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Synopsis

Fracture is a complex phenomenon involving large span of time and length scales,

starting from atomic scale or laboratory scale to geological scale like earthquake. A

material can break in avalanches showing precursory rupture events or catastroph-

ically without showing such precursor. Also the rupture events might show corre-

lation among themselves or might happen in a random manner. So the important

question is: What are the physical criteria that govern the mode of failure

?

Two major factors that determine the mode of fracture are disorder present in

the material and the range over which the stress releases as the fracture propagates.

Defects like micro cracks, dislocations or grain boundaries vastly reduce the strength

of a material, as large stresses can develop at the sharp edges of these defects [1].

This is called notch effect and is the root cause of the catastrophic failure of brittle

materials. Griffith suggested [2] that the typical stress, at which a sharp micro-crack

of length l will become unstable and grow to break the material, decreases as 1/
√
l

[3]. This led to the weakest link of a chain concept [4, 5, 6], according to which

the fracture in presence of many defects is determined primarily by the most vul-

nerable defect and that is how the idea of extreme statistics is applied to fracture.

The other mode of fracture occurs in avalanches with constantly increasing external

force. In engineering sample such avalanches [7, 8] are recorded in terms of rate

of acoustic energy emission during the fracture process [9]. We have studied this

effect of disorder and stress release zone in statistical mechanical models of fracture.

These models for fracture of disordered solids involves the physics of threshold acti-

vated dynamical systems, self organized criticality and the physics of random field

Ising model. One such model, the fiber bundle model [10, 11], consists of vertical

Hokean fibers in between two parallel bars (Fig. 1). The upper bar is kept fixed
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while the lower one is pulled creating a stress externally on the fibers. Each fiber

is assigned a random breaking threshold, this is the disorder in the model. If the

fiber is strained beyond the threshold, it ruptures irreversibly. The extra stress of

the broken fiber is then redistributed in equal amount to either among all surviving

fibers (Global load sharing scheme, GLS) or only among the nearest surviving ones

(Local load sharing scheme, LLS). These are the two extremes of stress release zone

in the model. Also there exists other redistribution methods in literature where the

load is redistributed partially with global scheme and partially with local scheme.

The model shows various features of critical behavior depending on the stress re-

distribution rule, dimensionality and strength of disorder. We aim to understand

the fracture evolution in these models in the space of the above parameters and to

relate the results to fracture behavior observed in nature.

Effect of Disorder

Disorder is introduced in fiber bundle model as local fluctuation of strength of in-

dividual fibers. These strength values are chosen randomly from a distribution. We

have considered mostly the uniform distribution of half width δ around the 0.5. δ

is the amount of disorder in this case. We have also studied other distributions

to understand the universal behavior of the model. We have considered power law

distribution with exponent −1 within the window 10−β to 10β, β being the amount

of disorder here. Also truncated Gaussian distribution or distribution like xβ have

been used. In this study of disorder the range is kept fixed at two extreme GLS and

LLS limits.

In GLS scheme we have studied a critical behavior in the breakdown at a dis-

persion δc of the breaking threshold of the fibers [12]. For δ < δc we find that there

is a finite probability Pb, that rupturing of the weakest fiber leads to the failure of
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the entire system. For δ ≥ δc, Pb = 0. At δc, Pb ∼ L−η, with η ≈ 1/3, where L is

the size of the system. As δ → δc, the relaxation time τ diverges obeying the finite

size scaling law: τ ∼ Lβ(|δ − δc|Lα) with α = β ≈ 1/3. At δc, the system fails,

at the critical load, in avalanches (of rupturing fibers) of all sizes s following the

distribution P (s) ∼ s−κ, with κ ≈ 1/2. We relate this critical behavior to brittle

to quasi-brittle transition in the model. This change of behavior around δc is also

captured in the study of fluctuation in critical stress (∆σc) and critical fraction of

surviving fibers (∆nc) [13]. ∆σc ∼ L−2/3 and ∆nc ∼ L−1/3 with increasing system

size L for the quasi-brittle region (δ > δc). Below δc both the fluctuations decreases

as 1/L with system size. Also above scaling of relaxation time (τ ∼ L1/3) remains

the same at critical stress in the region δ > δc. In brittle region (δ < δc) though

the picture of relaxation time changes, the scaling behavior of τ remains the same

but with a disorder dependent exponent: τ ∼ Lγ(δ), where γ(δ) decreases with δ,

suggesting that at low disorder the system size effect tends to vanish.

Due to the over simplification of stress redistribution in GLS scheme the extreme

statistics are absent in our studies. Also the system size dependence of critical stress

(σc) is not seen. In engineering systems sample size plays a crucial role to determine

the strength of a material [14, 15, 16, 17]. The studies in GLS case is not able to

produce this picture as σc depends on the nature of threshold distribution only. In

LLS scheme it is possible to capture these system size effects [18]. Previous work

shows that σc ∼ 1/ logL at moderate disorder (δ = 0.5) [19, 20, 21, 22, 23, 24]

while at low disorder σc falls rather in a scale free behavior (∼ 1/L) [6, 25] than

logarithmic. Now from point of view of extreme statistics we know that the former

behavior gives signature of Gumbel statistics while the later one of Weibull statistics.

We find an intermediate disorder window where this change in scaling behavior of

σc takes place. Unlike GLS scheme here we did not find any particular critical

disorder value (δc) separating brittle and quasi-brittle region. Due to the system

size effect in LLS scheme we can achieve abrupt failure at any disorder by simply
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increasing the system size. This makes the failure of the bundle always brittle-like

in thermodynamic limit (L→∞).

Effect of Range of Stress Redistribution

To study the effect of range R of stress redistribution, we have fixed the disorder at a

constant value (δ = 0.5, where the threshold strengths are chosen between 0 and 1)

[26]. This range dependent redistribution scheme is actually an intermediate picture

of GLS and LLS. According to this scheme, in 1d fiber bundle model when one fiber

breaks the stress of the broken fiber is redistributed among R nearest surviving

neighbors on both sides. R = 1 will give us the localized LLS picture while on the

other hand R ∼ L/2 is the GLS or mean field limit of the model. For redistributing

in two dimension we find all Rth nearest neighbors in all directions (depending on

the co-ordination number which is a function of lattice structure). Then the stress is

redistributed among the fibers enclosed by all those surviving neighbors. We show

that the failure mode is nucleation dominated in the large system size limit, as long

as R scales slower than Lζ , with ζ = 2/3 for 1d bundle [26] and ≈ 0.82 for 2d

bundle [27]. For a faster increase in R, the failure properties are determined by the

mean-field picture, where the damages are uncorrelated in space. In that limit, the

precursory avalanches of all sizes are obtained even in the large system size limit.

Interplay of Disorder and Range of Stress Redis-

tribution

Now at this point a very common question can arise that: What happens if we

tune both disorder (δ) and range of stress redistribution (R) simultane-

ously ? More generally we can ask about the effect of disorder on above mentioned
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Rc value. Since already we have observed distinct behavior around δc we can expect

the signature of a critical disorder here also.

Already we have seen that dispersion of the threshold distribution (δ) is a mea-

sure of disorder. Above work is done for δ = 0.5 (thresholds chosen from 0 to 1),

which falls in the moderate disorder region. Here the study of critical range (Rc) is

performed with a continuous variation of disorder within the window 0.1 < δ < 0.5

[?]. Our result shows that the above scaling (Rc ∼ Lζ) form of R with L holds good

for all disorder value except for the fact that for δ > δc the exponent ζ remains

constant at value 2/3 while below δc, ζ becomes a function of δ and keep increas-

ing as δ decreases. This suggest that for a constant system size (L), in this region

(δ < δc) we have to go to higher and higher range value to make the rupture events

uncorrelated as δ value decreases.

To achieve high disorder limit [27], instead of uniform distribution we have used

power law distribution with power −1 from 10−β to 10β to assign thresholds to

individual fibers. β is the measure of disorder in this case. From the studies dis-

cussed so far two facts are quite clear that at low β value the failure process becomes

brittle like abrupt while with increasing R value the fracture process becomes uncor-

related. This happens because the stress concentration favors fracture nucleation,

whereas disorder favors fracture to be originated randomly over the sample. A two

dimensional R − β plane gives different regions in the model as combinations of

abrupt/non-abrupt as well as correlated/uncorrelated failure.

Study of Composite Materials

Composite materials are introduced in the field of engineering and material sciences

to avoid unexpected abrupt failure in materials. In such process two or more materi-

als with different properties are mixed in a certain proposition to get the composite
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which comes with high strength and less abrupt failure than the components. In

this work [28], we have studied the fracture process of a composite material in the

fiber bundle model with different elastic constants, distributed randomly, as well as

different random breaking strength of fibers. The critical width of the threshold

distribution (δc), for which abrupt failure occurs, is studied both analytically and

numerically with increasing number of components (k) in the composite and it is

shown that δc is inversely related to k. Corresponding phase diagram for the model

suggests decrease in the tendency of abrupt fracture as number of components in

the composite increase.

Spring Bundle Model

In fiber bundle model the range of stress redistribution is put by hand and hence it

does not change during the rupture processes of individual fibers. In contrast in real

samples the range of interaction changes gradually in the course of fracture process.

This picture is thus absent in fiber bundle model. To make the model more realistic

we have studied spring bundle model. A spring bundle model consists of Hookean

springs organized in the form of a ladder. The Hamiltonian for the model can be

written as:

H =
1

2

kr∑
〈ij〉

δr2 + kα
∑
〈ij〉

δα2


where kr and kα are respectively linear and angular force constant. Also δr = (r−r0),

δα = (α−α0), r0 and α0 being the length of spring and intermediate angle between

two adjacent springs at equilibrium position. The sum goes over all nearest neighbor

〈ij〉 pairs. This model with disorder δ of the breaking thresholds of the springs is

studied for various angular force constant kα [29]. For small kα we find the fracture is

of nucleating type and for high kα the fracture of springs becomes uncorrelated. We

find three distinct regions: nucleating, percolating and crossover region. Abruptness
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of fracture, critical stress, avalanche size distribution and fluctuation in stress profile

of the springs are studied to characterize the regions. Similar model has been studied

before also [30, 31].

Study of Acoustic Emission Experiment

Fracturing in reservoir rocks is an important issue for the petroleum industry - as

productivity can be enhanced by a controlled fracturing operation. Fracturing also

has a big impact on CO2 storage, geothermal installation and gas production at

and from the reservoir rocks. Therefore, understanding the fracturing behavior of

different types of reservoir rocks is a basic need for planning field operations towards

these activities. In our study [9], the fracturing of rock sample is monitored by

Acoustic Emission (AE) and post-experiment Computer Tomography (CT) scans.

The fracturing experiments have been performed on hollow cylinder cores of different

rocks - sandstones and chalks. Our analysis show that the amplitudes and energies

of acoustic events clearly indicate initiation and propagation of the main fractures.

The amplitudes of AE events follow an exponential distribution while the energies

follow a power law distribution. Time-evolution of the radial strain measured in the

fracturing-test will later be compared to model predictions of fracture size.
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Chapter 1

Introduction & Motivation

Fracture in heterogeneous materials takes place through initiation, growth, coa-

lescence and propagation of the micro-cracks, which leads to the final failure of

materials. Failure of materials have received lots of attention in the field of physics,

engineering and material science over the last decade [1, 2, 3].

1.1 Theoretical estimation of failure strength

One of the main aim of fracture studies is to estimate the strength and predict the

failure of materials. In the literature there are many studies to find the strength of

materials. In the early days, the cohesive force between the atoms was considered

to be the origin of strength of materials [4]. As an approximation, one can assume

the cohesive force between the atoms to follow a sine curve (as an outcome of the

interplay between repulsive and attractive force between atoms). Let us assume that,

λ is the wavelength of cohesive force curve and σmax is the maximum of the cohesive

force curve, which is basically the theoretical cohesive strength. This behavior is
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Figure 1.1: Variation of cohesive stress with increasing separation between atoms.
a0 is the inter atomic spacing at unstrained condition.

shown in figure 1.1. Then the cohesive strength will be given by

σ = σmax sin

(
2πx

λ

)
(1.1)

Now, work done during the fracture process will be the area under the cohesive

curve given by :

W =

∫ λ/2

0

σmax sin

(
2πx

λ

)
dx

=
λσmax
π

(1.2)

This work done finally goes into creating to new fracture surface and helps the crack

to propagate. Surface energy required for this new fracture surface will be 2Γ, where

Γ is the energy per unit area for the new surface. The factor 2 comes from the two

surfaces, that are produced from the growth of the crack. Equating the work done

with surface energy, we get

λσmax
π

= 2Γ

σmax =
2πΓ

λ
(1.3)
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where E is the elastic constant of the material and a0 is the inter-atomic spacing at

unstained condition (see figure 1.1). Hooke’s law is valid for small displacement x

where we can then write: σ =
Ex

a0
. Taking derivative of this σ w.r.t x and equating

it with the derivative obtained from Eq.1.1 we get, in small x limit

σmax
2π

λ
=
E

a0
(1.4)

Comparing Eq.1.3 and Eq.1.4, we obtain an expression for theoretical cohesive

strength to be

σmax =

(
EΓ

a0

)1/2

(1.5)

This expression for cohesive strength of materials seems quite convincing until it

meets the experimental outcome. Experimentally the strength of materials are ob-

served to be much low (of the order of 1000) than their theoretical values. This

discrepancy happens because of existence of defects within materials.

1.2 Role of defects

Defects like micro-cracks and dislocations play crucial role in fracture process of

materials. As discussed above the existence of such defects decreases the strength

of any material by huge amount. Below we have discussed the effect of dislocation

and micro-cracks.

Effect of dislocation :

Fracture in ductile material is caused by slip through crystal planes. A moving

defect like dislocation enhances the tendency of such slip in planes [5, 6]. Motion

of dislocation through crystal planes is guided by many parameters like width of
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dislocation, existence of grain boundaries, temperature, applied stress etc. Figure

Applied Shear

Figure 1.2: Motion of a dislocation through crystal plane is shown in the figure.
This motion leads to slip in between the planes.

1.2 shows the motion of a dislocation through crystal plane creating a slip. The

red cube gives the position of the dislocation. As the dislocation moves to the right

direction it help the upper plane to slide over the lower one. Due to such motion the

slip between planes occurs much lower stress than the theoretical predicted value.

Effect of micro-crack :

Existence of micro-crack enhances the local stress profile at the notch of the crack

and local stress near the tip of the micro-cracks are much higher than the applied

stress. The scenario is shown in the figure 1.3. Green line shows the local stress

value σn, near the notch while a constant stress σext is applied externally. The

2c

2b

nσ = σ ext

σn

σext

(1+2c/b)

Figure 1.3: Notch effect in real system is shown in the figure. The stress at the
edges of the crack is much higher than the external stress,0 depending on the major
(c) and minor axes (b) of the elliptical crack.

shape of a crack is approximated to be elliptic with minor axes b and major axes c
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respectively. The stress on the notch of a elliptic crack of length 2c and radius of

curvature ρ is given by Orowan and Inglis [7, 8]

σn = 2σext

(
c

ρ

)1/2

(1.6)

The stress at the tip will be higher for a larger crack with smaller radius of curvature.

The criterion for a crack to propagate is given by Griffith through energy balance

condition. This is discussed in the next section.

1.2.1 Griffith’s energy balance criterion

For a typical crack model (shown in fig.1.3), where the crack is approximated by an

ellipse of major axes 2c (also it is the crack length), we get the elastic strain energy

(plate of unit thickness) to be :

Uelastic = −πσ
2c2

E
(1.7)

where E is the elastic modulus of the material and σ is the tensile stress. The

negative sign stands for the release of the energy. On the other hand the surface

energy due to the crack is

Usurface = 4cΓ (1.8)

So the total change in energy as a result of the creation of the crack is

Utotal = Uelastic + Usurface (1.9)

Now Griffith’s energy balance criteria [9] states: A crack will propagate if elastic

strain energy is compensated by the surface energy.
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Then satisfying above condition, for further increment dc of a crack of length c,

we get

dUtotal
dc

= 0

σ =

(
2Eγ

πc

)1/2

(1.10)

Above expression for strength of materials shows a quite good agreement with ex-

perimental results and can predict the variation of strength with crack length, sat-

isfactorily for brittle materials such as ceramics or glass [10, 11], metal whiskers [12]

etc.

Though Griffith’s energy balance treatment can offer an insight to the crack

propagation, there are some issues that can not be resolved by this critaria:

• Volume or system size dependence of the strength

• Roughness of fracture surface

• Avalanche behavior before final rupture

This discrepancy happens because real materials do not consist of a single defect or

micro-crack, as it was assumed in Griffith’s criterion. Instead, the failure happens

in real systems as cumulative effect of all defects present in

1.2.2 Interaction of defects in heterogeneous materials

The issues mentioned above can not be answered through Griffith’s criteria since

failure process in materials is quite different from the theoretical approach. In

fracture process the material properties like strength, failure time etc. are non-self-

averaging, as the failure is determined by the weakest defect or the most vulnerable

crack [13, 14, 15]. Due to this, a large scatter in material properties, mainly in
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fracture strength, is seen. Also the strength decreases with the system size. The

system size effect of materials on strength of failure is discussed in [16].

Many studies have been performed on the system size effect on strength of real

materials like: sea ice [17], concrete [18, 19], carbon composite [20] etc. In these

cases the strength of the material was observed to decrease with system size in a

scale free behavior with exponent close to −1/2. This scale free behavior is a di-

rect evidence of Weibull distribution of strength values. Though quite rarely but

another distribution for strength of materials are found, namely the Gumbell dis-

tribution. Experimental results [21], performed on a cylindrical silica extrudates

with pore volume up to 80% and median pore diameter around 100nm, shows that

the distribution for the strength matches with Gumbell distribution much better

than Weibull distribution. Below an analytical approach for heterogeneous mate-

rials is given, explaining the conditions under which we get Weibull and Gumbel

distribution for threshold strength.
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Figure 1.4: Above figures shows the failure probability, F (σ), of materials at low
disorder limit (Eq.1.12, left figure) and intermediate disorder limit (Eq.1.13, right
figure). In both limits, F (σ) increase as we go to higher stress values. The rate of
this increase is faster for higher volume V .

Materials (mostly heterogeneous) under experiments do not contain a single

micro-crack or defect. Instead in heterogeneous materials there are several number

of micro cracks and defects which play their individual role to the failure process.

As a result, the defects cannot be treated individually and the failure happens as a
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cumulative effect of those defects [22]. If we consider a sample of volume V under a

stress σ with n independent faults then:

1− F (σ) =
n∏
1

(1− f(σi))

∼= exp

[
−
∑
i

f(σi)

]
∼= exp [−V p(σ)] (1.11)

where f(σi) and F (σ) are failure probability of individual defects of the material

under stress σ respectively. Here, p(σ) is the density of flaws weaker than σ. Below

we have discussed two different cases, explaining how we get this two distributions

for threshold strength.

Low defect concentration

If we assume that defects of all scales are involve in the fracture process of the

material, then the flaw density p(σ) will be given by: cσm. c and m are constants.

In that case from Eq.1.11 we get

F (σ) = 1− exp(−V σm) (1.12)

This is a Weibull distribution with Weibull constant m. The average strength of the

material goes with the volume as : 〈σ〉 ∼ V −m [13]. If L is the system size and d is

the dimension of the material then, 〈σ〉 ∼ L−dm. This matches with the scale free

behavior of failure strength, explored by Bazant, with increasing system sizes [23].
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Intermediate defect concentration

If we assume that the defects of a particular characteristic dimension c (in other

word the crack length) only responsible for development of fracture, we get p(σ) ∼

exp(−cA) where A is constant. Now from Griffith’s law (Eq.1.10) we can write:

c ∼ 1/σ2. This gives us the Gaussian distribution for threshold stress

F (σ) = 1− exp

[
−V exp

(
− A
σ2

)]
(1.13)

In this case the average strength falls in a inverse logarithmic behavior with the

volume (〈σ〉 ∼ c/
√
logV ) [24].

For both the distributions the failure probability increases with increasing σ

value (Figure 1.4). The rate of increase is faster as we go to higher volume V . Most

probably, this happens because in a bigger sample the probability of having a larger

and weaker defect is higher. As a result the most probable value of failure stress

decreases when volume is increased [25, 26].

1.2.3 Precursory activities in failure process

Fracture processes, which are guided by accumulation of defects, shows precursor

activities and avalanches with applied stress [27]. As the strength of a heterogeneous

material varies from point to point, on application of external stress the weakest

part breaks first. This increases stress on other parts of the material and that

part can further break, starting an avalanche. Such avalanche might break the

total material or might require increment of external stress where the material goes

through a number of avalanches. These avalanches and precursor activities are

studied through acoustic emission experiment [28, 29, 30]. The schematic diagram

for the experimental set up and acoustic emission data is shown in figure 1.5. A
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Figure 1.5: Left: Experimental set up for acoustic emission experiment. A number
of acoustic sensors are attached to the material. The energy release in fracture
process is recorded through these sensors.
Right: AE signals collected through the sensors. Energy emitted in failure process
is plotted against the applied stress value. The density of signal is very high near
the failure point.

number of acoustic sensors are connected with the material. A fraction of elastic

energy, released during fracture process in form of sound, is captured through these

sensors. These energy values as shown in figure 1.5 with increasing stress (f) values.

The population of signals is quite high close to the failure point (f → fc). The

main observations of the experiment are: (i) size distribution of energy emitted and

(ii) distribution of burst interval. From these studies of avalanches with increasing

external stress, we get the following results

1. E ∼ (f − fc)−γ, where E is the energy emitted in fracture process. f is the

applied stress and fc is the critical stress, at which the material breaks.

2. P (E) ∼ E−α. P (E) is the probability distribution for the energy emitted.

3. C(δt) ∼ (δt)−β. δt is interval between two consecutive burst. C(δt) is distri-

bution for δt.

Above scaling laws were found to have universal behavior with universal exponents

γ, α and β. Experimental results are given in a tabular form below showing the
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exponent values.

Materials γ α β

Chipboard wood

(Ref. [31])

0.27 ± 0.05 1.9 ± 0.1 1.15 ± 0.05

Synthetic plaster

(Ref. [28])

− 1.3 ± 0.1 0.4 ± 0.1

Composite materials

(Ref. [32])

0.28 ± 0.05 1.9 ± 0.1 1.55 ± 0.05

Cellular glass

(Ref. [33])

− 1.5 ± 0.1 1.27 ± 0.01

In a recent study we have observed the energy release in fracture as a function

of time, instead of applied stress [34]. Same scale free behavior was found for the

distribution of energy. Experiments are performed with many stones like lixhe chalk,

barea, castlegate, red wildmoor etc. and value of the universal exponent α was found

between 1.0 and 2.0 [34].

Materials like glass, ceramics etc. break in a single avalanche, almost equal to

its volume, prior to global failure. No increment of external stress is required to

break such materials. These materials are known as brittle materials. For other

two categories of materials, quasi-brittle and ductile, many small avalanches take

place with increasing external stress. These different nature of avalanche behavior for

brittle and quasi-brittle/ductile materials is also get reflected through there response

to external stress. We have discussed these responses in details in the next section.
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1.3 Response of material to external stress

As we have already seen in the above section, depending on failure process we mainly

get three types of materials: brittle, quasi-brittle and ductile. These materials along

with their response to external stress is discussed below.
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Figure 1.6: Response curve of brittle, quasi-brittle and ductile materials. Brittle
materials show perfectly linear response prior to an abrupt failure. Both quasi-brittle
and ductile materials have appreciable plastic region. Only difference is ductile
materials show permanent deformation even when the applied stress is withdrawn.

• Brittle materials : In brittle materials the fracture is guided by the progress

of the weakest or vulnerable defect (micro-crack) in the material. Crack in

brittle materials propagates very fast and we get no warning prior to global

failure. The response curve for these materials only includes elastic region (OE

in figure 1.6) and negligible amount of elongation or strain (EF in figure 1.6)

is observed during the fracture process.

• Quasi-brittle/ductile materials : In quasi-brittle or ductile materials the

failure happens as a collective effect of many defects and thus the response

curve shows both linear or elastic region and plastic region. These materials

show sufficient elongation (EF in figure 1.6) prior to global failure. The only

deference is quasi-brittle material does not sustain any permanent deformation

(OP in figure 1.6) after unloading of external stress like ductile material does.
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In ductile materials we get very high strain and cup cone like necking behavior before

the failure. In comparison for brittle materials the fracture surface is flat and do

not show any stretching [1, 4, 35].

1.4 Brittle to quasi-brittle/ductile transition

We have already seen in the above two sections that brittle and quasi-brittle/ductile

materials have very different properties. Brittle materials break abruptly in a single

avalanche. Strength of the material is high but toughness (strain) is very low. A

very small amount of energy (amount energy released is basically the area under the

stress v/s strain curve) is released during the failure process of such materials. On

the other hand in case of quasi-brittle or ductile materials, the material breaks in

a number of successive avalanches with increasing applied stress. Since the failure

process is guided by cumulative effect of all defects, a huge amount of energy is

released in the fracture process.

Though strength and failure process of brittle, quasi-brittle or ductile materials

are very different from each other, they are not inherent properties of the materials

and changes a lot with external parameters like temperature, pressure, porosity,

strain rate etc. This change in behavior with certain external parameter is known

as brittle to quasi-brittle/ductile transition.

• Effect of temperature : Low temperature embrittlement is commonly seen

in many materials. It is observed experimentally [36, 37] that ductile materials

can show proper linear response and abrupt failure like brittle materials if

it is brought below a critical temperature (Tc). Around this Tc the energy

releases due to failure process (area under the response curve) shows sudden

fall (Fig.1.7) as the motion of defects like dislocation is ceased and the materials

stop showing plastic response.
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Figure 1.7: The figure shows brittle to ductile transition with varying temperature.
The energy release in fracture process falls very rapidly around a critical temperature
Tc which is the brittle to ductile transition point.

• Effect of pressure : Another parameter guiding this transition apart from

temperature is the pressure applied on the material. In rocks, a transition is

seen at high confining pressure from brittle to ductile material. [36, 37].

• Role of dislocation : We already know that the origin of plastic response

in material is motion of dislocations. A dislocation motion dependent brittle

to quasi-brittle/ductile transition is observed experimentally in doped silicon

[38] and tungsten single crystals [39].

• Effect of porosity : Such a transition from brittle to quasi-brittle material

in random porous Au was observed in Ref. [40]. The transition is observed

with varying micro structural length scale.

There are many attempts in the literature to design statistical mechanical models

for describing brittle to ductile transition (BDT). In some models BDT is observed

as an effect of nucleation of single dislocation [41, 42, 43] or by the motion of a group

of dislocations [38, 44, 45]. Later Khantha et al. has studied this effect of dislocation

[46] along with the effect of strain rate on BDT temperature [47]. Recently by Picallo

et al., a brittle to ductile transition was observed in random fuse network, where it

was assumed that a resistance can go through a number of healing cycles before it
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breaks and starts behaving like insulator. BDT was observed as a function of these

healing cycles [48]. Langer and Lobkovsky has studied BDT in a one-dimensional

model that obeys viscoplastic constitutive equations [49]. Experiment as well as

simulation in continuum mechanical model was performed recently, where a brittle

to quasi-brittle transition was observed with varying crack initiation velocity [50].

1.5 Role of fracture process zone (FPZ)

Not only disorder but also the stress release range [51] is another factor that guides

the nature of failure. This stress release range is mainly determined from the frac-

ture process zone (FPZ) near the crack tip. In this FPZ the energy due to the

fracture process stored and used to create new fracture surface and helps the crack

to propagate [52, 53, 54]. Depending on the sharpness of the crack tip (Fig.1.8),

which is a measure of the area of FPZ, a material breaks by either nucleation or

through a series of precursory events. This fracture process zone is basically the

range up to which the information of a particular defect can travel.

1.5.1 FPZ in brittle materials

Figure 1.8 shows the crack tip and FPZ in case of brittle fracture and plastic fracture

(quasi-brittle or ductile). Brittle materials does not show any such FPZ and the total

energy due to failure is concentrated on the crack tip only. As a result, the FPZ

can not effect any other micro-cracks and propagation of crack takes place from the

initial one only.
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PlasticBrittle

Fracture Process Zone

Figure 1.8: Fracture process zone (FPZ) near the crack tip for brittle and plastic
failure is shown. Brittle cracks hardly shows any FPZ while one the other hand in
case of plastic failure we get certain amount of FPZ within which the energy due to
fracture process is stored.

1.5.2 FPZ for plastic failure

More blunt the crack tip is, it leads to increasing area of FPZ. In that case the

increasing FPZ might include other cracks and the fracture might start propagating

from the second crack rather than the previous one. Materials like ductile, with blunt

crack tip and appreciable amount of FPZ, break continuously with cumulative effect

of many defects and thus show plastic region and deformation in the response curve.

1.6 Aim of the thesis

The thesis comprises the study of the effect of the disorder and stress release range

on the development and morphology of fracture. We have worked on mainly fibers

bundle model, which is a very simple and useful model to study failure process.

This model is studied with varying disorder and stress release range to observe

fracture abruptness, strength, fracture pattern, size effects and many other aspects

and compare the results with real systems. In addition, we have studied another

model of fracture process, namely spring ladder model, by controlling the stress

release range through the angular elastic constant.
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Chapter 2

Models of Fracture in Statistical

Mechanics

There are many models which has been adopted in the literature to design and de-

scribe fracture phenomena. Stochastic behavior in these models are introduced as

fluctuation of local parameters. These models are proven to give sufficient informa-

tion about strength, fracture abruptness, rupture pattern and many other aspects.

Examples of such three fracture models in statistical mechanics are given below in

a decreasing order of computational complexity:

1. Spring network model

2. Random resistor network

3. Fiber bundle model

2.1 Spring Network Model (SNM)

Spring network model [55, 56] is the tensorial approach to understand failure process.

In this model not only the magnitude but also the direction of applied stress matters
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a lot to determine the failure. This model consist of a network, where all bonds are

Hookean springs with linear force constant ks. Apart from this, there are two other

parameters that characterize the behavior of the springs: length of the spring at

unstrained condition (r0) and the critical strain of a spring (rc− r0), above which it

breaks irreversibly. rc is the length of the spring just before rupture. There is also

another parameter that takes care of the shear stress on the bundle, the angular

force constant kα. At unstrained condition, the angle between two springs adjacent

PP PQ Q

90

F

FF

F

F

Unstrained Condition

T TS S

Figure 2.1: A two dimensional spring network model is shown, at both unstrained
condition (left) and with a spring broken due to the application of external force
(right).

to a particular node is, α0 = 90◦ (see figure 2.1), if the network a is square or cubic

lattice. Altogether the Hamiltonian of the system will be given by:

H =
1

2

∑
〈ij〉

ks(r − r0)2 + kα(α− α0)
2 (2.1)

The sum goes over all nearest neighboring pairs 〈ij〉. r and α are respectively the

length of a spring and angle between two springs at a node, for particular strained

condition. Initially, the model does not cause any energy cost since r = r0 and

α = α0. Due to the application of external force, if any spring (PQ in figure 2.1)

breaks, it leads to a change in the parameters of Hamiltonian : ks = 0 and kα

involving the broken spring becomes 0. The force applied on each node then get

changed due to this single rupture. This modified in applied force leads to different
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positioning of every node and hence the length of the springs get changed. One of

the very simple hence very useful algorithm to assign new positions to the nodes is

‘Verlet algorithm’. This algorithm is discussed below in details.

Verlet algorithm

Let’s assume, at time t0, the position of a node is ~x0, velocity is ~v0 and acceleration

is ~a0. Then, at next time step, t+ ∆t, the position of that node will be

~x1 = ~x0 + ~v0∆t+
1

2
~a0(∆t)

2 (2.2)

Generalizing above equation for any particular time t, we get

~x(t+ ∆t) = ~x(t) + ~v(t)∆t+
1

2
~a(t)(∆t)2 +O(∆t3) +O(∆t4) (2.3)

Replacing ∆t by −∆t, we get

~x(t−∆t) = ~x(t)− ~v(t)∆t+
1

2
~a(t)(∆t)2 −O(∆t3) +O(∆t4) (2.4)

Adding Eq.2.3 and Eq.2.3 we get,

~x(t+ ∆t) = 2~x(t)− ~x(t−∆t) + ~a(t)(∆t)2 +O(∆t4) (2.5)

Neglecting higher order term in ∆t and using ~a(t) = ~f(t)/m, we can write

~x(t+ ∆t) = 2~x(t)− ~x(t−∆t) +
~f(t)

m
(∆t)2 (2.6)

where ~f(t) is the force applied on that node at time t. By above algorithm after the

breaking of a certain node, all other nodes move to a new positions, depending on

how much force is applied on it.
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Due to this new positioning of the nodes, there might be further breaking of

springs, and the redistribution goes on, until either the model breaks or reaches to

a stable state. In the later case, the external force is increased to make the model

evolve further. This force increment goes on until the complete model fails.

The model is quite realistic as it is the closest discrete version of continuum

elastic manifold. However, the simulation is difficult as ∆t, in principle, should

be extremely small. Otherwise, one encounters with unrealistic oscillations and

the system does not reach equilibrium. On other hand, small ∆t increases the

relaxation time. Various techniques, like applying artificial damping, is used for the

fast equilibration of the system without experiencing any unwanted oscillations.

2.2 Random resistor network (RRN)

This is an electrical analog of designing fracture process [57, 58, 59]. It consists of

a 2d tilted square lattice where all the bonds are resistors with unit resistances. A

constant potential difference is applied through one direction of the bundle. On the

other direction, perpendicular to it, a periodic boundary condition is applied. All
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Figure 2.2: Left: 2d inverted square lattice shaped random resistor network. A
potential deference V is applied to the model creating a current flow I.
Right: A particular mess of involving five lattice point is observed to explain the
breaking criterion and redistribution.
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this resistors have certain threshold chosen randomly. Resistances of all resistors

are same. Figure 2.2 shows a schematic diagram of random resistor network (left),

explaining the Kirchhoff’s law of current flow, through every node (right).

If we consider a mesh with 5 nodes P , Q, T , S and O with potential VP , VQ,

VT , VS and VO respectively, then according to Kirchhoff’s law, current through the

resistor joining node P and O will be IPO = (VP − VO)RPO. IPO is the current

flowing from node P to node O and RPO is the resistance of the resistor joining

node P and O. Similarly IOT = (VT −VO)ROT . Since the current is flowing outward

from node O, the sign of IOT will be negative.

If current through any resistor crosses any random threshold limit, that resistor

burns irreversibly and starts acting as a insulator (resistance is infinite). After

this rupture we solve Kirchhoff’s law to assign new potentials to each node. This

new potentials are assigned by Kirchhoff’s law, that states, sum of the current flow

through each node will be zero. By this, we get

IPO + ISO + IOT + IOQ = 0

or,
(VP − VO)

RPO

+
(VS − VO)

RSO

+
(VT − VO)

ROT

+
(VQ − VO)

ROQ

= 0 (2.7)

If any resistor breaks, it is treated as an insulator and the resistance is taken to be

infinity. When a resistor breaks, the current law, given by Eq. 2.7, gets modified

new potential is assigned to each node. Due to redistribution through Kirchhoff’s

law there might be further breaking triggering an avalanche of ruptures. After each

and every rupture, we go on solving Kirchhoff’s law until the model comes to equi-

librium, when the potentials on the nodes become constant. After the equilibrium is

reached, the applied potential difference is increased to create further breaking and

redistribution. This process goes on unless a series of broken resistors percolates

through the model giving zero current.
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Random resistor network is very useful model in statistical mechanics to study

fracture and breakdown phenomena. There are many studies carried out on RRN

model regarding strength of the model, abruptness in failure process, study of frac-

ture path etc. As already discussed in chapter 1, a brittle to ductile transition

was observed recently in RRN model [48]. Apart from that, damage in the model

through nucleating crack growth and percolating crack growth was also observed

[57, 58, 59]. However, it was recently noted that apart from extremely high disorder

[60] the damage nucleation is always the final mode of fracture.

Random resistor network model, unlike the tensorial spring network model, is

scalar model. The main problem one encounters here is equilibrium time. As more

and more resistors become insulator, the equilibrium time increases. One uses Con-

jugate gradient method [61, 62], Fast Fourier transformation [57, 63] to achieve fast

equilibration.

2.3 Fiber bundle model (FBM)

Fiber bundle model [64, 65] is perhaps the simplest model to study fracture. The

model consists essentially of fibers attached between two parallel bars. We consider

here only Hookean fibers, though, in general, any stress-strain constitutive relation

can be obeyed by them. The bars are pulled apart with a force which induces a stress

on the fibers. Each fiber sustains a stress up to a threshold (chosen randomly from

a distribution) beyond which it breaks irreversibly. Once a fiber breaks, the stress

of the fiber is redistributed among other surviving fibers. For such redistribution

mainly two schemes has been adopted in the literature: equal load sharing scheme

(ELS) [66, 67] and local load sharing scheme (LLS) [68, 69, 70, 71, 72, 73].

• ELS scheme : If the stress of a broken fiber is distributed equally among all

the surviving fibers, the model is called the equal load sharing (ELS) model.
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Figure 2.3: Fiber Bundle Model : Hookean fibers with random thresholds attached
between two parallel bars. The figure shows the behavior of the bars in case of equal
load sharing (ELS) and local load sharing (LLS) scheme.

This is a mean-field model which ignores any fluctuation in local stress profile

of the fibers.

• LLS scheme : In local load sharing (LLS) model, the stress of the ruptured

fiber is equally distributed on the nearest neighboring intact fibers only.

Also there exists some intermediate redistribution scheme in the literature where

the stress redistribution is neither mean field nor extreme localized. Example of

such schemes in the literature are given below :

• A fraction g of the the stress of the broken fiber is distributed locally and a

fraction 1− g is redistributed according to global load sharing scheme [74].

• The stress of broken fiber is redistributed as r−γ where r is the distance be-

tween the broken fiber and the fiber that takes the extra load. γ is the decay

parameter [75].

• Only R surviving neighbors of the broken fiber carries the extra load [76].

After such redistribution there might be further breaking of fibers due to local

enhancement of stress profile. This redistribution might lead to global failure or

stops when the stress acting on a fiber could not reach the next threshold limit. At

this situation the applied stress is increased to break the next weakest link and the
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process continues until all fibers break. The last stress that is applied to the model

before global failure is known as the critical stress (σc) of the model.
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Chapter 3

Effect of Disorder

In this chapter, we have explored the effect of disorder in a statistical mechanical

model of fracture, namely the fiber bundle model. Disorder is introduced in the

model as fluctuation in threshold stresses of the fibers. Threshold stresses of the

fibers are chosen randomly from a distribution of width δ. δ is the measure of

strength of the disorder in the model. We have studied the model by varying δ .

3.1 Brittle to quasi-brittle transition

in fiber bundle model

Temperature, pressure and porosity have an indirect effect on disorder in the model,

which in turn cause brittle to quasi-brittle/ductile transition. Here we have directly

tuned the disorder in the fiber bundle model and want to see weather such transition

exists with disorder or not.
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3.1.1 Equal load sharing scheme

In equal load sharing scheme (described in previous chapter) we have studied how the

model goes from brittle like abrupt failure scenario to continuous failure scenario by

tuning the disorder δ. At low values of δ, the failure of the system occurs, typically,

from the rupturing of a single fiber, the fiber with minimum breaking threshold

xmin. On the other hand, for large values of δ, failure occurs through a series of

stable states at different stress levels. As the applied load is raised, the system goes

through these states in succession of avalanches of rupturing of fibers till the critical

stress σc, when the remaining fraction nc of fibers ruptures bringing failure of the

entire system.

We ask the following questions, (i) is there a critical value δc demarcating these

two regimes: brittle and quasi-brittle , (ii) what are the features of the transition

at δc and (iii) what are the manifestations of the transition on the macroscopic

properties of the model. Lastly, the possible relevance of these features to brittle to

quasi-brittle transition observed in real materials is discussed.

Here, we present results for uniform distribution of Φ(x) = 1/2δ over the window

a to (a + 2δ) within the range [0,1]. For uniform distribution, the existence of a δc

has been mentioned before [77, 78]. In ref [78] a general expression of δc was derived

for different threshold distributions. Our analytical calculation gives δc = a/2, in

accordance with [78]. For δ ≤ δc, there is a finite probability Pb that rupturing of

the weakest fiber leads to the failure of the entire system. Pb → 0 as δ → δ−c . At

δc, Pb ∼ L−η, with η ≈ 1/3, where L is the size of the system. We further show

analytically that, as δ approaches δc, the relaxation time τ diverges as τ ∼ |δ−δc|−1.

Our numerical analysis gives the finite size scaling form of the relaxation time. At

δc, the evolution of fracture becomes extremely slow. We observe that the failure of

the system occurs in succession of avalanches of rupturing of fibers with time. The

avalanche size distribution P (s) shows a scale free behavior and follows: P (s) ∼ s−κ
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with κ ≈ 1/2. These exponent values suggest that the critical behavior at δc is in

a new universality class. δc is the transition point which demarcates brittle phase

(for δ < δc) from the quasi-brittle phase (for δ > δc) in the model.

Analytical results

The analytical calculation is based on finding the number of surviving fibers at each

stable phases of the model at different stress levels. At an applied stress σext, the

fraction of unbroken fibers is obtained by integrating the probability distribution

Φ(x) from minimum of the distribution a to the redistributed stress σr. If U∗ is the

fraction unbroken then the redistributed stress will be given by σr = σext/U
∗. Then

fraction unbroken is

U∗ =

∫ σext/U∗

a

Φ(x)dx =

∫ σext/U∗

a

1

2δ
dx

=
1

2δ

(σext
U∗
− a
)

(3.1)

Above expression will give a quadratic equation of U∗ whose solution is

U∗ =
1

2

(
1 +

a

2δ

)
± 1

2

[(
1 +

a

2δ

)2
− 4σext

2δ

]1/2
. (3.2)

At the point of failure, above equation admits only one solution. This will be satisfied

only if the term under the root vanishes. This gives the critical stress σc and critical

fraction Uc of the fibers at the failure point:

σc =
2δ

4

(
1 +

a

2δ

)2
& Uc =

1

2

(
1 +

a

2δ

)
. (3.3)

If we start from a high δ value and keep it lowering, Uc will increase and reaches 1 at

δ = δc. On further lowering of δ value, Uc will remain at unity. In the region δ < δc,

the analytical solutions are not valid. Inserting Uc = 1 in Eq.3.3, we get the critical
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value δc below which the model shows abrupt brittle like fracture in thermodynamic

limit: δc = a/2. If a is 0, the abrupt fracture will never occur in the model and the

system will always break in steps with increasing external stress. On the other hand

if a > 0.5, the fracture will always be abrupt.

From the dynamics of the system, at the external stress σext, the fraction U(t+

1) of the unbroken fibers at time step (t + 1) can be expressed in terms of the

fraction U(t) at time t [79]. At any time t, if U(t) is the fraction unbroken, then the

redistributed stress at that time will be σt =
σext
U(t)

. Fraction unbroken at the next

time step will be

U(t+ 1) = 1− P (σt) = 1− P (σext/U(t)) (3.4)

where P (σt) is the probability of surviving fibers at stress σt. For uniform distribu-

tion, inserting this value of P (σext/U(t)) we get the expression for fraction unbroken

at time t+ 1, disorder δ and applied stress σext:

U(t+ 1, σext, δ) =
1

(2δ)

[
a+ 2δ − σext

U(t, σext, δ)

]
. (3.5)

The rate of change of U(t, σext, δ) is given by : dU(t, σext, δ)/dt = U(t+ 1, σext, δ)−

U(t, σext, δ). Combining this with Eq.3.5 we get

dU(t, σext, δ)

dt
= −(2δ)U2(t, σext, δ)− (a+ 2δ)U(t, σext, δ) + σext

(2δ)U2(t, σext, δ)
(3.6)

We solve the above equation for a slight deviation ∆U of U(t, σext, δ) from the

breakdown point Uc (= U(t, σc, δ)): U(t, σext, δ) = Uc + ∆U (∆U → 0). Neglecting

higher order of ∆U we get U(t, σext, δ)
2 = U2

c + 2Uc∆U . Substituting this in Eq.3.6

and assuming Uc = 1 at δc, we can write

d∆U

∆U
= −2δ − a

2δ
dt = −1

τ
dt (3.7)
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Where τ is the relaxation time. Integrating Eq.3.7, we get the change in fraction of

unbroken bonds: ∆U = Ae−t/τ , where A is a constant. Here, relaxation time has

the form

1

τ
=

2δ − a
2δ

= 1− a

2δ
(3.8)

or, τ ∼ (δ − δc)−1, (since δc = a/2) (3.9)

Above behavior of τ clearly shows that the relaxation time diverges as δ → δc.

To get better insight of the nature of the transition, we have studied the transition

numerically. For simplicity, we have considered uniform distribution Φ(x) of half

width δ and mean at 0.5. For such distribution δc = 1/6 (obtained from analytical

calculation). Numerical results are obtained on averaging over 104 configurations

and for system sizes ranging from 102 to 106.

Response of the model to external stress

Figure 3.1 shows U∗ for different values of applied stress σext and δ. Here, the

black region denotes the system after complete failure (U∗ = 0) and yellow region

represents the initial condition where all fibers are intact (U∗ = 1). The color

gradient is the partially broken phase (0 < U∗ < 1). σext at the boundary of the

black and yellow region denotes the critical stress σc. For δ < δc, σc follows a straight

line given by a = 0.5 − δ. This is the region where we go from the yellow to black

region by a single jump once the stress reaches the minimum threshold a of the

fibers. For δ > δc the critical stress deviates from the straight line and approaches

to σc = 0.25 at δ = 0.5. In this region, fracture evolves through a series of partially

broken stable states at different levels of applied load.
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Figure 3.1: Fraction of unbroken bonds U∗ is plotted for different σext and δ. In
yellow region U∗ = 1, while in the black region U∗ = 0. The color gradient corre-
sponds to partially broken configurations (0 < U∗ < 1). At low δ values, the system
goes from yellow to black region at a critical stress with an abrupt fracture. For
δ > δc, the system goes from yellow to black region through a color gradient region
signifying gradual fracture at different stress levels. The boundary of black region
gives us the critical stress σc for the system.

Probability of abrupt failure

Due to the finite size of the system, even below δc, global failure (rupture of all the

fibers in the system) is not always obtained starting from the rupture of the weakest

fiber. We determine Pb, the probability of global failure starting from the rupture

of the weakest fiber, for various δ values and for various system sizes (see fig.3.2).

For a particular system size L, we define the critical δ-value δc(L) at which Pb goes

to zero. It is quite clear that δc(L) has a system size dependence and approaches to

δc as L→∞. We find that δc(L) satisfies the finite-size scaling relation:

δc(L) = δc + bL−η, (3.10)

where the exponent η has a value 0.33± 0.02 and b is a constant. The error bar is

determined from the least square data fitting. It is to be noted that the fluctuation

∆Uc in the number of surviving fibers at the critical stress has been shown to scale

as ∆Uc ∼ L−1/3 [67, 80, 81]. It is this fluctuation in Uc, which determines the

fluctuation in critical δ-values for finite-size systems. This fluctuation should also
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Figure 3.2: Plot of Pb with δ for increasing system size values L = 100(star),
500(square), 1000(open circles), 5000(filled circles) and 10, 000(tringle). For low
δ, Pb is close to 1. As δ increases, Pb decreases till it goes to zero. This fall becomes
more and more sharper as the system size is increased. In the inset variation of Pb
with system size L is shown for δ = 0.15(star), 0.1666(square) and 0.18(open circle).
For δ = 0.15, Pb saturates, so that there is always a non-zero Pb value. For δ = 0.18,
Pb falls to zero exponentially fast. At δc, Pb ∼ L−η, with exponent η ≈ 1/3.

tell us the probability Pb in a system of finite size.

Fig.3.2 (inset) presents the variation of Pb with system sizes in the neighborhood

of δc. For δ < δc, Pb tends to saturate and there is always a non-zero probability

of rupturing of all the fibers starting from the single most vulnerable one. On the

other hand, for δ > δc, Pb falls off sharply to zero and probability of having an

abrupt fracture vanishes in the thermodynamic limit (L→∞). At critical disorder

Pb shows a scale free behavior: Pb ∼ L−η, where η = 1/3.

Divergence of relaxation time

To establish the critical behavior of at δc, we study the relaxation time of the

bundle at different δ values with system sizes ranging from 104 to 105. To determine

relaxation time, we apply the minimum load that is needed to rupture the weakest

fiber and the system is allowed to evolve (keeping the load constant) till it fails or

reaches a stable state with partially broken bonds. Relaxation time is determined

as the number of times the load is to be redistributed among the unbroken fibers
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over the evolution of the system. At a particular δ value, for 103 configurations the

maximum of this relaxation times is determined. Again over 103 configurations the

average of this maximum values are obtained. We denote this average value as τ

and use it to explain the critical behavior at δc. Fig.3.3 shows this variation of τ

with δ for different system sizes ranging from 104 to 105. Previous studies have dealt

with the behavior of relaxation time close to critical stress [80, 82]. Here we have

fixed the stress to be the minimum one and approaches critical point by tuning δ

value.
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Figure 3.3: Relaxation time τ is plotted with δ for system sizes L = 10000(star),
30000(square), 50000(hollow circle), 70000(filled circle) and 100000(triangle). In
the inset the scaling of τ is shown. The scaling is done by plotting τL−β against
(δ − δc)L1/ν for the above mentioned L values with β = 0.33± 0.02.

τ shows a maximum at δ = δc(L) for system size L. As L increases, the maximum

value increases and the increment becomes sharper and sharper. Below δc the system

experiences an abrupt failure within a few redistributing time steps starting from

the rupture of the weakest fiber. On the other hand, for δ > δc, due to a wide range

of threshold values, the minimum stress corresponding to the weakest fiber is not

sufficient to break all the fibers in the system. Staring from some initial rupturing

of the fibers, the system comes a stable configuration after few redistribution step

for the stress. In both these cases, τ is finite. At δ = δc, τ diverges with system size
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obeying a finite size scaling:

τ ∼ LβΨ
(
(δ − δc)Lη

)
, (3.11)

where β = 0.33± 0.02. The scaling function Ψ(x) assumes constant value for x = 0

and for large x. Accordingly, at δc, τ ∼ Lβ, and close to δc,

τ ∼ (δ − δc)−γ, (3.12)

where γ = β/η = 1. The scaled τ is shown in the inset of fig.3.3. The scaling is

sensitive to the choice of the value of the exponent β, which determines the error

bar of it by simply checking the collapse in the scaling. The value of the exponent

γ = 1 is in agreement with our analytical result.

Avalanche size distribution

The definition of avalanche that we have adopted is quite different from the conven-

tional one. The avalanche in our case is calculated in between two redistributing

steps in stead of two stress increment. Figure 3.4 shows the avalanche size distri-

bution P (s) verses the avalanche sizes s. We start from applying a low load on

the system, sufficient enough to rupture only the weakest fiber. Once a fiber is

ruptured, the stress is redistributed among the remaining unbroken fibers. The

breaking of fibers between any two consecutive stress redistribution steps constitute

an avalanche and the number of fibers broken gives the size of the avalanche. For

δ < δc, the distribution tends to level off (up to a certain avalanche size) showing

big avalanches are equally probable. In this region, after few big avalanches, the

system fails completely within few time steps. In the region δ > δc, the distribution

falls off very fast showing that, in this region, the system ceases to evolve after few

small avalanches starting from the rupturing of the weakest fiber. At δ = δc the
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exponent κ = 0.5± 0.01.

distribution is a power law:

P (s) ∼ s−κ, (3.13)

where the exponent is given as κ = 0.5± 0.01.

We have also checked this critical behavior for the truncated Gaussian and power

law distribution of threshold of the fibers. Within the error bar, the exponent values

suggest universality.

3.1.2 Local load sharing scheme

Both pure abrupt brittle response and non abrupt quasi-brittle response is present in

local load sharing fiber bundle model, along with a particular disorder value (similar

to δc in ELS scheme) separating this two regions. Due to local stress concentration

in LLS scheme this particular disorder value neither has critical behavior nor unique-

ness. We denote this disorder as δL, since it changes with system size. A detailed

discussion of the crossover from brittle region to quasi-brittle region for LLS scheme

is discussed below.
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System size dependent brittle to quasi-brittle response

To characterize the brittle and quasi-brittle region, first of all we have observed the

abruptness in failure process at different disorder values. For that purpose we have

studied fraction of unbroken bonds, Uc, just before global failure. Uc = 1 suggests

a brittle like abrupt failure. For Uc < 1 the model shows a continuous failure like

quasi-brittle response. With decreasing disorder value Uc starts approaching unity.

For a constant system size, the disorder at which Uc = 1 is noted and that is the δL

corresponding to size L.
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Figure 3.5: (a) Variation of brittle and quasi-brittle region with system size (L) for
the most local load sharing scheme. Brittle region increases with increasing system
size.
(b) System size independent brittle and quasi-brittle region in mean field case. The
division of the regions happens around δc = 1/6.

Figure 3.5 shows the variation of δL with increasing system size. In mean field

limit (Fig. 3.5b) there is no system size effect on δL (δL = δc = 1/6) and hence we

get constant amount of brittle region (δ < 1/6) and quasi-brittle region (δ ≥ 1/6) at

any L value. In case of LLS scheme (Fig. 3.5a), δL increases as we go to higher and

higher system size. This intern increases the brittle region and the fracture becomes

more and more abrupt. Finally in thermodynamic limit (towards the origin of figure

3.5b) the failure is always brittle like abrupt.
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Approaching thermodynamic limit with increasing system size

We have already seen that there is a clear signature of system size effect on δL and

therefore on the abruptness of fracture in LLS model. At any certain disorder we can

define a particular system size L∗ above which Uc approaches 1.0 (numerically the

tolerance is taken as: L = L∗ if (1.0− Uc) < 10−3) and the failure process is always

abrupt. This study is carried out for disorder ranging from 0 to 0.5. We observe
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Figure 3.6: L∗ is the system size above which the fracture is purely abrupt. Variation
of L∗ with disorder for LLS scheme. Below δ = δ∗ the fracture is always abrupt and
its really easy to achieve . This is the pure brittle region. For δ > δ∗ there is a
certain region below L∗ where the failure is quasi-brittle like non abrupt.

that (Fig.3.6) there is a disorder value δ∗ exists below which L∗ is very small and its

very easy to achieve brittle failure. This is the brittle failure dominated region in

the model. Beyond δ∗, L∗ increases very fast and there is a certain region below L∗

where the failure process is quasi-brittle like non abrupt. In this region the failure

can be both brittle (B) and quasi-brittle (QB) depending on the system size.

3.2 Size effect of responses in fiber bundle model

In the introduction part we have already discussed the effect of notch or micro-crack

present in the real system that leads to weakest link of a chain concept [13, 14, 15],

according to which the fracture in presence of many defects is determined primarily
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by the most vulnerable defect and that is how the idea of extreme statistics is

applied to fracture. Quasi-brittle materials indeed show a large scatter in fracture

strength, the distribution of which can be represented by the long-tailed Weibull

distribution. The distribution is a telltale signature of the underlying extreme events

that controls triggering of fracture. The distribution suggests power law fall of the

fracture strength with system size L (σc ∼ 1/L), which is readily seen in experiments

[83, 84, 85]. Apart from long-tailed Weibull distribution, experiments in different

materials also shows Gumbell distribution where in-stead of power law σc falls as

inverse logarithmically (∼ 1/ logL) [24]. Whether the fracture strength should follow

Weibull or Gumbell distribution is a matter of debate for long time. We have studied

this distributions for failure stress and its system size dependence in fiber bundle

model with both equal and local load sharing scheme.

3.2.1 Equal load sharing scheme

For equal load sharing fiber bundle model, as described in chapter 2, after rupture

of every fiber the stress is redistributed equally among all other surviving fibers.

This is basically the mean field limit of the model, where fluctuation in local stress

profile of the fibers are neglected. There is no local stress concentration observed

in the neighborhood of the broken fibers. Due to this behavior system size effect

is not seen in equal load sharing fiber bundle model. Parameters like: strength of

the model, abruptness in failure process, avalanche size distribution, divergence of

relaxation time at critical stress, does not change when we change the sample size.

Though the picture in LLS scheme very different from the mean field picture.
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3.2.2 Local load sharing scheme

Due to over simplification in stress redistribution rule in case of mean field fiber

bundle model, the system size effect is not possible to capture. To understand the

effect of system size on fracture strength we have adopted local load sharing (LLS)

fiber bundle model where the only surviving neighbors of a broken fiber caries the

extra load (see description of the model in chapter 2).

System size effect on strength and failure abruptness

Figure 3.7 shows the behavior of critical stress (σc) with a continuous variation of

disorder (δ). Results are produced for system sizes up to 5 × 104 with 104 config-

urations. The dotted line (not the vertical ones) in the figure gives the locus of
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Figure 3.7: Left figure: Study of σc with continuous variation of disorder value (δ).
Results are generated for system sizes ranging from 103 to 5×104. Dotted line gives
the yield stress (σy), the separation of elastic and plastic region. δL is the disorder
below which we get brittle failure. δL increases with increasing L values.
Right figure: Uc is studied with LLS scheme for different system sizes (103 ≥ L ≥
5×104) with increasing δ values. The value of δL below which Uc = 1 is the disorder
value separating brittle region from the quasi-brittle one. Increase in system size
shows increase in Uc value and hence leads the model to higher abruptness.

yield stress (σy), that separates the linear elastic region from the plastic region in

the response curve. For brittle response σc and σy coincides with each other since

there is almost zero plastic region in the response curve. Vertical dotted lines give

the values of a particular disorder, δL, above which critical and yield stress deviates
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from each other. δL for different system sizes are different and continuously increases

as we go to higher L values. On the other hand in mean field limit (ELS scheme)

δL = δc = 1/6 independent of system size.

Effect of disorder on L dependence of σc

The system size effect of critical stress (σc) is already known to behave as 1/ logL

[24, 86, 87, 88, 89, 90, 91] when the threshold strength of the fibers are distributed

over (0:1). But on the contrast at very low δ value, due to the brittle like failure, the

critical stress is basically the the minimum strength corresponding to the weakest

link of chain. In that limit the minimum threshold as well as σc should scale as 1/L

with increasing system sizes. One of the previous work [92] shows this 1/L behavior

at very low disorder. In spite of above studies a proper understanding of change in

behavior of σc, from inverse logarithmic (high δ) to scale free behavior (low δ), is

still absent. Here the behavior of σc is studied throughout all δ region and the above

change in behavior is characterized. This behavior is quite similar to the study of

the distribution of nominal stress, seen in real systems [93, 94, 95, 96]. One early

paper has already discussed about the fact which distribution, Weibull or normal,

is appropriate for nominal stress in real specimens [97].

Figure 3.8 shows the change of σc − σl with increasing L values separately for

logarithmic (lower) and scale free (upper) behavior. σl is the lower limit of the

uniform distribution. Lower figure shows that for high disorder region (0.4 < δ <

0.5) σc − σl gives a straight line when plotted against 1/ logL. As we go to lower

δ values the behavior deviates from the straight line behavior. On the other hand

in upper figure σc − σl is plotted with L in log scale.In lower disorder (0 < δ < 0.3)

it gives a straight line with slope −1. This is the 1/L behavior we have discussed

earlier [74]. This slope decreases rapidly within the window 0.3 < δ < 0.4 and

saturates at a low value (≈ 0.2) beyond δ = 0.4. To understand the accuracy at

59



 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 0.16

 0.18

 0.2

 0.09  0.1  0.11  0.12  0.13  0.14  0.15

σ
c
-σ

l

1/Log L

σc=a+b/log L
δ=0.5

δ=0.45

δ=0.4

δ=0.35

δ=0.3

δ=0.2

 1e-05

 0.0001

 0.001

 0.01

 0.1

 1

 100  1000  10000  100000

σ
c
-σ

l

L

σc=p+qL
-r

δ=0.5

δ=0.45

δ=0.4

δ=0.35

δ=0.3

δ=0.2
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a scale free behavior with slope −1.
Above δ = 0.35 this slope changes
rapidly and saturates to very low value
(≈ 0.2) and the system size effect be-
comes very weak. Here the logarithmic
behavior is more appropriate.

which the numerical data fits with logarithmic and power law behavior the best fit

condition is obtained with following functions :

(i) f(x) = p+ qL−r and

(ii) g(x) = a+
b

logL
.

Figure 3.9 gives the best fit of f(x) and g(x) with the numerical data for δ = 0.5,

0.4, 0.35, 0.3, 0.2 and 0.1. Both a and p converges to σl as the model reaches the

thermodynamic limit. Figure 3.9 shows that for low δ values f(x) matches much

well with the simulated data than g(x). If we go to higher disorder (δ > 0.4) then

fluctuation of the simulated data from both the functions are very small and both

functions seem to fit well. This probably happens because at high disorder the power

(r) of scale free fit becomes very small. We know that xα with low α value acts as

log x. Because of this in high δ value its difficult to distinguish between logarithmic

and scale free nature.
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Figure 3.9: Numerical data for system
size effect of critical stress is fitted with
f(x) = p + qL−r (power law behavior)
and g(x) = a+b/ logL (logarithmic be-
havior). The fitting is done for δ = 0.1,
0.2, 0.3, 0.35, 0.4 and 0.5. For high
disorder (δ > 0.4) value both f(x) and
g(x) matches with the data with less
error. At low disorder (δ < 0.3) the
power law behavior matches much ac-
curately than the logarithmic one.

Transition from scale free to logarithmic behavior

Figure 3.10 shows the quantitative behavior of the exponents r and b with increasing

disorder. Change in this two exponents mainly occur within the disorder window

Figure 3.10: The exponents from figure 3.8 (r and b) are shown with a continuous
variation of disorder. Both r and b remains at a same value for δ > 0.4 as well as
δ < 0.3. Within the region 0.3 < δ < 0.4 these exponents shows abrupt changes.
This is the transition region where the simulated data shifts from power law to
logarithmic behavior.

0.3 ≤ δ ≤ 0.4. Below 0.3 strength of the model falls in a scale free behavior

with increasing system size, while beyond 0.4 it matches with inverse logarithmic

behavior.
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3.3 Study of failure time

Above signature of critical disorder value δc, in ELS scheme, can also be captured

from the study of failure time of the model. Time to fracture, τf , at a particular load,

often used to determine the reliability and strength of the material, is an outcome

of this spatial and temporal micro cracking dynamics. It is defined to be the time

taken for the system to fracture under a certain loading condition. Basically, failure

time is the relaxation time (see section 3.1.1) when a critical stress is applied to the

model.

3.3.1 Equal load sharing scheme

The failure time is studied numerically in equal load sharing scheme. Mainly we

have observed the distribution for failure time and its system size effect and different

disorder (both δ > δc and δ < δc).

Analytical result

Analytically the difference in brittle and quasi-brittle region is, for δ > δc we have

analytical expression for σc and Uc (Eq.3.3). While in region δ < δc, σc is the

minimum threshold of the chain and Uc is simply 1. Due to abrupt failure in brittle

region (δ < δc), we have σc = a+ ε, where a is the minimum of the distribution. ε is

the term that takes care of the system size effect in the bundle. As we go to higher

system size ε value decreases as the threshold of the weakest link comes closer to σl.

The recursion relation of Eq. 3.5 this case takes the form

U(t+ 1, σc, δ) = 1 + A

(
1− 1

U(t, σc, δ)

)
− ε

2δU(t, σc, δ)
(3.14)

62



 0

 0.2

 0.4

 0.6

 0.8

 1

 1  2  3  4  5  6  7  8  9

U
(t

,σ
c
,δ

)

Time (t)

δ=0.1

L=10
5

L=2x10
5

L=3x10
5

ε=0.0025

ε=0.0015

ε=0.0008

Figure 3.11: Study of U(t, σc, δ) with
increasing time steps for system sizes
105, 2 × 105 and 3 × 105. Disor-
der is kept fixed at δ = 0.1. The
black dotted lines show the analyti-
cal behavior according to Eq. 3.16
with ε = 0.0025, ε = 0.0015 and
ε = 0.0008 respectively. The envelop
of the curve increases as well as ε
decreases as we go to higher system
sizes.

where A =
a

2δ
. As U(0, σc, δ) = 1 its easy to see that U(1, σc, δ) =

(
1− ε

2δ

)
.

Repeating this recursively, we get

U(t, σc, δ) = 1− ε

(2δ − ε)
1− At

1− A
(3.15)

In above expression the higher order of ε is neglected. Using the expression of A we

get

U(t, σc, δ) = 1− 4δε

(2δ − ε)(6δ − 1)

[
1−

(
(1− 2δ)

4δ

)t]
(3.16)

In figure 3.11 we have compared the analytical expression of U(t, σc, δ) with the

numerical behavior. As higher order terms are neglected, the analytical result does

not tally with the numerical findings at large times. We will discuss this behavior

later in this chapter while discussing the numerical results.

Distribution for failure time

The failure time τf is the envelop of the U(t, σc, δ) vs t curve. We have determined

it numerically for different δ values. Numerically τf is estimated as the number

of redistributing steps through which the bundle evolves before global failure when

a critical stress is applied on it. In this paper, the results are shown for uniform

distribution of half width δ and mean 0.5 to assign individual thresholds of the
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Figure 3.12: The distribution for
failure time for different δ is fit-
ted with Weibull distribution with
shape parameter k and scale pa-
rameter λ. The numerical results
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fibers.

Figure 3.12 shows the distribution P (τ) of failure times τ at different δ val-

ues for system size L = 104. P (τ) follows the Weibull distribution: P (τ) =(
k

λ

)(τ
λ

)k−1
e
−
(τ
λ

)k
, where k and λ are respectively the shape and scale parame-

ter of the distribution. Larger the δ the distribution becomes wider. The Weibull

distribution of failure times in heterogeneous materials has been discussed before

[98, 99].

System size effect of failure time

Figure 3.13 shows the system size effect of the average failure time (τf = 〈τ〉) at

different disorder values. τf ∼ Lα for all δ with α as the exponent of the power

law. Above δc, α shows an universal behavior and remain constant independent of

δ. In vanishingly small disorder the model is bound to fail in redistributing step

independent of system size. As the model approaches this vanishingly small disorder

limit (δ → 0) the exponent α decreases. τf satisfies the following scaling behavior:

τf ∼ Lα


α = 1/3, δ ≥ δc

α = Φ−(δ), δ < δc

(3.17)
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Figure 3.13: System size effect of
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free behavior with system size (L) :
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where Φ−(δ) decreases with decreasing disorder values. For uniform threshold dis-

tribution with δ = 1
2
, the relaxation time at critical stress has been found before to

diverge as L1/3 [80]. At δc = 1
6
, the relaxation time also diverges as L1/3 [100].

3.3.2 Local load sharing scheme

For local load sharing scheme the behavior of relaxation time is quite different.

• The distribution of τf is also a Weibull distribution at different disorder values.

• The system size effect on τf is very different from equal load sharing scheme.

Here we do not find any signature of the disorder value separating abrupt and

non abrupt failure. At all disorder values: τf ∼ L.

3.4 Conclusion

• For equal load sharing fiber bundle model we get a brittle to quasi-brittle

like transition at a critical disorder value δc. Below δc the failuire is abrupt

and model gives linear response only. Beyond δc the model fails continuously

through a number of stable states.
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• System size effect of critical stress (σc) and abruptness in failure is seen for local

load sharing scheme. At high disorder σc goes as 1/ logL, whish was observer

earlier in fiber bundle model. At low disorder the critical stress rather falls

in scale free manner (∼ 1/L). We obtain a intermediate window of disorder

value where this transition/crossover of behavior takes place.
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Chapter 4

Effect of Stress Release Range

The effect of disorder on the failure mode has been discussed in previous chapter.

In this chapter will be discussing the effect of stress release range on fracture. Using

random fuse model as a simple prototype of the disordered solid, it has been shown

[101] that for finite disorder, the failure mode of the system, in the large system

size limit, is always nucleation driven and therefore abrupt. The stress is nucleated

around the largest defect and the defect grows in size until the the system fails.

The precursory events (scale free size distribution of rupture events prior to failure

etc.), previously seen in the model [102], were attributed to the transient effect,

implying these would not lead to the final fracture in the large system size limit.

The only exception is the limit of extreme disorder [103]. However, experimentally

such precursory features are observed (see e.g., [104]) for which the extreme disorder

is not necessarily the physical condition.

In this chapter, we ask the question: how the range of stress relief zone affects

the mode of fracture in disordered solids? This range is an intrinsic property of

the solid that depends on its elastic constants. We study fiber bundle model as a

prototype of disordered solids and show that if the range R, over which the stress is

released in unit time following a local rupture, is sufficiently large then the system
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shows scale-invariant precursory behaviour that survives even in the large system

size limit. In particular, we find that if R scales slower than a cut-off scale Rc ∼ Lζ ,

with ζ = 2/3, where L is the system size, the failure mode is nucleation dominated.

On the other hand, if R scales faster than Rc, the failure properties are dominated by

the mean field behaviour even in the L→∞ limit and with finite disorder. In this

case, local fiber ruptures are uncorrelated in space and the final failure is preceded

by precursory avalanches, of rupturing fibers, of all sizes. ζ can be identified with

the inverse of correlation length exponent. We apply the criterion to fiber bundle

model with power-law stress redistribution [105] and find the value of the exponent

in the power law that demarcates the two limits. This demarcation is also supported

by simulation results.

It is known that in one extreme limit of the model, where the failure of one

element affects the stability of all others equally, the failure mode is precursor driven

and the damage is diffused in the system in the sense that it occurs all over the system

in an uncorrelated manner. In another limit, where the failure of one element affects

only the element(s) nearest to it, the failure is nucleation driven [91, 106]. Both these

situations are, however, away from reality. The first case implies the absence of any

notion of distance in the system, hence excluding the concept of stress nucleation

altogether. The second limit indicates a very low elastic modulus, which is also

physically unrealistic. There have been previous attempts [105, 107, 108, 109] to

interpolate between these two extreme limits of the model, but they did not arrive

at any general criterion for which the crossover is observed.

4.1 Stress release range R in fiber bundle model

We take here a linear array of fibers and set a redistribution rule for the load of

a failed fiber such that the range over which the stress is redistributed has a scale
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R. We follow the rule, whereby, the load on a broken fiber is distributed uniformly

among the R successive surviving fibers (see also [110]) on either side of the broken

fiber. The system is loaded gradually until it fails completely. The disorder is

modelled by random failure thresholds of the fibers, which are drawn from a uniform

distribution in [0 : 1]. In one scan of the lattice (one time step), all fibers having load

more than their thresholds are broken. The load of these fibers are redistributed

according to the redistribution rule mentioned above. If the load on any one of these

neighbors exceeds threshold after redistribution, it is broken in the next scan. This

continues until no fiber is broken in a given scan. The external load is then increased

just upto the point when the weakest of the remaining surviving fiber breaks and

the above dynamics is continued.

4.2 Extreme limits of R

Consider the case when R is constant, i.e. it does not scale with the system size

L. This is a generalization of the usually studied local load sharing model (R = 1).

For threshold distributions that extend to zero (e.g., uniform distribution in [0 : 1]),

for an arbitrarily small applied load σ, there will be a large enough patch of length

m of successive broken fibers, such that the redistributed stress on its surviving

neighbours (R on either sides) will exceed the maximum threshold value (1 in this

case) [64] leading to the catastrophic failure of the system. It was shown that for

R = 1, σc ∼ 1/ lnL [64] where σc is the critical value of stress for which the system

fails. For arbitrary R, one would expect m ∼ R. But as long as R does not scale

with L, the qualitative behaviour is found (numerically) to remain the same.

A more interesting case is when the R is varied to see the effect on the failure

mode. Obviously, for R ∼ L, the load redistribution becomes global by definition

and the mode of failure is expected to be gradual with usual avalanche statistics.
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The question we intend to answer is: Does the scaling of the effective range have to

be as fast as linear to lead to global load sharing failure mode?

4.2.1 Cluster density

A signature of the global load sharing process is the uncorrelated failure of fibers

when load is increased. This leads to creation of new broken patches in the system

with the increase of load. On the other hand, onset of nucleation is essentially the

growth of one patch that engulfs all other patches, leading to the failure of the

system. An effective way to detect nucleation, therefore, is to monitor the number

Figure 4.1: The upper panel shows the variation of the stresses on the fibers in the
system with redistribution steps τ . The onset of nucleation can be seen from the
tip of the cone, beyond which one broken patch grows and the total number of
patch starts decreasing. The onset time gets shifted to a higher value as the stress
redistribution range R is increased ((a)-(c)) and expected to merge with failure
time in the global load sharing limit. The panel below ((d)-(f)) shows the variation
of average stress per fiber (〈σ〉; denoted by dotted lines) and number (np) of
patches (denoted by solid lines), scaled by system size, for corresponding R values.
The onset of nucleation (τn) is the point where the number of patch starts
decreasing and the stress per fiber saturates (at the critical value) until failure
point (τf ) is reached.

of broken patches in the system. The top panel of Fig. 4.1 shows the evolution

of the load per fiber with time (defined here as the number of load redistribution

70



step). As can be seen from Fig. 4.1 (a)-(c), for different values of R, upto the

onset of nucleation (tip of the cone), each fiber carries almost the same load. When

nucleation sets in, one single patch starts growing leading to the complete failure

of the system. As can be seen from the bottom panel, the time τn of onset of

nucleation is where the number of patches (scaled by system size) starts decreasing.

It is also the time when the load per fiber value becomes constant (implying that

to be the critical load). After many steps of load redistribution (each redistribution

considered here as one time step), the system finally fails completely at time τf .

4.2.2 Nucleation time

As the range of load sharing is increased, the nucleation and failure times approach

each other i.e., ∆τ = τf − τn decreases (see figure 4.1). While the order of these

events can not be reversed, they may come very close (up to a scale of critical relax-

ation time in mean field limit) as R increases, implying vanishing of the nucleation

mechanism. In Fig. 4.2 (inset) the variation of the time interval ∆τ is shown with R

for different system sizes. It shows a initial linear decrease, followed by a saturation

regime, which can be interpreted as the vanishing of nucleation mechanism. The

value of the saturation time depends on the system size. Repeating the study of ∆τ

for different system sizes we find an overall scaling form

∆τ ∼ LαF
(
R

Lζ

)
. (4.1)

Satisfactory data collapse is obtained for α = 0.33 ± 0.01 and ζ = 0.66 ± 0.01 (see

Fig. 4.2), which leads to the conjectured exact values as α = 1/3 and ζ = 2/3.

The scaling function F(x) has the form F(x) ∼ 1/x for x < 1 and F(x) becomes

constant for x ≥ 1.

Before interpretation of the consequences of such scaling form, let us try to
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understand the exponent values. For small values of R, the nucleation sets in from

the weakest patch, where the rest of the system is almost intact. The patch then

grows, breaking 2R neighbors on each step of redistribution, until the whole system

breaks. The time required for complete failure should be ∆τ ∼ L/vf , where vf is

the growth velocity of the fatal patch and it has to cover almost the entire lattice,

hence the numerator L. Now, as ∼ 2R fibers break in each step, vf ∝ R, giving

∆τ ∼ L/R. This is what is seen in the early part of the scaling. Now, the part

where ∆τ is independent of R, the failure mode is of global load sharing type, where

the relaxation time at the failure point diverges as ∆τ ∼ Lα, with α = 1/3 [80].

Therefore, for matching of the two scaling forms at the crossover one must have

Lα(R/Lζ)−1 ∼ L/R, giving α+ ζ = 1. Therefore, ζ = 2/3 as is also seen from data

collapse.

In brittle region since there are no stable states, the failure time (see chapter 3,

section 3.3) and ∆τ is same. Now from the study of failure time we get τf (or ∆τ) ∼

Lα, where α is constant for δ > δc and increases with δ in the region δ < δc.

Combining this result with ∆τ ∼ L/R at R = Rc, we get: Rc ∼ L1−α.

To understand the physical picture, let us consider the probability distribution of

stress values within the system. For a global load sharing model each fiber carry same

stress, hence the distribution function is a delta function. On the other hand, for

stress nucleation (and failure driven by it), the stress distribution function must have

a finite width that survives the large system size limit. The width depends on the (i)

the range R of the stress release in unit time (the width is narrower as R becomes

larger) and (ii) the fluctuation in the number of broken fibers, which contributes

in the increase of the width. The functional dependence of the width is expected

to be of the form ∆σ ∼ ∆N/R, where ∆N is the fluctuation in the number of

surviving fibers. Since we are approaching the mean field critical point, the relevant

fluctuation is the one seen near it. But it is known that the fluctuation in the
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Figure 4.2: The data collapse for the time difference ∆τ = τf − τn for different
system sizes L and for different range R as given by the scaling form Eq. (4.1).
The inverse decay marks the nucleation regime, which stops when R ∼ L2/3 and
global load sharing region begins. In this regime, ∆τ becomes R independent but
depends on L (as can be seen from the inset). The initial collapsed region in the
inset confirms the dependence ∆τ ∼ L/R in the nucleation regime, and the lines
spreads out as soon as global mode starts dominating.

fraction of surviving fibers (over the disorder configurations) scales as ∆Uc ∼ L−1/3

[108, 111], thus the fluctuation in the number will scale as ∆N ∼ L2/3. Therefore

∆σ ∼ L2/3/R. Hence ∆σ retains a finite value in the large system size limit only

when R = Rc ∼ L2/3 (which is seen from the scaling relation Eq. (4.1)). For

R > Rc, the stress distribution is narrow, which corroborates to the absence of

stress nucleation. This sets the scaling criterion for nucleation.

4.2.3 Avalanche size distribution

The phrase ‘large system size limit’ is very important in the context of the scaling

of Rc, since for a given choice of (R,L) the system may show scale free avalanche

distribution, which may go away for large system size L > R3/2 when the fracture

mode becomes nucleation dominated. As can be seen from Fig. 4.3 (a), when the

system size is small, for a given R, τn and τf are very close. In that region, the
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Figure 4.3: The top figure (a) shows the variation of the onset time for nucleation
τn and failure time τf with system size L for two values of R. For small system
sizes and bigger R value, the two times are very close to each other. In this region,
mean-field ‘critical behavior’ can be observed. For fixed R value, this ‘criticality’
will not survive in the large system size limit. The figure at the bottom (b) shows
the avalanche size distribution for fixed R value (100) while the system size is
increased. For L = 103, the ratio R/L2/3 = 1, putting the system in the critical
regime where P (S) ∼ S−2.5. But for L = 104 and L = 105 the ratio becomes
≈ 0.215 and ≈ 0.046 respectively. The avalanche size distribution in the last two
cases deviates from the above scale free distribution.

avalanche size distribution (Fig. 4.3 (b)) and other related quantities shows mean

field behavior. But as the system size is increased, the critical behavior goes away.

This is similar to the ‘finite size criticality’ mentioned in Ref. [101]. However, in our

case we can tune the range of stress release and the mean-field like critical behavior

survives in the thermodynamic limit provided the range R increases sufficiently fast

(although sub linearly) with system size.

4.3 Scale free stress redistribution scheme

We expect that the scaling given by Eq. 4.1 is valid for other forms of load redistri-

bution where one has a characteristic length scale. We have checked this for several

cases such as exponential decay, linear decay etc. of stress redistribution. An inter-

esting question is what happens for a ‘scale free’ redistribution rule, e.g power-law

redistribution? In this case, the load redistributed on the j-th fiber after the failure

of i-th fiber is proportional to 1/|i − j|γ [105]. The distribution is not truly scale
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free, because it has two cut-offs, viz the lower cut-off due to lattice spacing (which

we take as unity) and a upper cut-off due to finite system size.

4.3.1 One dimension

A quantity ‘average range of interaction’ will interpolate between two extremities,

ELS and LLS scheme, as γ is tuned. Remembering the normalization A
L∫
1

dx/xγ =

constant, one can always calculate the average (effective) length of interaction as

Reff = 〈x〉 ∼ 1−γ
2−γ

L2−γ−1
L1−γ−1 . Clearly for γ < 1, Reff ∼ L for large L. Also, Reff →

constant for γ > 2 implying nucleation scenario with fixed ranged interaction. But

for 1 < γ < 2, Reff ∼ L2−γ for L→∞. According to the scaling argument presented

above, the critical value of the exponent γc for which the failure behavior crosses

over from nucleation to global load sharing mode is to be given by 2 − γc = 2/3

or γc = 4/3. In support of this claim, in Fig. 4.4 we have shown the behavior of

critical load σc for fracture for various γ values. It is seen that for γ > γc = 4/3,

σc ∼ 1/ lnL, which is similar to what we see in the nucleation regime for uniform

load redistribution among R neighbors with R/L2/3 → 0 as L → ∞. On the other

hand, σc saturates to a non-zero value when γ < 4/3, as is expected in global load
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sharing scheme.

4.3.2 Two dimension

In two-dimensions, to introduce the notion of range, we search along positive and

negative x and y axes from the broken fiber and go up to a distance x+, x−, y+ and

y− until R surviving neighbors are found. We then redistribute the load within the

rectangular region (x+, y+), (x−, y+), (x−, y−), (x+, y−). Of course, there can be

other choices, for example a circular region of radius R. While that could work well

for higher values of R, but for smaller values there could be situations where there

were no surviving fibers within that region. Moreover, such details are unlikely to

affect the scaling behavior, which is also evident from the fact that our prediction

matches well with power-law load redistribution studied in Ref. [105].

An important result is when we perform the same treatment system size effect

of stress release range in two dimension: Rc ∼ Lb with b < 1(= 0.85). This has

an interesting consequence when power-law load sharing is done. In this case, the

fraction of load received by an intact fiber at a distance r is proportional to 1/rγ

[105]. Here one can define an effective range as Reff = 〈r〉 =
L∫
1

rP (r)2πrdr =

2−γ
3−γ

L3−γ−1
L2−γ−1 , where P (r) ∼ 1/rγ. For γ < 2, Reff ∼ L, implying mean-field regime.

Also, for γ > 3, Reff ∼ const., therefore it is always local load sharing type.

However, for 2 < γ < 3, Reff ∼ L3−γ in the large system size limit. Since Rc ∼ Lb,

to get the crossover value for γ we have to compare Reff (γc) ∼ Rc, giving γc = 3−b.

But b < 1(= 0.85), giving γc > 2(2.15). This explains an apparent result for γc > 2

[105], which can now be claimed with much more numerical accuracy.
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4.4 Effect of range in spring ladder model

We have carried out this study with varying range to another model in fracture, the

spring ladder model. We have already discussed spring network model in chapter 2.

Spring ladder model is basically spring network model with following modifications:

F

ka

ks

ks

(a)

ka

ka

F

(b)

Figure 4.5: The spring ladder model with external force F applied on the lower layer
nodes (a) before breaking of a spring and (b) after breaking of a spring showing the
deformed network.

1. The dimension of the bundle is L× 2 instead of L× L.

2. The horizontal springs have infinite threshold and hence not allowed to break

on application of external stress. Only the vertical springs have random finite

threshold.

3. Force is applied along +ve and −ve y-direction. Along +ve and −ve x-

direction periodic boundary condition is applied.

Basically by replacing the the fibers in fiber bundle model with Hookean springs

we can construct this spring ladder model. By using an angle potential between

connected springs, the nature of redistribution can be localized or distributed de-

pending on the stiffness of the angle potential. Here a ladder shaped spring network
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is simulated under load control conditions. The results analyze the effect of vary-

ing load redistribution on the fracture characteristics. The different fracture modes

exhibited by the model are analyzed.

The behavior of the system with varying angular elastic constant kα is studied.

Various characteristics of the system, as it evolves to a critical point, are analyzed.

Comparing our results to the characteristics of ELS and LLS fiber bundle models

we get the two extreme limits of the model with varying kα values.

4.4.1 Simulation technique

The model is a spring ladder with two rows of horizontal springs connected by

vertical springs at nodes as shown in Fig. 4.5. The number of vertical springs,

L, denotes the size of the system. The springs are Hookean with the potential,

EB = ks × (ri − r0)
2. Here r0 is the distance between two nodes connected by

a spring, when no external force acts on the system. Initially all the springs are

equally spaced with r0 = 1. ri is the length of the spring i at any given instant

during the simulation. The force constant ks is equal to 0.1. The relative movement

of springs connected at a given node is governed by an harmonic angle potential,

EA = kα × (α− α0)
2. At the initial configuration of the system, the angle between

springs connected at a common node, α0 is at 90 degrees. The angle force constant

kα, determines the extent of deflection between two springs for given conditions of

loading. This parameter is the most crucial to the present study and its value is

varied over a wide range, as will be detailed in the next section. The Hamiltonian

of the system can hence be given by : H = 1
2

∑
(ks(r − r0)2 + kα(α− α0)

2).

The system is loaded by adding a force with only a y-component, F to every

node on the lower layer. At every iteration, the resultant force fi at each node

i is estimated and the dynamics of the node is determined by solving fi = miai
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using the velocity varlet algorithm. The mass mi at node i is taken as unity and

ai is the acceleration. The integration time step δt is fixed based on the maximum

of the force carried by the nodes such that the value of δt × max(fi) is of the

order of 10−4. The vertical springs are each assigned a random breaking threshold,

uniformly distributed with width ρ = 1.0. A spring is assumed to break and removed

from the system when the threshold is exceeded. The horizontal springs are not

allowed to break during the course of the simulation and they act as the mode

through which load transfer is effected in the network. The displacement of the

nodes at the top layer in the y-direction is not allowed. Periodic conditions are used

in the x-direction to account for boundary forces. To ensure quasi static loading

conditions, the imposed external force is just enough to break the weakest spring.

The system then evolves by redistributing the load among the remaining springs

until the resultant force of the system in the x and y-direction is zero. In other

words the system reaches equilibrium. As shown in Fig. 4.5(b), where a vertical

spring has failed, the node in the bottom layer experiences force imbalance causing

a deflection in the horizontal springs. The extent of this deflection is governed

by the value of kα, which in turn governs the y-component of the force added to

the neighboring nodes by the deflection. After the system reaches equilibrium, the

applied force F , is incremented to cause the next failure. The failure of a single

spring may lead to a cascade of breaks due to redistribution. The external force

increments are continued till the system reaches a critical state beyond which the

system evolves to complete failure with successive breaking springs.

4.4.2 Abruptness in failure process

The fraction of unbroken springs, Uc, at the critical point is estimated at different kα

values. In the LLS case, the weakest fiber breaking can lead to subsequent breaking

of all the fibers, giving Uc=1. In the present study the average value of Uc is given
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in Fig. 4.6 at different kα values. Three distinct regions can be observed. At low

kα values, where more localized load distribution is observed, the Uc values exhibits

an almost plateau value of 0.85. At the other extreme of high kα, another plateau

like limit is reached at 0.55. In between these two regions, a transition region is

observed. This transition from a nucleating to percolation behavior will be explored

in detail below.
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Figure 4.6: Variation of fraction of unbroken springs,just before the global failure,
with kα values for system sizes 103, 5×103 and 104. For low kα, Uc is quite high and
the failure process is abrupt. At high kα values the result matches with the existing
results of ELS fiber bundle model.

Analyzing the reasons behind the limiting plateau like behavior at both extremes,

the following observations are made. With decreasing kα, once the maximum de-

flection that can be achieved near a broken fiber is reached any further decrease

in kα make no impact on localization. In the case of increasing kα eventually ELS

behavior is expected. But with deformation it is observed that instability sets in.

This adds an imposed localized behavior on the system which prevents a pure ELS

critical point. The instability phenomena can be avoided by imposing external con-

ditions on the system. Though not addressed here, this would then lead to ELS

value of 0.5. Another point to be noted is that the limiting values of 0.85 and 0.55

are variable when the width of the disorder distribution varies. The nature of defor-

mation evolution, is determined by comparison with probability curve for random
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breakage of fibrils [100].

4.4.3 Randomness in rupture event

Fig.4.7 shows the variation of patch density with fraction of broken springs. U is the

fraction unbroken. A patch is defined as broken spring accompanied by a unbroken

one at its nearest neighbor. If we assume that the rupture of springs are random,

then patch density will be given by U(1− U). This is the random fracturing curve

(inverted parabola) shown in figure 4.7. It is observed that at high values of kα, the

random behavior curve is closely followed by patch density. In the case of low kα

(≈ 0.001), the system behavior deviates from the random curve even when very less

fraction of the spring is broken. This indicates the onset of localized dynamics. For
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Figure 4.7: The number of clusters per site is plotted with increasing fraction of
broken springs (1 − U), for kα values 10−3, 10 and 104. The behavior is compared
with the random fratuaring event on a 1d chain.

low kα value the number of clusters per site is constant even when the fraction broken

increases. This indicates that the pre-existing clusters are growing in size. In the

intermediate value of kα = 10, a combination of random breaks and localized breaks

are observed with the deviation from random curve at a much higher fraction of

broken fibers. Above study clearly shows that the deformation characteristics shifts

from a nucleation dominated to percolation dominated with increase in kα.
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4.4.4 Avalanche size distribution

An important characteristics of fracture process is the nature of avalanche size dis-

tribution of broken springs. While the equal load sharing model was analytically

proven to exhibit a power law statistics with a exponent value of 2.5 [64], the local

load sharing models were found to have a varying exponent value dependent of the

strength distribution and the size of the sample. They found that for uniform distri-

bution, a typical value of 4.2 - 5 was obtained from simulations of different sample

sizes [87]. It would be of interest to study the effect of the load sharing method-

ology adopted in this work on avalanche distribution. The avalanche statistics at

the limiting stages of nucleation and percolation exhibit exponent values of 4.8 and

2.5 respectively as seen in Fig 4.8. The value of 4.8 matches the value reported

by Ref. [87]. The samples in the transition zone however depict a mixed response,
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Figure 4.8: The avalanche size distribution at different kα values. The exponent of
the power law behavior is seen shifting from the ELS value of 2.5 to a LLS value of
4.8 as kα decreases.

where the small size range follows LLS characteristics and the large size range fol-

lows ELS characteristics, with the intermediate size range exhibiting a flat profile

with no power law behavior. As seen in Fig 4.8, as the value of kα increases, the size

ranges exhibiting LLS statistics and flat profile decrease in width. The size range

exhibiting ELS statistics increases until at very high kα complete ELS behavior is
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observed. Thus the limiting cases of the model though not exactly having ELS and

LLS university class values for the critical fiber fraction, exhibit the exponent values

for avalanche distribution similar to ELS and LLS.

The effect of varying load redistribution is investigated in spring ladder model.

The limiting cases for the system are identified as the fracture mode changes from

nucleation dominated to percolation dominated. The characteristics of the system

at the limiting case as well as at the intermediate states are studied using the

avalanche size distribution. The exponents of avalanche distribution exhibit the

same university class as that of ELS and LLS fiber bundle models at very high and

low kα values respectively. But at the limiting states the system only tends towards

the these cases and does not replicate exactly.

4.5 Conclusion

• Fiber bundle model shows a transition from correlated/nucleating failure to

uncorrelated/percolating failure around a critical range value Rc. This Rc

scales with system size as ∼ Lζ . The value of ζ is 2/3 and 0.85 respectively

for 1d and 2d fiber bundle model.

• Also spring ladder model shows a transition, from nucleation dominated to

percolation dominated failure process, with variation of angular spring con-

stant as an external parameter.
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Chapter 5

Interplay of Stress Release Range

and Disorder

We have already seen in previous chapters that disorder and stress release range has

their effect in fracture process. In one hand, disorder takes care of the abruptness in

failure process and on the other hand the stress release range deals with the rupture

pattern: nucleating or percolation. At this point we can address the question :

‘What will be the scenario if both the stress release range and disorder is tuned

simultaneously ?’

In this chapter, we report a general phase diagram with the variation of stress re-

lease range and strength of disorder that captures all failure modes arising out of the

interplay between those two parameters. In particular, we consider the fiber bundle

model, which has been widely used as a generic model for disordered system over

many years. With the help of the phase diagram we can now identify all its modes

of failure, classify previous attempts to interpolate between some of those modes

and most importantly arrive at scaling prescriptions in categorizing and predicting

such failure modes.
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5.1 Description of the model

Here we simulate the failure in fiber bundle model in one and two dimensions. Notion

of the stress release range and disorder in fiber bundle model is already discusses in

chapter 3 and chapter 4. Here we choose the failure thresholds of the fibers from

a distribution of the form p(x) ∼ 1/x within a range [10−β : 10β]. For high values

of β, the distribution becomes very broad, making the system a highly disordered

one. Physically, this implies varying degree of impurities in the system, that can

significantly influence its failure threshold. Following the failure of a fiber, should the

load on it increase above its assigned threshold, the load is redistributed uniformly

up to a distance R. We will first describe the phase diagram to explain its different

phases. Subsequently we will discuss the methods of drawing the boundaries and

relate them to previous results obtained in the model.

5.2 Description of the phases

Below, the description of all the phases are given with continuous variation of range

R and disorder δ is given. For low values of R and β, we expect a nucleating failure,

since the failure of a fiber will enhance the stress on its immediate neighbors. They

will in turn become most likely to fail, because all fibers have failure thresholds

close to each other. The initial damage will grow until the whole system collapses.

So, in this limit the failure is both nucleating and brittle like abrupt. This damage

nucleation can be prevented by either redistributing the load of a failed fiber in a

relatively large distance, or by increasing the disorder such that the nearby fiber

can have high failure threshold which compels distant fibers to fail first. Clearly,

simultaneous effect of these two will bring the system to spatially uncorrelated failure

even faster. When the disorder is small, all fibers have very similar failure threshold.

Hence the failure of the weakest fiber will trigger an avalanche that will lead to failure
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of the entire system. This brittle like failure mode is distinct from a quasi-brittle

or ductile failure mode by the fact that in the latter cases the system goes through

many stable states before it fails completely. The phases on R − β plane that we
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Figure 5.1: The figure shows all the regions on R − β plane for 1d chain and 2d
bundle. B and D are brittle region and shows abrupt failure. A and C shows quasi-
brittle response. In region A and B the rupture process is correlated. In region E,
there are no avalanches and the fracture process is percolation like random.

get with continuous variation of range and disorder is discussed below:

• Brittle nucleating (B) : This region falls in the low R and low β region.

Due to low β, all the fibers have threshold values very close to each other.

This basically increases number of redistribution and makes the failure process

abrupt. On the other hand since range is also kept low, the stress can not

redistribute very far from the broken fiber. As a result, after redistribution,

the next failure is expected to happen from the neighborhood of the broken

one. Failure process in this region is both nucleating and abrupt.
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• Brittle percolating (D) : At low disorder and high range the failure is still

abrupt but loses the correlation in rupture process. The fibers break randomly

but without any precursory event. During the failure process it only gives a

avalanche equals to the system size when a minimum stress corresponding to

the weakest link is applied on it.

• Quasi-brittle nucleating (A) : We get this region for low R but interme-

diate disorder value. Due to increment in disorder the thresholds of the fibers

become distant to each other and we have to increase the external stress to

break the bundle. The model goes through a number of stable states prior to

complete failure. Though, the model breaks through a series of stable states,

the rupture events are still correlated and bundle breaks through a nucleating

crack.

• Quasi-brittle percolating (C) : We observe this region at intermediate

disorder and high range value. The rupture process is random here. Also a

continuous external triggering of applied stress is required to break the model.

Only in this region the model shows scale free avalanche distribution with

exponent −5/2. This is the mean field limit of the model which has been

explored the most in the literature.

• High disorder regime (E) : We get this region at very high disorder value.

In this region the failure is always random no matter what the range value

is. Also the failure process is non-abrupt and only guided by external stress

increment. As a result no avalanches are seen in this region.

Basically the failure processes in these above mentioned regions are combination

of abrupt/non-abrupt as well as correlated/uncorrelated failure.
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5.3 Study of the phase boundaries

Above we have already discussed the failure processes and there properties in differ-

ent regions on R−β plane. In this section we will discuss the criteria and numerical

approaches through which the boundaries of these regions are drawn.

5.3.1 Boundary between nucleating and percolating failure

In the phase diagram, the region A and B together shows correlated rupture process

and the failure is nucleating. On the other hand in region D, C and E the fracture

process is percolating. The boundary, we are interested in, separates the region A+B

from region C + D + E. To draw the boundary between the region of correlated

and uncorrelated failure process, we looked at spatial correlation in terms of number

of clusters, np, formed by broken fibers. In one dimension, the number of clusters

of broken fibers is simply the number of side by side broken and unbroken fibers

present. For two dimension, we compare our results with 2d random site percolation

problem [112].

Study of patch density

If U is the fraction of surviving fibers at any point, then for complete random failure,

the number of side by side broken and unbroken fiber will be U(1−U) (normalized by

system size). Any deviation from this inverted parabolic shape would then indicate

spatial correlation. We measure the difference of the areas under the curves and

when that disappears we can conclude that the spatial correlation has vanished. As

discussed before, for high R and β values the spatial correlation will vanish. For

intermediate disorder it is known [76] that the crossover to random failure takes place

when Rc ∼ L2/3. That result is confirmed from this result as well. But for very low

(scaling is non-universal [113]) and very high disorders (always uncorrelated) the
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Figure 5.2: The variations of density of patch np are shown for (a-c) constant range
and different strength of disorder (β) and for (d-f) constant strength of disorder and
different ranges with fraction of broken fibers (1− U) in one dimension.
1d model: It can be seen from the left panel that for both high range and high β
values, the curves merge with the inverted parabola U(1−U) expected for completely
random failures.
2d model: In 2d model the reference for random fractuaring is set by the two
dimensional random site percolation problem. Our results are then compared with
it.

situations are different. For two dimensions the situation is qualitatively similar.

But the general shape of the curve for random failure is not known. However, there

are many numerical studies in terms of random site percolation (see Ref. [112] and

references therein) that looks at density of patches under random occupations.

Compression of areas under np v/s U for different ranges

We already know that, for random failure process on a 1d chain the probability of

having a patch will be given by U(1− U). So, the area under the np v/s 1− U for

such uncorrelated failure is:

A =

∫ 1

0

U(1− U)dU = 1/6 (5.1)

Any daviation of area from this above mentioned value will signify correlated and

nucleating failure. Here we study the area A under the np v/s U curves. Area A

becomes independent of R and approaches 1/6 as we go to higher range value. In
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evident.

this limit we can say the mean-field regime is reached. This measure again gives

a crossover scale Rc. At a particular β value we increase the range R and keep

observing the area under np v/s 1 − U curve. At a particular β, Rc is the range

value for which (1/6− A) < 10−3.

5.3.2 Boundary between abrupt and non-abrupt failure

The regions with abrupt or brittle like failure (B and D) and non-abrupt or quasi-

brittle like failure (A and C) can be separated by noting but the fraction of surviving

fiber Uc just before the global failure. When Uc = 1, the failure is abrupt as the

breaking of the first fiber leads to complete breakdown of the system. When Uc < 1,

the failure is no longer abrupt. We keep the R fix (for R > Rc or R < Rc) and

set the disorder at a low value. This gives Uc = 1. Now if we increase the disorder

slowly then a point on the boundary is constructed by such a disorder value above

which Uc < 1. Repeating this study for different R values we obtain a boundary

that separates both nucleating and percolating failure region into two parts each:

brittle and quasi-brittle.

Now, part of this line in the region R > Rc, that separates region D from region
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C, does not depend on system size, since it is in the mean-field regime (note that

non-abrupt failure occurs much before complete uncorrelated failure in the large β

region). A transition from brittle to quasi-brittle region occurs across this part of

the boundary [100, 114] (See chapter 3 subsection 3.1.1).

The part of the boundary in the region R < Rc, separating region B from region

A, is system size dependent. This line moves to higher value as we go to higher

system size (See chapter 2 subsection 3.1.2), increasing the amount of brittle region.

5.3.3 Boundary of high disorder regime

One of the universal behavior that fiber bundle model shows in quasi-brittle mean

field limit is the scale free distribution for avalanche with an unique exponent value

−5/2. This falls in the region C of the phase diagram. By keep increasing disorder

value we can reach the high disorder limit (region E). At very high disorder the

threshold of the fibers are very distinct from each other. So, hardly any avalanches
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takes place in this region. For R > Rc, we have started from a disorder value in

region C and keep increasing. The boundary is formed by all those disorder values
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beyond which the model deviates from the universal scale free nature of avalanche

distribution.

Another way of looking into this boundary is studying the scaling of Rc with

system size. As discussed in chapter 4, we find Rc ∼ L1−α, where α has a constant

value 1/3 in quasi-brittle (intermediate disorder) region. As shown in figure 5.5,

Rc ∼ L2/3 up to β = 0.5. Beyond this disorder as the model entries the high
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Figure 5.5: Scaling of Rc with system size is observed at different disorder values.
As we cross the boundary of high disorder region, the scaling deviates from L2/3

(see chapter 4). At very high disorder Rc comes to a very low value and becomes
independent of L.

disorder region, the exponent changes towards zero value and gradually Rc becomes

independent of system size. In this high disorder limit the failure process is always

random (Rc is very small) irrespective of range as well as system size is.

5.4 Conclusion

Using the criteria outlined above, we arrive at the quantitative phase diagram for

fiber bundle model in one and two dimensions (see Fig. 5.1). Almost all the studies

in fiber bundle model fall in some point of this phase diagram. The most studied

region being the region C, which is also historically the earliest. Subsequently region

A was studied, which is qualitatively different from region C in the sense that we

92



no longer observe scale free avalanche statistics here. The region B and D shows

abrupt failure and thus experimentally not that accessible. This two regions (B

and D) are only separated in terms of spatial correlation of rupture events. Finally

we come to region E at high disorder limit where hardly any precursory activity is

seen. The failure process in this region can be compared with random percolation

events. In conclusion, we provide a framework in fiber bundle model to incorporate

previous studies of different phases and the crossovers and transitions between them

by providing a scaling criterion.
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Chapter 6

Discussions on the thesis work

We have seen that disorder and stress release range have their effects in fracture

process in statistical mechanical models namely fiber bundle model and spring ladder

model. Disorder is introduced in these models as fluctuation of local strength of

individual elements. In fiber bundle model range is defined as number of fibers that

carries the load due to rupture process. In spring ladder model the angular spring

constant takes care of the range in the model.

In mean field limit (equal load sharing scheme) at low disorder (δ) the failure

process is abrupt like brittle materials and does not show any plastic region in

the response curve. With increasing δ value we get a critical disorder δc around

which the model shows a brittle to quasi-brittle like transition. Above this critical

disorder the model shows precursory events during failure process. Critical behavior

of δc is studied through the divergence of relaxation time and scale free behavior

of avalanche size distribution. In local load sharing case the system size (L) effect

comes into the play and the strength σc decreases with increase in L. At high

disorder σc ∼ 1/ logL. on the other hand at low disorder σc ∼ 1/L, following the

weakest link of the chain algorithm. We characterize a disorder window within which

this change from scale free behavior to inverse logarithmic behavior occurs.
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Change in stress release range changes the rupture pattern during the failure

process. In fiber bundle model we have shown that increase in stress release range

makes the rupture pattern of individual elements uncorrelated. There is a critical

range value Rc around which the spatial correlation vanishes. Rc ∼ L1−α. For

δ > δc, α = 1/3 and our findings matches with the literature. For δ < δc, α is an

increasing function of δ and above scaling exponent changes with disorder. In spring

ladder model, the range is controlled through the angular force constant kα. With

increasing kα value, the correlation in rupture process vanishes gradually.

Now if we tune both the disorder (β, in case of power law redistribution) and

range (R), it is expected to get failure process which will be combinations of abrupt/non-

abrupt and correlated/random failure. By tuning both range R and disorder δ, we

have shown all 5 regions that can be found for fiber bundle model on R − β plane.

In different regions we get the following failure processes: (a) brittle nucleating (cor-

related and abrupt failure), (b) quasi-brittle nucleating (correlated but non-abrupt

failure), (c) brittle percolating (random and abrupt failure), (d) quasi-brittle per-

colating (random and non-abrupt failure), (e) high disorder limit (failure without

showing avalanches).

As an outcome of the thesis, we have worked mainly in fiber bundle model

with varying disorder and stress release range, characterizing different regions with

unique failure process. A tensorial approach through spring ladder network is also

performed with varying angular force constant, which is the key parameter to con-

trol the stress release range. We have characterized different modes of fracture

development (brittle or quasi-brittle fracture, avalanche dynamics etc.) and frac-

ture morphology (nucleating or percolating) for different values of disorder strength

δ (or β) and stress release range R in fiber bundle model. We have compared our

results with the known observations in random resistor network and random spring

network.
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