〈ψ̃

~
i|. (2.62a)

The vectors | ψ̃
~
i〉 are unnormalized. Since supp(piρi) is spanned by the ri vectors {| ψ̃

~
i〉}
~
i∈Ii

and since rank(piρi) = ri, {| ψ̃
~
i〉}
~
i∈Ii is a LI set. There is a U (ri) degree of freedom in the

choice of decomposition of the unnormalized state piρi into the pure states |ψ̃
~
i〉〈ψ̃

~
i|, i.e.,

let Ui be an ri × ri unitary matrix; define the vectors

| ψ̃′
~
i〉 ≡

∑
~
j∈Ii

(Ui)
~
j
~
i | ψ̃

~
j〉, ∀

~
i ∈ Ii, (2.62b)

then

piρi =
∑
~
i∈Ii

|ψ̃′
~
i〉〈ψ̃

′

~
i| (2.62c)

is another pure state decomposition of piρi, similar to the one in equation (2.62a). For now

we make an arbitrary choice of pure state decomposition in equation (2.62a); in subsection

2.5.2 we will make a specific choice of pure state decomposition for the states piρi. Let

the gram matrix corresponding to {| ψ̃
~
i〉}
~
i∈I be denoted by G, whose matrix elements are
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given by

G
~
i
~
i′ = 〈ψ̃

~
i|ψ̃

~
i′〉, ∀

~
i,
~
i′ ∈ I. (2.63)

G is an n × n positive semidefinite matrix. Since the states ρ1, ρ2, · · · , ρm are LI, the set

{| ψ̃
~
i〉}
~
i∈I is also LI. This implies that G is a positive definite matrix. Define the set of n

vectors
{
| ũ
~
i〉
}
~
i∈I

in the following way

| ũ
~
i〉 ≡

∑
~
j∈I

(
G−1

)
~
j
~
i
| ψ̃

~
j〉, ∀

~
i ∈ I. (2.64a)

Equation (2.64a) implies that

〈ψ̃
~
i |̃u
~
j〉 = δ

~
i
~
j, ∀

~
i,
~
j ∈ I. (2.64b)

Using equation (2.64a), one can corroborate that

| ψ̃
~
i〉 =

∑
~
j∈I

G
~
j
~
i| ũ

~
j〉, ∀

~
i ∈ I. (2.64c)

Since G−1 is non-singular, equation (2.64a) implies that
{
| ũ
~
i〉
}
~
i∈I

is a set of n LI vectors,

hence it is a basis forH . Thus the orthonormal basis vectors {|w
~
i〉}
~
i∈I, given by equation

(2.60), can be expanded in terms of the | ũ
~
i〉 vectors.

|w
~
i〉 =

∑
~
j∈I

(
G

1
2 W

)
~
j
~
i
| ũ
~
j〉, ∀

~
i ∈ I, (2.65)

where W is an n × n unitary matrix.

Substituting the expression for |w
~
i〉 from equation (2.65) into equation (2.60) we get

Πi =
∑
~
l,
~
k∈I

∑
~
i∈Ii

(
G

1
2 W

)
~
l
~
i

(
W†G

1
2
)
~
i
~
k

 |̃u~l〉〈̃u~k|. (2.66)
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Rotationally Invariant Form of Condition (2.7)

Since P
~
r(P̃

~
r) = {Πi}

m
i=1, the POVM elements Πi should satisfy equation (2.7). Substituting

the expression for Πi and Π j from equation (2.66) into equation (2.7) we get

Πi

(
piρi − p jρ j

)
Π j =

∑
~
l,
~
k∈I

ξ
~
l
~
k |̃u

~
l〉〈̃u

~
k| = 0, (2.67)

where ξ
~
l
~
k is given by

ξ
~
l
~
k =

∑
~
i∈Ii

∑
~
j∈I j

(
G

1
2 W

)
~
l
~
i

∑
~
i′∈Ii

(
W†G

1
2
)
~
i
~
i′

(
G

1
2 W

)
~
i′
~
j
−

∑
~
j′∈I j

(
W†G

1
2
)
~
i
~
j′

(
G

1
2 W

)
~
j′
~
j

 (W†G
1
2
)
~
j
~
k
.

(2.68)

The expression for ξ
~
l
~
k in equation (2.68) is complicated. To simplify we do the following.

i. First partition the matrix G
1
2 W into matrix blocks in the following way.

G
1
2 W =



X11 X12 · · · X1m

X21 X22 · · · X2m

...
...

. . .
...

Xm1 Xm2 · · · Xmm


, (2.69a)

where Xii′ is the ri × ri′ matrix block in G
1
2 W, and it is located at the intersubsection

of the rows with indices
~
i ∈ Ii and the columns with indices

~
i′ ∈ Ii′ .
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ii. Define:

Ci ≡



X1i

X2i

...

Xmi


, 1 ≤ i ≤ m. (2.69b)

Thus Ci is the i-th column block of G
1
2 W.

iii. Similarly, partition W†G−
1
2 into matrix blocks in the following way.

W†G−
1
2 =



Y11 Y12 · · · Y1m

Y21 Y22 · · · Y2m

...
...

. . .
...

Ym1 Ym2 · · · Ymm


, (2.69c)

where Yii′ is the ri × ri′ matrix block in W†G−
1
2 , located at the intersubsection of the

rows with indices
~
i ∈ Ii and the columns with indices

~
i′ ∈ Ii′ .

iv. Define

Ri ≡

(
Yi1 Yi2 · · · Yim

)
, 1 ≤ i ≤ m. (2.69d)

Thus Ri is the i-th row block of W†G−
1
2 .

Substituting equations (2.69a) and (2.69b) in equation (2.67) we obtain a simplified ex-

pression for equation (2.68)

ξ
~
l
~
k =

(
Ci

(
Xii
†Xi j − X ji

†X j j

)
C j
†
)
~
l
~
k

= 0, ∀
~
l,
~
k ∈ I, (2.70)

where X ji
† is the i j-th matrix block of W†G

1
2 . Equations (2.69b) and (2.69d) imply that

RiCi = 1ri , ∀ 1 ≤ i ≤ m, where 1ri is the ri × ri identity matrix. Left multiplying by Ri and
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right multiplying by R j
†, the LHS and RHS of equation (2.70) become

RiCi

(
Xii
†Xi j − X ji

†X j j

)
C j
†R j

† = 0

=⇒ Xii
†Xi j − X ji

†X j j = 0, ∀ 1 ≤ i, j ≤ m. (2.71)

Let UD
~
r be an n × n block diagonal unitary matrix of the form

UD
~
r =



U1 0 · · · 0

0 U2 · · · 0
...

...
. . .

...

0 0 · · · Um


, (2.72)

where Ui is an ri × ri unitary matrix for i = 1, 2, · · · ,m. Equations (2.61) imply that there

is a U(ri) degree of freedom in the choice of spectral decomposition of Πi in equation

(2.60). Expanding the vectors |w′
~
i〉 in the basis {| ũ

~
i〉}
~
i∈I gives (compare with equation

(2.65))

|w′
~
i〉 =

∑
~
j∈I

(
G

1
2 WUD

~
r

)
~
j
~
i
| ũ
~
j〉. (2.73)

Due to the block-diagonal form of UD
~
r , |w

~
i〉 −→ |w′

~
i〉 will leave Πi invariant in equation

(2.66). We exploit this degree of freedom to make a specific choice of UD
~
r : choose Ui

such that XiiUi ≥ 0, ∀ 1 ≤ i ≤ m25. To simplify the notation, assume that UD
~
r is absorbed

within W, i.e., WUD
~
r → W, Xi jU j → Xi j and |w′

~
i〉 −→ |w

~
i〉, such that Xii ≥ 0, ∀ 1 ≤ i ≤ m.

Thus we have established that for any given pure state decomposition of the unnormalized

states piρi (see equations (2.62)), there is a n × n unitary W such that

1. the ONB {|w
~
i〉}
~
i∈I, defined by equation (2.65), can be partitioned into subsets of m

25 Using the singular value decomposition of Xii, it can be seen that there is always some Ui such that
XiiUi ≥ 0.
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vectors, {|w
~
i〉}
~
i∈Ii , for i = 1, 2, · · · ,m, so that {|w

~
i〉}
~
i∈Ii are the eigenvectors of Πi,

i.e., {|w
~
i〉}
~
i∈Ii satisfy equation (2.60), and

2. the matrix G
1
2 W, which occurs in the equation (2.65), has positive semi-definite

block diagonal matrices, i.e., Xii ≥ 0, ∀ 1 ≤ i ≤ m.

Thus equation (2.71) becomes

XiiXi j − X ji
†X j j = 0, ∀ 1 ≤ i, j ≤ m. (2.74)

Define D
~
r as the block diagonal matrix, containing diagonal matrix blocks of G

1
2 W.

D
~
r ≡



X11 0 · · · 0

0 X22 · · · 0
...

...
. . .

...

0 0 · · · Xmm


. (2.75)

Left multiplying G
1
2 W by D

~
r gives (see equation (2.69a))

X
~
r ≡ D

~
rG

1
2 W =



(X11)2 X11X12 · · · X11X1m

X22X21 (X22)2 · · · X22X2m

...
...

. . .
...

XmmXm1 XmmXm2 · · · (Xmm)2


. (2.76)

Thus, equation (2.74) tells us that X
~
r ≡ D

~
rG

1
2 W is a hermitian matrix. This implies that26

(
X
~
r

)2
=

(
X
~
r

) (
X†
~
r

)
= D

~
rGD

~
r. (2.77)

26 An explanation for why the ri’s are kept constant: consider n = 3, let G be a 3×3 gram matrix. Then the
solution (of equation (2.77)) for this gram matrix will be different for the case r1 = 1, r2 = 2 compared
to the case r1 = 2, r2 = 1, and also the case r1 = r2 = r3 = 1. Each of these cases corresponds to MED
problems for different LI ensembles, hence their solutions will generally differ.
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Next we prove that D
~
r is non-singular. This is equivalent to proving that Xii are non-

singular for all 1 ≤ i ≤ m, i.e., rank(Xii) = ri for all 1 ≤ i ≤ m.

Theorem 2.5.1. rank(Xii) = ri, ∀ 1 ≤ i ≤ m.

Proof. Substituting the expression for piρi from equation (2.62a) and the expression for

Πi from equation (2.66) in the operator p2
i ρiΠiρi, and using the partition of G

1
2 W into the

Xi j matrix blocks (equation (2.69a)), one obtains

p2
i ρiΠiρi =

∑
~
i,
~
j∈Ii

(
(Xii)2

)
~
i
~
j
|ψ̃
~
i〉〈ψ̃

~
j|. (2.78)

The fact that rank(Πi) = ri, ∀ 1 ≤ i ≤ m implies that rank(p2
i ρiΠiρi) ≤ ri, and rank(piρiΠi)

= rank(piΠiρi) ≤ ri, ∀ 1 ≤ i ≤ m. We first establish that rank(piρiΠi) = rank(piΠiρi) = ri.

Suppose not, i.e., let rank (piρiΠi) < ri. This implies that ∃ | u〉 ∈ supp (Πi)− {0} such that

piρiΠi| u〉 = 0. But since Π j| u〉 = 0 when j , i 27, we get that Z| u〉 =
∑m

j=1 p jρ jΠ j| u〉 = 0,

which implies that Z cannot be non-singular. Hence the assumption that rank (piρiΠi) < ri

cannot be true for any 1 ≤ i ≤ m. This implies that rank (piρiΠi) = ri, ∀ 1 ≤ i ≤ m.

Since piΠiρi is the adjoint of piρiΠi, rank(piΠiρi) = rank(piρiΠi). That rank(piρiΠi) =

rank(Πi) implies that any non-zero vector belonging to supp (Πi) has a non-zero com-

ponent in supp (piρi). Similarly, that rank(piΠiρi) = rank(piρi) implies that any non-

zero vector in supp(piρi) has a non-zero component in supp(Πi). Let | u〉 ∈ supp(piρi),

thus piρi| u〉 ∈ supp(piρi). The arguments above tell us that piΠiρi| u〉 , 0, and since

piΠiρi| u〉 ∈ supp(Πi), they also tell us that p2
i ρiΠiρi| u〉 , 0, ∀ | u〉 ∈ supp(piρi) − {0}. If

| u1〉, | u2〉, · · · , | uk〉 ∈ supp(piρi) are k LI vectors such that {p2
i ρiΠi rhoi| u j〉}

k
j=1 are linearly

dependent, then there must exist some non-zero | u〉 ∈ supp(piρi) such that p2
i ρiΠiρi| u〉 =

0. But we know that this isn’t true. Thus p2
i ρiΠiρi preserves the linear independence

of any set of vectors in supp(piρi), which implies that rank(p2
i ρiΠiρi) = rank(piρi) = ri,

∀ 1 ≤ i ≤ m. Using equation (2.78), this implies that rank(Xii)2 = ri, ∀ 1 ≤ i ≤ m, which

27 | u〉 ∈ supp(Πi) and ΠiΠ j = δi jΠi, ∀ 1 ≤ i, j ≤ m implies that | u〉 < supp
(
Π j

)
∀ j , i.
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implies that rank(Xii) = ri, ∀ 1 ≤ i ≤ m. �

Theorem (2.5.1) implies that D
~
r is non-singular, which implies that X

~
r = D

~
rG

1
2 W is non-

singular.

Thus the rotationally invariant form of condition (2.7) can be given in two equivalent

forms.

(I) For any pure state decomposition of the piρi’s, for e.g., the pure states {| ψ̃
~
i〉}
~
i∈I (see

equation (2.62a)), one needs to find an n× n hermitian matrix X
~
r with the following

properties

(a) When X
~
r is partitioned into matrix blocks, as G

1
2 W is partitioned in equation

(2.69a), then the diagonal matrix blocks of X
~
r are positive definite. Represent

these diagonal blocks by (X11)2, (X22)2, · · · , (Xmm)2. Define D
~
r as given by equa-

tion (2.75), where the diagonal blocks Xii are positive square roots of the diagonal

blocks in X
~
r.

(b) X
~
r and D

~
r solve equation (2.77), where G is the gram matrix of {| ψ̃

~
i〉}
~
i∈I.

(II) For any given pure state decomposition of the piρi’s (for example as given by equa-

tion (2.62a)), one needs to find a block diagonal positive definite matrix D
~
r, of the

form in equation (2.75), so that the diagonal blocks of a hermitian square root of

the matrix D
~
rGD

~
r are (X11)2, (X22)2, · · · , (Xmm)2 respectively.

It is easily seen that (I) and (II) are both equivalent. To say that we solved the rotation-

ally invariant form of condition (2.7) would mean that corresponding to some pure state

decomposition of the piρi’s, we either found X
~
r that solves (I) or we found D

~
r that solves

(II).

Next we corroborate the claim that the above conditions are equivalent to the condition

(2.7). Let D
~
r > 0 be of the form given in equation (2.75), and be the solution for (II),
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corresponding to the pure state decomposition of the piρi’s as given by equation (2.62a).

Thus there is some hermitian square root of D
~
rGD

~
r, whose diagonal blocks are given by

(X11)2, (X22)2, · · · , (Xmm)2. This hermitian square root must then have the form of X
~
r, as

given by equation (2.76), where the Xi j’s satisfy equation (2.74). Left multiplying X
~
r by

(D
~
r)−1, gives us G

1
2 W. We obtain the | ũ

~
i〉 vectors using equation (2.64a). We then obtain

|w
~
i〉 from equation (2.65), and we obtain the Πi’s using equation (2.60). Substituting the

expression for Πi’s in the LHS of equation (2.7) gives us the RHS of equation (2.7).

We claim that the aforementioned conditions are rotationally invariant because the solu-

tion for these conditions, i.e., X
~
r and/or D

~
r, are invariant under any unitary transformation

of the states piρi −→ U piρiU†, for all 1 ≤ i ≤ m, where U is any unitary operator onH .

Theorem 2.5.2. For the pure state decomposition of piρi’s given by equation (2.62a), let

D
~
r be the solution for the aforementioned rotationally invariant form of condition (2.7).

Let equation (2.62c) give another pure state decomposition for the piρi’s into the pure

states | ψ̃′
~
i〉, where | ψ̃′

~
i〉 and | ψ̃

~
i〉 are related by equation (2.62b). Then for the pure state

decomposition given by equation (2.62c), the solution transforms to (UD
~
r )
†D

~
rUD

~
r , where

UD
~
r is given by equation (2.72). Similarly X

~
r transforms to (UD

~
r )
†X

~
rUD

~
r .

Proof. Note that the transformations | ψ̃
~
i〉 −→ | ψ̃

′

~
i〉, ∀

~
i ∈ I, is accompanied by the fol-

lowing transformations.

G −→ G′ ≡ (UD
~
r )
†GUD

~
r , (2.79a)

and

G
1
2 −→ (G′)

1
2 ≡ (UD

~
r )
†G

1
2 UD

~
r . (2.79b)

D
~
r is a solution for the rotationally invariant form of the condition (2.7), corresponding

to the pure state decomposition of the piρi’s given by equation (2.62a). This implies that

there is a hermitian square root of the matrix D
~
rGD

~
r, whose diagonal matrix blocks are

given by X2
11, X

2
22, · · · , X

2
mm.
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Define

D′
~
r ≡ (UD

~
r )
†D

~
rUD

~
r . (2.79c)

Thus D′
~
rG
′D′

~
r = (UD

~
r )
†
(
D
~
rGD

~
r

)
UD

~
r . The diagonal blocks of the hermitian square root

transform as X2
ii −→

(
U†i XiiUi

)2
, ∀ 1 ≤ i ≤ m. Thus D′

~
r = (UD

~
r )
†D

~
rUD

~
r gives the solution

for the rotationally invariant form of condition (2.7) for the pure state decomposition of the

piρi’s given by equation (2.62b). It is also easily seen that X
~
r transforms to (UD

~
r )
†X

~
rUD

~
r .

�

Simplification of Condition (2.8) for MED of LI Mixed State Ensembles

We want to obtain the rotationally invariant form of the necessary and sufficient conditions

(2.7) and (2.8). Earlier, we gave the rotationally invariant form of condition (2.7). To solve

this condition, corresponding to some pure state decomposition of the piρi’s, one needs to

find some X
~
r which is hermitian, and satisfies (a) and (b). We will later show that condition

(2.8) is satisfied when X
~
r is positive definite. In other words, if we find X

~
r which satisfies

the rotationally invariant conditions, and is positive definite, then upon constructing28 Πi’s

from X
~
r, these Πi’s would satisfy condition (2.8), along with satisfying condition (2.7).

But to show this we need to simplify condition (2.8) for the MED of LI mixed states.

For this purpose consider the following: let D
~
r be a solution for the rotationally invariant

form of equation (2.7), corresponding to the pure state decomposition of the piρi’s given

by equation (2.62a). Define
{
| χ̃
~
i〉
}
~
i∈I

by

| χ̃
~
i〉 ≡

1√
Tr(D

~
rGD

~
r)

∑
~
j∈I

(
D
~
r

)
~
j
~
i
| ψ̃

~
j〉, ∀

~
i ∈ I. (2.80a)

The inner product of | χ̃
~
i〉 and | χ̃

~
j〉 is

28 Refer to the second paragraph before theorem 2.5.2 for instructions on how to construct the Πi’s from
either X

~
r or D

~
r.
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〈χ̃
~
i |̃χ

~
j〉 =

1
Tr(D

~
rGD

~
r)

(
D
~
rGD

~
r

)
~
i
~
j
. (2.80b)

Thus the gram matrix of the vectors {| χ̃
~
i〉}
~
i∈I is

D
~
rGD

~
r

Tr(D
~
rGD

~
r)

.

Since | ψ̃
~
i〉}
~
i∈Ii is a basis for supp(piρi), and since rank (Xii) = ri, equation (2.80a) implies

that
{
| χ̃
~
i〉
}
~
i∈Ii

is a basis for supp(piρi). Since supp(p1ρ1), supp(p2ρ2), · · · , supp(pmρm) are

LI and since they together spanH , {| χ̃
~
i〉}
~
i∈I is a basis forH .

We will now show that for MED of LI mixed state ensembles, the condition (2.8) is

subsumed in the condition Z =
∑m

i=1 piρiΠi > 0.

Theorem 2.5.3. The necessary and sufficient conditions for P
~
r(P̃

~
r) = {Πi}

m
i=1 is that the

Πi’s should satisfy condition (2.7) and the condition Z =
∑m

i=1 piρiΠi > 0. That is, given

that the Πi’s satisfy condition (2.7), Z > 0 implies Z ≥ piρi, ∀ 1 ≤ i ≤ m (condition

(2.8)).

Proof. Given that Πi’s satisfy equation (2.7) and Z =
∑m

i=1 piρiΠi > 0. Theorem 2.5.1

tells us that the non-singularity of Z implies that Xii are non-singular. The non-singularity

of Xii allowes us to define a set of n LI vectors
{
| χ̃
~
i〉
}
~
i∈I

, as shown in equation (2.80a). We

want to expand Z and piρi in the operator basis {|̃χ
~
i〉〈χ̃

~
j|}
~
i,
~
j∈I. For that note the following.

Equation (2.80a) implies that

| ψ̃
~
k〉 =

√
Tr(D

~
rGD

~
r)

∑
~
j∈I

((
D
~
r

)−1
)
~
j
~
k
| χ̃
~
j〉, ∀

~
k ∈ I, (2.81a)

and since | ũ
~
i〉 =

∑
~
k∈I

(
G−1

)
~
k
~
i
| ψ̃

~
k〉 (see equation (2.64a)), we get that

| ũ
~
i〉 =

√
Tr(D

~
rGD

~
r)

∑
~
j∈I

(
(D

~
r)−1G−1

)
~
j
~
i
| χ̃
~
j〉, ∀

~
i ∈ I. (2.81b)
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Substituting the expression for | ψ̃
~
k〉 from equation (2.81a) into equation (2.62a) we get

piρi =
√

Tr(D
~
rGD

~
r)

∑
~
j,
~
k∈Ii

(
(Xii)−1

)
~
j
~
k
|̃χ
~
j〉〈ψ̃

~
k| (2.82a)

= Tr(D
~
rGD

~
r)

∑
~
j,
~
k∈Ii

(
(Xii)−2

)
~
j
~
k
|̃χ
~
j〉〈χ̃

~
k|. (2.82b)

Substituting the expression for piρi from equation (2.82a), and for Πi from equation

(2.66), into piρiΠi, we get

piρiΠi =
√

Tr(D
~
rGD

~
r)

∑
~
j∈Ii

∑
~
k∈I

(
W†G

1
2
)
~
j
~
k
|̃χ
~
j〉〈̃u

~
k|. (2.82c)

Now substituting the expression for | ũ
~
i〉 in terms of | χ̃

~
i〉 (see equation (2.81b)) in the

expression for piρiΠi in equation (2.82c) and summing over i gives

Z = Tr(D
~
rGD

~
r)

∑
~
j,
~
k∈I

((
X
~
r

)−1
)
~
j
~
k
|̃χ
~
j〉〈χ̃

~
k|. (2.82d)

Equation (2.82d) implies that the following statements are equivalent.

Z > 0⇔
(
X
~
r

)−1
> 0. (2.83)

The aim of this theorem is to prove the following statement

Z > 0 =⇒ Z ≥ piρi, ∀ 1 ≤ i ≤ m. (2.84a)

Substituting the expression for piρi from equation (2.82b) and the expression for Z from

equation (2.82d), into the statement (2.84a), gives us a statement, which is equivalent to

the statement (2.84a) (note that we have used the RHS of equation (2.76) to obtain the
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statement (2.84b) below):

(
X
~
r
)−1

> 0 =⇒



(X11)2 · · · X11X1i · · · X11X1m

...
. . .

...
. . .

...

XiiXi1 · · · (Xii)2 · · · XiiXim

...
. . .

...
. . .

...

XmmXm1 · · · XmmXmi · · · (Xmm)2



−1

≥



0 · · · 0 · · · 0
...

. . .
...

. . .
...

0 · · · (Xii)−2 · · · 0
...

. . .
...

. . .
...

0 · · · 0 · · · 0


,

(2.84b)

∀ 1 ≤ i ≤ m. Permute:


k → m + k − (i − 1), ∀ 1 ≤ k ≤ i − 1

k → k − (i − 1), ∀ i ≤ k ≤ m




⇐⇒



(Xii)2 XiiXi i+1 · · · XiiXi i−1

Xi+1 i+1Xi+1 i (Xi+1 i+1)2 · · · Xi+1 i+1Xi+1 i−1

...
...

. . .
...

Xi−1 i−1Xi−1 i Xi−1 i−1Xi−1 i+1 · · · (Xi−1 i−1)2



−1

≥



(Xii)−2 0 · · · 0

0 0 · · · 0
...

...
. . .

...

0 0 · · · 0


, (2.84c)

∀ 1 ≤ i ≤ m.

To simplify the notation define the following.



A B

B† C


≡



(Xii)2 XiiXi i+1 · · · XiiXi i−1

Xi+1 i+1Xi+1 i (Xi+1 i+1)2
· · · Xi+1 i+1Xi+1 i−1

...
...

. . .
...

Xi−1 i−1Xi−1 i Xi−1 i−1Xi−1 i+1 · · · (Xi−1 i−1)2


, (2.85)

where A is of dimension ri × ri, B is of dimension ri × (n − ri) and C is of dimension

(n − ri) × (n − ri). Note that the off diagonal blocks of X
~
r are adjoints of each other, since

X
~
r is hermitian.
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Thus the statement (2.84b) is equivalent to the following statement.

 A B

B† C


−1

> 0 =⇒

 A B

B† C


−1

≥

A−1 0

0 0

 . (2.86)

Since Z > 0, equations (2.83), (2.76) and (2.85) tell us that
( A B

B† C

)
> 0. This proves the

inequality on the LHS of (2.86). We now have to establish that the inequality on the RHS

of the statement (2.86) is true as well. Thus we have to prove that

 A B

B† C


−1

−

A−1 0

0 0

 ≥ 0. (2.87)

Now, note that [56]29 ( A B
B† C

)
> 0 =⇒ A > 0 and C − B†A−1B > 0, where C − B†A−1B is

the Schur complement of A in
( A B

B† C

)
. The inverse of

( A B
B† C

)
is given by [56] 30

 A B

B† C


−1

=

A−1 + QS AQ† −QS A

−S AQ† S A


=

A−1 0

0 0

 +

QS AQ† −QS A

−S AQ† S A

 (2.88)

where S A ≡ (C−B†A−1B)−1 is the inverse of the Schur complement of A in
( A B

B† C

)
and Q ≡

A−1B. Substituting the expression for
( A B

B† C

)−1 from equation (2.88) into the inequality

(2.87) gives us

QS AQ† −QS A

−S AQ† S A

 ≥ 0. (2.89)

29 See subsection A.5.5 Schur Complement of the appendix (page 651) in [56].
30 See subsection A.5.5 Schur Complement of the appendix (page 650) in [56].
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Note that QS AQ† −QS A

−S AQ† S A

 =

−Q 0

0 1n−ri


S A S A

S A S A


−Q† 0

0 1n−ri

 ,
where 1n−ri is the (n−ri)×(n−ri) identity matrix. Since S A > 0, we get that

( QS AQ† −QS A
−S AQ† S A

)
≥

0. Hence the inequality (2.89) is true. This proves the theorem. �

Hence the necessary and sufficient conditions (2.7) (or equivalently equation (2.5)) and

(2.8) are subsumed in the statement: X
~
r > 0, where X

~
r is a solution for the rotationally

invariant form of condition (2.7). In other words:

A: Let the ensemble P̃
~
r = {pi, ρi}

m
i=1 be in E

~
r. Let a pure state decomposition of the

piρi’s into the pure states {| ψ̃
~
i〉}
~
i∈I be given by equation (2.62a), and let G denote

the gram matrix of the set of vectors {| ψ̃
~
i〉}
~
i∈I. Then for the MED of P̃

~
r, one needs

to find a block diagonal matrix, D
~
r, of the form as given in equation (2.75), where

Xii is an ri × ri positive definite matrix, so that the diagonal blocks of the positive

square root of D
~
rGD

~
r are given by (X11)2 , (X22)2 , · · · , (Xmm)2 respectively.

Theorem 2.84 implies that the necessary and sufficient conditions (2.7) and (2.8) can be

alternatively given by corollary 2.5.3.1.

Corollary 2.5.3.1. If {Π′i}
m
i=1 ∈ P

~
r, and

∑m
i=1 piρiΠ

′
i > 0, then {Π′i}

m
i=1 is the optimal POVM

for MED of P̃
~
r, i.e., Π′i = Πi, ∀ 1 ≤ i ≤ m.

Proof. We need to prove that if {Π′i}
m
i=1 ∈ P

~
r and if

∑m
i=1 piρiΠ

′
i > 0, then the Π′i’s satisfy

the conditions (2.7) and (2.8). First note that since {Π′i}
m
i=1 is a projective measurement,∑m

j=1 p jρ jΠ
′
jΠ
′
i = piρiΠ

′
i . Also, note that

∑m
i=1 piρiΠ

′
i =

∑m
i=1 piΠ

′
iρi, since

∑m
i=1 piρiΠ

′
i is

hermitian. Thus we get
m∑

l=1

plρlΠ
′
l −

m∑
k=1

pkΠ
′
kρk = 0.
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Left multiplying the above expression by Π′i and right-multiplying it by Π′j gives

Π′i

(
p jρ j − piρi

)
Π′j = 0, ∀ 1 ≤ i, j ≤ m,

which is condition (2.7). Theorem (2.5.3) tells us that if we have a POVM {Π′i}
m
i=1 such

that it satisfied equation (2.7) and so that
∑m

i=1 piρiΠ
′
i > 0, then the following matrix

inequalities are also satisfied:
∑m

j=1 p jρ jΠ
′
j ≥ piρi ∀ 1 ≤ i ≤ m, which is condition (2.8).

Hence proved. �

Note that the optimal success probability (see equation (2.3)) Pmax
s is given by

Pmax
s =

m∑
i=1

Tr (piρiΠi) ,

=

m∑
i=1

Tr


∑
~
j∈Ii

|ψ̃
~
j〉〈ψ̃

~
j|


∑
~
l,
~
k∈I

∑
~
i∈Ii

(
G

1
2 W

)
~
l
~
i

(
W†G

1
2
)
~
i
~
k

 |̃u~l〉〈̃u~k|



=

m∑
i=1

Tr
(
(Xii)2

)
,

(2.90)

where we used equations (2.66) and (2.62a) to obtain the second line from the first and

equation (2.69a) to obtain the third line from the second.

Also, from theorem 2.5.2, it is easily seen that as | ψ̃
~
i〉 −→ | ψ̃

′

~
i〉 (equation (2.62b)), the

solution for A transforms as D
~
r −→ D′

~
r = (UD

~
r )
†D

~
rUD

~
r and X

~
r −→ X′

~
r = (UD

~
r )
†X

~
rUD

~
r ,

where UD
~
r is given by equation (2.72). From equation (2.90) it is seen that under this

transformation, the optimal success probability remains the same, as it should. In theorem

2.5.7 we show that corresponding to each choice of the pure state decomposition of the

piρi’s, there is a unique D
~
r which satisfies the conditions in A.
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Constructing R
~
r

We will now construct the ensemble Q̃
~
r = {qi, σi}

m
i=1 ∈ E

~
r, such that

1. supp (qiσi) = supp (piρi), ∀ 1 ≤ i ≤ m, and

2. PGM
~
r

(
Q̃
~
r

)
= P

~
r(P̃

~
r) = {Πi}

m
i=1.

Using equation (2.80a), define the following:

σi ≡

∑
~
i∈Ii
|̃χ
~
i〉〈χ̃

~
i|∑

~
j∈Ii
〈χ̃
~
j |̃χ

~
j〉
, ∀ 1 ≤ i ≤ m, (2.91a)

and

qi ≡
∑
~
i∈Ii

〈χ̃
~
i |̃χ
~
i〉, ∀ 1 ≤ i ≤ m. (2.91b)

Equation (2.91a) tells us that σi are density matrices on H , and equation (2.80b) tells us

that {qi}
m
i=1 is an m-outcome probability with qi > 0 for all 1 ≤ i ≤ m.

Since the set {| χ̃
~
i〉}
~
i∈Ii spans supp (piρi), we have that supp (qiσi) = supp (piρi) , ∀ 1 ≤

i ≤ m. It remains to be shown that P
~
r(P̃

~
r) is the PGM of Q̃

~
r.

Theorem 2.5.4. P
~
r(P̃

~
r) is the PGM of Q̃

~
r, i.e.,

Πi =

 m∑
j=1

q jσ j


− 1

2

qiσi

 m∑
k=1

qkσk

−
1
2

, ∀ 1 ≤ i ≤ m.

Proof. Corresponding to the set of LI vectors {| χ̃
~
i〉}
~
i∈I, define the vectors {| ỹ

~
i〉}
~
i∈I by

| ỹ
~
i〉 ≡ Tr(D

~
rGD

~
r)

∑
~
j∈I

((
D
~
rGD

~
r

)−1
)
~
j
~
i
| χ̃
~
j〉, ∀

~
i ∈ I, (2.92a)

where, using (2.80b), it is seen that
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〈̃y
~
i |̃χ

~
j〉 = δ

~
i
~
j, ∀

~
i,
~
j ∈ I. (2.92b)

Note that since {| χ̃
~
i〉}
~
i∈I is a basis forH and D

~
r is non-singular, {| ỹ

~
i〉}
~
i∈H is a basis forH .

Equations (2.92a) and (2.92b) imply that

〈̃y
~
i |̃y
~
j〉 = Tr(D

~
rGD

~
r)

((
D
~
rGD

~
r

)−1
)
~
i
~
j
, ∀

~
i,
~
j ∈ I. (2.92c)

Thus, the gram matrix of the set {| ỹ
~
i〉}
~
i∈I is given by Tr(D

~
rGD

~
r)

(
D
~
rGD

~
r

)−1
. Equation

(2.92a) can also be used to corroborate that

| χ̃
~
i〉 =

1
Tr(D

~
rGD

~
r)

∑
~
j∈I

(
D
~
rGD

~
r

)
~
j
~
i
| ỹ
~
j〉, ∀

~
i ∈ I. (2.92d)

We can relate the set of vectors {| ũ
~
i〉}
~
i∈I and {| ỹ

~
j〉}
~
j∈I in the following way: substitute

the expansion of | ψ̃
~
j〉 in terms of | χ̃

~
k〉 from equation (2.81a) in equation (2.64a), and in

the resulting expression, substitute the expansion of | χ̃
~
k〉 in terms of | ỹ

~
j〉 from equation

(2.92d). Thus we get that

| ũ
~
i〉 ≡

1√
Tr(D

~
rGD

~
r)

∑
~
j∈I

(
D
~
r

)
~
j
~
i
| ỹ
~
j〉, ∀

~
i ∈ I. (2.93)

Expand Πi in terms of |̃y
~
i〉〈̃y

~
j|, by substituting equation (2.93) in equation (2.66):

Πi =
1

Tr(D
~
rGD

~
r)

∑
~
j,
~
k∈I

∑
~
i∈Ii

(
X
~
r

)
~
j
~
i

(
X
~
r

)
~
i
~
k

 |̃y
~
j〉〈̃y

~
k|. (2.94)

We will prove that  m∑
j=1

q jσ j


− 1

2

qiσi

 m∑
k=1

qkσk

−
1
2

is equal to the RHS of equation (2.94), ∀ 1 ≤ i ≤ m. That proves the theorem.
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From the definition of σi and qi in equations (2.91), we get that

m∑
i=1

qiσi =
∑
~
i∈I

|̃χ
~
i〉〈χ̃

~
i|. (2.95)

Using equation (2.95), it can easily be verified that31

 m∑
i=1

qiσi

−1

=
∑
~
i∈I

|̃y
~
i〉〈̃y

~
i|. (2.96)

Bearing in mind that 1√
Tr(D

~
rGD

~
r)

X
~
r is the positive square root of the matrix 1

Tr(D
~
rGD

~
r) D

~
rGD

~
r,

and that 1
Tr(D

~
rGD

~
r) D

~
rGD

~
r is the gram matrix of the set of vectors {| χ̃

~
i〉}
~
i∈I, it can easily be

verified that32

 m∑
i=1

qiσi

−
1
2

=
1√

Tr(D
~
rGD

~
r)

∑
~
j,
~
k∈I

(
X
~
r

)
~
j
~
k
|̃y
~
j〉〈̃y

~
k|. (2.97)

Substituting the expression for
(∑m

i=1 qiσi
)− 1

2 from equation (2.97), the expression for qiσi

from equations (2.91a) and (2.91b) in the expression
(∑m

j=1 q jσ j

)− 1
2 qiσi

(∑m
k=1 qkσk

)− 1
2 ,

and after some tedious algebra, it is seen that the result is equal to the RHS of equation

(2.94), ∀ 1 ≤ i ≤ m. This establishes that P
~
r(P̃

~
r) = PGM

~
r(Q̃

~
r). Hence proved. �

Thus we have shown that for P̃
~
r = {pi, ρi}

m
i=1 there exists an ensemble Q̃

~
r = {qi, σi}

m
i=1 ∈ E

~
r

such that

1. supp (qiσi) = supp (piρi) , ∀ 1 ≤ i ≤ m and

31 Using equation (2.92b), we get
(∑

~
i∈I |̃y

~
i〉〈̃y

~
i|
) (∑

~
j∈I |̃χ

~
j〉〈χ̃

~
j|

)
=

∑
~
i∈I

(
|̃y
~
i〉〈χ̃

~
i|
)

= 1. This can be seen

by acting
∑
~
i∈I

(
|̃y
~
i〉〈χ̃

~
i|
)

on any | v〉 ∈ H using the expansion of | v〉 in the {| ỹ
~
i〉}
~
i∈I basis, i.e., | v〉 =∑

~
i∈I α

~
i| ỹ

~
i〉.

32 This verification can be done by squaring the RHS of equation (2.97), which gives the LHS of equation
(2.96) (using equation (2.92c)). This tells us that the RHS of equation (2.97) is some self-adjoint
square root of (

∑m
i=1 qiσi)−1. Also note that since X

~
r > 0, the RHS of equation (2.97) is positive

definite. Hence the RHS of equation (2.97) is the positive square root of (
∑m

i=1 qiσi)−1.
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2. PGM
~
r(Q̃

~
r) = P

~
r

(
P̃
~
r

)
.

This establishes the P̃
~
r −→ Q̃

~
r correspondence mentioned in subsection (1).

Is there another ensemble Q̃′
~
r ≡ {q

′
i , σ

′
i}

m
i=1, which satisfies the properties 1. and 2.? Theo-

rem 2.5.5 tells us that this is not so.

Theorem 2.5.5. There is a unique Q̃
~
r of the form {qi, σi}

m
i=1, also in E

~
r such that the

following points hold true.

1. supp(piρi) = supp(qiσi), ∀ 1 ≤ i ≤ m.

2. P
~
r(P̃

~
r) = PGM

~
r(Q̃

~
r).

Proof. To prove this, note that equation (2.78) tells us that33

p2
i ρiΠiρi = Tr(D

~
rGD

~
r)

∑
~
i∈Ii

|̃χ
~
i〉〈χ̃

~
i|

which is equal to34 Tr(D
~
rGD

~
r)qiσi. Thus the states and the probabilities of the ensemble

Q̃
~
r = {qi, σi}

m
i=1 are equal to

qi =
Tr

(
p2

i ρiΠiρi

)
Tr

(∑m
j=1 p2

jρ jΠ jρ j

) , (2.98a)

σi =
1

Tr
(
p2

i ρiΠiρi

) p2
i ρiΠiρi, (2.98b)

for all 1 ≤ i ≤ m. Assume that there exists some ensemble Q̃′
~
r = {q′i , σ

′
i}

m
i=1 ∈ E

~
r which

satisfies 1. and 2., then q′i must satisfy

q′i =
Tr

(
p2

i ρiΠ
′
iρi

)
Tr

(∑m
j=1 p2

jρ jΠ
′
jρ j

) , (2.99a)

33 This can be seen by substituting the expression for | ψ̃
~
i〉 from equation (2.81a) into the RHS of equation

(2.78).
34 See equation (2.91).
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and σ′i must satisfy

σ′i =
1

Tr
(
p2

i ρiΠ
′
iρi

) p2
i ρiΠ

′
iρi, (2.99b)

where {Π′i}
m
i=1 is another optimal POVM for the MED of P̃

~
r. But since the optimal POVM

for MED of P̃
~
r is unique, Π′i = Πi, ∀ 1 ≤ i ≤ m. Thus, q′i = qi and σ′i = σi, ∀ 1 ≤ i ≤ m.

Thus Q̃′
~
r = Q̃

~
r, which proves the theorem. �

Theorem 2.5.5 tells us that there is a unique Q̃
~
r ∈ E

~
r, which satisfies the conditions 1. and

2., this implies that we can now define the map R
~
r.

Definition 2.5.5. The map R
~
r : E

~
r −→ E

~
r is such that, for any P̃

~
r = {pi, ρi}

m
i=1 ∈ E

~
r,

R
~
r

(
P̃
~
r

)
= Q̃

~
r, where Q̃

~
r = {qi, σi}

m
i=1 ∈ E

~
r and satisfies 1. and 2..

In the following we give an application of proving the existence of R
~
r.

The optimal POVM for the MED of an ensemble of LI pure states {k
~
i, |ψ

~
i〉〈ψ

~
i|}
~
i∈I ∈ P̃

~
1,

where 0 < k
~
i < 1 and

∑
~
i∈I k

~
i = 1, is given by its own PGM if and only if all diagonal

elements of G
1
2
k are equal [3], where G

1
2
k is the positive square root of Gk, the gram matrix

of the vectors {
√

k
~
i|ψ

~
i〉}
~
i∈I. We now generalize this result to the mixed state ensemble

case.

Theorem 2.5.6. Choose any pure state decomposition for the piρi’s (equation (2.62a)). G

is then the gram matrix of the | ψ̃
~
i〉’s, whose matrix elements are given by equation (2.63).

G
1
2 is the positive definite square root of G. Partition G

1
2 into blocks of matrices of the

form

G
1
2 =



X̀11 X̀12 · · · X̀1m

X̀21 X̀22 · · · X̀2m

...
...

. . .
...

X̀m1 X̀m2 · · · X̀mm


, (2.100)

where X̀i j is an ri × r j dimensional matrix block of G
1
2 . Note that since G

1
2 is hermitian,

we get X̀ ji =
(
X̀i j

)†
, ∀ 1 ≤ i, j ≤ m. Then, R(P̃

~
r) = P̃

~
r holds true if and only if equations
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(2.101) hold true. (
X̀ii

)
~
i
~
j
= 0, ∀

~
i ,

~
j, ∀ 1 ≤ i ≤ m. (2.101a)

(
X̀ii

)
~
i
~
i
=

(
X̀ j j

)
~
j
~
j
, ∀ 1 ≤ i, j ≤ m, ∀

~
i ∈ Ii, ∀

~
j ∈ I j. (2.101b)

Proof. ONLY IF part: Let R
(
P̃
~
r

)
= P̃

~
r. Let equation (2.62a) give any pure state de-

composition for the piρi’s. Let the solution for the MED of P̃
~
r corresponding to this pure

state decomposition be D
~
r. Since Q̃

~
r = P̃

~
r, we require that piρi =

∑
~
i∈Ii
|̃χ
~
i〉〈χ̃

~
i|, which

implies that | χ̃
~
i〉 must be of the form of | ψ̃′

~
i〉 (equation (2.62b)), for all

~
i ∈ I. But that

implies that the gram matrix of the vectors {| χ̃
~
i〉}
~
i∈I is (UD

~
r )
†GUD

~
r (see equation (2.72)),

which then must be equal to 1
Tr(D

~
rGD

~
r) D

~
rGD

~
r (see equation (2.80b)). This implies that

1√
Tr(D

~
rGD

~
r)

D
~
r = (UD

~
r )
†. But since 1√

Tr(D
~
rGD

~
r)

D
~
r is a positive definite matrix, that implies

that (UD
~
r )
† also has to be a positive definite matrix, and that can only be if UD

~
r = 1n. Thus

D
~
r = a1n, where a is some positive real number. Equation (2.77) implies X

~
r =

(
D
~
rGD

~
r

) 1
2

= aG
1
2 . Firstly, upon comparing equations (2.69a) and (2.100), note that Xi j = X̀i j, ∀

1 ≤ i, j ≤ m. Equation (2.75) implies that Xii = a1ri , ∀ 1 ≤ i ≤ m. This also implies that

X̀ii = a1ri , ∀ 1 ≤ i ≤ m. This proves the only if part.

IF part: The equations (2.101) say that X̀ii = a1ri , ∀ 1 ≤ i ≤ m, where a is some positive

real number. Choosing W = 1n, G
1
2 W −→ G

1
2 . Note that the matrix blocks of G

1
2 , viz., the

X̀i j’s, satisfy the equations (2.71). Then D
~
r = a1n. Substituting this in equation (2.80a)

we get | χ̃
~
i〉 = | ψ̃

~
i〉, ∀

~
i ∈ I. Thus qiσi =

∑
~
i∈Ii
|ψ̃
~
i〉〈ψ̃

~
i| = piρi, ∀ 1 ≤ i ≤ m. Thus

P̃
~
r = Q̃

~
r = R(P̃

~
r). Hence proved. �

R
~
r is Invertible

First we show that corresponding to each choice of the pure state decomposition of the

piρi’s, there is a unique D
~
r which satisfies the condition A.

Theorem 2.5.7. There is a unique positive definite block diagonal matrix D
~
r of the form

in equation (2.75), which solves the condition A for a given choice of the pure state
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decomposition of the piρi’s.

Proof. Using equations (2.78) and (2.98) we see that

qiσi =
1

Tr(D
~
rGD

~
r)

∑
~
i,
~
j∈Ii

(
(Xii)2

)
~
j
~
i
|ψ̃
~
i〉〈ψ̃

~
j|, ∀ 1 ≤ i ≤ m. (2.102)

Assume that for the same pure state decomposition of the piρi’s, as given by equation

(2.62a), there is a positive definite block diagonal matrix, D′
~
r, of the form

D′
~
r ≡



X′11 0 · · · 0

0 X′22 · · · 0
...

...
. . .

...

0 0 · · · X′mm


, (2.103)

so that D′
~
r is a solution other than D

~
r for condition A. Using the X′ii’s define

q′iσ
′
i =

1
Tr(D′

~
rGD′

~
r)

∑
~
i,
~
j∈Ii

((
X′ii

)2
)
~
j
~
i
|ψ̃
~
i〉〈ψ̃

~
j|, ∀ 1 ≤ i ≤ m. (2.104)

Note that supp(q′iσ
′
i) = supp(piρi), ∀ 1 ≤ i ≤ m.

Define the following

Q̃′
~
r ≡ {q

′
i , σ

′
i}

m
i=1. Note that Q̃′

~
r ∈ E

~
r.

| χ̃′

~
i〉 ≡

1√
Tr(D′

~
rGD′

~
r)

∑
~
j∈Ii

(X′ii)
~
j
~
i| ψ̃

~
j〉, ∀

~
i ∈ I (compare with equation (2.80a)).

| ỹ′
~
i〉 ≡ Tr(D′

~
rGD′

~
r)

∑
~
j∈I

(
(D′

~
rGD′

~
r)
−1

)
~
j
~
i
| χ̃′

~
j〉, ∀

~
i ∈ I (with equation (2.92a)).

In theorem 2.5.4 we showed that P
~
r(P̃

~
r) = PGM

~
r(Q̃

~
r). Using the above defined quan-

tities, one can also corroborate that P
~
r(P̃

~
r) = PGM

~
r(Q̃′

~
r). This can be done by expand-

ing the Πi’s, given in equation (2.60) in the operator basis {|̃y′
~
i〉〈̃y

′

~
j|}
~
i,
~
j∈I, and then verify-
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ing that this equals the operator
(∑m

j=1 q′jσ
′
j

)− 1
2 q′iσ

′
i

(∑m
k=1 q′kσ

′
k

)− 1
2 , when expanded in the

{|̃y′
~
i〉〈̃y

′

~
j|}
~
i,
~
j∈I operator basis.

This implies that the ensemble Q̃′
~
r satisfies conditions 1. and 2.. Then theorem 2.5.5

implies that Q̃′
~
r = Q̃

~
r. Thus

q′iσ
′
i = qiσi, ∀ 1 ≤ i ≤ m. (2.105)

Note that {| ψ̃
~
i〉}
~
i∈Ii is a basis for supp(piρi). This implies that {|ψ̃

~
i〉〈ψ̃

~
j|}
~
i,
~
j∈Ii is a basis for

all operators acting on supp(piρi). Then substituting the expression for qiσi from equatoin

(2.102) and the expression for q′iσ
′
i from equation (2.104) in equation (2.105) gives us the

following.

1
Tr(D

~
rGD

~
r)

(Xii)2 =
1

Tr(D′
~
rGD′

~
r)

(
X′ii

)2 , ∀ 1 ≤ i ≤ m. (2.106)

Equation (2.90) implies that Pmax
s =

∑m
i=1 Tr

(
(Xii)2

)
. Since D′

~
r is also a solution for condi-

tion A, we get that (see equation (2.103)) Pmax
s =

∑m
i=1 Tr

((
X′ii

)2
)
. Using equation (2.106)

to substitute
Tr(D′

~
rGD′

~
r)

Tr(D
~
rGD

~
r) (Xii)2 in place of

(
X′ii

)2
, we get that

Pmax
s =

Tr(D′
~
rGD′

~
r)

Tr(D
~
rGD

~
r)

m∑
i=1

Tr
(
(Xii)2

)
.

Thus Tr(D
~
rGD

~
r) = Tr(D′

~
rGD′

~
r), and hence (Xii)2 =

(
X′ii

)2
. Since Xii and X′ii are positive

definite, Xii = X′ii, ∀ 1 ≤ i ≤ m. Hence we have proved that for a given choice of the pure

state decomposition of the piρi’s, as given by equation eqrefrhodecomposition, there is a

unique D
~
r, of the form in equation (2.75), which solves the condition A. �

Next, we show that R
~
r is a bijection.

Theorem 2.5.8. R
~
r is a bijection.
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Proof. We first prove that R
~
r is onto.

Given some Q̃
~
r = {qi, σi}

m
i=1 ∈ E

~
r, we need to prove that there exists some P̃

~
r ∈ E

~
r such

that R
~
r(P̃

~
r) = Q̃

~
r. For this, we will first construct an ensemble which we will denote by

P̃
~
r = {pi, ρi}

m
i=1 and which lies in E

~
r. Later we show that this ensemble will be such that

R
~
r

(
P̃
~
r

)
= Q̃

~
r.

We construct P̃
~
r in the following three steps.

(i) Choose a pure state decomposition for the qiσi’s: Since rank(qiσi) = ri, we can

decompose qiσi as a convex sum of ri pure states, i.e., qiσi =
∑
~
i∈Ii
|̃χ
~
i〉〈χ̃

~
i| such that

the set of vectors {| χ̃
~
i〉}
~
i∈Ii is LI. Note that there is a unitary degree of freedom for

choosing this pure state decomposition - consider Ui to be an ri × ri unitary matrix,

define | χ̃′
~
i〉 ≡

∑
~
j∈Ii

(Ui)
~
j
~
i| χ̃

~
j〉, then the set of vectors {| χ̃′

~
i〉}
~
i∈Ii is LI and is such that

qiσi =
∑
~
i∈Ii
|̃χ′

~
i〉〈χ̃

′

~
i |. Assume that qiσi =

∑
~
i∈Ii
|̃χ
~
i〉〈χ̃

~
i| is a random choice for the

pure state decomposition of the qiσi’s.

(ii) Corresponding to the | χ̃
~
i〉’s, define a new set of vectors {| ψ̃

~
i〉}

~
i∈I : Let’s denote

the gram matrix for the vectors {| χ̃
~
i〉}
~
i∈I by Gq. The matrix elements of Gq are given

by

(
Gq

)
~
i
~
j
= 〈χ̃

~
i |̃χ

~
j〉, ∀

~
i,
~
j ∈ I. (2.107)

Note that Gq > 0 because the set {| χ̃
~
i〉}
~
i∈I is LI.

Denote by Gq
1
2 the positive square root of Gq. Partition Gq

1
2 into matrix blocks, the

same way G
1
2 W was partitioned into matrix blocks in equation (2.69a).

Gq
1
2 =



H11 H12 · · · H1m

H21 H22 · · · H2m

...
...

. . .
...

Hm1 Hm2 · · · Hmm


, (2.108)
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where Hi j is of dimension ri × r j, ∀ 1 ≤ i, j ≤ m. Note that since Gq
1
2 > 0,

Hii > 0, ∀ 1 ≤ i ≤ m.

Define

Dq ≡



(H11)
1
2 0 · · · 0

0 (H22)
1
2 · · · 0

...
...

. . .
...

0 0 · · · (Hmm)
1
2


. (2.109)

Note that Dq > 0.

Define the states

| ψ̃
~
i〉 ≡

1√
Tr

(
Dq
−1GqDq

−1
) ∑
~
j∈I

(
Dq
−1

)
~
j
~
i
| χ̃
~
j〉, ∀

~
i ∈ I. (2.110)

Note that the states {| ψ̃
~
i〉}
~
i∈I, as defined in equation (2.110), are LI. This is because

(Dq)−1 is non-singular and the set of vectors {| χ̃
~
i〉}
~
i∈I is LI.

(iii) Define the states piρi, so that P̃
~
r = {pi, ρi}

m
i=1 ∈ E

~
r: Using the states | ψ̃

~
i〉, as

defined in equation (2.110), define piρi ≡
∑
~
i∈Ii
|ψ̃
~
i〉〈ψ̃

~
i|, where pi ≡

∑
~
i∈Ii
〈ψ̃
~
i|ψ̃

~
i〉,

and ρi ≡
1
pi

∑
~
i∈Ii
|ψ̃
~
i〉〈ψ̃

~
i|. Since the set of vectors {| ψ̃

~
i〉}
~
i∈I is LI, rank(piρi) = ri

and supp(p1ρ1), supp(p2ρ2), · · · , supp(pmρm) are LI. Define P̃
~
r ≡ {pi, ρi}

m
i=1. Thus,

P̃
~
r ∈ E

~
r.

Note that supp (piρi) = supp (qiσi) , ∀ 1 ≤ i ≤ m.

Corresponding to the set of LI vectors {| χ̃
~
i〉}
~
i∈I, there exists another set of LI vectors

{| ỹ
~
i〉}
~
i∈I, defined by | ỹ

~
i〉 ≡

∑
~
i∈I

(
(Gq)−1

)
~
j
~
i
| χ̃
~
j〉, and which satisfy the equation 〈χ̃

~
i |̃y
~
j〉 = δ

~
i
~
j,

∀
~
i,
~
j ∈ I. The gram matrix of the set {| ỹ

~
i〉}
~
i∈I is Gq

−1.

Let PGM
~
r(Q̃

~
r) = {Πi}

m
i=1, thus {Πi}

m
i=1 ∈ P

~
r. In the body of the proof of theorem (2.5.4) we

constructed the PGM for an ensemble of mixed states using the pure state decomposition

of the corresponding mixed states. Following the same sequence of steps gives us the
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expansion of the Πi projectors in the {|̃y
~
i〉〈̃y

~
j|}
~
i,
~
j∈I operator basis.

Πi =

 m∑
j=1

q jσ j


− 1

2

qiσi

 m∑
k=1

qkσk

−
1
2

=
∑
~
j,
~
k∈I

∑
~
i∈Ii

(
Gq

1
2
)
~
j
~
i

(
Gq

1
2
)
~
i
~
k

 |̃y
~
j〉〈̃y

~
k|, ∀ 1 ≤ i ≤ m.

(2.111)

Substituting the expression for piρi in terms of the | χ̃
~
i〉’s from equation (2.110) and the

expression for Πi from (2.111) into the term
∑m

i=1 piρiΠi, and after a tedious bit of algebra

we get35

m∑
i=1

piρiΠi

=
1

Tr
(
D−1

q GqD−1
q

) ∑
~
j,
~
k∈I

(
G−

1
2

q

)
~
j
~
k
|̃χ
~
j〉〈χ̃

~
k| > 0.

So, note that {Πi}
m
i=1 is a projective measurment and

∑m
i=1 piρiΠi > 0. Then corollary

(2.5.3.1) tells us that P
~
r(P̃

~
r) = {Π}mi=1.

Hence we have proved two things: 1. supp(piρi) = supp(qiσi), ∀ 1 ≤ i ≤ m, and 2.

PGM
~
r(Q̃

~
r) = {Πi}

m
i=1 = P

~
r(P̃

~
r). Thus by theorem (2.5.5) Q̃

~
r is the unique ensemble in

E
~
r which satisfies the conditions 1. and 2. for the ensemble P̃

~
r. The definition of R

~
r then

tells us that R
~
r(P̃

~
r) = Q̃

~
r.

Thus for any Q̃
~
r in E

~
r we can find a corresponding P̃

~
r in E

~
r so that R

~
r(P̃

~
r) = Q̃

~
r. Hence

35 For completeness, we compare the quantities appearing in the (onto part of) proof of theorem (2.5.8)
with quantities derived earlier. From equations (2.81a) and (2.110), we see that Hii

1
2 = 1(

Tr(D
~
rGD

~
r)
) 1

4
Xii,

so D−1
q =

(
Tr(D

~
rGD

~
r)
) 1

4 D−1

~
r . This, together with the fact that Gq =

D
~
rGD

~
r

Tr(D
~
rGD

~
r) , implies that D−1

q GqD−1
q =

1√
Tr(D

~
rGD

~
r)

G. Also note that X
~
r =

√
Tr(D

~
rGD

~
r)G

1
2
q . Using these relations we can see that equations

(2.82d) and (2.112) are consistent with each other.
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R
~
r is onto.

Next we prove that R
~
r is one-to-one.

Suppose P̃′
~
r = {p′i , ρ

′
i}

m
i=1, P̃

~
r = {pi, ρi}

m
i=1 ∈ E

~
r such that R

~
r(P̃′

~
r) = R

~
r(P̃

~
r) = Q

~
r =

{qi, σi}
m
i=1.

Let equation (2.62a) give a pure state decomposition for the piρi’s. G is the gram matrix

of the set of vectors {| ψ̃
~
i〉}
~
i∈I. Let the solution for MED of P̃

~
r, corresponding to the

pure state decomposition in equation (2.62a), be D
~
r, which is of the form as the RHS in

equation (2.75). Then define the LI vectors {| χ̃
~
i〉}
~
i∈I as shown in equation (2.80a). Since

R
~
r(P̃

~
r) = Q̃

~
r = {qi, σi}

m
i=1, we get that qiσi =

∑
~
i∈Ii
|̃χ
~
i〉〈χ̃

~
i|.

Similarly, let

p′iρ
′
i =

∑
~
i∈Ii

|ψ̃′

~
i〉〈ψ̃

′

~
i |

give a pure state decomposition for the p′iρ
′
i’s into the LI pure states {| ψ̃′

~
i〉}
~
i∈Ii . Let G′ be

the gram matrix of the vectors {| ψ̃′
~
i〉}
~
i∈I. Since the set of vectors {| ψ̃′

~
i〉}
~
i∈I is LI, G′ > 0.

Corresponding to this pure state decomposition, let the solution for the MED of P̃′
~
r be D′

~
r

which is for the form of the RHS in equation (2.103). Define the set of LI vectors {| χ̃′
~
i〉}
~
i∈I

as

| χ̃′

~
i〉 =

1√
Tr(D′

~
rG′D′

~
r)

∑
~
j∈I

(
D′
~
r

)
~
j
~
i
| ψ̃′

~
j〉, ∀

~
i ∈ I.

Since R
~
r(P̃′

~
r) = Q̃

~
r = {qi, σi}

m
i=1, we get that qiσi =

∑
~
i∈Ii
|̃χ′

~
i〉〈χ̃

′

~
i |.

Note that {| χ̃
~
i〉}
~
i∈Ii and {| χ̃′

~
i〉}
~
i∈Ii are LI vectors such that

qiσi =
∑
~
i∈Ii

|̃χ
~
i〉〈χ̃

~
i| =

∑
~
i∈Ii

|̃χ′

~
i〉〈χ̃

′

~
i |.

Thus, there exists some ri × ri unitary Ui such that | χ̃
~
i〉 and | χ̃′

~
i〉 are related by | χ̃′

~
i〉 ≡∑

~
j∈Ii

(Ui)
~
j
~
i| χ̃

~
j〉. Let UD

~
r be the n × n block diagonal unitary given by the RHS of equa-
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tion (2.72). Then note that 〈χ̃′
~
i |̃χ
′

~
j〉 =

∑
~
k,
~
l∈I

(
U†D

~
r

)
~
i
~
k
〈χ̃
~
k |̃χ

~
l〉
(
UD

~
r

)
~
l
~
j
. The gram matrix of

the set of vectors {| χ̃
~
i〉}
~
i∈I is 1

Tr(D
~
rGD

~
r) D

~
rGD

~
r, and that of the set of vectors {| χ̃′

~
i〉}
~
i∈I is

1
Tr(D′

~
rG′D′

~
r) D

′

~
rG
′D′

~
r. Thus both matrices are related by

1
Tr(D′

~
rG′D′

~
r)

D′
~
rG
′D′

~
r =

1
Tr(D

~
rGD

~
r)

U†D
~
r
D
~
rGD

~
rUD

~
r . (2.112)

Taking the positive square root on both sides gives

1√
Tr(D′

~
rG′D′

~
r)

(
D′
~
rG
′D′

~
r

) 1
2

=
1√

Tr(D
~
rGD

~
r)

U†D
~
r

(
D
~
rGD

~
r

)†
UD

~
r . (2.113)

Comparing the diagonal blocks of the LHS and RHS in equation (2.113) gives

1√
Tr(D′

~
rG′D′

~
r)

(
X′ii

)2
=

1√
Tr(D

~
rGD

~
r)

U†i (Xii)2 Ui. (2.114)

Since X′ii and Xii are both positive definite, we get

1(
Tr(D′

~
rG′D′

~
r)
) 1

4

X′ii =
1(

Tr(D
~
rGD

~
r)
) 1

4

U†i XiiUi.

=⇒
1(

Tr(D′
~
rG′D′

~
r)
) 1

4

D′
~
r =

1(
Tr(D

~
rGD

~
r)
) 1

4

U†D
~
r
D
~
rUD

~
r . (2.115)

Substituting the expression for 1(
Tr(D′

~
rG′D′

~
r)
) 1

4
D′
~
r from equation (2.115) into equation (2.112)

gives

1
Tr(D′

~
rG′D′

~
r)

D′
~
rG
′D′

~
r =

1√
Tr(D′

~
rG′D′

~
r)Tr(D

~
rGD

~
r)

U†D
~
r
D
~
rUD

~
rG
′U†D

~
r
D
~
rUD

~
r

=
1

Tr(D
~
rGD

~
r)

U†D
~
r
D
~
rGD

~
rUD

~
r

(2.116)

=⇒
1√

Tr(D′
~
rG′D′

~
r)

UD
~
rG
′U†D

~
r

=
1√

Tr(D
~
rGD

~
r)

G. (2.117)

Taking trace on both sides of equation (2.117) tells us that Tr(D
~
rGD

~
r) = Tr(D′

~
rG
′D′

~
r).
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This implies that

G′ = U†D
~
r
GUD

~
r ,=⇒ | ψ̃′

~
i〉 =

∑
~
j∈I

(
UD

~
r

)
~
j
~
i
| ψ̃

~
j〉, ∀

~
i ∈ I, (2.118)

which implies that

piρi =
∑
~
i∈Ii

|ψ̃
~
i〉〈ψ̃

~
i|

=
∑
~
i∈Ii

|ψ̃′

~
i〉〈ψ̃

′

~
i | = p′iρ

′
i , ∀ 1 ≤ i ≤ m,

(2.119)

which proves that P̃
~
r = P̃′

~
r. Hence R

~
r(P̃

~
r) = R

~
r(P̃′

~
r) =⇒ P̃

~
r = P̃′

~
r. Hence R

~
r is one-to-one.

R
~
r being one-to-one and onto means that it is a bijection. �

The steps (i), (ii) amd (iii) in theorem 2.5.8 give us the action of R−1

~
r on any ensemble Q̃

~
r

in E
~
r.

2.5.2 Relation between MED for ensembles of LI pure states and LI

mixed states

In the beginning of subsection (2.5.1) it was mentioned that MED is a rotationally covari-

ant problem. In the previous subsection we stripped the problem of MED for ensembles

of LI states from its rotational covariance, which left us with the rotationally invariant

necessary and sufficient condition A. A demands that we find a block diagonal positive

definite matrix D
~
r, of the form given by the RHS of equation (2.75), for any n × n gram

matrix G, where G is associated with some ensemble P̃
~
r ∈ E

~
r.

Definition 2.5.6. G is the set of all n × n positive definite matrices with trace one.

Hence, G is the set of all gram matrices which one can correspond any ensemble in E
~
r

with, for arbitrary
~
r, such that

∑m
i=1 ri = n.
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Definition 2.5.7. Let R (G)

~
r : G −→ G be a bijection so that

R (G)

~
r (G) =

1
Tr(D

~
rGD

~
r)

D
~
rGD

~
r, (2.120)

where G is the gram matrix of the vectors {| ψ̃
~
i〉}
~
i∈I, which gives a pure state decomposition

of the states piρi (equation (2.62a)), and D
~
r is that solution for the MED of P̃

~
r which

corresponds to the aforementioned pure state decomposition of the states piρi.

R (G)

~
r reproduces the action of R

~
r on E

~
r, at the level of gram matrices. Since R

~
r is a

bijection on E
~
r, R (G)

~
r is a bijection onG. Note thatG can be partitioned into an equivalence

class of gram matrices so that any ensemble P̃
~
r in E

~
r is represented by a single class of

gram matrices, each gram matrix of which, corresponds to the LI pure states which the

piρi’s can be decomposed into (e.g. equation (2.62a)). Hence gram matrices in the same

class are related to each other by an n×n unitary matrix UD
~
r of the form given in the RHS

of equation (2.72). Theorem 2.5.2 tells us that

R (G)

~
r (U†D

~
r
GUD

~
r ) = U†D

~
r
R (G)

~
r (G)UD

~
r . (2.121)

Thus R (G)

~
r maps all gram matrices from one class to gram matrices in another class.

We will see that the comparison of actions of R (G)

~
r and R

~
1

(G) onGwill establish the relation

between the MED of ensembles in E
~
r and E

~
1. Define G? ⊂ G to be such that if G? ∈ G?,

then the solution D
~
r and D

~
1 for G? are equal. This also implies that R (G)

~
r (G?) = R

~
1

(G)(G?).

Theorem 2.5.9. G? ∈ G? if and only if the solution D
~
r is diagonal.

Proof. ONLY IF part: We have to prove that G? ∈ G? implies D
~
r is diagonal. Note that

G? ∈ G? implies that D
~
r = D

~
1 for G?, where D

~
1 is diagonal.

IF part: We have to prove that if D
~
r is diagonal then G? ∈ G. D

~
r is such that the diagonal

blocks of D
~
rG?D

~
r are (X11)2, (X22)2, · · · , (Xmm)2, where the Xii’s are also diagonal since
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D
~
r is diagonal. Hence D

~
r also satisfies the conditions for A when

~
r =

~
1. Hence D

~
r = D

~
1.

Hence G? ∈ G?. �

Since, for any G? ∈ G?, D
~
r = D

~
1, we will denote such D

~
r (= D

~
1) by D?

~
r .

Theorem 2.5.10. For P̃
~
r, one can find a corresponding gram matrix G? ∈ G? such that

R (G)

~
r

(
G?) = R

~
1

(G) (G?).
Proof. Let G ∈ G correspond to some pure state decomposition of states of P̃

~
r. Let D

~
r

satisfy the condition A corresponding to said pure state decomposition. Choose UD
~
r to be

such that U†D
~
r
D
~
rUD is diagonal. Denote U†D

~
r
GUD

~
r by G?. Then theorems 2.5.9 and 2.5.2

imply that R (G)

~
r

(
G?) = R

~
1

(G) (G?). �

Let {| ψ̃?
~
i 〉}

~
i∈I be a set of n LI vectors such that piρi =

∑
~
i∈Ii
|ψ̃?

~
i 〉〈ψ̃

?

~
i |, for all 1 ≤ i ≤ m, and

such that the gram matrix of {| ψ̃?
~
i 〉}

~
i∈I, denoted by G?, lies inG?. Since Tr(G?) = 1, the set

of real numbers {〈ψ̃?
~
i |ψ̃

?

~
i 〉}

~
i∈I is an n outcome probability, and since G? > 0, 〈ψ̃?

~
i |ψ̃

?

~
i 〉 > 0,

∀
~
i ∈ I. Hence P̃?

~
1 ≡ {〈ψ̃

?

~
i |ψ̃

?

~
i 〉, |ψ

?

~
i 〉〈ψ

?

~
i |}

~
i∈I is a LI pure state ensemble in E

~
1, where

| psi?
~
i 〉 = 1√

〈ψ̃?

~
i |ψ̃

?

~
i 〉
| ψ̃?

~
i 〉, ∀

~
i ∈ I. Note that G? is a gram matrix associated with P̃?

~
1 .

We want to associate P
~
r(P̃

~
r) with P

~
1(P̃?

~
1 ). For this, first note that (D?

~
r )−1(D?

~
r G?D?

~
r )

1
2 is

a (generally, non-hermitian) square root of G?, in the sense that

(
(D?

~
r )−1(D?

~
r G?D?

~
r )

1
2
) (

(D?

~
r )−1(D?

~
r G?D?

~
r )

1
2
)†

= G?.

Define

|w?

~
i 〉 =

∑
~
j∈I

(
(D?

~
r )−1(D?

~
r G?D?

~
r )

1
2
)
~
j
~
i
| ũ?
~
j 〉, (2.122)

where 〈ψ̃?
~
i |̃u

?

~
j 〉 = δ

~
i
~
j, ∀

~
i,
~
j ∈ I. Thus {|w?

~
i 〉}

~
i∈I is an ONB for H . Also define Π?

i ≡∑
~
i∈Ii
|w?

~
i 〉〈w

?

~
i |. Note that {Π?

i }
m
i=1 ∈ P

~
r.

Theorem 2.5.11. P
~
r(P̃

~
r) = {Π?

i }
m
i=1, and P

~
1(P̃?

~
1 ) = {|w?

~
i 〉〈w

?

~
i |}

~
i∈I.
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Proof. Since {Π?
i }

m
i=1 ∈ P

~
r, and {|w?

~
i 〉〈w

?

~
i |}

~
i∈I ∈ P

~
1, if we proved that

∑m
i=1 piρiΠ

?
i > 0 and∑

~
i∈I〈ψ̃

?

~
i |ψ̃

?

~
i 〉|ψ

?

~
i 〉〈ψ

?

~
i |w

?

~
i 〉〈w

?

~
i | > 0, then by corollary 2.5.3.1 we would have proved this

theorem.

We start with the proof of
∑m

i=1 piρiΠ
?
i > 0.

m∑
i=1

piρiΠ
?
i

=

m∑
i=1

∑
~
i∈Ii

|ψ̃?

~
i 〉〈ψ̃

?

~
i |


∑
~
j,
~
k∈I

∑
~
l∈Ii

(
(D?

~
r )−1(D?

~
r G?D?

~
r )

1
2
)
~
j
~
l

(
(D?

~
r G?D?

~
r )

1
2 (D?

~
r )−1

)
~
l
~
k
|̃u?
~
j 〉〈̃u

?

~
k |


(2.123a)

Summing over all
~
j ∈ I we get

∑
~
j∈I

(
(D?

~
r )−1(D?

~
r G?D?

~
r )

1
2
)
~
j
~
l
〈ψ̃?

~
i |̃u

?

~
j 〉 =

(
(D?

~
r )−1(D?

~
r G?D?

~
r )

1
2
)
~
i
~
l
.

Note that
~
i,
~
l ∈ Ii. Hence

(
(D?

~
r )−1(D?

~
r G?D?

~
r )

1
2

)
~
i
~
l
is a matrix element of a diagonal block of

(D?

~
r )−1(D?

~
r G?D?

~
r )

1
2 , which implies that it is equal to

(
D?

~
r

)
~
i
~
l
. But note that D?

~
r is diagonal.

Hence upon summing over
~
l ∈ Ii gives

∑
~
l∈Ii

(
D?

~
r

)
~
i
~
l
=

(
D?

~
r

)
~
i
~
i
. Thus we get

m∑
i=1

piρiΠ
?
i

=

m∑
i=1

∑
~
k∈I

∑
~
i∈Ii

(
D?

~
r

)
~
i
~
i

(
(D?

~
r G?D?

~
r )

1
2 (D?

~
r )−1

)
~
i
~
k
|ψ̃?

~
i 〉〈̃u

?

~
k |

(2.123b)

Note that | ũ?
~
k 〉 =

∑
~
j∈I

(
(G?)−1

)
~
j
~
k
| ψ̃?

~
j 〉.
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Thus we get

∑
~
k∈I

(
(D?

~
r G?D?

~
r )

1
2 (D?

~
r )−1

)
~
i
~
k
〈̃u?
~
k |

=
∑
~
k∈I

(
(D?

~
r G?D?

~
r )

1
2 (D?

~
r G?D?

~
r )−1

)
~
i
~
k

(D?

~
r )
~
k
~
k〈ψ̃

?

~
k |

=
∑
~
k∈I

(
(D?

~
r G?D?

~
r )−

1
2
)
~
i
~
k

(D?

~
r )
~
k
~
k〈ψ̃

?

~
k |.

Thus we get

m∑
i=1

piρiΠ
?
i

=
∑
~
i,
~
k∈I

(
D?

~
r

)
~
i
~
i

(
(D?

~
r G?D?

~
r )−

1
2
)
~
i
~
k

(
D?

~
r

)
~
k
~
k
|ψ̃?

~
i 〉〈ψ̃

?

~
k | > 0.

(2.123c)

This proves that P
~
r(P̃

~
r) = {Π?

i }
m
i=1. Since P

~
r(P̃

~
r) = {Π?

i }
m
i=1, we remove the ‘?’ symbol

from the Π?
i ’s.

Using similar arguments one can prove that

∑
~
i∈I

〈ψ̃?

~
i |ψ̃

?

~
i 〉|ψ

?

~
i 〉〈ψ

?

~
i |w

?

~
i 〉〈w

?

~
i |

=
∑
~
i,
~
k∈I

(
D?

~
r

)
~
i
~
i

(
(D?

~
r G?D?

~
r )−

1
2
)
~
i
~
k

(
D?

~
r

)
~
k
~
k
|ψ̃?

~
i 〉〈ψ̃

?

~
k | > 0.

(2.124)

Hence P
~
1(P̃?

~
1 ) = {|w?

~
i 〉〈w

?

~
i |}

~
i∈I. This proves the theorem. �

Thus, P
~
1(P̃?

~
1 ) and P

~
r(P̃

~
r) are related by the fact that the projectors {|w?

~
i 〉〈w

?

~
i |}

~
i∈Ii give

a spectral decomposition for Πi, ∀ 1 ≤ i ≤ m. The significance of this lies in the fact

that the optimal discrimination among the pure states (by measuring with the projective

measurement P
~
1(P̃?

~
1 )) subsumes the optimal discrimination of the mixed states (by mea-

suring with the projective measurement P
~
r(P̃

~
r)). This establishes the final theorem of
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this subsection.

Theorem 2.5.12. There is a pure state decomposition of the piρi’s: piρi =
∑
~
i∈Ii
|ψ̃?

~
i 〉〈ψ̃

?

~
i |,

∀ 1 ≤ i ≤ m, and a corresponding spectral decomposition of the Πi’s: Πi =
∑
~
i∈Ii
|w?

~
i 〉〈w

?

~
i |,

∀ 1 ≤ i ≤ m, such that the rank-one projective measurement {|w?

~
i 〉〈w

?

~
i |}

~
i∈I is the optimal

POVM for the MED of the LI pure state ensemble {〈ψ̃?
~
i |ψ̃

?

~
i 〉, |ψ

?

~
i 〉〈ψ

?

~
i |}

~
i∈I, where |ψ?

~
i 〉 ≡

1√
〈ψ̃?

~
i |ψ̃

?

~
i 〉
| ψ̃?

~
i 〉, ∀

~
i ∈ I.

2.5.3 Solution for the MED problem

In this subsection we show how equation (2.77) can be used to obtain the solution for

the MED of any ensemble in E
~
r. Consider an ensemble P̃(1)

~
r = {p(1)

i , ρ
(1)
i }

m
i=1 ∈ E

~
r, where

p(1)
i ρ

(1)
i =

∑
~
i∈Ii

λ(1)

~
i |ψ

(1)

~
i 〉〈ψ

(1)

~
i | is a pure state decomposition of p(1)

i ρ
(1)
i into ri LI pure states.

Let G(1) be the gram matrix of the set of vectors
{√

λ(1)

~
i |ψ

(1)

~
i 〉

}
~
i∈I

. Corresponding to this

pure state decomposition of the p(1)
i ρ

(1)
i ’s, we want to find D

~
r(1) and X

~
r(1) which satisfies

the condition A for the MED of P̃(1)

~
r .

Consider an ensemble P̃(0)

~
r = {p(0)

i , ρ
(0)
i }

m
i=1 ∈ E

~
r, where p(0)

i ρ
(0)
i =

∑
~
i∈Ii

λ(0)

~
i |ψ

(0)

~
i 〉〈ψ

(0)

~
i |. Let G(0)

be the gram matrix of the set of vectors
{√

λ(0)

~
i |ψ

(0)

~
i 〉

}
~
i∈I

. Corresponding to this pure state

decomposition, suppose that we know D
~
r(0) and X

~
r(0), which satisfies the condition A

for the MED of P̃(0)

~
r .

Define

G(t) ≡ (1 − t)G(0) + tG(1). (2.125)

Firstly, note that G(0) = G(0) and G(1) = G(1). Next, note that for any t ∈ [0, 1], G(t) > 0

and Tr(G(t)) = 1. This implies that G(t) ∈ G, ∀ t ∈ [0, 1]. This implies that there

exists some ensemble P̃(t)

~
r = {p(t)

i , ρ
(t)
i }

m
i=1 ∈ E

~
r, where p(t)

i ρ
(t)
i =

∑
~
i∈Ii

λ(t)

~
i |ψ

(t)

~
i 〉〈ψ

(t)

~
i |, such that

G(t) is the gram matrix of the set of vectors
{√

λ(t)

~
i |ψ

(t)

~
i 〉

}
~
i∈I

. Corresponding to this pure

state decomposition, let D
~
r(t) and X

~
r(t) denote the solution for the MED of P̃(t)

~
r . For

convenience denote X
~
r(t) =

(
D
~
r(t)

)2
+ N

~
r(t), where N

~
r(t) is a hermitian matrix, whose
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diagonal blocks are 0. We rewrite equation (2.77) in the following form.

((
D
~
r(t)

)2
+ N

~
r(t)

)2
− D

~
r(t) G(t) D

~
r(t) = 0. (2.126)

Taylor Series Method

Differentiating with respect to t we get

(
D
~
r(t)2 + N

~
r(t)

) (
2D

~
r(t)

dD
~
r(t)

dt
+

dN
~
r(t)

dt

)
+

(
2D

~
r(t)

dD
~
r(t)

dt
+

dN
~
r(t)

dt

) (
D
~
r(t)2 + N(t)

)
− (D

~
r(t)G(t))

dD
~
r(t)

dt
− D

~
r(t)∆D

~
r(t) −

dD
~
r(t)

dt
G(t)D

~
r(t)

= 0,

(2.127)

where ∆ ≡
dG(t)

dt = G(1) − G(0). Assume that we know D
~
r(t) and N

~
r(t), for some t ∈ [0, 1].

Substituting these values in LHS of equation (2.127) turns it into a set of n2 simultane-

ous linear equations in n2 unknowns, which are the block diagonal matrix elements of36

d D
~
r(t)

dt
and the off block diagonal matrix elements of37

d N
~
r(t)

dt
. This set of n2 simultane-

ous linear equations in n2 unknown has a unique solution, which can be easily computed.

The justification for this statement will be given later.

Next, upon taking the derivative of the LHS and RHS of equation (2.127) with respect to

t again gives us an equation whose LHS contains the terms D
~
r(t), N

~
r(t), G(t),

d D
~
r(t)

dt ,
d N

~
r(t)

dt ,

∆,
d2 D

~
r(t)

d2t ,
d2 N

~
r(t)

dt2 . Substituting the values of D
~
r(t), N

~
r(t), G(t),

d D
~
r(t)

dt ,
d N

~
r(t)

dt and ∆ into the

LHS of this equation, gives us another set of n2 linear equations in n2 unknowns, which

are the matrix elements of
d2 D

~
r(t)

d2t ,
d2 N

~
r(t)

dt2 . Again, this set of linear equations has a unique

solution.

Similarly, one can obtain the general N-th order derivatives of D
~
r(t) and N

~
r(t) with respect

to t.
36 This is because the off-block diagonal elements of D

~
r(t) are 0, for all t ∈ [0, 1].

37 This is because the block diagonal elements of N
~
r(t) are 0, for all t ∈ [0, 1].
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One can use these derivatives to Taylor expand D
~
r(t+δ) and N

~
r(t+δ) about the point t. Now

note that we know the solution D
~
r(0) and N

~
r(0) at t = 0. Thus, our algorithm to obtain

D
~
r(1) and N

~
r(1) begins with obtaining the Taylor expansion for D

~
r(.) and N

~
r(.) about the

point t = 0 and analytically continuing these functions until t = 1. It is generally sufficient

to divide the [0, 1] interval into38 dn2||∆||2esubintervals, and analytically continue the D
~
r(.)

and N
~
r(.) functions at the end point of each subinterval. This allows us to finally obtain

D
~
r(1) and N

~
r(1).

In subsection 2.4.2 (and subsubsection 4.3.2 in [51]) we developed the same algorithm to

obtain the Taylor series expansion of the D
~
1(.) and N

~
1(.) functions, for the special case

where
~
r =

~
1, i.e., when m = n and ri = 1, ∀ 1 ≤ i ≤ n. The theory underpinning

this algorithm is based using the analytic implicit function theorem to show that D
~
1(.)

and N
~
1(.) are analytic functions on G, and that the aforementioned algorithm is justifiably

usable to obtain the Taylor series expansion for D
~
1(.) and N

~
1(.) about any point in G.

The generalization of this theory to the general
~
r case is straightforward and is hence not

detailed here.

Newton-Raphson Method

Newton Raphson’s method is a well-known technique to solve a set of simultaneous non-

linear equations. In this case the set of equations we want to solve are given by the

matrix equation (2.126), where t = 1 and the unknowns are D
~
r(1) and N

~
r(1). We initiate

Newton’s method with the initial point D
~
r(t) = D

~
r(0) and N

~
r(t) = N

~
r(0), which upon

substituting in the LHS of equation (2.126) gives
((

D
~
r(0)

)2
+ N

~
r(0)

)2
−D

~
r(0) G(1) D

~
r(0) ,

0. The algorithm of the technique is elaborated in subsection (2.4.2) (see the paragraph

titled “Algorithm 2: Newton’s Method”, right above equation (2.53)), hence it won’t be

reproduced here.

38 See the paragraph: “Starting points which generally require analytic continuation”, after equation
(2.52), in subsection 2.4.2, or see subsubsection 4.3.2 in [51].
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Comparing Different Techniques

Another technique to solve the MED problem any ensemble in E
~
r is the standard barrier

type interior point method employed in semidefinite programming problems [56] (see

subsection 2.4.2, see the paragraph titled “Algorithm 3: Barrier-type IPM (SDP)”). The

computational complexity of this technique is O(n6) (see table 2.4.2). It is seen that the

worst case computational complexity of the Taylor series algorithm is O(n8), but for most

ensembles in E
~
r the computational complexity is O(n6) (see table (2.4.2)). The computa-

tional complexity for Newton’s Raphson’s method is O(n6) (see table (2.4.2)). Newton-

Raphson’s method is also the simplest to implement. Hence for a one-time solution of

the MED of some ensemble in E
~
r, employing the Newton-Raphson’s method is more

desirable than the other methods mentioned here.

2.5.4 Summary

The necessary and sufficient conditions which the POVM elements of the optimal POVM

have to satisfy, where simplified. These simplified conditions were then used to obtain ro-

tationally invariant necessary and sufficient conditions for the MED of an ensemble. This

allowed us to establish that there exists a bijective function R
~
r which maps an ensembles

P̃
~
r ∈ E

~
r to another ensemble Q̃

~
r ∈ E

~
r such that the PGM of Q̃

~
r is the optimal POVM of

for the MED of P̃
~
r. We also obtained a closed form expression for R−1

~
r . This is a gener-

alization of a similar result that was hitherto only proved for LI pure state ensembles in

[1, 2, 3]. The rotationally invariant conditions were then exploited to show two things.

i) The MED of a mixed state ensemble P̃
~
r = {pi, ρi}

m
i=1 ∈ E

~
r is related to the MED of

a pure state ensemble P̃?

~
1 = {〈ψ̃?

~
i |ψ̃

?

~
i 〉, |ψ

?

~
i 〉〈ψ

?

~
i |}

~
i∈I ∈ E

~
1, where piρi =

∑
~
i∈Ii
|ψ̃?

~
i 〉〈ψ̃

?

~
i |,

∀ 1 ≤ i ≤ m, in the following way: if P
~
r(P̃

~
r) = {Πi}

m
i=1, and P

~
1(P̃?

~
1 ) = {|w?

~
i 〉〈w

?

~
i |}

~
i∈I,

then Πi =
∑
~
i∈Ii
|w?

~
i 〉〈w

?

~
i |, ∀ 1 ≤ i ≤ m. Thus the optimal discrimination of states in P̃?

~
1

subsumes optimally discriminating states in P̃
~
r.
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ii) We employ this rotationally invariant form of the necessary and sufficient conditions in

a technique which gives us the optimal POVM for an ensemble. Our technique is found

to be as computationally efficient as a standard SDP technique.
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2.6 Summary

Inspired by work done earlier by Belavkin, Maslov and Mochon [1, 2, 3], we simplified

the necessary and sufficient conditions for a POVM to be the optimal POVM for the

MED of LI states. Also, MED being a rotationally covariant problem, we obtained the

rotationally invariant versions of the aforementioned necessary and sufficient conditions,

and then used these rotationally invariant conditions along with the well known implicit

functional theorem from functional analysis to give a simple and efficient algorithm to

compute the optimal POVM for the MED of an ensemble of LI states. We show that the

efficiency of this algorithm is at par with the efficiency of a standard barrier-type SDP

algorithm.

2.6.1 Future Directions

I would like to explore if it is possible to extend the results obtained above to other prob-

lems which are variants of the MED problem. For instance, a significant open problem

in QIT is to establish if the maximum success probability of states |ψ1〉
⊗N , |ψ2〉

⊗N , · · · ,

|ψn〉
⊗N can be obtained asymptotically as N −→ ∞, by performing measurements on

the individual copies separately, rather than performing collective measurements on all N

copies simultaneously. I anticipate that the rotationally invariant versions of the necessary

and sufficient conditions can give us results for the case when the states {|ψi〉}
n
i=1 are LI.
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Chapter 3

Local Distinguishability of States

A common scenario encountered in quantum information theory and processing is one

where two or more physically separated parties share some set of bipartite or multipartite

(with more than two subsystems) states, on which they are supposed to perform certain

tasks. The nature of these tasks is as follows: each party of the whole system can perform

quantum operations on his/her subsystem of the joint quantum system and, classically,

communicate to his/her peers about the quantum operation, for e.g. tell them what op-

eration was performed and what the outcome of the operation was. An LOCC protocol

is a protocol of local quantum operations which the various parties agree to perform to

achieve a certain task. Here LOCC stands for local operations and classical communica-

tion. Some significant tasks which two parties can accomplish using LOCC are entangle-

ment distillation [58], quantum key distribution [59], quantum teleportation [37]. In fact,

the classification of any quantum state as being separable or entangled is based on whether

there exists an LOCC protocol by which said state can be prepared or not. This exempli-

fies the significance of LOCC in quantum information processing. Needless to say, there

are many tasks which can be performed only jointly on the joint quantum system, i.e.,

these tasks cannot be achieved by any LOCC protocol. Thus, understanding what can and

what can’t be accomplished by LOCC protocols is a significant area of study in quantum

139
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information theory and processing. The distinguishability of multipartite quantum states

is one such task.

Developments in local distinguishability of quantum states: Among the first papers

on this topic was one by Bennet et al. [38], which showed that nine orthogonal product

states in C3 ⊗ C3 cannot be perfectly distinguished by LOCC. This exemplifies the in-

triguing phenomenon of non-locality without entanglement. In another celebrated paper

Walgate et al. [12] showed that any two pure orthogonal multipartite states can be per-

fectly distinguished. In particular they showed that any pure orthogonal bipartite states

can be distinguished by one-way LOCC. Fan [60] showed that, for Cn ⊗ Cn systems,

when n is a prime number and m is a positive integer such that m(m − 1) ≤ 2n, then any

m number of mutually orthogonal Generalized Bell states are perfectly distinguishable by

LOCC only. The question of perfect local discrimination of pairwise orthogonal Gener-

alized Bell states in Cn ⊗ Cn was later raised by Ghosh et al. [61] for general n. They

showed that no set of m number of Generalized Bell states in Cn ⊗ Cn can be perfectly

distinguished by LOCC if m > n. In the context of general maximally entangled states

(MES) inCn⊗Cn, it is known that no set of m > n pairwise orthogonal MES inCn⊗Cn are

perfectly distinguishable by LOCC [9]. Moreoever, as a general result, it has been shown

in [9] that any three pairwise orthogonal MES in C3 ⊗ C3 are perfectly distinguishable

by LOCC, whose generalization in higher dimensions was open till Yu et al [62] provided

the first example of a set of four pairwise orthogonal ququad-ququad states (namely, MES

of the form 1
2

∑1
i, j=0 | i j〉 ⊗ (σα| i〉 ⊗ σβ| j〉), where σα, σβ ∈ {12, σx, σy, σz}) which are not

perfectly distinguisable by LOCC. In fact, they have shown that these four states are not

distinguisable even by PPT POVM - an operation more general than LOCC.

Despite significant advances in the topic of local distinguishability of quantum states, very

few results are independent of the dimension of the systems for which they are proven.

Underlying our curiosity about the local (in)distinguishability of quantum states, is the

belief that results independent of dimension do exist, and we sought to find a few such
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results.

Maximally Entangled States

In the following we give a definition of Maximally Entangled States (MES).

Definition 3.0.1. Maximally Entangled States: In a bipartite quantum system AB, where

both subsystems A and B are d dimensional, a quantum state |ψ〉 is said to be a MES if it

has the form

|ψ〉 =
1
√

d

d−1∑
i=0

| i〉A| i〉B, (3.1)

where {| i〉A}d−1
i=0 and {| i〉B}d−1

i=0 are ONB for systems A and B respectively.

MES have acquired an elevated status in quantum information. This is because they play

a distinguished role in some very significant applications of quantum information the-

ory, for example: quantum teleportation [37], quantum superdense coding [63], giving

a standard for quantifying entanglement [58], etc. Consequentially, when properties as-

cribable to an ensemble of quantum states are studied, there is a special focus on those

cases wherein the ensemble comprises of MES. It is for this reason that perfectly local

distinguishability of MES is a significant problem.

3.1 Necessary condition for LOCC of MES

I start by giving a brief introduction to entropic quantities which are relevant to the work.

3.1.1 Prerequisites: Classical and Quantum Entropic Quantities and

Their Significance

In 1948, Claude E. Shannon published an article titled “A Mathematical Theory of Com-

munication”, in two parts [64, 65]. The content of this article was to be the founding basis
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for information theory. The transmission of information from a sender (say, Alice) to a

receiver (say, Bob) is based on the model that Alice and Bob share some channel, which

Alice can use to send Bob messages with. This is achieved via the following: Alice can

pick one of m different letters in an alphabet, {x j}
m
j=1, and send the letter to Bob via the

channel. Using said channel N times successively allows Alice to send Bob a string of

N letters of the form xi1 xi2 · · · xiN where i1, i2, · · · , iN ∈ {1, 2, · · · ,m}. Usually there is a

probability pi associated with selecting a letter from X which Alice would send to Bob,

i.e., Alice will select xi with the probability pi. The alphabet with the associated probabil-

ity P̃c ≡ {pi, xi}
m
i=1 is a random variable1. Shannon defined a mathematical quantity called

Shannon Entropy, H(P̃c), for any random variable.

Definition 3.1.1. The Shannon Entropy associated with the random variable P̃c, denoted

by H(P̃c), is quantified by

H(P̃c) = −

m∑
i=1

piLog2 (pi) bit. (3.2)

When pi = 0 for some 1 ≤ i ≤ m, one assumes that piLog2 pi = 0.

The significance of Shannon Entropy lies in the fact that it quantifies the rate as which

Alice can reliably send messages to Bob using the random variable P̃c, as N −→ ∞. This

can be heuristically explained in the following way [66]: As N −→ ∞ one would expect to

find the alphabet x1 occurring approximately N p1 times, x2 occurring approximately N p2

times, · · · , and xm occurring approximately N pm times in the N letter string. Strings of

this type are known as typical strings. Then Shannon’s noiseless channel coding theorem

tells us the following:

(i) Shannon’s noiseless channel coding theorem tells us that as N −→ ∞, the probabil-

ity that an N-letter string is a typical string tends to 2−N H(P̃c).

(ii) As N −→ ∞ the probability of an N letter string being atypical tends to 0, which
1 The subscript c in P̃c stands for ‘classical’ random variable.
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implies that as N −→ ∞, the probability of an N letter string being a typical string

tends to 1.

(iii) Note that (i) and (ii) together imply that as N −→ ∞, the number of distinct strings

generated by the random variable is 2N H(P̃c).

Thus, Shannon’s noiseless channel coding theorem says that as N −→ ∞, Alice can

communicate to Bob one of 2N H(P̃c) different messages over N uses of the channel.

To distinguish letters received by Bob from letters sent by Alice, we denote the former by

primed quantities: x′i . Assume that Alice sends the letter xi from her end of the channel,

and Bob receives the letter x′j at his end. If p j|i is the probability of such an event (where

0 ≤ p j|i ≤ 1 and
∑m

j=1 p j|i = 1), then the probability of the event: Alice sends xi and Bob

receives x′j is pi j = pi p j|i. To quantify the amount of information which Alice can send

Bob over this noisy channel, Shannon defined the following quantity.

Definition 3.1.2. The Mutual Information of two random variables xi and x′j with the

joint probability distribution pi j is given by

H(P̃c : P̃′c) = H(P̃c) + H(P̃′c) − H(P̃c, P̃
′

c), (3.3)

where

H(P̃c) is the Shannon entropy of the random variable P̃c, whose probability over the

input alphabet {xi}
m
i=1 is given by pi =

∑m
j=1 pi j.

H(P̃′c) is the Shannon entropy of the random variable P̃′c, whose probability over the

output alphabet {xi}
m
i=1 is given by p′j =

∑m
i=1 pi j.

And H(P̃c, P̃
′

c) is the Shannon entropy of P̃c and P̃′c jointly.

Note that H(P̃c : P̃′c) ≤ H(P̃c). Shannon’s noisy channel coding theorem says that as

N −→ ∞, of the 2N H(P̃c) N letter strings which Alice can send Bob, Bob can distinguish



144 CHAPTER 3. LOCAL DISTINGUISHABILITY OF STATES

a maximum of 2N H(P̃c:P̃′c) among them due to unfaithful transmission resulting from the

channel being noisy.

Shannon’s noiseless channel coding theorem and noisy channel coding theorem, give an

operational definition to Shannon entropy of an random variable H(P̃c) and to mutual

information H(P̃c : P̃′c). We now give the quantum version of these quantities.

Consider a classical random variable P̃c = {pi, xi}
m
i=1 in Alice’s possession. Assume that

Alice and Bob now share a quantum channel, so designed that Alice can input quantum

states into the channel from one end and Bob receives quantum states at the other end.

Let ρ1, ρ2, · · · , ρm be m quantum states in a one-to-one correspondence with letters in P̃c,

such that if Alice intends to send xi to Bob, she sends the i-th quantum state ρi. We

assume that the channel Alice and Bob share is noiseless, so that Bob receives the state

ρi at his end. To know which letter Alice meant to send him, Bob has to establish that

he was sent ρi from the ensemble P̃ = {pi, ρi}
m
i=1. To establish this he has to perform a

quantum measurement on his state. Let the Kraus operators of Bob’s measurement be

{Ki}
d
i=1, and let the POVM operators of this measurement be {Ei}

d
i=1, where Ei = K†i Ki.

The input states correspond to the xi’s and the measurement outcomes correspond to the

x′j’s of the classical channel setting. It is convenient to represent an entire event quantum

mechanically, therefore we represent the xi’s by ket vectors | xi〉A, which lie in some m

dimensional auxiliary space in Alice’s possession, with 〈xi|x j〉 = δi j, ∀ 1 ≤ i, j ≤ m; and

x′i’s by | x′i〉B, which lie in some d dimensional auxiliary space in Bob’s possession, with

〈x′i |x
′
j〉 = δi j, ∀ 1 ≤ i, j ≤ d. Then the operator pi| xi〉〈xi | ⊗ K jρiK

†

j ⊗ | x
′
j〉〈x

′
j | represents

the event that Alice sent Bob the i-th state and Bob’s measuring device yielded the j-th

outcome. Tracing over this operator gives us the probability of the occurrence of this

event: pi j = piTr(ρiE j). Note that Bob can use one of many different POVMs for the

purpose of identifying the state he was sent. Shannon’s noisy channel coding theorem

tells us that as N −→ ∞, Alice can reliably send Bob one of 2N H(P̃c:P̃′c) messages. Bob

can increase this number by appropriately choosing his measurement so that H(P̃c : P̃′c)
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is greater. The maximum value that H(P̃c : P̃′c) can attain over the space of POVMs is

known as the accessible information Iacc of the ensemble P̃. This is defined as follows.

Iacc(P̃) ≡ Max
{
H(P̃c : P̃′c) | over all POVMs {Ei}

d
i=1

}
. (3.4)

Note that owing to the maximization in equation (3.4), Iacc is a function of the ensemble

P̃. For a random ensemble P̃, it is generally very difficult to optimize the quantity given

in equation (3.4).

Definition 3.1.3. Let ρ be a density matrix with spectral decomposition ρ =
∑m

i=1 λi| i〉〈i |,

where 〈i| j〉 = δi j. Then the von Neuman entropy S (ρ) of ρ is given by the following

equation.

S (ρ) = −Tr (ρLog2 (ρ)) , (3.5)

where Log2 (ρ) =
∑m

i=1 Log2 (λi) | i〉〈i |.

Thus, S (ρ) = H
(
{λi, xi}

m
i=1

)
. Just as Shannon entropy is a functional over the space of

probability distributions, the von Neumann entropy is a functional over the space of den-

sity matrices. Define the following functional on an ensemble of quantum states.

Definition 3.1.4. The Holevo bound for the ensemble P̃ = {pi, ρi}
m
i=1 is given by the

expression

χ(P̃) = S (ρ) −
m∑

i=1

piS (ρi) , (3.6)

where ρ ≡
∑m

i=1 piρi.

The Holevo bound functional is one of the pillars on which quantum information theory

stands. That said, for the purpose of this thesis, it’s signficance lies in the fact that χ(P̃) is

an upper bound for Iacc(P̃), i.e.,

χ
(
P̃
)
≥ Iacc

(
P̃
)
. (3.7)
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3.1.2 Holevo-like Upper Bound for Locally Accessible Information

of an Ensemble of Bipartite States

Consider an ensemble of bipartite quantum states P̃ = {pi, ρ
(AB)
i }

m
i=1. Assume that Alice

and Bob are provided an unknown state from this ensemble, and their task is to figure out

which state using the output generated from an LOCC protocol.

Let Alice start the measurement with the measurement Kraus operators {Ki}
d1
i=1, where d1

is the number of Kraus operators in the measurement. Let her measuring device yield

the outcome α1 ∈ {1, 2, · · · , d1}. Alice lets Bob know that her measurement outcome is

α1. Conditioned upon the outcome α1, Bob performs a measurement on this quantum

system with the Kraus operators {Ki(α1)}d2
i=1, where d2 is the number of Kraus operators

in his measurement. Let the measurement outcome of his measurement device be α2 ∈

{1, 2, · · · , d2}. He informs Alice of his measurement outcome. Conditioned upon
~
α(2) ≡

(α1, α2), let Alice perform her next measurement with the Kraus operators {Ki(
~
α(2))}d3

i=1,

which yields the measurement outcome α3. After being told the measurement outcome

α3, Bob performs his next measurement conditioned upon
~
α(3) = ( alpha1, α2, α3) and so

on. Assume that the LOCC protocol has a maximum of M steps. If a certain branch of

the LOCC protocol has fewer than M steps, we can add more steps in which Alice and

Bob don’t do anything until there are M steps in said branch. Let A denote the set of all

~
α = (α1, α2, · · · , αM), and define

L
~
α ≡

(
1A ⊗ KαM (

~
α)

)
· · ·

(
Kα3(

~
α(2)) ⊗ 1B

) (
1A ⊗ Kα2(α1)

) (
Kα1 ⊗ 1B

)
,

where 1A and 1B are the identity operators onHA andHB. It’s seen that
{
L
~
α

}
~
α∈A

are Kraus

operators for a measurement on the joint system of Alice and Bob, i.e.,
∑
~
α∈A L†

~
αL

~
α = 1AB,

where 1AB is the identity operator on the joint AB system.

Thus the output generated from the LOCC protocol is the ‘letter’
~
α from the alphabet

A. Assuming that Alice and Bob were given ρ(AB)
i , let the conditional probability of the
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outcome
~
α be denoted by p

~
α|i. Let pi,

~
α be the probability associated with the event that

Alice and Bob are given the i-th state ρ(AB)
i and their LOCC protocol generates the output

~
α.

The output random variable P̃′c is then {pi,
~
α,
~
α}

~
α∈A. In a paper by Badziag et al. [8], it was

shown that the mutual information between P̃c and P̃′c is bounded above by a Holevo-like

upper bound, which we denote by χLOCC, and which is defined in the following.

Definition 3.1.5. The Holevo like upper bound for a given ensemble P̃ = {pi, ρ
(AB)
i }

m
i=1 of

m bipartite quantum states is quantified by

χLOCC(P̃) ≡ S
(
ρ(A)) + S

(
ρ(B)) − Max

X=A,B

 m∑
i=1

piS
(
ρ(X)

i

) , (3.8)

where

ρ(A)
i is obtained by partially tracing the state ρ(AB)

i over system B,

ρ(B)
i is obtained by partially tracing the state ρ(AB)

i over system A,

ρ(A) ≡
∑m

i=1 piρ
(A)
i , and

ρ(B) ≡
∑m

i=1 piρ
(B)
i .

Thus, the result in [8] tells us that for any ensemble of bipartite quantum states P̃ =

{pi, ρ
(AB)
i }

m
i=1, we get the following inequality:

χLOCC(P̃) ≥ H
(
P̃c : P̃′c

)
. (3.9)

3.1.3 The Necessary Condition

The work done in this section has been detailed in a paper by myself, Ramij Rahaman,

Sibasish Ghosh and Guruprasad Kar. This paper has been uploaded on the arxiv in [67],

and has been sent for review to Journal of Physics A: Mathematical and Theoretical.
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Consider a set of m pairwise orthogonal MES |ψ1〉, |ψ2〉, · · · , |ψm〉 ∈ C
d ⊗Cd. Let Alice

control one subsystem and Bob the other. Let ρ(A)
i = TrB(|ψi〉〈ψi|) and ρ(B)

i = TrA(|ψi〉〈ψi|)

be the i-th reduced state on Alice’s subsystem and Bob’s subsystem respectively. Let Al-

ice start the LOCC protocol with some measurement, whose Kraus operators are {Ki}
d
i=1,

where d ≥ 2 and
∑d

i=1 K†i Ki = 1A, where 1A is the identity operator acting on Alice’s sub-

system. Let the measurement yield the α-th outcome. Thus the post-measurement state is

given by

|ψi〉 −→ |ψi,α〉 =
Kα ⊗ 1B√

〈ψi |K
†
αKα ⊗ 1B |ψi〉

|ψi〉, (3.10)

for all 1 ≤ i ≤ m, and where 1B is the identity operator acting on Bob’s subsystem. Let

the post measurement reduced states (PMRS) on Alice’s and Bob’s sides be denoted by

ρ(A)
i,α and ρ(B)

i,α , respectively. Then the average PMRS on Alice’s and Bob’s sides are ρ(A)
α

=∑m
i=1

1
mρ

(A)
i,α and ρ(B)

α
=

∑m
i=1

1
mρ

(B)
i,α , respectively, where the 1

m factor denotes the probability

which with each state appears in ensemble. The apriori probability of the i-th state |ψi〉

and the post-measurement probability of the i-th state, conditioned upon the α-th outcome

(where α can be any outcome) are equal. Note that this is not because we chose the apriori

probability of the states to be 1
m , but due to the fact that the |ψi〉’s are MES. In fact, any

other choice of apriori probabilities can be made without affecting the results; our choice

of 1
m is merely for convenience.

Lemma 3.1.0.1. If Alice starts the protocol to distinguish m MES by LOCC, the post

measurement reduced states (PMRS) on her side are completely indistinguishable.

Proof. Since {|ψi〉}
m
i=1 are MES, the corresponding reduced states on Alice’s subsystem

are maximally mixed, i.e., ρ(A)
i = 1

n1A. The states on Alice’s subsystem transforms as ρ(A)
i

=
1
n
1A −→ ρ(A)

i,α ∝ KαK†α, ∀ 1 ≤ i ≤ m. This implies that (even) after the first measurement,

the PMRS on Alice’s side are completely indistinguishable. �

For the post-measurement joint states {|ψi,α〉}
m
i=1 to still be distinguishable, the indistin-

guishability of PMRS on Alice’s side imposes constraints on the average PMRS on Bob’s
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side. This is made clear in theorem (3.1.1).

Theorem 3.1.1. If the PMRS on Alice’s side are completely indistinguishable, the von

Neuman entropy of the average PMRS on Bob’s side has to be at least log2m bit for the

states to be perfectly distinguishable by LOCC.

Proof. The Holevo-like upper bound for the locally accessible information of the set of

states {|ψi,α〉}
m
i=1 is given by (see equation (3.8) and the inequality (3.9))

ILOCC
acc ≤ S

(
ρ(A)
α

)
+ S

(
ρ(B)
α

)
− Max

 1
m

m∑
i=1

S
(
ρ(X)

i,α

)
: X = A, B

 .
Globally, each of the post-measurement states are pure (equation (3.10)), which implies

that the spectrum of ρ(A)
i,α is equal to the spectrum of ρ(B)

i,α , ∀ 1 ≤ i ≤ m. Also, that Alice’s

states are completely indistinguishable implies that ρ(A)
α

= ρ(A)
i,α , ∀ 1 ≤ i ≤ m. This im-

plies that ILOCC
acc ≤ S

(
ρ(B)
α

)
. Since we need to distinguish between m different states, the

aforementioned inequality tells us that we require S (ρ(B)
α

) to be at least log2m bit. �

With respect to the standard ONB {| j〉A}nj=1 of Alice’s system, every MES |ψi〉 from the

shared ensemble {|ψi〉}
m
i=1 can be expressed as

|ψi〉 =
1
√

n

n∑
j=1

| j〉A| b
(i)
j 〉B, (3.11)

where {| b(i)
j 〉B}

n
j=1 is an ONB for Bob’s system for each i = 1, 2, · · · ,m.

The i-th PMRS on Bob’s side is then given by

ρ(B)
i,α =

1

Tr
(
K†αKα

) n∑
j,k=1

〈 j |K†αKα |k〉|b
(i)
k 〉〈b

(i)
j | = U (B)

i

KT
α K∗α

Tr
(
KT
α K∗α

)U (B)
i
†
, (3.12)

where U (B)
i are n × n unitaries such that U (B)

i | j〉B = | b(i)
j 〉B, for j = 1, 2, · · · , n, where i =

1, 2, · · · ,m, and where KT
α K∗α are operators on Bob’s system, whose matrix elements with
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respect to the ONB {| j〉B}nj=1 are the same as the complex conjugate of matrix elements

of Alice’s POVM effect K†αKα when represented with respect to the ONB {| j〉A}nj=1. The

average PMRS corresponding to the set on Bob’s side is thus given by

ρ(B)
α

=

m∑
i=1

1
m

U (B)
i

KT
α K∗α

Tr
(
KT
α K∗α

)U (B)
i
†
. (3.13)

We require that ρ(B)
α

satisfies theorem (3.1.1). This requirement puts a constraint on Alice’s

starting measurement.

We already know one constraint on Alice’s starting measurement, i.e., it should be OP.

Hence whenever i , j,

〈ψi |K†αKα ⊗ 1 |ψ j〉 = 0. (3.14)

It is easy to see that condition (3.14) should be subsumed in the requirement that ρ(B)
α

should satisfy theorem (3.1.1).

Consider the special case when m = n.

Corollary 3.1.1.1. If m = n in Theorem (3.1.1), then the average PMRS on Bob’s side

has to be maximally mixed.

Proof. When m = n, we require log2n bit of information to distinguish between n states.

The maximal value that S (ρ(B)
α

) can take is log2n and it can take this value only when ρ(B)
α

is maximally mixed. �

Thus, requiring that S (ρ(B)
α

) be at least log2(n) bit implies that ρ(B)
α

has to be a maximally

mixed state, i.e., we require that

n∑
i=1

1
n

U (B)
i

KT
α K∗α

Tr
(
KT
α K∗α

)U (B)
i
†

=
1
n
1n. (3.15)



3.1. NECESSARY CONDITION FOR LOCC OF MES 151

After having imposed the condition (3.15) on the matrix elements of the effects of the

POVM {K†i Ki}
d
i=1, if the resulting POVM is trivial, i.e., if all its effects are multiples of 1A,

the set {|ψi〉}
m
i=1 fails the necessary condition for local distinguishability. If not, then the

set of states may still be distinguishable by LOCC.

3.1.4 Example: Case When the Necessary Condition Becomes Suffi-

cient

The necessary condition (3.15) has to be tested for protocols initiated by both Alice and

Bob, separately. Consider the case of Generalized Bell states.

Definition 3.1.6. Generalized Bell states are bipartite MES in Cn ⊗Cn of the form

|ψ(n)
lk 〉 =

1
√

n

n−1∑
j=0

e
2πi jl

n | j〉A| j ⊕4 k〉B, (3.16)

where l, k ∈ {0, 1, · · · , n − 1} and where {| j〉A}n−1
j=0 is an ONB for Alice’s subsystem and

{| j〉B}n−1
j=0 is an ONB for Bob’s subsystem.

Note that 〈ψl′k′ |ψnm〉 = δl′lδk′k, ∀ l, l′, k, k′ ∈ {0, 1, · · · , l − 1}.

When l = 4, there are 122 local-unitarily inequivalent equivalence classes of sets of four

Generalized Bell states. Testing the necessary condition (3.15) on representative sets from

these 122 distinct equivalence classes we find that 39 such sets are locally indistinguish-

able. An explicit proof of one such a set is given in example (3.1.1).

Example 3.1.1. The states |ψ(4)
00 〉, |ψ

(4)
11 〉, |ψ

(4)
31 〉, |ψ

(4)
32 〉 are locally indistinguishable.

Proof. In [68] (example 1, p 6) it has already been shown that the given set of states are

indistinguishable by one-way LOCC using only projective measurements. Here we will

generalize the result for all possible LOCC protocols. Also, we show that the condition

(3.15) is stronger than the OP condition (3.14).
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Let Alice commense the protocol by applying a measurement, whose Kraus operators are

{Ki}
d
i=1 on her subsystem, and obtain the α-th outcome. We impose the conditions (3.14)

on K†αKα.

The orthogonality preserving condition (3.14) is given by:

〈ψ(4)
00 |

(
K†αKα ⊗ 1

)
|ψ(4)

11 〉 = 0. (3.17a)

〈ψ(4)
00 |

(
K†αKα ⊗ 1

)
|ψ(4)

31 〉 = 0. (3.17b)

〈ψ(4)
00 |

(
K†αKα ⊗ 1

)
|ψ(4)

32 〉 = 0. (3.17c)

〈ψ(4)
11 |

(
K†αKα ⊗ 1

)
|ψ(4)

31 〉 = 0. (3.17d)

〈ψ(4)
11 |

(
K†αKα ⊗ 1

)
|ψ(4)

32 〉 = 0. (3.17e)

〈ψ(4)
31 |

(
K†αKα ⊗ 1

)
|ψ(4)

32 〉 = 0. (3.17f)

Let the spectral decomposition of K†αKα be given by

K†αKα = | u〉〈u | + | v〉〈v | + |w〉〈w | + | x〉〈x |, (3.18)

where 〈u|v〉 = 〈u|w〉 = 〈u|x〉 = 〈v|w〉 = 〈v|x〉 = 〈w|x〉 = 0, but | u〉, | v〉, |w〉 and | x〉 aren’t

normalized.

Additionally, let’s | u〉, | v〉, |w〉 and |w〉 have the following expansions in the standard

ONB.
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| u〉 =

3∑
i=0

ui| i〉, (3.19a)

| v〉 =

3∑
i=0

vi| i〉, (3.19b)

|w〉 =

3∑
i=0

wi| i〉, (3.19c)

| x〉 =

3∑
i=0

xi| i〉. (3.19d)

Then equations (3.17) become (using the definition (3.1.6))

(u1u∗0 + v1v∗0 + w1w∗0 + x1x∗0)

+i(u2u∗1 + v2v∗1 + w2w∗1 + x2x∗1)

−(u3u∗2 + v3v∗2 + w3w∗2 + x3x∗2)

−i(u0u∗3 + v0v∗3 + w0w∗3 + x0x∗3) = 0. (3.20a)

(u1u∗0 + v1v∗0 + w1w∗0 + x1x∗0)

−i(u2u∗1 + v2v∗1 + w2w∗1 + x2x∗1)

−(u3u∗2 + v3v∗2 + w3w∗2 + x3x∗2)

+i(u0u∗3 + v0v∗3 + w0w∗3 + x0x∗3) = 0. (3.20b)
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(u2u∗0 + v2v∗0 + w2w∗0 + x2x∗0)

−i(u3u∗1 + v3v∗1 + w3w∗1 + x3x∗1)

−(u0u∗2 + v0v∗2 + w0w∗2 + x0x∗2)

+i(u1u∗3 + v1v∗3 + w1w∗3 + x1x∗3) = 0. (3.20c)

(u0u∗0 + v0v∗0 + w0w∗0 + x0x∗0)

−(u1u∗1 + v1v∗1 + w1w∗1 + x1x∗1)

+(u2u∗2 + v2v∗2 + w2w∗2 + x2x∗2)

−(u3u∗3 + v3v∗3 + w3w∗3 + x3x∗3) = 0. (3.20d)

(u1u∗0 + v1v∗0 + w1w∗0 + x1x∗0)

−(u2u∗1 + v2v∗1 + w2w∗1 + x2x∗1)

+(u3u∗2 + v3v∗2 + w3w∗2 + x3x∗2)

−(u0u∗3 + v0v∗3 + w0w∗3 + x0x∗3) = 0. (3.20e)

(u1u∗0 + v1v∗0 + w1w∗0 + x1x∗0)

+(u2u∗1 + v2v∗1 + w2w∗1 + x2x∗1)

+(u3u∗2 + v3v∗2 + w3w∗2 + x3x∗2)

+(u0u∗3 + v0v∗3 + w0w∗3 + x0x∗3) = 0. (3.20f)
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If we expand K†αKα in the |i〉〈 j| basis, obtained by using equations (3.19) we get the fol-

lowing

ξi j ≡
(
K†αKα

)
i j

= uiu∗j + viv∗j + wiw∗j + xix∗j, ∀ 0 ≤ i, j ≤ 3. (3.21)

Using equation (3.21) we can rewrite equations (3.20) in an even more condensed form:

(
ξ∗01 ξ∗12 ξ∗23 ξ∗30

) 

1

i

−1

−i


= 0. (3.22a)

(
ξ∗01 ξ∗12 ξ∗23 ξ∗30

) 

1

−i

−1

i


= 0. (3.22b)

(
ξ∗02 ξ∗13 ξ02 ξ13

) 

1

−i

−1

i


= 0. (3.22c)

(
ξ00 ξ11 ξ22 ξ33

) 

1

−1

1

−1


= 0. (3.22d)
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(
ξ∗01 ξ∗12 ξ∗23 ξ∗30

) 

1

−1

1

−1


= 0. (3.22e)

(
ξ∗01 ξ∗12 ξ∗23 ξ∗30

) 

1

1

1

1


= 0. (3.22f)

Equations (3.22a) , (3.22b), (3.22e) and (3.22f) collectively imply that

(ξ01, ξ12, ξ23, ξ30) = 0. (3.23)

Equation (3.22d) implies that

(ξ00, ξ11, ξ22, ξ33)

= a0(1, 1, 1, 1) + a1(1, 1,−1,−1) + a2(1,−1,−1, 1), (3.24)

where a0, a1 and a2 are real. This is because ξii are diagonal matrix elements of K†αKα.

Equation (3.22b) implies that (ξ02, ξ13, ξ20, ξ31) has to be of the form

(ξ02, ξ13, ξ20, ξ31)

= b0(1, 1, 1, 1) + b1(1, i,−1,−i) + b2(1,−1, 1,−1). (3.25)

Since K†αKα is hermitian, ξi j = ξ∗ji must hold true. This implies that (b0 − b1 + b2)∗ =
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b0 + b1 + b2 (from i = 0, j = 2) and (b0 + ib1 − b2)∗ = b0 − ib1 − b2 (from i = 1, j = 3) and

these imply that b1 = 0 and b0 and b2 are real.

Thus putting the constraints imposed by equations (3.23), (3.24) and (3.25), tells us that

in the |i〉〈 j| basis K†αKα is given by equation:

K†αKα =



a0 + a1 + a2 0 b0 + b2 0

0 a0 + a1 − a2 0 b0 − b2

b0 + b2 0 a0 − a1 − a2 0

0 b0 − b2 0 a0 − a1 + a2


. (3.26)

The eigensystem of K†αKα in equation (3.26) is given in the following table

Eigenvalue Eigenvector

λu = a0 + µ0 | u〉 = Nu


a1 + a2 + µ0

0
b0 + b1

0

 ≡

cos ζ2

0
sin ζ

2
0


λv = a0 − µ0 | v〉 = Nv


a1 + a2 − µ0

0
b0 + b1

0

 ≡

−sin ζ

2
0

cos ζ2
0


λw = a0 + µ1 |w〉 = Nw


(a1 − a2) − µ1

0
b0 − b1

0

 ≡

cos η2

0
sin η

2
0


λx = a0 + µ1 | x〉 = Nx


(a1 − a2) − µ1

0
b0 − b1

0

 ≡

−sin η

2
0

cos η2
0


Table 3.1: Eigenvalues and Eigenvectors of K†αKα.

where µ0 and µ1 are given by
√

(a1 + a2)2 + (b0 + b2)2 and
√

(a1 − a2)2 + (b0 − b2)2 and

Nu, Nv, Nw and Nx are normalization factors. For K†αKα to be a positive semidefinite

operator it is necessary that a0 ≥ |µ0|, |µ1|.

Using the table above,
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K†αKα = a01 + µ0



cosζ 0 sinζ 0

0 0 0 0

sinζ 0 −cosζ 0

0 0 0 0


+ µ1



0 0 0 0

0 cosη 0 sinη

0 0 0 0

0 sinη 0 −cosη


. (3.27)

Imposing condition (3.14) doesn’t conclude anything about the local (in)distinguishability

of |ψ(4)
00 〉, |ψ

(4)
11 〉, |ψ

(4)
31 〉, |ψ

(4)
32 〉, since the solution for K†αKα (equation (3.27)) is not a mul-

tiple of the identity, i.e., the measurement isn’t constrained to be trivial. Hence, at this

point we do not know if the states are distinguishable or not.

We now obtain the post-measurement joint states |ψ(4)
α,nm〉 using necessary condition (3.14)

for OP.

K†αKα enables us to determine Kα upto a left-unitary, i.e., Kα = U
√

K†αKα, where U is a

4 × 4 unitary matrix. This unitary U is irrelevant because physically it implies Alice per-

forming a unitary after her measurement and we know that such a unitary transformation

on Alice’s side (or Bob’s side) doesn’t alter the local distinguishability of the set of states.

Hence we can assume the U = 14. Using the above table of eigenvalues and eigenvectors,

we get that Kα

(
≡

√
K†αKα

)
is given by

Kα =

√
a0 + µ0

(
cos

ζ

2
| 0〉 + sin

ζ

2
| 2〉

) (
cos

ζ

2
〈0 | + sin

ζ

2
〈2 |

)
+
√

a0 − µ0

(
−sin

ζ

2
| 0〉 + cos

ζ

2
| 2〉

) (
−sin

ζ

2
〈0 | + cos

ζ

2
〈2 |

)
+
√

a0 + µ1

(
cos

η

2
| 1〉 + sin

η

2
| 3〉

) (
cos

η

2
〈1 | + sin

η

2
〈3 |

)
+
√

a0 − µ1

(
−sin

η

2
| 1〉 + cos

η

2
| 3〉

) (
−sin

η

2
〈1 | + cos

η

2
〈3 |

)
.

(3.28)

Using equation (3.28) we now give the Schmidt decomposition of the states |ψ(4)
α,00〉, |ψ

(4)
α,11〉, |ψ

(4)
α,31〉,
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|ψ(4)
α,32〉.

|ψ(4)
α,00〉 =

1
2

√
1 +

µ0

a0
| χ〉A

(
cos

ζ

2
| 0〉B + sin

ζ

2
| 2〉B

)
+

1
2

√
1 −

µ0

a0
| κ〉A

(
−sin

ζ

2
| 0〉B + cos

ζ

2
| 2〉B

)
+

1
2

√
1 +

µ1

a0
|ω〉A

(
cos

η

2
| 1〉B + sin

η

2
| 3〉B

)
+

1
2

√
1 −

µ1

a0
| τ〉A

(
−sin

η

2
| 1〉B + cos

η

2
| 3〉B

)
,

(3.29a)

|ψ(4)
α,11〉 =

1
2

√
1 +

µ0

a0
| χ〉A

(
cos

ζ

2
| 1〉B − sin

ζ

2
| 3〉B

)
−

1
2

√
1 −

µ0

a0
| κ〉A

(
sin

ζ

2
| 1〉B + cos

ζ

2
| 3〉B

)
+i

1
2

√
1 +

µ1

a0
|ω〉A

(
−sin

η

2
| 0〉B + cos

η

2
| 2〉B

)
− i

1
2

√
1 −

µ1

a0
| τ〉A

(
cos

η

2
| 0〉B + sin

η

2
| 2〉B

)
,

(3.29b)

|ψ(4)
α,31〉 =

1
2

√
1 +

µ0

a0
| χ〉A

(
cos

ζ

2
| 1〉B − sin

ζ

2
| 3〉B

)
−

1
2

√
1 −

µ0

a0
| κ〉A

(
sin

ζ

2
| 1〉B + cos

ζ

2
| 3〉B

)
−i

1
2

√
1 +

µ1

a0
|ω〉A

(
−sin

η

2
| 0〉B + cos

η

2
| 2〉B

)
+ i

1
2

√
1 −

µ1

a0
| τ〉A

(
cos

η

2
| 0〉B + sin

η

2
| 2〉B

)
,

(3.29c)

|ψ(4)
α,32〉 =

1
2

√
1 +

µ0

a0
| χ〉A

(
−sin

ζ

2
| 0〉B + cos

ζ

2
| 2〉B

)
−

1
2

√
1 −

µ0

a0
| κ〉A

(
cos

ζ

2
| 0〉B + sin

ζ

2
| 2〉B

)
+i

1
2

√
1 +

µ1

a0
|ω〉A

(
sin

η

2
| 1〉B − cos

η

2
| 3〉B

)
+ i

1
2

√
1 −

µ1

a0
| τ〉A

(
cos

η

2
| 1〉B + sin

η

2
| 3〉B

)
,

(3.29d)

where

| χ〉A =
(
cos ζ2 | 0〉A + sin ζ2 | 2〉A

)
,

| κ〉A =
(
−sin ζ2 | 0〉A + cos ζ2 | 2〉A

)
,

|ω〉A =
(
cos η2 | 1〉A + sin η2 | 3〉A

)
,

| τ〉A =
(
−sin η2 | 1〉A + cos η2 | 3〉A

)
are vectors of an ONB on Alice’s subsystem. It is easy to check that the states |ψ(4)

α,00〉, |ψ
(4)
α,11〉,

|ψ(4)
α,31〉, |ψ

(4)
α,32〉 are pairwise orthogonal.

From equation (3.29) it is easily be seen that the spectra of ρ(A)
α , ρ(A)

α,00, ρ
(A)
α,11, ρ

(A)
α,31, ρ

(A)
α,32, ρ

(B)
α,00, ρ

(B)
α,11, ρ

(B)
α,31,
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ρ(B)
α,32 are the same, and the common spectra is of the form

{
1+

µ0
a0

4 ,
1− µ0

a0
4 ,

1+
µ1
a0

4 ,
1− µ1

a0
4

}
. The equality

of the spectra of the aforementioned states is at par with the prediction of theorem (3.1.1).

The spectrum of ρ(B)
α is given by

{
1+

µ0
2a0
4 ,

1− µ0
2a0
4 ,

1+
µ1
2a0
4 ,

1− µ1
2a0
4

}
. Substituting these quantities in

the LHS of the inequality (3.11) we get that

ILOCC
acc ≤ S

(
ρ(B)
α

)
= H

1 +
µ0
2a0

4
,

1 − µ0
2a0

4
,

1 +
µ1
2a0

4
,

1 − µ1
2a0

4

 , (3.30)

where H
(

1+
µ0
2a0
4 ,

1− µ0
2a0
4 ,

1+
µ1
2a0
4 ,

1− µ1
2a0
4

)
is the Shannon entropy for

{
1+

µ0
2a0
4 ,

1− µ0
2a0
4 ,

1+
µ1
2a0
4 ,

1− µ1
2a0
4

}
.

Thus we see that unless µ0 = µ1 = 0, H( 1
4 (1 +

µ0
2a0

), 1
4 (1 − µ0

2a0
), 1

4 (1 +
µ1
2a0

), 1
4 (1 − µ1

2a0
))

< 2 bit. Thus if µ0 , 0 or µ1 , 0, the locally accessible information of the set

{|ψα,00〉, |ψα,11〉, |ψα,31〉, |ψα,32〉} is lower than 2 bit, meaning that there is no LOCC proto-

col that Alice and Bob can use to perfectly distinguish between states in the set. On the

other hand if µ0 = µ1 = 0, Alice’s POVM is a trivial one (see equation (3.27)). Thus the

states |ψ(4)
00 〉, |ψ

(4)
11 〉, |ψ

(4)
31 〉, |ψ

(4)
32 〉 fail to satisfy the necessary condition. It is significant

to note that the local indistinguishability of these states was established only after it was

demanded that S (ρ(B)
α

) = 2 bit, in accordance with theorem (3.1.1). Thus, this also shows

that condition (3.15), which is equivalent to theorem (3.1.1) when m = d, is stronger than

the OP condition (3.14).

This shows us that there is no LOCC protocol to perfectly distinguish the states in the

set, if Alice starts the protocol. Similarly it can be shown that there is no LOCC protocol

to perfectly distinguish the states of the set, if Bob starts the protocol; the arguments to

establish this follow the same sequence of reasoning as the arguments above.

�

In the following we list the sets of four Generalized Bell states from C
4 ⊗ C4 which

fail the necessary condition in the same fashion as example (3.1.1); each set listed repre-

sents an equivalence class of sets of four Generalized Bell states which are local unitarily
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equivalent to it. These are 39 in number.

All sets contain the states |ψ(4)
00 〉

and |ψ(4)
01 〉; remaining states are listed.{

|ψ(4)
02 〉, |ψ

(4)
20 〉

} {
|ψ(4)

02 〉, |ψ
(4)
22 〉

} {
|ψ(4)

10 〉, |ψ
(4)
12 〉

} {
|ψ(4)

10 〉, |ψ
(4)
21 〉

} {
|ψ(4)

10 〉, |ψ
(4)
22 〉

}
{
|ψ(4)

11 〉, |ψ
(4)
13 〉

} {
|ψ(4)

11 〉, |ψ
(4)
20 〉

} {
|ψ(4)

11 〉, |ψ
(4)
23 〉

} {
|ψ(4)

12 〉, |ψ
(4)
21 〉

} {
|ψ(4)

12 〉, |ψ
(4)
22 〉

}
{
|ψ(4)

13 〉, |ψ
(4)
20 〉

} {
|ψ(4)

13 〉, |ψ
(4)
23 〉

} {
|ψ(4)

20 〉, |ψ
(4)
22 〉

} {
|ψ(4)

20 〉, |ψ
(4)
23 〉

} {
|ψ(4)

20 〉, |ψ
(4)
31 〉

}
{
|ψ(4)

20 〉, |ψ
(4)
33 〉

} {
|ψ(4)

21 〉, |ψ
(4)
23 〉

} {
|ψ(4)

21 〉, |ψ
(4)
30 〉

} {
|ψ(4)

21 〉, |ψ
(4)
32 〉

} {
|ψ(4)

22 〉, |ψ
(4)
30 〉

}
{
|ψ(4)

22 〉, |ψ
(4)
32 〉

} {
|ψ(4)

23 〉, |ψ
(4)
31 〉

} {
|ψ(4)

23 〉, |ψ
(4)
33 〉

} {
|ψ(4)

30 〉, |ψ
(4)
32 〉

} {
|ψ(4)

31 〉, |ψ
(4)
33 〉

}
Table 3.2: Some sets of four Generalized Bell states in C4 ⊗C4 which aren’t distinguish-
able.

All sets contain the states |ψ(4)
00 〉

and |ψ(2)
01 〉; remaining states are listed.{

|ψ(4)
10 〉, |ψ

(4)
20 〉

} {
|ψ(4)

10 〉, |ψ
(4)
22 〉

} {
|ψ(4)

10 〉, |ψ
(4)
31 〉

} {
|ψ(4)

10 〉, |ψ
(4)
32 〉

} {
|ψ(4)

10 〉, |ψ
(4)
33 〉

}
{
|ψ(4)

11 〉, |ψ
(4)
20 〉

} {
|ψ(4)

11 〉, |ψ
(4)
22 〉

} {
|ψ(4)

11 〉, |ψ
(4)
30 〉

} {
|ψ(4)

11 〉, |ψ
(4)
31 〉

} {
|ψ(4)

11 〉, |ψ
(4)
32 〉

}
{
|ψ(4)

20 〉, |ψ
(4)
30 〉

} {
|ψ(4)

20 〉, |ψ
(4)
31 〉

} {
|ψ(4)

20 〉, |ψ
(4)
32 〉

} {
|ψ(4)

20 〉, |ψ
(4)
33 〉

}
Table 3.3: Remaining sets of four Generalized Bell states in C4 ⊗C4 which aren’t distin-
guishable.

The necessary condition is satisfied by all sets in all remaining 83 equivalence classes.

That doesn’t mean that states in these sets should be perfectly locally distinguishable.

Therefore it comes as a surprise that states in sets of all the remaining 83 equivalence

classes are indeed locally distinguishable, and that too by one-way LOCC using only pro-

jective measurements. We next list 83 distinct representative sets for all of these equiva-

lence classes and give the LOCC protocols to distinguish the states in each such set.
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Among the 122 equivalence classes of sets of 4 Generalized Bell states, we here give a list

of 83 equivalence classes which satisfy the necessary condition. Each equivalence class

is represented by a set of 4 Generalized Bell states which is contained in it. While satis-

fying the condition (3.15) doesn’t necessarily imply that any of these sets of Generalized

Bell states should be perfectly locally distinguishable, surprisingly, we find that that is

indeed the case, and that too by one-way LOCC by only projective measurements. Along

with each set of states we also give the one-way LOCC protocol for their perfect local

distinguishability.

Theorem 3.1.2. Any set of four generalized Bell states in C4 ⊗C4 of the form

{|ψ(4)
a0 〉, |ψ

(4)
b1 〉, |ψ

(4)
c2 〉, |ψ

(4)
d3 〉},

where a, b, c, d ∈ {0, 1, 2, 3}, can be discriminated by one-way LOCC using only projec-

tive measurements. Sets of four generalized Bell states representing all the corresponding

equivalence classes are listed in table A.1 in the appendix A.1. Similarly, any set of four

Generalized bell states in C4 ⊗C4 which is of the form

{|ψ(4)
0a 〉, |ψ

(4)
1b 〉, |ψ

(4)
2c 〉, |ψ

(4)
3d 〉},

where a, b, c, d ∈ {0, 1, 2, 3}, can be discriminated by one-way LOCC using only projec-

tive measurements. Sets of four generalized Bell states representing all the corresponding

equivalence classes are listed in table A.2 in the appendix A.1.

Proof. Consider first the set {|ψ(4)
a0 〉, |ψ

(4)
b1 〉, |ψ

(4)
c1 〉, |ψ

(4)
d1 〉}. Alice starts with a rank-one pro-

jective measurement in the following orthonormal basis:

| u0〉 = | 0〉, | u1〉 = | 1〉, | u2〉 = | 2〉, | u3〉 = | 3〉.

For the k-th outcome of Alice’s measurement, the post measurement set will be of the
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following form:

{|ψ(4)
a0 〉, |ψ

(4)
b1 〉, |ψ

(4)
c1 〉, |ψ

(4)
d1 〉} −→ {| k〉| k〉, | k〉| k ⊕4 1〉, | k〉| k ⊕4 2〉, | k〉| k ⊕4 3〉}.

Thus, once Alice tells Bob her measurement’s outcome, he needs to perform measurement

in the {| j〉}4j=0 basis to perfectly distinguish between the states in the set.

Now consider a set of the form {|ψ(4)
0a 〉, |ψ

(4)
1b 〉, |ψ

(4)
2c 〉, |ψ

(4)
3d 〉}. Alice starts by performing a

rank-one projective measurement corresponding to the following orthonormal basis:

| u0〉 = 1
2
∑3

j=0 | j〉, | u1〉 = 1
2
∑3

j=0 e
i jπ
2 | j〉, | u2〉 = 1

2
∑3

j=0(−1) j| j〉, | u3〉 = 1
2
∑3

j=0 e
3i jπ

2 | j〉.

For the k-th outcome of Alice’s measurement, the post measurement set will be of the

following form:

{|ψ(4)
0a 〉, |ψ

(4)
1b 〉, |ψ

(4)
2c 〉, |ψ

(4)
3d 〉} −→ {| uk〉| vk〉, | uk〉| vk⊕41〉, | uk〉| vk⊕42〉, | uk〉| vk⊕43〉},

where

| v0〉 = 1
2

∑3
j=0 e

(4	4k)i jπ
2 | j〉, | v1〉 = 1

2

∑3
j=0 e

(1	4k)i jπ
2 | j〉, | v2〉 = 1

2

∑3
j=0 e

(2	4k)i jπ
2 | j〉,

| v3〉 = 1
2

∑3
j=0 e

(3	4k)i jπ
2 | j〉.

Thus, once Alice tells Bob her measurement’s outcome, he needs to perform measurement

in the {| v j〉}
3
j=0 basis to perfectly distinguish between the states in the set. �

Theorem 3.1.3. States in each set in the following two tables are perfectly distinguishable

by one-way LOCC using only projective measurement:

Proof. Alice performs a rank-one projective measurement in the following orthonormal

basis:
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Each of the following 10 sets contain the states
|ψ(4)

00 〉 and |ψ(4)
01 〉; remaining states are listed below.{

|ψ(4)
02 〉, |ψ

(4)
10 〉

} {
|ψ(4)

02 〉, |ψ
(4)
21 〉

} {
|ψ(4)

02 〉, |ψ
(4)
32 〉

} {
|ψ(4)

10 〉, |ψ
(4)
13 〉

} {
|ψ(4)

10 〉, |ψ
(4)
20 〉

}{
|ψ(4)

10 〉, |ψ
(4)
31 〉

} {
|ψ(4)

13 〉, |ψ
(4)
21 〉

} {
|ψ(4)

20 〉, |ψ
(4)
21 〉

} {
|ψ(4)

20 〉, |ψ
(4)
32 〉

} {
|ψ(4)

21 〉, |ψ
(4)
31 〉

}
Table 3.4: Some sets of four generalized Bell states in C4 ⊗ C4, which are proved to be
one-way locally distinguishable in theorem 3.1.3.

Each of the following 4 sets contain the states
|ψ(4)

00 〉 and |ψ(4)
02 〉; remaining states are listed below.{

|ψ(4)
10 〉, |ψ

(4)
12 〉

}
,
{
|ψ(4)

10 〉, |ψ
(4)
23 〉

}
,
{
|ψ(4)

10 〉, |ψ
(4)
30 〉

}
,
{
|ψ(4)

21 〉, |ψ
(4)
30 〉

}
.

Table 3.5: Remaining sets of four generalized Bell states inC4 ⊗C4, which are proved to
be one-way locally distinguishable in theorem 3.1.3.

| u1〉 = 1
2

(
−ei π4 | 0〉 + | 1〉 + ei π4 | 2〉 + | 3〉

)
, | u2〉 = 1

2

(
ei π4 | 0〉 + | 1〉 − ei π4 | 2〉 + | 3〉

)
,

| u3〉 = 1
2

(
ei 3π

4 | 0〉 − | 1〉 + ei 3π
4 | 2〉 + | 3〉

)
, | u4〉 = −1

2

(
ei 3π

4 | 0〉 − | 1〉 − ei 3π
4 | 2〉 + | 3〉

)
.

For each set of states mentioned in tables 3.1.3 and 3.1.3, the remaining part of the LOCC

protocol is given in subsection A.2.1 in the appendix.

�

Theorem 3.1.4. The following sets are distinguishable by one-way LOCC using only

projective measurement:

Each of the following 8 sets contain the state
|ψ(4)

00 〉, the rest are given in the table.
{|ψ(4)

01 〉, |ψ
(4)
02 〉, |ψ

(4)
11 〉

}
, {|ψ(4)

01 〉, |ψ
(4)
02 〉, |ψ

(4)
31 〉

}
, {|ψ(4)

01 〉, |ψ
(4)
10 〉, |ψ

(4)
23 〉

}
, {|ψ(4)

01 〉, |ψ
(4)
11 〉, |ψ

(4)
22 〉

}
,

{|ψ(4)
01 〉, |ψ

(4)
22 〉, |ψ

(4)
31 〉

}
, {|ψ(4)

01 〉, |ψ
(4)
23 〉, |ψ

(4)
30 〉

}
, {|ψ(4)

02 〉, |ψ
(4)
11 〉, |ψ

(4)
21 〉

}
, {|ψ(4)

02 〉, |ψ
(4)
21 〉, |ψ

(4)
31 〉

}
Table 3.6: Sets of four generalized Bell states inC4⊗C4, which are proved to be one-way
locally distinguishable in theorem 3.1.4.

Proof. Alice performs a rank-one projective measurement in the following orthonormal

basis:
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| u1〉 = 1
√

2
(−i| 0〉 + | 2〉), | u2〉 = 1

√
2

(i| 0〉 + | 2〉), | u3〉 = 1
√

2
(−i| 1〉 + | 3〉), | u4〉 =

1
√

2
(i| 1〉 + | 3〉).

For each set of states mentioned in table 3.1.4, the remaining part of the LOCC protocol

is given in subsection A.2.2 in the appendix. �

Theorem 3.1.5. The following sets are distinguishable by one-way LOCC using only

projective measurement:

Each of the following 8 sets contain the state
|ψ(4)

00 〉, the rest are given in the table.{
|ψ(4)

01 〉, |ψ
(4)
02 〉, |ψ

(4)
12 〉

}
,
{
|ψ(4)

01 〉, |ψ
(4)
02 〉, |ψ

(4)
30 〉

}
,
{
|ψ(4)

01 〉, |ψ
(4)
11 〉, |ψ

(4)
21 〉

}
,
{
|ψ(4)

01 〉, |ψ
(4)
12 〉, |ψ

(4)
20 〉

}
,{

|ψ(4)
01 〉, |ψ

(4)
20 〉, |ψ

(4)
30 〉

}
,
{
|ψ(4)

01 〉, |ψ
(4)
21 〉, |ψ

(4)
33 〉

}
,
{
|ψ(4)

02 〉, |ψ
(4)
10 〉, |ψ

(4)
21 〉

}
,
{
|ψ(4)

02 〉, |ψ
(4)
21 〉, |ψ

(4)
32 〉

}
.

Table 3.7: Sets of four generalized Bell states inC4⊗C4, which are proved to be one-way
locally distinguishable in theorem 3.1.5.

Proof. Alice performs a rank-one projective measurement in the following orthonormal

basis:

| u1〉 = 1
2

(
−ei 3π

4 | 0〉 + | 1〉 + ei 3π
4 | 2〉 + | 3〉

)
, | u2〉 = 1

2

(
ei 3π

4 | 0〉 + | 1〉 − ei 3π
4 | 2〉 + | 3〉

)
,

| u3〉 = 1
2

(
ei π4 | 0〉 − | 1〉 + ei π4 | 2〉 + | 3〉

)
, | u4〉 = 1

2

(
−ei π4 | 0〉 − | 1〉 − ei π4 | 2〉 + | 3〉

)
.

For each set of states mentioned in table 3.1.5, the remaining part of the LOCC protocol is given

in subsection A.2.3 in the appendix.

�

Theorem 3.1.6. The following sets are distinguishable by one-way LOCC using only

projective measurement:

Proof. Alice performs a rank-one projective measurement in the following orthonormal

basis:

| u1〉 = 1
2 (| 0〉 − | 1〉 − | 2〉 + | 3〉), | u2〉 = 1

2 (−| 0〉 − | 1〉 + | 2〉 + | 3〉),
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Each of the following 10 sets contain the state
|ψ(4)

00 〉 the rest are given in the table.{
|ψ(4)

01 〉, |ψ
(4)
10 〉, |ψ

(4)
11 〉

}
,
{
|ψ(4)

01 〉, |ψ
(4)
10 〉, |ψ

(4)
30 〉

}
,
{
|ψ(4)

01 〉, |ψ
(4)
10 〉, |ψ

(4)
32 〉

}
,
{
|ψ(4)

01 〉, |ψ
(4)
11 〉, |ψ

(4)
12 〉

}
,{

|ψ(4)
01 〉, |ψ

(4)
11 〉, |ψ

(4)
31 〉

}
,
{
|ψ(4)

01 〉, |ψ
(4)
11 〉, |ψ

(4)
33 〉

}
,
{
|ψ(4)

01 〉, |ψ
(4)
12 〉, |ψ

(4)
30 〉

}
,
{
|ψ(4)

01 〉, |ψ
(4)
12 〉, |ψ

(4)
32 〉

}
,{

|ψ(4)
01 〉, |ψ

(4)
13 〉, |ψ

(4)
31 〉

}
,
{
|ψ(4)

01 〉, |ψ
(4)
13 〉, |ψ

(4)
33 〉

}
.

Table 3.8: Sets of four generalized Bell states inC4⊗C4, which are proved to be one-way
locally distinguishable in theorem 3.1.6.

| u3〉 = 1
2 (−| 0〉 + | 1〉 − | 2〉 + | 3〉), | u4〉 = i

2 (| 0〉 + | 1〉 + | 2〉 + | 3〉).

For each set of states mentioned in table 3.1.6, the remaining part of the LOCC protocol

is given in subsection A.2.4 in the appendix.

�

Theorem 3.1.7. The following sets are distinguishable by one-way LOCC using only

projective measurement:

Each of the following 5 sets contain the state
|ψ(4)

00 〉 the rest are given in the table.{
|ψ(4)

01 〉, |ψ
(4)
10 〉, |ψ

(4)
33 〉

}
,
{
|ψ(4)

01 〉, |ψ
(4)
11 〉, |ψ

(4)
32 〉

}
,
{
|ψ(4)

01 〉, |ψ
(4)
12 〉, |ψ

(4)
31 〉

}
,
{
|ψ(4)

01 〉, |ψ
(4)
13 〉, |ψ

(4)
30 〉

}
,

{|ψ(4)
01 〉, |ψ

(4)
11 〉, |ψ

(4)
30 〉

}
.

Table 3.9: Sets of four generalized Bell states inC4⊗C4, which are proved to be one-way
locally distinguishable in theorem 3.1.7.

Proof. Alice performs a rank-one projective measurement in the following orthonormal

basis:

| u1〉 = 1√
2

(−| 0〉 + | 2〉), | u2〉 = 1√
2

(| 1〉 + | 3〉), | u3〉 = 1√
2

(−| 1〉 + | 3〉), | u4〉 = 1√
2

(| 0〉 + | 2〉).

For each set of states mentioned in table 3.1.7, the remaining part of the LOCC protocol is given

in subsection A.2.5 in the appendix.

�

Theorem 3.1.8. The following set is distinguishable by one-way LOCC using only pro-

jective measurement:
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{|ψ(4)
00 〉, |ψ

(4)
02 〉, |ψ

(4)
20 〉, |ψ

(4)
22 〉}.

Proof. Alice performs a rank-one projective measurement in the following orthonormal

basis:

| u1〉 = 1
2 (−i| 0〉 − i| 1〉 + | 2〉 + | 3〉),

| u2〉 = 1
2 (i| 0〉 + i| 1〉 + | 2〉 + | 3〉),

| u3〉 = 1
2 (i| 0〉 − i| 1〉 − | 2〉 + | 3〉),

| u4〉 = 1
2 (−i| 0〉 + i| 1〉 − | 2〉 + | 3〉).

The remaining part of the LOCC protocol is given in subsection A.2.6 in the appendix.

�

With this we prove that the necessary condition is also sufficient to establish the local

(in)distinguishability of all sets of four Generalized Bell states in C4 ⊗C4.

3.1.5 Summary

Based on the upper bound of locally accessible information, we formulated a necessary

condition for the perfect distinguishability of a set of MES by LOCC. This necessary con-

dition genuinely decreases the complexity of the distinguishability problem, particularly

for a set of n MES. To illustrate this, we tested the necessary condition for all sets of four

Generalized Bell basis states in C4 ⊗ C4, and then isolated those sets which failed the

test. Surprisingly, we discovered that all the remaining sets are perfectly distinguishable

by one-way LOCC using only projective measurements, and to show that we explicitly

obtained the LOCC protocol for perfect distinguishability for all of them. That there is

no protocol which involves two-way LOCC is interestingly similar to the result in [69],
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where it was shown that two-way LOCC doesn’t play any distinguished role in the perfect

distinguishability of a set of four ququad-ququad lattice states in C4 ⊗C4.

In [62] a set of four ququad-ququad lattice states were shown to be indistinguishable by

PPT preserving operations. It was recently shown that this is the only such set among the

sets of ququad-ququad lattice states, which isn’t perfectly distinguishable by LOCC [69].

We also tested our necessary condition on the aforementioned set of states and found that

they do not satisfy the necessary condition.Thus, our necessary condition is also sufficien

to determine the local distinguishability for ququad-ququad lattice states. In fact, our

condition is more general since the condition for the local distinguishability for ququad-

ququad lattice states given in [69] is particularly specific to ququad-ququad lattice states

whereas our necessary condition applies generally to any set of MES.

3.1.6 Future Directions

The central question is to understand how strong the aforementioned necessary condition

is. This leads us to potential questions worth exploring for the future.

1. To see if the necessary condition is sufficient for the local (in)distinguishability of

sets of n Generalized Bell states in Cn ⊗ Cn. While it is difficult to prove this for

general n, I want to know if this holds for n = 5 etc. While it is easy to identify those

sets (of five Generalized Bell states in C5 ⊗ C5) which don’t satisfy the necessary

condition, it is difficult to test if the remaining are locally distinguishable or not.

2. More generally, to explore if there are examples of m ≤ n orthogonal MES in

C
n ⊗Cn, which satisfy the necessary condition but are not locally distinguishable.

If such examples exist, then it should be possible to construct them through reverse

engineering from the necessary condition.

3. To characterize those special kinds of MES inCn⊗Cn for which the aforementioned
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necessary condition will turn out to be sufficient in regard to the question of local

distinguishability.

3.2 Framework for Distinguishability by 1-LOCC

The work done in this section has been detailed in a paper which has been been published

in Physical Review A as a Rapid Communication2[70].

In the topic of perfect local distinguishability of orthogonal multipartite quantum states,

most results obtained so far pertain to bipartite systems whose subsystems are of specific

dimensions. In contrast very few results for bipartite systems whose subsystems are of

arbitrary dimensions, are known. Some prominent results which apply to joint systems,

whose subsystems are of arbitrary dimension, are Bennet et al’s result [71], which estab-

lished that members from an unextendible product basis cannot be perfectly distinguished

by LOCC, Walgate et al’s result [12], which establishes that any two multipartite orthog-

onal quantum states can be perfectly distinguished using only LOCC, Badziag et al’s [8]

result, which obtained a Holevo-like upper bound for the locally accessible information

for an ensemble of states from a bipartite system, and Cohen’s result [13], which estab-

lished that almost all sets of n + 1 orthogonal states from N n-dimensional multipartite

systems are not perfectly distinguishable by LOCC. The reason for there being a few

number of such generic results is that a rich variety of (algebraic or geometric) structure

is exhibited by different sets of orthogonal states owing to which it is difficult to asso-

ciate some common property underlying them all, i.e., a common property that would

play a crucial role in the local distinguishability of these states. In this work, I propose

a framework for the distinguishability by one-way LOCC (1-LOCC) of sets of orthogo-

nal bipartite states in a nA ⊗ nB bipartite system, where nA, nB are the dimensions of both

subsytems, labelled as A and B. Firstly, very simple arguments establish that local dis-

2 Reprinted with permission from Singal, T. Phys. Rev. A 93, 030301(R) − Published 7 March 2016
Copyright (2016) by the American Physical Society

http://dx.doi.org/10.1103/PhysRevA.93.030301
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tinguishability by one-way LOCC requires that the i-th party (where i = A, B) perform a

rank-one orthogonality preserving measurement. In [10] it was shown that (correspond-

ing to the set of orthogonal states) all orthogonality preserving operators lie in a vector

space, which I denote by T (i)
⊥ . I then give conditions to determine if this vector space

contains all the elements of a rank-one measurement, which, if it does, implies that the

states are distinguishable by one-way LOCC. The method to extract this information (of

the existence of this 1-LOCC protocol) from T (i)
⊥ depends on the value of dimT (i)

⊥ . In

this way one can give sweeping results for the 1-LOCC (in)distinguishability of all sets

of orthogonal bipartite states corresponding to certain values of dimT (i)
⊥ . Thus I propose

that the value of dimT (i)
⊥ gives the common underlying property based on which sweeping

results for the 1-LOCC (in)distinguishability of orthogonal bipartite quantum states can

be made.

Note that if Alice and Bob represent the two parties of the bipartite system, then to es-

tablish whether the given set of states are distinguishable by one-way LOCC or not, one

has to extract this (in)distinguishability related information from T (A)
⊥ - the subspace of

nA × nA hermitian matrices, corresponding to Alice’s side - and T (B)
⊥ - subspace of nB × nB

hermitian matrices corresponding to Bob’s side - separately. Since the methods to extract

this information apply equally to both sides, there is no loss of generality when I obtain

results for the cases where Alice starts the protocol. And since I’m considering the case

where Alice starts the protocol, I will only examine how to extract said information from

her subspace. This allows me to simplify the notation: T (A)
⊥ −→ T⊥. Also note that if

nA < nB, one can always extend Alice’s subsystem A to a larger local system A′ whose

dimension nA′ is equal to nB. And, similarly, vice versa. This implies that there is also

no loss of generality in assuming that the dimensions of both subsystems are equal, thus I

will assume that nA = nB = n. The only reasons for making both these assumptions is to

keep the notation simpler.
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3.2.1 The Framework

Let Alice and Bob have n dimensional quantum systems whose corresponding Hilbert

spaces are denoted byHA andHB respectively. Let them share one of m orthogonal bipar-

tite states, whose density matrices are ρ(AB)
1 , ρ(AB)

2 , · · · , ρ(AB)
m . They wish to establish which

from among the aforementioned m states they have in their possession, and they want to

do this using 1-LOCC. As mentioned earlier, I assume that Alice starts the protocol. Since

{ρ(AB)
i }

m
i=1 are orthogonal, their supports supp

(
ρ(AB)

i

)
are also orthogonal. Let the spectral de-

composition of ρ(AB)
i be given by

ρ(AB)
i =

ri∑
j=1

λi j|ψi j〉〈ψi j|, (3.31)

where ri is the rank of ρ(AB)
i , {λi j}

ri
j=1 are the non-zero eigenvalues of ρ(AB)

i and 〈ψi j|ψi′ j′〉 =

δii′δ j j′ , ∀ 1 ≤ i ≤ i′ ≤ m, 1 ≤ j ≤ ri and 1 ≤ j′ ≤ ri′ . Let {| j〉A}nj=1 and {| j〉B}nj=1 be the

standard orthonormal bases (ONB) for HA and HB respectively. For any 1 ≤ i ≤ m, and

any 1 ≤ j ≤ ri, define n × n complex matrices Wi j by expanding |ψi j〉AB in the product

basis {| j〉A| k〉B}nj,k=1

|ψi j〉AB =

n∑
l,k=1

(
Wi j

)
kl
| l〉A| k〉B. (3.32)

The orthonormality of the |ψi j〉AB vectors (for i and j indices) implies that Tr(W†

i jWi′ j′) =

δii′δ j j′, ∀ 1 ≤ i ≤ i′ ≤ m, 1 ≤ j ≤ ri and 1 ≤ j′ ≤ ri′ . Define the index set I ≡ {(i, i′, j, j′),

| 1 ≤ i < i′ ≤ m, 1 ≤ j ≤ ri, 1 ≤ j′ ≤ ri′}. The cardinality of I is
∑m−1

i=1
∑m

i′=i+1 riri′ . Let

i = (i, i′, j, j′) ∈ I. Define Wi ≡ Wi j
†Wi′ j′ . Then the Wi’s are n× n complex matrices with

trace zero. Let Hi ≡
1
2

(
Wi + (Wi)†

)
and Ai ≡

1
2i

(
Wi − (Wi)†

)
, so that Wi = Hi + iAi. Let

S be the real vector space of all n×n hermitian matrices. dimS = n2. Let T be a subspace

of S, defined by the following equation:
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T ≡

∑
i∈I

aiHi + biAi, ∀ ai, bi ∈ R

 . (3.33)

Let T⊥ be the orthogonal complement of T in S. Note that since Tr(Wi) = 0, ∀ i ∈ I, 1n

∈ T⊥, where 1n is the n × n identity matrix.

For the states to be locally distinguishable it is necessary that Alice’s first measurement

preserves the orthogonality of all states, i.e., the measurement is orthogonality preserving

(OP) for all measurement outcomes. Now consider theorem 3.2.1.

Theorem 3.2.1 (Nathanson [11], Proposition 1). The orthogonal states ρ(AB)
1 , ρ(AB)

2 , · · · , ρ(AB)
m

are perfectly distinguishable by 1-LOCC if and only if there exists an orthogonality pre-

serving (OP) rank-one POVM on Alice’s side which she can use as the starting measure-

ment of the 1-LOCC protocol.

Theorem (3.2.1) implies that if the states are perfectly distinguishable by 1-LOCC then

there will always exist a rank-one POVM which is OP which Alice can commence her

1-LOCC protocol with.

Theorem 3.2.2. If the states are perfectly distinguishable by 1-LOCC, Alice can always

choose her starting measurement to be an extremal3 rank-one POVM.

Proof. Let {| l̃〉〈l̃ |}dl=1 be a non-extremal OP rank-one POVM which Alice commences

the protocol with (where
∑d

l=1 | l̃〉〈l̃ | = 1A). Note that d ≥ n. Let all POVM elements

in {| l̃〉〈l̃ |}dl=1 have a convex decomposition into two distinct extremal rank-one POVMs:

| l̃〉〈l̃ | = p| l̃′〉〈l̃′ | + (1 − p)| l̃′′〉〈l̃′′ |, where
∑d

l=1 | l̃
′〉〈l̃′ | =

∑d
l=1 | l̃

′′〉〈l̃′′ | = 1A. The equality

| l̃〉〈l̃ | = p| l̃′〉〈l̃′ | + (1 − p)| l̃′′〉〈l̃′′ | is possible if and only if | l̃′〉A and | l̃′′〉A are linearly

dependent, i.e., either one of them is 0 and the other is a scalar multiple of | l̃〉A, or both

are scalar multiples of | l̃〉A. This implies that if all elements of {| l̃〉〈l̃ |}dl=1 are OP, then all

elements of {| l̃′〉〈l̃′ |}dl=1 and {| l̃′′〉〈l̃′′ |}dl=1 should also be OP. Hence each extremal rank-one

POVM featuring in the convex sum of an OP rank-one POVM is also OP. �

3 An extremal POVM is one which cannot be expressed as a convex sum of other distinct POVMs.
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Thus theorems 3.2.1 and 3.2.2 imply that if the given states are 1-LOCC distinguishable

then there must always be an extremal rank-one OP measurement on Alice’s side which

she can initiate the protocol with. Establishing this is necessary because it helps reduce

our search to rank-one extremal POVMs which are OP.

Theorem 3.2.3. The states ρ(AB)
1 , ρ(AB)

2 , · · · , ρ(AB)
m are perfectly distinguishable by 1-LOCC if

and only if T⊥ contains all elements of an extremal rank-one POVM.

Proof. ONLY IF: Here I show that when the states ρ(AB)
1 , ρ(AB)

2 , · · · , ρ(AB)
m are perfectly distin-

guishable by 1-LOCC, T⊥ contains all POVM elements of an extremal rank-one POVM.

The discussion above suggests that there exists an OP extremal rank-one POVM on Al-

ice’s side. Let the elements of this POVM be {| l̃〉〈l̃ |}dl=1 (where
∑d

l=1 | l̃〉〈l̃ | = 1A), and let

the Kraus operators of this measurement be {|φl〉〈l̃|}dl=1, where | φl〉A are normalized states

in HA for all 1 ≤ l ≤ d. If the measurement outcome is k, the (unnormalized) i-th post-

measurement state is
(
|φk〉〈k̃| ⊗ 1B

)
ρ(AB)

i

(
|k̃〉〈φk| ⊗ 1B

)
. Since the k-th POVM element is

OP, we get the following equations for all 1 ≤ i < i′ ≤ m, 1 ≤ j ≤ ri and 1 ≤ j′ ≤ ri′ .

Tr
((
| k̃〉〈k̃ | ⊗ 1B

)
ρ(AB)

i

(
| k̃〉〈k̃ | ⊗ 1B

)
ρ(AB)

i′

)
= 0, (3.34)

=⇒
(
ρ(AB)

i

) 1
2
(
| k̃〉〈k̃ | ⊗ 1B

) (
ρ(AB)

i′

) 1
2 = 0,

=⇒
AB
〈ψi j |

(
| k̃〉〈k̃ | ⊗ 1B

)
|ψi′ j′〉AB = 0, (3.35)

where 1B is the identity operator acting onHB.

Substituting the expressions for |ψi j〉AB from equation (3.32) in equation (3.35) we get

n∑
b,b′=1

〈b|k̃〉 (Wi)bb′ 〈k̃|b
′〉 = 0. (3.36)

Since {| l̃〉〈l̃ |}dl=1 are elements of a POVM, there exists an d × n isometry matrix U such

that | l̃〉A =
∑n

l′=1 Ull′ | l′〉A. Using the isometry U, define the following d vectors in Cn:

| l̃∗〉 ≡
(
U∗

l1,U
∗

l2, · · · ,U
∗

ln

)T . Then 〈k̃|b′〉 = U∗

kb′ . Using this in equation (3.36) implies that

〈k̃∗ |Wi |k̃∗〉 = 0 which implies that 〈k̃∗ |Hi |k̃∗〉 = 〈k̃∗ | Ai |k̃∗〉 = 0, ∀ i ∈ I, because Wi =
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Hi + iAi and the diagonal elements of Hi and Ai are real. This implies that | k̃∗〉〈k̃∗ | ∈ T⊥.

Since all other POVM elements are also OP, that implies that | l̃∗〉〈l̃∗ | corresponding to

each POVM element lies in T⊥. That {| l̃〉〈l̃ |}dl=1 is a POVM forHA implies that
∑d

l=1 | l̃〉〈l̃ |

= 1A, which implies that
∑d

l=1 | l̃
∗〉〈l̃∗ | = 1n. Thus {| l̃∗〉〈l̃∗ |}dl=1 are elements of an extremal

rank-one POVM lying in T⊥. IF Let {| l̃∗〉〈l̃∗ |}dl=1 ⊂ T⊥ be such that
∑d

l=1 | l̃
∗〉〈l̃∗ | = 1n, and

let this POVM be extremal as well. It is readily seen that the arguments presented in the

ONLY IF part can be easily traced backwards, which leads us to conclude that Alice has

a corresponding extremal rank-one OP POVM of the form {| l̃〉〈l̃ |}dl=1. �

To summarize theorem 3.2.3: consider the equations 〈ψi j |(XA ⊗ 1B)|ψi′ j′〉 = 0, for all

1 ≤ j ≤ ri, 1 ≤ j′ ≤ ri′ , and 1 ≤ i < i′ ≤ m, where X is an unknown, with the constraint

that X is self-adjoint. The solution set for this X is a vector space (of self-adjoint operators

on acting on HA). Note that these X’s are all orthogonality preserving. Now, T⊥ is

isomorphic to this vector space in the following sense: T⊥ is the complex conjugate of the

representation of the X’s in the standard ONB {| j〉A}nj=1. Now, in the vector space of n × n

hermitian matrices, T⊥ is the complement of T , which can be constructed as mentioned

in equation (3.33).

In those cases were Bob starts the protocol we should examine T (B)
⊥ , instead of T (A)

⊥ (which

is denoted by T⊥ for ease of notation), to see if T (B)
⊥ contains all elements of some rank-

one POVM. Note that T (B)
⊥ is defined to be the complement of T (B) in S, where T (B) is

defined just such as T was in equation (3.33), with the difference that Wi takes the form

Wi jW
†

i′ j′ , rather than W†

i jWi′ j′ .

A subspace of matrices is abelian if any pair of matrices in it commute. All matrices in

any abelian subspace of S can be diagonalized in some common eigenbasis. When the

dimension of an abelian subspace of S is n, then that abelian subspace is the real space of

all matrices which are diagonal in the common eigenbasis of the abelian subspace. Since

no abelian subspace of dimension greater than n can exist in S, such an abelian subspace

is called a maximally abelian subspace (MAS); it has a unique common eigenbasis asso-
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ciated to it.

Corollary 3.2.3.1. The states ρ(AB)
1 , ρ(AB)

2 , · · · , ρ(AB)
m are perfectly distinguishable by 1-LOCC

using only projective measurements onHA andHB, if and only if T⊥ contains a MAS.

Proof. ONLY IF: Let the states ρ(AB)
1 , ρ(AB)

2 , · · · , ρ(AB)
m be perfectly distinguishable by 1-

LOCC using only projective measurements on HA and HB. This implies that Alice can

perform an OP rank-one projective measurement {| k〉〈k |}nk=1. Then (the ONLY IF part

of) theorem 3.2.3 implies that T⊥ contains all projectors of a rank-one projective mea-

surement {| k∗〉〈k∗ |}nk=1. span
(
{| k∗〉〈k∗ |}nk=1

)
is then a MAS in T⊥. IF: Assume that T⊥

contains a MAS of S. One can associate a MAS with a unique orthonormal eigenbasis,

which is such that any matrix in said MAS is diagonal when represented in that eigenba-

sis. Since T⊥ contains the MAS, it will also contain all the rank-one projectors, which

project onto the vectors of the MAS’ eigenbasis. Collectively, this is the rank-one projec-

tive measurement {| k∗〉〈k∗ |}nk=1, which is a rank-one extremal POVM on Cn. Then (the IF

part of) theorem 3.2.3 implies that a corresponding OP rank-one projective measurement

{| k〉〈k |}nk=1 exists on Alice’s system, hence the states are distinguishable by 1-LOCC using

only projective measurements. �

Corollary 3.2.3.1 reformulates the question of the existence of a 1-LOCC distinguisha-

bility protocol, which employs only rank-one projective measurements, to the question

of the existence of a MAS in T⊥. In fact, there are as many protocols for 1-LOCC dis-

tinguishability using only projective measurements, as there are MAS’es in T⊥. This is

demonstrated by the following example. Define the following states in C4 ⊗C4:

|ψst〉AB ≡

3∑
j,k=0

(Wst)k j | j〉A| k〉B, (3.37)

where (Wst)k j ≡
e

iπ js
2

2
δ j⊕4t,k, ∀ j, k = 0, 1, 2, 3. Note that any two Wst matrices are pairwise

orthogonal.
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Example 3.2.1. For the 1-LOCC of the set of states {|ψ00〉AB, |ψ02〉AB, |ψ20〉AB, |ψ22〉AB}, it is

easy to verify that T is spanned by the hermitian matrices W02, W20, and W22, all of which

commute with each other. These set of matrices share a unique common eigenbasis, which

is S 1 = {
(1,0,1,0)T
√

2
, (1,0,−1,0)T

√
2

, (0,1,0,1)T
√

2
, (0,1,0,−1)T

√
2
}. Consider the following ONB for C4 ⊗C4:

S 2 = {
(1,1,0,0)T
√

2
, (1,−1,0,0)T

√
2

, (0,0,1,1)T
√

2
, (0,0,1,−1)T )

√
2
},

S 3 = {
(1,i,−i,1)T

2 , (1,−i,i,1)T

2 , (1,−i,−i,−1)T

2 , (1,i,i,−1)T )
2 }

S 4 = {
(1,0,0,i)T
√

2
, (1,0,0,−i)T

√
2

, (0,1,i,0)T
√

2
, (0,1,−i,0)T )

√
2
} and

S 5 = {
(1,i,i,1)T

2 , (1,i,−i,−1)T

2 , (1,−i,−i,1)T

2 , (1,−i,i,−1)T )
2 }.

{S i}
5
i=1 are five mutually unbiased bases for C4 ⊗ C4. It’s easily verified that for i =

2, 3, 4, 5 each of the three matrices W02, W20, W22 is orthogonal to any matrix whose

eigenbasis is S i. Thus each S i corresponds to a MAS in T⊥, corresponding to which

there’s a rank-one projective measurement. Using the correspondence4: (a, b, c, d)T −→

a∗| 0〉A + b∗| 0〉A + c∗| 0〉A + d∗| 0〉A, the ONB corresponding to each of these rank-one

projective measurements, can be obtained from S i, for i = 2, 3, 4, 5. It’s easily verified

that each rank-one projective measurement is OP, and can be used by Alice to initiate a

corresponding 1-LOCC protocol for distinguishing the given set of states.

The significance of corollary 3.2.3.1 is that for certain values of dimT⊥, it is easy to check

if T⊥ contains a MAS or not, which immediately indicates the existence or non-existence

of a 1-LOCC protocol (which employs only rank-one projective measurements). It will

be seen that subsequent corollaries and theorems depend on corollary 3.2.3.1.

That said, the non-existence of a MAS in T⊥ does not rule out the existence of a non-

projective extremal rank-one POVM {| l̃∗〉〈l̃∗ |}dl=1 in T⊥, where d > n. Theorem (3.2.3)

tells us that if such a non-projective extremal rank-one POVM exists in T⊥, then there ex-

ists a 1-LOCC distinguishability protocol which commences with an OP non-projective
4 To understand this correspondence, refer to equation (3.36), and the paragraph after equation (3.36) in

theorem 3.2.3.
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extremal rank-one POVM with POVM elements {| l̃〉〈l̃ |}dl=1. In such a case one can con-

sider HA to be a n-dimensional subspace of an extended d-dimensional space HA′ , so

that the states |ψi〉AB −→ |ψi〉A′B lie in HA′ ⊗ HB. Then S′, T ′ and T ′⊥ are spaces of d × d

hermitian matrices corresponding to Alice’s extended spaceHA′ , andT ′⊥ will contain an d-

dimensional MAS, which corresponds to an d-element rank one projective measurement

on HA′ . This d-element projective measurement takes the form of the aforementioned

non-projective OP extremal rank-one POVM on HA, i.e., {| l̃〉〈l̃ |}dl=1. Note that since the

POVM elements of any extremal rank-one POVM are linearly independent [72], d ≤ n2.

It is sensible to search for an d-dimensional MAS in T ′⊥ only after establishing that T⊥

doesn’t contain a n-dimensional MAS. Often the value of dimT⊥ itself gives us informa-

tion about OP rank-one POVMs which Alice can perform. For e.g., Walgate et al’s result

in [12], which says that any two orthogonal bipartite pure states are 1-LOCC distinguish-

able, corresponds to the case m = 2 which correspond to the classes dimT⊥ ≥ n2 − 2. I

now give an alternative proof of Walgate et al’s result for the case m = 2.

Theorem 3.2.4. When dimT⊥ ≥ n2 − 2, T⊥ always contains a MAS.

Proof. This proof is by induction. Assume that dimT⊥ = n2 − 2. This implies that

dimT = 2. Let A and H be two linearly independent n × n matrices in T . Proposition

P(n): For any two n × n hermitian matrices H and A, there exists a n × n unitary U, so

that the diagonals of U†HU and U†AU are multiples of 1n. It’s known that P(2) is true

[12]. The goal is to prove that P(n + 1) is true assuming that P(n) is true. Let H and A

be two n + 1 × n + 1 traceless hermitian matrices. Let Hn and An be their n × n upper

diagonal block matrices. Since P(n) is true, there is a n × n unitary Vn, so that diagonals

of V†n HnVn and V†n AnVn are multiples of 1n. Embedd Vn as the n × n upper diagonal block

of a n + 1 × n + 1 unitary V whose n + 1-th diagonal element is 1. Then it is easy to

see that the diagonals of the n × n upper diagonal block of V†HV and V†AV are scalar

multiples of 1n. Since V†HV and V†AV are traceless, their diagonals are scalar multiples

of matrix Dλ ≡
1

√
n(n+1)

Diag(1, 1, · · · , 1,−n), which is traceless. Let V†HV and V†AV

have components α and β ∈ R along Dλ. Then A′ ≡ 1√
α2+β2

(−βV†HV + αV†AV) has a
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zero diagonal, and component of Dλ along H′ ≡ 1√
α2+β2

(αV†HV + βV†AV) is 1. Let the

(n, n + 1)-th matrix element of A′ be ae−iφ. Define Du ≡ Diag(1, 1, · · · , 1, e
−i(π+2φ)

4 , e
i(π+2φ)

4 ),

then the 2 × 2 lower diagonal block of A′′ ≡ D†uA′Du is a scalar multiple of σy. The

diagonal of H′′ ≡ D†uH′Du remains invariant. Let the real part of the (n, n + 1)-th matrix

element of H′′ be h. Using an S O(2) transformation, rotate between the n-th and n + 1-th

matrix elements of H′′ to obtain H′′′, while keeping all other elements fixed. A′′ will

remain invariant. Thus the real part of the 2× 2 lower diagonal block of H′′′ will undergo

the transformation

1 h

h −n

 −→
 cos θ2 sin θ

2

−sin θ
2 cos θ2


1 h

h −n


cos θ2 −sin θ

2

sin θ
2 cos θ2


=


1−n

2 + 1+n
2 cosθ + hsinθ hcosθ − 1+n

2 sinθ

hcosθ − 1+n
2 sinθ 1−n

2 −
1+n

2 cosθ − hsinθ


I want to solve for θ in the equation: 1−n

2 −
1+n

2 cosθ − hsinθ = 0. When θ = 0, the LHS is

−n and when θ = π, the LHS is 1. Since the LHS is a continuous function of θ, there must

be some θ ∈ (0, π) for which the LHS is zero. Choose θ to be this value. Then H′′′ and

A′′ are matrices whose n + 1-th diagonal elements are both zero. Using P(n) on the n × n

upper diagonal blocks of H′′′ and A′′, H′′′ and A′′ can be rotated to obtain corresponding

matrices whose diagonals are zero and which span the correspondingly rotated T . Then

the correspondingly rotated T⊥ contains all diagonal matrices which span a MAS. �

Another example: when dimT⊥ = 1, Ye et al [10] showed that the states aren’t distin-

guishable by LOCC at all. When limiting protocols to 1-LOCC, the theorem 3.2.5 makes

a stronger statement.

Theorem 3.2.5. If dimT⊥ ≤ n − 1, there is no 1-LOCC protocol which Alice can initiate

to distinguish the states.

Proof. Theorem 3.2.3 implies if the states are distinguishable by a 1-LOCC protocol,

then T⊥ contains an extremal rank-one POVM. The number of POVM elements in such
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a POVM will always be ≥ n and these POVM elements are always linearly independent

[72]. Hence dimT⊥ must be ≥ n for it to contain all POVM elements of an extremal rank

one POVM. �

Having covered dimT⊥ < n, I now move onto the case for dimT⊥ = n.

Theorem 3.2.6. When dimT⊥ = n, the states are distinguishable by 1-LOCC if and only

if T⊥ is a MAS of S.

Proof. The IF part is already covered in corollary 3.2.3.1. ONLY IF: Given that dimT⊥ =

n. Suppose that the states are distinguishable by 1-LOCC. Theorem 3.2.3 then implies

that T⊥ contains all POVM elements of an extremal rank-one POVM {| k̃∗〉〈k̃∗ |}dk=1. That

the POVM elements of a rank-one extremal POVM are linearly independent [73] im-

plies that d = n (since | k̃∗〉〈k̃∗ | ∈ T⊥, and dimT⊥ = n ). This implies that the isomet-

ric matrix relating {| k̃∗〉}nk=1 to any ONB of Cn has to be a n × n unitary matrix, which

implies that {| k̃∗〉〈k̃∗ |}nk=1 −→ {| k
∗〉〈k∗ |}nk=1 is a rank-one projective measurement. Since

span
(
{| k∗〉〈k∗ |}nk=1

)
= T⊥, T⊥ is a MAS of S. �

Consider the special case where m = n and when the states are pure: ρ(AB)
i −→ |ψi〉AB. Also

then Wi j matrices change: Wi j −→ Wi, and the index set I is {(i, i′), ∀ 1 ≤ i < i′ ≤ n}.

The cardinality of I now is n(n−1)
2 . One can generally expect {Hi, Ai}i∈I to be a linearly

independent set, which, in the case of m = n implies that dimT = n(n−1) and dimT⊥ = n

for almost all sets of n orthogonal states in HA ⊗ HB. This is indeed the case; consider

corollary 3.2.6.1.

Corollary 3.2.6.1. Theorem 3.2.6 gives the necessary and sufficient condition for the 1-

LOCC distinguishability of almost all sets of n orthogonal pure states fromHA ⊗HB, i.e.,

it gives an algorithm to compute whether or not almost any set of n orthogonal bipartite

pure states fromHA ⊗HB is distinguishable by 1-LOCC.
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The proof for this is essentially the same as the proof which Cohen gave [13] for stating

that almost all sets of n ≥ n+1 orthogonal multipartite qudit states in n⊗N systems (N ≥ 2)

are locally indistinguishable, but for the sake of completeness I give a rigorous proof for

this case in the appendix B. I now give an example for theorem 3.2.6.

Example 3.2.2. For the 1-LOCC of the set of states {|ψ00〉AB, |ψ01〉AB, |ψ10〉AB, |ψ33〉AB}, T

is spanned by the following hermitian matrices: W01+W03
2 , W01−W03

2i , W10+W30
2 , W10−W30

2i , W33+iW11
2 ,

W01−W03
2i , W13−iW31

2 , W13+iW31
2i , i W32+W12

2 , W32−W12
2 , W23−W21

2 , W23+W21
2i . Hence dimT = 12. This

implies that dimT⊥ = 4, where T⊥ is spanned by the hermitian matrices 14, W22, W02, and

W20. Note that all these matrices commute with each other (see example 3.2.1). ThusT⊥ is

a MAS. The common eigenbasis, which diagonalizes any matrix in T⊥ is
{ 1
√

2
(1, 0, 1, 0)T ,

1
√

2
(1, 0,−1, 0)T , 1

√
2
(0, 1, 0, 1)T , 1

√
2
(0, 1, 0,−1)T }. It’s then seen that Alice can initiate a 1-

LOCC protocol to distinguish the given set of states by performing rank-one projective

measurement in the ONB
{ | 0〉A+| 2〉A√

2
, | 0〉A−| 2〉A√

2
, | 1〉A+| 3〉A√

2
, | 1〉A−| 3〉A√

2

}
.

From the discussion so far it has been established that when dimT⊥ ≤ n or when dimT⊥ ≥

n2 − 2, it can conclusively be said if T⊥ contains a MAS or not. In the cases when

n + 1 ≤ dimT⊥ ≤ n2 − 3, it is difficult to obtain a general algorithm which conclusively

establishes if T⊥ contains a MAS or not. For certain values of dimT⊥ greater than n (and

smaller than n2), I will give a necessary condition for T⊥ to not contain a MAS. For that

consider the following: let dimT⊥ = n + t, where t ≥ 1. Let {Ti}
n+t−1
i=0 be an ONB for T⊥,

with T0 = 1
√

n1n. Let C be the real vector space, spanned by the matrices in {i[T j,Tk]

| 0 ≤ j < k ≤ n + t − 1}, where [T j,Tk] ≡ T jTk − TkT j.

Theorem 3.2.7. When 1 ≤ t ≤
√

3n2 − 3n + 1
4 − (n− 3

2 ) , T⊥ contains no MAS if dimC >

tn +
t(t−3)

2 .

Proof. Since T0 = 1
√

n1n, varying over the indices 0 ≤ j < k ≤ n + t − 1, one obtains

(n+t−1)(n+t−2)
2 commutators i[T j,Tk]. If T⊥ contains a MAS, choose the ONB {Ti}

n+t−1
i=0 such

that {Ti}
n−1
i=0 is an ONB for this MAS, where again T0 = 1

√
n1n. Then i[T j,Tk] = 0, ∀ 0 ≤
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j < k ≤ n−1, which implies that (n−1)(n−2)
2 of the (n+t−1)(n+t−2)

2 aforementioned commutators

are zero, which implies that dimC can be at most Min
{
tn +

t(t−3)
2 , n2 − 1

}
.

Now assume that one doesn’t know if T⊥ contains a MAS or not. When 1 ≤ t ≤√
3n2 − 3n + 1

4 − (n − 3
2 ) then n ≤ tn +

t(t−3)
2 ≤ n2 − 1. In such a case if dimC > tn +

t(t−3)
2 ,

then that implies that T⊥ contains no MAS. �

For dimT⊥ = n + 1, one can give a necessary and a sufficient condition for T⊥ to contain

a MAS. For that consider the following: let {Gi}
dimC
i=1 be an ONB for C. Then for each

j ∈ {1, 2, · · · , dimC}, define the n + 1 × n + 1 real antisymmetric matrix Γ j, whose matrix

elements are given by (Γ j)kl = iTr(G j[Tk,Tl]). Let G be the real vector space obtained

by spanning the set {Γ j}
dimC
j=1 on the field of real numbers. Let {Ω j}

dimG

j=1 be an ONB for G.

Theorem 2.4.2 implies that if dimC > n, then T⊥ doesn’t contain a MAS. Hence assume

that dimC ≤ n. This implies that dimG ≤ n too.

Theorem 3.2.8. When dimT⊥ = n + 1, T⊥ contains a MAS if and only if Ω j is rank 2 for

all j = 1, 2, · · · , dimG and ∩dimG

j=1 S upp(Ω j) is one dimensional.

Proof. IF Assume that Ω j is rank 2, ∀ 1 ≤ j ≤ dimG, and ∩dimG

j=1 S upp(Ω j) is one di-

mensional, spanned by the real (n + 1)-tuple
~
en+1 ≡ (e1 n+1, e2 n+1, · · · , en+1 n+1)T . Since Ω j

is anti-symmetric and real, and since it is rank 2, there exists a real (n + 1)-tuple
~
e j ≡

(e1 j, e2 j, · · · , en+1 j)T so that Ω j =
~
en+1
~
eT

j −
~
e j
~
en+1

T . In fact, there is a degree of freedom in

choosing
~
e j: Ω j is invariant for any arbitrary value of the inner product

~
e j

T .
~
en+1. Choose

~
e j

to be orthogonal to
~
en+1. In that case, for Ω j to be orthogonal to Ω j′ (Ω j and Ω j′ belong to

an ONB for G), we require the inner product
~
e j

T .
~
e j′ = 0, for j , j′. Let Γ j =

∑dimG

k=1 αk jΩk =

~
en+1

~
gT

j
−

~
g j
~
en+1

T , where
~
g j ≡

∑dimG

k=1 αk j
~
ek. Hence Γ j are also rank 2 matrices. If dimG < n, then

complete the basis {
~
e1,
~
e2, · · · ,

~
edimG

~
edimG+1, · · · ,

~
en+1}. One can normalize Ω j to be such that

{
~
e j}

n+1
j=1 is an ONB for Cn+1. Arrange

~
e j

T as rows of a n + 1 × n + 1 orthogonal matrix O in

ascending order of j from 0 to n+1. Then O
~
e1 = (1, 0, 0, · · · , 0)T , O

~
e2 = (0, 1, 0, · · · , 0)T ,

· · · , O
~
en+1 = (0, 0, 0, · · · , 1)T . Then OΓ jOT is such that its n × n upper diagonal block is
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zero, i.e., for all 1 ≤ j ≤ dimC and for 1 ≤ k, l ≤ n

(
OΓ jOT

)
kl

= 0 =⇒

n+1∑
s,t=1

OksTr
(
G j[Ts,Tt]

)
OT

tl = 0,

=⇒ Tr
(
G j[T ′k,T

′
l ]
)

= 0,

(3.38)

where T ′k ≡
∑n+1

l=1 OklTl. Since T ′k ∈ T⊥, [T ′k,T
′
l ] ∈ C. But since {G j}

dimC
j=1 is an ONB for C,

equation (3.38) implies that [T ′k,T
′
l ] = 0 when 1 ≤ k, l ≤ n. This implies that {T ′j}

n
j=1 is a MAS

in T⊥. ONLY IF Assume that T⊥ contains a MAS and let {T j}
n
j=1 be an ONB for this MAS.

Then Tr(G j[Tk,Tl]) = 0 when 1 ≤ k, l ≤ n. This implies that the n × n upper diagonal block

of Γ j is zero, which makes it a rank 2 matrix. The same is true for {Ω j}
dimG
j=1 , since it is an ONB

for span({Γ j}
dimC
j=1 ). Now the only non-zero entries in Ω j are along the n + 1-th column and the

n + 1-th row. For Ω j and Ω j′ to be orthogonal one requires their corresponding n + 1-th columns

(and n + 1-th rows) to be orthogonal as well. This implies ∩dimG
j=1 S upp(Ω j) is spanned by the vector

(0, 0, · · · , 0, 1)T , and is hence one dimensional. �

Finally, I give an example of the utility of theorem (3.2.8).

Example 3.2.3. For set of states {|ψ00〉AB, |ψ01〉AB, |ψ12〉AB, |ψ30〉AB}, T⊥ is spanned by {T1 =

14, T2 = W02, T3 = W21−W23
2 , T4 = W21+W23

2i , T5 = W20}. C is spanned by

G1 =
1

2
√

2



0 1 0 1

−1 0 −1 0

0 1 0 1

−1 0 −1 0


,G2 =

i

2
√

2



0 1 0 1

1 0 1 0

0 1 0 1

1 0 1 0


. (3.39)

G is spanned by the following matrices

Γ1 ∝ Ω1 =
1
√

2



0 0 0 0 0

0 0 0 0 0

0 0 0 0 1

0 0 0 0 0

0 0 −1 0 0


,Γ2 ∝ Ω2 =

1
√

2



0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 1

0 0 0 −1 0


. (3.40)
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Ω1 and Ω2 are rank 2 and S upp(Ω1) ∩ S upp(Ω2) is spanned by (0, 0, 0, 0, 1)T . Since

(Γ j)kl = iTr(G j[Tk,Tl]), the fact that the 4 × 4 upper diagonal block of Γ1 are zero im-

plies that T1,T2,T3,T4 span a MAS in T⊥. Upon computing the common eigenbasis of

this MAS, and using the correspondence given in example 3.2.1, we obtained the ONB:{
| 0〉A+| 1〉A+| 2〉A+| 3〉A

2 , | 0〉A−| 1〉A−| 2〉A+| 3〉A
2 , | 0〉A+| 1〉A−| 2〉A−| 3〉A

2 , | 0〉A−| 1〉A+| 2〉A−| 3〉A
2

}
. Then Alice can ini-

tiate a 1-LOCC protocol to distinguish the given states by measuring in this ONB.

3.2.2 Summary

As mentioned earlier, I made two assumptions in the beginning of this section to keep the

notation simpler: that Alice always starts the 1-LOCC protocol and that the dimensions

of Alice’s and Bob’s subsystems are equal. The results derived under these assumptions

actually hold for the more general scenarios where both Alice or Bob start the 1-LOCC

protocol and when the dimensions of Alice’s and Bob’s subsystems are unequal. A broad

summary of the results in this section can then be given as follows: for the i-th party of the

nA⊗nB dimensional bipartite system, the set of all sets of orthogonal bipartite states can be

partitioned into different classes, based on the value of dimT (i)
⊥ of each set of orthogonal

bipartite states. Sweeping results about the existence of 1-LOCC distinguishability pro-

tocols, which the i-th party can initiate, can be made about all sets of orthogonal bipartite

states, which lie in certain classes for example: (i) if dimT (i)
⊥ < n there is no rank-one

POVM which the i-th party can initiate the protocol with, (ii) if dimT⊥ = n, such a pro-

tocol exists if and only if T (i)
⊥ is a MAS, (iii) when dimT (i)

⊥ ≥ n2
i − 2, such a protocol will

always exist. Hence, in one sweep, once can establish results for all sets of orthogonal

states which fall in a class, by proving said result for that class. To add a final comment on

the usefulness of this framework: note that in [13], Cohen used the same structure to show

that almost all sets of ≥ n + 1 orthogonal N-qudit multipartite states (in (Cn)⊗N) are not

distinguishable by LOCC. Putting all this together, I hence argue that a deeper study of

this structure will be a rewarding experience for studying problems of distinguishability
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of orthogonal states by LOCC.

3.2.3 Future Directions

The significance noted above implies that it would be rewarding to study more deeply the

framework proposed. I now give a list of tentative questions that I wish to pursue.

1. In [70] I gave necessary and sufficient conditions for the existence of 1-LOCC

distinguishability protocols, which are initiated with projective measurements, for

classes corresponding to the range 2 ≤ dimT⊥ ≤ n + 1. It is natural to ask

how one can extract similar information from classes corresponding to the range

n + 2 ≤ dimT⊥ ≤ n2 − 3.

(a) I anticipate that the necessary and sufficient condition for the existence of

such a 1-LOCC protocol (which starts with a projective measurement) for the

local distinguishability of sets in classes corresponding to dimT⊥ ≥ n + 2

will be similar to the necessary and sufficient conditions obtained for the class

corresponding to dimT⊥ = n + 1.

(b) Walgate et al’s result [12] tells us that all sets in the classes corresponding

to dimT⊥ ≥ n2 − 2, are locally distinguishable by 1-LOCC. This begs the

following question: is there some value of k > 2, so that sets in classes cor-

responding to dimT⊥ ≥ n2 − k are always distinguishable by 1-LOCC? More

generally, for each value of n can one find some k > 2 such that sets in classes

corresponding to dimT⊥ ≥ n2 − k are always 1-LOCC distinguishable?

2. Generalization of the framework to two-way LOCC (2-LOCC) and beyond: just

as the information content of all 1-LOCC local distinguishability protocols is con-

tained in a single subspace of hermitian matrices T⊥, the information content of all

2-LOCC protocols is distributed across different subspaces of hermitian matrices.
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These subspaces can be ‘arranged’ as a heirarchy: the first one in the heirarchy con-

tains information of all orthogonality preserving measurements that the first party

can initiate, and for each outcome of that measurement, there is a different post-

measurement subspace of hermitian matrices which contains the information for

the remaining part of the LOCC protocol. While this heirarchy of subspaces of

hermitian matrices makes the structure for 2-LOCC more difficult to grasp, simple

examples like the ones given by Nathanson in [11], could give us perspective on

finer details of the structure.
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Chapter 4

Discussion

In this chapter I will summarize the contents of this thesis and discuss the reasons why the

contents of this thesis will be of interest to the quantum information community, particu-

larly the community interested in studying quantum state discrimination. The next part of

the chapter will be devoted to enunciating anticipated future directions which this thesis

leads me to.

4.1 Summary and Significance

In this thesis were studies two different kinds of problems in quantum state discrimina-

tion: minimum error discrimination and local distinguishability of quantum states. It is

seen that while the task underpinning these problems is the same - to discriminate among

different states in an ensemble - there is little else that both problems share in common.

In particular, the mathematical structure of both problems bear little resemblance to each

other. This is also in part due to the fact that the nature of discrimination in both problems

is different: in the MED problems, I sought to obtain the optimal probability of success

for discriminating among non-orthogonal states, whereas in the local distinguishability

problem one I sought to given conditions for the perfect local distinguishability of or-

187
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thogonal bipartite states. That is, in the former case, one seeks to minimize error, while in

the latter case one seeks a yes or no answer to whether one can perfectly distinguish the

given states locally or not. Both problems are fairly challenging.

The MED problem: The algebraic structure of the MED of LI pure state ensembles is

known, and I exploited this structure, to give a technique to compute the optimal POVM

and optimal success probability for all LI pure state ensembles. And I generalized this

structure to ensembles of LI mixed states and showed how to compute the optimal POVM

and success probability for all LI mixed state ensembles as well. I now give some salient

features of the studied problem which maybe of interest for future directions.

i. While the structure of the MED problem for LI pure states was discovered a long

time back [1, 2, 3], it was never used to obtain the optimal POVM for the MED of

said ensembles. In this work, said structure was used to arrive at the solution. This

completes the work done in [1, 2, 3] by using the derived structure to arrive at the

solution. Similarly, said structure has been generalized to mixed state ensembles,

for which solutions can also be obtained.

ii. The algorithm is simple to implement. In particular, Newton-Raphson’s method is

the only prerequisite to apply the technique.

iii. In recent years, there has been a marked shift in adopting a geometric approach to

solving the MED problem. This is evident by the amount of work which has been

done in just the last three years [49, 74, 75, 48, 50]. The content of my work in

MED is based on the algebraic structure of the problem and hence stands out by

contrast to contemporary work on the topic.

iv. The relation between the MED for LI mixed state ensembles and MED for LI pure

state ensembles as given by theorem 2.5.12, tells us that for each LI mixed state

ensemble, there is a corresponding pure state decomposition, such that the opti-

mal POVM for the MED of the former decomposes into the optimal POVM for the
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MED of the latter. This relation between MED of LI mixed state ensembles and

LI pure state ensembles bears a resemblance with the composition law of Shan-

non entropy [64, 76], i.e., when the events A, B, etc in the sample space can be

divided into more events A1, A2, A3, etc, B1, B2, B3, etc, then the Shannon entropy

becomes a weighted average over the Shannon entropies of H(A1, A2, A3, · · · ),

H(B1, B2, B3, · · · ), etc.

Local Distinguishability of Quantum States: The motivation underlying the decision to

take up problems in the topic of perfect local distinguishability of quantum states was the

desire to obtain certain general conditions which sets of orthogonal bipartite states need

to satisfy for states in them to be locally distinguishable.

The first of these results gives a powerful necessary condition for the local distin-

guishability of MES in Cn ⊗Cn systems. Given the elevated status which MES en-

joy in quantum information theory, the local distinguishability of MES has gained

significant traction over the past few years [61, 60, 9, 68, 62, 11, 77, 78, 79]. In

[9], Nathanson used an upper bound to the locally accessible information to de-

rive the condition that no more than n orthogonal MES in Cn ⊗ Cn systems can

be locally discriminated. Me and my colleagues (Ramij Rahaman, Sibasish Ghosh

and Guruprasad Kar) anticipated that this upper bound could be used extract more

information about the local distinguishability of MES, particularly for n MES in

C
d ⊗ Cd bipartite quantum systems. It was this hunch that eventually lead to the

necessary condition (3.15). I now list the following reasons which explain why this

result will be of interest to the quantum information community.

i. The necessary condition (3.15) is simple to test for any set of n MES inCn⊗Cn

systems.

ii. The condition is very powerful as is demonstrated in subsection 3.1.4, where

it was shown that this condition is sufficient for the local distinguishability of

some sets of MES.
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The second of the results gives a framework for local distinguishability of orthog-

onal bipartite states by one-way LOCC. In particular, the existence of a one-way

LOCC protocol to distinguish a given set of states in n ⊗ n quantum systems is as-

sociated with the existence of a maximally abelian subspace in a subspace of n × n

hermitian matrices. In an earlier work, Ye et al. [10] introduced these subspaces,

which Cohen also used in [13] to show that almost all sets of n + 1 multipartite

states in n⊗N quantum systems are not distinguishable by LOCC. Thus the exis-

tence of these subspaces was already known before, but despite the significance of

Cohen’s result, there was little mention of these subspaces in the literature. I under-

took the exercise to show that these subspaces contain information of all one-way

LOCC protocol which can be initiated to discriminate the set of states. Hitherto

results on local distinguishability of orthogonal bipartite states were based on the

geometric and algebraic properties of the sets of states under study. For instance,

there has been a significant amount of study of the local distinguishability of gen-

eralized Bell states, which are lattice states [61, 60, 9, 68, 62, 11, 77, 78, 79]. One

encounters a rich diversity of geometric and algebraic structure exhibited by differ-

ent sets of orthogonal bipartite states, owing to which it is difficult to identify some

signature property which determines if a given set of orthogonal bipartite states are

locally distinguishable or not. This result is a first step towards such a result, in the

sense that it gives the necessary and sufficient condition for the one-way LOCC dis-

tinguishability of the set of states, regardless of its geometric or algebraic structure.

This marks a significant shift in approach to the problem of local distinguishability

of orthogonal bipartite states, which has mostly hitherto been done on a case-by-

case basis.

Another feature of the work is the departure from employing separable measurements or

PPT preserving measurements to arrive at the results. The intractable nature of LOCC

makes it difficult to study the local (in)distinguishability of quantum states under the

LOCC constraint, owing to which there has been a growing trend to study distinguisha-
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bility of bipartite and multipartite quantum states with separable operations or PPT pre-

serving operations. The results in this thesis are developed based solely on LOCC consid-

erations, and will therefore attract the attention of the quantum information community,

particularly, the smaller community interested in the local distinguishability of quantum

states.

4.2 General Future Directions

I saliently outline anticipated future directions which arise from the content of this thesis.

The difference between the future directions mentioned here and those in section 2.6 and

subsections 3.1.6 and 3.2.2, is that the anticipated future directions here are of a more

general and less technical nature.

i. Theorem 2.5.12 states that if {Πi}
m
i=1 is the optimal POVM for the MED of P̃

~
r =

{pi, ρi}
m
i=1, then there exists a spectral decomposition of the Πi’s, of the form Πi =∑

~
i∈Ii
|w?

~
i 〉〈w

?

~
i | for all 1 ≤ i ≤ m, where 〈w?

~
i |w

?

~
j 〉 = δ

~
i
~
j, and a pure state de-

composition of the piρi’s, i.e., piρi =
∑
~
i∈Ii
|ψ̃?

~
i 〉〈ψ̃

?

~
i | for 1 ≤ i ≤ m, such that

{|w?

~
i 〉〈w

?

~
i |}

~
i∈I is the optimal POVM for the MED of P̃

~
1 =

{
〈ψ̃?

~
i |ψ̃

?

~
i 〉, |ψ

?

~
i 〉〈ψ

?

~
i |
}
~
i∈I

,

where |ψ?
~
i 〉 = 1√

〈ψ̃?vvi |ψ̃
?

~
i 〉
| ψ̃?

~
i 〉. Thus the MED of an ensemble of LI mixed states is

directly related to the MED of an ensemble which comprises of a LI pure state de-

composition of the former mixed states. An interesting question to pursue would be

to know how this theorem can be generalized. An obvious choice of generalization

is to see if such a phenomenon also holds for ensembles of states which are not LI.

But one can also ask if such a phenomenon also holds for other quantum state dis-

crimination problems, for instance, for unambiguous state discrimination problem,

or even, the locally accessible information problem.

ii. The Holevo-Schumacher-Westermoreland theorem says if an ensemble P̃ is used

as a quantum sources of classical information, then the asymptotic rate of informa-
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tion transmission over a noiceless channel is given by the Holevo bound, defined

by equation (3.6). It is desired to know if the Holevo-like upper bound for the lo-

cally accessible information for an ensemble of bipartite quantum states, defined by

equation (3.8), is also asymptotically attainable, when the decoding operations are

restricted to LOCC.

iii. Is there any connection between the necessary condition (3.15) and theorem 3.2.3

for sets of MES?
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Appendix A

LOCC of Four Generalized Bell States

in C4 ⊗C4

A.1 Sets of states in theorem 3.1.2

Each set contains the state |ψ(4)
00 〉; the remaining states for each set are listed below:

{
|ψ(4)

01 〉, |ψ
(4)
02 〉, |ψ

(4)
03 〉

} {
|ψ(4)

01 〉, |ψ
(4)
02 〉, |ψ

(4)
13 〉

} {
|ψ(4)

01 〉, |ψ
(4)
02 〉, |ψ

(4)
23 〉

}
{
|ψ(4)

01 〉, |ψ
(4)
02 〉, |ψ

(4)
33 〉

} {
|ψ(4)

01 〉, |ψ
(4)
12 〉, |ψ

(4)
13 〉

} {
|ψ(4)

01 〉, |ψ
(4)
12 〉, |ψ

(4)
23 〉

}
{
|ψ(4)

01 〉, |ψ
(4)
12 〉, |ψ

(4)
33 〉

} {
|ψ(4)

01 〉, |ψ
(4)
13 〉, |ψ

(4)
22 〉

} {
|ψ(4)

01 〉, |ψ
(4)
13 〉, |ψ

(4)
32 〉

}
{
|ψ(4)

01 〉, |ψ
(4)
22 〉, |ψ

(4)
23 〉

} {
|ψ(4)

01 〉, |ψ
(4)
22 〉, |ψ

(4)
33 〉

} {
|ψ(4)

01 〉, |ψ
(4)
23 〉, |ψ

(4)
32 〉

}
{
|ψ(4)

02 〉, |ψ
(4)
11 〉, |ψ

(4)
13 〉

} {
|ψ(4)

02 〉, |ψ
(4)
11 〉, |ψ

(4)
23 〉

} {
|ψ(4)

02 〉, |ψ
(4)
11 〉, |ψ

(4)
33 〉

}
{
|ψ(4)

02 〉, |ψ
(4)
21 〉, |ψ

(4)
23 〉

} {
|ψ(4)

02 〉, |ψ
(4)
21 〉, |ψ

(4)
33 〉

}
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Table A.1: Sets of states of the form {|ψ(4)
a0 〉, |ψ

(4)
b1 〉, |ψ

(4)
c2 〉, |ψ

(4)
d3 〉}, where a, b, c, d ∈

{0, 1, 2, 3}.

{
|ψ(4)

10 〉, |ψ
(4)
20 〉, |ψ

(4)
30 〉

} {
|ψ(4)

10 〉, |ψ
(4)
20 〉, |ψ

(4)
31 〉

} {
|ψ(4)

10 〉, |ψ
(4)
20 〉, |ψ

(4)
32 〉

}
{
|ψ(4)

10 〉, |ψ
(4)
20 〉, |ψ

(4)
33 〉

} {
|ψ(4)

10 〉, |ψ
(4)
21 〉, |ψ

(4)
31 〉

} {
|ψ(4)

10 〉, |ψ
(4)
21 〉, |ψ

(4)
32 〉

}
{
|ψ(4)

10 〉, |ψ
(4)
21 〉, |ψ

(4)
33 〉

} {
|ψ(4)

10 〉, |ψ
(4)
22 〉, |ψ

(4)
31 〉

} {
|ψ(4)

10 〉, |ψ
(4)
22 〉, |ψ

(4)
32 〉

}
{
|ψ(4)

10 〉, |ψ
(4)
22 〉, |ψ

(4)
33 〉

} {
|ψ(4)

10 〉, |ψ
(4)
23 〉, |ψ

(4)
31 〉

} {
|ψ(4)

10 〉, |ψ
(4)
23 〉, |ψ

(4)
32 〉

}
{
|ψ(4)

11 〉, |ψ
(4)
20 〉, |ψ

(4)
31 〉

} {
|ψ(4)

11 〉, |ψ
(4)
20 〉, |ψ

(4)
32 〉

} {
|ψ(4)

11 〉, |ψ
(4)
20 〉, |ψ

(4)
33 〉

}
{
|ψ(4)

11 〉, |ψ
(4)
22 〉, |ψ

(4)
33 〉

} {
|ψ(4)

11 〉, |ψ
(4)
23 〉, |ψ

(4)
31 〉

} {
|ψ(4)

11 〉, |ψ
(4)
23 〉, |ψ

(4)
32 〉

}
{
|ψ(4)

12 〉, |ψ
(4)
20 〉, |ψ

(4)
32 〉

} {
|ψ(4)

13 〉, |ψ
(4)
22 〉, |ψ

(4)
31 〉

}

Table A.2: Sets of states of the form {|ψ(4)
0a 〉, |ψ

(4)
1b 〉, |ψ

(4)
2c 〉, |ψ

(4)
3d 〉, }, where a, b, c, d ∈

Z4

A.2 LOCC protocols for states in theorems 3.1.3 to 3.1.8

In theorems 3.1.3, 3.1.4, 3.1.5, 3.1.6, 3.1.7 and 3.1.8 are listed sets of four Generalized

Bell States inC4 ⊗C4, other than those listed in theorem 3.1.2, which are distinguishable

by one-way LOCC. It is assumed that Alice always initiates the one-way LOCC protocol,

and the measurement she initiates the LOCC protocol with is given in the proofs of theo-

rems 3.1.3, 3.1.4, 3.1.5, 3.1.6 and 3.1.8. In this section we present the remaining part of

these LOCC protocols , i.e., we list the ONB in which Bob will perform measurement.
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A.2.1 PMRS for each set in theorem 3.1.3

The set is {|ψ(4)
00 〉 , |ψ(4)

01 〉, |ψ
(4)
02 〉 , |ψ(4)

10 〉}.

The PMRS on Alice’s side is | u1〉 = −1
2ei π4 | 0〉 + 1

2 | 1〉 +
1
2ei π4 | 2〉 + 1

2 | 3〉.

Pre-Measurement State Reduced Post-Measurement State on Bob’s Side
|ψ(4)

00 〉
1
2 ei 3π

4 | 0〉 + 1
2 | 1〉 −

1
2 ei 3π

4 | 2〉 + 1
2 | 3〉

|ψ(4)
01 〉

1
2 | 0〉 +

1
2 ei 3π

4 | 1〉 + 1
2 | 2〉 −

1
2 ei 3π

4 | 3〉
|ψ(4)

02 〉 − 1
2 ei 3π

4 | 0〉 + 1
2 | 1〉 +

1
2 ei 3π

4 | 2〉 + 1
2 | 3〉

|ψ(4)
10 〉

1
2 ei 3π

4 | 0〉 + i
2 | 1〉 +

1
2 ei 3π

4 | 2〉 − i
2 | 3〉

The PMRS on Alice’s side is | u2〉 = 1
2ei π4 | 0〉 + 1

2 | 1〉 −
1
2ei π4 | 2〉 + 1

2 | 3〉.

Pre-Measurement State Reduced Post-Measurement State on Bob’s Side
|ψ(4)

00 〉 − 1
2 ei 3π

4 | 0〉 + 1
2 | 1〉 +

1
2 ei 3π

4 | 2〉 + 1
2 | 3〉

|ψ(4)
01 〉

1
2 | 0〉 −

1
2 ei 3π

4 | 1〉 + 1
2 | 2〉 +

1
2 ei 3π

4 | 3〉
|ψ(4)

02 〉
1
2 ei 3π

4 | 0〉 + 1
2 | 1〉 −

1
2 ei 3π

4 | 2〉 + 1
2 | 3〉

|ψ(4)
10 〉 − 1

2 ei 3π
4 | 0〉 + i

2 | 1〉 −
1
2 ei 3π

4 | 2〉 − i
2 | 3〉

The PMRS on Alice’s side is | u3〉 = 1
2ei 3π

4 | 0〉 − 1
2 | 1〉 +

1
2ei 3π

4 | 2〉 + 1
2 | 3〉.

Pre-Measurement State Reduced Post-Measurement State on Bob’s Side
|ψ(4)

00 〉 −1
2 ei π4 | 0〉 − 1

2 | 1〉 −
1
2 ei π4 | 2〉 + 1

2 | 3〉
|ψ(4)

01 〉
1
2 | 0〉 −

1
2 ei π4 | 1〉 − 1

2 | 2〉 −
1
2 ei π4 | 3〉

|ψ(4)
02 〉 −1

2 ei π4 | 0〉 + 1
2 | 1〉 −

1
2 ei π4 | 2〉 − 1

2 | 3〉
|ψ(4)

10 〉 −1
2 ei π4 | 0〉 − i

2 | 1〉 +
1
2 ei π4 | 2〉 − i

2 | 3〉

The PMRS on Alice’s side is | u4〉 = −1
2ei 3π

4 | 0〉 − 1
2 | 1〉 −

1
2ei 3π

4 | 2〉 + 1
2 | 3〉.

Pre-Measurement State Reduced Post-Measurement State on Bob’s Side
|ψ(4)

00 〉
1
2 ei π4 | 0〉 − 1

2 | 1〉 +
1
2 ei π4 | 2〉 + 1

2 | 3〉
|ψ(4)

01 〉
1
2 | 0〉 +

1
2 ei π4 | 1〉 − 1

2 | 2〉 +
1
2 ei π4 | 3〉

|ψ(4)
02 〉

1
2 ei π4 | 0〉 + 1

2 | 1〉 +
1
2 ei π4 | 2〉 − 1

2 | 3〉
|ψ(4)

10 〉
1
2 ei π4 | 0〉 − i

2 | 1〉 −
1
2 ei π4 | 2〉 − i

2 | 3〉
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The set is {|ψ(4)
00 〉 , |ψ(4)

01 〉, |ψ
(4)
02 〉 , |ψ(4)

21 〉}.

The PMRS on Alice’s side is | u1〉 = −1
2ei π4 | 0〉 + 1

2 | 1〉 +
1
2ei π4 | 2〉 + 1

2 | 3〉.

Pre-Measurement State Reduced Post-Measurement State on Bob’s Side
|ψ(4)

00 〉
1
2 ei 3π

4 | 0〉 + 1
2 | 1〉 −

1
2 ei 3π

4 | 2〉 + 1
2 | 3〉

|ψ(4)
01 〉

1
2 | 0〉 +

1
2 ei 3π

4 | 1〉 + 1
2 | 2〉 −

1
2 ei 3π

4 | 3〉
|ψ(4)

02 〉 − 1
2 ei 3π

4 | 0〉 + 1
2 | 1〉 +

1
2 ei 3π

4 | 2〉 + 1
2 | 3〉

|ψ(4)
21 〉 − 1

2 | 0〉 +
1
2 ei 3π

4 | 1〉 − 1
2 | 2〉 −

1
2 ei 3π

4 | 3〉

The PMRS on Alice’s side is | u2〉 = 1
2ei π4 | 0〉 + 1

2 | 1〉 −
1
2ei π4 | 2〉 + 1

2 | 3〉.

Pre-Measurement State Reduced Post-Measurement State on Bob’s Side
|ψ(4)

00 〉 − 1
2 ei 3π

4 | 0〉 + 1
2 | 1〉 +

1
2 ei 3π

4 | 2〉 + 1
2 | 3〉

|ψ(4)
01 〉

1
2 | 0〉 −

1
2 ei 3π

4 | 1〉 + 1
2 | 2〉 +

1
2 ei 3π

4 | 3〉
|ψ(4)

02 〉
1
2 ei 3π

4 | 0〉 + 1
2 | 1〉 −

1
2 ei 3π

4 | 2〉 + 1
2 | 3〉

|ψ(4)
21 〉 − 1

2 | 0〉 −
1
2 ei 3π

4 | 1〉 − 1
2 | 2〉 +

1
2 ei 3π

4 | 3〉

The PMRS on Alice’s side is | u3〉 = 1
2ei 3π

4 | 0〉 − 1
2 | 1〉 +

1
2ei 3π

4 | 2〉 + 1
2 | 3〉.

Pre-Measurement State Reduced Post-Measurement State on Bob’s Side
|ψ(4)

00 〉 −1
2 ei π4 | 0〉 − 1

2 | 1〉 −
1
2 ei π4 | 2〉 + 1

2 | 3〉
|ψ(4)

01 〉
1
2 | 0〉 −

1
2 ei π4 | 1〉 − 1

2 | 2〉 −
1
2 ei π4 | 3〉

|ψ(4)
02 〉 −1

2 ei π4 | 0〉 + 1
2 | 1〉 −

1
2 ei π4 | 2〉 − 1

2 | 3〉
|ψ(4)

21 〉 −1
2 | 0〉 −

1
2 ei π4 | 1〉 + 1

2 | 2〉 −
1
2 ei π4 | 3〉

The PMRS on Alice’s side is | u4〉 = −1
2ei 3π

4 | 0〉 − 1
2 | 1〉 −

1
2ei 3π

4 | 2〉 + 1
2 | 3〉.

Pre-Measurement State Reduced Post-Measurement State on Bob’s Side
|ψ(4)

00 〉
1
2 ei π4 | 0〉 − 1

2 | 1〉 +
1
2 ei π4 | 2〉 + 1

2 | 3〉
|ψ(4)

01 〉
1
2 | 0〉 +

1
2 ei π4 | 1〉 − 1

2 | 2〉 +
1
2 ei π4 | 3〉

|ψ(4)
02 〉

1
2 ei π4 | 0〉 + 1

2 | 1〉 +
1
2 ei π4 | 2〉 − 1

2 | 3〉
|ψ(4)

21 〉 −1
2 | 0〉 +

1
2 ei π4 | 1〉 + 1

2 | 2〉 +
1
2 ei π4 | 3〉
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The set is {|ψ(4)
00 〉 , |ψ(4)

01 〉, |ψ
(4)
02 〉 , |ψ(4)

32 〉}.

The PMRS on Alice’s side is | u1〉 = −1
2ei π4 | 0〉 + 1

2 | 1〉 +
1
2ei π4 | 2〉 + 1

2 | 3〉.

Pre-Measurement State Reduced Post-Measurement State on Bob’s Side
|ψ(4)

00 〉
1
2 ei 3π

4 | 0〉 + 1
2 | 1〉 −

1
2 ei 3π

4 | 2〉 + 1
2 | 3〉

|ψ(4)
01 〉

1
2 | 0〉 +

1
2 ei 3π

4 | 1〉 + 1
2 | 2〉 −

1
2 ei 3π

4 | 3〉
|ψ(4)

02 〉 − 1
2 ei 3π

4 | 0〉 + 1
2 | 1〉 +

1
2 ei 3π

4 | 2〉 + 1
2 | 3〉

|ψ(4)
32 〉

1
2 ei 3π

4 | 0〉 + i
2 | 1〉 +

1
2 ei 3π

4 | 2〉 − i
2 | 3〉

The PMRS on Alice’s side is | u2〉 = 1
2ei π4 | 0〉 + 1

2 | 1〉 −
1
2ei π4 | 2〉 + 1

2 | 3〉.

Pre-Measurement State Reduced Post-Measurement State on Bob’s Side
|ψ(4)

00 〉 − 1
2 ei 3π

4 | 0〉 + 1
2 | 1〉 +

1
2 ei 3π

4 | 2〉 + 1
2 | 3〉

|ψ(4)
01 〉

1
2 | 0〉 −

1
2 ei 3π

4 | 1〉 + 1
2 | 2〉 +

1
2 ei 3π

4 | 3〉
|ψ(4)

02 〉
1
2 ei 3π

4 | 0〉 + 1
2 | 1〉 −

1
2 ei 3π

4 | 2〉 + 1
2 | 3〉

|ψ(4)
32 〉 − 1

2 ei 3π
4 | 0〉 + i

2 | 1〉 −
1
2 ei 3π

4 | 2〉 − i
2 | 3〉

The PMRS on Alice’s side is | u3〉 = 1
2ei 3π

4 | 0〉 − 1
2 | 1〉 +

1
2ei 3π

4 | 2〉 + 1
2 | 3〉.

Pre-Measurement State Reduced Post-Measurement State on Bob’s Side
|ψ(4)

00 〉 −1
2 ei π4 | 0〉 − 1

2 | 1〉 −
1
2 ei π4 | 2〉 + 1

2 | 3〉
|ψ(4)

01 〉
1
2 | 0〉 −

1
2 ei π4 | 1〉 − 1

2 | 2〉 −
1
2 ei π4 | 3〉

|ψ(4)
02 〉 −1

2 ei π4 | 0〉 + 1
2 | 1〉 −

1
2 ei π4 | 2〉 − 1

2 | 3〉
|ψ(4)

32 〉
1
2 ei π4 | 0〉 + i

2 | 1〉 −
1
2 ei π4 | 2〉 + i

2 | 3〉

The PMRS on Alice’s side is | u4〉 = −1
2ei 3π

4 | 0〉 − 1
2 | 1〉 −

1
2ei 3π

4 | 2〉 + 1
2 | 3〉.

Pre-Measurement State Reduced Post-Measurement State on Bob’s Side
|ψ(4)

00 〉
1
2 ei π4 | 0〉 − 1

2 | 1〉 +
1
2 ei π4 | 2〉 + 1

2 | 3〉
|ψ(4)

01 〉
1
2 | 0〉 +

1
2 ei π4 | 1〉 − 1

2 | 2〉 +
1
2 ei π4 | 3〉

|ψ(4)
02 〉

1
2 ei π4 | 0〉 + 1

2 | 1〉 +
1
2 ei π4 | 2〉 − 1

2 | 3〉
|ψ(4)

32 〉 −1
2 ei π4 | 0〉 + i

2 | 1〉 +
1
2 ei π4 | 2〉 + i

2 | 3〉
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The set is {|ψ(4)
00 〉 , |ψ(4)

01 〉, |ψ
(4)
10 〉 , |ψ(4)

13 〉}.

The PMRS on Alice’s side is | u1〉 = −1
2ei π4 | 0〉 + 1

2 | 1〉 +
1
2ei π4 | 2〉 + 1

2 | 3〉.

Pre-Measurement State Reduced Post-Measurement State on Bob’s Side
|ψ(4)

00 〉
1
2 ei 3π

4 | 0〉 + 1
2 | 1〉 −

1
2 ei 3π

4 | 2〉 + 1
2 | 3〉

|ψ(4)
01 〉

1
2 | 0〉 +

1
2 ei 3π

4 | 1〉 + 1
2 | 2〉 −

1
2 ei 3π

4 | 3〉
|ψ(4)

10 〉
1
2 ei 3π

4 | 0〉 + i
2 | 1〉 +

1
2 ei 3π

4 | 2〉 − i
2 | 3〉

|ψ(4)
13 〉

i
2 | 0〉 +

1
2 ei 3π

4 | 1〉 − i
2 | 2〉 +

1
2 ei 3π

4 | 3〉

The PMRS on Alice’s side is | u2〉 = 1
2ei π4 | 0〉 + 1

2 | 1〉 −
1
2ei π4 | 2〉 + 1

2 | 3〉.

Pre-Measurement State Reduced Post-Measurement State on Bob’s Side
|ψ(4)

00 〉 − 1
2 ei 3π

4 | 0〉 + 1
2 | 1〉 +

1
2 ei 3π

4 | 2〉 + 1
2 | 3〉

|ψ(4)
01 〉

1
2 | 0〉 −

1
2 ei 3π

4 | 1〉 + 1
2 | 2〉 +

1
2 ei 3π

4 | 3〉
|ψ(4)

10 〉 − 1
2 ei 3π

4 | 0〉 + i
2 | 1〉 −

1
2 ei 3π

4 | 2〉 − i
2 | 3〉

|ψ(4)
13 〉

i
2 | 0〉 −

1
2 ei 3π

4 | 1〉 − i
2 | 2〉 −

1
2 ei 3π

4 | 3〉

The PMRS on Alice’s side is | u3〉 = 1
2ei 3π

4 | 0〉 − 1
2 | 1〉 +

1
2ei 3π

4 | 2〉 + 1
2 | 3〉.

Pre-Measurement State Reduced Post-Measurement State on Bob’s Side
|ψ(4)

00 〉 −1
2 ei π4 | 0〉 − 1

2 | 1〉 −
1
2 ei π4 | 2〉 + 1

2 | 3〉
|ψ(4)

01 〉
1
2 | 0〉 −

1
2 ei π4 | 1〉 − 1

2 | 2〉 −
1
2 ei π4 | 3〉

|ψ(4)
10 〉 −1

2 ei π4 | 0〉 − i
2 | 1〉 +

1
2 ei π4 | 2〉 − i

2 | 3〉
|ψ(4)

13 〉 − i
2 | 0〉 +

1
2 ei π4 | 1〉 − i

2 | 2〉 −
1
2 ei π4 | 3〉

The PMRS on Alice’s side is | u4〉 = −1
2ei 3π

4 | 0〉 − 1
2 | 1〉 −

1
2ei 3π

4 | 2〉 + 1
2 | 3〉.

Pre-Measurement State Reduced Post-Measurement State on Bob’s Side
|ψ(4)

00 〉
1
2 ei π4 | 0〉 − 1

2 | 1〉 +
1
2 ei π4 | 2〉 + 1

2 | 3〉
|ψ(4)

01 〉
1
2 | 0〉 +

1
2 ei π4 | 1〉 − 1

2 | 2〉 +
1
2 ei π4 | 3〉

|ψ(4)
10 〉

1
2 ei π4 | 0〉 − i

2 | 1〉 −
1
2 ei π4 | 2〉 − i

2 | 3〉
|ψ(4)

13 〉 − i
2 | 0〉 −

1
2 ei π4 | 1〉 − i

2 | 2〉 +
1
2 ei π4 | 3〉
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The set is {|ψ(4)
00 〉 , |ψ(4)

01 〉, |ψ
(4)
10 〉 , |ψ(4)

20 〉}.

The PMRS on Alice’s side is | u1〉 = −1
2ei π4 | 0〉 + 1

2 | 1〉 +
1
2ei π4 | 2〉 + 1

2 | 3〉.

Pre-Measurement State Reduced Post-Measurement State on Bob’s Side
|ψ(4)

00 〉
1
2 ei 3π

4 | 0〉 + 1
2 | 1〉 −

1
2 ei 3π

4 | 2〉 + 1
2 | 3〉

|ψ(4)
01 〉

1
2 | 0〉 +

1
2 ei 3π

4 | 1〉 + 1
2 | 2〉 −

1
2 ei 3π

4 | 3〉
|ψ(4)

10 〉
1
2 ei 3π

4 | 0〉 + i
2 | 1〉 +

1
2 ei 3π

4 | 2〉 − i
2 | 3〉

|ψ(4)
20 〉

1
2 ei 3π

4 | 0〉 − 1
2 | 1〉 −

1
2 ei 3π

4 | 2〉 − 1
2 | 3〉

The PMRS on Alice’s side is | u2〉 = 1
2ei π4 | 0〉 + 1

2 | 1〉 −
1
2ei π4 | 2〉 + 1

2 | 3〉.

Pre-Measurement State Reduced Post-Measurement State on Bob’s Side
|ψ(4)

00 〉 − 1
2 ei 3π

4 | 0〉 + 1
2 | 1〉 +

1
2 ei 3π

4 | 2〉 + 1
2 | 3〉

|ψ(4)
01 〉

1
2 | 0〉 −

1
2 ei 3π

4 | 1〉 + 1
2 | 2〉 +

1
2 ei 3π

4 | 3〉
|ψ(4)

10 〉 − 1
2 ei 3π

4 | 0〉 + i
2 | 1〉 −

1
2 ei 3π

4 | 2〉 − i
2 | 3〉

|ψ(4)
20 〉 − 1

2 ei 3π
4 | 0〉 − 1

2 | 1〉 +
1
2 ei 3π

4 | 2〉 − 1
2 | 3〉

The PMRS on Alice’s side is | u3〉 = 1
2ei 3π

4 | 0〉 − 1
2 | 1〉 +

1
2ei 3π

4 | 2〉 + 1
2 | 3〉.

Pre-Measurement State Reduced Post-Measurement State on Bob’s Side
|ψ(4)

00 〉 −1
2 ei π4 | 0〉 − 1

2 | 1〉 −
1
2 ei π4 | 2〉 + 1

2 | 3〉
|ψ(4)

01 〉
1
2 | 0〉 −

1
2 ei π4 | 1〉 − 1

2 | 2〉 −
1
2 ei π4 | 3〉

|ψ(4)
10 〉 −1

2 ei π4 | 0〉 − i
2 | 1〉 +

1
2 ei π4 | 2〉 − i

2 | 3〉
|ψ(4)

20 〉 −1
2 ei π4 | 0〉 + 1

2 | 1〉 −
1
2 ei π4 | 2〉 − 1

2 | 3〉

The PMRS on Alice’s side is | u4〉 = −1
2ei 3π

4 | 0〉 − 1
2 | 1〉 −

1
2ei 3π

4 | 2〉 + 1
2 | 3〉.

Pre-Measurement State Reduced Post-Measurement State on Bob’s Side
|ψ(4)

00 〉
1
2 ei π4 | 0〉 − 1

2 | 1〉 +
1
2 ei π4 | 2〉 + 1

2 | 3〉
|ψ(4)

01 〉
1
2 | 0〉 +

1
2 ei π4 | 1〉 − 1

2 | 2〉 +
1
2 ei π4 | 3〉

|ψ(4)
10 〉

1
2 ei π4 | 0〉 − i

2 | 1〉 −
1
2 ei π4 | 2〉 − i

2 | 3〉
|ψ(4)

20 〉
1
2 ei π4 | 0〉 + 1

2 | 1〉 +
1
2 ei π4 | 2〉 − 1

2 | 3〉
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The set is {|ψ(4)
00 〉 , |ψ(4)

01 〉, |ψ
(4)
10 〉 , |ψ(4)

31 〉}.

The PMRS on Alice’s side is | u1〉 = −1
2ei π4 | 0〉 + 1

2 | 1〉 +
1
2ei π4 | 2〉 + 1

2 | 3〉.

Pre-Measurement State Reduced Post-Measurement State on Bob’s Side
|ψ(4)

00 〉
1
2 ei 3π

4 | 0〉 + 1
2 | 1〉 −

1
2 ei 3π

4 | 2〉 + 1
2 | 3〉

|ψ(4)
01 〉

1
2 | 0〉 +

1
2 ei 3π

4 | 1〉 + 1
2 | 2〉 −

1
2 ei 3π

4 | 3〉
|ψ(4)

10 〉
1
2 ei 3π

4 | 0〉 + i
2 | 1〉 +

1
2 ei 3π

4 | 2〉 − i
2 | 3〉

|ψ(4)
31 〉

i
2 | 0〉 +

1
2 ei 3π

4 | 1〉 − i
2 | 2〉 +

1
2 ei 3π

4 | 3〉

The PMRS on Alice’s side is | u2〉 = 1
2ei π4 | 0〉 + 1

2 | 1〉 −
1
2ei π4 | 2〉 + 1

2 | 3〉.

Pre-Measurement State Reduced Post-Measurement State on Bob’s Side
|ψ(4)

00 〉 − 1
2 ei 3π

4 | 0〉 + 1
2 | 1〉 +

1
2 ei 3π

4 | 2〉 + 1
2 | 3〉

|ψ(4)
01 〉

1
2 | 0〉 −

1
2 ei 3π

4 | 1〉 + 1
2 | 2〉 +

1
2 ei 3π

4 | 3〉
|ψ(4)

10 〉 − 1
2 ei 3π

4 | 0〉 + i
2 | 1〉 −

1
2 ei 3π

4 | 2〉 − i
2 | 3〉

|ψ(4)
31 〉

i
2 | 0〉 −

1
2 ei 3π

4 | 1〉 − i
2 | 2〉 −

1
2 ei 3π

4 | 3〉

The PMRS on Alice’s side is | u3〉 = 1
2ei 3π

4 | 0〉 − 1
2 | 1〉 +

1
2ei 3π

4 | 2〉 + 1
2 | 3〉.

Pre-Measurement State Reduced Post-Measurement State on Bob’s Side
|ψ(4)

00 〉 −1
2 ei π4 | 0〉 − 1

2 | 1〉 −
1
2 ei π4 | 2〉 + 1

2 | 3〉
|ψ(4)

01 〉
1
2 | 0〉 −

1
2 ei π4 | 1〉 − 1

2 | 2〉 −
1
2 ei π4 | 3〉

|ψ(4)
10 〉 −1

2 ei π4 | 0〉 − i
2 | 1〉 +

1
2 ei π4 | 2〉 − i

2 | 3〉
|ψ(4)

31 〉
i
2 | 0〉 −

1
2 ei π4 | 1〉 + i

2 | 2〉 +
1
2 ei π4 | 3〉

The PMRS on Alice’s side is | u4〉 = −1
2ei 3π

4 | 0〉 − 1
2 | 1〉 −

1
2ei 3π

4 | 2〉 + 1
2 | 3〉.

Pre-Measurement State Reduced Post-Measurement State on Bob’s Side
|ψ(4)

00 〉
1
2 ei π4 | 0〉 − 1

2 | 1〉 +
1
2 ei π4 | 2〉 + 1

2 | 3〉
|ψ(4)

01 〉
1
2 | 0〉 +

1
2 ei π4 | 1〉 − 1

2 | 2〉 +
1
2 ei π4 | 3〉

|ψ(4)
10 〉

1
2 ei π4 | 0〉 − i

2 | 1〉 −
1
2 ei π4 | 2〉 − i

2 | 3〉
|ψ(4)

31 〉
i
2 | 0〉 +

1
2 ei π4 | 1〉 + i

2 | 2〉 −
1
2 ei π4 | 3〉
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The set is {|ψ(4)
00 〉 , |ψ(4)

01 〉, |ψ
(4)
13 〉 , |ψ(4)

21 〉}.

The PMRS on Alice’s side is | u1〉 = −1
2ei π4 | 0〉 + 1

2 | 1〉 +
1
2ei π4 | 2〉 + 1

2 | 3〉.

Pre-Measurement State Reduced Post-Measurement State on Bob’s Side
|ψ(4)

00 〉
1
2 ei 3π

4 | 0〉 + 1
2 | 1〉 −

1
2 ei 3π

4 | 2〉 + 1
2 | 3〉

|ψ(4)
01 〉

1
2 | 0〉 +

1
2 ei 3π

4 | 1〉 + 1
2 | 2〉 −

1
2 ei 3π

4 | 3〉
|ψ(4)

13 〉
i
2 | 0〉 +

1
2 ei 3π

4 | 1〉 − i
2 | 2〉 +

1
2 ei 3π

4 | 3〉
|ψ(4)

21 〉 − 1
2 | 0〉 +

1
2 ei 3π

4 | 1〉 − 1
2 | 2〉 −

1
2 ei 3π

4 | 3〉

The PMRS on Alice’s side is | u2〉 = 1
2ei π4 | 0〉 + 1

2 | 1〉 −
1
2ei π4 | 2〉 + 1

2 | 3〉.

Pre-Measurement State Reduced Post-Measurement State on Bob’s Side
|ψ(4)

00 〉 − 1
2 ei 3π

4 | 0〉 + 1
2 | 1〉 +

1
2 ei 3π

4 | 2〉 + 1
2 | 3〉

|ψ(4)
01 〉

1
2 | 0〉 −

1
2 ei 3π

4 | 1〉 + 1
2 | 2〉 +

1
2 ei 3π

4 | 3〉
|ψ(4)

13 〉
i
2 | 0〉 −

1
2 ei 3π

4 | 1〉 − i
2 | 2〉 −

1
2 ei 3π

4 | 3〉
|ψ(4)

21 〉 − 1
2 | 0〉 −

1
2 ei 3π

4 | 1〉 − 1
2 | 2〉 +

1
2 ei 3π

4 | 3〉

The PMRS on Alice’s side is | u3〉 = 1
2ei 3π

4 | 0〉 − 1
2 | 1〉 +

1
2ei 3π

4 | 2〉 + 1
2 | 3〉.

Pre-Measurement State Reduced Post-Measurement State on Bob’s Side
|ψ(4)

00 〉 −1
2 ei π4 | 0〉 − 1

2 | 1〉 −
1
2 ei π4 | 2〉 + 1

2 | 3〉
|ψ(4)

01 〉
1
2 | 0〉 −

1
2 ei π4 | 1〉 − 1

2 | 2〉 −
1
2 ei π4 | 3〉

|ψ(4)
13 〉 − i

2 | 0〉 +
1
2 ei π4 | 1〉 − i

2 | 2〉 −
1
2 ei π4 | 3〉

|ψ(4)
21 〉 −1

2 | 0〉 −
1
2 ei π4 | 1〉 + 1

2 | 2〉 −
1
2 ei π4 | 3〉

The PMRS on Alice’s side is | u4〉 = −1
2ei 3π

4 | 0〉 − 1
2 | 1〉 −

1
2ei 3π

4 | 2〉 + 1
2 | 3〉.

Pre-Measurement State Reduced Post-Measurement State on Bob’s Side
|ψ(4)

00 〉
1
2 ei π4 | 0〉 − 1

2 | 1〉 +
1
2 ei π4 | 2〉 + 1

2 | 3〉
|ψ(4)

01 〉
1
2 | 0〉 +

1
2 ei π4 | 1〉 − 1

2 | 2〉 +
1
2 ei π4 | 3〉

|ψ(4)
13 〉 − i

2 | 0〉 −
1
2 ei π4 | 1〉 − i

2 | 2〉 +
1
2 ei π4 | 3〉

|ψ(4)
21 〉 −1

2 | 0〉 +
1
2 ei π4 | 1〉 + 1

2 | 2〉 +
1
2 ei π4 | 3〉
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The set is {|ψ(4)
00 〉 , |ψ(4)

01 〉, |ψ
(4)
20 〉 , |ψ(4)

21 〉}.

The PMRS on Alice’s side is | u1〉 = −1
2ei π4 | 0〉 + 1

2 | 1〉 +
1
2ei π4 | 2〉 + 1

2 | 3〉.

Pre-Measurement State Reduced Post-Measurement State on Bob’s Side
|ψ(4)

00 〉
1
2 ei 3π

4 | 0〉 + 1
2 | 1〉 −

1
2 ei 3π

4 | 2〉 + 1
2 | 3〉

|ψ(4)
01 〉

1
2 | 0〉 +

1
2 ei 3π

4 | 1〉 + 1
2 | 2〉 −

1
2 ei 3π

4 | 3〉
|ψ(4)

20 〉
1
2 ei 3π

4 | 0〉 − 1
2 | 1〉 −

1
2 ei 3π

4 | 2〉 − 1
2 | 3〉

|ψ(4)
21 〉 − 1

2 | 0〉 +
1
2 ei 3π

4 | 1〉 − 1
2 | 2〉 −

1
2 ei 3π

4 | 3〉

The PMRS on Alice’s side is | u2〉 = 1
2ei π4 | 0〉 + 1

2 | 1〉 −
1
2ei π4 | 2〉 + 1

2 | 3〉.

Pre-Measurement State Reduced Post-Measurement State on Bob’s Side
|ψ(4)

00 〉 − 1
2 ei 3π

4 | 0〉 + 1
2 | 1〉 +

1
2 ei 3π

4 | 2〉 + 1
2 | 3〉

|ψ(4)
01 〉

1
2 | 0〉 −

1
2 ei 3π

4 | 1〉 + 1
2 | 2〉 +

1
2 ei 3π

4 | 3〉
|ψ(4)

20 〉 − 1
2 ei 3π

4 | 0〉 − 1
2 | 1〉 +

1
2 ei 3π

4 | 2〉 − 1
2 | 3〉

|ψ(4)
21 〉 − 1

2 | 0〉 −
1
2 ei 3π

4 | 1〉 − 1
2 | 2〉 +

1
2 ei 3π

4 | 3〉

The PMRS on Alice’s side is | u3〉 = 1
2ei 3π

4 | 0〉 − 1
2 | 1〉 +

1
2ei 3π

4 | 2〉 + 1
2 | 3〉.

Pre-Measurement State Reduced Post-Measurement State on Bob’s Side
|ψ(4)

00 〉 −1
2 ei π4 | 0〉 − 1

2 | 1〉 −
1
2 ei π4 | 2〉 + 1

2 | 3〉
|ψ(4)

01 〉
1
2 | 0〉 −

1
2 ei π4 | 1〉 − 1

2 | 2〉 −
1
2 ei π4 | 3〉

|ψ(4)
20 〉 −1

2 ei π4 | 0〉 + 1
2 | 1〉 −

1
2 ei π4 | 2〉 − 1

2 | 3〉
|ψ(4)

21 〉 −1
2 | 0〉 −

1
2 ei π4 | 1〉 + 1

2 | 2〉 −
1
2 ei π4 | 3〉

The PMRS on Alice’s side is | u4〉 = −1
2ei 3π

4 | 0〉 − 1
2 | 1〉 −

1
2ei 3π

4 | 2〉 + 1
2 | 3〉.

Pre-Measurement State Reduced Post-Measurement State on Bob’s Side
|ψ(4)

00 〉
1
2 ei π4 | 0〉 − 1

2 | 1〉 +
1
2 ei π4 | 2〉 + 1

2 | 3〉
|ψ(4)

01 〉
1
2 | 0〉 +

1
2 ei π4 | 1〉 − 1

2 | 2〉 +
1
2 ei π4 | 3〉

|ψ(4)
20 〉

1
2 ei π4 | 0〉 + 1

2 | 1〉 +
1
2 ei π4 | 2〉 − 1

2 | 3〉
|ψ(4)

21 〉 −1
2 | 0〉 +

1
2 ei π4 | 1〉 + 1

2 | 2〉 +
1
2 ei π4 | 3〉
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The set is {|ψ(4)
00 〉 , |ψ(4)

01 〉, |ψ
(4)
20 〉 , |ψ(4)

32 〉}.

The PMRS on Alice’s side is | u1〉 = −1
2ei π4 | 0〉 + 1

2 | 1〉 +
1
2ei π4 | 2〉 + 1

2 | 3〉.

Pre-Measurement State Reduced Post-Measurement State on Bob’s Side
|ψ(4)

00 〉
1
2 ei 3π

4 | 0〉 + 1
2 | 1〉 −

1
2 ei 3π

4 | 2〉 + 1
2 | 3〉

|ψ(4)
01 〉

1
2 | 0〉 +

1
2 ei 3π

4 | 1〉 + 1
2 | 2〉 −

1
2 ei 3π

4 | 3〉
|ψ(4)

20 〉
1
2 ei 3π

4 | 0〉 − 1
2 | 1〉 −

1
2 ei 3π

4 | 2〉 − 1
2 | 3〉

|ψ(4)
32 〉

1
2 ei 3π

4 | 0〉 + i
2 | 1〉 +

1
2 ei 3π

4 | 2〉 − i
2 | 3〉

The PMRS on Alice’s side is | u2〉 = 1
2ei π4 | 0〉 + 1

2 | 1〉 −
1
2ei π4 | 2〉 + 1

2 | 3〉.

Pre-Measurement State Reduced Post-Measurement State on Bob’s Side
|ψ(4)

00 〉 − 1
2 ei 3π

4 | 0〉 + 1
2 | 1〉 +

1
2 ei 3π

4 | 2〉 + 1
2 | 3〉

|ψ(4)
01 〉

1
2 | 0〉 −

1
2 ei 3π

4 | 1〉 + 1
2 | 2〉 +

1
2 ei 3π

4 | 3〉
|ψ(4)

20 〉 − 1
2 ei 3π

4 | 0〉 − 1
2 | 1〉 +

1
2 ei 3π

4 | 2〉 − 1
2 | 3〉

|ψ(4)
32 〉 − 1

2 ei 3π
4 | 0〉 + i

2 | 1〉 −
1
2 ei 3π

4 | 2〉 − i
2 | 3〉

The PMRS on Alice’s side is | u3〉 = 1
2ei 3π

4 | 0〉 − 1
2 | 1〉 +

1
2ei 3π

4 | 2〉 + 1
2 | 3〉.

Pre-Measurement State Reduced Post-Measurement State on Bob’s Side
|ψ(4)

00 〉 −1
2 ei π4 | 0〉 − 1

2 | 1〉 −
1
2 ei π4 | 2〉 + 1

2 | 3〉
|ψ(4)

01 〉
1
2 | 0〉 −

1
2 ei π4 | 1〉 − 1

2 | 2〉 −
1
2 ei π4 | 3〉

|ψ(4)
20 〉 −1

2 ei π4 | 0〉 + 1
2 | 1〉 −

1
2 ei π4 | 2〉 − 1

2 | 3〉
|ψ(4)

32 〉
1
2 ei π4 | 0〉 + i

2 | 1〉 −
1
2 ei π4 | 2〉 + i

2 | 3〉

The PMRS on Alice’s side is | u4〉 = −1
2ei 3π

4 | 0〉 − 1
2 | 1〉 −

1
2ei 3π

4 | 2〉 + 1
2 | 3〉.

Pre-Measurement State Reduced Post-Measurement State on Bob’s Side
|ψ(4)

00 〉
1
2 ei π4 | 0〉 − 1

2 | 1〉 +
1
2 ei π4 | 2〉 + 1

2 | 3〉
|ψ(4)

01 〉
1
2 | 0〉 +

1
2 ei π4 | 1〉 − 1

2 | 2〉 +
1
2 ei π4 | 3〉

|ψ(4)
20 〉

1
2 ei π4 | 0〉 + 1

2 | 1〉 +
1
2 ei π4 | 2〉 − 1

2 | 3〉
|ψ(4)

32 〉 −1
2 ei π4 | 0〉 + i

2 | 1〉 +
1
2 ei π4 | 2〉 + i

2 | 3〉
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The set is {|ψ(4)
00 〉 , |ψ(4)

01 〉, |ψ
(4)
21 〉 , |ψ(4)

31 〉}.

The PMRS on Alice’s side is | u1〉 = −1
2ei π4 | 0〉 + 1

2 | 1〉 +
1
2ei π4 | 2〉 + 1

2 | 3〉.

Pre-Measurement State Reduced Post-Measurement State on Bob’s Side
|ψ(4)

00 〉
1
2 ei 3π

4 | 0〉 + 1
2 | 1〉 −

1
2 ei 3π

4 | 2〉 + 1
2 | 3〉

|ψ(4)
01 〉

1
2 | 0〉 +

1
2 ei 3π

4 | 1〉 + 1
2 | 2〉 −

1
2 ei 3π

4 | 3〉
|ψ(4)

21 〉 − 1
2 | 0〉 +

1
2 ei 3π

4 | 1〉 − 1
2 | 2〉 −

1
2 ei 3π

4 | 3〉
|ψ(4)

31 〉
i
2 | 0〉 +

1
2 ei 3π

4 | 1〉 − i
2 | 2〉 +

1
2 ei 3π

4 | 3〉

The PMRS on Alice’s side is | u2〉 = 1
2ei π4 | 0〉 + 1

2 | 1〉 −
1
2ei π4 | 2〉 + 1

2 | 3〉.

Pre-Measurement State Reduced Post-Measurement State on Bob’s Side
|ψ(4)

00 〉 − 1
2 ei 3π

4 | 0〉 + 1
2 | 1〉 +

1
2 ei 3π

4 | 2〉 + 1
2 | 3〉

|ψ(4)
01 〉

1
2 | 0〉 −

1
2 ei 3π

4 | 1〉 + 1
2 | 2〉 +

1
2 ei 3π

4 | 3〉
|ψ(4)

21 〉 − 1
2 | 0〉 −

1
2 ei 3π

4 | 1〉 − 1
2 | 2〉 +

1
2 ei 3π

4 | 3〉
|ψ(4)

31 〉
i
2 | 0〉 −

1
2 ei 3π

4 | 1〉 − i
2 | 2〉 −

1
2 ei 3π

4 | 3〉

The PMRS on Alice’s side is | u3〉 = 1
2ei 3π

4 | 0〉 − 1
2 | 1〉 +

1
2ei 3π

4 | 2〉 + 1
2 | 3〉.

Pre-Measurement State Reduced Post-Measurement State on Bob’s Side
|ψ(4)

00 〉 −1
2 ei π4 | 0〉 − 1

2 | 1〉 −
1
2 ei π4 | 2〉 + 1

2 | 3〉
|ψ(4)

01 〉
1
2 | 0〉 −

1
2 ei π4 | 1〉 − 1

2 | 2〉 −
1
2 ei π4 | 3〉

|ψ(4)
21 〉 −1

2 | 0〉 −
1
2 ei π4 | 1〉 + 1

2 | 2〉 −
1
2 ei π4 | 3〉

|ψ(4)
31 〉

i
2 | 0〉 −

1
2 ei π4 | 1〉 + i

2 | 2〉 +
1
2 ei π4 | 3〉

The PMRS on Alice’s side is | u4〉 = −1
2ei 3π

4 | 0〉 − 1
2 | 1〉 −

1
2ei 3π

4 | 2〉 + 1
2 | 3〉.

Pre-Measurement State Reduced Post-Measurement State on Bob’s Side
|ψ(4)

00 〉
1
2 ei π4 | 0〉 − 1

2 | 1〉 +
1
2 ei π4 | 2〉 + 1

2 | 3〉
|ψ(4)

01 〉
1
2 | 0〉 +

1
2 ei π4 | 1〉 − 1

2 | 2〉 +
1
2 ei π4 | 3〉

|ψ(4)
21 〉 −1

2 | 0〉 +
1
2 ei π4 | 1〉 + 1

2 | 2〉 +
1
2 ei π4 | 3〉

|ψ(4)
31 〉

i
2 | 0〉 +

1
2 ei π4 | 1〉 + i

2 | 2〉 −
1
2 ei π4 | 3〉
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The set is {|ψ(4)
00 〉 , |ψ(4)

02 〉, |ψ
(4)
10 〉 , |ψ(4)

12 〉}.

The PMRS on Alice’s side is | u1〉 = −1
2ei π4 | 0〉 + 1

2 | 1〉 +
1
2ei π4 | 2〉 + 1

2 | 3〉.

Pre-Measurement State Reduced Post-Measurement State on Bob’s Side
|ψ(4)

00 〉
1
2 ei 3π

4 | 0〉 + 1
2 | 1〉 −

1
2 ei 3π

4 | 2〉 + 1
2 | 3〉

|ψ(4)
02 〉 − 1

2 ei 3π
4 | 0〉 + 1

2 | 1〉 +
1
2 ei 3π

4 | 2〉 + 1
2 | 3〉

|ψ(4)
10 〉

1
2 ei 3π

4 | 0〉 + i
2 | 1〉 +

1
2 ei 3π

4 | 2〉 − i
2 | 3〉

|ψ(4)
12 〉

1
2 ei 3π

4 | 0〉 − i
2 | 1〉 +

1
2 ei 3π

4 | 2〉 + i
2 | 3〉

The PMRS on Alice’s side is | u2〉 = 1
2ei π4 | 0〉 + 1

2 | 1〉 −
1
2ei π4 | 2〉 + 1

2 | 3〉.

Pre-Measurement State Reduced Post-Measurement State on Bob’s Side
|ψ(4)

00 〉 − 1
2 ei 3π

4 | 0〉 + 1
2 | 1〉 +

1
2 ei 3π

4 | 2〉 + 1
2 | 3〉

|ψ(4)
02 〉

1
2 ei 3π

4 | 0〉 + 1
2 | 1〉 −

1
2 ei 3π

4 | 2〉 + 1
2 | 3〉

|ψ(4)
10 〉 − 1

2 ei 3π
4 | 0〉 + i

2 | 1〉 −
1
2 ei 3π

4 | 2〉 − i
2 | 3〉

|ψ(4)
12 〉 − 1

2 ei 3π
4 | 0〉 − i

2 | 1〉 −
1
2 ei 3π

4 | 2〉 + i
2 | 3〉

The PMRS on Alice’s side is | u3〉 = 1
2ei 3π

4 | 0〉 − 1
2 | 1〉 +

1
2ei 3π

4 | 2〉 + 1
2 | 3〉.

Pre-Measurement State Reduced Post-Measurement State on Bob’s Side
|ψ(4)

00 〉 −1
2 ei π4 | 0〉 − 1

2 | 1〉 −
1
2 ei π4 | 2〉 + 1

2 | 3〉
|ψ(4)

02 〉 −1
2 ei π4 | 0〉 + 1

2 | 1〉 −
1
2 ei π4 | 2〉 − 1

2 | 3〉
|ψ(4)

10 〉 −1
2 ei π4 | 0〉 − i

2 | 1〉 +
1
2 ei π4 | 2〉 − i

2 | 3〉
|ψ(4)

12 〉
1
2 ei π4 | 0〉 − i

2 | 1〉 −
1
2 ei π4 | 2〉 − i

2 | 3〉

The PMRS on Alice’s side is | u4〉 = −1
2ei 3π

4 | 0〉 − 1
2 | 1〉 −

1
2ei 3π

4 | 2〉 + 1
2 | 3〉.

Pre-Measurement State Reduced Post-Measurement State on Bob’s Side
|ψ(4)

00 〉
1
2 ei π4 | 0〉 − 1

2 | 1〉 +
1
2 ei π4 | 2〉 + 1

2 | 3〉
|ψ(4)

02 〉
1
2 ei π4 | 0〉 + 1

2 | 1〉 +
1
2 ei π4 | 2〉 − 1

2 | 3〉
|ψ(4)

10 〉
1
2 ei π4 | 0〉 − i

2 | 1〉 −
1
2 ei π4 | 2〉 − i

2 | 3〉
|ψ(4)

12 〉 −1
2 ei π4 | 0〉 − i

2 | 1〉 +
1
2 ei π4 | 2〉 − i

2 | 3〉
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The set is {|ψ(4)
00 〉 , |ψ(4)

02 〉, |ψ
(4)
10 〉 , |ψ(4)

23 〉}.

The PMRS on Alice’s side is | u1〉 = −1
2ei π4 | 0〉 + 1

2 | 1〉 +
1
2ei π4 | 2〉 + 1

2 | 3〉.

Pre-Measurement State Reduced Post-Measurement State on Bob’s Side
|ψ(4)

00 〉
1
2 ei 3π

4 | 0〉 + 1
2 | 1〉 −

1
2 ei 3π

4 | 2〉 + 1
2 | 3〉

|ψ(4)
02 〉 − 1

2 ei 3π
4 | 0〉 + 1

2 | 1〉 +
1
2 ei 3π

4 | 2〉 + 1
2 | 3〉

|ψ(4)
10 〉

1
2 ei 3π

4 | 0〉 + i
2 | 1〉 +

1
2 ei 3π

4 | 2〉 − i
2 | 3〉

|ψ(4)
23 〉 − 1

2 | 0〉 −
1
2 ei 3π

4 | 1〉 − 1
2 | 2〉 +

1
2 ei 3π

4 | 3〉

The PMRS on Alice’s side is | u2〉 = 1
2ei π4 | 0〉 + 1

2 | 1〉 −
1
2ei π4 | 2〉 + 1

2 | 3〉.

Pre-Measurement State Reduced Post-Measurement State on Bob’s Side
|ψ(4)

00 〉 − 1
2 ei 3π

4 | 0〉 + 1
2 | 1〉 +

1
2 ei 3π

4 | 2〉 + 1
2 | 3〉

|ψ(4)
02 〉

1
2 ei 3π

4 | 0〉 + 1
2 | 1〉 −

1
2 ei 3π

4 | 2〉 + 1
2 | 3〉

|ψ(4)
10 〉 − 1

2 ei 3π
4 | 0〉 + i

2 | 1〉 −
1
2 ei 3π

4 | 2〉 − i
2 | 3〉

|ψ(4)
23 〉 − 1

2 | 0〉 +
1
2 ei 3π

4 | 1〉 − 1
2 | 2〉 −

1
2 ei 3π

4 | 3〉

The PMRS on Alice’s side is | u3〉 = 1
2ei 3π

4 | 0〉 − 1
2 | 1〉 +

1
2ei 3π

4 | 2〉 + 1
2 | 3〉.

Pre-Measurement State Reduced Post-Measurement State on Bob’s Side
|ψ(4)

00 〉 −1
2 ei π4 | 0〉 − 1

2 | 1〉 −
1
2 ei π4 | 2〉 + 1

2 | 3〉
|ψ(4)

02 〉 −1
2 ei π4 | 0〉 + 1

2 | 1〉 −
1
2 ei π4 | 2〉 − 1

2 | 3〉
|ψ(4)

10 〉 −1
2 ei π4 | 0〉 − i

2 | 1〉 +
1
2 ei π4 | 2〉 − i

2 | 3〉
|ψ(4)

23 〉
1
2 | 0〉 −

1
2 ei π4 | 1〉 − 1

2 | 2〉 −
1
2 ei π4 | 3〉

The PMRS on Alice’s side is | u4〉 = −1
2ei 3π

4 | 0〉 − 1
2 | 1〉 −

1
2ei 3π

4 | 2〉 + 1
2 | 3〉.

Pre-Measurement State Reduced Post-Measurement State on Bob’s Side
|ψ(4)

00 〉
1
2 ei π4 | 0〉 − 1

2 | 1〉 +
1
2 ei π4 | 2〉 + 1

2 | 3〉
|ψ(4)

02 〉
1
2 ei π4 | 0〉 + 1

2 | 1〉 +
1
2 ei π4 | 2〉 − 1

2 | 3〉
|ψ(4)

10 〉
1
2 ei π4 | 0〉 − i

2 | 1〉 −
1
2 ei π4 | 2〉 − i

2 | 3〉
|ψ(4)

23 〉
1
2 | 0〉 +

1
2 ei π4 | 1〉 − 1

2 | 2〉 +
1
2 ei π4 | 3〉
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The set is {|ψ(4)
00 〉 , |ψ(4)

02 〉, |ψ
(4)
10 〉 , |ψ(4)

30 〉}.

The PMRS on Alice’s side is | u1〉 = −1
2ei π4 | 0〉 + 1

2 | 1〉 +
1
2ei π4 | 2〉 + 1

2 | 3〉.

Pre-Measurement State Reduced Post-Measurement State on Bob’s Side
|ψ(4)

00 〉
1
2 ei 3π

4 | 0〉 + 1
2 | 1〉 −

1
2 ei 3π

4 | 2〉 + 1
2 | 3〉

|ψ(4)
02 〉 − 1

2 ei 3π
4 | 0〉 + 1

2 | 1〉 +
1
2 ei 3π

4 | 2〉 + 1
2 | 3〉

|ψ(4)
10 〉

1
2 ei 3π

4 | 0〉 + i
2 | 1〉 +

1
2 ei 3π

4 | 2〉 − i
2 | 3〉

|ψ(4)
30 〉

1
2 ei 3π

4 | 0〉 − i
2 | 1〉 +

1
2 ei 3π

4 | 2〉 + i
2 | 3〉

The PMRS on Alice’s side is | u2〉 = 1
2ei π4 | 0〉 + 1

2 | 1〉 −
1
2ei π4 | 2〉 + 1

2 | 3〉.

Pre-Measurement State Reduced Post-Measurement State on Bob’s Side
|ψ(4)

00 〉 − 1
2 ei 3π

4 | 0〉 + 1
2 | 1〉 +

1
2 ei 3π

4 | 2〉 + 1
2 | 3〉

|ψ(4)
02 〉

1
2 ei 3π

4 | 0〉 + 1
2 | 1〉 −

1
2 ei 3π

4 | 2〉 + 1
2 | 3〉

|ψ(4)
10 〉 − 1

2 ei 3π
4 | 0〉 + i

2 | 1〉 −
1
2 ei 3π

4 | 2〉 − i
2 | 3〉

|ψ(4)
30 〉 − 1

2 ei 3π
4 | 0〉 − i

2 | 1〉 −
1
2 ei 3π

4 | 2〉 + i
2 | 3〉

The PMRS on Alice’s side is | u3〉 = 1
2ei 3π

4 | 0〉 − 1
2 | 1〉 +

1
2ei 3π

4 | 2〉 + 1
2 | 3〉.

Pre-Measurement State Reduced Post-Measurement State on Bob’s Side
|ψ(4)

00 〉 −1
2 ei π4 | 0〉 − 1

2 | 1〉 −
1
2 ei π4 | 2〉 + 1

2 | 3〉
|ψ(4)

02 〉 −1
2 ei π4 | 0〉 + 1

2 | 1〉 −
1
2 ei π4 | 2〉 − 1

2 | 3〉
|ψ(4)

10 〉 −1
2 ei π4 | 0〉 − i

2 | 1〉 +
1
2 ei π4 | 2〉 − i

2 | 3〉
|ψ(4)

30 〉 −1
2 ei π4 | 0〉 + i

2 | 1〉 +
1
2 ei π4 | 2〉 + i

2 | 3〉

The PMRS on Alice’s side is | u4〉 = −1
2ei 3π

4 | 0〉 − 1
2 | 1〉 −

1
2ei 3π

4 | 2〉 + 1
2 | 3〉.

Pre-Measurement State Reduced Post-Measurement State on Bob’s Side
|ψ(4)

00 〉
1
2 ei π4 | 0〉 − 1

2 | 1〉 +
1
2 ei π4 | 2〉 + 1

2 | 3〉
|ψ(4)

02 〉
1
2 ei π4 | 0〉 + 1

2 | 1〉 +
1
2 ei π4 | 2〉 − 1

2 | 3〉
|ψ(4)

10 〉
1
2 ei π4 | 0〉 − i

2 | 1〉 −
1
2 ei π4 | 2〉 − i

2 | 3〉
|ψ(4)

30 〉
1
2 ei π4 | 0〉 + i

2 | 1〉 −
1
2 ei π4 | 2〉 + i

2 | 3〉
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The set is {|ψ(4)
00 〉 , |ψ(4)

02 〉, |ψ
(4)
21 〉 , |ψ(4)

30 〉}.

The PMRS on Alice’s side is | u1〉 = −1
2ei π4 | 0〉 + 1

2 | 1〉 +
1
2ei π4 | 2〉 + 1

2 | 3〉.

Pre-Measurement State Reduced Post-Measurement State on Bob’s Side
|ψ(4)

00 〉
1
2 ei 3π

4 | 0〉 + 1
2 | 1〉 −

1
2 ei 3π

4 | 2〉 + 1
2 | 3〉

|ψ(4)
02 〉 − 1

2 ei 3π
4 | 0〉 + 1

2 | 1〉 +
1
2 ei 3π

4 | 2〉 + 1
2 | 3〉

|ψ(4)
21 〉 − 1

2 | 0〉 +
1
2 ei 3π

4 | 1〉 − 1
2 | 2〉 −

1
2 ei 3π

4 | 3〉
|ψ(4)

30 〉
1
2 ei 3π

4 | 0〉 − i
2 | 1〉 +

1
2 ei 3π

4 | 2〉 + i
2 | 3〉

The PMRS on Alice’s side is | u2〉 = 1
2ei π4 | 0〉 + 1

2 | 1〉 −
1
2ei π4 | 2〉 + 1

2 | 3〉.

Pre-Measurement State Reduced Post-Measurement State on Bob’s Side
|ψ(4)

00 〉 − 1
2 ei 3π

4 | 0〉 + 1
2 | 1〉 +

1
2 ei 3π

4 | 2〉 + 1
2 | 3〉

|ψ(4)
02 〉

1
2 ei 3π

4 | 0〉 + 1
2 | 1〉 −

1
2 ei 3π

4 | 2〉 + 1
2 | 3〉

|ψ(4)
21 〉 − 1

2 | 0〉 −
1
2 ei 3π

4 | 1〉 − 1
2 | 2〉 +

1
2 ei 3π

4 | 3〉
|ψ(4)

30 〉 − 1
2 ei 3π

4 | 0〉 − i
2 | 1〉 −

1
2 ei 3π

4 | 2〉 + i
2 | 3〉

The PMRS on Alice’s side is | u3〉 = 1
2ei 3π

4 | 0〉 − 1
2 | 1〉 +

1
2ei 3π

4 | 2〉 + 1
2 | 3〉.

Pre-Measurement State Reduced Post-Measurement State on Bob’s Side
|ψ(4)

00 〉 −1
2 ei π4 | 0〉 − 1

2 | 1〉 −
1
2 ei π4 | 2〉 + 1

2 | 3〉
|ψ(4)

02 〉 −1
2 ei π4 | 0〉 + 1

2 | 1〉 −
1
2 ei π4 | 2〉 − 1

2 | 3〉
|ψ(4)

21 〉 −1
2 | 0〉 −

1
2 ei π4 | 1〉 + 1

2 | 2〉 −
1
2 ei π4 | 3〉

|ψ(4)
30 〉 −1

2 ei π4 | 0〉 + i
2 | 1〉 +

1
2 ei π4 | 2〉 + i

2 | 3〉

The PMRS on Alice’s side is | u4〉 = −1
2ei 3π

4 | 0〉 − 1
2 | 1〉 −

1
2ei 3π

4 | 2〉 + 1
2 | 3〉.

Pre-Measurement State Reduced Post-Measurement State on Bob’s Side
|ψ(4)

00 〉
1
2 ei π4 | 0〉 − 1

2 | 1〉 +
1
2 ei π4 | 2〉 + 1

2 | 3〉
|ψ(4)

02 〉
1
2 ei π4 | 0〉 + 1

2 | 1〉 +
1
2 ei π4 | 2〉 − 1

2 | 3〉
|ψ(4)

21 〉 −1
2 | 0〉 +

1
2 ei π4 | 1〉 + 1

2 | 2〉 +
1
2 ei π4 | 3〉

|ψ(4)
30 〉

1
2 ei π4 | 0〉 + i

2 | 1〉 −
1
2 ei π4 | 2〉 + i

2 | 3〉
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A.2.2 PMRS for each set in theorem 3.1.4

The set is {|ψ(4)
00 〉 , |ψ(4)

01 〉, |ψ
(4)
02 〉 , |ψ(4)

11 〉}.

The PMRS on Alice’s side is | u1〉 = − i
√

2
| 0〉 + 1

√
2
| 2〉.

Pre-Measurement State Reduced Post-Measurement State on Bob’s Side
|ψ(4)

00 〉
i√
2
| 0〉 + 1√

2
| 2〉

|ψ(4)
01 〉

i√
2
| 1〉 + 1√

2
| 3〉

|ψ(4)
02 〉

1√
2
| 0〉 + i√

2
| 2〉

|ψ(4)
11 〉

i√
2
| 1〉 − 1√

2
| 3〉

The PMRS on Alice’s side is | u2〉 = i
√

2
| 0〉 + 1

√
2
| 2〉.

Pre-Measurement State Reduced Post-Measurement State on Bob’s Side
|ψ(4)

00 〉 − i√
2
| 0〉 + 1√

2
| 2〉

|ψ(4)
01 〉 − i√

2
| 1〉 + 1√

2
| 3〉

|ψ(4)
02 〉

1√
2
| 0〉 − i√

2
| 2〉

|ψ(4)
11 〉 − i√

2
| 1〉 − 1√

2
| 3〉

The PMRS on Alice’s side is | u3〉 = − i
√

2
| 1〉 + 1

√
2
| 3〉.

Pre-Measurement State Reduced Post-Measurement State on Bob’s Side
|ψ(4)

00 〉
i√
2
| 1〉 + 1√

2
| 3〉

|ψ(4)
01 〉

1√
2
| 0〉 + i√

2
| 2〉

|ψ(4)
02 〉

1√
2
| 1〉 + i√

2
| 3〉

|ψ(4)
11 〉 − i√

2
| 0〉 − 1√

2
| 2〉

The PMRS on Alice’s side is | u4〉 = i
√

2
| 1〉 + 1

√
2
| 3〉.

Pre-Measurement State Reduced Post-Measurement State on Bob’s Side
|ψ(4)

00 〉 − i√
2
| 1〉 + 1√

2
| 3〉

|ψ(4)
01 〉

1√
2
| 0〉 − i√

2
| 2〉

|ψ(4)
02 〉

1√
2
| 1〉 − i√

2
| 3〉

|ψ(4)
11 〉 − i√

2
| 0〉 + 1√

2
| 2〉
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The set is {|ψ(4)
00 〉 , |ψ(4)

01 〉, |ψ
(4)
02 〉 , |ψ(4)

31 〉}.

The PMRS on Alice’s side is | u1〉 = − i
√

2
| 0〉 + 1

√
2
| 2〉.

Pre-Measurement State Reduced Post-Measurement State on Bob’s Side
|ψ(4)

00 〉
i√
2
| 0〉 + 1√

2
| 2〉

|ψ(4)
01 〉

i√
2
| 1〉 + 1√

2
| 3〉

|ψ(4)
02 〉

1√
2
| 0〉 + i√

2
| 2〉

|ψ(4)
31 〉

i√
2
| 1〉 − 1√

2
| 3〉

The PMRS on Alice’s side is | u2〉 = i
√

2
| 0〉 + 1

√
2
| 2〉.

Pre-Measurement State Reduced Post-Measurement State on Bob’s Side
|ψ(4)

00 〉 − i√
2
| 0〉 + 1√

2
| 2〉

|ψ(4)
01 〉 − i√

2
| 1〉 + 1√

2
| 3〉

|ψ(4)
02 〉

1√
2
| 0〉 − i√

2
| 2〉

|ψ(4)
31 〉 − i√

2
| 1〉 − 1√

2
| 3〉

The PMRS on Alice’s side is | u3〉 = − i
√

2
| 1〉 + 1

√
2
| 3〉.

Pre-Measurement State Reduced Post-Measurement State on Bob’s Side
|ψ(4)

00 〉
i√
2
| 1〉 + 1√

2
| 3〉

|ψ(4)
01 〉

1√
2
| 0〉 + i√

2
| 2〉

|ψ(4)
02 〉

1√
2
| 1〉 + i√

2
| 3〉

|ψ(4)
31 〉

i√
2
| 0〉 + 1√

2
| 2〉

The PMRS on Alice’s side is | u4〉 = i
√

2
| 1〉 + 1

√
2
| 3〉.

Pre-Measurement State Reduced Post-Measurement State on Bob’s Side
|ψ(4)

00 〉 − i√
2
| 1〉 + 1√

2
| 3〉

|ψ(4)
01 〉

1√
2
| 0〉 − i√

2
| 2〉

|ψ(4)
02 〉

1√
2
| 1〉 − i√

2
| 3〉

|ψ(4)
31 〉

i√
2
| 0〉 − 1√

2
| 2〉
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The set is {|ψ(4)
00 〉 , |ψ(4)

01 〉, |ψ
(4)
10 〉 , |ψ(4)

23 〉}.

The PMRS on Alice’s side is | u1〉 = − i
√

2
| 0〉 + 1

√
2
| 2〉.

Pre-Measurement State Reduced Post-Measurement State on Bob’s Side
|ψ(4)

00 〉
i√
2
| 0〉 + 1√

2
| 2〉

|ψ(4)
01 〉

i√
2
| 1〉 + 1√

2
| 3〉

|ψ(4)
10 〉

i√
2
| 0〉 − 1√

2
| 2〉

|ψ(4)
23 〉

1√
2
| 1〉 + i√

2
| 3〉

The PMRS on Alice’s side is | u2〉 = i
√

2
| 0〉 + 1

√
2
| 2〉.

Pre-Measurement State Reduced Post-Measurement State on Bob’s Side
|ψ(4)

00 〉 − i√
2
| 0〉 + 1√

2
| 2〉

|ψ(4)
01 〉 − i√

2
| 1〉 + 1√

2
| 3〉

|ψ(4)
10 〉 − i√

2
| 0〉 − 1√

2
| 2〉

|ψ(4)
23 〉

1√
2
| 1〉 − i√

2
| 3〉

The PMRS on Alice’s side is | u3〉 = − i
√

2
| 1〉 + 1

√
2
| 3〉.

Pre-Measurement State Reduced Post-Measurement State on Bob’s Side
|ψ(4)

00 〉
i√
2
| 1〉 + 1√

2
| 3〉

|ψ(4)
01 〉

1√
2
| 0〉 + i√

2
| 2〉

|ψ(4)
10 〉 − 1√

2
| 1〉 − i√

2
| 3〉

|ψ(4)
23 〉 − i√

2
| 0〉 − 1√

2
| 2〉

The PMRS on Alice’s side is | u4〉 = i
√

2
| 1〉 + 1

√
2
| 3〉.

Pre-Measurement State Reduced Post-Measurement State on Bob’s Side
|ψ(4)

00 〉 − i√
2
| 1〉 + 1√

2
| 3〉

|ψ(4)
01 〉

1√
2
| 0〉 − i√

2
| 2〉

|ψ(4)
10 〉

1√
2
| 1〉 − i√

2
| 3〉

|ψ(4)
23 〉

i√
2
| 0〉 − 1√

2
| 2〉
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The set is {|ψ(4)
00 〉 , |ψ(4)

01 〉, |ψ
(4)
11 〉 , |ψ(4)

22 〉}.

The PMRS on Alice’s side is | u1〉 = − i
√

2
| 0〉 + 1

√
2
| 2〉.

Pre-Measurement State Reduced Post-Measurement State on Bob’s Side
|ψ(4)

00 〉
i√
2
| 0〉 + 1√

2
| 2〉

|ψ(4)
01 〉

i√
2
| 1〉 + 1√

2
| 3〉

|ψ(4)
11 〉

i√
2
| 1〉 − 1√

2
| 3〉

|ψ(4)
22 〉

1√
2
| 0〉 + i√

2
| 2〉

The PMRS on Alice’s side is | u2〉 = i
√

2
| 0〉 + 1

√
2
| 2〉.

Pre-Measurement State Reduced Post-Measurement State on Bob’s Side
|ψ(4)

00 〉 − i√
2
| 0〉 + 1√

2
| 2〉

|ψ(4)
01 〉 − i√

2
| 1〉 + 1√

2
| 3〉

|ψ(4)
11 〉 − i√

2
| 1〉 − 1√

2
| 3〉

|ψ(4)
22 〉

1√
2
| 0〉 − i√

2
| 2〉

The PMRS on Alice’s side is | u3〉 = − i
√

2
| 1〉 + 1

√
2
| 3〉.

Pre-Measurement State Reduced Post-Measurement State on Bob’s Side
|ψ(4)

00 〉
i√
2
| 1〉 + 1√

2
| 3〉

|ψ(4)
01 〉

1√
2
| 0〉 + i√

2
| 2〉

|ψ(4)
11 〉 − i√

2
| 0〉 − 1√

2
| 2〉

|ψ(4)
22 〉 − 1√

2
| 1〉 − i√

2
| 3〉

The PMRS on Alice’s side is | u4〉 = i
√

2
| 1〉 + 1

√
2
| 3〉.

Pre-Measurement State Reduced Post-Measurement State on Bob’s Side
|ψ(4)

00 〉 − i√
2
| 1〉 + 1√

2
| 3〉

|ψ(4)
01 〉

1√
2
| 0〉 − i√

2
| 2〉

|ψ(4)
11 〉 − i√

2
| 0〉 + 1√

2
| 2〉

|ψ(4)
22 〉 − 1√

2
| 1〉 + i√

2
| 3〉
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The set is {|ψ(4)
00 〉 , |ψ(4)

01 〉, |ψ
(4)
22 〉 , |ψ(4)

31 〉}.

The PMRS on Alice’s side is | u1〉 = − i
√

2
| 0〉 + 1

√
2
| 2〉.

Pre-Measurement State Reduced Post-Measurement State on Bob’s Side
|ψ(4)

00 〉
i√
2
| 0〉 + 1√

2
| 2〉

|ψ(4)
01 〉

i√
2
| 1〉 + 1√

2
| 3〉

|ψ(4)
22 〉

1√
2
| 0〉 + i√

2
| 2〉

|ψ(4)
31 〉

i√
2
| 1〉 − 1√

2
| 3〉

The PMRS on Alice’s side is | u2〉 = i
√

2
| 0〉 + 1

√
2
| 2〉.

Pre-Measurement State Reduced Post-Measurement State on Bob’s Side
|ψ(4)

00 〉 − i√
2
| 0〉 + 1√

2
| 2〉

|ψ(4)
01 〉 − i√

2
| 1〉 + 1√

2
| 3〉

|ψ(4)
22 〉

1√
2
| 0〉 − i√

2
| 2〉

|ψ(4)
31 〉 − i√

2
| 1〉 − 1√

2
| 3〉

The PMRS on Alice’s side is | u3〉 = − i
√

2
| 1〉 + 1

√
2
| 3〉.

Pre-Measurement State Reduced Post-Measurement State on Bob’s Side
|ψ(4)

00 〉
i√
2
| 1〉 + 1√

2
| 3〉

|ψ(4)
01 〉

1√
2
| 0〉 + i√

2
| 2〉

|ψ(4)
22 〉 − 1√

2
| 1〉 − i√

2
| 3〉

|ψ(4)
31 〉

i√
2
| 0〉 + 1√

2
| 2〉

The PMRS on Alice’s side is | u4〉 = i
√

2
| 1〉 + 1

√
2
| 3〉.

Pre-Measurement State Reduced Post-Measurement State on Bob’s Side
|ψ(4)

00 〉 − i√
2
| 1〉 + 1√

2
| 3〉

|ψ(4)
01 〉

1√
2
| 0〉 − i√

2
| 2〉

|ψ(4)
22 〉 − 1√

2
| 1〉 + i√

2
| 3〉

|ψ(4)
31 〉

i√
2
| 0〉 − 1√

2
| 2〉
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The set is {|ψ(4)
00 〉 , |ψ(4)

01 〉, |ψ
(4)
23 〉 , |ψ(4)

30 〉}.

The PMRS on Alice’s side is | u1〉 = − i
√

2
| 0〉 + 1

√
2
| 2〉.

Pre-Measurement State Reduced Post-Measurement State on Bob’s Side
|ψ(4)

00 〉
i√
2
| 0〉 + 1√

2
| 2〉

|ψ(4)
01 〉

i√
2
| 1〉 + 1√

2
| 3〉

|ψ(4)
23 〉

1√
2
| 1〉 + i√

2
| 3〉

|ψ(4)
30 〉

i√
2
| 0〉 − 1√

2
| 2〉

The PMRS on Alice’s side is | u2〉 = i
√

2
| 0〉 + 1

√
2
| 2〉.

Pre-Measurement State Reduced Post-Measurement State on Bob’s Side
|ψ(4)

00 〉 − i√
2
| 0〉 + 1√

2
| 2〉

|ψ(4)
01 〉 − i√

2
| 1〉 + 1√

2
| 3〉

|ψ(4)
23 〉

1√
2
| 1〉 − i√

2
| 3〉

|ψ(4)
30 〉 − i√

2
| 0〉 − 1√

2
| 2〉

The PMRS on Alice’s side is | u3〉 = − i
√

2
| 1〉 + 1

√
2
| 3〉.

Pre-Measurement State Reduced Post-Measurement State on Bob’s Side
|ψ(4)

00 〉
i√
2
| 1〉 + 1√

2
| 3〉

|ψ(4)
01 〉

1√
2
| 0〉 + i√

2
| 2〉

|ψ(4)
23 〉 − i√

2
| 0〉 − 1√

2
| 2〉

|ψ(4)
30 〉

1√
2
| 1〉 + i√

2
| 3〉

The PMRS on Alice’s side is | u4〉 = i
√

2
| 1〉 + 1

√
2
| 3〉.

Pre-Measurement State Reduced Post-Measurement State on Bob’s Side
|ψ(4)

00 〉 − i√
2
| 1〉 + 1√

2
| 3〉

|ψ(4)
01 〉

1√
2
| 0〉 − i√

2
| 2〉

|ψ(4)
23 〉

i√
2
| 0〉 − 1√

2
| 2〉

|ψ(4)
30 〉 − 1√

2
| 1〉 + i√

2
| 3〉
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The set is {|ψ(4)
00 〉 , |ψ(4)

02 〉, |ψ
(4)
11 〉 , |ψ(4)

21 〉}.

The PMRS on Alice’s side is | u1〉 = − i
√

2
| 0〉 + 1

√
2
| 2〉.

Pre-Measurement State Reduced Post-Measurement State on Bob’s Side
|ψ(4)

00 〉
i√
2
| 0〉 + 1√

2
| 2〉

|ψ(4)
02 〉

1√
2
| 0〉 + i√

2
| 2〉

|ψ(4)
11 〉

i√
2
| 1〉 − 1√

2
| 3〉

|ψ(4)
21 〉

i√
2
| 1〉 + 1√

2
| 3〉

The PMRS on Alice’s side is | u2〉 = i
√

2
| 0〉 + 1

√
2
| 2〉.

Pre-Measurement State Reduced Post-Measurement State on Bob’s Side
|ψ(4)

00 〉 − i√
2
| 0〉 + 1√

2
| 2〉

|ψ(4)
02 〉

1√
2
| 0〉 − i√

2
| 2〉

|ψ(4)
11 〉 − i√

2
| 1〉 − 1√

2
| 3〉

|ψ(4)
21 〉 − i√

2
| 1〉 + 1√

2
| 3〉

The PMRS on Alice’s side is | u3〉 = − i
√

2
| 1〉 + 1

√
2
| 3〉.

Pre-Measurement State Reduced Post-Measurement State on Bob’s Side
|ψ(4)

00 〉
i√
2
| 1〉 + 1√

2
| 3〉

|ψ(4)
02 〉

1√
2
| 1〉 + i√

2
| 3〉

|ψ(4)
11 〉 − i√

2
| 0〉 − 1√

2
| 2〉

|ψ(4)
21 〉 − 1√

2
| 0〉 − i√

2
| 2〉

The PMRS on Alice’s side is | u4〉 = i
√

2
| 1〉 + 1

√
2
| 3〉.

Pre-Measurement State Reduced Post-Measurement State on Bob’s Side
|ψ(4)

00 〉 − i√
2
| 1〉 + 1√

2
| 3〉

|ψ(4)
02 〉

1√
2
| 1〉 − i√

2
| 3〉

|ψ(4)
11 〉 − i√

2
| 0〉 + 1√

2
| 2〉

|ψ(4)
21 〉 − 1√

2
| 0〉 + i√

2
| 2〉
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The set is {|ψ(4)
00 〉 , |ψ(4)

02 〉, |ψ
(4)
21 〉 , |ψ(4)

31 〉}.

The PMRS on Alice’s side is | u1〉 = − i
√

2
| 0〉 + 1

√
2
| 2〉.

Pre-Measurement State Reduced Post-Measurement State on Bob’s Side
|ψ(4)

00 〉
i√
2
| 0〉 + 1√

2
| 2〉

|ψ(4)
02 〉

1√
2
| 0〉 + i√

2
| 2〉

|ψ(4)
21 〉

i√
2
| 1〉 + 1√

2
| 3〉

|ψ(4)
31 〉

i√
2
| 1〉 − 1√

2
| 3〉

The PMRS on Alice’s side is | u2〉 = i
√

2
| 0〉 + 1

√
2
| 2〉.

Pre-Measurement State Reduced Post-Measurement State on Bob’s Side
|ψ(4)

00 〉 − i√
2
| 0〉 + 1√

2
| 2〉

|ψ(4)
02 〉

1√
2
| 0〉 − i√

2
| 2〉

|ψ(4)
21 〉 − i√

2
| 1〉 + 1√

2
| 3〉

|ψ(4)
31 〉 − i√

2
| 1〉 − 1√

2
| 3〉

The PMRS on Alice’s side is | u3〉 = − i
√

2
| 1〉 + 1

√
2
| 3〉.

Pre-Measurement State Reduced Post-Measurement State on Bob’s Side
|ψ(4)

00 〉
i√
2
| 1〉 + 1√

2
| 3〉

|ψ(4)
02 〉

1√
2
| 1〉 + i√

2
| 3〉

|ψ(4)
21 〉 − 1√

2
| 0〉 − i√

2
| 2〉

|ψ(4)
31 〉

i√
2
| 0〉 + 1√

2
| 2〉

The PMRS on Alice’s side is | u4〉 = i
√

2
| 1〉 + 1

√
2
| 3〉.

Pre-Measurement State Reduced Post-Measurement State on Bob’s Side
|ψ(4)

00 〉 − i√
2
| 1〉 + 1√

2
| 3〉

|ψ(4)
02 〉

1√
2
| 1〉 − i√

2
| 3〉

|ψ(4)
21 〉 − 1√

2
| 0〉 + i√

2
| 2〉

|ψ(4)
31 〉

i√
2
| 0〉 − 1√

2
| 2〉
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A.2.3 PMRS for each set in theorem 3.1.5

The set is {|ψ(4)
00 〉 , |ψ(4)

01 〉, |ψ
(4)
02 〉 , |ψ(4)

12 〉}.

The PMRS on Alice’s side is | u1〉 = −1
2ei 3π

4 | 0〉 + 1
2 | 1〉 +

1
2ei 3π

4 | 2〉 + 1
2 | 3〉.

Pre-Measurement State Reduced Post-Measurement State on Bob’s Side
|ψ(4)

00 〉
1
2 ei π4 | 0〉 + 1

2 | 1〉 −
1
2 ei π4 | 2〉 + 1

2 | 3〉
|ψ(4)

01 〉
1
2 | 0〉 +

1
2 ei π4 | 1〉 + 1

2 | 2〉 −
1
2 ei π4 | 3〉

|ψ(4)
02 〉 −1

2 ei π4 | 0〉 + 1
2 | 1〉 +

1
2 ei π4 | 2〉 + 1

2 | 3〉
|ψ(4)

12 〉
1
2 ei π4 | 0〉 − i

2 | 1〉 +
1
2 ei π4 | 2〉 + i

2 | 3〉

The PMRS on Alice’s side is | u2〉 = 1
2ei 3π

4 | 0〉 + 1
2 | 1〉 −

1
2ei 3π

4 | 2〉 + 1
2 | 3〉.

Pre-Measurement State Reduced Post-Measurement State on Bob’s Side
|ψ(4)

00 〉 −1
2 ei π4 | 0〉 + 1

2 | 1〉 +
1
2 ei π4 | 2〉 + 1

2 | 3〉
|ψ(4)

01 〉
1
2 | 0〉 −

1
2 ei π4 | 1〉 + 1

2 | 2〉 +
1
2 ei π4 | 3〉

|ψ(4)
02 〉

1
2 ei π4 | 0〉 + 1

2 | 1〉 −
1
2 ei π4 | 2〉 + 1

2 | 3〉
|ψ(4)

12 〉 −1
2 ei π4 | 0〉 − i

2 | 1〉 −
1
2 ei π4 | 2〉 + i

2 | 3〉

The PMRS on Alice’s side is | u3〉 = 1
2ei π4 | 0〉 − 1

2 | 1〉 +
1
2ei π4 | 2〉 + 1

2 | 3〉.

Pre-Measurement State Reduced Post-Measurement State on Bob’s Side
|ψ(4)

00 〉 − 1
2 ei 3π

4 | 0〉 − 1
2 | 1〉 −

1
2 ei 3π

4 | 2〉 + 1
2 | 3〉

|ψ(4)
01 〉

1
2 | 0〉 −

1
2 ei 3π

4 | 1〉 − 1
2 | 2〉 −

1
2 ei 3π

4 | 3〉
|ψ(4)

02 〉 − 1
2 ei 3π

4 | 0〉 + 1
2 | 1〉 −

1
2 ei 3π

4 | 2〉 − 1
2 | 3〉

|ψ(4)
12 〉

1
2 ei 3π

4 | 0〉 − i
2 | 1〉 −

1
2 ei 3π

4 | 2〉 − i
2 | 3〉

The PMRS on Alice’s side is | u4〉 = −1
2ei π4 | 0〉 − 1

2 | 1〉 −
1
2ei π4 | 2〉 + 1

2 | 3〉.

Pre-Measurement State Reduced Post-Measurement State on Bob’s Side
|ψ(4)

00 〉
1
2 ei 3π

4 | 0〉 − 1
2 | 1〉 +

1
2 ei 3π

4 | 2〉 + 1
2 | 3〉

|ψ(4)
01 〉

1
2 | 0〉 +

1
2 ei 3π

4 | 1〉 − 1
2 | 2〉 +

1
2 ei 3π

4 | 3〉
|ψ(4)

02 〉
1
2 ei 3π

4 | 0〉 + 1
2 | 1〉 +

1
2 ei 3π

4 | 2〉 − 1
2 | 3〉

|ψ(4)
12 〉 − 1

2 ei 3π
4 | 0〉 − i

2 | 1〉 +
1
2 ei 3π

4 | 2〉 − i
2 | 3〉
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The set is {|ψ(4)
00 〉 , |ψ(4)

01 〉, |ψ
(4)
02 〉 , |ψ(4)

30 〉}.

The PMRS on Alice’s side is | u1〉 = −1
2ei 3π

4 | 0〉 + 1
2 | 1〉 +

1
2ei 3π

4 | 2〉 + 1
2 | 3〉.

Pre-Measurement State Reduced Post-Measurement State on Bob’s Side
|ψ(4)

00 〉
1
2 ei π4 | 0〉 + 1

2 | 1〉 −
1
2 ei π4 | 2〉 + 1

2 | 3〉
|ψ(4)

01 〉
1
2 | 0〉 +

1
2 ei π4 | 1〉 + 1

2 | 2〉 −
1
2 ei π4 | 3〉

|ψ(4)
02 〉 −1

2 ei π4 | 0〉 + 1
2 | 1〉 +

1
2 ei π4 | 2〉 + 1

2 | 3〉
|ψ(4)

30 〉
1
2 ei π4 | 0〉 − i

2 | 1〉 +
1
2 ei π4 | 2〉 + i

2 | 3〉

The PMRS on Alice’s side is | u2〉 = 1
2ei 3π

4 | 0〉 + 1
2 | 1〉 −

1
2ei 3π

4 | 2〉 + 1
2 | 3〉.

Pre-Measurement State Reduced Post-Measurement State on Bob’s Side
|ψ(4)

00 〉 −1
2 ei π4 | 0〉 + 1

2 | 1〉 +
1
2 ei π4 | 2〉 + 1

2 | 3〉
|ψ(4)

01 〉
1
2 | 0〉 −

1
2 ei π4 | 1〉 + 1

2 | 2〉 +
1
2 ei π4 | 3〉

|ψ(4)
02 〉

1
2 ei π4 | 0〉 + 1

2 | 1〉 −
1
2 ei π4 | 2〉 + 1

2 | 3〉
|ψ(4)

30 〉 −1
2 ei π4 | 0〉 − i

2 | 1〉 −
1
2 ei π4 | 2〉 + i

2 | 3〉

The PMRS on Alice’s side is | u3〉 = 1
2ei π4 | 0〉 − 1

2 | 1〉 +
1
2ei π4 | 2〉 + 1

2 | 3〉.

Pre-Measurement State Reduced Post-Measurement State on Bob’s Side
|ψ(4)

00 〉 − 1
2 ei 3π

4 | 0〉 − 1
2 | 1〉 −

1
2 ei 3π

4 | 2〉 + 1
2 | 3〉

|ψ(4)
01 〉

1
2 | 0〉 −

1
2 ei 3π

4 | 1〉 − 1
2 | 2〉 −

1
2 ei 3π

4 | 3〉
|ψ(4)

02 〉 − 1
2 ei 3π

4 | 0〉 + 1
2 | 1〉 −

1
2 ei 3π

4 | 2〉 − 1
2 | 3〉

|ψ(4)
30 〉 − 1

2 ei 3π
4 | 0〉 + i

2 | 1〉 +
1
2 ei 3π

4 | 2〉 + i
2 | 3〉

The PMRS on Alice’s side is | u4〉 = −1
2ei π4 | 0〉 − 1

2 | 1〉 −
1
2ei π4 | 2〉 + 1

2 | 3〉.

Pre-Measurement State Reduced Post-Measurement State on Bob’s Side
|ψ(4)

00 〉
1
2 ei 3π

4 | 0〉 − 1
2 | 1〉 +

1
2 ei 3π

4 | 2〉 + 1
2 | 3〉

|ψ(4)
01 〉

1
2 | 0〉 +

1
2 ei 3π

4 | 1〉 − 1
2 | 2〉 +

1
2 ei 3π

4 | 3〉
|ψ(4)

02 〉
1
2 ei 3π

4 | 0〉 + 1
2 | 1〉 +

1
2 ei 3π

4 | 2〉 − 1
2 | 3〉

|ψ(4)
30 〉

1
2 ei 3π

4 | 0〉 + i
2 | 1〉 −

1
2 ei 3π

4 | 2〉 + i
2 | 3〉
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The set is {|ψ(4)
00 〉 , |ψ(4)

01 〉, |ψ
(4)
11 〉 , |ψ(4)

21 〉}.

The PMRS on Alice’s side is | u1〉 = −1
2ei 3π

4 | 0〉 + 1
2 | 1〉 +

1
2ei 3π

4 | 2〉 + 1
2 | 3〉.

Pre-Measurement State Reduced Post-Measurement State on Bob’s Side
|ψ(4)

00 〉
1
2 ei π4 | 0〉 + 1

2 | 1〉 −
1
2 ei π4 | 2〉 + 1

2 | 3〉
|ψ(4)

01 〉
1
2 | 0〉 +

1
2 ei π4 | 1〉 + 1

2 | 2〉 −
1
2 ei π4 | 3〉

|ψ(4)
11 〉 − i

2 | 0〉 +
1
2 ei π4 | 1〉 + i

2 | 2〉 +
1
2 ei π4 | 3〉

|ψ(4)
21 〉 −1

2 | 0〉 +
1
2 ei π4 | 1〉 − 1

2 | 2〉 −
1
2 ei π4 | 3〉

The PMRS on Alice’s side is | u2〉 = 1
2ei 3π

4 | 0〉 + 1
2 | 1〉 −

1
2ei 3π

4 | 2〉 + 1
2 | 3〉.

Pre-Measurement State Reduced Post-Measurement State on Bob’s Side
|ψ(4)

00 〉 −1
2 ei π4 | 0〉 + 1

2 | 1〉 +
1
2 ei π4 | 2〉 + 1

2 | 3〉
|ψ(4)

01 〉
1
2 | 0〉 −

1
2 ei π4 | 1〉 + 1

2 | 2〉 +
1
2 ei π4 | 3〉

|ψ(4)
11 〉 − i

2 | 0〉 −
1
2 ei π4 | 1〉 + i

2 | 2〉 −
1
2 ei π4 | 3〉

|ψ(4)
21 〉 −1

2 | 0〉 −
1
2 ei π4 | 1〉 − 1

2 | 2〉 +
1
2 ei π4 | 3〉

The PMRS on Alice’s side is | u3〉 = 1
2ei π4 | 0〉 − 1

2 | 1〉 +
1
2ei π4 | 2〉 + 1

2 | 3〉.

Pre-Measurement State Reduced Post-Measurement State on Bob’s Side
|ψ(4)

00 〉 − 1
2 ei 3π

4 | 0〉 − 1
2 | 1〉 −

1
2 ei 3π

4 | 2〉 + 1
2 | 3〉

|ψ(4)
01 〉

1
2 | 0〉 −

1
2 ei 3π

4 | 1〉 − 1
2 | 2〉 −

1
2 ei 3π

4 | 3〉
|ψ(4)

11 〉 − i
2 | 0〉 −

1
2 ei 3π

4 | 1〉 − i
2 | 2〉 +

1
2 ei 3π

4 | 3〉
|ψ(4)

21 〉 − 1
2 | 0〉 −

1
2 ei 3π

4 | 1〉 + 1
2 | 2〉 −

1
2 ei 3π

4 | 3〉

The PMRS on Alice’s side is | u4〉 = −1
2ei π4 | 0〉 − 1

2 | 1〉 −
1
2ei π4 | 2〉 + 1

2 | 3〉.

Pre-Measurement State Reduced Post-Measurement State on Bob’s Side
|ψ(4)

00 〉
1
2 ei 3π

4 | 0〉 − 1
2 | 1〉 +

1
2 ei 3π

4 | 2〉 + 1
2 | 3〉

|ψ(4)
01 〉

1
2 | 0〉 +

1
2 ei 3π

4 | 1〉 − 1
2 | 2〉 +

1
2 ei 3π

4 | 3〉
|ψ(4)

11 〉 − i
2 | 0〉 +

1
2 ei 3π

4 | 1〉 − i
2 | 2〉 −

1
2 ei 3π

4 | 3〉
|ψ(4)

21 〉 − 1
2 | 0〉 +

1
2 ei 3π

4 | 1〉 + 1
2 | 2〉 +

1
2 ei 3π

4 | 3〉
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The set is {|ψ(4)
00 〉 , |ψ(4)

01 〉, |ψ
(4)
12 〉 , |ψ(4)

20 〉}.

The PMRS on Alice’s side is | u1〉 = −1
2ei 3π

4 | 0〉 + 1
2 | 1〉 +

1
2ei 3π

4 | 2〉 + 1
2 | 3〉.

Pre-Measurement State Reduced Post-Measurement State on Bob’s Side
|ψ(4)

00 〉
1
2 ei π4 | 0〉 + 1

2 | 1〉 −
1
2 ei π4 | 2〉 + 1

2 | 3〉
|ψ(4)

01 〉
1
2 | 0〉 +

1
2 ei π4 | 1〉 + 1

2 | 2〉 −
1
2 ei π4 | 3〉

|ψ(4)
12 〉

1
2 ei π4 | 0〉 − i

2 | 1〉 +
1
2 ei π4 | 2〉 + i

2 | 3〉
|ψ(4)

20 〉
1
2 ei π4 | 0〉 − 1

2 | 1〉 −
1
2 ei π4 | 2〉 − 1

2 | 3〉

The PMRS on Alice’s side is | u2〉 = 1
2ei 3π

4 | 0〉 + 1
2 | 1〉 −

1
2ei 3π

4 | 2〉 + 1
2 | 3〉.

Pre-Measurement State Reduced Post-Measurement State on Bob’s Side
|ψ(4)

00 〉 −1
2 ei π4 | 0〉 + 1

2 | 1〉 +
1
2 ei π4 | 2〉 + 1

2 | 3〉
|ψ(4)

01 〉
1
2 | 0〉 −

1
2 ei π4 | 1〉 + 1

2 | 2〉 +
1
2 ei π4 | 3〉

|ψ(4)
12 〉 −1

2 ei π4 | 0〉 − i
2 | 1〉 −

1
2 ei π4 | 2〉 + i

2 | 3〉
|ψ(4)

20 〉 −1
2 ei π4 | 0〉 − 1

2 | 1〉 +
1
2 ei π4 | 2〉 − 1

2 | 3〉

The PMRS on Alice’s side is | u3〉 = 1
2ei π4 | 0〉 − 1

2 | 1〉 +
1
2ei π4 | 2〉 + 1

2 | 3〉.

Pre-Measurement State Reduced Post-Measurement State on Bob’s Side
|ψ(4)

00 〉 − 1
2 ei 3π

4 | 0〉 − 1
2 | 1〉 −

1
2 ei 3π

4 | 2〉 + 1
2 | 3〉

|ψ(4)
01 〉

1
2 | 0〉 −

1
2 ei 3π

4 | 1〉 − 1
2 | 2〉 −

1
2 ei 3π

4 | 3〉
|ψ(4)

12 〉
1
2 ei 3π

4 | 0〉 − i
2 | 1〉 −

1
2 ei 3π

4 | 2〉 − i
2 | 3〉

|ψ(4)
20 〉 − 1

2 ei 3π
4 | 0〉 + 1

2 | 1〉 −
1
2 ei 3π

4 | 2〉 − 1
2 | 3〉

The PMRS on Alice’s side is | u4〉 = −1
2ei π4 | 0〉 − 1

2 | 1〉 −
1
2ei π4 | 2〉 + 1

2 | 3〉.

Pre-Measurement State Reduced Post-Measurement State on Bob’s Side
|ψ(4)

00 〉
1
2 ei 3π

4 | 0〉 − 1
2 | 1〉 +

1
2 ei 3π

4 | 2〉 + 1
2 | 3〉

|ψ(4)
01 〉

1
2 | 0〉 +

1
2 ei 3π

4 | 1〉 − 1
2 | 2〉 +

1
2 ei 3π

4 | 3〉
|ψ(4)

12 〉 − 1
2 ei 3π

4 | 0〉 − i
2 | 1〉 +

1
2 ei 3π

4 | 2〉 − i
2 | 3〉

|ψ(4)
20 〉

1
2 ei 3π

4 | 0〉 + 1
2 | 1〉 +

1
2 ei 3π

4 | 2〉 − 1
2 | 3〉
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The set is {|ψ(4)
00 〉 , |ψ(4)

01 〉, |ψ
(4)
20 〉 , |ψ(4)

30 〉}.

The PMRS on Alice’s side is | u1〉 = −1
2ei 3π

4 | 0〉 + 1
2 | 1〉 +

1
2ei 3π

4 | 2〉 + 1
2 | 3〉.

Pre-Measurement State Reduced Post-Measurement State on Bob’s Side
|ψ(4)

00 〉
1
2 ei π4 | 0〉 + 1

2 | 1〉 −
1
2 ei π4 | 2〉 + 1

2 | 3〉
|ψ(4)

01 〉
1
2 | 0〉 +

1
2 ei π4 | 1〉 + 1

2 | 2〉 −
1
2 ei π4 | 3〉

|ψ(4)
20 〉

1
2 ei π4 | 0〉 − 1

2 | 1〉 −
1
2 ei π4 | 2〉 − 1

2 | 3〉
|ψ(4)

30 〉
1
2 ei π4 | 0〉 − i

2 | 1〉 +
1
2 ei π4 | 2〉 + i

2 | 3〉

The PMRS on Alice’s side is | u2〉 = 1
2ei 3π

4 | 0〉 + 1
2 | 1〉 −

1
2ei 3π

4 | 2〉 + 1
2 | 3〉.

Pre-Measurement State Reduced Post-Measurement State on Bob’s Side
|ψ(4)

00 〉 −1
2 ei π4 | 0〉 + 1

2 | 1〉 +
1
2 ei π4 | 2〉 + 1

2 | 3〉
|ψ(4)

01 〉
1
2 | 0〉 −

1
2 ei π4 | 1〉 + 1

2 | 2〉 +
1
2 ei π4 | 3〉

|ψ(4)
20 〉 −1

2 ei π4 | 0〉 − 1
2 | 1〉 +

1
2 ei π4 | 2〉 − 1

2 | 3〉
|ψ(4)

30 〉 −1
2 ei π4 | 0〉 − i

2 | 1〉 −
1
2 ei π4 | 2〉 + i

2 | 3〉

The PMRS on Alice’s side is | u3〉 = 1
2ei π4 | 0〉 − 1

2 | 1〉 +
1
2ei π4 | 2〉 + 1

2 | 3〉.

Pre-Measurement State Reduced Post-Measurement State on Bob’s Side
|ψ(4)

00 〉 − 1
2 ei 3π

4 | 0〉 − 1
2 | 1〉 −

1
2 ei 3π

4 | 2〉 + 1
2 | 3〉

|ψ(4)
01 〉

1
2 | 0〉 −

1
2 ei 3π

4 | 1〉 − 1
2 | 2〉 −

1
2 ei 3π

4 | 3〉
|ψ(4)

20 〉 − 1
2 ei 3π

4 | 0〉 + 1
2 | 1〉 −

1
2 ei 3π

4 | 2〉 − 1
2 | 3〉

|ψ(4)
30 〉 − 1

2 ei 3π
4 | 0〉 + i

2 | 1〉 +
1
2 ei 3π

4 | 2〉 + i
2 | 3〉

The PMRS on Alice’s side is | u4〉 = −1
2ei π4 | 0〉 − 1

2 | 1〉 −
1
2ei π4 | 2〉 + 1

2 | 3〉.

Pre-Measurement State Reduced Post-Measurement State on Bob’s Side
|ψ(4)

00 〉
1
2 ei 3π

4 | 0〉 − 1
2 | 1〉 +

1
2 ei 3π

4 | 2〉 + 1
2 | 3〉

|ψ(4)
01 〉

1
2 | 0〉 +

1
2 ei 3π

4 | 1〉 − 1
2 | 2〉 +

1
2 ei 3π

4 | 3〉
|ψ(4)

20 〉
1
2 ei 3π

4 | 0〉 + 1
2 | 1〉 +

1
2 ei 3π

4 | 2〉 − 1
2 | 3〉

|ψ(4)
30 〉

1
2 ei 3π

4 | 0〉 + i
2 | 1〉 −

1
2 ei 3π

4 | 2〉 + i
2 | 3〉
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The set is {|ψ(4)
00 〉 , |ψ(4)

01 〉, |ψ
(4)
21 〉 , |ψ(4)

33 〉}.

The PMRS on Alice’s side is | u1〉 = −1
2ei 3π

4 | 0〉 + 1
2 | 1〉 +

1
2ei 3π

4 | 2〉 + 1
2 | 3〉.

Pre-Measurement State Reduced Post-Measurement State on Bob’s Side
|ψ(4)

00 〉
1
2 ei π4 | 0〉 + 1

2 | 1〉 −
1
2 ei π4 | 2〉 + 1

2 | 3〉
|ψ(4)

01 〉
1
2 | 0〉 +

1
2 ei π4 | 1〉 + 1

2 | 2〉 −
1
2 ei π4 | 3〉

|ψ(4)
21 〉 −1

2 | 0〉 +
1
2 ei π4 | 1〉 − 1

2 | 2〉 −
1
2 ei π4 | 3〉

|ψ(4)
33 〉 − i

2 | 0〉 +
1
2 ei π4 | 1〉 + i

2 | 2〉 +
1
2 ei π4 | 3〉

The PMRS on Alice’s side is | u2〉 = 1
2ei 3π

4 | 0〉 + 1
2 | 1〉 −

1
2ei 3π

4 | 2〉 + 1
2 | 3〉.

Pre-Measurement State Reduced Post-Measurement State on Bob’s Side
|ψ(4)

00 〉 −1
2 ei π4 | 0〉 + 1

2 | 1〉 +
1
2 ei π4 | 2〉 + 1

2 | 3〉
|ψ(4)

01 〉
1
2 | 0〉 −

1
2 ei π4 | 1〉 + 1

2 | 2〉 +
1
2 ei π4 | 3〉

|ψ(4)
21 〉 −1

2 | 0〉 −
1
2 ei π4 | 1〉 − 1

2 | 2〉 +
1
2 ei π4 | 3〉

|ψ(4)
33 〉 − i

2 | 0〉 −
1
2 ei π4 | 1〉 + i

2 | 2〉 −
1
2 ei π4 | 3〉

The PMRS on Alice’s side is | u3〉 = 1
2ei π4 | 0〉 − 1

2 | 1〉 +
1
2ei π4 | 2〉 + 1

2 | 3〉.

Pre-Measurement State Reduced Post-Measurement State on Bob’s Side
|ψ(4)

00 〉 − 1
2 ei 3π

4 | 0〉 − 1
2 | 1〉 −

1
2 ei 3π

4 | 2〉 + 1
2 | 3〉

|ψ(4)
01 〉

1
2 | 0〉 −

1
2 ei 3π

4 | 1〉 − 1
2 | 2〉 −

1
2 ei 3π

4 | 3〉
|ψ(4)

21 〉 − 1
2 | 0〉 −

1
2 ei 3π

4 | 1〉 + 1
2 | 2〉 −

1
2 ei 3π

4 | 3〉
|ψ(4)

33 〉
i
2 | 0〉 +

1
2 ei 3π

4 | 1〉 + i
2 | 2〉 −

1
2 ei 3π

4 | 3〉

The PMRS on Alice’s side is | u4〉 = −1
2ei π4 | 0〉 − 1

2 | 1〉 −
1
2ei π4 | 2〉 + 1

2 | 3〉.

Pre-Measurement State Reduced Post-Measurement State on Bob’s Side
|ψ(4)

00 〉
1
2 ei 3π

4 | 0〉 − 1
2 | 1〉 +

1
2 ei 3π

4 | 2〉 + 1
2 | 3〉

|ψ(4)
01 〉

1
2 | 0〉 +

1
2 ei 3π

4 | 1〉 − 1
2 | 2〉 +

1
2 ei 3π

4 | 3〉
|ψ(4)

21 〉 − 1
2 | 0〉 +

1
2 ei 3π

4 | 1〉 + 1
2 | 2〉 +

1
2 ei 3π

4 | 3〉
|ψ(4)

33 〉
i
2 | 0〉 −

1
2 ei 3π

4 | 1〉 + i
2 | 2〉 +

1
2 ei 3π

4 | 3〉
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The set is {|ψ(4)
00 〉 , |ψ(4)

02 〉, |ψ
(4)
10 〉 , |ψ(4)

21 〉}.

The PMRS on Alice’s side is | u1〉 = −1
2ei 3π

4 | 0〉 + 1
2 | 1〉 +

1
2ei 3π

4 | 2〉 + 1
2 | 3〉.

Pre-Measurement State Reduced Post-Measurement State on Bob’s Side
|ψ(4)

00 〉
1
2 ei π4 | 0〉 + 1

2 | 1〉 −
1
2 ei π4 | 2〉 + 1

2 | 3〉
|ψ(4)

02 〉 −1
2 ei π4 | 0〉 + 1

2 | 1〉 +
1
2 ei π4 | 2〉 + 1

2 | 3〉
|ψ(4)

10 〉
1
2 ei π4 | 0〉 + i

2 | 1〉 +
1
2 ei π4 | 2〉 − i

2 | 3〉
|ψ(4)

21 〉 −1
2 | 0〉 +

1
2 ei π4 | 1〉 − 1

2 | 2〉 −
1
2 ei π4 | 3〉

The PMRS on Alice’s side is | u2〉 = 1
2ei 3π

4 | 0〉 + 1
2 | 1〉 −

1
2ei 3π

4 | 2〉 + 1
2 | 3〉.

Pre-Measurement State Reduced Post-Measurement State on Bob’s Side
|ψ(4)

00 〉 −1
2 ei π4 | 0〉 + 1

2 | 1〉 +
1
2 ei π4 | 2〉 + 1

2 | 3〉
|ψ(4)

02 〉
1
2 ei π4 | 0〉 + 1

2 | 1〉 −
1
2 ei π4 | 2〉 + 1

2 | 3〉
|ψ(4)

10 〉 −1
2 ei π4 | 0〉 + i

2 | 1〉 −
1
2 ei π4 | 2〉 − i

2 | 3〉
|ψ(4)

21 〉 −1
2 | 0〉 −

1
2 ei π4 | 1〉 − 1

2 | 2〉 +
1
2 ei π4 | 3〉

The PMRS on Alice’s side is | u3〉 = 1
2ei π4 | 0〉 − 1

2 | 1〉 +
1
2ei π4 | 2〉 + 1

2 | 3〉.

Pre-Measurement State Reduced Post-Measurement State on Bob’s Side
|ψ(4)

00 〉 − 1
2 ei 3π

4 | 0〉 − 1
2 | 1〉 −

1
2 ei 3π

4 | 2〉 + 1
2 | 3〉

|ψ(4)
02 〉 − 1

2 ei 3π
4 | 0〉 + 1

2 | 1〉 −
1
2 ei 3π

4 | 2〉 − 1
2 | 3〉

|ψ(4)
10 〉 − 1

2 ei 3π
4 | 0〉 − i

2 | 1〉 +
1
2 ei 3π

4 | 2〉 − i
2 | 3〉

|ψ(4)
21 〉 − 1

2 | 0〉 −
1
2 ei 3π

4 | 1〉 + 1
2 | 2〉 −

1
2 ei 3π

4 | 3〉

The PMRS on Alice’s side is | u4〉 = −1
2ei π4 | 0〉 − 1

2 | 1〉 −
1
2ei π4 | 2〉 + 1

2 | 3〉.

Pre-Measurement State Reduced Post-Measurement State on Bob’s Side
|ψ(4)

00 〉
1
2 ei 3π

4 | 0〉 − 1
2 | 1〉 +

1
2 ei 3π

4 | 2〉 + 1
2 | 3〉

|ψ(4)
02 〉

1
2 ei 3π

4 | 0〉 + 1
2 | 1〉 +

1
2 ei 3π

4 | 2〉 − 1
2 | 3〉

|ψ(4)
10 〉

1
2 ei 3π

4 | 0〉 − i
2 | 1〉 −

1
2 ei 3π

4 | 2〉 − i
2 | 3〉

|ψ(4)
21 〉 − 1

2 | 0〉 +
1
2 ei 3π

4 | 1〉 + 1
2 | 2〉 +

1
2 ei 3π

4 | 3〉
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The set is {|ψ(4)
00 〉 , |ψ(4)

02 〉, |ψ
(4)
21 〉 , |ψ(4)

32 〉}.

The PMRS on Alice’s side is | u1〉 = −1
2ei 3π

4 | 0〉 + 1
2 | 1〉 +

1
2ei 3π

4 | 2〉 + 1
2 | 3〉.

Pre-Measurement State Reduced Post-Measurement State on Bob’s Side
|ψ(4)

00 〉
1
2 ei π4 | 0〉 + 1

2 | 1〉 −
1
2 ei π4 | 2〉 + 1

2 | 3〉
|ψ(4)

02 〉 −1
2 ei π4 | 0〉 + 1

2 | 1〉 +
1
2 ei π4 | 2〉 + 1

2 | 3〉
|ψ(4)

21 〉 −1
2 | 0〉 +

1
2 ei π4 | 1〉 − 1

2 | 2〉 −
1
2 ei π4 | 3〉

|ψ(4)
32 〉

1
2 ei π4 | 0〉 + i

2 | 1〉 +
1
2 ei π4 | 2〉 − i

2 | 3〉

The PMRS on Alice’s side is | u2〉 = 1
2ei 3π

4 | 0〉 + 1
2 | 1〉 −

1
2ei 3π

4 | 2〉 + 1
2 | 3〉.

Pre-Measurement State Reduced Post-Measurement State on Bob’s Side
|ψ(4)

00 〉 −1
2 ei π4 | 0〉 + 1

2 | 1〉 +
1
2 ei π4 | 2〉 + 1

2 | 3〉
|ψ(4)

02 〉
1
2 ei π4 | 0〉 + 1

2 | 1〉 −
1
2 ei π4 | 2〉 + 1

2 | 3〉
|ψ(4)

21 〉 −1
2 | 0〉 −

1
2 ei π4 | 1〉 − 1

2 | 2〉 +
1
2 ei π4 | 3〉

|ψ(4)
32 〉 −1

2 ei π4 | 0〉 + i
2 | 1〉 −

1
2 ei π4 | 2〉 − i

2 | 3〉

The PMRS on Alice’s side is | u3〉 = 1
2ei π4 | 0〉 − 1

2 | 1〉 +
1
2ei π4 | 2〉 + 1

2 | 3〉.

Pre-Measurement State Reduced Post-Measurement State on Bob’s Side
|ψ(4)

00 〉 − 1
2 ei 3π

4 | 0〉 − 1
2 | 1〉 −

1
2 ei 3π

4 | 2〉 + 1
2 | 3〉

|ψ(4)
02 〉 − 1

2 ei 3π
4 | 0〉 + 1

2 | 1〉 −
1
2 ei 3π

4 | 2〉 − 1
2 | 3〉

|ψ(4)
21 〉 − 1

2 | 0〉 −
1
2 ei 3π

4 | 1〉 + 1
2 | 2〉 −

1
2 ei 3π

4 | 3〉
|ψ(4)

32 〉
1
2 ei 3π

4 | 0〉 + i
2 | 1〉 −

1
2 ei 3π

4 | 2〉 + i
2 | 3〉

The PMRS on Alice’s side is | u4〉 = −1
2ei π4 | 0〉 − 1

2 | 1〉 −
1
2ei π4 | 2〉 + 1

2 | 3〉.

Pre-Measurement State Reduced Post-Measurement State on Bob’s Side
|ψ(4)

00 〉
1
2 ei 3π

4 | 0〉 − 1
2 | 1〉 +

1
2 ei 3π

4 | 2〉 + 1
2 | 3〉

|ψ(4)
02 〉

1
2 ei 3π

4 | 0〉 + 1
2 | 1〉 +

1
2 ei 3π

4 | 2〉 − 1
2 | 3〉

|ψ(4)
21 〉 − 1

2 | 0〉 +
1
2 ei 3π

4 | 1〉 + 1
2 | 2〉 +

1
2 ei 3π

4 | 3〉
|ψ(4)

32 〉 − 1
2 ei 3π

4 | 0〉 + i
2 | 1〉 +

1
2 ei 3π

4 | 2〉 + i
2 | 3〉
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A.2.4 PMRS for each set in theorem 3.1.6

The set is {|ψ(4)
00 〉 , |ψ(4)

01 〉, |ψ
(4)
10 〉 , |ψ(4)

11 〉}.

The PMRS on Alice’s side is | u1〉 = 1
2 | 0〉 −

1
2 | 1〉 −

1
2 | 2〉 +

1
2 | 3〉.

Pre-Measurement State Reduced Post-Measurement State on Bob’s Side
|ψ(4)

00 〉
1
2 | 0〉 −

1
2 | 1〉 −

1
2 | 2〉 +

1
2 | 3〉

|ψ(4)
01 〉

1
2 | 0〉 +

1
2 | 1〉 −

1
2 | 2〉 −

1
2 | 3〉

|ψ(4)
10 〉

1
2 | 0〉 −

i
2 | 1〉 +

1
2 | 2〉 −

i
2 | 3〉

|ψ(4)
11 〉 − i

2 | 0〉 +
1
2 | 1〉 −

i
2 | 2〉 +

1
2 | 3〉

The PMRS on Alice’s side is | u2〉 = −1
2 | 0〉 −

1
2 | 1〉 +

1
2 | 2〉 +

1
2 | 3〉.

Pre-Measurement State Reduced Post-Measurement State on Bob’s Side
|ψ(4)

00 〉 −1
2 | 0〉 −

1
2 | 1〉 +

1
2 | 2〉 +

1
2 | 3〉

|ψ(4)
01 〉

1
2 | 0〉 −

1
2 | 1〉 −

1
2 | 2〉 +

1
2 | 3〉

|ψ(4)
10 〉 −1

2 | 0〉 −
i
2 | 1〉 −

1
2 | 2〉 −

i
2 | 3〉

|ψ(4)
11 〉 − i

2 | 0〉 −
1
2 | 1〉 −

i
2 | 2〉 −

1
2 | 3〉

The PMRS on Alice’s side is | u3〉 = − i
2 | 0〉 +

1
2 | 1〉 −

i
2 | 2〉 +

1
2 | 3〉.

Pre-Measurement State Reduced Post-Measurement State on Bob’s Side
|ψ(4)

00 〉
i
2 | 0〉 +

1
2 | 1〉 +

i
2 | 2〉 +

1
2 | 3〉

|ψ(4)
01 〉

1
2 | 0〉 +

i
2 | 1〉 +

1
2 | 2〉 +

i
2 | 3〉

|ψ(4)
10 〉

i
2 | 0〉 +

i
2 | 1〉 −

i
2 | 2〉 −

i
2 | 3〉

|ψ(4)
11 〉 − i

2 | 0〉 +
i
2 | 1〉 +

i
2 | 2〉 −

i
2 | 3〉

The PMRS on Alice’s side is | u4〉 = i
2 | 0〉 +

1
2 | 1〉 +

i
2 | 2〉 +

1
2 | 3〉.

Pre-Measurement State Reduced Post-Measurement State on Bob’s Side
|ψ(4)

00 〉 − i
2 | 0〉 +

1
2 | 1〉 −

i
2 | 2〉 +

1
2 | 3〉

|ψ(4)
01 〉

1
2 | 0〉 −

i
2 | 1〉 +

1
2 | 2〉 −

i
2 | 3〉

|ψ(4)
10 〉 − i

2 | 0〉 +
i
2 | 1〉 +

i
2 | 2〉 −

i
2 | 3〉

|ψ(4)
11 〉 − i

2 | 0〉 −
i
2 | 1〉 +

i
2 | 2〉 +

i
2 | 3〉
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The set is {|ψ(4)
00 〉 , |ψ(4)

01 〉, |ψ
(4)
10 〉 , |ψ(4)

30 〉}.

The PMRS on Alice’s side is | u1〉 = 1
2 | 0〉 −

1
2 | 1〉 −

1
2 | 2〉 +

1
2 | 3〉.

Pre-Measurement State Reduced Post-Measurement State on Bob’s Side
|ψ(4)

00 〉
1
2 | 0〉 −

1
2 | 1〉 −

1
2 | 2〉 +

1
2 | 3〉

|ψ(4)
01 〉

1
2 | 0〉 +

1
2 | 1〉 −

1
2 | 2〉 −

1
2 | 3〉

|ψ(4)
10 〉

1
2 | 0〉 −

i
2 | 1〉 +

1
2 | 2〉 −

i
2 | 3〉

|ψ(4)
30 〉

1
2 | 0〉 +

i
2 | 1〉 +

1
2 | 2〉 +

i
2 | 3〉

The PMRS on Alice’s side is | u2〉 = −1
2 | 0〉 −

1
2 | 1〉 +

1
2 | 2〉 +

1
2 | 3〉.

Pre-Measurement State Reduced Post-Measurement State on Bob’s Side
|ψ(4)

00 〉 −1
2 | 0〉 −

1
2 | 1〉 +

1
2 | 2〉 +

1
2 | 3〉

|ψ(4)
01 〉

1
2 | 0〉 −

1
2 | 1〉 −

1
2 | 2〉 +

1
2 | 3〉

|ψ(4)
10 〉 −1

2 | 0〉 −
i
2 | 1〉 −

1
2 | 2〉 −

i
2 | 3〉

|ψ(4)
30 〉 −1

2 | 0〉 +
i
2 | 1〉 −

1
2 | 2〉 +

i
2 | 3〉

The PMRS on Alice’s side is | u3〉 = − i
2 | 0〉 +

1
2 | 1〉 −

i
2 | 2〉 +

1
2 | 3〉.

Pre-Measurement State Reduced Post-Measurement State on Bob’s Side
|ψ(4)

00 〉
i
2 | 0〉 +

1
2 | 1〉 +

i
2 | 2〉 +

1
2 | 3〉

|ψ(4)
01 〉

1
2 | 0〉 +

i
2 | 1〉 +

1
2 | 2〉 +

i
2 | 3〉

|ψ(4)
10 〉

i
2 | 0〉 +

i
2 | 1〉 −

i
2 | 2〉 −

i
2 | 3〉

|ψ(4)
30 〉

i
2 | 0〉 −

i
2 | 1〉 −

i
2 | 2〉 +

i
2 | 3〉

The PMRS on Alice’s side is | u4〉 = i
2 | 0〉 +

1
2 | 1〉 +

i
2 | 2〉 +

1
2 | 3〉.

Pre-Measurement State Reduced Post-Measurement State on Bob’s Side
|ψ(4)

00 〉 − i
2 | 0〉 +

1
2 | 1〉 −

i
2 | 2〉 +

1
2 | 3〉

|ψ(4)
01 〉

1
2 | 0〉 −

i
2 | 1〉 +

1
2 | 2〉 −

i
2 | 3〉

|ψ(4)
10 〉 − i

2 | 0〉 +
i
2 | 1〉 +

i
2 | 2〉 −

i
2 | 3〉

|ψ(4)
30 〉 − i

2 | 0〉 −
i
2 | 1〉 +

i
2 | 2〉 +

i
2 | 3〉
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The set is {|ψ(4)
00 〉 , |ψ(4)

01 〉, |ψ
(4)
10 〉 , |ψ(4)

32 〉}.

The PMRS on Alice’s side is | u1〉 = 1
2 | 0〉 −

1
2 | 1〉 −

1
2 | 2〉 +

1
2 | 3〉.

Pre-Measurement State Reduced Post-Measurement State on Bob’s Side
|ψ(4)

00 〉
1
2 | 0〉 −

1
2 | 1〉 −

1
2 | 2〉 +

1
2 | 3〉

|ψ(4)
01 〉

1
2 | 0〉 +

1
2 | 1〉 −

1
2 | 2〉 −

1
2 | 3〉

|ψ(4)
10 〉

1
2 | 0〉 −

i
2 | 1〉 +

1
2 | 2〉 −

i
2 | 3〉

|ψ(4)
32 〉

1
2 | 0〉 +

i
2 | 1〉 +

1
2 | 2〉 +

i
2 | 3〉

The PMRS on Alice’s side is | u2〉 = −1
2 | 0〉 −

1
2 | 1〉 +

1
2 | 2〉 +

1
2 | 3〉.

Pre-Measurement State Reduced Post-Measurement State on Bob’s Side
|ψ(4)

00 〉 −1
2 | 0〉 −

1
2 | 1〉 +

1
2 | 2〉 +

1
2 | 3〉

|ψ(4)
01 〉

1
2 | 0〉 −

1
2 | 1〉 −

1
2 | 2〉 +

1
2 | 3〉

|ψ(4)
10 〉 −1

2 | 0〉 −
i
2 | 1〉 −

1
2 | 2〉 −

i
2 | 3〉

|ψ(4)
32 〉 −1

2 | 0〉 +
i
2 | 1〉 −

1
2 | 2〉 +

i
2 | 3〉

The PMRS on Alice’s side is | u3〉 = − i
2 | 0〉 +

1
2 | 1〉 −

i
2 | 2〉 +

1
2 | 3〉.

Pre-Measurement State Reduced Post-Measurement State on Bob’s Side
|ψ(4)

00 〉
i
2 | 0〉 +

1
2 | 1〉 +

i
2 | 2〉 +

1
2 | 3〉

|ψ(4)
01 〉

1
2 | 0〉 +

i
2 | 1〉 +

1
2 | 2〉 +

i
2 | 3〉

|ψ(4)
10 〉

i
2 | 0〉 +

i
2 | 1〉 −

i
2 | 2〉 −

i
2 | 3〉

|ψ(4)
32 〉 − i

2 | 0〉 +
i
2 | 1〉 +

i
2 | 2〉 −

i
2 | 3〉

The PMRS on Alice’s side is | u4〉 = i
2 | 0〉 +

1
2 | 1〉 +

i
2 | 2〉 +

1
2 | 3〉.

Pre-Measurement State Reduced Post-Measurement State on Bob’s Side
|ψ(4)

00 〉 − i
2 | 0〉 +

1
2 | 1〉 −

i
2 | 2〉 +

1
2 | 3〉

|ψ(4)
01 〉

1
2 | 0〉 −

i
2 | 1〉 +

1
2 | 2〉 −

i
2 | 3〉

|ψ(4)
10 〉 − i

2 | 0〉 +
i
2 | 1〉 +

i
2 | 2〉 −

i
2 | 3〉

|ψ(4)
32 〉

i
2 | 0〉 +

i
2 | 1〉 −

i
2 | 2〉 −

i
2 | 3〉
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The set is {|ψ(4)
00 〉 , |ψ(4)

01 〉, |ψ
(4)
11 〉 , |ψ(4)

12 〉}.

The PMRS on Alice’s side is | u1〉 = 1
2 | 0〉 −

1
2 | 1〉 −

1
2 | 2〉 +

1
2 | 3〉.

Pre-Measurement State Reduced Post-Measurement State on Bob’s Side
|ψ(4)

00 〉
1
2 | 0〉 −

1
2 | 1〉 −

1
2 | 2〉 +

1
2 | 3〉

|ψ(4)
01 〉

1
2 | 0〉 +

1
2 | 1〉 −

1
2 | 2〉 −

1
2 | 3〉

|ψ(4)
11 〉 − i

2 | 0〉 +
1
2 | 1〉 −

i
2 | 2〉 +

1
2 | 3〉

|ψ(4)
12 〉

1
2 | 0〉 −

i
2 | 1〉 +

1
2 | 2〉 −

i
2 | 3〉

The PMRS on Alice’s side is | u2〉 = −1
2 | 0〉 −

1
2 | 1〉 +

1
2 | 2〉 +

1
2 | 3〉.

Pre-Measurement State Reduced Post-Measurement State on Bob’s Side
|ψ(4)

00 〉 −1
2 | 0〉 −

1
2 | 1〉 +

1
2 | 2〉 +

1
2 | 3〉

|ψ(4)
01 〉

1
2 | 0〉 −

1
2 | 1〉 −

1
2 | 2〉 +

1
2 | 3〉

|ψ(4)
11 〉 − i

2 | 0〉 −
1
2 | 1〉 −

i
2 | 2〉 −

1
2 | 3〉

|ψ(4)
12 〉 −1

2 | 0〉 −
i
2 | 1〉 −

1
2 | 2〉 −

i
2 | 3〉

The PMRS on Alice’s side is | u3〉 = − i
2 | 0〉 +

1
2 | 1〉 −

i
2 | 2〉 +

1
2 | 3〉.

Pre-Measurement State Reduced Post-Measurement State on Bob’s Side
|ψ(4)

00 〉
i
2 | 0〉 +

1
2 | 1〉 +

i
2 | 2〉 +

1
2 | 3〉

|ψ(4)
01 〉

1
2 | 0〉 +

i
2 | 1〉 +

1
2 | 2〉 +

i
2 | 3〉

|ψ(4)
11 〉 − i

2 | 0〉 +
i
2 | 1〉 +

i
2 | 2〉 −

i
2 | 3〉

|ψ(4)
12 〉 − i

2 | 0〉 −
i
2 | 1〉 +

i
2 | 2〉 +

i
2 | 3〉

The PMRS on Alice’s side is | u4〉 = i
2 | 0〉 +

1
2 | 1〉 +

i
2 | 2〉 +

1
2 | 3〉.

Pre-Measurement State Reduced Post-Measurement State on Bob’s Side
|ψ(4)

00 〉 − i
2 | 0〉 +

1
2 | 1〉 −

i
2 | 2〉 +

1
2 | 3〉

|ψ(4)
01 〉

1
2 | 0〉 −

i
2 | 1〉 +

1
2 | 2〉 −

i
2 | 3〉

|ψ(4)
11 〉 − i

2 | 0〉 −
i
2 | 1〉 +

i
2 | 2〉 +

i
2 | 3〉

|ψ(4)
12 〉

i
2 | 0〉 −

i
2 | 1〉 −

i
2 | 2〉 +

i
2 | 3〉
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The set is {|ψ(4)
00 〉 , |ψ(4)

01 〉, |ψ
(4)
11 〉 , |ψ(4)

31 〉}.

The PMRS on Alice’s side is | u1〉 = 1
2 | 0〉 −

1
2 | 1〉 −

1
2 | 2〉 +

1
2 | 3〉.

Pre-Measurement State Reduced Post-Measurement State on Bob’s Side
|ψ(4)

00 〉
1
2 | 0〉 −

1
2 | 1〉 −

1
2 | 2〉 +

1
2 | 3〉

|ψ(4)
01 〉

1
2 | 0〉 +

1
2 | 1〉 −

1
2 | 2〉 −

1
2 | 3〉

|ψ(4)
11 〉 − i

2 | 0〉 +
1
2 | 1〉 −

i
2 | 2〉 +

1
2 | 3〉

|ψ(4)
31 〉

i
2 | 0〉 +

1
2 | 1〉 +

i
2 | 2〉 +

1
2 | 3〉

The PMRS on Alice’s side is | u2〉 = −1
2 | 0〉 −

1
2 | 1〉 +

1
2 | 2〉 +

1
2 | 3〉.

Pre-Measurement State Reduced Post-Measurement State on Bob’s Side
|ψ(4)

00 〉 −1
2 | 0〉 −

1
2 | 1〉 +

1
2 | 2〉 +

1
2 | 3〉

|ψ(4)
01 〉

1
2 | 0〉 −

1
2 | 1〉 −

1
2 | 2〉 +

1
2 | 3〉

|ψ(4)
11 〉 − i

2 | 0〉 −
1
2 | 1〉 −

i
2 | 2〉 −

1
2 | 3〉

|ψ(4)
31 〉

i
2 | 0〉 −

1
2 | 1〉 +

i
2 | 2〉 −

1
2 | 3〉

The PMRS on Alice’s side is | u3〉 = − i
2 | 0〉 +

1
2 | 1〉 −

i
2 | 2〉 +

1
2 | 3〉.

Pre-Measurement State Reduced Post-Measurement State on Bob’s Side
|ψ(4)

00 〉
i
2 | 0〉 +

1
2 | 1〉 +

i
2 | 2〉 +

1
2 | 3〉

|ψ(4)
01 〉

1
2 | 0〉 +

i
2 | 1〉 +

1
2 | 2〉 +

i
2 | 3〉

|ψ(4)
11 〉 − i

2 | 0〉 +
i
2 | 1〉 +

i
2 | 2〉 −

i
2 | 3〉

|ψ(4)
31 〉

i
2 | 0〉 +

i
2 | 1〉 −

i
2 | 2〉 −

i
2 | 3〉

The PMRS on Alice’s side is | u4〉 = i
2 | 0〉 +

1
2 | 1〉 +

i
2 | 2〉 +

1
2 | 3〉.

Pre-Measurement State Reduced Post-Measurement State on Bob’s Side
|ψ(4)

00 〉 − i
2 | 0〉 +

1
2 | 1〉 −

i
2 | 2〉 +

1
2 | 3〉

|ψ(4)
01 〉

1
2 | 0〉 −

i
2 | 1〉 +

1
2 | 2〉 −

i
2 | 3〉

|ψ(4)
11 〉 − i

2 | 0〉 −
i
2 | 1〉 +

i
2 | 2〉 +

i
2 | 3〉

|ψ(4)
31 〉

i
2 | 0〉 −

i
2 | 1〉 −

i
2 | 2〉 +

i
2 | 3〉
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The set is {|ψ(4)
00 〉 , |ψ(4)

01 〉, |ψ
(4)
11 〉 , |ψ(4)

33 〉}.

The PMRS on Alice’s side is | u1〉 = 1
2 | 0〉 −

1
2 | 1〉 −

1
2 | 2〉 +

1
2 | 3〉.

Pre-Measurement State Reduced Post-Measurement State on Bob’s Side
|ψ(4)

00 〉
1
2 | 0〉 −

1
2 | 1〉 −

1
2 | 2〉 +

1
2 | 3〉

|ψ(4)
01 〉

1
2 | 0〉 +

1
2 | 1〉 −

1
2 | 2〉 −

1
2 | 3〉

|ψ(4)
11 〉 − i

2 | 0〉 +
1
2 | 1〉 −

i
2 | 2〉 +

1
2 | 3〉

|ψ(4)
33 〉

i
2 | 0〉 +

1
2 | 1〉 +

i
2 | 2〉 +

1
2 | 3〉

The PMRS on Alice’s side is | u2〉 = −1
2 | 0〉 −

1
2 | 1〉 +

1
2 | 2〉 +

1
2 | 3〉.

Pre-Measurement State Reduced Post-Measurement State on Bob’s Side
|ψ(4)

00 〉 −1
2 | 0〉 −

1
2 | 1〉 +

1
2 | 2〉 +

1
2 | 3〉

|ψ(4)
01 〉

1
2 | 0〉 −

1
2 | 1〉 −

1
2 | 2〉 +

1
2 | 3〉

|ψ(4)
11 〉 − i

2 | 0〉 −
1
2 | 1〉 −

i
2 | 2〉 −

1
2 | 3〉

|ψ(4)
33 〉

i
2 | 0〉 −

1
2 | 1〉 +

i
2 | 2〉 −

1
2 | 3〉

The PMRS on Alice’s side is | u3〉 = − i
2 | 0〉 +

1
2 | 1〉 −

i
2 | 2〉 +

1
2 | 3〉.

Pre-Measurement State Reduced Post-Measurement State on Bob’s Side
|ψ(4)

00 〉
i
2 | 0〉 +

1
2 | 1〉 +

i
2 | 2〉 +

1
2 | 3〉

|ψ(4)
01 〉

1
2 | 0〉 +

i
2 | 1〉 +

1
2 | 2〉 +

i
2 | 3〉

|ψ(4)
11 〉 − i

2 | 0〉 +
i
2 | 1〉 +

i
2 | 2〉 −

i
2 | 3〉

|ψ(4)
33 〉 − i

2 | 0〉 −
i
2 | 1〉 +

i
2 | 2〉 +

i
2 | 3〉

The PMRS on Alice’s side is | u4〉 = i
2 | 0〉 +

1
2 | 1〉 +

i
2 | 2〉 +

1
2 | 3〉.

Pre-Measurement State Reduced Post-Measurement State on Bob’s Side
|ψ(4)

00 〉 − i
2 | 0〉 +

1
2 | 1〉 −

i
2 | 2〉 +

1
2 | 3〉

|ψ(4)
01 〉

1
2 | 0〉 −

i
2 | 1〉 +

1
2 | 2〉 −

i
2 | 3〉

|ψ(4)
11 〉 − i

2 | 0〉 −
i
2 | 1〉 +

i
2 | 2〉 +

i
2 | 3〉

|ψ(4)
33 〉 − i

2 | 0〉 +
i
2 | 1〉 +

i
2 | 2〉 −

i
2 | 3〉
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The set is {|ψ(4)
00 〉 , |ψ(4)

01 〉, |ψ
(4)
12 〉 , |ψ(4)

30 〉}.

The PMRS on Alice’s side is | u1〉 = 1
2 | 0〉 −

1
2 | 1〉 −

1
2 | 2〉 +

1
2 | 3〉.

Pre-Measurement State Reduced Post-Measurement State on Bob’s Side
|ψ(4)

00 〉
1
2 | 0〉 −

1
2 | 1〉 −

1
2 | 2〉 +

1
2 | 3〉

|ψ(4)
01 〉

1
2 | 0〉 +

1
2 | 1〉 −

1
2 | 2〉 −

1
2 | 3〉

|ψ(4)
12 〉

1
2 | 0〉 −

i
2 | 1〉 +

1
2 | 2〉 −

i
2 | 3〉

|ψ(4)
30 〉

1
2 | 0〉 +

i
2 | 1〉 +

1
2 | 2〉 +

i
2 | 3〉

The PMRS on Alice’s side is | u2〉 = −1
2 | 0〉 −

1
2 | 1〉 +

1
2 | 2〉 +

1
2 | 3〉.

Pre-Measurement State Reduced Post-Measurement State on Bob’s Side
|ψ(4)

00 〉 −1
2 | 0〉 −

1
2 | 1〉 +

1
2 | 2〉 +

1
2 | 3〉

|ψ(4)
01 〉

1
2 | 0〉 −

1
2 | 1〉 −

1
2 | 2〉 +

1
2 | 3〉

|ψ(4)
12 〉 −1

2 | 0〉 −
i
2 | 1〉 −

1
2 | 2〉 −

i
2 | 3〉

|ψ(4)
30 〉 −1

2 | 0〉 +
i
2 | 1〉 −

1
2 | 2〉 +

i
2 | 3〉

The PMRS on Alice’s side is | u3〉 = − i
2 | 0〉 +

1
2 | 1〉 −

i
2 | 2〉 +

1
2 | 3〉.

Pre-Measurement State Reduced Post-Measurement State on Bob’s Side
|ψ(4)

00 〉
i
2 | 0〉 +

1
2 | 1〉 +

i
2 | 2〉 +

1
2 | 3〉

|ψ(4)
01 〉

1
2 | 0〉 +

i
2 | 1〉 +

1
2 | 2〉 +

i
2 | 3〉

|ψ(4)
12 〉 − i

2 | 0〉 −
i
2 | 1〉 +

i
2 | 2〉 +

i
2 | 3〉

|ψ(4)
30 〉

i
2 | 0〉 −

i
2 | 1〉 −

i
2 | 2〉 +

i
2 | 3〉

The PMRS on Alice’s side is | u4〉 = i
2 | 0〉 +

1
2 | 1〉 +

i
2 | 2〉 +

1
2 | 3〉.

Pre-Measurement State Reduced Post-Measurement State on Bob’s Side
|ψ(4)

00 〉 − i
2 | 0〉 +

1
2 | 1〉 −

i
2 | 2〉 +

1
2 | 3〉

|ψ(4)
01 〉

1
2 | 0〉 −

i
2 | 1〉 +

1
2 | 2〉 −

i
2 | 3〉

|ψ(4)
12 〉

i
2 | 0〉 −

i
2 | 1〉 −

i
2 | 2〉 +

i
2 | 3〉

|ψ(4)
30 〉 − i

2 | 0〉 −
i
2 | 1〉 +

i
2 | 2〉 +

i
2 | 3〉
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The set is {|ψ(4)
00 〉 , |ψ(4)

01 〉, |ψ
(4)
12 〉 , |ψ(4)

32 〉}.

The PMRS on Alice’s side is | u1〉 = 1
2 | 0〉 −

1
2 | 1〉 −

1
2 | 2〉 +

1
2 | 3〉.

Pre-Measurement State Reduced Post-Measurement State on Bob’s Side
|ψ(4)

00 〉
1
2 | 0〉 −

1
2 | 1〉 −

1
2 | 2〉 +

1
2 | 3〉

|ψ(4)
01 〉

1
2 | 0〉 +

1
2 | 1〉 −

1
2 | 2〉 −

1
2 | 3〉

|ψ(4)
12 〉

1
2 | 0〉 −

i
2 | 1〉 +

1
2 | 2〉 −

i
2 | 3〉

|ψ(4)
32 〉

1
2 | 0〉 +

i
2 | 1〉 +

1
2 | 2〉 +

i
2 | 3〉

The PMRS on Alice’s side is | u2〉 = −1
2 | 0〉 −

1
2 | 1〉 +

1
2 | 2〉 +

1
2 | 3〉.

Pre-Measurement State Reduced Post-Measurement State on Bob’s Side
|ψ(4)

00 〉 −1
2 | 0〉 −

1
2 | 1〉 +

1
2 | 2〉 +

1
2 | 3〉

|ψ(4)
01 〉

1
2 | 0〉 −

1
2 | 1〉 −

1
2 | 2〉 +

1
2 | 3〉

|ψ(4)
12 〉 −1

2 | 0〉 −
i
2 | 1〉 −

1
2 | 2〉 −

i
2 | 3〉

|ψ(4)
32 〉 −1

2 | 0〉 +
i
2 | 1〉 −

1
2 | 2〉 +

i
2 | 3〉

The PMRS on Alice’s side is | u3〉 = − i
2 | 0〉 +

1
2 | 1〉 −

i
2 | 2〉 +

1
2 | 3〉.

Pre-Measurement State Reduced Post-Measurement State on Bob’s Side
|ψ(4)

00 〉
i
2 | 0〉 +

1
2 | 1〉 +

i
2 | 2〉 +

1
2 | 3〉

|ψ(4)
01 〉

1
2 | 0〉 +

i
2 | 1〉 +

1
2 | 2〉 +

i
2 | 3〉

|ψ(4)
12 〉 − i

2 | 0〉 −
i
2 | 1〉 +

i
2 | 2〉 +

i
2 | 3〉

|ψ(4)
32 〉 − i

2 | 0〉 +
i
2 | 1〉 +

i
2 | 2〉 −

i
2 | 3〉

The PMRS on Alice’s side is | u4〉 = i
2 | 0〉 +

1
2 | 1〉 +

i
2 | 2〉 +

1
2 | 3〉.

Pre-Measurement State Reduced Post-Measurement State on Bob’s Side
|ψ(4)

00 〉 − i
2 | 0〉 +

1
2 | 1〉 −

i
2 | 2〉 +

1
2 | 3〉

|ψ(4)
01 〉

1
2 | 0〉 −

i
2 | 1〉 +

1
2 | 2〉 −

i
2 | 3〉

|ψ(4)
12 〉

i
2 | 0〉 −

i
2 | 1〉 −

i
2 | 2〉 +

i
2 | 3〉

|ψ(4)
32 〉

i
2 | 0〉 +

i
2 | 1〉 −

i
2 | 2〉 −

i
2 | 3〉
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The set is {|ψ(4)
00 〉 , |ψ(4)

01 〉, |ψ
(4)
13 〉 , |ψ(4)

31 〉}.

The PMRS on Alice’s side is | u1〉 = 1
2 | 0〉 −

1
2 | 1〉 −

1
2 | 2〉 +

1
2 | 3〉.

Pre-Measurement State Reduced Post-Measurement State on Bob’s Side
|ψ(4)

00 〉
1
2 | 0〉 −

1
2 | 1〉 −

1
2 | 2〉 +

1
2 | 3〉

|ψ(4)
01 〉

1
2 | 0〉 +

1
2 | 1〉 −

1
2 | 2〉 −

1
2 | 3〉

|ψ(4)
13 〉 − i

2 | 0〉 +
1
2 | 1〉 −

i
2 | 2〉 +

1
2 | 3〉

|ψ(4)
31 〉

i
2 | 0〉 +

1
2 | 1〉 +

i
2 | 2〉 +

1
2 | 3〉

The PMRS on Alice’s side is | u2〉 = −1
2 | 0〉 −

1
2 | 1〉 +

1
2 | 2〉 +

1
2 | 3〉.

Pre-Measurement State Reduced Post-Measurement State on Bob’s Side
|ψ(4)

00 〉 −1
2 | 0〉 −

1
2 | 1〉 +

1
2 | 2〉 +

1
2 | 3〉

|ψ(4)
01 〉

1
2 | 0〉 −

1
2 | 1〉 −

1
2 | 2〉 +

1
2 | 3〉

|ψ(4)
13 〉 − i

2 | 0〉 −
1
2 | 1〉 −

i
2 | 2〉 −

1
2 | 3〉

|ψ(4)
31 〉

i
2 | 0〉 −

1
2 | 1〉 +

i
2 | 2〉 −

1
2 | 3〉

The PMRS on Alice’s side is | u3〉 = − i
2 | 0〉 +

1
2 | 1〉 −

i
2 | 2〉 +

1
2 | 3〉.

Pre-Measurement State Reduced Post-Measurement State on Bob’s Side
|ψ(4)

00 〉
i
2 | 0〉 +

1
2 | 1〉 +

i
2 | 2〉 +

1
2 | 3〉

|ψ(4)
01 〉

1
2 | 0〉 +

i
2 | 1〉 +

1
2 | 2〉 +

i
2 | 3〉

|ψ(4)
13 〉

i
2 | 0〉 −

i
2 | 1〉 −

i
2 | 2〉 +

i
2 | 3〉

|ψ(4)
31 〉

i
2 | 0〉 +

i
2 | 1〉 −

i
2 | 2〉 −

i
2 | 3〉

The PMRS on Alice’s side is | u4〉 = i
2 | 0〉 +

1
2 | 1〉 +

i
2 | 2〉 +

1
2 | 3〉.

Pre-Measurement State Reduced Post-Measurement State on Bob’s Side
|ψ(4)

00 〉 − i
2 | 0〉 +

1
2 | 1〉 −

i
2 | 2〉 +

1
2 | 3〉

|ψ(4)
01 〉

1
2 | 0〉 −

i
2 | 1〉 +

1
2 | 2〉 −

i
2 | 3〉

|ψ(4)
13 〉

i
2 | 0〉 +

i
2 | 1〉 −

i
2 | 2〉 −

i
2 | 3〉

|ψ(4)
31 〉

i
2 | 0〉 −

i
2 | 1〉 −

i
2 | 2〉 +

i
2 | 3〉
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The set is {|ψ(4)
00 〉 , |ψ(4)

01 〉, |ψ
(4)
13 〉 , |ψ(4)

33 〉}.

The PMRS on Alice’s side is | u1〉 = 1
2 | 0〉 −

1
2 | 1〉 −

1
2 | 2〉 +

1
2 | 3〉.

Pre-Measurement State Reduced Post-Measurement State on Bob’s Side
|ψ(4)

00 〉
1
2 | 0〉 −

1
2 | 1〉 −

1
2 | 2〉 +

1
2 | 3〉

|ψ(4)
01 〉

1
2 | 0〉 +

1
2 | 1〉 −

1
2 | 2〉 −

1
2 | 3〉

|ψ(4)
13 〉 − i

2 | 0〉 +
1
2 | 1〉 −

i
2 | 2〉 +

1
2 | 3〉

|ψ(4)
33 〉

i
2 | 0〉 +

1
2 | 1〉 +

i
2 | 2〉 +

1
2 | 3〉

The PMRS on Alice’s side is | u2〉 = −1
2 | 0〉 −

1
2 | 1〉 +

1
2 | 2〉 +

1
2 | 3〉.

Pre-Measurement State Reduced Post-Measurement State on Bob’s Side
|ψ(4)

00 〉 −1
2 | 0〉 −

1
2 | 1〉 +

1
2 | 2〉 +

1
2 | 3〉

|ψ(4)
01 〉

1
2 | 0〉 −

1
2 | 1〉 −

1
2 | 2〉 +

1
2 | 3〉

|ψ(4)
13 〉 − i

2 | 0〉 −
1
2 | 1〉 −

i
2 | 2〉 −

1
2 | 3〉

|ψ(4)
33 〉

i
2 | 0〉 −

1
2 | 1〉 +

i
2 | 2〉 −

1
2 | 3〉

The PMRS on Alice’s side is | u3〉 = − i
2 | 0〉 +

1
2 | 1〉 −

i
2 | 2〉 +

1
2 | 3〉.

Pre-Measurement State Reduced Post-Measurement State on Bob’s Side
|ψ(4)

00 〉
i
2 | 0〉 +

1
2 | 1〉 +

i
2 | 2〉 +

1
2 | 3〉

|ψ(4)
01 〉

1
2 | 0〉 +

i
2 | 1〉 +

1
2 | 2〉 +

i
2 | 3〉

|ψ(4)
13 〉

i
2 | 0〉 −

i
2 | 1〉 −

i
2 | 2〉 +

i
2 | 3〉

|ψ(4)
33 〉 − i

2 | 0〉 −
i
2 | 1〉 +

i
2 | 2〉 +

i
2 | 3〉

The PMRS on Alice’s side is | u4〉 = i
2 | 0〉 +

1
2 | 1〉 +

i
2 | 2〉 +

1
2 | 3〉.

Pre-Measurement State Reduced Post-Measurement State on Bob’s Side
|ψ(4)

00 〉 − i
2 | 0〉 +

1
2 | 1〉 −

i
2 | 2〉 +

1
2 | 3〉

|ψ(4)
01 〉

1
2 | 0〉 −

i
2 | 1〉 +

1
2 | 2〉 −

i
2 | 3〉

|ψ(4)
13 〉

i
2 | 0〉 +

i
2 | 1〉 −

i
2 | 2〉 −

i
2 | 3〉

|ψ(4)
33 〉 − i

2 | 0〉 +
i
2 | 1〉 +

i
2 | 2〉 −

i
2 | 3〉



A.2. LOCC PROTOCOLS FOR STATES IN THEOREMS 3.1.3 TO 3.1.8 237

A.2.5 PMRS for each set in theorem 3.1.7

The set is {|ψ(4)
00 〉 , |ψ(4)

01 〉, |ψ
(4)
10 〉 , |ψ(4)

33 〉}.

The PMRS on Alice’s side is | u1〉 = − 1
√

2
| 0〉 + 1

√
2
| 2〉.

Pre-Measurement State Reduced Post-Measurement State on Bob’s Side
|ψ(4)

00 〉 − 1√
2
| 0〉 + 1√

2
| 2〉

|ψ(4)
01 〉 − 1√

2
| 1〉 + 1√

2
| 3〉

|ψ(4)
10 〉 − 1√

2
| 0〉 − 1√

2
| 2〉

|ψ(4)
33 〉 − 1√

2
| 1〉 − 1√

2
| 3〉

The PMRS on Alice’s side is | u2〉 = 1
√

2
| 1〉 + 1

√
2
| 3〉.

Pre-Measurement State Reduced Post-Measurement State on Bob’s Side
|ψ(4)

00 〉
1√
2
| 1〉 + 1√

2
| 3〉

|ψ(4)
01 〉

1√
2
| 0〉 + 1√

2
| 2〉

|ψ(4)
10 〉

i√
2
| 1〉 − i√

2
| 3〉

|ψ(4)
33 〉 − i√

2
| 0〉 + i√

2
| 2〉

The PMRS on Alice’s side is | u3〉 = − 1
√

2
| 1〉 + 1

√
2
| 3〉.

Pre-Measurement State Reduced Post-Measurement State on Bob’s Side
|ψ(4)

00 〉 − 1√
2
| 1〉 + 1√

2
| 3〉

|ψ(4)
01 〉

1√
2
| 0〉 − 1√

2
| 2〉

|ψ(4)
10 〉 − i√

2
| 1〉 − i√

2
| 3〉

|ψ(4)
33 〉

i√
2
| 0〉 + i√

2
| 2〉

The PMRS on Alice’s side is | u4〉 = 1
√

2
| 0〉 + 1

√
2
| 2〉.

Pre-Measurement State Reduced Post-Measurement State on Bob’s Side
|ψ(4)

00 〉
1√
2
| 0〉 + 1√

2
| 2〉

|ψ(4)
01 〉

1√
2
| 1〉 + 1√

2
| 3〉

|ψ(4)
10 〉

1√
2
| 0〉 − 1√

2
| 2〉

|ψ(4)
33 〉 − 1√

2
| 1〉 + 1√

2
| 3〉
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The set is {|ψ(4)
00 〉 , |ψ(4)

01 〉, |ψ
(4)
11 〉 , |ψ(4)

32 〉}.

The PMRS on Alice’s side is | u1〉 = − 1
√

2
| 0〉 + 1

√
2
| 2〉.

Pre-Measurement State Reduced Post-Measurement State on Bob’s Side
|ψ(4)

00 〉 − 1√
2
| 0〉 + 1√

2
| 2〉

|ψ(4)
01 〉 − 1√

2
| 1〉 + 1√

2
| 3〉

|ψ(4)
11 〉 − 1√

2
| 1〉 − 1√

2
| 3〉

|ψ(4)
32 〉 − 1√

2
| 0〉 − 1√

2
| 2〉

The PMRS on Alice’s side is | u2〉 = 1
√

2
| 1〉 + 1

√
2
| 3〉.

Pre-Measurement State Reduced Post-Measurement State on Bob’s Side
|ψ(4)

00 〉
1√
2
| 1〉 + 1√

2
| 3〉

|ψ(4)
01 〉

1√
2
| 0〉 + 1√

2
| 2〉

|ψ(4)
11 〉 − i√

2
| 0〉 + i√

2
| 2〉

|ψ(4)
32 〉

i√
2
| 1〉 − i√

2
| 3〉

The PMRS on Alice’s side is | u3〉 = − 1
√

2
| 1〉 + 1

√
2
| 3〉.

Pre-Measurement State Reduced Post-Measurement State on Bob’s Side
|ψ(4)

00 〉 − 1√
2
| 1〉 + 1√

2
| 3〉

|ψ(4)
01 〉

1√
2
| 0〉 − 1√

2
| 2〉

|ψ(4)
11 〉 − i√

2
| 0〉 − i√

2
| 2〉

|ψ(4)
32 〉

i√
2
| 1〉 + i√

2
| 3〉

The PMRS on Alice’s side is | u4〉 = 1
√

2
| 0〉 + 1

√
2
| 2〉.

Pre-Measurement State Reduced Post-Measurement State on Bob’s Side
|ψ(4)

00 〉
1√
2
| 0〉 + 1√

2
| 2〉

|ψ(4)
01 〉

1√
2
| 1〉 + 1√

2
| 3〉

|ψ(4)
11 〉

1√
2
| 1〉 − 1√

2
| 3〉

|ψ(4)
32 〉 − 1√

2
| 0〉 + 1√

2
| 2〉
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The set is {|ψ(4)
00 〉 , |ψ(4)

01 〉, |ψ
(4)
12 〉 , |ψ(4)

31 〉}.

The PMRS on Alice’s side is | u1〉 = − 1
√

2
| 0〉 + 1

√
2
| 2〉.

Pre-Measurement State Reduced Post-Measurement State on Bob’s Side
|ψ(4)

00 〉 − 1√
2
| 0〉 + 1√

2
| 2〉

|ψ(4)
01 〉 − 1√

2
| 1〉 + 1√

2
| 3〉

|ψ(4)
12 〉 − 1√

2
| 0〉 − 1√

2
| 2〉

|ψ(4)
31 〉 − 1√

2
| 1〉 − 1√

2
| 3〉

The PMRS on Alice’s side is | u2〉 = 1
√

2
| 1〉 + 1

√
2
| 3〉.

Pre-Measurement State Reduced Post-Measurement State on Bob’s Side
|ψ(4)

00 〉
1√
2
| 1〉 + 1√

2
| 3〉

|ψ(4)
01 〉

1√
2
| 0〉 + 1√

2
| 2〉

|ψ(4)
12 〉 − i√

2
| 1〉 + i√

2
| 3〉

|ψ(4)
31 〉

i√
2
| 0〉 − i√

2
| 2〉

The PMRS on Alice’s side is | u3〉 = − 1
√

2
| 1〉 + 1

√
2
| 3〉.

Pre-Measurement State Reduced Post-Measurement State on Bob’s Side
|ψ(4)

00 〉 − 1√
2
| 1〉 + 1√

2
| 3〉

|ψ(4)
01 〉

1√
2
| 0〉 − 1√

2
| 2〉

|ψ(4)
12 〉 − i√

2
| 1〉 − i√

2
| 3〉

|ψ(4)
31 〉

i√
2
| 0〉 + i√

2
| 2〉

The PMRS on Alice’s side is | u4〉 = 1
√

2
| 0〉 + 1

√
2
| 2〉.

Pre-Measurement State Reduced Post-Measurement State on Bob’s Side
|ψ(4)

00 〉
1√
2
| 0〉 + 1√

2
| 2〉

|ψ(4)
01 〉

1√
2
| 1〉 + 1√

2
| 3〉

|ψ(4)
12 〉 − 1√

2
| 0〉 + 1√

2
| 2〉

|ψ(4)
31 〉

1√
2
| 1〉 − 1√

2
| 3〉
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The set is {|ψ(4)
00 〉 , |ψ(4)

01 〉, |ψ
(4)
13 〉 , |ψ(4)

30 〉}.

The PMRS on Alice’s side is | u1〉 = − 1
√

2
| 0〉 + 1

√
2
| 2〉.

Pre-Measurement State Reduced Post-Measurement State on Bob’s Side
|ψ(4)

00 〉 − 1√
2
| 0〉 + 1√

2
| 2〉

|ψ(4)
01 〉 − 1√

2
| 1〉 + 1√

2
| 3〉

|ψ(4)
13 〉 − 1√

2
| 1〉 − 1√

2
| 3〉

|ψ(4)
30 〉 − 1√

2
| 0〉 − 1√

2
| 2〉

The PMRS on Alice’s side is | u2〉 = 1
√

2
| 1〉 + 1

√
2
| 3〉.

Pre-Measurement State Reduced Post-Measurement State on Bob’s Side
|ψ(4)

00 〉
1√
2
| 1〉 + 1√

2
| 3〉

|ψ(4)
01 〉

1√
2
| 0〉 + 1√

2
| 2〉

|ψ(4)
13 〉

i√
2
| 0〉 − i√

2
| 2〉

|ψ(4)
30 〉 − i√

2
| 1〉 + i√

2
| 3〉

The PMRS on Alice’s side is | u3〉 = − 1
√

2
| 1〉 + 1

√
2
| 3〉.

Pre-Measurement State Reduced Post-Measurement State on Bob’s Side
|ψ(4)

00 〉 − 1√
2
| 1〉 + 1√

2
| 3〉

|ψ(4)
01 〉

1√
2
| 0〉 − 1√

2
| 2〉

|ψ(4)
13 〉 − i√

2
| 0〉 − i√

2
| 2〉

|ψ(4)
30 〉

i√
2
| 1〉 + i√

2
| 3〉

The PMRS on Alice’s side is | u4〉 = 1
√

2
| 0〉 + 1

√
2
| 2〉.

Pre-Measurement State Reduced Post-Measurement State on Bob’s Side
|ψ(4)

00 〉
1√
2
| 0〉 + 1√

2
| 2〉

|ψ(4)
01 〉

1√
2
| 1〉 + 1√

2
| 3〉

|ψ(4)
13 〉 − 1√

2
| 1〉 + 1√

2
| 3〉

|ψ(4)
30 〉

1√
2
| 0〉 − 1√

2
| 2〉
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The set is {|ψ(4)
00 〉 , |ψ(4)

01 〉, |ψ
(4)
11 〉 , |ψ(4)

30 〉}.

The PMRS on Alice’s side is | u1〉 = − 1
√

2
| 0〉 + 1

√
2
| 2〉.

Pre-Measurement State Reduced Post-Measurement State on Bob’s Side
|ψ(4)

00 〉 − 1√
2
| 0〉 + 1√

2
| 2〉

|ψ(4)
01 〉 − 1√

2
| 1〉 + 1√

2
| 3〉

|ψ(4)
11 〉 − 1√

2
| 1〉 − 1√

2
| 3〉

|ψ(4)
30 〉 − 1√

2
| 0〉 − 1√

2
| 2〉

The PMRS on Alice’s side is | u2〉 = 1
√

2
| 1〉 + 1

√
2
| 3〉.

Pre-Measurement State Reduced Post-Measurement State on Bob’s Side
|ψ(4)

00 〉
1√
2
| 1〉 + 1√

2
| 3〉

|ψ(4)
01 〉

1√
2
| 0〉 + 1√

2
| 2〉

|ψ(4)
11 〉 − i√

2
| 0〉 + i√

2
| 2〉

|ψ(4)
30 〉 − i√

2
| 1〉 + i√

2
| 3〉

The PMRS on Alice’s side is | u3〉 = − 1
√

2
| 1〉 + 1

√
2
| 3〉.

Pre-Measurement State Reduced Post-Measurement State on Bob’s Side
|ψ(4)

00 〉 − 1√
2
| 1〉 + 1√

2
| 3〉

|ψ(4)
01 〉

1√
2
| 0〉 − 1√

2
| 2〉

|ψ(4)
11 〉 − i√

2
| 0〉 − i√

2
| 2〉

|ψ(4)
30 〉

i√
2
| 1〉 + i√

2
| 3〉

The PMRS on Alice’s side is | u4〉 = 1
√

2
| 0〉 + 1

√
2
| 2〉.

Pre-Measurement State Reduced Post-Measurement State on Bob’s Side
|ψ(4)

00 〉
1√
2
| 0〉 + 1√

2
| 2〉

|ψ(4)
01 〉

1√
2
| 1〉 + 1√

2
| 3〉

|ψ(4)
11 〉

1√
2
| 1〉 − 1√

2
| 3〉

|ψ(4)
30 〉

1√
2
| 0〉 − 1√

2
| 2〉
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A.2.6 PMRS for each set in theorem 3.1.8

The set is {|ψ(4)
00 〉 , |ψ(4)

02 〉, |ψ
(4)
20 〉 , |ψ(4)

22 〉}.

The PMRS on Alice’s side is | u1〉 = − i
2 | 0〉 −

i
2 | 1〉 +

1
2 | 2〉 +

1
2 | 3〉.

Pre-Measurement State Reduced Post-Measurement State on Bob’s Side
|ψ(4)

00 〉
i
2 | 0〉 +

i
2 | 1〉 +

1
2 | 2〉 +

1
2 | 3〉

|ψ(4)
02 〉

1
2 | 0〉 +

1
2 | 1〉 +

i
2 | 2〉 +

i
2 | 3〉

|ψ(4)
20 〉

i
2 | 0〉 −

i
2 | 1〉 +

1
2 | 2〉 −

1
2 | 3〉

|ψ(4)
22 〉

1
2 | 0〉 −

1
2 | 1〉 +

i
2 | 2〉 −

i
2 | 3〉

The PMRS on Alice’s side is | u2〉 = i
2 | 0〉 +

i
2 | 1〉 +

1
2 | 2〉 +

1
2 | 3〉.

Pre-Measurement State Reduced Post-Measurement State on Bob’s Side
|ψ(4)

00 〉 − i
2 | 0〉 −

i
2 | 1〉 +

1
2 | 2〉 +

1
2 | 3〉

|ψ(4)
02 〉

1
2 | 0〉 +

1
2 | 1〉 −

i
2 | 2〉 −

i
2 | 3〉

|ψ(4)
20 〉 − i

2 | 0〉 +
i
2 | 1〉 +

1
2 | 2〉 −

1
2 | 3〉

|ψ(4)
22 〉

1
2 | 0〉 −

1
2 | 1〉 −

i
2 | 2〉 +

i
2 | 3〉

The PMRS on Alice’s side is | u3〉 = i
2 | 0〉 −

i
2 | 1〉 −

1
2 | 2〉 +

1
2 | 3〉.

Pre-Measurement State Reduced Post-Measurement State on Bob’s Side
|ψ(4)

00 〉 − i
2 | 0〉 +

i
2 | 1〉 −

1
2 | 2〉 +

1
2 | 3〉

|ψ(4)
02 〉 −1

2 | 0〉 +
1
2 | 1〉 −

i
2 | 2〉 +

i
2 | 3〉

|ψ(4)
20 〉 − i

2 | 0〉 −
i
2 | 1〉 −

1
2 | 2〉 −

1
2 | 3〉

|ψ(4)
22 〉 −1

2 | 0〉 −
1
2 | 1〉 −

i
2 | 2〉 −

i
2 | 3〉

The PMRS on Alice’s side is | u4〉 = − i
2 | 0〉 +

i
2 | 1〉 −

1
2 | 2〉 +

1
2 | 3〉.

Pre-Measurement State Reduced Post-Measurement State on Bob’s Side
|ψ(4)

00 〉
i
2 | 0〉 −

i
2 | 1〉 −

1
2 | 2〉 +

1
2 | 3〉

|ψ(4)
02 〉 −1

2 | 0〉 +
1
2 | 1〉 +

i
2 | 2〉 −

i
2 | 3〉

|ψ(4)
20 〉

i
2 | 0〉 +

i
2 | 1〉 −

1
2 | 2〉 −

1
2 | 3〉

|ψ(4)
22 〉 −1

2 | 0〉 −
1
2 | 1〉 +

i
2 | 2〉 +

i
2 | 3〉



Appendix B

Proof of Corollary 3.2.6.1

This proof is similar to the Cohen’s proof of theorem 1 in [13].

Denote by G(m, n) the manifold of all sets of m orthogonal bipartite pure states {|ψi〉AB}
m
i=1

⊂ HA ⊗ HB, where 〈ψi|ψi′〉 = δii′ , ∀ 1 ≤ i < i′ ≤ m. Hence every point in G(m, n) is

associated with a set of n × n orthonormal complex matrices {Wi}
m
i=1 (see equation (2) in

main text), i.e., Tr(W†

i Wi′) = δii′ , ∀ 1 ≤ i < i′ ≤ m. Let’s represent the rows of Wi as

~
wi1,

~
wi2, · · · ,

~
wid. Vectorize the Wi matrices by arranging these rows {

~
wi j}

n
j=1 as complex

n2-tuples, i.e., (
~
wi1,

~
wi2, · · · ,

~
wid) ∈Cn2

, and arrange these vectorized Wi’s as the first upper

m rows of a n2 × n2 unitary matrix U, whose remaining rows are arbitary (insofar as the

matrix remains unitary). Hence any point of G(m, n) can be associated with the first upper

m columns of a n2 × n2 unitary matrix U ∈ U(n2). In fact, since the overall phases of

these m columns, the permutation of the order of their appearance in the set of first n

columns of U and the rest of the n2 − m columns in U are insignificant to describe the

corresponding set of orthogonal pure states fromHA ⊗ HB, the manifold G(m, n) is given

by U(n2)/(U(1)×m × S n × U(n2 − m)). This is a real manifold.

Let u(n2) be the space of all n2×n2 hermitian matrices, then it is the space of generators for

n2 × n2 unitary matrices, i.e., if G ∈ u(n2), then e−iG is a n2 × n2 unitary matrix. Associate

the ordered set of the first m rows of e−iG with the set of m vectorized Wi’s. Then the
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set {Wi}
m
i=1 corresponds to some set of m orthonormal states {|ψi〉AB}

m
i=1. This maps any

G ∈ u(n2) to a point in G(m, n) unambiguously. Let’s denote this map by R : u(n2) −→

G(m, n). So R(G) is a point in G(m, n) corresponding to {|ψi〉AB}
m
i=1. In the following I

specify norm-induced-metric for various spaces.

1. Metric for all n2 × n2 matrices is given by the standard Hilbert Schmidt norm.

2. Let {Ai}
m
i=1 be an arbitary set of m complex n × n matrices, then

||{Ai}
m
i=1|| =

 m∑
i=1

Tr(A†i Ai)


1
2

.

3. Let {| ηi〉AB}
m
i=1 be a set of m arbitrary vectors in HA ⊗ HB, then ||{| ηi〉AB}

m
i=1|| = (

∑m
i=1

AB〈ηi|ηi〉AB)
1
2 .

Then G −→ e−iG is continuous, e−iG −→ {Wi}
m
i=1 is continuous and {Wi}

m
i=1 −→ {|ψi〉AB}

m
i=1 is

continuous. This implies that R is continuous. It is easy to see that R is onto but not

one-to-one.

For any set of m orthonormal states {|ψi〉AB}
m
i=1, one can obtain the n(n − 1) matrices

{Hi, Ai}i∈I. Vectorize each of these matrices and arrange them as rows of a m(m − 1) × n2

matrix M. Define D : G(m, n) −→ R by D({|ψi〉AB}
m
i=1) ≡ Det(MM†). The goal is to

establish that for no point in G(m, n) is there an open neighbourhood N containing said

point such that D vanishes entirely in N . Since D is continuous on G(m, n) and R is

continuous on u(n2), D ◦R is continuous on u(n2). Hence, if D vanishes entirely in some

open neighbourhood N of {|ψi〉AB}
m
i=1 in G(m, n), and if R(G) = {|ψi〉AB}

m
i=1, then there is

some open neighrboorhood m of G ∈ u(n2) where D ◦R vanishes entirely too. Hence

one needs to show that D ◦R doesn’t vanish entirely in any open neighrbourhood of any

point G in u(n2).

Let {λi}
n2

i=1 be an ONB for u(n2). Let G =
~
α.
~
λ be a point in u(n2) which has an open

neighbourhood m in which D ◦ R vanishes entirely. Then there exists some εs ∈ R be
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such that (
~
α + εsm̂).

~
λ ∈ m for all unit vectors m̂ lying on S n2−1. Then

e−i(
~
α+εm̂).

~
λ =e−i

~
α.
~
λ

+ε

 −im̂.
~
λ − 1

2! (m̂.
~
λ)(
~
α.
~
λ) + (

~
α.
~
λ)(m̂.

~
λ)

+ i
3! (
~
α.
~
λ)2(m̂.

~
λ) + (

~
α.
~
λ)(m̂.

~
λ)(
~
α.
~
λ) + (m̂.

~
λ)(
~
α.
~
λ)2

+ · · ·


+ε2

(
−

(m̂.
~
λ)2

2
+ i

(m̂.
~
λ)2(

~
α.
~
λ) + (m̂.

~
λ)(
~
α.
~
λ)(m̂.

~
λ) + (

~
α.
~
λ)(m̂.

~
λ)2

3!
+ · · ·

)
+O(ε3).

(B.1)

Hence it is easy to see that as G −→ G + εm̂.
~
λ, the Wi matrices transform as Wi −→ Wi +

εW (1)
i (m̂) + ε2W (2)

i (m̂) +O(ε3), where εW (1)
i (m̂) is the first order change in ε, ε2W (2)

i (m̂) is the

second order change in ε and so on. Since equation (B.1) gives the Taylor series expansion

of e−i(
~
α+εm̂).

~
λ about ε = 0, Wi +

∑∞
k=1 ε

kW (k)
i (m̂) is the Taylor series expansion of about ε = 0.

In fact the radius of convergence for the latter is determined by the former, and since the

expression in (B.1) converges for all ε ∈ R for the former, it does so too for the latter. Now

D({|ψi〉AB}
m
i=1) ≡ Det(MM†) is a polynomial of the matrix elements of Wi. So when Wi

goes to Wi +
∑∞

k=1 ε
kW (k)

i (m̂), (D ◦R)(G) −→ (D ◦R)(G) + ε(D ◦R)(1)(m̂) + ε2(D ◦R)(2)(m̂)

+ O(ε3), where ε(D ◦R)(1)(m̂) is the first order change in ε, ε2(D ◦R)(2)(m̂) is the second

order change in ε and so on. Note that (D ◦R)(G) +
∑∞

k=1 ε
k(D ◦R)(k)(m̂) is the Taylor

series of D ◦ R about G in the direction m̂. Since the Taylor series Wi +
∑∞

k=1 ε
kW (k)

i (m̂)

convergences for all ε ∈ R, and since D is a polynomial in the matrix elements of Wi,

the radius of convergence for the Taylor expansion (D ◦R)(G) +
∑∞

k=1 ε
k(D ◦R)(k)(m̂) is

ε = ∞.

Now let D ◦R vanish in m. This implies that (D ◦R)(G + εm̂) = 0, for all m̂ ∈ S n2−1 and

ε ∈ [0, εs], where εs was chosen so that (
~
α+εsm̂).

~
λ ∈m. The Taylor series of D◦R about G

is a summation of monomials in ε, i.e., (D ◦R)(k)εk, which are linearly independent in the

range ε ∈ [0, εs]. Hence the only way that such a summation vanishes for all ε ∈ [0, εs] is if

D (k)(m̂) = 0 for all k ∈ N and m̂ ∈ S n2−1, and if (D ◦R)(G) = 0. But note that the radius of
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convergence for ε in this Taylor series is∞. Hence D ◦R vanishes all over u(n2). And that

implies that D vanishes all over G(m, n). The following counter-example will disprove

this: let |ψi〉AB ≡ | si〉A| 0〉B, where | 0〉B ∈ HB. Then TrB(|ψi〉〈ψi′ |) = |si〉〈si′ | when i , i′, so

T is spanned by the complex congugate of matrices representing 1
2 (|si〉〈si′ | + |si′〉〈si|) and

1
2i (|si〉〈si′ | − |si′〉〈si|), for all 1 ≤ i < i′ ≤ n, in the standard basis. All these matrices are

linearly independent, so dimT⊥ = n and D({| si〉A| 0〉B}mi=1) , 0. Hence it is not possible for

D to vanish entirely in any open neighbourhood of any point in G(m, n). This also holds

true for the particular case when m = n.
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