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Synopsis

Abstract: Discovery of a new bosonic resonance (Higgs) around 125 GeV at Large

Hadron Collider (LHC) has been the most significant event in particle physics research

of the current epoch. The task currently at hand is to establish that it has no anomalous

interactions. The Higgs discovery epitomizes the potential of modern machines such

as LHC. The LHC and future colliders such as ILC may discover new particles in near

future. It is essential to study the spin, parity and the couplings to understand the true

nature of these particles. These resonances are the fundamental ingredients of different

New Physics (NP) models. Therefore, determination of the spin, parity and couplings of

these resonances will lay the foundation stone for phenomenological study of different

NP models.

Introduction: After the discovery of a new resonance, a sustained effort is required to

infer its true characteristics. The first step is to determine the spin and parity of the reso-

nance and finally to measure the couplings of the resonance to existing particles. Study

of the angular distributions in terms of the partial decay rate of a resonance are found

to be critical in this regard. In this thesis we show how to disentangle the spin, parity

and the couplings of a bosonic resonance in a step by step methodology. We take two

benchmark resonances for our analysis : the 125 GeV Higgs (H) and a heavy Z′ bo-

son (mass ∼ 2 TeV); and study the spin, parity and couplings via so called the “golden

channel” i.e. H → ZZ∗ → 4` and Z′ → ZZ → 4` for both H and Z′. The subsequent

decay of the two Z bosons into four oppositely charged leptons makes the golden channel

an experimentally clean mode to probe. Furthermore, the four lepton final state allows

us to fully reconstruct the phase space of both H and Z′. In our work, we derive three

uniangular distributions (i.e. angular distributions involving one angle) in terms experi-
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mentally measurable angular asymmetries (observables), starting from Lorentz invariant

and gauge invariant vertices. These angular asymmetries have definite parity properties

and are orthogonal to each other and can hence be measured independently. We finally

use these observables to ascertain the spin, parity and couplings of a resonance.

The 125 GeV Higgs: After the discovery of 125 GeV Higgs by the ATLAS and CMS

collaboration at the LHC [1-5], a lot of effort has been directed towards determining its

spin, parity and couplings to confirm whether it is indeed the Standard Model (SM) Higgs

or a Higgs predicted in several Beyond Standard Model (BSM) scenarios. The H is ob-

served primarily in H → γγ, H → W+W− and H → ZZ channels, where one or both

the Z’s and W ’s are off-shell. Since it is observed in H → γγ channel, Landau-Yang’s

theorem [6,7] forbids the Spin-1 assignment of H . Hence we consider H to be either a

Spin-0 (scalar) or a Spin-2 (tensor) particle. Significance of the angular distributions to

understand the spin, parity and couplings of H to a pair of Z bosons has been realized

both before and after the discovery of the H boson [8-11]. Refs. [12-15] extended the

idea and included higher spin possibilities of H into their analysis. In Ref. [16] we start

by considering the most general Lorentz and gauge invariant vertices of H for both Spin-

0 and Spin-2 possibilities and evaluate the partial decay rate of H in terms of the invariant

mass squares of the dilepton produced from the non-resonant Z and the three uniangular

distributions of the four lepton final state. We show how studying the uniangular distribu-

tions and angular asymmetries derived from the uniangular distributions, one can step by

step determine the spin, parity and couplings of H to the Z bosons. A numerical analy-

sis have also been performed to establish our approach for experimental implementation

including detector effects. Finally we show [17] how to probe Charge-conjugation and

Parity (CP) structure of HZZ couplings and determine the precision reach of LHC in

measuring CP properties of HZZ vertex.
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Z′ boson: If a bosonic resonance is not observed to be decaying into two photons,

the resonance could have all three spin (J) possibilities i.e. J = 0, 1, 2. However, the

Spin-1 resonance could decay into two Z bosons, allowed by generalized Landau-Yang’s

theorem [18]. In Ref. [19] we include the Spin-1 possibility of a bosonic resonance

and extend our formalism to any arbitrary mass. We again right down the most general

Lorentz and gauge invariant vertex and extract out the angular asymmetries from three

uniangular distributions for a Spin-1 resonance and perform benchmark analysis for a

Spin-1 resonance (e.g. a heavy Z′ boson). We first construct a effective model and

estimate the discovery potential of such Z′ in the golden channel at LHC. We finally

extract the observables from uniangular distributions and show how to establish the spin

and parity of the Z′ boson to validate our formalism.

Conclusion: In Refs. [16,17,19] we have discussed how one can determine the spin,

parity and couplings of a bosonic resonance using observables extracted from the three

uniangular distributions via golden channel. These observables are orthogonal to each

other and each of them can be measured independently. We perform numerical analysis to

validate our approach including detector effects. We finally conclude that the uniangular

distributions and angular asymmetries will play a key role in determining the spin, parity

and couplings of a resonance.
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0.1 Preamble

The physics of fundamental particles and interactions between them are well described

by the Standard Model (SM). It explains various experimental observations consistently

and very efficiently. The SM is based on gauge sector, fermionic sector and scalar sector.

The Gauge sector of the SM is based on the gauge theory SU(3)C × SU(2)L × U(1)Y .

The symmetry group SU(2)L × U(1)Y and SU(3)C describe the electroweak and strong

interactions respectively. The gauge group for electromagnetic interaction U(1)EM , is a

subgroup of SU(2)L × U(1)Y . The gauge bosons in the SM are: the photon (γ), W±, Z

coming from SU(2)L × U(1)Y group and eight gluons (g) which are the gauge mediator

of SU(3)C . The gluons are massless, electrically neutral particles but have color quantum

number. The weak mediators W± are massive and have electric charge ±1 respectively.

The weak gauge boson Z is massive and has zero electric charge and self interacting. The

γ is chargeless, massless and not self interacting.

The fermionic sector of the SM is comprised of three generations leptons and quarks.

These three families of fermions are identical in their properties except mass. The three

families are:

1st generation:


νeL

e−
L


, e−R ,


uL

dL


, uR , dR

2nd generation:


νµL

µ−
L


, µ−R ,


cL

sL


, cR , sR
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3rd generation:


ντL

τ−
L


, τ−R ,


tL

bL


, tR , bR

with subscript L and R stands for left and right chiral fields defined by the chirality

operators PL,R =
1 ∓ γ5

2
respectively.

The scalar sector is the most intriguing sector amongst all. The massiveness of the

gauge bosons W± and Z indicates that SU(2)L ×U(1)Y is not a symmetry of the vacuum.

In the SM, the symmetry

SU(3)C × SU(2)L × U(1)Y

is spontaneously broken by one of the most celebrated mechanism namely “Higgs Mech-

anism”. Higgs mechanism generates the masses for W±, Z and the fermions in a gauge

invariant way and predicts a new particle called the “Higgs” boson. This particle has to

be a scalar, massive and electrically neutral.

Combining all three sector the SU(2)L × U(1)Y Lagrangian for SM is written [1] in

Table. 2.3.2:

− 1
4B

µνBµν − 1
4Wµν .Wµν W±, Z , γ kinetic and self interactions

L̄γµ
(
i∂µ − g 1

2τ.Wµ − g′Y2 Bµ
)
L kinetic terms and interactions leptons of

left handed quarks and with W±, Z and γ∣∣∣∣∣(i∂µ − g 1
2τ.Wµ − g′Y2 Bµ

)
φ

∣∣∣∣∣2 − V (φ) W±, Z and γ and Higgs masses and couplings

−G`
¯̀
Lφ`R − G`

¯̀
Rφc`L + h.c mass terms fermions and quarks and

−Gd d̄LφdR − Gu ūLφcuR + h.c couplings to Higgs

Table 1: Different terms of SU(2)L ×U(1)Y Lagrangian. L and R denotes the left handed
fermion doublet and R denotes the right handed fermion singlet. τ is the generator of
SU(2)L, g is the SU(2)L coupling constant and g′ is the coupling constant for U(1)Y
group.
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The scalar field φ is an isospin doublet with weak hypercharge Y = 1:

φ =

φ+

φ0

 (1)

with φ+ = (φ1 + iφ2)/
√

2 and φ0 = (φ3 + iφ4)/
√

2. The fields φi belong to SU(2)L ×U(1)Y

multiplet.

To generate masses for gauge bosons the “Higgs potential”

V (φ) = λ(φ†φ)2 + µ2(φ†φ) (2)

can be spontaneously broken by µ2 < 0 and λ > 0 and substitute

φ(x) =

 0

v + H(x)

 . (3)

where v is vacuum expectation value and H(x) is the Higgs field. After spontaneous

breaking of the SU(2)L ×U(1)Y symmetry, W± acquire mass MW± = 1
2gv and Z acquires

the mass MZ = 1
2v

√
g2 + g′2 . The Higgs boson itself gets a mass

√
2λ v2 and the photon

becomes massless(Mγ = 0). Finally the ratio between the coupling constants g′ and g

related as :

g′

g
= tan θW , (4)

where θW is known as Weinberg angle. One can also find a relationship between MW ,

MZ and θW as

MW

MZ

= cos θW (5)

with ρ =
M2

W

M2
Z

cos2 θW
. In the SM ρ has a unique prediction which gives the quantitative
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measure of the relative strength of Neutral Current (NC) and charged current interactions

of the EW theory.

Let us look back the construction of the SM chronologically. The group structure of

electroweak theory i.e. SU(2)L × U(1)Y was first proposed by Glashow [2] in 1961 to

unify weak and electromagnetic interactions into a symmetry group. The Goldstone theo-

rem was proved and analyzed by Goldstone in 1961 and Salam, Weinberg and Goldstone

in 1962 [3]. This was generalization of the work of Nambu proposed in 1960 [4]. This

theorem suggests existence of massless spinless unphysical excitation due to spontaneous

breaking of global symmetry.

P. Higgs, F. Englert and R. Brout, Guralnik, Hagen and Kibble in 1964 and later [5]

proposed that the spontaneous breaking of local symmetry is required to break SU(2)L ×
U(1)Y symmetry. This procedure of spontaneous breaking of gauge symmetry is known

as the Higgs mechanism. The electroweak (EW) theory was developed by Weinberg,

Salam and Glashow [6] in 1967-68. This is called the Glashow-Weinberg-Salam Model.

The renormalizablity of EW theory with and without symmetry breaking was first proved

by ’t Hooft[7] in 1971.

The only way of testing a theory is to verify its predictions in experiments. In

1973, sin2 θW was measured experimentally[8] along with the discovery of Neutral Cur-

rent. Glashow, Iliopoulos and Maiani showed in 1970 Flavor Changing Neutral Currents

(FCNC) is suppressed in SM, which is known as GIM mechanism [10]. In the year 1974,

existence of the charm quark (c) was confirmed[11] after the discovery of J/ψ particle

which is a bound state of c quark. The discovery of bottom quark (b) [13] and τ , ντ [12]

strongly indicated the existence of three generations of fermions. It took several years

but finally in 1994 top (t) quark was discovered [14–17] and three generations of quark

families are complete. The CP violation in the SM was explained by CKM quark mixing

matrix named after Cabibbo, Kobayashi and Maskawa[18]. This matrix shows how three
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generations of quarks mix to give the CP violation in the SM. The discovery of W± and

Z [19] was confirmed at the Super Proton Synchrotron(SPS) collider at CERN in 1983.

This is one of the most significant discovery of particle physics and established SM as

“The“ theory of particle physics. So far the most important particle of all, the Higgs

boson was not discovered.

0.2 Why spin, parity and couplings?

The primary objective of the LHC was to discover the Higgs boson and study of its prop-

erties. The discovery of a new boson in 2012 by ATLAS and CMS Collaborations [20–

24] with mass around 125 GeV and decaying into ZZ∗, γγ, and WW ∗ channel was a

milestone for research in High Energy Physics. If this resonance is Higgs, study of its

properties would unravel some of the most tantalizing mysteries of particle physics such

as electroweak symmetry breaking, how elementary particles get mass etc. Higgs is the

fundamental building block of the most celebrated theory in particle physics: the Stan-

dard Model (SM).

Several BSM (Beyond Standard Model) theories also have multiple bosonic particles

in their particle spectrum. The first and foremost question would be: Is the 125 GeV

resonance indeed the Higgs predicted by SM (spin J = 0) or a scalar predicted by several

BSM theories? The bosonic nature of the 125 GeV resonance incorporates other possibil-

ities i.e. it could be a Spin-1 (such as Z′) or even a Spin-2 (such as KK graviton). Since

the resonance was seen to be decaying into two photons, Landau-Yang theorem [25, 26]

excludes Spin-1 (J = 1) possibility, leaving only Spin-0 and Spin-2 possibilities. In this

thesis we denote 125 GeV resonance as H for both Spin-0 and Spin-2 possibilities.

To understand whether 125 GeV resonance is indeed the Higgs boson predicted by

the SM, one has to study the spin, parity and couplings of H . Angular distributions and

angular asymmetries derived from them are of the most efficient tools to study the spin,
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parity and couplings of a resonance. Amongst all the decay modes of H , the gold-plated

mode (also called as “ golden channel ”) H → ZZ∗ → `−1 `
+
1 `
−
2 `

+
2 took the leading role

in disentangling the spin, parity of 125 GeV H . Having four charged leptons in the

final state, this channel is experimentally clean and four momenta of H can be easily

reconstructed and hence is called gold-plated mode. In this thesis we first write down the

most general Lorentz and gauge invariant vertex factor for H for both J = 0 and J = 2.

We then obtain three uniangular [27, 28] distributions ( angular distributions involving

one angle) in terms of several experimentally measurable asymmetries (observables).

These observables are functions of helicity amplitudes1 written in transversity basis and

thus have definite parity properties. Moreover these angular asymmetries are orthogonal

to each other and hence each of them can be measured independently. We finally layout

a step by step methodology to uniquely determine the spin, parity and the couplings of H

to two Z bosons.

The Spin-1 Z′ bosons arise in different BSM models such as E6 models [29–33],

sequential Z′ [34], super string Z′ [35] model etc. In this regard, Ref. [36] discusses the

decay of a Z′ boson (J = 1) into four charged leptons via two Z bosons and generalized

Landau-Yang theorem. In this thesis we also show [37], how using observables extracted

from three uniangular distributions, one can confirm the spin, parity and the couplings

of a Z′ boson decaying to two Z bosons. Furthermore, we will construct a effective

model for a Z′ decaying via gold-plated mode and find out the discovery potential of

such resonance in future LHC runs. We finally discuss how precisely one can extract

these angular asymmetries for 14 TeV and 33 TeV LHC runs.

We finally combine these result to show how uniangular asymmetries derived from

three uniangular distributions can be used to determine the spin, parity and couplings to

two Z bosons of a bosonic resonance.

1For more on Helicity amplitudes see Sec. 0.3
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0.3 A Primer to Helicity Amplitude Technique

The decay of a particle into daughter particles is characterised by the number of inde-

pendent helicity amplitudes. In this section we will discuss about the number of he-

licity amplitudes of a resonance X decaying into two Z bosons for all three spin pos-

sibilities J = 0, 1, 2. If we specify the polarizations of the initial and final particles,

then the Feynman amplitude or transition amplitude can always be written in terms

of helicity amplitudes. We shall represent the polarisation state of a particle by a ket∣∣∣spin, spin projection to z axis
〉
. Then the Feynman amplitude for the process

|J, Jz〉︸︷︷︸
X
→ |1, λ1〉︸ ︷︷ ︸

Z1

|1, λ2〉︸ ︷︷ ︸
Z2

is given by the well known expression [38,39] involving the Wigner-D function D J∗
Jzλ

(φ, θ, −φ):

M (Jz , λ1, λ2) =

(
2J + 1

4π

) 1
2

D J∗
Jzλ

(φ, θ, −φ) Aλ1λ2 , (6)

where λ = |λ1 − λ2 | with λ1,2 ∈ {±1, 0}, J = |J|, and Aλ1λ2 is called the helicity ampli-

tude. Conservation of angular momentum implies that

|λ | = |λ1 − λ2 | 6 J . (7)

Since there are no interferences amongst the amplitudes with different helicity configura-

tions, we will have to sum over all the allowed values of λ1 and λ2 that are not constrained

by the value of Jz after squaring each individual amplitude:

|M |2 =
∑
λ1 ,λ2|λ1−λ2 |6J

|M (Jz , λ1, λ2)|2
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Spin of X Allowed Helicity Amplitudes N

0 A++, A00, A−−. 3

1 A+0 = −A0+, A0− = −A−0. 2

2
A++, A00, A−−, A+− = A−+,

6
A+0 = A0+, A0− = A−0.

Table 2: Allowed helicity amplitudes considering only the different spin possibilities.

=

(
2J + 1

4π

) ∑
λ1 ,λ2|λ1−λ2 |6J

∣∣∣∣D J∗
Jzλ

(φ, θ, −φ)
∣∣∣∣2 ∣∣∣Aλ1λ2

∣∣∣2 . (8)

Thus the probability of contribution of the helicity amplitude Aλ1λ2 to the transition am-

plitude ca be found as M (Jz , λ1, λ2) is
(
2J + 1

4π

) ∣∣∣∣D J∗
Jzλ

(φ, θ, −φ)
∣∣∣∣2. We can therefore

write down the following important fact of the helicity amplitude formalism: All the al-

lowed helicity amplitudes for a given decay process contribute, but with different definite

probability, to the Feynman amplitude, irrespective of the polarization of the parent (de-

caying) particle. The probability, however, depends on the polarization of the parent

particle and for all allowed helicity amplitudes is non-zero. Since the two Z bosons are

Bose symmetric, the helicity amplitudes satisfy the relation

Aλ2λ1 = (−1)J Aλ1λ2 =


+Aλ1λ2 for Spin-0, 2

−Aλ1λ2 for Spin-1
. (9)

This relationship is useful in getting the correct number of independent helicity ampli-

tudes. All the allowed helicity amplitudes in the decay X → ZZ are given in Table 2

where N denotes the total number independent helicity amplitudes possible for the par-

ticular spin case.

It is also known that, if the particle X were a parity eigenstate with eigenvalue ηX =
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JP of X Allowed Helicity Amplitudes N

0+ A++ = A−−, A00. 2

0− A++ = −A−−. 1

1+ A+0 = −A−0 = A0− = −A0+. 1

1− A+0 = A−0 = −A0− = −A0+. 1

2+
A++ = A−−, A00, A+− = A−+,

4
A+0 = A−0 = A0− = A0+.

2−
A++ = −A−−,

2
A+0 = −A−0 = −A0− = A0+.

Table 3: Relationships amongst the allowed helicity amplitudes for the different Spin-
parity cases.

+1 (parity-even) or −1 (parity-odd), then the helicity amplitudes are related by:

Aλ1λ2 = ηX (−1)J A−λ1 −λ2 . (10)

The allowed helicity amplitudes for the different Spin-parity possibilities can thus be

related and are given in Table 3. It is clearly evident from above that for the Spin-0 case

out of the three helicity amplitudes two describe the parity-even scenario and only one

describes the parity-odd scenario. Similarly, for Spin-1 both parity-even and parity-odd

cases are described by one helicity amplitude each. For the Spin-2 case, we have four

helicity amplitudes describing the parity-even scenario and two helicity amplitudes for

the parity-odd scenario.

Let us now analyse the decay process from the point-of-view of partial wave de-

compositions. If we describe the two Z boson system by a ket specifying the total spin

(Lspin), the relative orbital angular momentum (Lorbital), the spin of the parent particle

(its J here) and its projection along the direction of flight of one of the Z bosons (Jz):
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Lspin Lorbital J Partial wave

0 0 0 S-wave

0 2 2 D-wave

1 1 2, 1, 0 P-wave

1 3 2 F-wave

2 0 2 S-wave

2 2 2, 1, 0 D-wave

2 4 2 G-wave

Table 4: Allowed partial waves for all the spin considerations.

∣∣∣J, Jz; Lorbital,L spin
〉
, then

P̂12
∣∣∣J, Jz; Lorbital,Lspin

〉
= (−1)Lorbital+Lspin

∣∣∣J, Jz; Lorbital,Lspin
〉
, (11)

where P̂12 is the operator that exchanges the two Z bosons (it exchanges both their mo-

menta and spins or polarisations), Lorbital and Lspin are the modulus of Lorbital and Lspin

respectively. It is obvious that for Bose symmetry to be satisfied Lorbital + Lspin must be

even. The allowed partial waves for the decay X → ZZ are listed in Table 4.

It is easy to observe that when X has Spin-0, then there are three helicity amplitudes

and three partial wave contributions (one S-wave, one P-wave and one D-wave). WhenX
has Spin-1, then there are only two independent helicity amplitudes and two partial wave

contributions (one P-wave and one D-wave). Finally when X has Spin-2, then there are

six independent helicity amplitudes and six partial wave contributions (one S-wave, one

P-wave, two D-waves, one F-wave and one G-wave). It is interesting to note that for

the Spin-0 case the vertex factor has three form factors, for Spin-1 case there are two

form factors. However, for the Spin-2 case we have eight form factors in the vertex factor

instead of six. So one needs to consider only six form factors out of which four should
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be of parity-even nature and two should be of parity-odd nature.

0.4 Outline of the Thesis

This thesis is organized as follows:

Part II: In this Part we discuss how the uniangular distributions can be used to deter-

mine the spin, parity and couplings of 125 GeV resonance.

Chapter 1 is dedicated to study the spin parity of 125 GeV resonance. A short re-

view on resonance Discovery is made in Sec. 1.1 In Sec. 1.2 we layout the details of our

analysis, with Subsec. 1.2.1 and 1.2.2 devoted exclusively to Spin-0 and Spin-2 boson re-

spectively. A step by step comparison with detailed procedure to distinguish the spin and

parity states of the new boson is discussed in Subsec. 1.2.3. In Subsec.1.2.4 we present

a numerical study to demonstrate the discriminating power of the uniangular distribution

analysis compared to the current approach by ATLAS. We find that uniangular distribu-

tion is more powerful in discriminating between the scalar (0+) and pseudoscalar (0−)

hypothesis. We conclude emphasizing the advantage of our approach in Sec. 1.3.

Chapter 2 outlines how to probe CP-odd admixture in HZZ couplings. This Chapter

is divided into four Sections. We start with a general overview in Sec. 2.1 and derive

the required technique to study the CP-odd admixture in HZZ couplings in Sec. 2.2. In

Sec. 2.3 we perform the numerical analysis and examine how precisely one can CP-odd

admixture HZZ . We draw inference in Sec.2.4.

Part III: The Chapter 3 we analyze the how to measure the spin, parity and couplings

of a heavy Spin-1 particle via three uniangular distributions. This Chapter is divided into

four Sections. We give a brief overview in Sec. 3.1. In Sec. 3.2 we write down the most

general vertex factors and three uniangular distributions for a Spin-1 resonance. We then
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study the possibility of discovering such resonance in Sec. 3.3. We summarize in Sec. 3.4

.

Part IV: Finally in Part IV we conclude our results.

Part V: This Part contains all the appendices and lists all the references.
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1
Spin, Parity and Couplings of

the 125 GeV Resonance

1.1 Introduction

A new bosonic resonance with a mass of about 125 GeV has recently been observed at the

Large Hadron Collider by both ATLAS Collaboration [20, 21] and CMS Collaboration

[22–24]. Significant effort is now directed at determining the properties and couplings of

this new resonance to confirm that it is indeed the Higgs boson of the Standard Model.

In this work we specify this new boson by the symbol H and we call it the Higgs, even

though it has not been proved to be the Higgs of the Standard Model. This resonance is

observed primarily in three decay channels H → γγ, H → ZZ and H →WW , where one

(or both) of the Z’s and W ’s are off-shell. It is well known that the spin and parity of the

resonance and its couplings can be determined by studying the momentum and angular

distributions of the decay products. Indeed there is little doubt that a detailed numerical

fit to the invariant masses of decay products and their angular distributions will reveal

the true nature of this resonance. However, a detailed study of the angular distributions

requires large statistics and may not be feasible currently. Several studies existed in the

25
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literature before the discovery of this new resonance [40–70] and yet several papers have

appeared recently on strategies to determine the spin and parity of the resonance [71–

84]. Yet, there is no clear conclusion on the step by step methodology to determine

these properties and convincingly establish that the new resonance is indeed the Standard

Model Higgs boson. The recent result [24] from CMS Collaboration on the determination

of spin and parity of the new boson is not conclusive.

In this thesis [27] we are exclusively concerned with Higgs decaying to four charged

leptons, which proceeds via a pair of Z bosons: H → ZZ → (`−1 `
+
1 )(`−2 `

+
2 ), where `1, `2

are leptons e or µ. Since the Higgs is not heavy enough to produce two real Z bosons, we

can have one real and another off-shell Z , or both the Z’s can be off-shell. While we deal

with the former case in detail our analysis applies equally well to the later case. We find

that only in a very special case dealing with JP = 2+ boson it is more likely that both the

Z bosons are off-shell. We emphasize that the final state (e+e−)(µ+µ−) is not equivalent

to (e+e−)(e+e−) or (µ+µ−)(µ+µ−) as sometimes mentioned in the literature, since the

latter final states have to be anti-symmetrized with respect to each of the two sets of

identical fermions in the final state. The anti-symmetrization of the amplitudes is not

done in our analysis and hence our analysis applies only to (e+e−)(µ+µ−). We examine

the angular distributions and present a strategy to determine the spin and parity of H , as

well as its couplings to the Z-bosons with the least possible measurements. Assuming

charge conjugation invariance, the observation of H → γγ also implies [44] that H is

a charge conjugation C = + state. In making this assignment of charge conjugation it

is assumed that H is an eigenstate of charge conjugation. With the charge conjugation

of H thus established we will only deal with the parity of H henceforth. We consider

only Spin-0 and Spin-2 possibilities for the H boson. Higher spin possibilities need not

be considered for a comparative study as the number of independent helicity amplitudes

does not increase any more [49, 85]. The process under consideration requires that Bose
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symmetry be obeyed with respect to exchange of the pair of Z bosons. This constraints

the number of independent helicity amplitudes to be less than or equal to six. Even if the

Spin-J of H is higher (i.e. J > 3), the number of independent helicity amplitudes still

remains six. However, the helicity amplitudes corresponding to higher spin states involve

higher powers of momentum of Z , independent of the momentum dependence of the form

factors describing the process. We will show that even for JP = 2+ under a special case

only two independent helicity amplitudes may survive just as in the case of JP = 0+.

The two cases are in principle indistinguishable unless one makes an assumption on the

momentum dependence of the form factors involved.

We start by considering the most general decay vertex for both scalar and tensor

resonances H decaying to two Z bosons. We evaluate the partial decay rate of H in terms

of the invariant mass squared of the dilepton produced from the non-resonant Z and the

angular distributions of the four lepton final state. We demonstrate that by studying three

uniangular distributions one can almost completely determine the spin and parity of H

and also explore any anomalous couplings in the most general fashion. We find that

JP = 0− and 2− can easily be excluded. The JP = 0+ and 2+ possibilities can also be

easily distinguished, but may require some lepton invariant mass measurements if the

most general tensor vertex is considered. Only if H is found to be of Spin-2, a complete

three angle fit to the distribution is required to distinguish between JP = 2+ and 2−.

The determination of couplings and spin, parity of the boson is important as there

are other Spin-0 and Spin-2 particles predicted, such as the J = 0 radion [87–93] and

J = 2 Kaluza-Klein graviton [79, 94–96], which can easily mimic the initial signatures

observed so far. Such cases have already been considered in the literature even in the

context of this resonance. Our analysis is most general and such extensions are limiting

cases in our analysis as the couplings are defined by the model.
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1.2 Decay of H to four charged leptons via two Z bosons

Let us consider the decay of H to four charged leptons via a pair of Z bosons:

H → Z1 + Z2 → (`−1 + `+
1 ) + (`−2 + `+

2 ),

where `1, `2 are leptons e or µ. As mentioned in the introduction we assume `1 and `2

are not identical. The kinematics for the decay is as shown in Fig. 1.1. The Higgs at

−ẑ

+ẑ

ℓ−1

ℓ+1

ℓ−2

ℓ+2

k1

k2

k3

k4

q1

q2

φ

θ1

θ2

Rest frame of
Z1

Center-of-
momentum
frame of ℓ±2

H

Z1

Z2

Figure 1.1: Definition of the polar angles (θ1 and θ2) and the azimuthal angle (φ) in the
decay of Higgs (H) to a pair of Z’s, and then to four charged leptons: H → Z1 + Z2 →
(`−1 +`+

1 )+(`−2 +`+
2 ), where `1, `2 ∈ {e, µ}. It should be clear from the figure that ~k1 = −~k2

and ~k3 = −~k4. Since Z2 is off-shell, we cannot go to its rest frame. However, given the
momenta of `+

2 and `−2 we can always go to their center-of-momentum frame.
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rest is considered to decay with the on-shell Z1 moving along the +ẑ axis and off-shell

Z2 along the −ẑ axis. The decays of Z1 and Z2 are considered in their rest frame. The

angles and momenta involved are as described in Fig. 1.1. The 4-momenta of H , Z1 and

Z2 are defined as P, q1 and q2 respectively. We choose Z1 to decay to lepton pair `±1

with momentum k1 and k2 respectively and Z2 to decay to `±2 with momentum k3 and k4

respectively. The phase space is shown in Appendix .A.1.

Nelson [40–42] and Dell’Aquilla [41] realized the significance of studying angular

correlations in this process with Higgs boson decaying to a pair of Z bosons for inferring

the nature of the Higgs boson. Refs. [46, 48, 49] were the first to extend the analysis

to include higher spin possibilities so that any higher spin particle can effectively be

distinguished from SM Higgs. We study similar angular correlations in this thesis. We

begin the study by considering the most general HZZ vertices for a J = 0 and a J = 2

resonance H . We shall first discuss the two spin possibilities separately. Later we will

layout the approach to distinguish them assuming the most general HZZ vertex.

1.2.1 If the 125 GeV resonance were Spin-0

The most general HZZ vertex factor Vαβ
HZZ

for Spin-0 Higgs is given by

V
αβ
HZZ

=
igMZ

cos θW

(
a gαβ + b PαPβ + ic εαβµν q1µ q2ν

)
, (1.1)

where θW is the weak mixing angle, g is the electroweak coupling, and a, b, c are some

arbitrary form factors dependent on the 4-momentum squares specifying the vertex. The

vertex V
αβ
HZZ

is derived from an effective Lagrangian (see for example Ref. [86]) where

higher dimensional operators contribute to the momentum dependence of the form fac-

tors. Since the effective Lagrangian in the case of arbitrary new physics is not known, no

momentum dependence of a, b and c can be assumed if the generality of the approach

has to be retained. Approaches using constant values for the form factors therefore can-
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not provide unambiguous determination of Spin-parity of the new boson. We emphasize

that even though the momentum dependence of a, b and c is not explicitly specified, they

must be regarded as being momentum dependent in general. In SM, however, a, b, c are

constants and take the value a = 1 and b = c = 0 at tree level.

In Eq. (1.1) the term proportional to c is odd under parity and the terms proportional

to both a and b are even under parity. Partial-wave analysis tells that such a decay gets

contributions from the first three partial waves, namely S-wave, P-wave and D-wave.

SinceS- andD-waves are parity even while the P-wave is parity odd, the term associated

with c effectively describes the P-wave contribution. The terms proportional to a and b

are admixtures of S- and D-wave contributions. The decay of a Spin-0 particle to two

Spin-1 massive particles is hence always described by three helicity amplitudes.

The decay under consideration is more conveniently described in terms of helicity

amplitudes AL, A‖ and A⊥ defined in the transversity basis as

AL = q1 · q2 a + M2
H X2 b, (1.2)

A‖ =

√
2q2

1 q
2
2 a, (1.3)

A⊥ =

√
2q2

1 q
2
2 X MH c , (1.4)

where
√
q2

1 and
√
q2

2 are the invariant masses of the `±1 and `±2 lepton pairs, i.e. q2
1 ≡

(k1 + k2)2, q2
2 ≡ (k3 + k4)2,

X =

√
λ(M2

H , q
2
1 , q

2
2)

2MH

, (1.5)

a, b and c are the coefficients that enter the most general vertex we have written in

Eq. (1.1) and

λ(x , y, z) = x2 + y2 + z2 − 2 x y − 2 x z − 2 y z . (1.6)

It should be remembered that the helicities AL , A‖ and A⊥ are in general functions of q2
1
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and q2
2, even though the functional dependence is not explicitly stated. The advantage

of using the helicity amplitudes is that the helicity amplitudes are orthogonal. Our he-

licity amplitudes are defined in the transversity basis and thus differ from those given in

Ref. [86]. Our amplitudes can be classified by their parity: AL and A‖ are parity even and

A⊥ is parity odd. This is unlike the amplitudes used in Ref. [86]. Throughout the thesis

we use linear combinations of the helicity amplitudes such that they have well defined

parity. This basis may be referred to as the transversity basis. Even though we work in

terms of helicity amplitudes in the transversity basis, we will show below, it is in fact pos-

sible to uniquely extract out the coefficients a, b, c which characterize the most general

HZZ vertex for J = 0 Higgs.

We will assume that Z1 is on-shell while Z2 is off-shell, unless it is explicitly stated

that both the Z bosons are off-shell. The off-shell nature of the Z is denoted by a super-

script ‘*’. One can easily integrate over q2
1 using the narrow width approximation of the

Z . The helicity amplitudes are then defined at q2
1 ≡ M2

Z
and q2

2. In principle q2
1 could also

have been explicitly integrated out in both the cases when either Z1 is off-shell or fully

on-shell, resulting in some weighted averaged value of the helicities. The differential de-

cay rate for the process H → Z1 + Z∗2 → (`−1 + `+
1 ) + (`−2 + `+

2 ), after integrating over q2
1

(assuming Z1 is on-shell or even otherwise) can now be written in terms of the angular

distribution using the vertex given in Eq. (1.1) as:

8π
Γf

d4Γ

dq2
2 d cos θ1 d cos θ2 dφ

= 1 +
|F‖ |2 − |F⊥ |2

4
cos 2φ

(
1 − P2(cos θ1)

) (
1 − P2(cos θ2)

)
+

1
2

Im(F‖F∗⊥) sin 2φ
(
1 − P2(cos θ1)

) (
1 − P2(cos θ2)

)
+

1
2

(1 − 3 |FL |2)
(
P2(cos θ1) + P2(cos θ2)

)
+

1
4

(1 + 3 |FL |2) P2(cos θ1)P2(cos θ2)
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+
9

8
√

2

(
Re(FLF

∗
‖ ) cosφ + Im(FLF

∗
⊥) sinφ

)
sin 2θ1 sin 2θ2

+ η

(
3
2

Re(F‖F∗⊥)
(

cos θ2(2 + P2(cos θ1)) − cos θ1(2 + P2(cos θ2))
)

+
9

2
√

2
Re(FLF

∗
⊥)

(
cos θ1 − cos θ2) cosφ sin θ1 sin θ2

− 9

2
√

2
Im(FLF

∗
‖ )

(
cos θ1 − cos θ2) sinφ sin θ1 sin θ2

)
− 9

4
η2

(
(1 − |FL |2) cos θ1 cos θ2 +

√
2
(
Re(FLF

∗
‖ ) cosφ + Im(FLF

∗
⊥) sinφ

)
sin θ1 sin θ2

)
,

(1.7)

where the helicity fractions FL, F‖ and F⊥ are defined as

Fλ =
Aλ√

|AL |2 +
∣∣∣A‖ ∣∣∣2 + |A⊥ |2

, (1.8)

where λ ∈ {L, ‖ ,⊥} and

Γf ≡ dΓ

dq2
2

= N
(
|AL |2 +

∣∣∣A‖ ∣∣∣2 + |A⊥ |2
)
, (1.9)

with N =
1
24

1
π2

g2

cos2 θW

Br2
``

M2
H

ΓZ

MZ

× X((
q2

2 − M2
Z

)2
+ M2

Z
Γ2
Z

) . (1.10)

where ΓZ is the total decay width of the Z boson, Br`` is the branching ratio for the decay

of Z boson to two mass-less leptons: Z → `+`− and we have used the narrow width

approximation for the on-shell Z . We emphasize that with q2
1 integrated out the helicity

amplitudes Aλ and helicity fractions Fλ are functions only of q2
2. In Eq. (1.7) η is defined

as

η =
2v`a`
v2
` + a2

`

(1.11)
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with v` = 2I3` − 4e` sin2 θW and a` = 2I3`, and P2(x) is the 2nd degree Legendre polyno-

mial:

P2(x) =
1
2

(3x2 − 1) (with x ∈ {cos θ1, cos θ2}). (1.12)

We have chosen to express the the differential decay rate in terms of Legendre poly-

nomials for cos θ1 and cos θ2 and Fourier series for φ. This ensures that each term in

Eq. (1.7) is orthogonal to any other term in the distribution. The Legendre polynomials

Pm(cos θ1) and Pm(cos θ2) satisfy the orthogonality condition since the range of cos θ1

and cos θ2 is −1 to 1, whereas that of φ is 0 to 2π. Our approach of using Legendre

polynomials and the choice of helicity amplitudes in transversity basis classified by par-

ity form the corner-stone of our analysis. The same technique will be used in Sec. 1.2.2

to analyze the Spin-2 case.

An interesting observation in the scalar case is that the coefficients of P2(cos θ1) and

P2(cos θ2) are identically equal to 1
2 (1 − 3|FL |2) in both magnitude and sign. It is worth

noting that the coefficients of cos 2φ P2(cos θ1) and cos 2φ P2(cos θ2) are also identically

equal to 1
4 (|F‖ |2 − |F⊥ |2) in both magnitude and sign.

Integrating Eq. (1.7) with respect to cos θ1 or cos θ2 or φ, the following uniangular

distributions are obtained:

1
Γf

d2Γ

dq2
2 d cos θ1

=
1
2

+ T
(0)
2 P2(cos θ1) − T (0)

1 cos θ1, (1.13)

1
Γf

d2Γ

dq2
2 d cos θ2

=
1
2

+ T
(0)
2 P2(cos θ2) + T

(0)
1 cos θ2, (1.14)

2π
Γf

d2Γ

dq2
2 dφ

= 1 +U
(0)
2 cos 2φ +V

(0)
2 sin 2φ +U

(0)
1 cosφ +V

(0)
1 sinφ, (1.15)
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where

T
(0)
2 =

1
4

(1 − 3 |FL |2), (1.16)

U
(0)
2 =

1
4

(|F‖ |2 − |F⊥ |2), (1.17)

V
(0)
2 =

1
2

Im(F‖F∗⊥), (1.18)

T
(0)
1 =

3
2
ηRe(F‖F∗⊥), (1.19)

U
(0)
1 = − 9π2

32
√

2
η2 Re(FLF

∗
‖ ), (1.20)

V
(0)
1 = − 9π2

32
√

2
η2 Im(FLF

∗
⊥), (1.21)

are explicitly functions of q2
2. The superscript (0) indicates the spin of H . As P0(cos θ1,2) =

1, P1(cos θ1,2) = cos θ1,2, P2(cos θ1), cosφ, sinφ, cos 2φ and sin 2φ are orthogonal func-

tions, the coefficients of each of the terms can be extracted individually. We can also

extract all the above coefficients in terms of asymmetries defined as below:

T
(0)
1 =

(∫ 0

−1
−

∫ +1

0

)
d cos θ1

 1
Γf

d2Γ

dq2
2 d cos θ1


=

(
−

∫ 0

−1
+

∫ +1

0

)
d cos θ2

 1
Γf

d2Γ

dq2
2 d cos θ2

 , (1.22)

T
(0)
2 =

4
3

∫ − 1
2

−1
−

∫ + 1
2

− 1
2

+

∫ +1

+ 1
2

 d cos θ1,2

 1
Γf

d2Γ

dq2
2 d cos θ1,2

 , (1.23)

U
(0)
1 =

1
4

−∫ − π2

−π
+

∫ + π
2

− π2
−

∫ +π

+ π
2

 dφ 2π
Γf

d2Γ

dq2
2 dφ

 , (1.24)

U
(0)
2 =

1
4

∫ − 3π
4

−π
−

∫ − π4

− 3π
4

+

∫ π
4

− π4
−

∫ 3π
4

π
4

+

∫ π

3π
4

 dφ 2π
Γf

d2Γ

dq2
2 dφ

 , (1.25)

V
(0)
1 =

1
4

(
−

∫ 0

−π
+

∫ +π

0

)
dφ

2π
Γf

d2Γ

dq2
2 dφ

 , (1.26)

V
(0)
2 =

1
4

∫ − π2

−π
−

∫ 0

− π2
+

∫ + π
2

0
−

∫ +π

+ π
2

 dφ 2π
Γf

d2Γ

dq2
2 dφ

 . (1.27)
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As had already been realized from Eq. (1.7), the coefficients of P2(cos θ1) and P2(cos θ2)

as well as the coefficients of cos θ1 and cos θ2 in Eqs. (1.13) and (1.14) are identical. This

results in a maximum of 6 possible independent measurements T (0)
1 , U (0)

1 , V (0)
1 , T (0)

2 , U (0)
2

andV (0)
2 using uniangular analysis. For the decay under consideration, v` = −1+4 sin2 θW

and a` = −1. Substituting the experimental value for the weak mixing angle: sin2 θW =

0.231, we get η = 0.151 and η2 = 0.0228. Owing to such small values of η and η2 it

is unlikely that T (0)
1 , U (0)

1 and V
(0)
1 can be measured using the small data sample current

available at LHC, reducing the number of independent measurable to three.

Using Eqs. (1.16) and (1.17) and the identity |FL |2 +
∣∣∣F‖ ∣∣∣2 + |F⊥ |2 = 1, the following

solutions for |FL |2,
∣∣∣F‖ ∣∣∣2 and |F⊥ |2 are obtained:

|FL |2 =
1
3

(
1 − 4T (0)

2

)
, (1.28)∣∣∣F‖ ∣∣∣2 =

1
3

(
1 + 2T (0)

2

)
+ 2U (0)

2 , (1.29)

|F⊥ |2 =
1
3

(
1 + 2T (0)

2

)
− 2U (0)

2 . (1.30)

We have shown that one can easily measure all the three helicity fractions using uni-

angular distributions. We can also measure Im(F‖F∗⊥), which is proportional to sine of

the phase difference between the two helicity amplitudes A‖ and A⊥. In other words, we

can also measure the relative phase between the parity-odd and parity-even amplitudes.

Such a phase can arise if CP-symmetry is violated in HZZ interactions or could indicate

pseudo-time reversal violation arising from loop level contributions or rescattering effects

akin to the strong phase in strong interactions. Since such a term requires contributions

from both parity-even and parity-odd partial waves, V (0)
2 = 0 in SM. In the case of SM

we have a = 1 and b = c = 0. Assuming narrow width approximation for the on-shell Z1

we get

F⊥ = 0, (1.31)
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Figure 1.2: Plots of various observables in SM only. We have used MH = 125 GeV,√
q2

1 = 91.18 GeV for the above plots. The integrated values for the observables T (0)
2 and

U
(0)
2 are uniquely predicted in SM at tree level to be −0.148 and 0.117 respectively.
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FL

F‖
≡ T =

M2
H
− M2

Z
− q2

2

2
√

2MZ

√
q2

2

. (1.32)

Clearly, for the case of SM the term T has a characteristic dependence on
√
q2

2. Demand-

ing F⊥ = 0, we get

U
(0)
2 =

1
6

(
1 + 2T (0)

2

)
, (1.33)

and

|T| = 1 − 4T (0)
2

2 + 4T (0)
2

. (1.34)

Thus for SM we can predict the experimental values for the coefficients T (0)
2 andU (0)

2 as:

T
(0)
2 =

1
4

(
1 − 2 |T|
1 + |T|

)
, U

(0)
2 =

1
4 (1 + |T|) . (1.35)

It is evident that T (0)
2 and U

(0)
2 are functions of

√
q2

2 alone and are uniquely predicted

in the SM. T (0)
2 and U

(0)
2 are pure numbers for a given value of

√
q2

2. Their variation

with respect to
√
q2

2 is shown in Fig. 1.2a. It is clear from the plot that T (0)
2 is always

negative while U (0)
2 is always positive in the SM. The variation of the helicity fractions

with respect to
√
q2

2 is shown in Fig. 1.2b. Fig. 1.2c also shows the variation of the

normalized differential decay width of the SM Higgs decaying to four charged leptons via

two Z bosons, with respect to
√
q2

2. Fig. 1.2 contains all the vital experimental signatures

of the SM Higgs and must be verified in order for the new boson to be consistent with the

SM Higgs boson. We emphasize that a nonzero measurement of F⊥ will be a litmus test

indicating a non-SM behavior for the Higgs. Furthermore, a non-zero V
(0)
2 would imply

that the observed resonance is not of definite parity.

If we find the new boson to be of JPC = 0++, but still not exactly like the SM Higgs,

then we need to know the values of a and b in the vertex factor of Eq. (1.1). It is easy to
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find that for a general 0++ boson, the values of both a and b are given by

a =
F‖

√
Γf /N

√
2MZ

√
q2

2

, (1.36)

b =

√
Γf /N

M2
H
X2

FL −
M2

H
− M2

Z
− q2

2

2
√

2MZ

√
q2

2

F‖

 . (1.37)

For SM a = 1 and b = 0 at tree level only. At loop level even within SM these values

would differ. It may be hoped that a and b determined in this way may enable testing

SM even at one loop level once sufficient data is acquired. This is significant as triple-

Higgs vertex contributes at one loop level and measurement of b may provide the first

verification of the Higgs-self coupling. Even if the scalar boson is not a parity eigenstate

but an admixture of even and odd parity states, Eqs. (1.36) and (1.37) can be used to

determine a and b. We can determine c by measuring F⊥:

c =
F⊥

√
Γf /N

√
2MZ

√
q2

2MHX

, (1.38)

Therefore, it is possible to get exact solutions for a, b, c in terms of the experimentally

observable quantities like FL, F‖ , F⊥ and Γf .

We want to stress that it is impossible to extract out both a and b by measuring only

one uniangular distribution (corresponding to either cos θ1 or cos θ2), since the helicity

amplitude AL contains both a and b. Hence, it is not possible to conclude that the 0++

boson is a Standard Model Higgs by studying cos θ1 or cos θ2 distributions alone.

The current data set is limited and may allow binning only in one variable. We there-

fore examine what conclusions can be made if q2
2 is also integrated out and only the three

uniangular distributions are studied individually. As can be seen from Eqs. (1.36), (1.37)

and (1.38) we can obtain some weighted averages of a and c. These equations will only
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allow us to verify whether a = 1 and c = 0. In addition the presence of any phase

between the parity-even and parity-odd amplitudes can still be inferred from Eq. (1.18).

The integrated values for the observables T (0)
2 and U

(0)
2 are uniquely predicted in SM at

tree level to be −0.148 and 0.117 respectively.

1.2.2 If the 125 GeV resonance were Spin-2

As stated in the Introduction we shall use the same symbol H to denote the boson even

if it is of Spin-2. The most general HZZ vertex factor V µν;αβ
HZZ

for Spin-2 boson, with

polarization ε µν(T ) has the following tensor structure

V
µν;αβ
HZZ

= A
(
gαν gβµ + gαµ gβν

)
+ B

(
Qµ

(
Qα gβν + Qβ gαν

)
+ Qν

(
Qα gβµ + Qβ gαµ

))
+C

(
Qµ Qν gαβ

)
− D

(
Qα Qβ Qµ Qν

)
+ 2i E

(
gβν εαµρσ − gαν ε βµρσ

+gβµ εανρσ − gαµ ε βνρσ
)
q1ρq2σ + i F

(
Qβ (

Qν εαµρσ + Qµ εανρσ
)

−Qα
(
Qν ε βµρσ + Qµ ε βνρσ

) )
q1ρq2σ , (1.39)

where εα and εβ are the polarizations of the two Z bosons; A, B, C, D, E and F are

arbitrary coefficients and Q is the difference of the four momenta of the two Z’s, i.e. Q =

q1−q2. Only the term that is associated with the coefficient A is dimensionless. The form

of the vertex factor ensures that Pµε
µν
(T ) = Pνε

µν
(T ) = 0 and gµνε

µν
(T ) = 0, which stem from the

fact that the field of a Spin-2 particle is described by a symmetric, traceless tensor with

null four-divergence. Here like the Spin-0 case P is the sum of the four-momenta of the

two Z’s, i.e. P = q1 + q2. Since we are considering the decay of Higgs to two Z bosons,

the vertex factor must be symmetric under exchange of the two identical bosons. This

is taken care of by making the vertex factor symmetric under simultaneous exchange of

α, β and corresponding momenta of Z1 and Z2. The Lagrangian that gives rise to the

vertex factor V µν;αβ
HZZ

contains higher dimensional operators, which are responsible for the
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momentum dependence of the form factors.

In V
µν;αβ
HZZ

the terms that are proportional to E and F are parity-odd and the rest of

the terms in V
µν;αβ
HZZ

are parity-even. From helicity analysis it is known that the decay

of a massive Spin-2 particle to two identical, massive, Spin-1 particles is described by

six helicity amplitudes. Bose symmetry between the pair of Z bosons [38, 39] imposes

constraints on the vertex V
µν;αβ
HZZ

such that it gets contributions from two parity-odd terms

that are admixture of one P-wave and one F -wave, and four parity-even terms that are

some combinations of one S-wave, two D-waves and one G-wave contributions. Even

for the case of Spin-2 boson we choose to work with helicity amplitudes as they are

orthogonal but choose a basis such that amplitudes have definite parity associated with

them. We find the following six helicity amplitudes in transversity basis:

AL =
4X
3u1

(
E

(
u4

2 − M2
Hu2

1

)
+ F

(
4u2

1M
2
HX

2
) )
, (1.40)

AM =
8
√
q2

1 q
2
2vX

3
√

3u1
E , (1.41)

A1 =
2
√

2

3
√

3M2
H

(
A

(
M4

H − u4
2

)
− B

(
8M4

HX
2
)

+C
(
4M2

HX
2
) (

u2
1 − M2

H

)
− D

(
8M4

HX
4
) )
, (1.42)

A2 =
8
√
q2

1 q
2
2

3
√

3

(
A + 4X2C

)
, (1.43)

A3 =
4

3MHu1

(
A

(
u4

2 − M2
Hu2

1

)
+ B

(
4u2

1M
2
HX

2
) )
, (1.44)

A4 =
8
√
q2

1 q
2
2w

3MHu1
A, (1.45)
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where u1, u2, v and w are defined as

u2
1 = q2

1 + q2
2 , (1.46)

u2
2 = q2

1 − q2
2 , (1.47)

v2 = 4M2
Hu2

1 + 3u4
2, (1.48)

w2 = 2M2
Hu2

1 + u4
2. (1.49)

The quantity Z′ is as defined in Eq. (1.5).

We wish to clarify that our vertex factor V µν;αβ
HZZ

is the most general one. An astute

reader can easily write down terms that are not included in our vertex and wonder how

such a conclusion of generality can be made. For example, one can add a new possible

term such as i G
(
εαβνρPρQ

µ + εαβµρPρQ
ν
)
. It is easy to verify that this new form factor

G enters our helicity amplitudes AL and AM in the combination (E − 2G):

AL =
4X
3u1

(
(E − 2G)

(
u4

2 − M2
Hu2

1

)
+ F

(
4u2

1M
2
HX

2
) )
, (1.50)

AM =
8
√
q2

1 q
2
2vX

3
√

3u1
(E − 2G) . (1.51)

Note that only this combination of E and G is accessible to experiments and all other

helicity amplitudes remain unchanged. Since, there exist only six independent helicity

amplitudes corresponding to six partial waves for the Spin-2 case, the number of helicity

amplitudes in the transversity basis must also be six. Adding any new terms to the vertex

factor will simply modify the expressions for the helicity amplitudes. The generality of

our vertex V
µν;αβ
HZZ

is therefore very robust. Having established the generality of V µν;αβ
HZZ

we will henceforth not consider any term absent in the vertex of Eq. (1.39). Our helicity

amplitudes are different from those given in Ref. [86]. In Ref. [86], they provide eight

independent helicity amplitudes. If we consider the Bose symmetry of the two identical
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vector bosons to which H is decaying, then these should reduce to six independent helic-

ity amplitudes. Again as stated in the scalar case, our helicity amplitudes are classified

by their parity and thus differ from those in Ref. [86]. Our amplitudes AL and AM have

parity-odd behavior, and the rest of the helicity amplitudes have parity-even behavior. In

contrast not all the amplitudes enunciated in Ref. [86] have clear parity characteristics.

Once again just as in the scalar case we will start by assuming that Z1 is on-shell while

Z2 is off-shell. The integration over q2
1 is done using the narrow width approximation of

the Z . In tensor case, however, off-shell Z1 will also have to be considered in a special

case. We hence consider that q2
1 is explicitly integrated out whether Z1 is off-shell or

fully on-shell. In case Z1 is off-shell the resulting helicities are some weighted averaged

value and should not be confused with well defined values at q2
1 ≡ M2

Z
. The differential

decay rate for the process H → Z1 + Z∗2 → (`−1 + `+
1 ) + (`−2 + `+

2 ), after integrating over q2
1

(assuming Z1 is on-shell or even otherwise) can now be written in terms of the angular

distribution using the vertex given in Eq. (1.39) as:

8π
Γf

d4Γ

dq2
2 d cos θ1 d cos θ2 dφ

= 1 +

1
4
|F2 |2 −

M2
H

u2
1

v2

 |FM |2
 cos 2φ (1 − P2(cos θ1)) (1 − P2(cos θ2))

+

(
MH

u1

v

)
Im(F2F

∗
M ) sin 2φ (1 − P2(cos θ1)) (1 − P2(cos θ2))

+
P2(cos θ1)

2

( (
−2 |F1 |2 + |F2 |2

)
+

(
|F3 |2 + |FL |2

) q2
1 − 2q2

2

u2
1


+ |FM |2

4M2
H

u2
1

v2 + 3
u4

2

u2
1v2

(
q2

2 − 2q2
1

) + |F4 |2
2M2

H

u2
1

w2 +
u4

2

u2
1w2

(
q2

2 − 2q2
1

)
+

6√q2
1 q

2
2

u2
2

u2
1w

 Re(F3F
∗
4 ) +

6√3
√
q2

1 q
2
2

u2
2

u2
1v

 Re(FLF
∗
M )

)
+
P2(cos θ2)

2

( (
−2 |F1 |2 + |F2 |2

)
+

(
|F3 |2 + |FL |2

) q2
2 − 2q2

1

u2
1


+ |FM |2

4M2
H

u2
1

v2 + 3
u4

2

u2
1v2

(
q2

1 − 2q2
2

) + |F4 |2
2M2

H

u2
1

w2 +
u4

2

u2
1w2

(
q2

1 − 2q2
2

)



1.2. DECAY OF H TO FOUR CHARGED LEPTONS VIA TWO Z BOSONS 43

−
6√q2

1 q
2
2

u2
2

u2
1w

 Re(F3F
∗
4 ) −

6√3
√
q2

1 q
2
2

u2
2

u2
1v

 Re(FLF
∗
M )

)
+
P2(cos θ1)P2(cos θ2)

2

(
2 |F1 |2 +

1
2
|F2 |2 − |F3 |2 − |FL |2 −

u4
2 − M2

H
u2

1

w2

 |F4 |2

+

2M2
H

u2
1 − 3u4

2

v2

 |FM |2
)

+
9 sin 2θ1 sin 2θ2 cosφ

16

( (
|F3 |2 − |FL |2

) 
√
q2

1 q
2
2

u2
1


+ 3 |FM |2

√q2
1 q

2
2

u4
2

u2
1v2

 − |F4 |2
√q2

1 q
2
2

u4
2

u2
1w2


−

 u4
2

u2
1w

 Re(F3F
∗
4 ) +

√3
u4

2

u2
1v

 Re(FLF
∗
M ) −

√
2 Re(F1F

∗
2 )

)

+
9 sin 2θ1 sin 2θ2 sinφ

16

( 2
√
q2

1 q
2
2

u2
1

 Im(F3F
∗
L) −

√3
u4

2

u2
1v

 Im(F3F
∗
M )

−
 u4

2

u2
1w

 Im(F4F
∗
L) −

2√3
√
q2

1 q
2
2

u4
2

u2
1vw

 Im(F4F
∗
M ) −

(
2
√

2MH

u1

v

)
Im(F1F

∗
M )

)
+ M , (1.52)

where M includes all the terms that are proportional to η and η2 written explicitly in the

AppendixA.2, Eq. (A.25). The helicity fractions are defined as

Fi =
Ai√∑
j

∣∣∣A j

∣∣∣2 , (1.53)

and Γf is given by

Γf ≡ dΓ

dq2
2

=
1
5

9
210

1
π3 X

Br2
``

M2
H

ΓZ

M3
Z

∑
j

∣∣∣A j

∣∣∣2((
q2

2 − M2
Z

)2
+ M2

Z
Γ2
Z

) , (1.54)

where i , j ∈ {L,M , 1, 2, 3, 4} and we have averaged over the 5 initial polarization states

of the Spin-2 boson.
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The uniangular distributions are given by

1
Γf

d2Γ

dq2
2 d cos θ1

=
1
2

+ T
(2)
2 P2(cos θ1) − T (2)

1 cos θ1, (1.55)

1
Γf

d2Γ

dq2
2 d cos θ2

=
1
2

+ T
′(2)
2 P2(cos θ2) + T

′(2)
1 cos θ2, (1.56)

2π
Γf

d2Γ

dq2
2 dφ

= 1 +U
(2)
2 cos 2φ +V

(2)
2 sin 2φ +U

(2)
1 cosφ +V

(2)
1 sinφ, (1.57)

where the superscript (2) is used to denote the fact that the concerned coefficients are for

Spin-2 resonance, and

T
(2)
2 =

1
4

(
− 2 |F1 |2 + |F2 |2 +

(
|F3 |2 + |FL |2

) q2
1 − 2q2

2

u2
1


+ |F4 |2

2M2
H

u2
1

w2 +
u4

2

u2
1w2

(
q2

2 − 2q2
1

) + |FM |2
4M2

H

u2
1

v2 + 3
u4

2

u2
1v2

(
q2

2 − 2q2
1

)
+ 6

√
q2

1 q
2
2

u2
2

u2
1vw

(
v Re(F3F

∗
4 ) +
√

3w Re(FLF
∗
M )

) )
, (1.58)

T
′(2)
2 =

1
4

(
− 2 |F1 |2 + |F2 |2 +

(
|F3 |2 + |FL |2

) q2
2 − 2q2

1

u2
1


+ |F4 |2

2M2
H

u2
1

w2 +
u4

2

u2
1w2

(
q2

1 − 2q2
2

) + |FM |2
4M2

H

u2
1

v2 + 3
u4

2

u2
1v2

(
q2

1 − 2q2
2

)
− 6

√
q2

1 q
2
2

u2
2

u2
1vw

(
v Re(F3F

∗
4 ) +
√

3w Re(FLF
∗
M )

) )
, (1.59)

U
(2)
2 =

1
4
|F2 |2 −

M2
H

u2
1

v2 |FM |2 , (1.60)

V
(2)
2 = MH

u1

v
Im(F2F

∗
M ), (1.61)

T
(2)
1 =

3η
2u2

1vw

(
2MHu3

1w Re(F2F
∗
M ) + q2

1vw Re(F3F
∗
L)

+

√
q2

2u2
2

(√
3
√
q2

1w Re(F3F
∗
M ) +

√
q2

1v Re(F4F
∗
L) +
√

3
√
q2

2u2
2 Re(F4F

∗
M )

) )
,

(1.62)

T
′(2)
1 =

3η
2u2

1vw

(
2MHu3

1w Re(F2F
∗
M ) + q2

2vw Re(F3F
∗
L)
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+

√
q2

1u2
2

(
−
√

3
√
q2

2w Re(F3F
∗
M ) −

√
q2

2v Re(F4F
∗
L) +
√

3
√
q2

1u2
2 Re(F4F

∗
M )

) )
,

(1.63)

U
(2)
1 =

9π2η2

64u2
1v2w2

(√
2u2

1v2w2 Re(F1F
∗
2 ) − u4

2v2w Re(F3F
∗
4 ) + |F3 |2

√
q2

1 q
2
2v2w2

− |F4 |2
√
q2

1 q
2
2u4

2v2 +
√

3u4
2vw2 Re(FLF

∗
M ) − |FL |2

√
q2

1 q
2
2v2w2

+ 3 |FM |2
√
q2

1 q
2
2u4

2w2
)
, (1.64)

V
(2)
1 =

9π2η2

64u2
1vw

(
2
√

2MHu3
1w Im(F1F

∗
M ) + 2

√
q2

1 q
2
2vw Im(F3F

∗
L)

−
√

3u4
2w Im(F3F

∗
M ) − u4

2v Im(F4F
∗
L) − 2

√
3u4

2

√
q2

1 q
2
2 Im(F4F

∗
M )

)
. (1.65)

These coefficients can again be extracted from asymmetries similar to those defined in

Eqs. (1.22), (1.23), (1.24), (1.25), (1.26) and (1.27) for the Spin-0 case. We find that the

angular distributions corresponding to P2(cos θ1) and P2(cos θ2) are different in the Spin-

2 case in contrast to the Spin-0 case. This feature can enable us to distinguish between the

two spins, unless the difference happens to be zero for certain choice of parameters, even

in the Spin-2 case. Considering only the η independent terms in Eqs. (1.55) and (1.56),

the difference ∆ between the coefficients of P2(cos θ1) and P2(cos θ2) in
1
Γf

d2Γ

dq2
2 d cos θ1

and
1
Γf

d2Γ

dq2
2 d cos θ2

respectively, is

∆ =
3u2

2

4u2
1v2w2

(
v2w2

(
|F3 |2 + |FL |2

)
− u4

2

(
v2 |F4 |2 + 3 w2 |FM |2

) )
+

3
√
q2

1 q
2
2u2

2

u2
1vw

(
v Re(F3F

∗
4 ) +
√

3 w Re(FLF
∗
M )

)
. (1.66)

If we find that ∆ = 0 for all
√
q2

2, then the tensor case would have similar characteristics

in the uniangular distributions as discussed in the scalar case. However, this can only
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happen if helicity amplitudes (or equivalently the corresponding coefficients A, B, C, D,

E and F) have the explicit momentum dependence so as to absorb
√
q2

2 completely in ∆.

The reader can examine the expression for ∆ to conclude that this is impossible and the

only way ∆ can be equated to zero for all
√
q2

2, is when

F3 = F4 = FL = FM = 0. (1.67)

In such a special case all the form-factors in vertex V
µν;αβ
HZZ

vanish, except C and D. This

special case explicitly implies that the parity of the Spin-2 boson is even. We will refer

to this case as the special JP = 2+ case, since the uniangular distribution mimics the

JP = 0+ case. Working under this special case

1
Γf

d2Γ

dq2
2 d cos θ1

=
1
2

+ T
(2)
2 P2(cos θ1), (1.68)

1
Γf

d2Γ

dq2
2 d cos θ2

=
1
2

+ T
(2)
2 P2(cos θ2), (1.69)

2π
Γf

d2Γ

dq2
2 dφ

= 1 +U
(2)
2 cos 2φ +U

(2)
1 cosφ, (1.70)

where the T (2)
2 ,U (2)

2 andU (2)
1 are now given by

T
(2)
2 =

1
4

(
|F2 |2 − 2 |F1 |2

)
, (1.71)

U
(2)
2 =

1
4
|F2 |2 , (1.72)

U
(2)
1 =

9π2

32
√

2
η2 Re(F1F

∗
2 ) (1.73)

Now using the identity |F1 |2 + |F2 |2 = 1, we get

U
(2)
2 =

1
6

(
1 + 2T (2)

2

)
. (1.74)
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Note the similarity between Eqs. (1.33) and (1.74). The conclusions that JP = 2± when

∆ , 0 can also be drawn if ∆ integrated over q2
1 and q2

2 is found to be non zero. However,

it clear from Eq. (1.66) that the domain of integration for q2
1 and q2

2 cannot be symmetric.

Coefficient of

P2(cos θ1) in
1

Γ

dΓ

d cos θ1

Coefficient of

P2(cos θ2) in
1

Γ

dΓ

d cos θ2

Are they the same?

JPC ∈ {0++, 0−+, Special 2++} JPC ∈ {2++, 2−+}

Needs full angular
analysis for

determination of Parity

NOYES

What is the ratio of the
number of events via

Z∗Z∗ compared to ZZ∗?
Is it about 1.5 or larger ?

Special 2++YES

JPC ∈ {0++, 0−+}

NO

Is F⊥ = 0? (See Eq. (30).)

JPC = 0++ JPC = 0−+ or not a
Parity Eigenstate

NOYES

Is FL = F‖ = 0?

JPC = 0−+

YES

Not a Parity Eigenstate

NO

Find out a, b, c using Eqs. (36),
(37) and (38) respectively.

Do the observables
T

(0)
2 and U

(0)
2 have

SM values? (See
Eq. (35)). Are

their values −0.148
and 0.117

respectively, when
integrated over q22?

SM Higgs Non-SM 0++ Scalar

NOYES

Find out a and b using
Eqs. (36) and (37) respectively.

Figure 1.3: Flow chart for determination of spin and parity of the new boson. See text for
details.

1.2.3 Comparison Between Spin-0 and Spin-2

Having discussed both the scalar and tensor case, we summarize the procedure to distin-

guish the spin and parity states of the new boson in a flowchart in Fig. 3.2. The procedure
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entailed, ensures that we convincingly determine the spin and parity of the boson. The

first step should be to compare the uniangular distributions in cos θ1 and cos θ2. If the

distribution is found to be different the boson cannot be the SM Higgs and indeed must

have Spin-2. However, if the distributions are found to be identical the resonance can

have Spin-0 or be a very special case of Spin-2 arising only from C and D terms in the

vertex in Eq. (1.39). The similarity between Eqs. (1.33) and (1.74) makes it impossible

to distinguish these two cases by looking at angular distributions alone.

The special JP = 2+ case can nevertheless still be identified by examining the sur-

viving helicity amplitudes A1 and A2. The helicity amplitudes given in Eqs. (1.42) and

(1.43) reduce in this special case to,

A1 = −16
√

2

3
√

3
X2

(
q1.q2C + M2

HX
2 D

)
, (1.75)

A2 =
32

3
√

3

√
q2

1 q
2
2 X

2C . (1.76)

These may be compared with Eqs. (1.2) and (1.3) to notice that they have identical form,

except for an additional X2 dependence in A1 and A2 expressions above. The additional

X2 dependence increases the contribution from both off-shell Z’s (called Z∗Z∗) signif-

icantly in comparison to the dominant one on-shell and one off-shell Z (called ZZ∗)

contribution expected in SM. In the SM one would expect the ratio of the number of

events in Z∗Z∗ to ZZ∗ channel to be about 0.2. However, in the special JP = 2+ case

we would expect this ratio to be about 1.5. Thef reader is cautioned not to confuse this

explicit X2 dependence with any assumption on the momentum dependence of the form-

factors. Throughout the analysis we have assumed the most general form-factors a, b,

c, A, B, C, D, E and F, nevertheless A1 and A2 turn out to have additional X2 depen-

dence in comparison to AL and A‖ respectively. This explicit X2 dependence arises due

to contributions only from higher dimensional operators in the special JP = 2+ case.
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Having excluded the Spin-2 possibility, the resonance would be a parity-odd state

(0−+) if FL = F‖ = 0 and a parity-even state (0++) if F⊥ = 0. If the resonance is found

to be in 0++ state, we need to check whether T (0)
2 and U

(0)
2 terms are as predicted in SM.

The values of T (0)
2 andU (0)

2 as a function of
√
q2

2 are plotted in Fig. 1.2. The q2
2 integrated

values for the observables T (0)
2 and U

(0)
2 are uniquely predicted in SM at tree level to be

−0.148 and 0.117 respectively. These tests would ascertain whether the 0++ state is the

SM Higgs or some non-SM boson. If it turns out to be a non-SM boson, we can also

measure the coefficients a, b, c by using Eqs. (1.36), (1.37) and (1.38).

Finally we emphasize that our approach is unique in using helicity amplitudes in the

transversity basis so that the amplitudes are classified by parity. We also use orthogo-

nality of Legendre polynomials in cos θ1 and cos θ2 as well as a Fourier series in φ to

unambiguously determine the spin and parity of the new resonance. Another significant

achievement is the use of the most general HZZ vertex factors for both Spin-0 and Spin-2

cases allowing us to determine the nature of H be it in any extension of the SM. We wish

to stress that we consider neither any specific mode of production of the new resonance

(like gluon-gluon fusion or vector boson fusion), nor any specific model for its couplings.

The production channel for the new resonance has no role in our analysis. We consider its

decay only to four leptons via two Z bosons. Most discussions in current literature deal

either with specific production channels or with specific models of new physics which re-

strict the couplings to specific cases both for Spin-0 and Spin-2. Refs. [68, 71, 72, 79, 80]

deal with graviton-like Spin-2 particles, while Ref. [81] deals with Spin-2 states that are

singlet or triplet under SU(2). Ref. [68] considers polar angle distribution of γγ and an-

gular correlations between the charged leptons coming from WW ∗ decays to differentiate

the Spin-0 and Spin-2 possibilities. While Ref. [71] looks at ‘Higgs’-strahlung process to

distinguish the various spin and parity possibilities, Ref. [72] compares branching ratios

of the new boson decaying to γγ, WW ∗ and ZZ∗ channels as a method to measure the
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spin and parity of the new boson. In Ref. [79] the authors propose a new observable that

can distinguish SM Higgs from a Spin-2 possibility. They consider the three-body decay

of the new resonance to a SM vector boson and a fermion-antifermion pair. Ref. [80]

shows that the current data disfavors a particular type of graviton-like Spin-2 particle that

appears in scenarios with a warped extra dimension of the AdS type. Refs. [81, 82] deal

with Spin-0 or Spin-2 particles produced via vector boson fusion process alone. Our dis-

cussion subsumes all of the above special cases. Moreover, unlike other discussions in

the literature we provide clearly laid out steps to measure the couplings, spin and parity

of the new resonance H without any ambiguity. We want to reiterate that it is important

to measure not only the spin and parity of the new resonance but also its couplings before

any conclusive statements can be made that it is the SM Higgs.

1.2.4 Numerical study of the uniangular distributions

In this sub-section we study the possibility of using the uniangular distributions, given in

previous sub-section to differentiate the different possible spin CP states. For simplicity

throughout this sub-section we will neglect the q2 dependence of a, b and c. The signal

and background events were generated using the MadEvent5 [98] event generator inter-

faced with PYTHIA 6.4 [99] and PGS 4 [100]. The vertex of Eq. (1.1) was implemented

into the UFO format of Madgraph5 using Feynrules 1.6.18 [101]. Unlike the earlier sub-

sections we also include the 2e+2e− and 2µ+2µ− final states because the identification

of Z1 being the mother particle of the pair of same flavor opposite sign leptons with an

invariant mass closest to the MZ breaks the exchange symmetry of these final states in

most regions of phase space. As the analysis of this thesis has to do purely with the

shape of the partial widths in the Z (∗)Z (∗) channel, the production mechanism is not cru-

cial to understanding the spin and CP properties of the resonance at 125 GeV. However

to be concrete, these samples were generated for pp collisions at
√
s = 8 TeV using the
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CTEQ6L1 parton distribution functions (PDFs) [102]. We choose to follow the ATLAS

cut based analysis of Ref. [103] instead of the CMS analysis [104] because the CMS

analysis has used a more sophisticated multi-variate analysis (MVA) technique. We set

the Higgs boson mass mH = 125 GeV, which is close to what has been measured in

Ref. [103]. The branching ratios and decay widths are set appropriately using the values

from the Higgs working group webpage [105].

Following the analysis of Ref. [103] we impose the following lepton selection cuts

and triggers. In particular, the single lepton trigger thresholds are pl
T
> 24(25) GeV

for a muon(electron). The di-muon trigger thresholds used are pT > 13 GeV for the

symmetric case and p1
T
> 18 GeV and p2

T
> 8 GeV for the asymmetric case. For di-

electrons the thresholds are pT > 12 GeV. The lepton identification cuts require that

each electron(muon) must have ET > 7 GeV (pT > 6 GeV) with |η | < 2.4(2.7). Sorting

leptons in decreasing order of pT , we also impose the selection criteria p
`1
T
> 20 GeV,

p`2
T
> 15 GeV and p

`3
T
> 10 GeV. For same flavor leptons we also require that ∆R > 0.1

while for opposite flavor ∆R > 0.2. Furthermore we also impose the invariant mass cuts

on the mZ1 , mZ2 and m4` described in Table 3.2 to reduce the Standard Model background.

mZ1 is the invariant mass of the pair of opposite sign same flavor leptons closest to mZ

while mZ2 is the other combination. The number of signal events in our simulation is in

good agreement with the SM predicted value quoted in Ref. [103], while the background

rate is slightly lower than total background rate because we have not included the sub-

dominant processes like Z+jets and t t̄.

In order to quantify the effect of using the uniangular distributions to extract the na-

ture of the 125 GeV resonance we construct the test statistic q based on the ratio of the

likelihoods

q = ln
L0+

L0−
, (1.77)
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Cuts mH = 125 GeV SM ZZ∗

Selection 22 1542

50 GeV < mZ1 < 106 GeV 20 1432

12 GeV < mZ2 < 115 GeV 19 1294

115 GeV < m4` < 130 GeV 19 14

Table 1.1: Effect of the sequential cuts on the simulated Signal and the dominant contin-
uum ZZ background, where the k-factors are 1.3 for signal and 2.2 for background using
MCFM 6.6 [106] for 20.7 fb−1.

where the L is the unbinned likelihood function

L =
∑
µs

Nobs∏
i

µsPs(xi) + µbPb(xi)
µs + µb


ave

. (1.78)

As our acceptances are in good agreement with the ATLAS predictions for the rest of our

analysis we will assume a background rate µb = 16 events for luminosity L = 20.7 fb−1

due to the continuum ZZ background. However as the total observed number of events

are slightly above the expected rate we need to marginalize over the expected signal rate.

In particular we assume a bayesian prior flat distribution for µs ∈ [0.5, 2.0] × µSM
s (=

18 at a luminosity of 20.7fb−1). For a particular value of µs we generate ensembles of

Nobs events to find the average of the product within the brackets in Eq. (1.78). The

probability density function (PDF) for signal is the product of the distributions

1
Γ

dΓ

d cos θ1
=

1
2
− T (0)

1 (a, B,C) cos θ1 + T (0)
2 (a, B,C) P2(cos θ1), (1.79)

1
Γ

dΓ

d cos θ2
=

1
2

+ T (0)
1 (a, B,C) cos θ2 + T (0)

2 (a, B,C) P2(cos θ2), (1.80)

1
Γ

dΓ

dφ
=

1
2π

+U (0)
1 (a, B,C) cosφ +U (0)

2 (a, B,C) cos 2φ, (1.81)
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where B = b × (100 GeV)2, C = c × (100 GeV)2 and

Γ ≡ Γ(a, B,C) ' 2.24 × 10−8 x14
H

(
a2 + 0.19 a B + 2.22 × 10−2 B2 x2

H

+ 2.14 × 10−2C2 x6
H

)
, (1.82)

T (0)
1 (a, B,C) ' 2.14 × 10−2 aC x3

H

a2 + 0.19 a B + 2.22 × 10−2 B2 x2
H

+ 2.14 × 10−2C2 x6
H

, (1.83)

T (0)
2 (a, B,C) ' −0.15 a2 − 9.65 × 10−2 a B x3

H
+ 5.35 × 10−3C2 x9

H

x3
H

(
a2 + 0.19 a B + 2.22 × 10−2 B2 x2

H
+ 2.14 × 10−2C2 x6

H

) ,
(1.84)

U (0)
1 (a, B,C) ' −3.44 × 10−3 a2 − 5.50 × 10−4 a B x2

H

a2 + 0.19 a B + 2.22 × 10−2 B2 x2
H

+ 2.14 × 10−2C2 x6
H

, (1.85)

U (0)
2 (a, B,C) ' 1.88 × 10−2 a2 xH − 8.51 × 10−4C2 x6

H

a2 + 0.19 a B + 2.22 × 10−2 B2 x2
H

+ 2.14 × 10−2C2 x6
H

, (1.86)

while for the background Pb = 1/(8π). In the above approximations for we have ne-

glected the q2 dependences of a, b and c and integrated Eq (1.9), Eq. (1.13), Eq. (1.14)

and Eq. (1.15) over q2
2. Furthermore we have performed a power law fit in term of

xH = mH/(120 GeV) for each of the coefficients. As b and c have dimensions of mass

squared, in the above approximations for the different coefficients we have used the di-

mensionless coefficients B and C instead. By definition, the 0+ hypothesis corresponds

to (a, B,C) = (1, 0, 0) and the 0− hypothesis corresponds to (a, B,C) = (0, 0, 1). When

a = 0 the magnitude of C is not crucial as we normalize the 0+ and 0− cross-sections so

as to produce the same number of signal events.

To quantify power of the uniangular distributions in hypothesis testing, we present the

q test-statisic for the 0+ and 0− hypotheses in Fig. 1.4. In particular, we have applied the

q-statistic in Eq. (1.77) to samples of Monte Carlo events that have passed the above cuts

in Tab. 3.2, where we assumed the above bayesian prior for the mean signal rate. The red

(dark grey) curve corresponds to 0− events while the green (light grey) curve corresponds

to 0+ events. The solid curves correspond to a gaussian fit to these distributions and using
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L = 20.7 fb-1
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Figure 1.4: Comparison of the q test-statistic using the uniangular distribution approach
in the 4` channel for the 0+ events in red (gray) vs. 0− events in green (light gray).
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and the green (light grey) curve is the fit to the data
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them we define the separation power as

S =
2A
σ
, (1.87)

where A is the area under the curve calculated from the point on the q-axis which satisfies

the condition that the area under the right tail of the left distribution is equal to the left

tail of the right distribution and σ is the maximum of the two standard deviations.

The separation power using the q test statistic works well for low luminosity, but this

approach loses sensitivity at larger luminosity. To illustrate this point we present Fig. 1.5

at a function of luminosity. The red (dark grey) points correspond calculated separation

power for a particular luminosity while the green (light grey) curve is a fit to the data.

The lowest data point corresponds to a luminosity of 20.7 fb−1 with an observation of

43 events while for at higher luminosities we have assumed that the number of observed

events agrees with the expected rates. Furthermore this extrapolation assumes the same

cuts and efficiencies for higher luminosities. For luminosities greater that 40 fb−1, a χ2

fit of the uniangular distributions would probably provide a stronger hypothesis test.

It would seem that the values of all the form factors a, b and c can be extracted using

the there uniangular distributions Eq. (1.79)-(1.81) along with Eq. (1.82)-(1.86). How-

ever, the difference between the uniangular distributions in Eq. (1.79) and Eq. (1.80) is

small because it is proportional to η. Given the small sample of 43 events this would

essentially imply that only two parameters can be obtained. Our numerical work con-

firms this fact. Since P0(cos θ1,2) = 1, P1(cos θ1,2), P2(cos θ1,2), cosφ and cos 2φ are

orthogonal functions the coefficients of each of the terms can be extracted individually.

As discussed in Sec. 1.2.1 this would result in four observables. We emphasize that as the

data sample increases the additional information can be used to measure relative phases

between a, b and c. For 43 events, as expected from the discussions in Sec. 1.2.1 based

on the small value of η in SM, we find we could only extract stable values of b/a and c/a
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Figure 1.6: c/a vs b/a 1σ (green) and 2σ (yellow) contours assuming the Standard
Model value of the partial decay width to 4`. The central values (b/a, c/a) = (4.77 ±
21.23, −3.79±16.4)×10−4 GeV−2 is shown by the block dot. The cross-hair corresponds
to b = c = 0.

by maximizing the likelihood function L0+ . One can also estimate the errors in b/a and

c/a from the inverse of the covariance matrix Vi j = cov[θi , θ j] defined as

V̂−1 = −
(
∂2 lnL
∂θi∂θ j

)
θ̂

(1.88)

where θi , θ j = b/a, c/a. Here θ̂ denotes those values of the parameters that maximizes

the likelihood function. In Fig. 1.6 we present the extract values of b/a and c/a for a

sample of 43 events. Using these values of b/a and c/a, the value of a can also be found

by fitting the decay width in Eq. (1.82) to the Standard Model partial width. Using this

approach, the values of a, b and c with their respective errors are

a = 2.11 ± 3.55, (1.89)

b = (10.09 ± 47.99) × 10−4 GeV−2, (1.90)
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c = −(8.01 ± 37.20) × 10−4 GeV−2. (1.91)

1.3 Summary

We conclude that by looking at the three uniangular distributions and examining the num-

bers of Z∗Z∗ to ZZ∗ events one can unambiguously confirm whether the new boson is

indeed the Higgs with JPC = 0++ and with couplings to Z bosons exactly as predicted in

the Standard Model. We show that the terms in the angular distribution corresponding to

P2(cos θ1) and P2(cos θ2) play a critical role in distinguishing the J = 2 and J = 0 states.

The distributions are identical for Spin-0 case, but must be different for Spin-2 state ex-

cept in a special JP = 2+ case where F3 = F4 = FL = FM = 0. The ratio of the number of

Z∗Z∗ events to the number of ZZ∗ events provides a unique identification for this special

JP = 2+ case. In this special case the number of Z∗Z∗ events dominates significantly over

the number of ZZ∗ events. The Spin-2 resonance can thus be unambiguously confirmed

or ruled out. With Spin-2 possibility ruled out, Spin-0 can be studied in detail.

The resonance would then be a parity-odd state (0−+) if FL = F‖ = 0 and a parity-

even state (0++) if F⊥ = 0. If the resonance is found to be in 0++ state, we need to

check whether T (0)
2 and U

(0)
2 terms are as predicted in SM. The q2

2 integrated values for

the observables T (0)
2 andU (0)

2 are uniquely predicted in SM at tree level to be −0.148 and

0.117 respectively. These tests would ascertain whether the 0++ state is the SM Higgs

or some non-SM boson. If it turns out to be a non-SM boson, we can also measure

the coefficients a, b, c by using Eqs. (1.36), (1.37) and (1.38). If the boson is a mixed

parity state, the relative phase between the parity-even and parity-odd amplitudes can

also be measured by studying the sin 2φ term in the uniangular distribution. We present

a step by step methodology in Fig. 3.2 for a quick and sure-footed determination of spin

and parity of the newly discovered boson. Our approach of using Legendre polynomials
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and the choice of helicity amplitudes classified by parity enable us to construct angular

asymmetries that unambiguously determine if the new resonance is indeed the Standard

Model Higgs.

Numerically we have have simulated the dominant continuum ZZ background and

Standard Model signal shown that our acceptances are in good agreement with the AT-

LAS predictions. Using the uniangular distributions derived in this thesis we compute

the q-statistic q = ln (L0+/L0− ). We observe the separation power of this approach is

most powerful at low luminosity assuming that the cuts and the acceptances remain the

same at each luminosity. For easy experimental adaption we have included power law

parametrization of the various angular coefficients in terms of the fundamental Higgs

vertex parameters. We also obtain fits for b/a and c/a for a 43-event sample, demon-

strating that both b and c can be constrained by a rather small sample of data.



2
Measurement of HZZ

couplings

2.1 Introduction

The study of the coupling of the 125 GeV resonance following its discovery is the priority

for future LHC runs. A hint of anomalous nature will be exhibited via its couplings to

the Standard Model (SM) particles and open up new domains of phenomenological study

of physics beyond the SM. In this chapter we call this 125 GeV resonance as Higgs and

also denote it by H like previous chapter. The 14 TeV LHC run, with enhanced statistics,

will lay the foundation stone for the precision era of the Higgs coupling measurements.

In this regard lot of studies [27, 107–125] have been made after the discovery of H .

Indications from the first LHC run are that, the discovered Higgs is indeed a spin 0+

particle, however, CP admixture is still possible in its couplings. In this thesis [28] we

study how angular asymmetries can probe CP-odd admixture in the HZZ couplings via

H → ZZ∗ → 4` channel, at the 14 TeV LHC for 300 fb−1 and 3000 fb−1. We benchmark

the angular asymmetries for SM Higgs, CP-odd admixture. We demonstrate how the

ratios of couplings and their relative phases can be extracted at the 14 TeV LHC for 300

59
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fb−1 and 3000 fb−1 luminosities.

2.2 Required Tools

In this section we first write down the HZZ vertex finally derive the expression for an-

gular distribution of H → ZZ∗ → 4` process assuming H to be a spin 0 particle. In SM

the process H → ZZ is characterised by the Lagrangian

LHZZ =
gMZ

2 cos θW
ZµZ

µH (2.1)

where θW is the Weinberg angle and g is the electroweak coupling constant. However

there may exist anomalous couplings of H to Z boson. These couplings can in general

be CP-even or CP-odd and can be generated from the effective Lagrangians

Le ∼ −1
4
Z µνZµν H (2.2)

and

Lo ∼ −1
4
Z µν Z̃µν H (2.3)

respectively, where Zµν and Z̃µν are defined as Zµν = ∂µZν − ∂νZµ and Z̃µν = 1
2εµνρσ Zρσ

respectively. Following these Lagrangians one can write down the most general HZZ

vertex as follows

V µν =
igMZ

cos θW

(
a gµν + b

(
q1 · q2 gµν − q

µ
2q

ν
1

)
+ ic ε µνρσ q2ρ q1σ

)
. (2.4)

It should be noted that Eq.(2.4) differs from that of Eq.(1.1)). Eq.(1.1) will be repro-

duced once we make substitutions (a + b q1 · q2 ) gµν → a gµν and −b q
µ
2q

ν
1 → b q

µ
2q

ν
1
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in Eq.(2.4). Correspondingly the expressions for the Helicity amplitudes in Eq. (1.2),

Eq. (1.3) and Eq. (1.4) are also changed. This modifications are made to implement

Eq. (2.1), Eq. (2.2) and Eq. (2.3) in the Feynrules framework for numerical simulation.

The CP-odd term c can not exist in lowest order in renormalizable gauge theories

and it can arise via Eq (2.3). The CP-odd admixture is characterised by the non zero

value of c. If H is a mixed CP state, c can be complex of the form c eiδ, where δ is the

phase associated with c. This complex phase can arise if real particles run in the loop

contributing to the effective HZZ vertex. These terms may also arise in several BSM

weakly interacting and strongly interacting models. In the case of weakly interacting

models the the parity of the coupling of H to gauge boson is via loop (predominantly

fermion loops) effects. In these type of models c term is dependent on mass and couplings

of the fermions of the underlying theory. However this loop induced effects can be very

suppressed in several models. In the context of MSSM, Refs. [126,127] discuss about the

strength of c term, which could be very suppressed in those models. Other models such as

pseudo-axion states in Little Higgs models [128–130] can also have heavily suppressed

c term. The spontaneous CP violation was first proposed by T. D. Lee [131], where he

introduced two Higgs doublet without any extra symmetry in the Higgs potential and

may have large CP violation. In a general type-II (2HDM) [127], for small value of

tan β (tan β < 1) the value of c term can be larger than the previously discussed cases.

Such a small values of tan β are excluded in MSSM [132] by the direct searches of the

MSSM Higgs however it is still allowed for type-II 2HDM. . The strongly interacting

technicolor models [133, 134] the parity odd c term can also arise, where the pseudo-

Nambu-Goldstone bosons (PNGB) couples to axial vector currents [135–137] as well as

to the chiral anomalies.
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2.3 Probing CP-odd admixture

We have selected the leptons in two sequential pT ordered way.

i) Case-I : pT of at least two leptons in a quadruplet must satisfy pT > 20 GeV,

ii) Case-II : pT of at least three leptons in a quadruplet must satisfy pT > 20 GeV.

The leptons are required to be separated from each other by ∆R > 0.1 if they are of

the same flavour and ∆R > 0.2 otherwise. Each event is required to have the triggering

lepton(s) correctly matched to one or two of the selected leptons.

Furthermore we also impose the invariant mass cuts on the mZ1(
√
q2

1), mZ2(
√
q2

2) and

m4` described in Table 3.2. mZ1 is the invariant mass of the pair of opposite sign same

flavor leptons closest to mZ while mZ2 is the other combination. The two columns of

Table 3.2 demonstrate the effect of pT ordering in event selection.

Cuts Case-I Case-II

Selection cuts 494 2253

50 GeV < m12 < 106 GeV 487 2204

12 GeV < m34 < 115 GeV 447 2071

115 GeV < m4` < 130 GeV 443 2050

Table 2.1: Effects of the sequential cuts on the simulated Signal for two different pT or-
dering of Case-I(first column) and Case-II( second column). The sequential pT ordering
of Case-I is for 300 fb−1, however we have used sequential pT ordering of Case-II for
3000 fb−1. The K -factor for signal is 2.5.

The three uniangular distributions and asymmetries will remain same as written in

Chapter 1. Integrating Eq. (1.13),Eq. (1.14), and Eq. (1.15) over q2
2 we get three inte-

grated distributions as follows

1
Γ

dΓ

d cos θ1
=

1
2
− T1 cos θ1 + T2 P2(cos θ1), (2.5)
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1
Γ

dΓ

d cos θ2
=

1
2

+ T1 cos θ2 + T2 P2(cos θ2), (2.6)

1
Γ

dΓ

dφ
=

1
2π

+U1 cosφ +U2 cos 2φ

+V1 sinφ +V2 sin 2φ, (2.7)

where T1, T2,U1,U2 ,V1 andV2 are observables integrated over m34(q2
2) and m12.

The normalized distributions, 1
Γ

dΓ
d cos θ1

vs cos θ1 , 1
Γ

dΓ
d cos θ2

vs cos θ2 and 1
Γ
dΓ
dφ vs φ for

SM are shown in Fig. 3.5, Fig. 3.6 and Fig. 3.7 respectively for simulated data. It should

be noted that the angular coverage for cos θ1 or cos θ2 covers the full range from −1 to

+1 and coverage for φ from 0 to 2π are still retained even after using actual detector

scenarios. The cut flow analysis of Case-I is followed for the analysis of SM Higgs and

Higgs with CP-odd admixture at 300 fb−1. At 3000 fb−1 since the statistics is higher,

we will use stronger cut based analysis i.e. sequential cut flow analysis of Case-II for

benchmarking SM Higgs and Higgs with different CP configuration. Moreover it should

be noted that we have used the same cut based analysis for CP-odd admixture, CP-even

higher derivative contribution and CP-even-odd scenario. The cross section for each

benchmark scenarios are within the current experimental allowed region.
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The simulated data are binned in cos θ1, cos θ2 and φ and fitted using Eq.(2.5), Eq.(2.6)

and Eq.(2.7) to obtain the angular asymmetries t1, t2, u1, u2, v1, v2 and their errors which

correspond to the angular asymmetries T1, T2, U1, U2 , V1 and V2 respectively. The

expressions for T1, T2, U1, U2 , V1 and V2 are given in Appendix A.3. Once the values

of the integrated observables t1, t2, u1, u2, v1, v2 and their respective errors are found, the

χ2 formula:

χ2 =
(T2 − t2)2

(∆t2)2 +
(cos δ T1 − t1)2

(∆t1)2 +
(U1 − u1)2

(∆u1)2

+
(U2 − u2)2

(∆u2)2 +
(sin δ V2 − v2)2

(∆v2)2 +
(sin δ V1 − v1)2

(∆v1)2 (2.8)

will find the b/a, c/a and the phase δ. The errors in b/a, c/a and phase δ can also be

calculated using the error matrix (
∂2χ2

∂αi∂αi

)
α̂

(2.9)

where αi , α j = b/a, c/a, δ. To find the best fit values we have used Mathematica 9.

2.3.1 Backgrounds

The backgrounds analyzed for this thesis along with their respective K - factors are tabu-

lated in Table. 2.2 and Table. 2.3. In the Table. 2.2 have calculated the backgrounds for

14 TeV and 300 fb−1 LHC with sequential pT cut of Case-I. The background analysis for

14 TeV and 3000 fb−1 LHC with the sequential pT cut of Case-II is listed in Table. 2.3.

The backgrounds we have looked at for our analysis are Z`+`− → 4`, Zbb̄ → 2`2b.

The K-factors for the backgrounds are taken from Ref. [140] for our analysis. Moreover

we have also looked at t t̄ and WZ backgrounds which are negligible compared to the

dominant backgrounds Z`+`− → 4`, Zbb̄ → 2`2b.

The sequential pT cut of Case-II is specifically used to reduce the background sig-

nificantly which is essential for precision measurement. This strong pT cut of Case-II,
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Cuts Z`+`− Zbb̄

Selection cuts 11439 967

50GeV < m12 < 106 GeV 11401 948

12GeV < m34 < 115 GeV 10324 176

115GeV < m4` < 130 GeV 155 35

Table 2.2: The background analysis for benchmark scenarios at 14 TeV and 300 fb−1

luminosity with sequential pT cut of Case-I. The second and third columns show the
effect of different selection cuts on Z`+`− and Zbb̄ backgrounds respectively. The K-
factor for Z`+`− background is 1.2 and Zbb̄ background is 1.42.

not only reduce the dominant Z`+`− background but also makes the subdominant back-

ground Zbb̄ negligible for our analysis.

Cuts Z`+`−

Selection cuts 104202

50GeV < m12 < 106 GeV 103905

12GeV < m34 < 115 GeV 96988

115GeV < m4` < 130 GeV 270

Table 2.3: Background analysis for 14 TeV 3000 fb−1 benchmark scenarios with sequen-
tial pT cut of Case-II

2.3.2 Study of angular asymmetries of the Higgs at 14 TeV and 300

fb−1

The values of the observables will be different for the SM than that of CP-odd admixture

as we have already discussed and we by benchmark the angular observables for SM

Higgs and Higgs with CP-odd admixture this section. The measurement of the angular

observables will be the stepping stone for our analysis and we will use them to estimate
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the values of the ratios of couplings for different benchmark scenarios. We also obtain

1σ and 2σ contours for the ratios of couplings b/a vs c/a in each cases. Furthermore,

for the CP-odd benchmark scenario we also find the the phase δ vs c/a contour which is

essential for the study of CP-odd admixture in HZZ couplings. This study will provide

the precision at which one can rule out the anomalous contributions in HZZ couplings,

establishing the SM nature of H at 14 TeV 300 fb−1 LHC run. The benchmark scenarios

we have considered in this subsection are motivated by the results of Ref. [27]. In its

first 8 TeV run with 20.7 fb−1 luminosity, the values of b/a and c/a that angular analysis

could have probed at the LHC are ∼ 10−3 GeV−2. As the total number of events will be

increased at the 14 TeV LHC run, we chose our benchmark values for the couplings b/a

and c/a below the values that were probed at 8 TeV LHC run.

The SM Higgs

The SM Higgs is characterised by the values of the vertex factors a = 1, b = 0 , c = 0 in

Eq.(2.4). Thus the SM Higgs events are generated with the parametrization a = 1, b = 0 ,

c = 0. The fit values of the observables for the SM Higgs are tabulated in Table 2.4. The

Table 2.4: The values of the observables for the SM Higgs with respective errors at 14
TeV 300 fb−1 LHC.

Observables Values with errors

t2 −0.18 ± 0.08

t1 (0.7 ± 6.16) × 10−2

u2 0.28 ± 0.33

u1 (0.76 ± 3.64) × 10−1

v2 (−0.45 ± 3.42) × 10−1

v1 (−0.48 ± 3.14) × 10−1

values of the observables t2 and u2 are large compared to other observables as discussed
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in the previous section, playing important role in the χ2 expression in Eq.(2.8). The

observables t1, v2 and v1 provide information about phase for anomalous couplings b and

c. The best fit values of b/a and c/a with their respective errors for the SM Higgs are

given as follows:

b/a = (0.04 ± 0.70) × 10−4 GeV−2 (2.10)

c/a = (0.34 ± 1.89) × 10−4 GeV−2 (2.11)

and are consistent with the parametrization a = 1, b = 0 GeV−2 , c = 0 GeV−2 by which

the events are generated. The best fit values with 1σ and 2σ contours for b/a vs c/a are

shown in Fig .2.4.
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Figure 2.4: c/a vs b/a 1σ (green) and 2σ (yellow) contours for the SM Higgs at 300
fb−1. The best fit values (b/a, c/a) is shown by the block dot. The ‘∗’ corresponds to
b = c = 0 GeV−2.
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The Higgs with CP-odd admixture

The CP-odd admixture is charaterised by a non zero value of the vertex factors a and

c in Eq.(2.4). For the CP-odd admixture case, Higgs events are generated using a =

0.7, b = 0 GeV−2 and c = (2.2 + 2.2i) × 10−4 GeV−2. The values of the observables

are given in Table 2.5. It should be noted that the benchmark parametrization of c/a

for CP-odd admixture case lies beyond the error of c/a for the SM Higgs discussed in

subsection 2.3.2.

Table 2.5: The values of the observables for CP-odd admixture Higgs with respective
errors at 14 TeV 300 fb−1 LHC.

Observables Values with errors

t2 −0.07 ± 0.08

t1 −0.06 ± 0.06

u2 0.01 ± 0.34

u1 (−0.60 ± 3.49) × 10−1

v2 (0.8 ± 3.53) × 10−1

v1 (−0.37 ± 3.45) × 10−1

The value of t2 has now become smaller compared to the SM case as shown in Ta-

ble 2.4. Most importantly the non zero value of t1 arises due to the complex CP-odd

anomalous coupling c and play a significant role along with t2 and u2 in probing anoma-

lous CP-odd admixture of HZZ couplings. The best fit values for b/a, c/a and the phase

δ for CP-odd admixture are:

b/a = (0.30 ± 1.22) × 10−4 GeV−2 (2.12)

c/a = (4.91 ± 1.18) × 10−4 GeV−2 (2.13)

δ = (0.52 ± 2.18) in radian. (2.14)
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and consistent with the parametrization a = 0.7, b = 0 GeV−2 and c = (2.2 + 2.2i) ×
10−4 GeV−2. Note that the error in δ is still very large at this luminosity.

The best fit values with 1σ and 2σ contours for c/a vs b/a and δ vs c/a are shown in

Fig. 2.5 and Fig. 2.6 respectively.
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Figure 2.5: c/a vs b/a 1σ (green) and 2σ (yellow) contours for CP-odd admixture Higgs
at 300 fb−1. The best fit value of (b/a, c/a) is shown by the block dot. The values with
which data are generated (b/a = 0 GeV−2, c/a = 4.44 × 10−4 GeV−2) is shown by the
‘∗’. The cross-hair corresponds to b = c = 0 GeV−2.

2.3.3 Study of angular asymmetries of the Higgs at 14 TeV 3000 fb−1

High Luminosity LHC (HL-LHC) i.e 14 TeV 3000 fb−1 run before the energy upgrade

will allow us to test the CP structure of HZZ couplings even more precisely. At 3000

fb−1 we revisit the benchmark cases of SM and CP-odd admixture along with two new

analysis of CP-even higher derivative contribution and CP-even-odd scenario. For 3000

fb−1 also, we have followed the same cut based analysis that we have discussed earlier
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Figure 2.6: δ vs c/a 1σ (green) and 2σ (yellow) contours for CP-odd admixture Higgs
at 300 fb−1. The best fit values (c/a, δ) is shown by the block dot. The values with which
data are generated is shown by the ‘∗’.

apart from a strong sequential pT ordering i.e. pT of at least three leptons in a quadruplet

must satisfy pT > 20 GeV.

The SM Higgs and CP-odd admixture Higgs

First we investigate CP-odd Higgs and SM Higgs and find out the values of angular

observables along with their respective errors. For CP-odd admixture we have again

taken a = 0.7, b = 0 GeV−2, c = (2.2 + 2.2i) × 10−4 GeV−2 and SM Higgs a = 1,

b = 0 GeV−2, c = 0 GeV−2. The fit values of the observables t2, t1, u2, u1, v2, v1 for the

SM and CP-odd admixture Higgs are tabulated in Table 2.6 and Table 2.7 respectively.

The errors have significantly reduced for all the observables and the fit values for ratios

of couplings for the SM Higgs b/a, c/a (as expected due to enhanced statistics) are given

b/a = (0.34 ± 0.44) × 10−4 GeV−2 (2.15)
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Table 2.6: The values of the observables for the SM Higgs with respective errors at 14
TeV 3000 fb−1.

Observables Values with errors

t2 −0.20 ± 0.04

t1 (0.20 ± 0.32) × 10−1

u2 0.21 ± 0.18

u1 (0.35 ± 1.93) × 10−1

v2 (0.16 ± 1.84) × 10−1

v1 (−0.37 ± 1.73) × 10−1

c/a = (0.63 ± 0.76) × 10−4 GeV−2 (2.16)

and are consistent with the values a = 1, b = 0 GeV−2, c = 0 GeV−2. The 1σ and 2σ

contours for b/a vs c/a are shown in Fig. 2.7
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Figure 2.7: c/a vs b/a 1σ (green) and 2σ (yellow) contours for the SM Higgs at 3000
fb−1. The best fit values (b/a, c/a) is shown by the block dot. The ‘∗’ corresponds to
b = c = 0 GeV−2.
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Table 2.7: The values of the observables for CP-odd admixture Higgs with respective
errors at 14 TeV 3000 fb−1

Observables Values with errors

t2 −0.10 ± 0.04

t1 −0.05 ± 0.03

u2 0.02 ± 0.17

u1 (−0.18 ± 1.77) × 10−1

v2 (0.66 ± 1.73) × 10−1

v1 (0.67 ± 1.73) × 10−1

At 3000 fb−1 from Table 2.7 one can see that the errors in t1 and t2 are much reduced,

making them very good observables for probing CP-odd admixture. The best fit values

for b/a, c/a and phase δ for CP-odd admixture are given as

b/a = (0.15 ± 0.56) × 10−4 GeV−2 (2.17)

c/a = (4.09 ± 0.64) × 10−4 GeV−2 (2.18)

δ = 0.56 ± 1.90 in radian. (2.19)

It should be noted that the error in δ has become lower due to the fact that the error in t1,

which constraints the phase δ, is much reduced.

The 1σ and 2σ contours for b/a vs c/a and δ vs c/a are shown in Fig. 2.8 and Fig. 2.9

respectively.

2.4 Summary

We demonstrated how angular asymmetries will provide a strong and efficient tool to

probe Higgs couplings in high luminosity future LHC runs. With the increased statistics
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Figure 2.8: c/a vs b/a 1σ (green) and 2σ (yellow) contours for CP-odd admixture Higgs
at 3000 fb−1. The best fit value of (b/a, c/a) is shown by the block dot. The values with
which data are generated (b/a = 0 GeV−2, c/a = 4.44 × 10−4 GeV−2) is shown by the
‘∗’. The cross-hair corresponds to b = c = 0 GeV−2.
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Figure 2.9: δ vs c/a 1σ (green) and 2σ (yellow) contours for CP-odd admixture Higgs
at 3000 fb−1. The best fit values (c/a, δ) is shown by the block dot. The value with which
data are generated is shown by the ‘∗’.

at 14 TeV run, LHC will enter into precision era and angular analysis will offer a step

by step methodology to study the Higgs couplings. We have shown, using angular asym-

metries one can probe HZZ couplings for the SM Higgs as well as Higgs with mixed

CP scenarios at 14 TeV LHC, for two different luminosity 300 fb−1 and 3000 fb−1. The

values of the observables vary depending on the values of a, b and c. The observables

T1, V1 and V2 are sensitive to CP-odd admixture and can be a good candidate to probe

CP-odd admixture. Finally the best fit values for the ratios of the couplings, b/a and c/a

are calculated using Eq.(2.8). However several models still can have smaller c/a that

can even survive the precision reach of 14 TeV 3000 fb−1 LHC. It will require higher

statistics to probe CP-odd admixture of HZZ couplings in those models.
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Part III
A spin 1 particle: Z′

77





3
Z′ boson

3.1 Introduction

With the recent discovery of the ‘Higgs’ boson, all the ingredients of the standard model

of particle physics (SM) have been found. However, we do know that the SM does not

fully explain the whole of nature at its most fundamental level. For example, the problem

of naturalness, the existence of extremely small masses for the neutrinos required to

explain the observed neutrino oscillations, the abundance of matter over anti-matter in our

observable universe and the constituents of dark matter (which is about five times more

abundant than the ordinary matter) are a few of many issues which cannot be handled

in the SM. So the SM encompasses an incomplete description of nature and hence it

must be supplemented or extended with some other hitherto unknown new physics. Any

model of new physics invariably includes new interactions and thus many new particles.

In order to have a comprehensive view of new physics it is therefore essential to look

for new fundamental particles in experiments such as the Large Hadron Collider (LHC)

or in the proposed future experiments such as the International Linear Collider (ILC),

Circular Electron Positron Collider (CEPC) and Super Proton-Proton Collider (SppC)

79
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. It is however important to have model independent methods in place to characterize

resonances that could be observed in these high luminosity and high energy experiments.

We start by considering [37] the most general vertex for Spin-1 possibility ofX (≡ Z′)

decaying to two Z bosons and then write down the corresponding decay vertices. We

evaluate the partial decay rate of Z′ in terms of the invariant mass squared of the dilep-

tons produced from the two Z decays and the angular distributions of the four lepton final

state. We demonstrate that by studying three uniangular distributions (i.e. distributions

involving only one angle) one can determine the spin and parity of Z′ and also explore

anomalous couplings in the most general fashion. For this we again express our uniangu-

lar distributions in terms of helicity amplitudes, in the transversity basis, which are very

effective in their sensitivity to the parity of the parent particle.

We show numerically that the uniangular distributions can indeed be used to study

the spin and parity of the resonance Z′. We first construct a effective model for a heavy

Z′ and find out the discovery potential of such a resonance in future LHC runs. We then

extract angular asymmetries for the 14 TeV and 33 TeV LHC runs of both Spin-1+ and

Spin-1− Z′.

3.2 The Formalism

The most general Lorentz invariant and gauge invariant vertex factor for Spin-1 resonance

can be written as

V µαβ = O1
(
gαµq

β
1 + gβµqα2

)
+ i E1 ε

αβµν Qν , (3.1)

where O1 and E1 are parity odd and even vertex factors respectively
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One can have two helicity amplitude and they can be written in transversity basis as:

Ao1 =

√
2

3
D1 O1, (3.2)

Ae1 =
1
3
D2 E1, (3.3)

with “o” and “e” stands for parity odd and even helicity amplitudes respectively and 1 in

the subscript denotes the Spin-1 nature of the resonance. The expressions D1 and D2 are

used to make the helicity amplitude expressions look simple and they are defined as

D2
1 = 2M6

Z′u
2
1 −

1
2
M4

Z′

(
5u4

1 + u4
2

)
+ 6M2

Z′

(
u6

1 − u2
1u4

2

)
+

3
2

u4
1u4

2 −
1
2

u8
2, (3.4)

D2
2 = 16M6

Z′u
2
1 + 56M4

Z′u
4
1 − 86M2

Z′u
6
1 + u4

2

(
−85M4

Z′ + 96M2
Z′u

2
1 − 35u4

1

)
+ 38u8

2,

(3.5)

Finally one can similarly find three uniangular distributions for a Spin-1 resonance

as:

1

Γ
(1)
f

d3Γ(1)

dq2
1 dq

2
2 d cos θ1

=
1
2

+ T
(1)
1 cos θ1 + T

(1)
2 P2(cos θ1), (3.6)

1

Γ
(1)
f

d3Γ(1)

dq2
1 dq

2
2 d cos θ2

=
1
2

+ T
′(1)
1 cos θ2 + T

′(1)
2 P2(cos θ2), (3.7)

2π

Γ
(1)
f

d3Γ(1)

dq2
1 dq

2
2 dφ

= 1 +U
(1)
1 cosφ +U

(1)
2 cos 2φ +V

(1)
1 sinφ +V

(1)
2 sin 2φ. (3.8)

The expressions for T (1)
1 , T

′(1)
1 , T (1)

2 , T
′(1)
2 U

(1)
1 ,U (1)

2 , V (1)
1 and V

(1)
2 can be found out in the

Appendix A.4.

We can extract the observables in a similar fashion like we did for H and they are

T
(1)
1 =

(
−

∫ 0

−1
+

∫ +1

0

)
d cos θ1

 1

Γ
(1)
f

d3Γ(1)

dq2
1 dq2

2 d cos θ1

 , (3.9)
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T
(1)
2 =

4
3

∫ − 1
2

−1
−

∫ 0

− 1
2

−
∫ + 1

2

0
+

∫ +1

+ 1
2

 d cos θ1

 1

Γ
(1)
f

d3Γ(1)

dq2
1 dq2

2 d cos θ1

 , (3.10)

T
′(1)
1 =

(
−

∫ 0

−1
+

∫ +1

0

)
d cos θ2

 1

Γ
(1)
f

d3Γ(1)

dq2
1 dq2

2 d cos θ2

 , (3.11)

T
′(1)
2 =

4
3

∫ − 1
2

−1
−

∫ 0

− 1
2

−
∫ + 1

2

0
+

∫ +1

+ 1
2

 d cos θ2

 1

Γ
(1)
f

d3Γ(1)

dq2
1 dq2

2 d cos θ2

 , (3.12)

U
(1)
1 =

1
4

−∫ − π2

−π
+

∫ + π
2

− π2
−

∫ +π

+ π
2

 dφ
 2π

Γ
(1)
f

d3Γ(1)

dq2
1 dq2

2 dφ

 , (3.13)

U
(1)
2 =

1
4

∫ − 3π
4

−π
−

∫ − π4

− 3π
4

+

∫ + π
4

− π4
−

∫ + 3π
4

+ π
4

+

∫ +π

+ 3π
4

 dφ
 2π

Γ
(1)
f

d3Γ(1)

dq2
1 dq2

2 dφ

 , (3.14)

V
(1)
1 =

1
4

(
−

∫ 0

−π
+

∫ +π

0

)
dφ

 2π

Γ
(1)
f

d3Γ(1)

dq2
1 dq2

2 dφ

 , (3.15)

V
(1)
2 =

1
4

∫ − π2

−π
−

∫ 0

− π2
+

∫ + π
2

0
−

∫ +π

+ π
2

 dφ
 2π

Γ
(1)
f

d3Γ(1)

dq2
1 dq2

2 dφ

 . (3.16)

It is easy to find that the observables T
(1)
2 and T

′(1)
2 are not identical for a Spin-1

particle and hence we can define ∆(1) as

∆
(1) = 6M2

Z′u
2
2Y

2
( |Fo1 |2

(
M2

Z′
+ u2

1

)
D2

1

+
2 |Fe1 |2

(
5M2

Z′
+ u2

1

)
D2

2

)
, (3.17)

where Fo1 and Fe1 parity odd and parity even helicity fractions for a Spin-1 particle and

Y 2 =

√
λ(M′2

Z
,M2

1 ,M
2
2 )

2M′
Z

. Unlike the case of the 125 GeV H , Z′ could be heavy such that for

MZ′ > 2MZ both the Z bosons can be on-shell i.e.
√
q2

1 ≡ M1 and
√
q2

2 ≡ M2.

Now if we combine this result with the results from Chapter.1 we get a combined

methodology shown in Fig. (3.2), to disentangle the spin and parity of a bosonic reso-

nance (say X) with arbitrary mass via gold-plated decay mode. It should be noted that

this methodology is applied for non-identical leptons in the final state as one has to anti-

symmetrize for identical leptons in the final state. Although for a resonance MX < 2MZ′
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Is ∆(J) = 0 for all values of M1 and M2?

JP = 1+, 1−, 2+, 2−JP = 0+, 0−,Special 2+
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Is V (J)
2 = 0?

JP = 1+, 1− JP = 2+, 2−

YES NO

Needs full
angular
analysis.

Is U (1)
2 = 0?

JP = 1−
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Are T (1)
1 = T ′(1)

1 = V (1)
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Not a parity eigenstate
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Are T (J)
1 = T ′(J)
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Is U (J)
1 = 0?

NO

JP = 0+,Special 2+
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Study the Y2 dependence to
differentiate Special 2+ and 0+.
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parity

eigenstate
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NOYES

Figure 3.1: Flowchart to determine the spin and parity of a resonance X decaying as
X → Z (∗)Z (∗) → `−1 `

+
1 `
−
2 `

+
2 . Z (∗) includes both on-shell and off-shell contributions. This

mt

this is automatically taken care of as discussed in the case of 125 GeV H .

3.3 Numerical Study

In this section we will show how the uniangular distributions given in Eqs. (3.6), (3.7) and

(3.8) can be used to find out the values of the angular observables defined in Eqs. (3.9),

(3.10), (3.11), (3.12), (3.13), (3.14), (3.15) and (3.16). We shall elucidate the methodol-

ogy by concentrating on heavy Z′ (X = Spin-1) resonance and study the observables for

them. We start by investigating how the mass and decay width of such resonances affect

their production cross section in the future LHC runs. We then benchmark the angular

observables for Spin-1+ and Spin-1− resonances for two different Center-of-Momentum

(CM) energies: 14 TeV and 33 TeV with 3000 fb−1 luminosity.

Let us consider a heavy Spin-1 resonance Z′ of mass MZ′ and decay width ΓZ′ , de-

caying into four charged leptons via two Z bosons. We shall assume that the resonance Z′

is produced via annihilation of quark (q) and antiquark (q̄) pairs. The production process
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is characterized by the effective Lagrangian,

Le f f =
∑
q

(
c̃q q̄γ

µq Z′µ + cq q̄γ
µγ5q Z′µ

)
, (3.18)

where q = u, d, c , s, b quarks and c̃q, cq are the coupling strengths of Z′ to vector, axial

vector currents respectively; i.e. for a Spin-1+ resonance c̃q = 0 and for a Spin-1− res-

onance cq = 0. Just for simplicity of the analysis we have further assumed that all the

quarks couple to the resonance Z′ with the same strength. The production cross section

for the resonance Z′ can be easily obtained from Eq. (3.18) by considering appropriate

parton distribution functions in the process pp → Z′. The production cross section does

depend on the mass of the resonance Z′: the larger the mass, the lower the production

cross section at a given CM energy.

The partial decay width for Z′ → ZZ for Spin-1 resonance is given by

ΓZZ = O2
1

M3
Z′

32M2
Z
π

1 − 4M2
Z

M2
Z′


3
2

+ E2
1

M3
Z′

32M2
Z
π

1 − 4M2
Z

M2
Z′


5
2

. (3.19)

For a Spin-1+ resonance O1 = 0 and for a Spin-1− resonance E1 = 0.

The partial decay width for Z′ → qq̄ for a Spin-1 resonance is given by

Γqq̄ = c2
q

MZ′

4π

1 − 4m2
q

M2
Z′


3
2

+ c̃2
q

(M2
Z′

+ 2m2
q)

4MZ′π

1 − 4m2
q

M2
Z′


1
2

, (3.20)

where mq is the mass of the quark q (or of antiquark q̄), and cq = 0 for a Spin-1−

resonance and c̃q = 0 for a Spin-1+ resonance. Let us further assume that Z′ decays to all

quark-antiquark pairs and to a pair of Z bosons only, i.e. the total decay width is given by

ΓZ′ = ΓZZ +
∑
q

Γqq̄ . (3.21)
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Figure 3.2: Mass (MZ′) vs. E1 plot of a Spin-1+ resonance for different ΓZZ . The blue
curve for ΓZZ = 25 and the purple curve for ΓZZ = 50.

One can relax these simple assumptions and do a detailed analysis where other decay

channels also exist. This will lead to modifications to Eq. (3.21). In Fig. 3.2 we show

how the partial decay width ΓZZ varies with the mass MZ′ of the Spin-1+ resonance, with

MZ � MZ′ . The Spin-1− resonances also exhibit a similar plot for MZ � MZ′ .

The current limit on the mass of a heavy Z′ resonance is 1.7 TeV [138]. The current

limit of c̃q and cq for a particular mass MZ′ of the resonance Z′, can be extracted out from

theσ × Br ×A vs. resonance mass (MZ′) plot of Ref. [138], whereσ is the cross section

for the process pp → Z′, Br is the branching fraction of the decay Z′ → qq̄ andA is the

acceptance. Since the analysis of Ref. [138] deals with the search for a heavy resonance

Z′ decaying to di-jet, which is an isotropic decay (two body final state), the acceptance

A is approximately 0.6 and is independent of the mass of Z′.

Following the analysis of Ref. [138] we find the allowed region for the couplings

cq and E1 for two different masses, MZ′ = 1.8 TeV and 2 TeV, shown in Figs. 3.3 and
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MZ' = 1.8 TeV

Figure 3.3: The allowed region for the couplings cq and E1 for a Spin-1+ resonance of
mass MZ′ = 1.8 TeV. The green and the blue regions are excluded by ΓZ′ < MZ′ limit
and CMS limit from Ref. [138] respectively. The red (E1 = 7.00 × 10−2, cq = 0.12)
and the black (E1 = 8.56 × 10−2, cq = 0.10) dots are the two benchmark points for our
analysis.

3.4 respectively. From the allowed regions shown in Figs. 3.3 and 3.4, we choose three

benchmark scenarios for masses MZ′ = 1.8 TeV and MZ′ = 2.0 TeV for our numerical

study. The benchmark values of cq and E1 corresponding to both the masses are tabulated

in Table 3.1.

Once the values of MZ′ , cq(or c̃q) and E1(or O1) for a Spin-1+ (or Spin-1−) reso-

nance are chosen, the total decay width ΓZ′ as well as the cross section for the process

pp → Z′ → ZZ → e+e−µ+µ− get fixed. The reader should note that the process under

consideration is within the narrow width approximation where ΓZ′ � MZ′ .

For event generation we used the MADEVENT5 [98] event generator interfaced with
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MZ' = 2 TeV

Figure 3.4: The allowed region for the couplings cq and E1 for a Spin-1+ resonance of
mass MZ′ = 2 TeV. The green and the blue regions are excluded by ΓZ′ < MZ′ limit and
CMS limit respectively. The black dot (E1 = 8.56 × 10−2, cq = 0.10) is the benchmark
point for our analysis.

Mass Coupling cq Coupling E1 ΓZ′ in GeV

1.8 TeV 0.12 7.00 × 10−2 64.40

1.8 TeV 0.10 8.56 × 10−2 71.52

2.0 TeV 0.10 8.56 × 10−2 92.84

Table 3.1: The benchmark values of the couplings cq and E1 are listed for Spin-1+ res-
onances of masses 1.8 TeV and 2 TeV respectively for our analysis. The values of the
corresponding decay widths ΓZ′ are also tabulated in the last column for both the masses.
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PYTHIA6.4 [99] and Delphes 3 [139]. The events are generated by pp collisions via

qq̄ → Z′, for the CM energies
√
s = 14 TeV and 33 TeV, using the parton distribution

functions CTEQ6L1 [102]. Triggers as well as electron and muon identification cuts are

set following the analysis presented in Refs. [103, 140]. We have only selected events

with final states e+e−µ+µ−, as our analysis is applicable only to four non-identical final

state leptons. We have kept the trigger values the same as those for 14 TeV, for the 33 TeV

LHC analysis. However, it should be noted that in the future 33 TeV LHC run, the trigger

values may change, which could further improve the statistics. The electron (muon)

must satisfy ET > 7 GeV (pT > 6 GeV) and the pseudo-rapidity cut for electron (muon)

is |η | < 2.47 (|η | < 2.7). The leptons are required to be separated from each other by

∆R > 0.1 if they are of the same flavour and ∆R > 0.2 otherwise. The invariant mass cuts

that are applied in our analysis are 60 GeV < mee < 120 GeV, 60 GeV < mµµ < 120 GeV

and 1000 GeV < m4`.

The effects of mass MZ′ and width ΓZ′ on σ × Br are shown in Table 3.2 for a

Spin-1+ resonance. The statistics decrease as the resonance gets heavier. However, the

statistics improve for a resonance with the same mass but narrower decay width. This

dependence is easily discernible in Table 3.2 for a Spin-1+ resonance. This mass and

width dependence on the cross sections for the pp → Z′ → ZZ → e+e−µ+µ− process

also shows the same behavior for a Spin-1− resonance in the limit mq � MZ′ and MZ �
MZ′ .

So far we have not discussed the background for the pp → Z′ → e+e−µ+µ− process.

This is discussed in the following subsection.

3.3.1 Study of the angular asymmetries for a Spin-1+ resonance:

In this subsection we discuss the uniangular distributions and show how to extract the

angular observables from them for a Spin-1+ resonance of mass MZ′ = 1.8 TeV and
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Cuts in GeV MZ′ = 1.8 TeV, MZ′ = 1.8 TeV, MZ′ = 2 TeV,

ΓZ′ = 64.40 GeV ΓZ′ = 71.52 GeV ΓZ′ = 92.84 GeV

Selection cuts 231 216 111

60 < mee < 120 231 216 111

60 < mµµ < 120 222 208 106

1000 < m4` 221 207 106

Table 3.2: Effects of the sequential cuts on the simulated events at 14 TeV 3000 fb−1 LHC
for different values of MZ′ and ΓZ′ of a Spin-1+ resonance. It is easy to observe from the
benchmark scenarios considered in this table that at a given CM energy the production
cross section decreases with increase in MZ′ and for a fixed value of MZ′ the production
cross section decreases as the value of the decay width ΓZ′ increases.

decay width ΓZ′ = 64.40 GeV. We choose this benchmark scenario as the statistics

are higher for this than the other cases. We analyse the angular observables for this

benchmark scenario for two different CM energies 14 TeV and 33 TeV at an integrated

luminosity 3000 fb−1 in future LHC runs. The values of the couplings for this benchmark

scenarios are cq = 0.12 and E1 = 7.00 × 10−2. The effects of the sequential cuts for the

benchmark scenarios are tabulated in Table 3.3. The three uniangular distributions for a

Spin-1+ resonance,
1
Γ

dΓ

d cos θ1
vs. cos θ1,

1
Γ

dΓ

d cos θ2
vs. cos θ2 and

1
Γ

dΓ

dφ
vs. φ are shown

in Figs. 3.5, 3.6 and 3.7 respectively. It should be noted that the uniangular distributions

cover the full kinematic ranges for the three variables cos θ1, cos θ2 and φ.

However, while extracting observables one has to take the background processes into

account. The pp → e+e−µ+µ− process is a continuum background to the process pp →
ZZ → e+e−µ+µ−. The effects of the sequential cuts on the background processes for the

14 TeV and 33 TeV 3000 fb−1 LHC runs, are shown in Table 3.4.

In our simplistic model, we have considered the decays of Z′ to quarks and Z bosons

only. Thus we have not considered the effect of the process Z′ → γ∗γ∗ → `+
1 `
−
1 `

+
2 `
−
2 in

our analysis. In general, models might have such irreducible backgrounds to the process
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Cuts in GeV 14 TeV, 33 TeV,

3000 fb−1 3000 fb−1

Selection cuts 231 1212

60 < mee < 120 231 1212

60 < mµµ < 120 222 1159

1000 < m4` 221 1154

Table 3.3: The effects of the sequential cuts on the simulated signal events at 14 TeV and
33 TeV LHC with 3000 fb−1 luminosity for a Spin-1+resonance with MZ′ = 1.8 TeV and
width ΓZ′ = 64.40 GeV.

Cuts in GeV 14 TeV, 33 TeV,

3000 fb−1 3000 fb−1

Selection cuts 24530 48588

60 < mee < 120 23320 46949

60 < mµµ < 120 18468 40082

1000 < m4` 41 238

Table 3.4: The effects of the sequential cuts on the simulated background events at 14 TeV
and 33 TeV LHC with 3000 fb−1 luminosity.
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mass MZ′ = 1.8 TeV and width ΓZ′ = 64.04 GeV.
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Figure 3.6: The normalized distribution
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d cos θ2
vs. cos θ2 for a Spin-1+ resonance of

mass MZ′ = 1.8 TeV and width ΓZ′ = 64.04 GeV.
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vs. φ for a Spin-1+ resonance of mass

MZ′ = 1.8 TeV and width ΓZ′ = 64.04 GeV.

Z′ → ZZ → `+
1 `
−
1 `

+
2 `
−
2 . However, the cross section to Z′ → ZZ → `+

1 `
−
1 `

+
2 `
−
2 will be

huge compared to the process Z′ → γ∗γ∗ → `+
1 `
−
1 `

+
2 `
−
2 . This is because Z being a massive

narrow resonance, production of two on-shell Z bosons rather than two off-shell photons

is highly favored by the propagator effect. The selection cuts such as 60 < m`` < 120

etc., will further reduce the cross section of the process Z′ → γ∗γ∗ → `+
1 `
−
1 `

+
2 `
−
2 . Hence

the effect of this process via two off-sell photons will be the further suppressed even as a

background.

The simulated signal and background events are finally binned in cos θ1, cos θ2 and φ

and fitted using Eqs. (3.6), (3.7) and (3.8) integrated over m2
ee

(
≡ q2

1

)
and m2

µµ

(
≡ q2

2

)
to

obtain the fit values integrated angular observables T (1)
1 , T ′(1)

1 , T (1)
2 , T ′(1)

2 , U (1)
1 , U (1)

2 ,

V (1)
1 andV (1)

2 with their respective errors. The fit values of the observables are tabulated

in Table 3.5 for the two different CM energies. It is clear from Table 3.5 that the fit values
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Observables 14 TeV, 3000 fb−1 33 TeV, 3000 fb−1

T (1)
2 −0.19 ± 0.11 −0.18 ± 0.06

T (1)
1 0.07 ± 0.09 0.01 ± 0.04

T
′(1)
2 −0.09 ± 0.12 −0.10 ± 0.06

T ′(1)
1 −0.04 ± 0.10 −0.03 ± 0.05

U (1)
2 0.08 ± 0.51 0.04 ± 0.24

U (1)
1 (−0.87 ± 5.33) × 10−1 (−0.17 ± 2.40) × 10−1

V (1)
2 (−0.41 ± 5.32) × 10−1 (0.21 ± 2.36) × 10−1

V (1)
1 (−0.32 ± 5.11) × 10−1 (0.30 ± 2.34) × 10−1

Table 3.5: The fit values and the respective errors of the observables T (1)
1 , T ′(1)

1 , T (1)
2 ,

T ′(1)
2 , U (1)

1 , U (1)
2 , V (1)

1 and V (1)
2 for a Spin-1+ resonance of mass MZ′ = 1.8 TeV and

width ΓZ′ = 64.04 GeV at 14 TeV and 33 TeV LHC run (with 3000 fb−1 luminosity).

observables T (1)
2 and T ′(1)

2 , extracted from the cos θ1 and cos θ2 distributions respectively,

match within 2σ error for both 14 and 33 TeV LHC runs. This is expected since both q2
1

and q2
2 are integrated over the same range and hence ∆(1) should also be equal to 0. A full

implementation of the flow chart (shown in Fig. 3.2) will require a fit with at least two

regions q2
1 < q2

2 and q2
1 > q2

2. However, given the heavy mass for Z′ the production cross

section is low, hence, the errors are still large and more statistics are needed to undertake

such a study.

3.3.2 Study of the angular asymmetries for a Spin-1− resonance

We have so far discussed the possibility of finding a heavy Spin-1+ resonance. However,

the resonance may well be a Spin-1−. The limits on the couplings c̃q and O1 can also

be found from σ × Br × A limit from Ref. [138]. In the limit MZ � MZ′ and mq �
MZ′ , the coupling c̃q ≈ cq and O1 ≈ E1. Hence, we choose the values c̃q = 0.12 and

O1 = 7.00 × 10−2 for the couplings as a benchmark scenario for our analysis of a Spin-
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1− resonance of mass 1.8 TeV and decay width ΓZ′ = 64.40 GeV. We perform the same

analysis as given in Sec. 3.3.1 and extract out the values of the angular observables at

two different CM energies, 14 TeV and 33 TeV, at an integrated luminosity of 3000 fb−1.

We also find three uniangular distributions for the Spin-1− resonance, shown in Figs. 3.8,

3.9 and 3.10 respectively. The effects of the sequential cuts are tabulated in Table 3.6

at 14 TeV and 33 TeV LHC for 3000 fb−1 luminosity. The background analysis for a

Spin-1− resonance would remain the same as stated in Sec 3.3.1.

Cuts in GeV 14 TeV, 33 TeV,

3000 fb−1 3000 fb−1

Selection cuts 220 1155

60 < mee < 120 200 1154

60 < mµµ < 120 211 1108

1000 < m4` 210 1105

Table 3.6: The effects of the sequential cuts on the simulated signal events at 14 TeV 3000
fb−1 and 33 TeV 3000 fb−1 LHC of a Spin-1−resonance with MZ′ = 1.8 TeV and width
ΓZ′ = 64.40 GeV.

The observables extracted from the uniangular distributions of the Spin-1−resonance

are given in Table 3.7. Apart from T2 the errors of the other observables are still not small

and require higher statistics to fully study the flowchart in Fig. 3.2.

If a heavy Spin-1 resonance is seen at the LHC, the full angular analysis and the

extraction of all the observables may not be entirely possible at a 33 TeV 3000 fb−1 run.

Once such a resonance is observed, a future high luminosity machine could disentangle

the exact spin and parity of the resonance by studying the observables extracted from

uniangular distributions. Moreover, we have not discussed the Spin-1 resonance with

mixed parity configuration, which would typically require higher statistics as well, to

completely disentangle.
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Observables 14 TeV, 3000 fb−1 33 TeV, 3000 fb−1

T (1)
2 −0.07 ± 0.13 −0.12 ± 0.06

T (1)
1 0.06 ± 0.10 0.01 ± 0.04

T ′(1)
2 −0.04 ± 0.13 −0.07 ± 0.06

T ′(1)
2 0.09 ± 0.10 −0.01 ± 0.04

U (1)
2 −0.08 ± 0.54 −0.05 ± 0.24

U (1)
1 (1.99 ± 5.16) × 10−1 (1.20 ± 2.32) × 10−1

V (1)
2 (−0.14 ± 5.27) × 10−1 (0.58 ± 2.33) × 10−1

V (1)
1 (−0.27 ± 5.46) × 10−1 (−0.63 ± 2.39) × 10−1

Table 3.7: The fit values and the errors of the observables T (1)
1 , T ′(1)

1 , T (1)
2 , T ′(1)

2 ,
U (1)

1 , U (1)
2 , V (1)

1 and V (1)
2 for a Spin-1− resonance of mass MZ′ = 1.8 TeV and width

ΓZ′ = 64.04 GeV for signal plus background. The values are extracted for two different
CM energies, 14 TeV and 33 TeV LHC runs, with luminosity 3000 fb−1.
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3.4 Summary

We conclude that by looking at three normalized uniangular distributions, for the decay of

a resonance to four charged final leptons via two Z bosons, one can infer to a fairly good

accuracy the spin and parity of the parent particle. We show that it is possible for a special

2+ resonance to give angular distributions comparable to those of a 0+ resonance. It is in

this special case that one needs to study the Y2 dependence of the helicity amplitudes in

order to distinguish the two cases. Since the Spin-1 case has only two helicity amplitudes,

it needs a minimum number of observables to get confirmed or ruled out. We have also

provided a step-by-step methodology that must be followed to distinguish the various

spin, parity possibilities that are allowed in the case under consideration. A numerical

analysis has also been performed for a heavy Spin-1 resonance to validate our formalism.

It would therefore not be an overstatement to say that this method can play a crucial

role at future high luminosity machines in discovering the Spin-parity nature of any new

resonance, such as a heavy scalar boson or a Z′ boson or a Kaluza-Klein boson or any

such resonance found to decay to four final charged leptons via two Z bosons.
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4
Summary

The significance of the LHC lies in its potential to discover new particles. In the first

run both ATLAS and CMS collaborations at the LHC have discovered a bosonic res-

onance mass around 125 GeV. A scalar particle namely Higgs boson was required to

complete the particle content of the SM. Such scalar particles are also present in the par-

ticle content of several other BSM models following their theoretical constructions. After

its discovery, unbiased analysis tools are required to study its spin, parity and measure its

couplings to existing SM particles.

In this thesis we outline a step by step methodology to determine the spin, parity and

couplings of this 125 GeV resonance (H). We choose experimentally clean “gold-plated”

decay mode of H where it decays to two Z bosons followed by subsequent decays of the

two Z bosons into four non-identical charged leptons. Since the resonance is found to be

decaying into di-photon channel i.e. H → γ γ it can not be a Spin-1 particle, prohibited

by Landau-Yang theorem. We begin with writing down the most general Lorentz and

gauge invariant vertex factor of H for both the spin possibilities i.e. Spin-0 and Spin-2.

We then derive three uniangular distributions in terms of several angular asymmetries.

These angular asymmetries have definite parity signatures and are orthogonal to each

other. Thus they can be measured independently. We find that these asymmetries have
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different characteristics for a Spin-0 resonance compared to a Spin-2 resonance and can

be used to determine the spin of H . After identifying the spin, these asymmetries can be

used to study the parity of H . We corroborate our methodology by numerical analysis.

In SM the value of the HZZ couplings are uniquely predicted. After the discov-

ery of H , one needs to study the HZZ couplings precisely to confirm its SM nature.

Although 8 TeV run indicates H to be a Spin-0 resonance with even parity, a consider-

able amount of CP-odd admixture is still possible. We show in this thesis, how one can

precisely probe CP-odd admixtures of HZZ couplings at 14 TeV LHC run for two dif-

ferent luminosities. The direct measurement of the absolute values of the couplings are

beyond the scope of the LHC which requires a precise measurement of the partial rate

H → ZZ∗ → `+
1 `
−
1 `

+
2 `
−
2 . We show how using angular asymmetries one can obtain the

ratios of couplings and the relative phases between them. This precision measurement of

HZZ couplings have the potential to find New Physics beyond SM.

LHC or future colliders may discover new heavy resonances predicted by several

BSM models. Almost all GUT motivated theories predict the existence of a massive

Z′ which is a Spin-1 boson. Finding such particle would give us the understanding of

the physics beyond the Standard Model. In this thesis we show how three uniangular

distributions can be used to probe the spin, parity and couplings of a Z′ via gold-plated

decay mode Z′ → Z (∗)Z (∗) → `+
1 `
−
1 `

+
2 `
−
2 . A numerical analysis is also performed to show

the applicability of our methodology for experimental study. We have constructed an

effective model for a Z′ and found the discovery potential of such resonance in the future

runs of LHC. We have studied the uniangular asymmetries of both Spin-1+ and Spin-1−

resonances.

Finally we have combined the results and presented a step by step methodology to

uniquely determine the spin, parity and couplings of a new resonance via gold-plated

decay mode of any arbitrary mass. Although full implementation of the methodology
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depends on the massiveness, nature of the couplings etc., it would not be a overstatement

that uniangular distributions have the potential to determine the true characteristic of

bosonic a resonance.
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A
Appendices

A.1 Phase Space

The differential decay width for the decay

H(p)→ Z1(q1)Z2(q2)→ (`−1 (k1) + `+
1 (k2)) + (`−2 (k3) + `+

2 (k4))

is given by:

dΓ =
1

2MH

|M |2
4∏
i=1

 d3~ki

(2π)32Ei

 × (2π)4δ(4) (p − k1 − k2 − k3 − k4)

=
1

2MH

|M |2
(2π)8

4∏
i=1

d3~ki
2Ei

 × δ(4) (p − k1 − k2 − k3 − k4)

=
1

2MH

|M |2
(2π)8 d4 (PS H → 4 leptons) , (A.1)

where

d4 (PS H → 4 leptons) =

4∏
i=1

d3~ki
2Ei

 × δ(4) (p − k1 − k2 − k3 − k4) (A.2)
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The invariant phase space is given by:

d4 (PS H → 4 leptons) = d2 (PS H → Z1Z2) × dM2
1 dM2

2

× d2
(
PS Z1 → `+

1 + `−1
)

× d2
(
PS Z2 → `+

2 + `−2
)
. (A.3)

For a general two body decay A→ B +C we know that

d2 (PS A→ B +C) =
π

2

√√
λ

1, M2
B

M2
A

,
M2

C

M2
A

 dΩ

4π
. (A.4)

Applying this result to our decay mode under consideration, we get

d2 (PS H → Z1Z2) =
π

2

√√
λ

1, M2
1

M2
H

,
M2

2

M2
H

 dΩH

4π
, (A.5)

d2
(
PS Z1 → `+

1 + `−1
)

=
π

2

√
λ (1, 0, 0)

dΩZ1

4π
, (A.6)

d2
(
PS Z2 → `+

2 + `−2
)

=
π

2

√
λ (1, 0, 0)

dΩZ2

4π
, (A.7)

where we have considered the final leptons to be massless. It is easy to see that

λ (1, 0, 0) = 1, (A.8)

λ

1, M2
1

M2
H

,
M2

2

M2
H

 =
1
M4

H

λ
(
M2

H ,M
2
1 ,M

2
2

)
. (A.9)

We define a quantity X as

X =
1

2MH

√
λ

(
M2

H
,M2

1 ,M
2
2

)
. (A.10)
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In terms of X we now have

λ

1, M2
1

M2
H

,
M2

2

M2
H

 =
4X2

M2
H

. (A.11)

Therefore

d2 (PS H → Z1Z2) =
π

2
2X
MH

dΩH

4π
, (A.12)

d2
(
PS Z1 → `+

1 + `−1
)

=
π

2
dΩZ1

4π
=

1
8
dΩZ1 , (A.13)

d2
(
PS Z2 → `+

2 + `−2
)

=
π

2
dΩZ2

4π
=

1
8
dΩZ2 . (A.14)

The solid angle ΩH will be integrated out fully, and

dΩZ1 = (2π) d cos θ1, (A.15)

dΩZ2 = d cos θ2 dφ. (A.16)

Thus we have

(PS H → Z1Z2) = π
X

MH

, (A.17)

d2
(
PS Z1 → `+

1 + `−1
)

=
1
8

(2π) d cos θ1 =
π

4
d cos θ1, (A.18)

d2
(
PS Z2 → `+

2 + `−2
)

=
1
8
d cos θ2 dφ. (A.19)

Hence

d4 (PS H → 4 leptons) = π
X

MH

× dM2
1 dM2

2 ×
π

4
d cos θ1 × 1

8
d cos θ2 dφ

=
π2

32
X

MH

× dM2
1 dM2

2 d cos θ1 d cos θ2 dφ. (A.20)
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The expression for differential decay width is now given by

dΓ =
1

2MH

|M |2
(2π)8 ×

π2

32
X

MH

× dM2
1 dM2

2 d cos θ1 d cos θ2 dφ,

=
π2

214 π8 |M |2
X

M2
H

× dM2
1 dM2

2 d cos θ1 d cos θ2 dφ,

=
1

214 π6 |M |2
X

M2
H

× dM2
1 dM2

2 d cos θ1 d cos θ2 dφ,

=⇒ dΓ

dM2
2

=
1

214 π6 |M |2
X

M2
H

× dM2
1 d cos θ1 d cos θ2 dφ. (A.21)

Now we shall keep Z1 on-shell, so we shall use the narrow width approximation for this:

1[(
q2

1 − M2
Z

)2
+ M2

Z
Γ2
Z

] ≈ π

MZΓZ
δ
(
M2

1 − M2
Z

)
, (A.22)

where ΓZ is the total decay width of the Z boson. So doing the integration over M2
1 , cos θ1, cos θ2

and φ we get

dΓ

dM2
2

=
1

214 π6

∫
|M |2 X

M2
H

dM2
1 d cos θ1 d cos θ2 dφ, (A.23)

where X is now defined at M2
1 = M2

Z
:

X =
1

2MH

√
λ

(
M2

H
,M2

Z
,M2

2

)
. (A.24)

A.2 Other Terms in the Angular Distributions

In the main text, we have not included the η and η2 dependent term in the angular distri-

butions for the case of Spin-2 boson. However, for the sake of completeness, the η and
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η2 dependent term M in the angular distributions are given below.

M = η

(
− 3MHRe(F2F

∗
M )

u1

v
(cos θ1(P2(cos θ2) + 2) − cos θ2(P2(cos θ1) + 2))

− 3
u2

1

Re(F3F
∗
L)

(
q2

1 cos θ1(1 − P2(cos θ2)) − q2
2 cos θ2(1 − P2(cos θ1))

)
− 3
√

3
√
q2

1 q
2
2Re(F3F

∗
M )

u2
2

u2
1v

(cos θ1(1 − P2(cos θ2)) + cos θ2(1 − P2(cos θ1)))

− 3
√
q2

1 q
2
2Re(F4F

∗
L)

u2
2

u2
1w

(cos θ1(1 − P2(cos θ2)) + cos θ2(1 − P2(cos θ1)))

+ 12
√

3u4
2Re(F4F

∗
M )

1
4u2

1v3w3

(
− q2

2v2w2 cos θ1(1 − P2(cos θ2))

+ q2
1 cos θ2

(
v2w2 − P2(cos θ1)

(
8M4

Hu4
1 + 10M2

Hu2
1u4

2 + 3u8
2

)) )
+ (sin θ1 sin θ2 sinφ)

( 9

2
√

2
Im(F1F

∗
2 )(cos θ2 − cos θ1)

− 9u2
2

4
(cos θ1 + cos θ2)

(
Im(F3F

∗
4 )

1
w
−
√

3 Im(FLF
∗
M )

1
v

) )
+ (sin θ1 sin θ2 cosφ)

(
Re(F1F

∗
M )(cos θ1 − cos θ2)

(
−9MHu1√

2v

)
− 9u2

2

4
(cos θ1 + cos θ2)

(√
3 Re(F3F

∗
M )

1
v
− Re(F4F

∗
L)

1
w

) )
+ η2

(
9

4u2
1v2w2

(sin θ1 sin θ2 cosφ)
(√

2u2
1v2w2Re(F1F

∗
2 ) − u4

2v2wRe(F3F
∗
4 )

+
√

3u4
2vw2Re(FLF

∗
M )

+

√
q2

1 q
2
2

(
v2w2

(
|F3 |2 − |FL |2

)
− u4

2

(
|F4 |2 v2 − 3 |FM |2 w2

)) )
+

9
4u2

1vw
(sin θ1 sin θ2 sinφ)

(
2
√

2MHu3
1wIm(F1F

∗
M ) + 2

√
q2

1 q
2
2vwIm(F3F

∗
L)

+ u4
2

(
−
√

3wIm(F3F
∗
M ) − vIm(F4F

∗
L) − 2

√
3
√
q2

1 q
2
2Im(F4F

∗
M )

) )
+

9
4

cos θ1 cos θ2

(
− |F2 |2 + |F4 |2

2M2
H

u2
1

w2

− |FM |2
u2

1

v2w2X2

(
2M6

Hu2
1 − M4

H

(
3q2

1 + q2
2

) (
q2

1 + 3q2
2

)
+ u8

2

) ))
. (A.25)
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A.3 Expressions for the observables T1, T2, U1, U2, V1

andV2

The expressions for T1, T2,U1,U2,V1 andV2 are

T1 =
−1.32 × 10−9y

5.57 × 10−8 + 2.61 × 10−8x + 3.98 × 10−9x2 + 1.60 × 10−10y2 (A.26)

T2 =
−9.65 × 10−9 + 4.00 × 10−10x2 + 4.00 × 10−10y2

5.57 × 10−8 + 2.61 × 10−8x + 3.98 × 10−9x2 + 1.60 × 10−10y2 (A.27)

U1 =
−1.17 × 10−9 − 6.22 × 10−10x − 6.90 × 10−11x2

5.57 × 10−8 + 2.61 × 10−8x + 3.98 × 10−9x2 + 1.60 × 10−10y2 (A.28)

U2 =
6.06 × 10−9 + 4.35 × 10−9x + 7.97 × 10−10x2 − 4.00 × 10−10y2

5.57 × 10−8 + 2.61 × 10−8x + 3.98 × 10−9x2 + 1.60 × 10−10y2 (A.29)

V1 =
−3.11 × 10−10y

5.57 × 10−8 + 2.61 × 10−8x + 3.98 × 10−9x2 + 1.60 × 10−10y2 (A.30)

V2 =
2.92 × 10−9y

5.57 × 10−8 + 2.61 × 10−8x + 3.98 × 10−9x2 + 1.60 × 10−10y2 (A.31)

where x = b
a
× (100Gev)2 and y = c

a
× (100Gev)2

A.4 Observables for a Spin 1 resonance

T (1)
1 = −6

√
2ηM3

Z′
M2

1Y

D1D2

(
M2

Z′ − M2
1 + 3M2

2

)
Re

(
F (1)

E1F
(1)∗

O1

)
, (A.32)

T ′(1)
1 =

6
√

2ηM3
Z′
M2

2Y

D1D2

(
M2

Z′ + 3M2
1 − M2

2

)
Re

(
F (1)

E1F
(1)∗

O1

)
, (A.33)

T (1)
2 = −2M2

Z′Y
2


∣∣∣F (1)

O1

∣∣∣2
D2

1

( (
M2

Z′ − M2
1

) (
M2

1 + 4M2
2

)
+ 2M4

2

)

+
2
∣∣∣F (1)

E1

∣∣∣2
D2

2

(
M2

Z′

(
M2

1 + 16M2
2

)
− M2

2

(
20M2

1 − 3M2
2

) ) , (A.34)

T ′(1)
2 = −2M2

Z′Y
2


∣∣∣F (1)

O1

∣∣∣2
D2

1

( (
M2

Z′ − M2
2

) (
4M2

1 + M2
2

)
+ 2M4

1

)
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+
2
∣∣∣F (1)

E1

∣∣∣2
D2

2

(
M2

Z′

(
16M2

1 + M2
2

)
− M2

1

(
20M2

2 − 3M2
1

) ) , (A.35)

U (1)
1 =

9π2η2M2
Z′
M1M2

16D2
1D

2
2

(
4
∣∣∣F (1)

O1

∣∣∣2 M2
Z′Y

2
(
16M6

Z′u
2
1

+ M4
Z′

(
56u4

1 − 85u4
2

)
+ M2

Z′

(
96u2

1u4
2 − 86u6

1

)
− 35u4

1u4
2 + 38u8

2

)
−

∣∣∣F (1)

E1

∣∣∣2 ((
M2

Z′ − 2u2
1

)2 − u4
2

) (
4M6

Z′u
2
1

− M4
Z′

(
5u4

1 + u4
2

)
+ 12M2

Z′u
2
1

(
u4

1 − u4
2

)
+ 3u4

1u4
2 − u8

2

))
, (A.36)

U (1)
2 = −8M2

1 M
2
2 u4

2

D2
2

∣∣∣F (1)

E1

∣∣∣2 , (A.37)

V (1)
1 = −9π2η2MZ′M1M2Y

2
√

2D1D2

(
M4

Z′ − 2M2
Z′u

2
1 − u4

2

)
× Im

(
F (1)

E1F
(1)∗

O1

)
, (A.38)

V (1)
2 = 0, (A.39)

(A.40)
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