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Synopsis

Complex networks of interacting components are seen across a broad range of spatio-
temporal scales in biology – from the levels of molecules and cells to that of ecosys-
tems. Two examples of such systems are the intra-cellular signaling network (comprising
molecules such as kinase proteins, second messengers, cell-surface receptors, etc.) and
the immune system (comprising cells that coordinate the immunological response of the
body, such as T-cells, B-cells, etc.). The aim of the thesis is to obtain a clearer under-
standing of aspects of the dynamical evolution of such systems using modelling and data-
analysis techniques. As both of the biological networks mentioned above are involved
in functions that are vital for the continued survival of an organism, explicating the dy-
namical processes underlying their behavior may play a crucial role in developing better
and/or more effective treatment of diseases arising through disruptions of these networks.

In Chapter 1 we begin with a short overview of the literature on intra-cellular signaling
pathways, as well as immune networks. We discuss the biological networks in the post
translational levels ranging from the single cell intra-cellular network to cell-cell com-
munication networks. We also focus on various biological roles of MAPK cascade and
how decision making at the level of a single cell is shaped by the temporal responses of
this pathway. A different level of complexity is seen when one moves from the scale of
molecular communication within a single cell to that of inter-cellular interactions which
is seen, for example, in the immune system. We briefly review the literature that pertains
to the development of the immune system as it evolves over the life-time of an individual.

In Chapter 2 we consider the mitogen-activated protein kinase (MAPK) signaling cas-
cade, an evolutionarily conserved motif present in all eukaryotic cells. Intra-cellular sig-
naling networks coordinate the entire range of biological processes that are necessary for
the cell to provide appropriate responses, even in the presence of a high degree of noise,
to a wide variety of environmental signals. As a breakdown in communication between
different members of this network leads to pathological outcomes, it is important to under-
stand the underlying processes that allow robust information processing in the system. An
ubiquitous component (motif) of the signaling network is the MAPK cascade, comprising
the three kinase proteins, viz., MAPK, MAPK-Kinase (MAP2K), and MAP2K-Kinase
(MAP3K). This signaling pathway is found to exist in all eukaryotic cells, and is involved
in many critical cellular functions including cell cycle control, stress response, differen-
tiation and growth. Its crucial importance for the proper functioning of an organism is
underscored by the fact that it is affected in many diseases including cancer, auto-immune
disorders and degenerative syndromes, thereby making it an important drug target. The
basic linear cascade dynamics involves regulation of the activity of the MAP3K protein
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by an upstream signal. On being activated, MAP3K acts as the enzyme for activating the
MAP2K protein, which in turn controls the activation of the MAPK protein. The activated
MAPK is known to be involved in many functions, such as the initiation of transcription
of genes or stimulating the activity of other kinases.

While the steady-state behavior of the MAPK pathway stimulated by a time-invariant sig-
nal is relatively well-understood, we show using a computational model that it exhibits a
rich repertoire of transient adaptive responses to changes in stimuli. When the signal is
switched on, the response is characterized by long-lived modulations in frequency as well
as amplitude. On withdrawing the stimulus, the activity decays over time-scales much
longer than that of phosphorylation-dephosphorylation processes, exhibiting reverbera-
tions characterized by repeated spiking in the activated MAPK concentration. The long-
term persistence of such post-stimulus activity suggests that the cascade retains memory
of the signal for a significant duration following its removal, even in the absence of any
explicit feedback or cross-talk with other pathways. We find that the molecular mecha-
nism underlying this behavior is related to the existence of distinct relaxation rates for the
different cascade components. This results in the imbalance of fluxes between different
layers of the cascade, with the repeated reuse of activated kinases as enzymes when they
are released from sequestration in complexes leading to one or more spike events follow-
ing the removal of the stimulus. The persistent adaptive response reported here, indicative
of a cellular "short-term" memory, suggests that this ubiquitous signaling pathway plays
an even more central role in information processing by eukaryotic cells. In addition, we
consider the dependence of the reverberations on the concentrations of the kinases and
phosphatases, as well as on the variations of individual parameters. This allows us to
establish the robustness of the results reported here, which is essential for future experi-
mental validation.

Nonlinear systems driven by recurrent signals are known to exhibit complex dynami-
cal responses which, in the physiological context, can have important functional conse-
quences. In Chapter 3 we consider response of the MAPK cascade to a periodic train
of pulses. The resulting response of the cascade, which shows integrative capability over
several successive pulses, is characterized by complex adaptive behavior. Depending on
circumstances, periodic stimulation can result in an enhanced response (sensitization) or
a diminished one (adaptation). We also observe responses characterized by alternate high
and low MAPK activity, or an attenuated response even for strong stimuli. The ensemble
of these responses provides a basis for signal integration and non-associative learning by
the cellular signaling network. Learning is usually associated with multi-cellular organ-
isms, e.g., those possessing a nervous system. However, our computational study shows
that simpler forms of learning may appear in more rudimentary systems - as simple as
the canonical MAPK motif at the level of a single eukaryotic cell. Taken in conjunction
with previous analogies made between the intra-cellular signaling network and the ner-
vous system, our study provides an intriguing perspective on how this signaling cascade
can “remember” and “learn” even in the absence of any explicit feedback or cross-talk
with other pathways. As the MAPK signaling motif is involved in crucial cellular func-
tions in all eukaryotic cells, the potential consequences of such emergent memory and
adaptive response are far-reaching. In addition, the existence of a response threshold of
the cascade, an apparent refractory behavior following stimulation with short inter-pulse
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interval, and an alternans-like response under certain conditions suggest an analogy with
excitable media.

In Chapter 4 we move from the intra-cellular to the inter-cellular scale and consider a dif-
ferent type of adaptive complex system, viz., the immune system. A salient characteristic
of the human immune system is that it adapts over time in response to foreign antigens
and distress signals. The immune system of a child not yet born would have little expe-
rience of the factors that can stimulate it, which manifests in the relative insignificance
of memory cells. Adults, in contrast, are more likely to have had considerable exposure
to a plethora of signals that activate the immune system. Consequently, the cellular com-
position of the adaptive component of the system will be expected to differ significantly,
in particular in terms of possessing a significant complement of memory cells. In addi-
tion, correlations between different immune system cell-types are established over time
as a result of their interactions. In this chapter, we investigate the genetic, environmental
and developmental signatures of the functional network inferred from the correlations by
analyzing the populations of various cell types in both umbilical cord and adult blood
samples. We find that the latter exhibits a higher degree of correlation in the proportions
of cells of the adaptive immune system, suggesting a strong role played by maturation in
the evolution of the system. Our analysis validates several correlations between different
cell types that have been alluded to in the literature and also suggests a few previously
unreported relations. The results reported here have been explicitly verified to be not
severely affected by the sizes of the samples investigated. The empirical data used for our
analysis has been provided by Dr Vineeta Bal (National Institute of Immunology, New
Delhi).

We conclude in Chapter 5 with a summary and general discussion of the implications of
our results. We also briefly outline possible future extensions of our studies presented in
the thesis.
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1

Introduction

Biological systems have an astounding ability to adapt to their environment, adjusting

their response to stimuli over time [1]. The phenomenon wherein repeated exposure of

such systems to stimulation eventually results in the alteration of their response is often

referred to as learning and usually associated with multi-cellular organisms, e.g. those

possessing a nervous system [2–7]. In general, the capacity to ‘remember’ previous expe-

riences and ‘learning’ from them in order to alter subsequent responses is a key survival

trait in the animal kingdom [8]. Such capabilities have been investigated in several model

organisms, such as the sea slug Aplysia, by neuroscientists. It is observed that when

Aplysia is exposed to a light tactile stimulation, for example, by a gentle touch, it show

only a weak manifested in siphon and gill withdrawal. However, if the stimulus is paired

with a strong electrical shock to its tail, it results in a marked defensive reflex. Following

a few trials it is seen that the touch alone can evoke an enhanced siphon and gill with-

drawal reflex [9]. This association is seen to emerge relatively fast (within 15 trials) and

last for several days. It can therefore be seen as an instance of classical conditioning, a

form of associative learning, with the touch stimulus as the conditioned stimulus and the

electrical shock as the unconditioned one [9–11].

Rudimentary forms of learning have been seen even in organisms which do not possess
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neurons [12, 13]. Even single-celled organisms can exhibit adaptation in response to

changes in their environment - which is distinct from evolutionary changes occurring over

a long time-scale involving several generations such as in bacteria developing antibiotic

resistance [14]. For instance, a simple form of habituation has recently been identified in

the single-celled protist Physarum Polycephalum (popularly known as slime mold) which

traces back the origin of learning in biological systems to much earlier evolutionarily

time-scales (almost 500 million years ago) than previously believed [13]. Habituation

refers to phenomenon where the behavioral response to a stimulus diminishes when the

organism is repeatedly exposed to the stimulus. It is a form of non-associative learn-

ing [15,16] (which is marked by the absence of conditioning) with the response reverting

to its initial nature when further stimulation is stopped. Sensitization provides another

example of non-associative learning where the response to a stimulus is amplified upon

reinforcement.

Moving away from behavioral responses, a different form of learning is seen to shape

the vertebrate immune system [17–21]. This system comprises both innate and adaptive

immune cells that respond to a broad range of invaders detected via means of pathogen-

associated molecular patterns (PAMPs) and which subsequently generates an immune

response to specific antigens associated with the pathogens [22, 23]. The immune system

has to learn to not attack host cells (failure of which would lead to autoimmune disor-

ders) through several mechanisms such as negative selection of T cells in the thymus [18]

and peripheral anergy [24]. Further, adaptive mechanisms throughout development from

infancy to adulthood shape the interactions and functions of various immune compo-

nents [25]. Learning from previous exposures to a pathogen enable the immune system to

mount a more effective response aimed at eliminating the pathogen rapidly during subse-

quent invasions over the lifetime of the host. Whereas learning in the adaptive components

of the immune system provides protection against specific antigens through the existence

of memory cells [20, 25], learning in the innate components (for example, Natural Killer

cells) changes their response on the basis of previous exposures [17]. For instance, in

6



invertebrates which lack adaptive immune cell types (T cells and B cells), immunological

‘memory’ is deployed solely by the innate components. As the immune system adapts

over time in response to exposure to antigens and distress signals, learning in the innate

as well as adaptive immune system shapes the functional network connecting its different

components. As a result, new correlations between different immune system cell types

are established in the course of development.

Be it a single cell, a non-neural organism, a multi-cellular organism having a nervous

system, or the immune system, each of these biological systems are capable of com-

plex adaptive responses to a plethora of external and internal stimuli in their micro-

environment [26–28]. In general, such complex adaptive systems are characterized by a

non-trivial repertoire of behavioral responses emerging from typically non-linear spatio-

temporal interactions between their components [28]. Such systems can often remember

prior exposures to stimuli and learn to exhibit altered response following repeated ex-

posures. Memory of such a system alludes to its capability to retain information about

a signal which has subsequently been withdrawn from its environment. Emergence of

memory and learning is observed in various contexts in eukaryotic cells, ranging from di-

rectional memory in a single chemotactic cell (that enables cells to orient themselves even

under low signal gradients or when the gradient changes over time) to neurobiological

memory displayed by an assembly of neurons connected to each other through chemical

synapses and electrical gap junctions. The detailed mechanisms underlying the forma-

tion of memory in each of these systems are context specific and can involve nonlinear

interactions among a large set of components, that could be embedded at multiple lev-

els in biological networks. In this thesis, we will demonstrate the emergence of memory

and non-associative learning in an evolutionarily conserved intra-cellular signal transduc-

tion motif, the Mitogen Activated Protein Kinase (MAPK) cascade, which is ubiquitous

among eukaryotic cells. Moving over to the scale of inter-cellular networks, we will also

show the changes that take place in the network of functional interactions between dif-

ferent component cell-types of human immune systems between birth and adulthood, as
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a result of various antigenic and distress triggers as well as environmental, genetic and

developmental factors.

1.1 Intra-cellular Networks

Determining the appropriate response to a signal from its environment requires non-trivial

information processing by a cell [29]. For the proper functioning of the cell, it requires a

wide range of biochemical molecules that mediate the myriad dynamical processes going

on within it [30]. Many of these molecules interact among themselves to perform one

or more tasks, thereby creating intra-cellular networks of nucleic acids, metabolites, pro-

teins, etc. [31]. The diversity of functional processes inside the cell are now known to

be controlled by means of a number of such complex networks [32] involved in the reg-

ulation of gene expression [33], metabolism [34] and signal transduction [31, 35], among

others. Intrinsic fluctuations and perturbative influences from the environment can af-

fect the interaction affinities thereby making these intra-cellular networks dynamic in na-

ture [29, 36, 37]. Over the past couple of decades, there has been great interest among

physicists to understand the dynamics of these networks by considering them as systems

operating out of equilibrium. Often these complex dynamical networks involve regula-

tion of the activity of their constituent nodes through activation or inhibition [37]. For in-

stance, in gene regulatory networks, genes express proteins that either enhance or reduce

the activity of other genes by acting as promoters or suppressors, respectively [33, 38].

In the case of signal transduction network which enables the cell to encode the informa-

tion present in its micro-environment and transfer this information through a cascade of

linked enzyme-substrate reactions, the activated kinase proteins activate other proteins by

phosphorylating them while phosphatases act as inhibitors that dephosphorylate the acti-

vated proteins [39]. While it had taken several years of effort to uncover the glycolytic

pathway (a metabolic network), modern experimental methodologies allow the study of

physical interactions between pairs of proteins with ease [40]. The ability to perform
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high-throughput experiments have contributed to the reconstruction of several complex

networks of biochemical entities inside the cells, which has prompted further theoretical

and experimental research aimed at understanding how signals are encoded and decoded

in these biological complex dynamic networks [41]. We now give a brief summary of

such efforts focused on the intra-cellular signal transduction networks.

Living cells are being constantly bombarded by large numbers of chemical signals that

impinge on their cell membranes. The receptors present on the membrane can bind with

ligands upon encountering them and thereby act as sensors to the extra-cellular environ-

ment. A wide variety of receptors are embedded on the cell membrane in order to identify

chemical signals that they are specifically designed to detect [42]. Different cells have

different types of receptors, with their frequency counts also varying from cell to cell.

Signal transduction mediates the process by which conformational changes in receptors

on binding with ligands are converted into information to be sent inside the cell nucleus

for subsequent decoding in order to regulate intra-cellular processes by initiating a relay of

linked biochemical reactions [29,41,42]. Thus, the activated receptor causes a cascade of

reactions where each downstream signaling molecule is activated by the activated signal-

ing protein on the level immediately above it. Eventually, each reaction pathway results

in the activation of transcription factors that modifies expression of certain genes thereby

determining the eventual response of the cell [43]. The signal transduction pathways can

involve metabolic enzymes. Regulation of the intra-cellular pathways is mediated by post-

translational modifications like phosphorylation and dephosphorylation, and are carried

out by a wide range of protein molecules such as kinases and phosphatases [39]. Adaptor

molecules can act as scaffolding, i.e., bringing various molecules in physical proximity so

that they can interact [44]. There can be several signaling molecules which can take part

in different pathways, thereby effectively creating a cross-talk between these signaling

pathways. The connections within the signaling networks are generated through biologi-

cal evolution [31]. The signal transduction networks have been claimed to have properties

such as small-world-ness and scale-free topology [45]. While protein-protein interaction
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networks, which are also intra-cellular, are isotropic and undirected [45], signal trans-

duction networks are anisotropic and directed [31, 45]. As we move up the evolution-

ary tree, the complexity, degeneracy and occasional redundancy in the functions of these

intra-cellular signal transduction networks make them extremely daunting to analyze and

understand [35, 46, 47].

1.2 Inter-Cellular Networks

Efficient communication between cells is one of the fundamental necessities for robust

functioning in an organ, as well as, a key step for development in multicellular organ-

isms [48–50]. Information processing between cells is crucial in mediating homeostasis

and adaptation in inter-cellular networks [49,51]. There is a plethora of complex biophys-

ical mechanisms by which a cell can send or receive signal to or from another cell. It can

be implemented through diffusion of chemical messengers [52] (for instance, hormones or

growth factors in paracrine signaling), transportation of extracellular vesicles [53], cellu-

lar bridge of membrane nanotubes [54] and gap junctions [55]. Two intriguing examples

of adaptive complex biological networks that operate at the scale of multiple cells are the

nervous system and the immune system. Various types of cytokines and chemokines me-

diate the communication among components of the immune system comprising primarily

of innate and adaptive immune cells [23]. In the case of the nervous system, several

types of neurotransmitters coordinate the activity of neurons which are the nodes of the

inter-cellular neural network [56]. On the other hand, inter-cellular signaling in animal

development is regulated by several positive and negative feedback interactions between

participating cells, as well as, a set of inter-cellular signaling molecules which enable

dynamical regulation. For example, the inter-cellular WNT proteins control tissue orga-

nization and formation of body axis in vertebrates during development through complex

interactions mediated by membrane bound frizzled receptors [50]. An intriguing role of

macrophage (a cell type present in the innate immune system) that has recently been un-
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covered implicates it in the establishment of long-range interactions in the inter-cellular

network of non-immune cells during postembryonic tissue remodelling [57]. There is also

growing evidence suggesting complex interplay between brain, hypothalamic–pituitary–

adrenocortical (HPA) axis and the immune system [58]. The presence of certain im-

mune cells inside the brain and central nervous system, direct influence by the nerve

pathways on immune system organs (lymph nodes, spleen), stress mediated immune re-

sponse, emergence of autoimmunity in phases of emotional turmoil, etc. hint towards a

far more complex set of interactions between cells within an organism than previously be-

lieved [26]. Thus, having a complete understanding of these inter-cellular networks and

their interplay can be daunting task. The non-equilibrium collective dynamics of these

networks resulting in adaptability and maintenance of their functional robustness under

small perturbations is therefore a biophysical problem of great interest.

1.3 Overview of The Immune System

“Yet it was with those who had recovered from the disease that the sick and

the dying found most compassion. These knew what it was from experience,

and had now no fear for themselves; for the same man was never attacked

twice – never, at least, fatally.” – Historian Thucydides in his description of

the plague of Athens (430 BC) in History of the Peloponnesian War

In nature, every form of life is armed with some mechanism to provide it defence against

potentially harmful agents. For vertebrates, this defensive mechanism is implemented

in an immune system which can be subdivided into an innate and an adaptive compo-

nent [22,23]. As the name suggests, the cell types which are part of the innate system are

already encoded with some broad range of pathogen specific receptors in the germline and

can be activated by encountering a diverse array of PAMPs to rapidly eliminate foreign

substances [22, 59]. For example, the phagocytes that consist of basophils, macrophages,
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monocytes, etc. are one of the fundamental cell types of the innate immune systems [60].

These cells can destroy microbes by simply engulfing them, a process known as phago-

cytosis which is generally initiated when these cells recognize generic structures shared

by a large class of microbes [59]. For instance, lipopolysaccharides, which are observed

in cell walls of many bacteria, can trigger the response of innate immune cells [22, 59].

Evolutionarily, innate immunity is the older form of defense mechanism which is pre-

dominant in invertebrates as well as in fungi and plants [61, 62]. Apart from offering

first-line rapid response against foreign infectious microbes, the innate immune cells also

play role in antigen presentation (for example, by dendritic cells), recruitment of immune

cells to the sites of inflammation, production of cytokines that act to mediate biological

inter-cellular communication in the immune system, and regulation of adaptive immune

response by the complement proteins (for example, C3 and C4) [23, 60, 63–65]. It is

worth noting that some components of the blood coagulation system in the vertebrates

are also capable of generic defense and can participate as chemotactic signal mediators

for phagocytes [66]. Recent discoveries have shown links between irregularity of various

components in the coagulation system and several autoimmune, as well as, neuroinflam-

matory disorders [67, 68].

The adaptive component of the immune system which evolved in vertebrates, on the other

hand, can ‘acquire’ traits or ‘adapt’ to changing circumstances according to the history

of its exposure to foreign substances [23]. Although evolutionarily it can be seen first

in jawed fishes [69, 70], the presence of Ig gene homologs in invertebrates point towards

its link with ancient immune precursors [19, 71]. The immune cells that show adaptive

immunity are orchestrated with receptors highly specific to fragments of different infec-

tious agents, non-infectious foreign molecules (such as, pollen grains or toxins) and even

altered self-molecules (for example, in cancer). In general, any substance that can trig-

ger the immune response of adaptive immune cells is considered as an antigen [72]. In

the case of autoimmune disorders, following failure in one or multiple regulatory mech-

anisms of the immune system, the adaptive components develop immune response to the
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bio-molecules belonging to one’s own body and the proteins that initiate the autoimmune

responses are called self-antigens [73]. When innate immunity fails to clear an invasion

by foreign molecules, the adaptive immune cells mount an effective immune response

by recognizing antigens through their specific molecular signatures (such as, a particular

protein present on the surface of bacteria) [22, 23]. The primary function of adaptive im-

mune system is the recognition of specific antigens by lymphocytes which can be broadly

classified into T cells and B cells [23]. Both of these adaptive cell types are successors

of their common lymphoid progenitors which are derived from hematopoietic stem cells

(HSC) in the bone marrow [74]. Before coming into circulation in the peripheral blood

as mature T cells, the immature T cells undergo ‘training’ in the thymus (hence the name

‘T’) where potential autoreactive T cells are killed by apoptosis through negative selec-

tion [18]. Activation of mature T cells in periphery is mediated by the recognition process

of specific antigens which are presented to them by the innate immune cells in association

with Major Histocompatibility Complex (MHC) [22, 23]. However, B Cell receptors can

recognize antigens directly or through antigen presentation by innate cells, and then get

activated to differentiate into large number of specific Plasma B cells (a process called

Clonal Expansion) which generate enormous amount of immunoglobulin or antibody, a

soluble form of BCR specific to the recognized antigen [75]. The antibodies play a role

in marking the pathogens that express the specific type of antigen to be subsequently

killed by immune cells. A priori, there is no way that the adaptive immune system would

know the specific types of antigens which it would encounter. Hence, it prepares millions

of cells capable of recognizing specific set of molecular signatures, thereby practically

making the host able to elicit immune response to a diverse range of antigens. [76]

A salient feature of the adaptive immunity is that it changes the adaptive immune re-

sponse based on prior exposure(s) [23]. Some of the differentiated cells derived from the

activated T cells and B cells form memory cells and can be extremely long-lived. Im-

munological memory of a previously encountered antigen makes the adaptive immune

cells capable of mounting a stronger immune response on subsequent encounters with the
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same antigen in order to eliminate it rapidly [77, 78]. During the initial encounter, only

a few lymphocytes can elicit effective immune response which is known as the primary

response. However, the formations of long-lived memory T cells and memory B cells dur-

ing this primary response make sure that the secondary response to the same antigen(s)

would be of higher affinity and more effective. Thus, these cells function ‘adaptively’ to

‘acquire’ effective defence mechanism in the lifetime of the host [77, 78]. Adaptive im-

munological memory can last for decades and in some cases, for the entire lifetime of the

host. Recent evidence suggests that the innate immune cells can also learn to mount im-

proved response through earlier exposures [17,79]. This innate learning can have a broad

generic effect on immunological processes to deal with microbes that they encounter up

to few months afterwards. In recent times, growing evidence suggests that various forms

of stress might be one of the underlying players in deciding how the immune system will

react to different exposures and distress signals, and how the inter-cellular interactions

among the immune cells will evolve with time [26,80]. When a child is about to be born,

the immune cells present in its umbilical cord is not yet exposed to environmental triggers,

pathogens and other foreign substances. In addition, during development, the host body

produces many substances to which the immune system of an unborn child is yet to react.

However, in the case of adults, the immune system has already undergone various changes

triggered by genetic, developmental, environmental and pathogenic factors [25]. As the

immune system is a complex network of all these innate and adaptive components, the

alteration that happens during the development will carry signatures of how different cell

types of this network evolve. The triggers throughout one’s life will change the inherent

non-equilibrium dynamical interplay between its nodes, i.e., the immune cells. With ev-

ery factor that elicits immune reaction, the functional relation between different cell types

may be modified. Hence, during development, correlations can emerge (or be altered)

within the immune network. For healthy individuals, the number of total immune cells

remains in a non-equilibrium steady state (homeostasis). In the absence of a bio-physical

non-equilibrium model of the immune system, analyzing the data of relative abundances
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of various immune cells in the cord blood as well as the adult peripheral blood can provide

us with a partial understanding of the long-time-scale adaptive dynamics of the immune

network.

1.4 Existence of Multiple Time-scales in Adaptive Dynam-

ics

Whereas we use the term “adaptation” to indicate alteration in the response of a biological

system due to repetition of external stimulation, it is also used in literature to character-

ize the scenario where changes in the micro-environment drive the state variables of a

biological system to respond to the altered external condition temporarily but eventually

they return either exactly to their original states (perfect adaptation [81]) or close to the

original states (near-perfect adaptation [82]). The existence of such a property in biolog-

ical systems have been often attributed to the presence of several feedback mechanisms

and disparity of time-scales in their state variables [81, 83, 84]. For instance, the internal

adaptive dynamics encompassing multiple time-scales can be seen in chemotaxis where

the chemotactic cells (such as, prokaryotic bacteria, eukaryotic phagocytes, etc) follow

the gradient set up by a chemo-attractant by altering their tumbling (re-orientation) for

random walk [81, 85]. In chemotaxis, the time scale of reorientation is greater than the

time-scale of the state variables that are responsible for sensing the chemical gradient but

lower than those responsible for adaptation to changes in external stimuli [85]. Often,

the biological systems respond to fold changes in external stimulation, where the degree

of biological response proportionately varies with the relative change in stimulation with

respect to the intensity of a prior stimulation. This phenomenon is commonly known as

Weber’s law [86–88]. There can be systems as simple as autocatalytic reactions having

positive feedback schemes with time-scale differences in their state variables that obey

Weber’s law while adapting to external stimulation [89].
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Changes in external situations operate as a perturbation to the biological systems and lead

to different strategies for taking important decision at the level of a single cell (such as,

proliferation of immune cells following antigen recognition [23]) to coordinated function

at the level of an organ (such as, release of insulin by the pancreatic beta cells [90]). At

the level of single cell, the external information is transcribed to the nucleus for decision

making by the intra-cellular signal transduction pathways. The state variables which are

operational in information processing can have different time-scale which may lead to

non-trivial consequences. While adjusting to the alterations in external environment, dif-

ferent state variables can take different times to adapt to changes. Because of the complex

interactions and multiple time-scales of operation, the resultant dynamics of the system

can potentially induce a rich repertoire of temporal patterns of the state variables. In

the context of coordinated strategy or synchronized function in biological systems, the

dynamics of the individual entities (nodes) need to be properly coordinated. Generally,

the perturbative effects are manifest in complex adaptive networks with a longer time

scale than that in the dynamics of individual entities (nodes) [32, 91]. It can appear as

an adaptive slow variation in the network topology as compared to faster dynamics in

the constituent nodes [92] to maintain homeostasis (such as, in immune system) or reach

synchronization [93]. At a finer scale, adaptive strategies to reinforce coupling between

individual nodes can produce complex emergent phenomenon [94–97]. In the case of

neural networks, the plasticity of the neurons within a constrained neighborhood is the

basis of memory and learning in the brain. The constraint of a limited resource for a node

to establish connections with the other units of the network in the presence of adaptive

coupling between the nodes can lead to a complex network with meso- and macro-scale

organization as observed, for instance, in the nervous system [94]. One can speculate that

such a scenario is even possible in the case of immune networks where adaptive strategies

are present in individual cells. In addition to this, overall adaptive changes in the immune

network are expected to occur over a much longer developmental time-scale.
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1.5 Aim and Overview of the Thesis

Complex networks of interacting components are seen across a broad range of scales in

biology – from molecules and cells to populations and ecosystems. Two examples of

such systems are the intra-cellular signaling network (comprising molecules such as ki-

nase proteins, second messengers, cell-surface receptors, etc.) and the immune system

(comprising cells involved in coordinating the immunological response of the body such

as T-cells, B-cells, etc.). The aim of this thesis is to obtain a clearer understanding of

the non-linear dynamics or temporal evolution of such systems using modelling and data-

analysis techniques. As both of the biological networks mentioned above are involved

in functions that are vital for the continued survival of an organism, explicating the dy-

namical processes underlying their behavior may play a crucial role in developing better

and/or more effective treatment of diseases involving disruptions of the normal function

of these networks.

Intra-cellular signaling networks coordinate the entire range of biological processes that

are necessary for the cell to provide appropriate response, even in the presence of a high

degree of noise, to a wide variety of environmental signals [29, 31]. As breakdown in

communication between different members of this network lead to disease, it is impor-

tant to understand the underlying processes which allow robust information processing

in the system. A ubiquitous component (motif) of the signaling network is the Mitogen-

Activated Protein Kinase (MAPK) cascade, comprising the three kinase proteins, viz.,

MAPK, MAPK-Kinase or MAP2K, and MAP2K-Kinase or MAP3K [98,99]. This signal-

ing pathway is seen to exist in all eukaryotic cells and is involved in many critical cellular

functions including cell cycle control, stress response, differentiation and growth [98,99].

Its crucial importance for the proper functioning of an organism is underscored by the fact

that it is affected in many diseases including cancer, auto-immune and neuro-degenerative

disorders and it is, therefore, an important drug target [100]. The basic linear cascade dy-

namics involves regulation of the activity of the MAP3K protein by an upstream signal.
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On being activated, MAP3K acts as the enzyme for activating the MAP2K protein, which

in turn controls the activation of the MAPK protein. The activated MAPK is known to be

involved in many functions, such as the initiation of transcription of genes or stimulating

the activity of other kinases [98, 99].

While the behavior of the cascade has been investigated through modelling studies earlier,

these have mostly focused on its asymptotic behavior when subjected to constant stimula-

tion. From this ‘asymptotic’ perspective, the linear chain structure of the reaction cascade

implies a rigid relation between stimulus and response, belying the diversity of behavior

that such a system can be capable of in a framework that focuses on its time-varying or

dynamic properties. Thus, in contrast to most earlier studies we focus on modelling the

dynamics of the cascade responding to temporal variations in the stimulus, such as, an

abrupt change in the amplitude of the external signal. As in reality, the cellular micro-

environment is in a state of constant flux, investigating the response of the cascade to

such time-varying stimulus provides one with a better appreciation of the functioning of

the signaling network in vivo. The interplay of diverse time-scales that are involved in

the enzyme-substrate complex formation and disassociation, as well as, product forma-

tion rates, at different stages of the cascade, suggests that the system may respond with

an extremely complex set of behavioral patterns to such time-varying signals. During

their adaptation to a stimulus, how the system responds and whether it can process sig-

nificant biological information downstream is a key aspect that we look at. In particular,

we focus on the emergence of long-lived memory, i.e., the influence of past events on the

present activity of the cascade. We show how the cascade can retain the memory of an

already withdrawn stimulus through the persistence of the activity of MAPK protein by

generating post-stimulus reverberatory dynamics of the double phosphorylated MAPK.

The persistent adaptive response that we observe is indicative of a form of cellular mem-

ory and suggests that this ubiquitous signaling pathway plays an even more central role

in information processing by eukaryotic cells. In addition, we consider the dependence

of the reverberations on the concentrations of the kinases and phosphatases, as well as on
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the variations of individual parameters. This allows us to establish the robustness of the

results reported here, which is essential for future experimental validation.

In a related problem, we study whether a signaling motif as simple as MAPK cascade

can function as a memory module following its exposure to environmental cues and show

rudimentary forms of learning such as non-associative learning due to repetitive stimula-

tion. In intra-cellular biological scenario, the MAP3K protein often encounter repetitive

stimulation from its upstream signaling components. Thus, it is important to find if the

system can show altered response when exposed to subsequent stimulation, and thereby

forming a basis of learned response. We investigate the possibility of different types of

non-associative learning, such as, adaptation and sensitization. We also observe responses

characterized by alternate high and low MAPK activity (alternans), or an attenuated re-

sponse even for strong stimuli. The ensemble of these responses provides a mechanism

by which the intra-cellular signaling network achieves signal integration in the case of

application of repetitive pulse-trains. Learning is usually associated with multi-cellular

organisms, e.g., those possessing a nervous system. However, our computational study

shows that simpler forms of learning may appear in more rudimentary systems - as simple

as the canonical MAPK motif at the level of a single eukaryotic cell. Taken in conjunction

with previous analogies made between the intra-cellular signaling network and the ner-

vous system, our study provides an intriguing perspective on how this signaling cascade

can ‘remember’ and ‘learn’ even in the absence of any explicit feedback or cross-talk

with other pathways. As the MAPK signaling motif is involved in crucial cellular func-

tions in all eukaryotic cells, the potential consequences of such emergent memory and

adaptive response are far-reaching. In addition, the existence of a response threshold of

the cascade, an apparent refractory behavior following stimulation with short inter-pulse

interval, and an alternans-like response under certain conditions suggest an analogy with

excitable media. The non-associative learning that we observe in the MAPK cascade in

response to periodic variations of the stimulation strength, can be potentially used to ex-

plain a variety of biological phenomena, including, immunological anergy in peripheral
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blood and regulation of positive and negative selection of immature T cells in thymus.

Moving from the intra-cellular scale to the inter-cellular scale, we focus on learning that

is occurring over an entire network of cells comprising the mammalian immune system

as the evolving system develops to respond to the plethora of environmental cues it is ex-

posed to over the course of time. Thus, the dynamical evolution of the system as it adapts

to foreign antigens and distress signals will result in the relative populations of different

cell types in the system to change drastically over time. For example, a newborn child,

has a negligible population of the different immune memory cells compared to adult in-

dividuals whose immune systems have had considerable exposure to a range of stimuli.

In addition, correlations in the populations of different immune cell types may be estab-

lished over time as a result of the interaction of the immune system with the environment.

We have investigated this evolution by analyzing empirical data on populations of differ-

ent immunological cell types collected from newborns and adults. In principle, through

such data-analysis it is possible to uncover how genetic, environmental and developmen-

tal factors affect the evolution of this network. It also allows identification of clusters of

different cell types of the immune system that are related in terms of whether they evolve

in a correlated manner over time. Thus, a systematic analysis of the empirical data using

quantitative tools, can help in understanding how exposure to the environment governs

the dynamics of the inter-cellular network as the immune system evolves over time.

In the research reported in this thesis we have investigated the dynamical properties of

the biological networks discussed above using tools from nonlinear physics and statistical

data-analysis. The primary focus is to understand the genesis of memory and learning in

these systems that span a range of length-scales.
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2

Emergent memory in cell signaling:

Persistent adaptive dynamics in

cascades can arise from the diversity of

relaxation time-scales

2.1 Introduction

Intra-cellular signaling networks are paradigmatic of complex adaptive systems that ex-

hibit a rich repertoire of responses to stimuli [101]. Such networks mediate the response

of a cell to a wide variety of extra- and intra-cellular signals primarily through a se-

quence of enzyme-substrate biochemical reactions [102, 103]. While the complexity of

the entire signaling system is daunting [35], it is possible to gain an insight into how it

functions by focusing on a key set of frequently occurring motifs. These often take the

form of linear signaling cascades, referred to as pathways. One of the best known of these

pathways is the mitogen-activated protein kinase (MAPK) cascade that is present in all

eukaryotic cells [98,99]. It is involved in regulating a range of vital cellular functions, in-
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cluding proliferation and apoptosis [99], stress response [104] and gene expression [105].

This signaling module comprises a sequential arrangement of three protein kinases, viz.,

MAPK, MAPK kinase (MAP2K) and MAPK kinase kinase (MAP3K). Modular function

is initiated when extracellular signals stimulate membrane-bound receptors upstream of

the cascade, with the information being relayed to MAP3K by a series of intermediaries.

Activated kinases in each layer of the module function as enzymes for phosphorylating

(and thereby activating) the kinase in the level immediately downstream, with the subse-

quent deactivation being mediated by corresponding dephosphorylating enzymes known

as phosphatases (PPase). The terminal kinase in this cascade, i.e., MAPK, transmits the

signal further downstream by phosphorylating various proteins including transcription

regulators [42]. Extensive investigations into the asymptotic dynamical behavior of the

cascade have contributed towards an in-depth understanding of several emergent features

including ultrasensitivity [106], and oscillations [107, 108] that arise through retrograde

propagation of activity [109–111] or explicit feedback [112]. One of the striking features

of the cascade is the occurrence of bistability which allows the system to switch between

two possible states corresponding to low and high activity [108,113–116]. This provides a

post-transcriptional mechanism for obtaining a sustained response from transient signals,

i.e., cellular memory [117, 118].

Memory can be understood as long-term alterations in the state of a system in response

to environmental changes, which allow the system to retain information about transient

signals long after being exposed to them [117]. This can arise in the cell through mech-

anisms such as auto-regulatory transcriptional positive feedback [119] and nucleosomal

modifications [120]. In the context of cell-fate determination, it has been shown that an

irreversible biochemical response can be generated from a short-lived stimulus through

feedback-based bistability [118]. This corresponds to a permanent alteration of the state

of the system, thereby actively maintaining ‘memory’ of the signal. As bistability has also

been observed to arise through multi-site phosphorylation in signaling modules, protein

phosphorylation has been suggested as a plausible post-transcriptional mechanism for cel-
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lular memory [117,121,122]. In particular, there have been extensive investigations of the

MAPK cascade as it integrates a large range of signals received by the cell in order to con-

trol numerous cellular decisions [123–129]. While majority of these investigations have

considered the asymptotic dynamical behavior of the system, one may also observe tran-

sitory modulations in the response of the cascade in a changing environment [130, 131].

The latter could encode information about prior stimuli to which the system was exposed,

and can be a potential mechanism for imparting a form of “short-term” memory to the

signaling cascade.

In this chapter we show that a linear MAPK cascade can indeed exhibit short-term mem-

ory through transient modulations in its response to an environmental change. Crucially,

this can arise even in the absence of explicit feedback between different layers or cross-

talk with other pathways. These modulations can persist long after the initial trigger,

lasting for durations that are several orders of magnitude longer than the time-scales as-

sociated with phosphorylation-dephosphorylation processes. We demonstrate that this

occurs both when a signal begins activating the MAPK cascade, as well as when it is

withdrawn. On application of the stimulus, the module exhibits long-lived frequency and

amplitude modulations in the activation profile of the constituent kinases. Following the

withdrawal of stimulus, activity in the cascade decays over an extremely long time-scale,

during which reverberatory dynamics, characterized by large-amplitude spiking in MAP

Kinase activity, can be observed. We explain the emergence of such long-lived memory

of the withdrawn stimulus in terms of the imbalance of fluxes between different layers

of the cascade, which results from the diversity of relaxation time-scales of the cascade

components, and the reuse of activated kinases as enzymes when they are released from

sequestration. This phenomenon is seen to be robust with respect to variations in the

model parameters, including the kinetic rate constants and the molecular concentrations

of the constituent kinases and phosphatases. Our results reveal that a biochemical signal-

ing module as simple as the MAPK cascade is capable of exhibiting short-term memory

that is manifested as persistent modulations in the adaptive response of the system to

23



changes in stimuli.

2.2 Model

The dynamics of the three layer MAPK signaling cascade has been simulated using the

Huang-Ferrell model [106]. Each of the constituent kinase and phosphatase-mediated

enzyme-substrate reactions comprise (i) a reversible step corresponding to the formation

of the enzyme-substrate complex and (ii) an irreversible product formation step corre-

sponding to the activation/deactivation of a kinase, as described below.

Table 2.1: Components of the MAPK Cascade

Component Notation Symbol
Mitogen-activated Protein Kinase Kinase Kinase MAP3K 3K
Singly Phosphorylated Mitogen-activated Protein Kinase Kinase Kinase MAP3K* 3K*
Mitogen-activated Protein Kinase Kinase MAP2K 2K
Singly Phosphorylated Mitogen-activated Protein Kinase Kinase MAP2K* 2K*
Doubly Phosphorylated Mitogen-activated Protein Kinase Kinase MAP2K** 2K**
Mitogen-activated Protein Kinase MAPK K
Singly Phosphorylated Mitogen-activated Protein Kinase MAPK* K*
Doubly Phosphorylated Mitogen-activated Protein Kinase MAPK** K**
MAP3K-Phosphatase 3K PPase P3K

MAP2K-Phosphatase 2K PPase P2K

MAPK-Phosphatase K PPase PK

The three layer MAPK cascade comprises the following enzyme-substrate reactions:

S + 3K

k1
−→

←−−
k−1

S .3K
k2
−→ S + 3K∗

P3K + 3K∗
kp1
−→

←−−−
kp−1

3K∗.P3K
kp2
−→ P3K + 3K
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3K∗ + 2K

k3
−→

←−−
k−3

3K∗.2K
k4
−→ 3K∗ + 2K∗

P2K + 2K∗
kp3
−→

←−−−
kp−3

2K∗.P2K
kp4
−→ P2K + 2K

3K∗ + 2K∗
k5
−→

←−−
k−5

3K∗.2K∗
k6
−→ 3K∗ + 2K∗∗

P2K + 2K∗∗
kp5
−→

←−−−
kp−5

2K∗∗.P2K
kp6
−→ P2K + 2K∗

2K∗∗ + K

k7
−→

←−−
k−7

2K∗∗.K
k8
−→ 2K∗∗ + K∗

PK + K∗
kp7
−→

←−−−
kp−7

K∗.PK
kp8
−→ PK + K

2K∗∗ + K∗
k9
−→

←−−
k−9

2K∗∗.K∗
k10
−→ 2K∗∗ + K∗∗

PK + K∗∗
kp9
−→

←−−−
kp−9

K∗∗.PK
kp10
−→ PK + K∗
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The above enzyme-substrate reactions can be expressed in terms of the following coupled

ordinary differential equations (ODEs):

d[3K]
dt

= k−1.[S .3K] + kp2.[3K∗.P3K] − k1.[S ].[3K] ,

d[S .3K]
dt

= k1.[S ].[3K] − (k−1 + k2).[S .3K] ,

d[3K∗.P3K]
dt

= kp1.[P
f
3K].[3K∗] − (kp2 + kp−1).[3K∗.P3K] ,

d[3K∗]
dt

= k2.[S .3K] + kp−1.[3K∗.P3K] − kp1.[P
f
3K].[3K∗]

+(k−3 + k4).[3K∗.2K] − k3.[3K∗].[2K]

+(k−5 + k6).[3K∗.2K∗] − k5.[3K∗].[2K∗] ,

d[2K]
dt

= k−3.[3K∗.2K] + kp4.[2K∗.P2K] − k3.[3K∗].[2K] ,

d[3K∗.2K]
dt

= k3.[3K∗].[2K] − (k−3 + k4).[3K∗.2K] ,

d[2K∗.P2K]
dt

= kp3.[P
f
2K].[2K∗] − (kp4 + kp−3).[2K∗.P2K] ,

d[2K∗]
dt

= k4.[3K∗.2K] + kp−3.[2K∗.P2K] − kp3.[P
f
2K].[2K∗]

+k−5.[3K∗.2K∗] − k5.[3K∗].[2K∗] + kp6.[2K∗∗.P2K] ,

d[3K∗.2K∗]
dt

= k5.[3K∗].[2K∗] − (k6 + k−5).[3K∗.2K∗] ,

d[2K∗∗.P2K]
dt

= kp5.[P
f
2K].[2K∗∗] − (kp6 + kp−5).[2K∗∗.P2K] ,

d[2K∗∗]
dt

= k6.[3K∗.2K∗] + kp−5.[2K∗∗.P2K] − kp5.[P
f
2K].[2K∗∗]

+(k−7 + k8).[2K∗∗.K] − k7.[2K∗∗].[K]

+(k−9 + k10).[2K∗∗.K∗] − k9.[2K∗∗].[K∗] ,

d[K]
dt

= k−7.[2K∗∗.K] + kp8.[K∗.PK] − k7.[2K∗∗].[K] ,

d[2K∗∗.K]
dt

= k7.[2K∗∗].[K] − (k8 + k−7).[2K∗∗.K] ,
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d[K∗.PK]
dt

= kp7.[P
f
K].[K∗] − (kp−7 + kp8).[K∗.PK] ,

d[K∗]
dt

= k8.[2K∗∗.K] + kp−7.[K∗.PK] − kp7.[P
f
K].[K∗]

+k−9.[2K∗∗.K∗] − k9.[2K∗∗].[K∗] + kp10.[K∗∗.PK] ,

d[2K∗∗.K∗]
dt

= k9.[2K∗∗].[K∗] − (k−9 + k10).[2K∗∗.K∗] ,

d[K∗∗.PK]
dt

= kp9.[P
f
K].[K∗∗] − (kp−9 + kp10).[K∗∗.PK] ,

d[K∗∗]
dt

= k10.[2K∗∗.K∗] + kp−9.[K∗∗.PK] − kp9.[P
f
K].[K∗∗] .

where

[S ] = [S ]tot − [S .3K] ,

[P f
3K] = [P3K] − [3K∗.P3K] ,

[P f
2K] = [P2K] − [2K∗.P2K] − [2K∗∗.P2K] ,

[P f
K] = [PK] − [K∗.PK] − [K∗∗.PK] .

2.2.1 Methods

The time-evolution of the molecular concentrations of the different components of the

cascade are modeled using a set of coupled ordinary differential equations (see above)

that are integrated using the stiff solver ode15s implemented in MATLAB Release 2010b.

As the concentrations of the different molecular species can vary over several orders of

magnitudes, low values of relative and absolute tolerances have been used in order to en-

sure the accuracy of the resulting time-series. Note that the quasi-steady-state hypothesis

has not been invoked [132]. To ensure that initially all kinases are non-phosphorylated we

prepare the initial resting state of the system by simulating it for a long duration (∼ 106
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mins) in the absence of any signal. Subsequently MAP3K is exposed to a stimulus of

amplitude S and duration 5000 minutes. On using the base values for the parameter set

as given in Ref. [106], the system exhibits ultrasensitivity (as reported earlier) which pro-

vides verification of the correct numerical implementation of the model (see Appendix).

Following the removal of the stimulus, we continue to simulate the system until it returns

to the resting state or the simulation duration exceeds 104 minutes.

We have analyzed the long-lived reverberatory activity of the cascade after the removal of

the stimulus by using the following measures:

The primary recovery time (τPR). Following the activation of the cascade by introducing

a stimulus, the maximum concentration Rmax of MAPK∗∗ is recorded. On removing the

stimulus, MAPK activity starts to decay. The time taken for MAPK∗∗ to monotonically

decrease to half of Rmax is defined as the primary recovery time (τPR).

Number of spikes during relaxation (Nr). Following primary recovery, MAPK activity

may exhibit a series of spikes, which are defined to be occurring whenever MAPK∗∗

concentration exceeds 70% of Rmax. The number of such spikes that are observed before

the cascade reaches its resting state is designated as Nr.

The total duration of reverberatory activity (τr). When spiking is observed in MAPK

activity following the removal of the applied stimulus, the reverberatory activity duration

is defined as the interval between the termination of primary recovery and the final spike

event, i.e., τr = t f inal − τPR. The time of the ith spike ti is defined as the instant when

MAPK activity reaches maximum during that particular event. For τPR > 6000 mins, the

total duration of the reverberatory activity may not be measured accurately as the total

simulation duration does not exceed 104 minutes.

The total memory time (τm). The total duration of memory activity following removal

of the applied stimulus is defined as the sum of the primary recovery time and the total

duration of reverberatory activity, i.e., τm = τPR + τr. Note that when the asymptotic
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dynamical behavior of the cascade in presence of the signal is oscillatory, on withdrawing

the signal the activity may decay extremely rapidly resulting in τm ≈ 0.

Relaxation time (τx). For the situations where the steady state corresponds to a fixed-

point attractor we define a relaxation time τx for each constituent of the cascade. This is

the time required by its concentration to evolve to the half-way point between the resting

state and steady state values.

Robustness Analysis. In order to investigate the robustness of the results reported here

with respect to variations in the parameter values, we have performed simulations over

an ensemble of cascade models whose parameter sets are obtained by uniform random

sampling over a physiologically plausible range (see Appendix). The deviation of such a

randomly sampled parameter set from the base values used by Huang & Ferrell [106] is

measured by the Total Parameter Variation (TPV) [133]: T PV =
∑n

i=1 | log10(pi/pi,HF)|,

where pi represents the value of the i-th parameter in the given sample and pi,HF is the

corresponding base value (i denotes any one of the 32 system parameters whose values

are varied in this analysis). We have measured different characteristics of reverberatory

activity, viz., Nr, τm and τr, for each realization of the cascade (corresponding to a partic-

ular random set of parameter values) and have observed them as a function of the TPV for

four different values of the stimulus strength. We observe that qualitatively similar results

to those reported here are observed for many different realizations.

2.3 Results

For the results reported in this chapter we consider the Huang-Ferrell model of the MAPK

signaling cascade [106], schematically shown in Fig. 2.1 (a). Typically, investigations into

the dynamics of this model focus on the asymptotic response to sustained stimulation. For

all the parameter sets used in this study, the system exhibits a characteristic sequence of

transitions in its asymptotic dynamical state upon increasing the strength of the stimulus
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Figure 2.1: (a) Schematic representation of a linear MAPK cascade comprising three lay-
ers. Signaling is initiated by a stimulus S activating MAPK kinase kinase (MAP3K).
Activation/deactivation of kinases is achieved by adding/removing phosphate groups,
which is referred to as phosphorylation/dephosphorylation respectively. The activated
MAP3K regulates the phosphorylation of MAPK kinase (MAP2K). Doubly phosphory-
lated MAP2K, in its turn, controls the activation of MAPK. The response of the cascade
to the signal is measured in terms of MAPK activity, viz., the concentration of doubly
phosphorylated MAPK. Deactivation of a phosphorylated kinase is regulated by the corre-
sponding phosphatase (indicated by PPase) in the corresponding layer of the cascade. The
numbers 1 − 4 represent the sequence of events that lead to the emergence of a large am-
plitude spiking response following the withdrawal of the stimulus. The enzyme-substrate
protein complex formed during activation of MAPK by doubly phosphorylated MAP2K
is indicated by “c”. Broken lines have been used to highlight the principal processes that
drive the reverberatory dynamics, which functions as a memory of the signal (see chapter
for details). (b) Schematic illustrating the emergence of long-lived transient modulations
of MAPK activity in response to initiation of a signal of optimal strength S . Withdrawing
the stimulus can result in persistent large-amplitude spiking in the response of MAPK,
suggestive of a form of “short-term” memory. The maximum response of MAPK to the
stimulus is denoted by Rmax. The primary recovery time (τPR) is characterized as the
duration following withdrawal of stimulus after which MAPK activity decreases to its
half-maximum value (Rmax/2) for the first time. The duration over which reverberatory
dynamics occurs is indicated by τr, while the total duration for which memory of the
withdrawn stimulus persists is τm = τPR + τr.
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(see Appendix). For the parameter sets used in our study, there is a lower critical value

of the stimulus strength that demarcates a steady state regime characterized by low levels

of MAPK activation from a large-amplitude oscillatory regime. Beyond an upper criti-

cal value of the stimulus strength, the oscillatory regime gives way to another steady state

regime marked by high levels of MAPK activation. In contrast to such asymptotic dynam-

ics, here we report on the transient activity of the system responding to a change in the

stimulus. Specifically, we describe the response immediately following the introduction

of a signal of amplitude S and that following its removal.

Emergence of persistent modulations in kinase activity. Our results reveal that the

transient dynamics can be unexpectedly long-lived, lasting for durations that are much

longer compared to the time-scales associated with the phosphorylation and dephospho-

rylation processes in the cascade (Fig. 2.1, b). While most of the detailed results reported

here were obtained using a set of parameter values that differ only marginally from the

base values used by Huang & Ferrell [106], qualitatively similar behavior can be observed

for many other parameter sets drawn from a physiologically plausible range, as explicitly

shown in Figs. 2.2 and 2.3 (see Methods and Appendix for a discussion on robustness).

We first report the behavior of a cascade that is initially in the resting state (character-

ized by the absence of any phosphorylated components) when it is exposed to a signal.

The transient activity that immediately follows exhibits several non-trivial features such

as regular spiking in the activity of MAP2K and MAPK depending on the total concen-

trations of the kinases (Fig. 2.2, b-e) and the signal strength. For a fixed initial state and

signal strength, the spikes can further show modulation in their frequency (Fig. 2.2, c-e)

as well as amplitude (Fig. 2.2, b and d). In certain cases, both types of modulation can

be observed (Fig. 2.2, d). In the representative time series of MAPK activity shown in

Fig. 2.2(a-e), the system dynamics eventually converges to a stable fixed point (Fig. 2.2,

a-d) or a stable limit cycle (Fig. 2.2, e). Corresponding phase-space projections are shown

in Fig. 2.2 (f-i). The complex modulations seen in many of these figures can arise as a
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result of coexisting attractors. For example, in Fig. 2.2 (d) the system state appears to

spend a considerable time in the basin of attraction of a limit cycle before approaching

a stable fixed point (see Appendix for details). Note that if the cascade components are

already phosphorylated to an extent when the stimulus is switched on, the system will

reach the asymptotic state much more rapidly thereby reducing the duration of transient

activity.

An even more intriguing set of complex modulations is observed in the response of the

cascade when the signal is withdrawn any time after the stimulated system has converged

to the corresponding asymptotic state (which can be as short as a few minutes). Specifi-

cally, on switching off the signal, the cascade exhibits large-amplitude spiking behavior in

the MAPK activity before eventually relaxing to the resting state (Fig. 2.3). The duration

of the spiking activity and the inter-spike intervals can have a wide variety of time-scales

as shown in Fig. 2.3 (a-e). Corresponding phase-space projections of the dynamics are

shown in Fig. 2.3 (f-i). This post-stimulus reverberatory activity is seen over a range

of stimuli strengths and is indicative of a form of memory that can be achieved with-

out explicit feedback or inter-pathway crosstalk. An essential condition for observing

this phenomenon is that prior to withdrawing the applied stimulus, the system should

have reached an asymptotic state corresponding to either large-amplitude oscillations or a

steady state characterized by high MAPK activity. While the reverberatory activity shown

in the different panels of Fig. 2.3 persist over durations ranging from less than an hour to

a few hours, even longer periods of reverberation can be obtained depending on system

parameters (see Appendix).

Processes underlying long-lived memory and reverberatory dynamics. When the

stimulus is withdrawn from the MAPK cascade, the decline in MAP Kinase activity

comes about through MAPK∗∗ binding to MAPK PPase which dephosphorylates it, re-

sulting in an increased concentration of MAPK∗ [Step 1, Figs. 2.1(a) and 2.4(a)]. In turn,

the phosphatase binds to MAPK∗ thereby deactivating it to MAPK which results in an
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Table 2.2: Signal amplitudes and system parameters for the panels in Figs. 2.2 and 2.3
Parameter (a), (f) (b), (g) (c), (h) (d), (i) (e), (j) Units
[S ] 1.00 1.00 5.00 1.00 1.20 10−6µM
[K]tot 2.43 4.51 2.66 3.10 3.20 µM
[2K]tot 3.96 4.64 2.87 1.63 1.80 µM
[3K]tot 1.26 1.48 0.32 1.25 0.24 10−2µM
[PK] 4.88 2.75 5.88 1.75 0.50 10−1µM
[P2K] 0.30 1.40 0.80 1.30 0.30 10−3µM
[P3K] 1.96 3.72 2.70 1.02 1.00 10−4µM
k1 1.40 1.24 1.47 3.67 1.00 103(µM.min)−1

k−1 1.84 2.32 4.91 3.68 1.50 102min−1

k2 6.28 2.32 4.01 7.26 1.50 102min−1

kp1 1.35 2.76 2.98 1.97 1.00 103(µM.min)−1

kp−1 4.71 5.60 1.67 6.76 1.50 102min−1

kp2 1.94 0.71 0.49 3.14 1.50 102min−1

k3 4.52 2.37 2.21 2.71 1.00 103(µM.min)−1

k−3 3.07 3.92 6.80 2.82 0.30 102min−1

k4 6.46 4.14 2.66 1.53 0.30 102min−1

kp3 0.92 0.69 2.61 2.96 1.00 103(µM.min)−1

kp−3 5.86 2.90 6.37 1.81 1.50 102min−1

kp4 1.97 6.72 5.20 3.59 1.50 102min−1

k5 4.44 1.84 4.55 2.83 1.00 103(µM.min)−1

k−5 1.23 4.47 2.75 5.79 0.30 102min−1

k6 6.12 6.07 1.10 1.97 0.30 102min−1

kp5 3.55 2.08 2.26 4.82 1.00 103(µM.min)−1

kp−5 1.38 6.76 2.23 7.35 1.50 102min−1

kp6 7.09 5.52 3.17 6.82 1.50 102min−1

k7 4.41 4.28 2.70 4.69 1.00 103(µM.min)−1

k−7 1.70 2.59 5.24 2.35 0.30 102min−1

k8 2.06 3.42 1.38 1.27 0.30 102min−1

kp7 1.03 2.13 3.25 2.46 1.00 103(µM.min)−1

kp−7 2.76 1.28 4.84 1.18 1.50 102min−1

kp8 4.39 6.17 7.14 5.00 1.50 102min−1

k9 4.56 1.15 2.87 1.66 1.00 103(µM.min)−1

k−9 6.30 2.36 2.66 5.56 1.50 102min−1

k10 5.29 7.01 5.08 5.14 1.50 102min−1

kp9 2.72 8.14 1.86 3.39 1.00 103(µM.min)−1

kp−9 3.04 7.26 0.49 6.39 1.50 102min−1

kp10 2.23 3.97 3.57 6.49 1.50 102min−1
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Figure 2.2: Transient activity in MAPK cascade immediately following the application of
a stimulus at t = 0. (a-e) Characteristic time series for the normalized concentration of
doubly phosphorylated MAPK (nK∗∗) shown for different total concentrations of kinases.
(f-j) Trajectories representing the evolution of the systems in panels (a-e) in the projection
of the phase-space on the planes comprising normalized concentrations of active MAP3K
(n3K∗), singly phosphorylated MAP2K (n2K∗) and active MAPK (nK∗∗). The concentrations
have been normalized by the total concentration of MAP3K ([3K]tot), MAP2K ([2K]tot)
and MAPK ([K]tot), respectively. The light blue and dark blue markers in each of the
panels (f-j) demarcate the portion of the trajectories that correspond to the time series
shown in panels (a-e). The steady state of the system is represented by a red marker in
panels (f-i). In panels (e) and (j), the system converges to a stable limit cycle. For details
of parameter values and signal amplitudes for the systems shown in each of the panels see
Table 2.2.

extremely rapid decline in the concentration of MAPK∗ (Step 2). Concurrently, the deac-

tivation of MAP2K∗∗ is delayed, as most of it is bound in the complex MAP2K∗∗.MAPK

that has a long time-scale of disassociation. To proceed further we can analyze the con-
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Figure 2.3: Transient activity in MAPK cascade immediately following the withdrawal (at
t = 0) of an applied stimulus. (a-e) Characteristic time series for the normalized concen-
tration of doubly phosphorylated MAPK (nK∗∗) shown for different total concentrations
of kinases. (f-j) Trajectories representing the evolution of the systems in panels (a-e)
in the projection of the phase-space on the planes comprising normalized concentrations
of active MAP3K (n3K∗), singly phosphorylated MAPK (n2K∗) and active MAPK (nK∗∗).
The concentrations have been normalized by the total concentration of MAP3K ([3K]tot),
MAP2K ([2K]tot) and MAPK ([K]tot), respectively. The steady state of the system prior
to the withdrawal of the stimulus is represented by a red marker (panels f-i). The system
in panels (e) and (j) is seen to relax from a state characterized by stable limit cycle oscil-
lations (represented by the blue marker). In each trajectory shown in (f-j) the grey marker
denotes the state of the system corresponding to the final time point in panels (a-e). The
concentration of active MAPK is close to its resting state value following the time period
shown in (a-e). The parameter values and signal amplitudes for each panel are same as
those for the corresponding panels in Fig. 2.2.

stituent processes in terms of the normalized chemical flux NFlux of a molecular species,

i.e., its rate of growth expressed relative to the maximum rate of growth of MAPK∗∗. We
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observe that the suppression of MAP2K∗∗ deactivation mentioned above results in its nor-

malized chemical flux exceeding that of MAPK [Fig. 2.4(b)]. Thus, there is a net growth

in activity in the MAP Kinase layer as whenever MAP2K∗∗ is released from the complex,

it is available to phosphorylate MAPK which results in an increase in the concentration

of MAPK∗ (Step 3). The resulting rise in MAPK∗ manifests as a spike in its concen-

tration [Fig. 2.4(a)], and it subsequently gets phosphorylated again to increase MAPK∗∗

concentration even in the absence of any stimulation (Step 4). When the net difference be-

tween the normalized flux of MAP2K∗∗ and MAPK reaches a maximum, the normalized

chemical flux of MAPK∗∗ attains its highest value and consequently peak activity of MAP

Kinase is observed [Fig. 2.4(c)]. Thus, steps 1-4 represent one complete cycle of MAP

Kinase reverberatory activity characterized by an initial decline and a subsequent rise in

MAPK∗∗ concentration. These steps are subsequently repeated a number of times result-

ing in a series of spikes in MAPK activity [Fig. 2.4(d)]. The abrupt nature of the rise and

fall of MAP Kinase activity that manifests as spikes is a consequence of the bistable nature

of the dynamics in the MAPK layer of the cascade [113, 115]. In other words, MAP2K∗∗

can be bound either to the corresponding phosphatase (resulting in its subsequent deacti-

vation) or to MAPK/MAPK∗ (which protects it from deactivation by being inaccessible to

its phosphatase). This competition between the phosphatase and the downstream kinase

results in a part of the available MAP2K∗∗ being sequestered for long times and thus being

available for activating MAPK (on being released from the complex) long after the with-

drawal of the original stimulus. This results in the post-stimulus repeated spiking activity

in the MAPK reported here. We note that similar spiking behavior is also observed in

the activity of MAP2K, with the phase of the MAP2K∗∗ spikes shifted slightly forward

with respect to the corresponding ones in MAPK∗∗, which suggests that they result from

retrograde propagation of activity from the MAPK to the MAP2K layer [110]. On the

other hand, MAP3K shows a monotonic decline in its activity following the removal of

the stimulus.

In order to characterize in detail the memory of prior activity retained by the cascade
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which is manifested as long-lived transient reverberations following the withdrawal of

stimulus, we use the following measures (see Methods): (i) the primary recovery time

(τPR), (ii) the number of spikes (Nr) that occur during the relaxation process, (iii) the

temporal intervals between successive spikes (ti − ti−1, where ti is the time of occurrence

of the ith spike event) and (iv) the total duration of reverberatory activity (τr) following

primary recovery. The total memory time (τm) is the sum of τPR and τr as indicated in

Fig. 2.1 (b). In the following we use these measures to present a detailed characterization

of the behavior of the cascade components over a range of parameter values (Figs. 2.5-

2.7).

MAP Kinase cascade components have different recovery time-scales. As mentioned

earlier, the emergence of long-lived reverberatory activity of MAPK following the with-

drawal of an applied stimulus can be linked to the flux imbalance of different cascade

components which suggests significant differences in their rates of relaxation. As shown

in Fig. 2.5 (a), this is indeed the case, even for parameter regimes where no spiking ac-

tivity of MAPK is observed (i.e., Nr = 0). As can be seen, the nature of increase of the

relaxation time with increasing total concentrations of kinase protein MAP2K is distinct

for the different molecular species and also depends on the state of their phosphorylation.

In the lower layers of the cascade, we also find a crossover between two regimes seen

at lower and higher values of [2K]tot respectively. These regimes are characterized by

relatively slow and rapid increases (respectively) in the recovery times with increasing

[2K]tot, and appear to be related to the steady-state value attained by MAPK activity upon

sustained stimulation of the cascade for the corresponding value of [2K]tot [Fig. 2.5 (b)].

The crossover between the two regimes is seen to occur for a value of [2K]tot for which

∼ 17% of MAPK is activated for the parameter values used in Fig. 2.5 (b).

The distinct regimes are also observed in the dependence of the primary recovery time τPR

on [2K]tot [Fig. 2.5(c)]. As can be observed, the difference between the regimes becomes

more pronounced with an increase in the total concentration of MAP3K. An important
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Figure 2.4: Processes underlying emergent memory and reverberatory dynamics in the
MAPK cascade. (a) A characteristic time-series for the normalized concentrations of
singly and doubly phosphorylated MAPK (nK∗ and nK∗∗ , respectively) following the re-
moval of an applied stimulus of amplitude S = 2.0 × 10−6µM at t = 0. The numbers
(1 − 4) represent the sequence of events that lead to the emergence of the post-stimulus
large-amplitude spiking activity shown schematically in Fig. 2.1 (b). (b) Normalized
chemical flux NFlux of MAPK and MAP2K∗∗ shown for the segment of the time-series
where the spiking behavior in nK∗∗ is observed following the withdrawal of the stimulus to
MAP3K [demarcated by broken vertical lines in (a)]. (c) Normalized chemical flux NFlux

of MAPK∗∗ shown along with the difference between the normalized fluxes of MAP2K∗∗

and MAPK for the duration indicated by broken vertical lines in (b) corresponding to the
peak in the spiking activity of MAPK∗∗. For both panels (b) and (c), normalization of flux
is with respect to the maximum of the flux for MAPK∗∗. (d) Characteristic time-series for
the reverberatory activity of MAPK following the withdrawal of a stimulus of amplitude
S = 1.2×10−6µM at t = 0, showing the normalized concentration of MAPK∗∗ (nK∗∗) along
with that of the protein complex MAP2K∗∗.MAPK (n2K∗∗.K = [MAP2K∗∗.MAPK]/[2K]tot).
The reference line shows that the peak normalized concentration of the protein complex
eventually decreases over time. For details of parameter values see Appendix . The
steady state of the system prior to the withdrawal of the stimulus is represented by a red
marker [panels (a) and (d)] while the grey marker in (d) corresponds the final time point
in Fig. 2.3(d).
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Figure 2.5: Components of the MAPK cascade exhibit relaxation behavior occurring over
a broad range of time-scales. Decay of activity is shown after withdrawing an applied
stimulus of amplitude S = 1.2 × 10−6µM. (a) The relaxation times τx of the differ-
ent molecular species (non, singly and doubly phosphorylated kinase proteins) in each
of the layers of the cascade vary with the total concentration of MAP2K. The nature of
this dependence is distinct for lower and higher values of [2K]tot, which is most promi-
nently observed in the lower layers of the cascade. (b) The occurrence of distinct regimes
in the relaxation behavior of MAPK∗∗ for different [2K]tot is related to the correspond-
ing increase in the steady state value attained by MAPK∗∗ concentration under sustained
stimulation of the cascade. At a specific value of the steady-state normalized MAPK ac-
tivity nK∗∗ , we observe a crossover from the regime characterized by slowly increasing τx

seen at lower total concentrations of MAP2K to a regime where τx increases relatively
rapidly for higher [2K]tot. (c) The crossover behavior is also observed in the dependence
of the closely related measure τPR, the primary recovery time (see Methods), on [2K]tot.
The difference between the two regimes become more prominent upon increasing the to-
tal concentration of MAP3K ([3K]tot). For both panels (a) and (b) [K]tot = 0.8µM and
[3K]tot = 2.0nM, while for panel (c), [K]tot = 0.8µM. For details of all other parameter
values see Appendix .
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point to note is that for lower values of [2K]tot, the recovery time decreases with increasing

[3K]tot while the reverse trend is seen for higher values of [2K]tot. We have verified

that increasing the stimulus amplitude S while keeping the total MAP3K concentration

fixed has a similar effect on the relaxation behavior of activated MAPK (see Appendix).

As increasing total concentration of MAP2K results in increased steady-state activity of

MAPK, we conclude that, in general, higher activity states of MAPK are associated with

increasing relaxation time when either the signal or the substrate (MAP3K) is increased.

Conversely, for states characterized by much lower MAPK activity, larger values of S or

[3K]tot results in reduced relaxation periods.

Dependence of reverberatory activity on total kinase concentrations. Diverse cellular

environments are characterized by different total concentrations of the various molecular

components of the MAPK cascade. Thus, in order to determine the robustness of spiking

and reverberatory activity following the removal of an applied stimulus, it is important to

see how they are affected by varying total kinase concentrations. Such a study will also

indicate the ease with which these phenomena can be experimentally observed. Fig. 2.6

shows the variation of different measures of reverberatory activity on the total concen-

trations of MAPK, MAP2K and MAP3K. While there is a complex dependence on these

parameters for the exact number of spikes Nr and the duration of the total memory time

τm, the phenomenon of reverberatory activity following withdrawal of stimulation can be

observed over a large range of the parameter space, underlining its robustness.

We also observe that on increasing [3K]tot, the response of Nr to variation in [K]tot and

[2K]tot becomes relatively homogeneous. Increasing the stimulus amplitude S [compare

panels (a,c,e) with (b,d,f) of Fig. 2.6] does not seem to alter the qualitative nature of the

variation in Nr and τm over the parameter space in general, although we do observe that the

domains corresponding to different values of Nr occupy different regions [Fig. 2.6(e and

f)]. Note that for low [3K]tot, high values of Nr are observed to coexist with low values of

τm [Fig. 2.6(a,c and b,d)]. While it may appear surprising that these two measures of mem-
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Figure 2.6: Dependence of reverberatory activity on the total kinase concentrations, viz.,
[K]tot, [2K]tot and [3K]tot. (a-b) The number of spikes Nr, (c-d) the total memory time
τm (in minutes) and (e-f) isosurfaces for Nr observed on withdrawing an applied stimulus
of amplitude S [= 0.8 × 10−6µM for (a,c,e) and 1.2 × 10−6µM for (b,d,f)] are shown
as functions of total concentrations of the three kinases. (g) The primary recovery time
τPR (stars) and the total duration of reverberatory activity τr (filled circles) are shown for
different values of Nr (indicated by the color bar). While τPR increases monotonically with
increasing total MAPK concentration, τr shows a more complex dependence ([2K]tot =

3µM and [3K]tot = 4nM). (h) The dependence of τr on [K]tot for different values of Nr has
a similar nature for different choices of [3K]tot (indicated by the color bar, [2K]tot = 3µM).
Note that for panel (h), we consider only situations where the system attains a steady state
on maintaining stimulation. For details of all other parameter values see Appendix .
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Figure 2.7: Dependence of reverberatory activity on the total concentrations of the phos-
phatases MAPK PPase ([PK]), MAP2K PPase, ([P2K]) and MAP3K PPase ([P3K]). (a)
The number of spikes Nr and (b) the total memory time τm (in minutes) observed on
withdrawing an applied stimulus of amplitude S = 0.8 × 10−6µM. Situations where the
primary recovery time is longer than a maximum or cut-off value (see Methods), such
that the duration of the reverberatory dynamics cannot be properly measured, are indi-
cated by the color corresponding to “U”. (c) The interval between successive spikes i − 1
and i increases with time (ti being the time of occurrence of the ith spike). As the MAPK
PPase concentration is increased, the durations of these intervals are seen to increase.
The total concentrations of the other two phosphatases are maintained at [P2K] = 680pM
and [P3K] = 10pM. (d) The variation of primary recovery time τPR (stars) and the total
duration of reverberatory activity τr (filled circles) as a function of total MAPK PPase
concentration are shown for different values of Nr (indicated by the color bar). While
τPR decreases monotonically with increasing [PK], τr shows a more complex dependence
([P2K] = 200pM and [P3K] = 6pM). (e) Dependence of the total memory time τm on total
MAPK PPase concentration ([PK] shown in log scale) for different total concentrations
of MAP2K PPase (values indicated above each of the three panels) and MAP3K PPase
(indicated using different colors as shown in the color bar). Note that we consider only
situations where the system attains a steady state on maintaining stimulation. For details
of all other parameter values see Appendix .
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ory are not in consonance in this region of parameter space, it can be explained by noting

that the stimulated system is in an oscillatory state, and following the removal of the sig-

nal these relatively high-frequency oscillations cease after a short duration. Fig. 2.6 (g)

suggests that the variation seen in τm as a function of the total MAPK concentration for a

specific Nr is mostly governed by τr, the total duration of reverberatory activity, with the

corresponding dependence of τPR on [K]tot being weak.

As the total MAPK concentration is increased, we observe that while the primary recovery

time increases almost linearly, the nature of the reverberatory dynamics as reflected in τr

shows a more complex dependence on [K]tot [Fig. 2.6 (g)]. If for a given value of [K]tot

the MAPK activity following withdrawal of the stimulus shows Nr spikes over a duration

of τr, then on increasing [K]tot the time-interval between the spikes increases (thereby

resulting in an increase of τr) until a critical value beyond which the last of the Nr spike

no longer appears. Thus, at this point Nr reduces by unity with a concomitant drop in τr.

This series of events is repeated for steadily decreasing values of Nr as the total MAPK

concentration is increased further. Each value of Nr is associated with a characteristic

rate of increase in τr with [K]tot. With a reduction in Nr (as a result of increasing [K]tot),

this rate is found to decrease as well, which suggests a saturation of the system response.

These results are robust with respect to different choices of total MAP3K concentration

as can be seen from Fig. 2.6(h), suggesting that similar behavior will be seen for a range

of strengths for the applied signal (see Appendix).

Dependence of reverberatory activity on total phosphatase concentrations. We have

also investigated the role that phosphatase availability plays on the reverberatory activity

of the cascade following the withdrawal of the stimulus. As is the case for total kinase

concentrations shown in Fig. 2.6, we see from Fig. 2.7 (a-b) that the number of spikes

Nr and the duration of total memory time τm depend on the total concentrations of the

phosphatases MAPK PPase, MAP2K PPase, and MAP3K PPase. For larger values of the

concentrations, viz., [PK], [P2K] and [P3K], respectively, the system operates in the low-
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amplitude response regime. As mentioned earlier, the reverberatory MAPK dynamics

during recovery following withdrawal of the applied stimulus will not be seen in this

regime. As the phosphatase concentrations are decreased, spiking behavior of MAPK

activity is observed with both τm and Nr attaining high values in an optimal range. The

large variation seen in τm [Fig. 2.7 (b)] arises as regions in [P2K]-[P3K] parameter space

characterized by the same value of Nr are seen to exhibit a range of different values of τr

and τPR [Fig. 2.7 (d)]. For reverberatory activity associated with a specific Nr, we observe

that the duration τr increases with increasing total MAPK PPase concentration. This is

a consequence of the intervals between successive spikes (ti − ti−1) increasing with [PK]

as is shown in Fig. 2.7 (c). Note that the results are qualitatively similar for different

amplitudes of the applied stimulus (see Appendix). However, increasing [PK] results also

in decreased time for primary recovery τPR [Fig. 2.7 (d)], which in conjunction with the

previously mentioned result leads to non-monotonic dependence of the total memory time

τm on phosphatase availability. While this non-monotonicity is suggested in Fig. 2.7 (b),

it is shown clearly in Fig. 2.7 (e) where the central panel corresponds to situations where

spiking behavior is observed in MAPK activity.

Investigation into the dependence of τm on PK [Fig. 2.7(e)] reveals that the range of [PK]

over which reverberatory activity (i.e., Nr , 0) occurs is demarcated by discontinuities in

the functional dependence of τm on PK . For intermediate P2K [Fig. 2.7(e), central panel]

where the system attains a steady state on maintaining stimulation, the spiking activity

following withdrawal of the stimulus becomes more prominent for low total concentration

of MAP3K PPase. For higher P2K [Fig. 2.7(e), right panel] where the system becomes

oscillatory over an intermediate range of [PK], reverberatory activity is observed over

a broader range of [P3K]. While we have assumed that the same phosphatase acts on

both the singly and doubly phosphorylated forms of the kinase in a particular layer of the

cascade (as in the canonical Huang-Ferrell model), we have explicitly verified that our

results are not sensitively dependent on this.
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Figure 2.8: Dependence of the post-stimulus reverberatory activity of the MAPK cas-
cade on extrinsic and intrinsic parameters. The corresponding dynamical attractors of the
system under sustained stimulation are also shown. (a,d,g) The number of post-stimulus
spikes Nr and (b,e,h) the total duration of reverberatory activity τr (in minutes) observed
on withdrawing the stimulus, as well as, (c,f,i) the corresponding asymptotic dynamical
states of the cascade under sustained stimulation, are shown. They are displayed as a
function of (a-c) the stimulus strength S and its duration P (in mins), (d-f) the kinetic
rates kp1 and k3 (both measured in µM.min−1) which govern the enzyme-substrate com-
plex formation steps in the dephosphorylation of MAP3K and single phosphorylation of
MAP2K (respectively), and (g-i) the kinetic rates kp5 and k7 (both measured in µM.min−1)
which govern the enzyme-substrate complex formation steps in the dephosphorylation of
activated MAP2K and single phosphorylation of MAPK (respectively). The strength of
the signal used to stimulate the cascade in all cases is S = 2 × 10−6µM. For values of
all other parameter values see Appendix . (j-k) Robustness of the observed reverbera-
tory activity in MAPK cascade following withdrawal of applied stimulus having strength
S = 10−6µM with respect to variation in the system parameters. The panels show (j) the
number of spikes during relaxation Nr and (k) the total duration of reverberatory activity
τr, on the Total Parameter Variation (TPV, as described in Methods). The circles in each
panel represent an individual realization of the cascade dynamics where each parameter
set is chosen by uniform random sampling from a physiologically plausible range (see
Appendix for details).
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Dependence of reverberatory activity on model parameters. In addition to the effects

of kinase and phosphatase concentrations considered above, we have studied how the re-

verberatory dynamics depends on the different extrinsic and intrinsic model parameters.

Fig. 2.8 (a-b) shows how the number of spikes Nr and the total duration of reverberatory

activity τr depend on the signal strength S and the time interval P for which it is applied

prior to withdrawal. From Fig. 2.8 (c) we observe that for large values of S and P the sys-

tem operates in the high-amplitude response (H) regime. On lowering these stimulation

parameters sufficiently a transition to an oscillatory dynamical regime (O) occurs. Further

decrease in S and P results in yet another transition, this time to a low-amplitude response

(L) regime. Note that, while reduction in the duration of stimulation can be compensated

by increasing the signal strength in order to drive the system to the O or H regime starting

from L, it appears that there is a critical value of S below which dynamical transitions

cannot be achieved even if P is increased indefinitely.

As can be seen, the reverberatory MAPK dynamics following the withdrawal of the stim-

ulus occurs only in the O and H regimes of the S − P parameter space. Intriguingly, the

peak of reverberatory activity appears in the region corresponding to the boundary be-

tween these two dynamical regimes. This is analogous to critical slowing down in the

response of physical systems which is manifested in the divergence of relaxation times

near a phase transition [134]. However, there does not appear to be a simple relation be-

tween the asymptotic dynamical regimes observed on sustained stimulation of the cascade

and the nature of the transient reverberatory activity, when we consider the dependence

on intrinsic parameters such as the kinetic rate constants that govern the different reaction

steps in the cascade. For example, in Fig. 2.8 (d-e) we observe the variation of Nr and τr

as a function of the rates kp1 and k3. As can be seen by comparing with the dynamical

regimes in parameter space shown in Fig. 2.8 (f), the peak of reverberatory activity occurs

quite far from any of the transition zones. On the other hand, when we consider the varia-

tion of Nr and τr as a function of the rates kp5 and k7 [Fig. 2.8 (g-h)], the peak of Nr does

appear to coincide with the boundary between the O and H regimes [Fig. 2.8 (i)], while
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the τr dependence is more complex, showing a number of local maxima. The dependence

of the reverberatory activity on several other reaction rates of the system are shown in

Appendix.

Apart from looking at the role that individual parameters play in the post-stimulus ac-

tivity of the cascade, we have also considered how simultaneous variation of all of the

parameters affect the reverberatory dynamics. This allows us to investigate whether the

phenomena are robust, an essential property if they are to be observed experimentally, as

environmental variations, polymorphisms or mutations can often cause multiple parame-

ters of the signaling cascade to be altered. We have verified that the reverberations are not

sensitively dependent on system parameters by simulating the dynamics of the cascade us-

ing a large number of different parameter sets, each being obtained by randomly sampling

the parameter values from their respective physiologically plausible ranges. Fig. 2.8 (j-k)

shows that both in terms of the number of spikes Nr, as well as, the total duration of re-

verberatory activity τr, the phenomena of post-stimulus repeated spiking in the activated

MAPK concentration we report here is not confined to a very small region of the param-

eter space but can be seen for a wide variety of choices for the parameter values. Thus,

these results establish the robust nature of the emergent “short-term” cellular memory.

2.4 Discussion

In this chapter we have shown that an isolated MAPK signaling module can serve as a

fundamental motif in the intra-cellular signaling network for imparting a form of short-

term memory to the cell. The emergence of long-lived reverberatory activity reported

here arises from the diversity of relaxation time-scales for the different components of the

MAP Kinase cascade, which results in flux imbalance between activation of the MAPK

layer and deactivation in the MAP2K layer. One may therefore expect to observe results

qualitatively similar to what has been reported here whenever the system has disparate
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time-scales regardless of the actual molecular concentrations and kinetic rates which can

vary substantially across different cells [135–137]. Thus, as the MAPK cascade is present

in all eukaryotic cells [98, 99], the mechanism for short-term memory in such a signal-

ing cascade that is presented here may hold for such cells in general. As the duration of

MAPK∗∗ activity is critical for many cellular decisions [138], e.g., the prolonged activa-

tion of ERK resulting in its translocation to the nucleus [139], the persistent reverberatory

activity seen here may play a non-trivial role in regulation of cellular functions. In ad-

dition, it has recently been shown that frequency modulation of ERK activity pulses can

encode information controlling cellular proliferation [140], suggesting that the pulsatile

nature of the reverberatory MAPK activity shown here may need to be taken into account

when considering such processes.

The basal level activity of MAPK in a normal cell is maintained at a low proportion of

the total MAPK concentration and serves several biological functions [141]. We observe

a crossover between two qualitatively distinct regimes of relaxation behavior of MAPK∗∗

occurring at a steady state that is characterized by relatively low proportion of activation

of the available MAPK [∼ 17% in Fig. 2.5 (b)]. Thus, there appears to be an effective

threshold for MAPK activity (which may be related to its basal state level) that demarcates

the different relaxation regimes following the removal of the applied stimulus. A similar

crossover is also observed for the primary recovery time τPR.

One of the most challenging aspects of computational modeling of the dynamics of bi-

ological networks is correctly assigning the values of the large number of parameters

associated with these models [142]. For the MAPK cascade investigated here, several of

the kinetic rates associated with different reactions have never been measured experimen-

tally. There are also a variety of values for the system parameters that have been reported

in the literature [107]. For our investigations we have primarily used a reference set of

parameter values (see Appendix for details) that differ only marginally from the base val-

ues originally used by Huang & Ferrell [106], and yet which allow the cascade to exhibit
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three distinct dynamical regimes under different conditions. These are characterized by a

time-invariant low-amplitude response (L), oscillatory dynamics (O) and a time-invariant

high-amplitude response (H), respectively. We note that the phenomena we observe by

using this reference parameter set in the cascade model is robust with respect to variations

in the values of the parameters. Indeed, as reported above, the post-stimulus reverberatory

activity of the cascade is observed for a large number of different parameter sets that have

been randomly sampled from a physiologically plausible range.

It is known that ERK MAPK isoforms (e.g., p42 and p44) are abundantly expressed in

non-dividing terminally differentiated neurons [124]. Activation of MAPK by spaced

stimulation is known to be responsible for morphological changes in dendrites [123].

Studies also suggest that the activation of the MAPK pathway is linked with associative

learning in the mammalian nervous system, synaptic plasticity and neurological mem-

ory [123, 124, 129, 143, 144]. An intriguing possibility suggested by the results reported

here is that the observed repeated spiking in MAPK activity may function as an effective

temporally spaced signal to the nucleus of a neuron. This can then facilitate subsequent

changes in the cell required for memory formation [123, 129].

Another well-known example of eukaryotic cellular memory is observed during chemo-

tactic migration along the gradient of a chemical signal [145, 146]. The directionality of

migration is known to persist for a certain duration, even if the chemical gradient is al-

tered or becomes static. Studies show that the protein Moesin contributes to the long-lived

rigidity of the cytoskeleton assembly that subsequently leads to the directional memory

in polarized migrating cells [146]. However, the intra-cellular processes that underlie the

persistent activity of Moesin in the absence of a gradient mediated signal are still largely

unknown. Evidence suggests that the regulation of Moesin and other ERM proteins are

linked with the activity of the MAPK pathway [147, 148]. The long-term reverberatory

activity of MAPK following the withdrawal of a stimulus that is reported here may be a

possible mechanism underlying such persistent cellular behavior.
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To the best of our knowledge the post-stimulus reverberatory activity described here is yet

to be reported in the experimental literature. This could possibly be because, typically,

during experiments, recording of ERK activity is stopped soon after the withdrawal of the

stimulus. Note that in all cases where we observe reverberations, it was preceded by an

apparent monotonic decay of MAPK activity immediately following the withdrawal of the

stimulus. Experiments would necessarily have to be carried out for much longer durations

beyond this initial decay of MAPK activity (i.e., the primary recovery time τPR) in order to

observe the phenomenon reported here. It is of course possible that in the cellular milieu,

coupling of the MAPK cascade to other intra-cellular signaling pathways, as well as, the

possible presence of explicit feedback connections, may mask the response that is seen

here in the case of an isolated MAPK cascade. Also, in vivo the cascade will be subject

to a variety of signals that will often arrive in close succession. This will make it unlikely

to observe extremely long-lived post-stimulus responses lasting over tens or hundreds

of minutes. However, we hope that the results reported here will stimulate experiments

specifically designed to test the existence of an emergent “short-term” memory in intra-

cellular signaling.

To conclude, we have shown the possibility of long-lived reverberatory activity in a sig-

naling cascade following the withdrawal of external stimuli. Our results suggest a mech-

anism through which the intra-cellular signaling system can encode short-term memory

of signals to which the cell was previously exposed. The large-amplitude spiking activity

of MAPK following the removal of a prior stimulus may also provide a mechanism for

signal integration and learning when the cascade is repeatedly stimulated. We note that

there may be additional factors not considered here that may lengthen the persistence of

reverberatory activity, including scaffold proteins that increase the lifetime of kinase com-

plexes. Our results suggest that the MAPK cascade potentially has a key role in shaping

the information processing capabilities of eukaryotic cells in diverse environments.
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2.A Appendix: System Parameters

The numerical values for the reaction rates used for most of the results reported here

(viz., panels (e) & (j) of Fig. 2.2–2.3 and Figs. 2.4–2.7) have been obtained from Jesan

et al. [111]. A comparison between these values used in our study (MMS) and the base

values of the parameters proposed by Huang & Ferrell [106] is shown in Table 2.3. Note

that the values for the kinetic rate constants used here differ only marginally from the base

values (the deviating values are indicated in red).

The signal amplitudes and system parameters used to generate the representative time-

series shown in all panels of Figs. 2.2 and 2.3 are listed in Table 1 of the main text. Note

that the kinetic rates for panels (e, j) of Fig. 2.2 and Fig. 2.3 are same as the MMS values

listed in Table 2.3.

In order to investigate the robustness of the results reported in the chapter with respect to

variations in the parameter values, we have performed simulations over an ensemble of

cascade models whose parameter sets are obtained by uniform random sampling over a

physiologically plausible range given in Table 2.4. The random values thus obtained are

further subject to the constraint that the resulting Michaelis-Menten constant K (defined

as K = (kr + kcat)/k f , where k f , kr and kcat are the forward, reverse and catalytic rate

constants, respectively) should not exceed 1500 nM as per Huang & Ferrell (1996) [cited

in main text].
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Table 2.3: Reaction Rates
Rate constant HF MMS Units
k1 1000 1002 (µM.min)−1

k−1 150 150 min−1

k2 150 150 min−1

kp1 1000 1002 (µM.min)−1

kp−1 150 150 min−1

kp2 150 150 min−1

k3 1000 1002 (µM.min)−1

k−3 150 30 min−1

k4 150 30 min−1

kp3 1000 1002 (µM.min)−1

kp−3 150 150 min−1

kp4 150 150 min−1

k5 1000 1002 (µM.min)−1

k−5 150 30 min−1

k6 150 30 min−1

kp5 1000 1002 (µM.min)−1

kp−5 150 150 min−1

kp6 150 150 min−1

k7 1000 1002 (µM.min)−1

k−7 150 30 min−1

k8 150 30 min−1

kp7 1000 1002 (µM.min)−1

kp−7 150 150 min−1

kp8 150 150 min−1

k9 1000 1002 (µM.min)−1

k−9 150 150 min−1

k10 150 150 min−1

kp9 1000 1002 (µM.min)−1

kp−9 150 150 min−1

kp10 150 150 min−1
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Table 2.4: Biologically plausible range of the parameters used for random sampling

Parameter Range of values Units
[K]tot 0.075 − 6 µM
[2K]tot 0.075 − 6 µM
[3K]tot 1.875 × 10−4 − 1.5 × 10−2 µM
[PK] 7.5 × 10−3 − 0.6 µM
[P2K] 1.875 × 10−5 − 1.5 × 10−3 µM
[P3K] 1.875 × 10−5 − 1.5 × 10−3 µM
k f 62.5 − 5000 (µM.min)−1

kr 9.36 − 750 min−1

kcat 9.36 − 750 min−1
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Table 2.5: Total concentration (in µM) of the kinase proteins for Fig. 2.4 (panels a–c) and
Fig. 2.7

[K]tot [2K]tot [3K]tot

4.8 1.2 0.0030

Table 2.6: Total concentration (in µM) of the phosphatase proteins for Figs. 2.4–2.6 and
Figs. 2.14-2.15

[P3K] [P2K] [PK]
1 × 10−4 3 × 10−4 0.05

Table 2.7: Total concentration (in µM) of the phosphatase proteins for Figs. 2.14 and 2.15

Panels [K]tot [2K]tot [3K]tot

(a) and (f) 3.0 3.0 0.0080
(b) and (g) 1.0 2.4 0.0024
(c) and (h) 1.2 6.0 0.0028
(d) and (i) 2.0 2.2 0.0024
(e) and (j) 4.8 6.0 0.0014
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2.B Appendix: Supplementary Figures
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Figure 2.9: Steady-state kinase activity obtained in our numerical implementation of the
MAPK cascade dynamics reproducing the results obtained by Huang & Ferrell [106],
using their base values for the parameters.
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Figure 2.10: Representative bifurcation diagram of the MAPK cascade dynamics show-
ing the asymptotic activity of MAPKinase as a function of the strength of the applied
stimulus S. As the strength is increased, the behavior shows successive transitions from
a low-response steady state regime (“Low”) to large-amplitude oscillations (“Osc”) and
finally to a high-response steady state (“High”) regime. The red and blue curves repre-
sent, respectively, the maxima and minima of MAPK activity in the oscillatory regime.
The parameter set used is identical to that used for generating the time-series shown in
Fig. 2.2 (a) [see Table 1 in the main text]. Qualitatively similar bifurcation diagrams are
seen for all other parameter sets that give rise to reverberatory activity.
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Figure 2.11: Alternative representation of each of the phase-space trajectories shown
in Figure 2.2 (f-j) in the main text. The size and orientation of these panels have been
adjusted for clarity.
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Figure 2.12: Alternative representation of each of the phase-space trajectories shown in
Figure 2.3 (f-j) in the main text. The size and orientation of these panels have been
adjusted for clarity.
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Figure 2.13: Magnified views of the phase-space trajectory shown in Fig. 2.2 (i). The
blue markers correspond to the final point in the time series displayed in Fig. 2.2 (d),
while the red markers indicate the fixed point of the dynamical system in the presence of
stimulus. (a) Magnified view of the trajectory beginning from the black marker shown in
Fig. 2.2 (i). The pink marker denotes the starting point of the segment of the trajectory
displayed in panel (b). (b) Further magnification of a section of the phase-plane trajectory
shown in panel (a) corresponding to the duration when the system moves away from the
unstable limit cycle and converges to the stable fixed point.
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Figure 2.14: Transient activity in MAPK cascade immediately following the application
of a stimulus having amplitude S = 1.2 × 10−6µM at t = 0. (a-e) Characteristic time se-
ries for the normalized concentration of doubly phosphorylated MAPK (nK∗∗) for different
total concentrations of kinases (see Table 2.7. For all panels, the kinetic rates are iden-
tical to the MMS set (see Table 2.3) and phosphatase concentrations are as in Table 2.6.
The concentration of active MAPK is insignificant prior to the time periods shown in
panels (a-e). (f-j) Trajectories representing the evolution of the systems in panels (a-e)
in the projection of the phase-space on the planes comprising normalized concentrations
of active MAP3K (n3K∗), singly phosphorylated MAP2K (n2K∗) and active MAPK (nK∗∗).
The concentrations have been normalized by the total concentration of MAP3K ([3K]tot),
MAP2K ([2K]tot) and MAPK ([K]tot), respectively. The light blue and dark blue markers
in each of the panels (f-j) demarcate the portion of the trajectories that correspond to the
time series shown in panels (a-e). The steady state of the system is represented by a red
marker in panels (f-i). In panels (e) and (j), the system converges to a stable limit cycle.
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Figure 2.15: Transient activity in MAPK cascade immediately following the withdrawal
(at t = 0) of an applied stimulus having amplitude S = 1.2 × 10−6µM. (a-e) Characteris-
tic time series for the normalized concentration of doubly phosphorylated MAPK (nK∗∗)
shown for different total concentrations of kinases (see Table 2.7). (f-j) Trajectories repre-
senting the evolution of the systems in panels (a-e) in the projection of the phase-space on
the planes comprising normalized concentrations of active MAP3K (n3K∗), singly phos-
phorylated MAPK (n2K∗) and active MAPK (nK∗∗). The concentrations have been nor-
malized by the total concentration of MAP3K ([3K]tot), MAP2K ([2K]tot) and MAPK
([K]tot), respectively. The steady state of the system prior to the withdrawal of the stimu-
lus is represented by a red marker (panels f-i). The system in panels (e) and (j) is seen to
relax from a state characterized by stable limit cycle oscillations (represented by the blue
marker). In each trajectory shown in (f-j) the grey marker denotes the state of the system
corresponding to the final time point in panels (a-e). The concentration of active MAPK
is close to its resting state value following the time period shown in (a-e). The parameter
values for each panel are same as those for the corresponding panels in Fig. 2.14. Note
that panel (d) is obtained using the same parameter values as Fig. 2.4 (d) of the main text.
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Figure 2.16: Magnified views of the phase-space trajectory shown in Fig. 2.14 (i). The
blue markers correspond to the final point in the time series displayed in Fig. 2.14 (d),
while the red markers indicate the fixed point of the dynamical system in the presence of
stimulus. (a) Magnified view of the trajectory beginning from the black marker shown in
Fig. 2.14 (i). The pink marker denotes the starting point of the segment of the trajectory
displayed in panel (b). (b) Further magnification of a section of the phase-plane trajectory
shown in panel (a) corresponding to the duration when the system moves away from the
unstable limit cycle and converges to the stable fixed point.
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Figure 2.17: Detailed processes underlying long-lived memory and reverberatory dynam-
ics. (a) Schematic representation of MAPK cascade showing the processes that occur
subsequent to removing a stimulus. The numbers (1− 4) represent the sequence of events
that lead to the emergence of the post-stimulus large-amplitude spiking activity shown
in (b). The enzyme-substrate protein complex formed during activation of MAPK by
doubly phosphorylated MAP2K is indicated by “c”. The green arrow from the MAPK
layer to the MAP2K layer represents the release of doubly phosphorylated MAP2K from
downstream complexes. (b) A characteristic time-series for the normalized concentration
of singly and doubly phosphorylated MAPK (nK∗ and nK∗∗ , respectively) following the
removal of an applied stimulus of amplitude S = 2.0 × 10−6µM at t = 0. The numbers
(1 − 4) represent the same events shown in (a). The total concentrations of the kinases
and phosphatases used for generating the time-series are provided in Tables 2.5 and 2.6,
respectively.
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Figure 2.18: Characteristic dynamics of the molecular components of the MAP Kinase
cascade following withdrawal of a stimulus. (a) The time-series of the normalized concen-
tration of doubly phosphorylated MAPK ([K∗∗]/[K]tot) following removal of an applied
stimulus with amplitude S = 2.0 × 10−6µM at t = 0. (b-r) Time-series of the normalized
concentrations of the different components of the MAPK cascade, shown starting from
t = 150 minutes after withdrawing the stimulus, displayed together with the time-series
of normalized MAPK activity [K∗∗]/[K]tot. The total concentrations of the kinases and
phosphatases used for generating the figures are provided in Tables 2.5 and 2.6, respec-
tively.
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Figure 2.19: Dependence of the reverberatory activity on the total kinase concentrations,
viz., MAPK ([K]tot), MAP2K ([2K]tot) and MAP3K ([3K]tot). The corresponding dynam-
ical attractors of the system under sustained stimulation are also shown. (a) The number of
post-stimulus spikes Nr, (b) the total memory time τm (in minutes), (c) the corresponding
asymptotic dynamical states of the cascade under sustained stimulation, and (d) isosur-
faces for Nr observed on withdrawing an applied stimulus of amplitude S = 2.0×10−6µM,
are shown as functions of the three total kinase concentrations. The total concentrations
of the phosphatases are held fixed for (a-d) and are provided in Table 2.6. The kinetic
rates used are given in Table 2.3.

Figure 2.20: Characterization of the reverberatory dynamics observed after withdrawing a
stimulus having amplitude S = 2.0× 10−6µM. (a) The interval between successive spikes
i − 1 and i increases with time (ti being the time of occurrence of the ith spike) for two
distinct total concentrations of MAP2K. The total concentrations of MAPK and MAP3K
are [K]tot = 1.2µM and [3K]tot = 2.8nM, respectively. (b) The primary recovery time
τPR (stars) and the total duration of reverberatory activity τr (filled circles) are shown for
different values of Nr (indicated by the color bar). While τPR increases monotonically with
increasing total MAPK concentration, τr shows a more complex dependence ([2K]tot =

3µM and [3K]tot = 4nM). (c) The dependence of τr on [K]tot for different values of Nr has
a similar nature for different choices of [3K]tot (indicated by the color bar, [2K]tot = 3µM).
Note that for panel (c), we consider only situations where the system attains a steady
state on maintaining the stimulation. For the total concentrations of the phosphatases see
Table 2.6.
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Figure 2.21: Protein complexes in the MAPK cascade exhibit relaxation behavior occur-
ring over a broad range of time-scales. Decay of activity is shown after withdrawing an
applied stimulus of amplitude S = 1.2 × 10−6µM. The relaxation times τx of the differ-
ent molecular species, viz., (a) the protein complexes between non-phosphorylated and
singly phosphorylated (non-active) kinase proteins and the doubly phosphorylated (ac-
tive) kinase protein of the preceding layer, and (b) the protein complexes between the
phosphorylated (singly- or doubly-) kinase proteins and the phosphatase that carries out
dephosphorylation in the corresponding layer of the MAPK cascade, vary with the total
concentration of MAP2K. The nature of this dependence is distinct for lower and higher
values of [2K]tot. For both panels, [K]tot = 0.8µM and [3K]tot = 0.0020µM. The total
concentrations of the phosphatases are provided in Table 2.6.
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Figure 2.22: Dependence of the primary recovery time τPR on (a-i) the total concentration
of MAP2K ([2K]tot) and on (j-o) the total concentration of MAPK ([K]tot) for different
values of the total concentration of MAP3K ([3K]tot), obtained upon removing stimuli
having different amplitudes S . Panels (a,d,g,j,m) are for S = 0.8 × 10−6µM, panels
(b,e,h,k,n) are for S = 1.2 × 10−6µM, and panels (c,f,i,l,o) are for S = 2.0 × 10−6µM.
We have only considered situations where the system reaches a steady state upon ap-
plication of a time-invariant stimulus, and that do not show any reverberatory activity
(Nr = 0) during relaxation to the resting state. The curves in panels (a-i) are obtained for
different values of [K]tot, namely, (a-c) [K]tot = 0.8µM, (d-f) [K]tot = 1.0µM, and (g-i)
[K]tot = 1.8µM. The curves in panels (j-o) are obtained for different values of [2K]tot,
namely, (j-l) [2K]tot = 0.8µM, and (m-o) [2K]tot = 1.8µM. The total concentrations of
the phosphatases for all panels are given in Table 2.6.
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Figure 2.23: Dependence of reverberatory activity on the total concentrations of the phos-
phatases MAPK PPase ([PK]), MAP2K PPase, ([P2K]) and MAP3K PPase ([P3K]). (a)
The number of spikes Nr and (b) the total memory time τm (in minutes) observed on
withdrawing an applied stimulus of amplitude S = 2.0 × 10−6µM. Situations where the
primary recovery time is longer than a maximum or cut-off value (see Methods), such
that the reverberatory nature of the dynamics cannot be properly measured, are indicated
by the color corresponding to “U”. (c) The interval between successive spikes i − 1 and
i increases with time (ti being the time of occurrence of the ith spike). As the MAPK
PPase concentration is increased, the durations of these intervals are seen to increase.
The total concentrations of the other two phosphatases are maintained at [P2K] = 680pM
and [P3K] = 10pM. (d) The variation of primary recovery time τPR (stars) and the total
duration of reverberatory activity τr (filled circles) as a function of total MAPK PPase
concentration are shown for different values of Nr (indicated by the color bar). While
τPR decreases monotonically with increasing [PK], τr shows a more complex dependence
([P2K] = 200pM and [P3K] = 6pM). (e) Dependence of the total memory time τm on total
MAPK PPase concentration ([PK] shown in log scale) for different total concentrations
of MAP2K PPase (values indicated above each of the three panels) and MAP3K PPase
(indicated using different colors as shown in the color bar). Note that we consider only
situations where the system attains a steady state on maintaining stimulation. For details
of the total concentrations of the kinases, see Table 2.5.
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Figure 2.24: The time interval between successive spikes i−1 and i obtained after remov-
ing a stimulus, increases with the number of spike events (i being the event number of the
ith spike). The trend appears to be independent of the stimulus amplitude S . The total
concentrations of the phosphatases are PK = 0.1µM, P2K = 680pM and P3K = 10pM,
respectively. The total concentrations of the kinases are provided in Table 2.5.
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Figure 2.25: Dependence of reverberatory activity on specific kinetic rates governing the
dynamics of the MAPK cascade. The corresponding dynamical attractors of the system
under sustained stimulation are also shown. (a,d) The number of post-stimulus spikes
Nr and (b,e) the total duration of reverberatory activity τr (in minutes) observed on with-
drawing the stimulus, as well as, (c,f) the corresponding asymptotic dynamical states of
the cascade under sustained stimulation, are shown. They are displayed as a function of
the kinetic rates k4 and k6 which govern the product formation steps in the single and
double phosphorylation reactions (respectively) during MAP2K activation (a-c) and of
the kinetic rates k8 and k10 which govern the product formation steps in the single and
double phosphorylation reactions (respectively) during MAPK activation (d-f). The rates
are expressed in units of min−1. The values of the other reaction rates are chosen to be
identical to the reference MMS set (Table 2.3). The total concentrations of the kinase and
phosphatase molecules are same as in Fig. 2.2 (e) in the main text. The strength of the
signal used to stimulate the cascade in all cases is S = 2× 10−6 µM. For comparison note
that using the MMS reference set for all parameter values will yield Nr = 2, taur = 320.7
minutes and an asymptotic steady state corresponding to high MAPK activity (H) under
sustained stimulation.
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Figure 2.26: Dependence of the reverberatory activity measured in terms of the num-
ber of post-stimulus spikes Nr on each of the kinetic rates governing the MAPK cascade
dynamics. In each panel, a specific kinetic rate is varied ten-fold either way from the
corresponding MMS reference value while keeping all other parameters fixed at the re-
spective value in the MMS reference set (Table 2.3). The total concentrations of the kinase
and phosphatase molecules are same as in Fig. 2.2 (e) in the main text. The strength of
the signal used to stimulate the cascade in all cases is S = 2 × 10−6 µM. For comparison
note that using the MMS reference set for all parameter values will yield Nr = 2.
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Figure 2.27: Robustness of the observed reverberatory activity in MAPK cascade fol-
lowing withdrawal of applied stimulus having strength S = 5 × 10−6µM with respect to
variation in the system parameters. The panels show (a) the number of spikes during re-
laxation Nr and (b) the total duration of reverberatory activity τr, on the Total Parameter
Variation (TPV) as defined in the main text (see Methods). The circles in each panel repre-
sent an individual realization of the cascade dynamics where each parameter set is chosen
by uniform random sampling from a physiologically plausible range (see Table 2.4).
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3

Non-associative learning in

intra-cellular signaling networks

3.1 Introduction

Nonlinear systems can respond to variations in their environment by exhibiting a wide

range of complex dynamical patterns [149–154] that may often be functionally signifi-

cant [102, 140, 155–159]. These variations are commonly associated with natural cycles

such as the diurnal rhythm. In particular, biological systems are typically subjected to

periodic stimuli with frequencies that can vary over a wide range of time-scales, viz.,

from ultradian to infradian rhythms [160–162]. Examples include the entrainment of the

circadian clock to the day-night cycle [163], variations in hormonal levels over a period

of a month that drive the menstrual cycle [164] and calcium oscillations at the time-scale

of minutes which modulate the efficiency and specificity of gene expression [165]. Of all

the biological systems capable of exhibiting complex functionally significant responses

when driven by periodic stimuli, perhaps one of the simplest is the intra-cellular signal-

ing network [166]. In its natural environment, the membrane-bound receptors of a cell

may repeatedly be stimulated on encountering ligands, for instance as a consequence of
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pulsatile variations in hormones [167]. Cellular functions may also be modulated by in-

ternal cues that vary periodically, e.g., oscillations in the concentrations of intra-cellular

messengers such as Ca2+ [168, 169] and cyclic AMP [170, 171]. It is therefore important

to investigate how key components of the signaling network in the cell respond when

subjected to repeated stimulation.

An ubiquitous motif of this network is the mitogen-activated protein kinase (MAPK) cas-

cade, which is found across all eukaryotic cells [98, 99]. It consists of a sequential ar-

rangement of three types of protein kinase, viz., MAPK, MAPK kinase (MAP2K) and

MAPK kinase kinase (MAP3K). The activated kinase in each layer of the cascade func-

tions as an enzyme for phosphorylating (and thus activating) the kinase in the layer im-

mediately downstream. The subsequent deactivation is mediated by the corresponding

dephosphorylating enzyme known as phosphatases (P’ase). Despite its structural simplic-

ity this motif is involved in regulating a wide array of vital cellular functions, including

proliferation and apoptosis [99], stress response [104] and gene expression [105]. Acti-

vation of the cascade is initiated when extracellular ligands stimulate membrane-bound

receptors, or when intra-cellular cues occur upstream of the cascade, with the informa-

tion being relayed to MAP3K through a series of intermediaries. The terminal kinase of

the motif (MAPK), transmits the signal further downstream by phosphorylating various

proteins including transcription regulators [42]. The behavior of the cascade when sub-

jected to sustained stimulation has been extensively investigated in earlier studies, and

the existence of several emergent features has been observed. These include ultrasensitiv-

ity [106], bistability which allows the system to switch between two states corresponding

to low and high activity [108, 113–116] and oscillations [107–110, 112, 131]. In earlier

work we have shown that the cascade stimulated with a pulse of finite duration responds

with a rich variety of transient behavior, including phenomena indicative of the presence

of short-term memory [172]. The complex modulations seen in the response of the cas-

cade are crucially dependent on the interactions between the time-scales of the intrinsic

processes and that of the applied stimulus. It is thus intriguing to consider how the system
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will respond to repeated stimulation.

In this chapter, we investigate the dynamics of the MAPK cascade upon being stimulated

by periodic trains of pulses. Despite the absence of any explicit feedback, under suitable

conditions we find that the system displays adaptive behavior including non-associative

learning [15, 16], viz., habituation (desensitization) and sensitization. These allow plas-

ticity in the behavioral repertoire of the intra-cellular signaling motif by enabling modi-

fication of the strength, duration and even the qualitative nature of its response to recur-

rent stimulation. In addition to these, we report the occurrence of a temporal sequence

of strong and weak responses to successive pulses, reminiscent of the phenomenon of

“alternans” [173, 174] in excitable cells (examples of such cells include ventricular my-

ocytes and neurons [175]). This, coupled with the existence of a response threshold and

an apparent refractory behavior when subjected to high-frequency stimulation strongly

suggests an analogy with excitable media [175]. While learning is commonly associated

with behavior at the level of organisms [3–7, 12], it is intriguing that rudimentary forms

of such complex adaptive responses can be seen in a simple network of sub-cellular com-

ponents. As the MAPK signaling cascade is involved in coordinating diverse processes in

all eukaryotic cells, these results point to the potential functional utility of such emergent

dynamical phenomena in these systems.

3.2 Methods

We have simulated the dynamics of the three layer kinase cascade using the Huang-

Ferrell model of the MAPK signaling motif [106], schematically illustrated in Fig. 3.1 (a).

This model consists of 10 enzyme-substrate reactions described by 18 coupled differen-

tial equations (see Appendix for details). Each of the several kinase and phosphatase-

mediated enzyme-substrate reactions in the cascade consist of (i) a reversible enzyme-

substrate complex formation step, and (ii) an irreversible step corresponding to the activa-
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tion/deactivation of a kinase. The ratio of the activation and deactivation rates ranges over

four orders of magnitude [108], underlining the vast diversity of dynamical time-scales

present in the system. The equations are numerically solved without invoking the quasi-

steady-state hypothesis [132]. We explicitly ensure that the total concentrations of each

of the constituent kinases in the system are conserved. In our simulations, we assume

that the cascade is initially in the resting state, where the kinases are completely non-

phosphorylated. Following the exposure of the cascade to a train of pulses, we record the

resulting response pattern, viz., the MAPK activity.

3.3 Results

Investigations into the dynamics of the Huang-Ferrell model [106] have typically focused

on the asymptotic response of the cascade to sustained stimulation. In contrast, here

we investigate the response of the system when it is subjected to recurrent activation by

periodic stimuli. Specifically, we consider a signal comprising a train of pulses, each

having amplitude S , duration P and separated from each other by an inter-pulse interval

I [Fig. 3.1 (a)]. The cascade is released from stimulation between two successive pulses,

and attempts to relax back to its resting state. On arrival of the next pulse, the cascade is

activated once more, albeit before it has completely relaxed. This, coupled with the mul-

tiple time-scales of activation and relaxation present in the system, results in non-trivial

adaptive temporal response. Selected examples of such behavior are shown in Fig. 3.1 (b-

d). These different time series of the activated MAPK concentration (normalized with

respect to the total MAPK concentration) correspond to the cascade being subjected to

pulse trains characterized by different parameter values of P and I.

Fig. 3.1 (b) displays the response of the system subjected to high-frequency stimulation

by short-duration pulses. Here, starting from its resting state value, each subsequent pulse

elicits a slightly higher response of n∗∗K until the peak activation suddenly spikes to a value
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Figure 3.1: Non-associative learning in a MAPK cascade stimulated by a pulse train. (a)
Schematic representation of a linear three-layer MAPK cascade whose component kinases
are activated/deactivated by the addition/removal of phosphate groups through phospho-
rylation/dephosphorylation respectively. Signaling is initiated when MAPK kinase kinase
(MAP3K) is activated by a periodic signal comprising a series of pulses having amplitude
S and duration P, separated by inter-pulse interval I. For the cases investigated here, the
cascade receives no stimulus between two successive pulses. The response of the cascade
to the signal is measured in terms of MAPK activity, viz., the normalized concentration
n∗∗K of doubly phosphorylated MAPK. (b-d) Time series representing qualitatively differ-
ent adaptive responses of the cascade to pulse trains characterized by a range of S , P and
I. The shaded bars correspond to the intervals during which MAP3K is stimulated. (b)
Desensitization behavior of the cascade corresponding to an attenuated response on per-
sistent exposure to the periodic stimulus. (c) Sensitization of the cascade characterized
by a low level of MAPK activity on initial exposure followed by stronger responses upon
repeated stimulation. (d) Alternating high and low levels of MAPK activity (“alternans”)
in response to successive pulses. (e) Threshold-like response to the pulse duration P of the
maximum MAPK activity for a fixed set of values of the signal strength S and inter-pulse
duration I of the pulse train. (f) Nonlinear dependence of the MAPK cascade response on
the inter-pulse interval for a pair of pulses (shaded bars). For details of system and signal
parameter values used see Appendix.
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Figure 3.2: Characterization of different responses of MAPK cascade to stimulation of
MAP3K by a train of pulses. (a-f) Characteristic responses of the MAPK cascade to stim-
ulation of MAP3K by a train of pulses, each of amplitude S having duration P, with inter-
pulse interval I: (a) attenuated response of the cascade characterized by sub-threshold ac-
tivity (sub), (b) large-amplitude spiking responses characterizing supra-threshold activity
(sup), (c) prolongation of supra-threshold activity duration (pro) on application of a sig-
nal having pulses with longer duration, (d) coexistence (cox) of sub- and supra-threshold
activity which, for a range of I, results from the integration of responses over several pre-
ceding pulses, (e) desensitization (des), where integration over multiple successive pulses
results in a supra-threshold spiking response but subsequently only exhibits sub-threshold
activity, and (f) sensitization (sen), where sub-threshold activity in response to the ini-
tial pulse gives way to supra-threshold activity for all subsequent pulses. The shaded
bars correspond to the intervals during which MAP3K is stimulated. (g) Dependence of
the cascade response on the pulse strength S and duration P for three different values
of the inter-pulse interval I. The colors represent the nature of the response [classified
into the categories (a-f) mentioned above]. (h-i) Magnified views of the P − S planes
for (h) I = 105 and (i) 2000 minutes show the regions corresponding to desensitization
and sensitization, respectively. Each grid point in panels (g-i) represents the response
of the cascade starting from an initial condition corresponding to the resting state. (j)
The variation of the critical value of pulse duration Pc, above which the cascade exhibits
supra-threshold response, with pulse amplitude S . The curves correspond to pulse trains
having different inter-pulse intervals I (as shown in the colorbar).
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close to its saturation. This behavior can be interpreted as a form of signal integration, and

may be repeated multiple times as the pulse train is continued. However, for an appropri-

ate range of P and I (as in the figure), after a given number of pulses we observe behavior

analogous to desensitization when the system no longer shows spiking activity, even for

sustained periodic stimulation. Thus, following an initial large amplitude response, the

subsequent activity of the system is attenuated even though the nature of the received sig-

nal remained unchanged. When the cascade is stimulated instead by low-frequency pulse

trains having relatively longer pulse durations, we observe a phenomenon analogous to

sensitization. Here the cascade exhibits low-level activity on receiving the initial pulse

but switches to high-amplitude spiking in response to all subsequent pulses [Fig. 3.1 (c)].

Thus, the initial low-level activity effectively “primes” the cascade to reach response lev-

els close to saturation. This occurs because of the existence of long relaxation time-scales

in certain components of the cascade, allowing for response accumulation over successive

stimulations. Decreasing P by a small amount gives rise to a qualitatively distinct phe-

nomenon characterized by alternating low and high peaks of MAPK activity, reminiscent

of alternans [173, 174].

As alternans is a phenomenon that is associated with excitable media [173], it is intrigu-

ing to consider whether the periodically stimulated cascade exhibits other characteristics

of such systems, in particular, the existence of a response threshold [175]. As seen in

Fig. 3.1 (e), there is indeed a large discontinuous change in the peak activation nm
K∗∗ of

MAPK when the pulse duration P crosses a specific value Pc that depends on the choice

of S and I. Extending the analogy with excitable media, we find that the cascade also

exhibits a nonlinear relation between its response to successive pulses and the inter-pulse

interval. This can be seen from the behavior displayed in Fig. 3.1 (f), where the cascade is

stimulated by a pair of pulses separated by an interval I. When I is reduced, the response

duration resulting from the second pulse increases in comparison to the duration of the re-

sponse caused by the first. As an aside, we note that for the parameter regime considered

here, the system exhibits post-stimulus reverberatory activity [172].
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Fig. 3.2 (a-f) depicts a set of representative time-series showing the activity of the cascade

on either side of the response threshold, obtained for different choices of the periodic

stimulation parameters. We note that in all of the cases shown here, the system shows a

gradual build-up of activity over multiple pulses before reaching asymptotic peak activity

levels. This corresponds to signal integration (mentioned earlier), where the response of

the system to successive stimuli is modulated by the preceding stimuli. Fig. 3.2 (a) shows

a typical subthreshold response (sub), where the peak MAPK activity is highly attenuated

(< 5% of the saturation response value). Note that the nature of the response (i.e., whether

it is sub- or supra-threshold) is a function of all three stimulation parameters S , P and

I. For instance, for the same signal strength S considered in panel (a), the steady-state

response of the cascade would have been close to saturation if the stimulation had been

applied in a sustained fashion (i.e., I → 0).

Panels (b-f) of Fig. 3.2 depict a variety of suprathreshold temporal behavior, the simplest

of which is characterized by a 1:1 spiking response to the periodically applied pulses [sup,

Fig. 3.2 (b)]. On varying the different stimulation parameters we observe other types of

suprathreshold activity. For example, on increasing P alone (or alternatively, S alone), the

system exhibits prolongation of the peak activity close to saturation [pro, Fig. 3.2 (c)]. For

high-frequency stimulation (i.e., low I) after a transient period we observe suprathreshold

peak responses only after every N pulses for values of P and S that lie between those

giving rise to sub and sup responses [see the lowest plane of Fig. 3.2 (g)]. This response

behavior, which corresponds to the coexistence (cox) of peak activity levels having dif-

ferent amplitudes (ranging from values just above zero to near-saturation) is shown in

Fig. 3.2 (d). For lower frequency stimuli, the cox regime corresponds to M : 1 response

where multiple peaks in MAPK activity, whose amplitudes can again vary widely, are

observed in response to each pulse [not shown]. Apart from these, we also observe be-

havior corresponding to non-associative learning, viz., desensitization [des, Fig. 3.2 (e)]

and sensitization [sen, Fig. 3.2 (f)], as described earlier. Specifically, at the interface of

the cox and sub regions in the stimulation parameter space, the des response regime is ob-
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served for high-frequency pulse trains [Fig. 3.2 (h)] while for low-frequency stimulation

we obtain sen [Fig. 3.2 (i)]. We note that for higher values of S , the transition from cox to

sub gets sharper thereby reducing the range of P over which the des and sen phenomena

are observed. An overview of the responses observed in the stimulation parameter space

is given in Fig. 3.2 (g) indicating the conditions for which each of the responses described

above can be obtained.

The “learning” behavior associated with the periodically stimulated cascade is seen in the

vicinity of the response threshold mentioned earlier corresponding to the boundary of the

sub regime [Fig. 3.2 (g)]. Hence, we examine the dependence of the threshold on the

stimulation parameters in Fig. 3.2 (j). The reciprocal relation between the signal strength

S and the critical pulse duration Pc necessary for suprathreshold response, seen over a

wide range of S , suggests that the threshold is determined by the total signal intensity of

a pulse, which is measured as the product of S and P. Deviation from this simple relation

is observed for sufficiently low signal strength. This implies that a minimal value of S

is required to observe a suprathreshold response, regardless of the duration for which the

pulse is maintained. We note that in the limit of I → 0, this minimal signal strength

corresponds to the lower critical value required to observe a transition from a low level

of MAPK activity to high-amplitude oscillations in the case of a cascade subjected to

sustained stimulation [108,172]. As I is increased, we observe that the response threshold

(measured in terms of the critical pulse duration Pc) increases, which suggests that the

excitability of the system reduces as the frequency of the periodic stimulus decreases.

The phenomena reported here are robust with respect to variations in the model param-

eters around the values used in this chapter, including the kinetic rate constants and the

molecular concentrations of the constituent kinases and phosphatases. We have also ob-

served similar behavior with cascades having branched architecture, e.g., MAP3K ac-

tivating two different types of MAP2K [111]. While we have assumed that the same

phosphatase acts on both the singly and doubly phosphorylated forms of the kinase in a
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particular layer of the cascade (as in the canonical Huang-Ferrell model), we have explic-

itly verified that our results are not sensitively dependent on this.

3.4 Discussion

A mechanistic understanding of the phenomena reported here is made difficult by the

large number of coupled dynamical variables in the model that operate across different

time-scales. This complexity may be untangled by using the framework of excitable

systems. As alluded to earlier, many of the characteristic features associated with ex-

citability are present in the system investigated here. These include the existence of two

qualitatively distinct states of activation separated by a threshold [Fig. 3.1 (e)], a nonlin-

ear response to repeated stimulation [Fig. 3.1 (f)], an apparently refractory behavior as

seen most prominently during desensitization [Fig. 3.1 (b)] and phenomena analogous to

alternans [Fig. 3.1 (d)]. This appealing analogy provides a means by which a phenomeno-

logical understanding of the emergent behavior of this complex system might be achieved.

We note that the excitability paradigm has been invoked earlier to explain aspects of cel-

lular activity in the context of antigen recognition by T cells [176,177]. Our results show

that the emergent dynamics of MAPK cascade, which is known to mediate immune re-

sponse [178], provides an explicit mechanistic basis for such a theoretical framework to

explain the adaptive response of the immune system to its microenvironment.

Among the functionally significant dynamical phenomena reported here, the phenomenon

of learning is perhaps the most intriguing. It confers on the system the ability to modify

its behavior in response to information, which is critical for adapting to a changing en-

vironment. The capability to learn often presupposes the existence of a feedback that

allows bidirectional communication between the components associated with receiving a

signal and those that initiate a corresponding response [179]. In the kinase cascade in-

vestigated here, an explicit feedback is absent as each layer activates the one immediately
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downstream. However, an implicit feedback results from the inherent features of kinase

activation, viz., sequestration and multi-site phosphorylation [108, 111, 113, 115]. This

can have non-trivial consequences, such as the appearance of short-term memory, even

when the MAPK cascade is subjected to a single pulse [172].

To conclude, in this chapter we have shown that a rich repertoire of responses can be

obtained when the system is exposed to a train of pulses. This results from the implicit

feedback, which orchestrates an interplay between the periodic stimulus and the diverse

activation and relaxation time-scales of the signaling components. In particular, the sys-

tem can exhibit sensitization and desensitization, which are examples of non-associative

learning. These may play an important role in the cell’s ability to function in its natural

environment, where it is continually exposed to signals of varying intensity and duration.

This necessitates an ability to respond selectively to the received stimuli. Such adaptive

mechanisms allow the cell to ignore persistent background stimuli through habituation

(desensitization) but respond strongly to infrequent signals to which it has been primed

through earlier exposure (sensitization). Given that a single linear cascade exhibits such

complex adaptive behavior, it is intriguing to speculate about the potential capabilities

inherent in the coordinated action of multiple subcellular processes [101]. The mecha-

nism through which learning at the sub-cellular scale can impact adaptive behavior in an

organism at cellular and possibly higher scales remains an intriguing question.
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3.A Appendix: The Model Equations

Table 3.1: Components of the MAPK Cascade

Component Notation Symbol
Mitogen-activated Protein Kinase Kinase Kinase MAP3K 3K
Singly Phosphorylated Mitogen-activated Protein Kinase Kinase Kinase MAP3K* 3K*
Mitogen-activated Protein Kinase Kinase MAP2K 2K
Singly Phosphorylated Mitogen-activated Protein Kinase Kinase MAP2K* 2K*
Doubly Phosphorylated Mitogen-activated Protein Kinase Kinase MAP2K** 2K**
Mitogen-activated Protein Kinase MAPK K
Singly Phosphorylated Mitogen-activated Protein Kinase MAPK* K*
Doubly Phosphorylated Mitogen-activated Protein Kinase MAPK** K**
MAP3K-Phosphatase 3K P’ase P3K

MAP2K-Phosphatase 2K P’ase P2K

MAPK-Phosphatase K P’ase PK

The three layer MAPK cascade comprises the following enzyme-substrate reactions:

S + 3K

k1
−→

←−−
k−1

S .3K
k2
−→ S + 3K∗

P3K + 3K∗
kp1
−→

←−−−
kp−1

3K∗.P3K
kp2
−→ P3K + 3K

3K∗ + 2K

k3
−→

←−−
k−3

3K∗.2K
k4
−→ 3K∗ + 2K∗

P2K + 2K∗
kp3
−→

←−−−
kp−3

2K∗.P2K
kp4
−→ P2K + 2K

3K∗ + 2K∗
k5
−→

←−−
k−5

3K∗.2K∗
k6
−→ 3K∗ + 2K∗∗
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P2K + 2K∗∗
kp5
−→

←−−−
kp−5

2K∗∗.P2K
kp6
−→ P2K + 2K∗

2K∗∗ + K

k7
−→

←−−
k−7

2K∗∗.K
k8
−→ 2K∗∗ + K∗

PK + K∗
kp7
−→

←−−−
kp−7

K∗.PK
kp8
−→ PK + K

2K∗∗ + K∗
k9
−→

←−−
k−9

2K∗∗.K∗
k10
−→ 2K∗∗ + K∗∗

PK + K∗∗
kp9
−→

←−−−
kp−9

K∗∗.PK
kp10
−→ PK + K∗

The above enzyme-substrate reactions can be expressed in terms of the following

coupled ordinary differential equations (ODEs):
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d[3K]
dt

= k−1.[S .3K] + kp2.[3K∗.P3K] − k1.[S ].[3K] ,

d[S .3K]
dt

= k1.[S ].[3K] − (k−1 + k2).[S .3K] ,

d[3K∗.P3K]
dt

= kp1.[P
f
3K].[3K∗] − (kp2 + kp−1).[3K∗.P3K] ,

d[3K∗]
dt

= k2.[S .3K] + kp−1.[3K∗.P3K] − kp1.[P
f
3K].[3K∗]

+(k−3 + k4).[3K∗.2K] − k3.[3K∗].[2K]

+(k−5 + k6).[3K∗.2K∗] − k5.[3K∗].[2K∗] ,

d[2K]
dt

= k−3.[3K∗.2K] + kp4.[2K∗.P2K] − k3.[3K∗].[2K] ,

d[3K∗.2K]
dt

= k3.[3K∗].[2K] − (k−3 + k4).[3K∗.2K] ,

d[2K∗.P2K]
dt

= kp3.[P
f
2K].[2K∗] − (kp4 + kp−3).[2K∗.P2K] ,

d[2K∗]
dt

= k4.[3K∗.2K] + kp−3.[2K∗.P2K] − kp3.[P
f
2K].[2K∗]

+k−5.[3K∗.2K∗] − k5.[3K∗].[2K∗] + kp6.[2K∗∗.P2K] ,
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d[3K∗.2K∗]
dt

= k5.[3K∗].[2K∗] − (k6 + k−5).[3K∗.2K∗] ,

d[2K∗∗.P2K]
dt

= kp5.[P
f
2K].[2K∗∗] − (kp6 + kp−5).[2K∗∗.P2K] ,

d[2K∗∗]
dt

= k6.[3K∗.2K∗] + kp−5.[2K∗∗.P2K] − kp5.[P
f
2K].[2K∗∗]

+(k−7 + k8).[2K∗∗.K] − k7.[2K∗∗].[K]

+(k−9 + k10).[2K∗∗.K∗] − k9.[2K∗∗].[K∗] ,

d[K]
dt

= k−7.[2K∗∗.K] + kp8.[K∗.PK] − k7.[2K∗∗].[K] ,

d[2K∗∗.K]
dt

= k7.[2K∗∗].[K] − (k8 + k−7).[2K∗∗.K] ,

d[K∗.PK]
dt

= kp7.[P
f
K].[K∗] − (kp−7 + kp8).[K∗.PK] ,

d[K∗]
dt

= k8.[2K∗∗.K] + kp−7.[K∗.PK] − kp7.[P
f
K].[K∗]

+k−9.[2K∗∗.K∗] − k9.[2K∗∗].[K∗] + kp10.[K∗∗.PK] ,

d[2K∗∗.K∗]
dt

= k9.[2K∗∗].[K∗] − (k−9 + k10).[2K∗∗.K∗] ,

d[K∗∗.PK]
dt

= kp9.[P
f
K].[K∗∗] − (kp−9 + kp10).[K∗∗.PK] ,

d[K∗∗]
dt

= k10.[2K∗∗.K∗] + kp−9.[K∗∗.PK] − kp9.[P
f
K].[K∗∗] .

where

[S ] = [S ]tot − [S .3K] ,

[P f
3K] = [P3K] − [3K∗.P3K] ,

[P f
2K] = [P2K] − [2K∗.P2K] − [2K∗∗.P2K] ,

[P f
K] = [PK] − [K∗.PK] − [K∗∗.PK] .

It is explicitly ensured that the total concentrations of all individual kinases and phos-

phatases are conserved at all times. The concentrations of the different molecular species

can vary over several orders of magnitudes. We have therefore numerically solved the
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equations using low relative and absolute tolerances in order to ensure the accuracy of the

resulting time-series.
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3.B Appendix: System Parameters

The numerical values for the reaction rates used in all our simulations are obtained from

Ref. [111], and are listed in Table 3.2. Please note that these values of kinetic rate con-

stants are very close to that of Huang-Ferrell base values [106].

Table 3.2: Reaction Rates
Rate constant Our base value Huang-Ferrell value Units
k1 1002 1000 (µM.min)−1

k−1 150 150 min−1

k2 150 150 min−1

kp1 1002 1000 (µM.min)−1

kp−1 150 150 min−1

kp2 150 150 min−1

k3 1002 1000 (µM.min)−1

k−3 30 150 min−1

k4 30 150 min−1

kp3 1002 1000 (µM.min)−1

kp−3 150 150 min−1

kp4 150 150 min−1

k5 1002 1000 (µM.min)−1

k−5 30 150 min−1

k6 30 150 min−1

kp5 1002 1000 (µM.min)−1

kp−5 150 150 min−1

kp6 150 150 min−1

k7 1002 1000 (µM.min)−1

k−7 30 150 min−1

k8 30 150 min−1

kp7 1002 1000 (µM.min)−1

kp−7 150 150 min−1

kp8 150 150 min−1

k9 1002 1000 (µM.min)−1

k−9 150 150 min−1

k10 150 150 min−1

kp9 1002 1000 (µM.min)−1

kp−9 150 150 min−1

kp10 150 150 min−1
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The signal parameters used to generate representative time-series in Fig. 3.1–3.2 follow-

ing the introduction of a signal are listed in Table 3.3 and Table 3.4 respectively.

Table 3.3: Signal parameters for the panels in Fig. 3.1
Parameter (b) (c) (d) (e) (f) Units
S 1.2 1.2 1.2 1.2 3 ×10−6µM
P 71 372 371 60 – 80 300 mins
I 106.75 2000 2000 105 100 – 700 mins

Table 3.4: Signal parameters for the panels in Fig. 3.2
Parameter (a) (b) (c) (d) (e) (d) Units
S 1.5 1.5 1.5 1.5 1.5 1.5 ×10−6µM
P 49 100 300 50 49.5 287 mins
I 105 105 105 105 105 2000 mins

Table 3.5: Total concentration (in µM) of the kinases and phosphatase proteins for
Figs. 3.1–3.2

Protein Value
[K]tot 4.8
[2K]tot 1.2
[3K]tot 0.0030
MAP3K-Phosphatase 1 × 10−4

MAP2K-Phosphatase 3 × 10−4

MAPK-Phosphatase 0.05
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4

Inferring the network relating immune

cell types in a human population:

Correlation analysis of data from adult

and cord blood samples

4.1 Introduction

An integral attribute of the human immune system is its ability to adapt upon exposure

to foreign antigens [23]. The development of this “adaptive immunity” commences after

birth, and manifests in terms of the memory components of the adult immune system,

viz. the levels of certain cell types in the blood [20, 23]. In contrast, the immune system

of newly born infants has considerably lower levels of cells that comprise the memory

compartments of adaptive immune system (such as memory T-cells and B-cells). The

immune system of them is broadly characterized by the general cell types of the adaptive

immune system that hardly differentiate in making the memory pool upon first encounters

of infectious agents [180], and the innate immune system whose role is to mount a defence
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against general pathogens [22, 23, 59]. While there has been significant research into

determining the roles of the different cell types of the innate [60] and adaptive immune

systems [22, 23, 181], there remain intriguing questions related to the development of

immunity over time. In particular, it is of interest to investigate how the relative levels of

immune cell types change upon decades of exposure to pathogens in the environment.

In this chapter, we perform a statistical analysis of datasets related to the population of

immune cell types in two different stages of maturation, namely post-parturition and in

adults. This data was experimentally obtained by our collaborators at the National Insti-

tute of Immunology (NII) from a population of healthy adults and from the umbilical cord

blood of a number of infants after birth. The data that we consider comprises information

related to the total cell counts for all major types of immune cells. Our analysis probes

the genetic, environmental and developmental signatures in the underlying networks of

immune cells. We quantify the change in cross-correlation of cell abundance in cord and

adult blood, and the corresponding probability density functions of the correlation matrix

in each case. We observe that the cord and adult blood samples form two distinct clusters

in an abstract space formed by the leading principal components obtained from spectral

analysis, even without considering specific memory cell types. This suggests that the un-

derlying network of cell types of the immune system evolves substantially over the course

of maturation.

4.2 Methods

4.2.1 Data Description

The two datasets used in our study correspond to population counts for 26 distinct im-

mune cell types for adult blood and umbilical cord blood, respectively. These counts are

determined from stoichiometric analysis [182] of the blood drawn from 78 adult individ-
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uals as well as from 76 umbilical cords during child birth. As there are very few entries

for PB cells in cord blood samples, we exclude PB cells from our analysis of cord blood

data. In addition, we exclude those samples for which cell counts are only partially avail-

able. Our reduced data set thus consists of 73 adult individuals and 75 cord samples. We

then obtain a normalized data set by dividing the population size of each of the basic im-

mune cell types by the total leucocyte count. Finally, we express this data in terms of the

corresponding z-scores, and use the resulting dataset for all subsequent analysis.

4.2.2 Spearman Rank Correlation

Having datasets of several immune cell counts for different samples, one can first try to

analyze the inter-dependence of these population sizes across the samples for both adults

and cords. We have calculated this dependence in terms of the pairwise Spearman Rank

Correlation coefficient [C(i, j)] that measures the monotonic dependence between two

variables i and j. Spearman’s rank correlation is a type of non-parametric measure to

probe how the rankings of two variables are related [183]. The usual Pearson Correlation

Coefficient [184] if calculated between the ranked variables (the ranks that are obtained

after converting the original data) gives the measure of C(i, j). Let’s say ix and jx are two

variables of a dataset having n sample (i.e., x represents the index varying from 1 to n). If

rix and r jx are the new variables after converted to ranks, C(i, j) = cov (rix, r jx)/σrix .σr jx ,

where ‘cov and ‘σ’ denotes the covariance and standard deviation of the rank variables.

4.2.3 Principal Component Analysis

The immune cell components that we consider are biologically regulated by multiple

common factors (such as chemokines and cytokines) and are often functionally inter-

dependent. In order to account for this, we reduce the dimensionality of the data while

attempting to preserve as much information from the original data as possible. To this
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end, we perform a Principle Component Analysis (PCA) that orthogonally transforms the

raw data containing the normalized cell counts of different immune cell types to obtain

a new set of linearly uncorrelated variables [185]. We then obtain the principle compo-

nents through an eigenvalue decomposition [186] of the cross-correlation matrices. The

eigenmodes corresponding to the first four largest eigenvalues yield the first four principle

components, and their corresponding eigenvector components represent the contributions

from each of the original variables, viz. the immune cell types.

4.2.4 Relative Change in Correlation Measures

Relative change in cross correlation (RCi j) has been calculated as follows: RCi j = (CAdult
i j −

CCord
i j )/((CAdult

i j + CCord
i j )/2).

4.3 Results

We first consider the distribution of cell types (Table 4.1) across individuals in each of the

data sets (viz., cord and adult blood samples). In order to compare the relative abundances

of the different immune cell sub-types in the cord and adult blood, we limit our analysis to

25 cell types, discarding data relating to Plasma B cells (PB), which is nearly absent in the

cord blood, We would like to emphasize that the results for the case of adult blood data are

qualitatively and quantitatively similar when considering PB as well (the corresponding

figure is included in the Appendix). The correlation between each pair of cell types in

the two cases is obtained using the Spearman rank correlation (described in the Methods)

and displayed in the form of Cross-correlation matrices C, for the cases of cord blood

[Fig. 4.1(a)] and adult blood [Fig. 4.1(b)]. We find that relative change between the cor-

relation matrices for cord and adult blood data displayed in Fig. 4.1, which is calculated

in terms of the relative change in cross correlation (RCi j), is most significant for the cell
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Figure 4.1: Investigating the inter-relation between different immune cell sub-types from
cross-correlation of their relative abundance in cord (a,c,e) and adult (b,d,f) blood. (a-b)
Cross-correlation matrix C obtained by measuring the Spearman rank correlation between
the relative abundances of the i-th and j-th cell types, viz., ri(= ni/N) and r j(= n j/N),
where i, j = 1, . . . ,M. Here M is the total number of distinct cell types being considered),
while ni and N are the cell counts of the i-th cell type and total cell count, respectively.
The values of Ci j ∈ [−1, 1] are represented by a color-scale indicated in the colorbar
next to panel (b). The 25 individual cell types analyzed are indicated along the rows and
columns. Data for an additional cell type, Plasma B cells (PB), have been removed from
the data sets for ease of comparison between the two matrices as the cord data contain
only negligible quantities of such cells. See the Appendix for a correlation matrix of the
adult data that includes PB. (c-d) The probability density functions P(Ci j) of the correla-
tion matrix elements showing that the distribution of Ci j for the adult blood data is more
positively skewed (γadult = 1.06) than that of the cord blood (γcord = 0.95). (e-f) Dendro-
grams showing the hierarchical clustering between different cell types, constructed from
the cross-correlation matrix using the complete linkage method. Distance di j between
cell types i and j have been computed using the expression di j =

√
2(1 −Ci j). Colored

branches indicate significant clustering (the threshold for significance corresponding to
70% of the maximum linkage).
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Table 4.1: Cell types of the immune system

Cell type Notation
Immature Neutrophil Ne_i
Mature Neutrophil Ne_m
Inflammatory Monocyte Mo_i
Classical Monocyte Mo_c
Patrolling Monocyte Mo_p
Plasmacytoid Dendritic Cell PDC
Myeloid or Conventional Dendritic Cell MDC
CD4 Naive T Cell CD4_n
CD4 Central Memory T Cell CD4_c
CD4 Effector Memory T Cell CD4_m
CD4 Effector Memory RA+ T Cell CD4_a
CD4 Regulatory T cell CD4_r
CD8 Naive T Cell CD8_n
CD8 Central Memory T Cell CD8_c
CD8 Effector Memory T Cell CD8_e
CD8 Effector Memory RA+ T Cell CD8_a
CD3 γδ T Cell CD3_γδ
Immature Naive B Cell B_ni
Mature Naive B Cell B_nm
Memory B Cell B_m
Plasma B Cell PB
B1 Cell B_1
Natural Killer Cell NK
Eosinophil Eo
NKT Cell NKT
iNKT Cell iNKT

types iNKT and CD8_a (the corresponding figure is included in the Appendix). In order

to quantify the change in cross-correlation of cell abundance, we consider the probability

density functions P(Ci j) of the correlation matrix elements. As can be seen in Fig. 4.1(c-d)

the distribution of Ci j is more positively skewed (γadult = 1.06) for the case of adult blood

than that of cord blood (γcord = 0.95). In order to determine the nature of heirarchical

clustering between cell types, we construct dendograms from cross-correlation matrix in

each case. This is obtained by first converting the cross-correlation into a distance metric

di j =
√

2(1 −Ci j) between each pair of cells i and j, and imposing a significance threshold

corresponding to 70% of the maximum linkage.
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Figure 4.2: Distinguishing the inter-relations between different cell types in cord and adult
blood using principal component analysis. (a-b) Eigenvector components corresponding
to different cell types (indicated at the base of each panel) for the four largest eigenmodes
u1 − u4 (arranged in decreasing order of the corresponding eigenvalues) of the cross-
correlation matrices obtained from cord (a) and adult (b) data. (c) Scatter plot of the
individual samples of cord (blue circles) and adult (red circles) blood shown in the sub-
space formed by the first three principal components. The coordinates of each sample k (=
1, . . . ,Q, with Qcord = 75 and Qadult = 73) are given by Pi(k) = Σ jzk( j)ui( j) ( j = 1, . . . ,M
being the index for the different cell types) where zk is the z-score vector representing
the relative abundance of the different cell types in the k-th sample, centered around the
mean and scaled by the standard deviation for each cell type. As can be seen, samples
of the two classes are clearly separated into two clusters. Note that memory cells (viz.,
CD4_c, CD4_e, CD8_c, CD8_e and B_m) are not included in the above calculations. (d)
Distance between the centroids of the clusters corresponding to cord and adult individual
samples calculated using all cell types or subsets thereof (indicated along the abcissae).
Note that the panel (c) corresponds to the subset “Allno mem”. As expected the distance
between the two clusters is reduced when only innate components of the immune system
are considered. The error bars are obtained by 104 bootstrap samples of each dataset.
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In order to study the inter-relations between cell types in cord and adult blood in more

detail, we perform a principal component analysis (described in the Methods) in each

case. The resulting eigenvector components for the four largest eigenmodes u1 − u4 are

displayed for the case of cord blood [Fig. 4.2 (a)] and adult blood [Fig. 4.2 (b)]. These

are displayed in each case for all 25 cell types, with the rows of Fig. 4.2 (a-b) arranged in

decreasing order of the corresponding eigenvalues. In order to visualize the quantitative

changes between cord and adult blood data, we consider the sub-space formed by the

first three principal components. The coordinates of each of the individual samples of the

two data sets k (= 1, . . . ,Q, with Qcord = 75 and Qadult = 73) are specified for each cell

type j = 1, . . . ,M as Pi(k) = Σ jzk( j)ui( j). Here, the zk( j) is the z-score of the relative

abundance of cell type j, and is centered around the mean and scaled by the standard

deviation for the corresponding cell type. In order to screen out the role of memory cells

in any difference that may arise between cord and adult blood, we do not consider these

cells in the aforementioned calculations. As seen in Fig. 4.2 (c), the samples for the cord

blood and adult blood form two clusters that are clearly seperated in the chosen sub-space.

Thus, despite considering a subset of cells excluding memory cells, we find significant

differences between cord and adult blood. In order to further quantify the differences that

arise from subsets of cell types, we compute the distance between the centroids of the

clusters corresponding to cord blood and adult blood. This quantity is calculated using

all cell types and using specific subsets. As seen in Fig. 4.2(d), we find that the distance

between the two clusters remains significant for most of the subsets considered.

A detailed view of the spectral decomposition of the cross-correlation between cell types

is presented for the case of cord blood [Fig. 4.3(a-b)] and adult blood [Fig. 4.3(c-d)].

This is presented in the form of scatter plots shown along the planes formed by each

consecutive pair of the second, third and fourth largest eigenmode, viz. the second and

third [Fig. 4.3(a,c)] and the third and fourth [Fig. 4.3(b,d)].
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Figure 4.3: Two-dimensional projections of the spectral decomposition of the cross-
correlation between different immune cell types for cord (top row) and adult (bottom
row) blood. Scatter plots are shown along the planes formed by the second and third
largest eigenmodes (a,c), and third and fourth largest eigenmodes (b,d).
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4.4 Discussion and Conclusion

Our investigations reported above illustrates the utility of statistical analysis in addressing

fundamental questions related to the development of immune response in humans. Al-

though there has been much experimental research done on uncovering the role of specific

types of immune cells and how they respond to foreign antigens, our results highlight the

information that can be acquired by analyzing cross-sectional data of different immune

cells sampled across a population. We find that the correlations between the levels of

immune cell types exhibit significant changes from cord to adult blood. This suggests

that, barring pathological cases, there is a common signature for the development of the

immune system across human populations.

Although there have been earlier studies showing some of the differences in the immune

system of adults and neonates, the novelty of our results lie in its focus on the pairwise

correlations between different immune cell types in neonates and adults. Earlier studies

have mostly focused on the distributions of different cell types, but have not considered

interactions between them. Furthermore, while the difference in neonate and adult im-

mune systems was known in terms of absence and presence (respectively) of memory

cells, we have shown that the two systems differ even in the correlations between their

constituent cell types. Our results can also be used to infer the possible function of cer-

tain components of the immune system. For instance, a smaller centroid distance for B

cells between the cord and adult data clusters in the space formed by the three leading

principal components, suggest that B cells can have a role in innate immune response.

In addition to the insights gained from the cross-correlation matrices, principle component

analysis reveals clear distinctions in the characteristics of the cord and adult blood data.

Specifically, when considering the three most significant eigenvector components of each

data set, we find that cord and adult blood form two distinct clusters. This separation

between the clusters is apparent even when considering subsets of the data in each case,

indicating that the relative levels of the underlying cell types are characterized by highly
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distinct features for the two data sets.

Finally, the methodology employed in our analysis is sufficiently general to be applicable

to a variety of other contexts and can be used to investigate additional questions related to

changes in the relative levels of immune cell types over time. While there remain impor-

tant questions related to the genetic and environmental factors affecting the development

of the immune system, our study demonstrates that population-level data sets can yield

intriguing observations related to the trajectories undertaken by the immune system as it

develops.
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4.A Appendix: Supplementary Figures
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Figure 4.4: Investigating the inter-relation between different immune cell sub-types from
cross-correlation of their relative abundance in adult blood with Plasma B cells (PB) in-
cluded. (a) Cross-correlation matrix C obtained by measuring the Spearman rank cor-
relation between the relative abundances of the i-th and j-th cell types, viz., ri(= ni/N)
and r j(= n j/N), where i, j = 1, . . . ,M. Here M is the total number of distinct cell types
being considered), while ni and N are the cell counts of the i-th cell type and total cell
count, respectively. The values of Ci j ∈ [−1, 1] are represented by a color-scale indi-
cated in the colorbar. The 26 individual cell types analyzed are indicated along the rows
and columns. (b) The kernel density smoothed estimates P(Ci j) of the correlation ma-
trix elements, represented using relative frequencies showing the distribution of Ci j for
the adult blood data. (c) Dendrogram showing the hierarchical clustering between differ-
ent cell types, constructed from the cross-correlation matrix using the complete linkage
method. Distance di j between cell types i and j have been computed using the expres-
sion di j =

√
2(1 −Ci j). Colored branches indicate significant clustering (the threshold for

significance corresponding to 70% of the maximum linkage).
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Figure 4.5: Matrix representing the relative change in the values of (a) cross-correlations
between cell types between the cord blood and the adult blood.
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5

Conclusions

The research described in this thesis is a contribution towards obtaining a better under-

standing of adaptive dynamics in two paradigmatic examples of complex adaptive sys-

tems, viz., the intra-cellular signaling network and the immune system. We observe the

emergence of phenomena identified with memory and learning in these complex systems

as an outcome of the interactions between different constituent elements and their inter-

play with environmental stimuli or extrinsic factors. In the following subsections, we

summarize the important results and conclusions reported in this thesis. This is followed

by a short discussion of possible extensions of the research presented here, as well as,

broad contours of how the research field might develop in the future.

5.1 Summary of the Main Results

Emergence Memory In Intra-Cellular Signaling Networks

The mitogen-activated protein kinase (MAPK) signaling cascade, an evolutionarily con-

served motif present in all eukaryotic cells, is involved in coordinating crucial cellular

functions. While the asymptotic behavior of the pathway stimulated by a time-invariant
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signal is relatively well-understood, we show using a computational model that it exhibits

a rich repertoire of transient adaptive responses to changes in stimuli. When the sig-

nal is switched on, the response is characterized by long-lived modulations in frequency

as well as amplitude. On withdrawing the stimulus, the activity decays over long time-

scales, exhibiting reverberations characterized by repeated spiking in the activated MAPK

concentration. The long-term persistence of such post-stimulus activity suggests that the

cascade retains memory of the signal for a significant duration following its removal. The

molecular mechanism underlying the reverberatory activity is related to the existence of

distinct relaxation rates for the different cascade components. This results in the imbal-

ance of fluxes between different layers of the cascade, with the reuse of activated kinases

as enzymes when they are released from sequestration in complexes. The persistent adap-

tive response, indicative of a cellular short-term memory, suggests that this ubiquitous

signaling pathway plays an even more central role in information processing by eukary-

otic cells. Determining the appropriate response of a cell to a signal from its environment

requires non-trivial information processing by the intra-cellular signaling network. This

may be significantly aided by the memory of exposure to the stimulus. Our research

shows that the MAPK motif can function as a memory device allowing the effect of a

signal to persist even when the cell is no longer exposed to it. This is manifested as rever-

beratory spiking activity of the cascade, a consequence of the broad range of relaxation

time-scales of its components. One may therefore expect to observe results qualitatively

similar to what has been reported here whenever the system has disparate time-scales

regardless of the actual molecular concentrations and kinetic rates which can vary sub-

stantially across different cells. We observe a crossover between two qualitatively distinct

regimes of relaxation behavior of active form of MAPK occurring at a steady state that

is characterized by relatively low proportion of activation of the available MAPK. Thus,

there appears to be an effective threshold for MAPK activity (which may be related to its

basal state level) that demarcates the different relaxation regimes following the removal

of the applied stimulus. As this signaling motif is involved in crucial cellular functions,
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the potential consequences of such emergent memory are far-reaching.

Non-associative Learning in Intra-Cellular Signaling Net-
works

Nonlinear systems driven by recurrent signals are known to exhibit complex dynamical re-

sponses which, in the physiological context, can have important functional consequences.

One of the simplest biological systems that is exposed to such repeated stimuli is the intra-

cellular signaling network. In this thesis we have investigated the periodic activation of

an evolutionarily conserved motif of this network, viz., the mitogen-activated protein ki-

nase (MAPK) signaling cascade, with a train of pulses. The resulting response of the

cascade, which shows integrative capability over several successive pulses, is character-

ized by complex adaptive behavior. These include aspects of non-associative learning, in

particular, habituation and sensitization, which are observed in response to high- and low-

frequency stimulation, respectively. Learning, wherein repeated exposure to sustained

stimulation eventually results in an altered response, is usually associated with multi-

cellular organisms, e.g., those possessing a nervous system. However, simpler forms of

learning, e.g., sensitization and adaptation, may appear in more rudimentary systems. In

this work we report novel results on how the response of a crucial part of the eukaryotic

intra-cellular signaling network, namely MAPK cascade can change on receiving a signal

repeatedly over an extended period of time. Depending on circumstances, this can result

in either an enhanced response (sensitization) or a diminished one (habituation). Taken

in conjunction with previous analogies made between the intra-cellular signaling network

and nervous systems, this provides an intriguing perspective on how the signaling net-

work of a cell can function as an adaptive complex system. In addition, the existence of a

response threshold of the cascade, an apparent refractory behavior following stimulation

with short inter-pulse interval, and an alternans like response under certain conditions,

suggest an analogy with excitable media.
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Evolution of the Immune Network

Adaptive Immunity is an integral part of human immune system and is evolves over time

as the system is exposed to foreign antigens and distress signals. A new-born child beign

not exposed to such signals tend to have very few immune memory cells. Adults, on the

other hand, show a variety of memory components in their adaptive immune system be-

cause of long exposure to the environment. With age the connections characterizing the

functional network of associations between different types of immune cells keeps change-

ing. This is because, new correlations may be established between memory immune cells

and other cell types. By looking at the population of various immune cells in umbilical

cord blood samples as well as in adult blood samples, we have uncovered several new

functional relationships between the immune cells. In particular, clusters of different cell

types have been identified that are related in terms of whether they evolve in a corre-

lated manner. We have characterized the similarity and dissimilarly of various immune

components in cord and adult blood, which can enable us to discern possible genetic, envi-

ronmental and developmental signatures in this dynamic network. A systematic analysis

of the empirical data using quantitative tools can help in understanding how exposure to

the environment governs the dynamics of the inter-cellular network as the immune system

develops. We find that the adult immune system exhibits a higher degree of correlation in

the proportions of cells of the adaptive immune system, suggesting a strong role played

by maturation in the evolution of the system. Our analysis validates several correlations

between different cell types that have been alluded to in the literature and also suggests

a few previously unreported relations. We have also quantified the hierarchy of the dif-

ferences of immune compartments (such as T cells, B cells, innate cells, etc) between

umbilical cord and adult data.
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5.2 Outlook and Future Direction

Mutations, dysregulations and altered expressions of the proteins embedded in MAPK

cascade are often linked with various types of cancer [100, 187, 188], autoimmune dis-

orders [189, 190], as well as, many inflammatory and neurodegenerative diseases [100].

Depending on the cellular context, the MAPK cascade can function both as a pro- and

an anti-apoptotic pathway. We note that several candidate drugs for treating cancer have

failed by not being able to attenuate the activity of MAPK∗∗ [191] when it acts as a mod-

ulator for cellular proliferation, tumorigenesis, tumor growth and maintenance. Thus, it

is intriguing to consider the possibility that the memory displayed by MAPK∗∗ activity

can subvert intra-cellular signaling networks to promote survival, proliferation and main-

tenance of cancer cells. As there is evidence of cross-talk between the MAPK and PI3K-

AKT pathways [192], we can speculate that the memory displayed by MAPK pathway

upon removal of a stimulus may play an important role in establishing a bi-directional

signaling cross-talk between PI3K-AKT and MAPK pathways in several possible micro-

environmental scenarios within the cell.

Another key aspect of the long-term memory in cell signaling is its direct impact on the

fundamental limits on detectability for sensing extra-cellular chemical concentrations in

diverse contexts [193–196]. It is worth noting that the input stimulus to a MAPK cas-

cade is essentially a membrane-bound activated protein working in conjunction with the

cell-surface receptors. The landmark studies that have set fundamental limits on sens-

ing extra-cellular chemical concentrations through binding-unbinding events mediated by

cell-surface receptors (such as the Burg-Purcell Limit [193] and Maximum Likelihood

Estimator [194]) are based on the assumption that binding events are independent of each

other. In addition, the effective downstream signaling is assumed to be associated with

the corresponding binding event alone. As our work reported in this thesis demonstrates,

cell signaling processes may exhibit memory wherein post-stimulus spiking in the effec-

tor protein concentrations can occur upon withdrawal of the applied stimulus which was
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mediated by a lone binding event. The long memory of the signal retained by the cell may

alter the subsequent signaling dynamics following repeated stimulation which is mediated

by multiple binding events. Thus, one may expect that the fundamental detectability lim-

its may change because of such cellular memory. As shown in the context of fluctuating

environmental concentrations in Ref. [196], memory may enhance the detectability of the

ligand concentration of the extra-cellular chemicals. Thus, a potential problem one can

work on in the future involves exploring the role of transient reverberatory dynamics in

modulating detectability limits for chemicals in the external environment of a cell.

Generally the framework of ordinary differential equations (ODEs) is used to model the

dynamics of motifs of the intra-cellular signal transduction networks by deploying mass

action principles and Michaelis-Menten kinetics to represent each of the constituent bio-

chemical reactions [132]. However, when the number of molecules participating in these

reactions are very low, the dynamics becomes intrinsically noisy. Such stochasticity can

result in non-trivial qualitative changes in the behaviour of the models of intra-cellular

signaling dynamics [197, 198]. Although we have carried out the computational studies

of the signal transduction systems in the mean-field limit, describing each reaction by

an ODE owing to the presence of quantitively larger copy numbers of the MAPK family

proteins inside the cells, presence of such intrinsic noise can impact the response patterns

for cells where the copy numbers of the proteins present in the MAPK family are of the

order of 10 to 100. An obvious extension of the present work, therefore, will be to ask

how stochasticity will affect the adaptive dynamics of MAPK motif when the signal is

a short-duration pulse, as well as, when subject to repeated stimulation by a pulse train.

This can be done by using, for instance, the Gillespie algorithm [199] or its variants for

simulating the reaction dynamics.

In many signaling pathways, the signaling molecules are compartmentalized inside the

cell, i.e., inside the cytosol the mobility of participating proteins may be restricted to

particular spatial regions inside the cell. Often the geometry of the cell, the chemical
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gradients of the chemicals, formation of microdomains, heterogeneity owing to presence

of a myriad types of molecules, diverse time-scales for diffusion of the molecules, etc.,

can contribute to these spatial dependencies in signal transduction [103]. In such cases,

we can use either partial differential equations (PDEs) or compartmental models to incor-

porate the spatial information [200] and therey study the adaptive dynamics underlying

cellular memory and non-associative learning in signal transduction networks. The chem-

ical reactions that we use to describe events can often consist of many intermediate steps.

Hence, encompassing the intermediate steps becomes a tedious computational job for

large scale networks. Even without the intermediate states of the reactions, the analyti-

cal understanding is not always easy for a large number of coupled ODEs as in the case

of the MAPK motif. The coupling and non-linearity in the interdependence of the state

variables makes it very difficult to gain a mechanistic understanding of the associated dy-

namics. For example, we are yet to formulate a successful reduced phenomenological

model of the MAPK system (e.g., involving only two or three dynamical variables) which

will enable us to gain a deeper physical understanding of the system. A future aim will

be to devise such a reduced model which preserves the qualitative features of the adaptive

response, including the emergence of cellular memory and non-associative learning.

Another challenge in modeling signal transduction networks is in the presence of many

kinetic parameters which are often difficult to experimentally measure exactly. Indeed,

some of the parameters can be ‘sloppy’ in that varying them over a large range does not

signfiicantly affect the qualitative nature of the response [201]. Although using such a

‘sloppy’ framework may help in deriving a reduced model, another complimentary ap-

proach can be to model the signaling cascades by a Boolean logic circuit where level of

activity of a node is represented by binary state variables. Historically, Boolean networks

encompass many different kinds of regulatory relationships citeKauffman1969. In the

case of signal transduction, it has been shown that signaling networks can display retro-

grade propagation of information resulting in non-trivial outcomes, such as long-range

interaction between two different pathways [110,111]. Thus, one can conceive of a study
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involving Boolean networks incorporating bi-directional regulatory interactions as well

as sequestration effects.

The research work that is presented in this thesis demonstrating the emergence of mem-

ory and learning in a canonical MAPK cascade, a signal transduction motif ubiquitous

in all eukaryotic cells, does not incorporate cross-talks with other components of the cell

signaling machinery. Also, we do not explicitly implement several explicit negative and

positive feedbacks within the MAPK cascade. While it is intriguing to observe com-

plex adaptive behaviour in the MAPK motif in the absence of any explicit feedback or

crosstalk, one can ask whether the adaptive dynamics reported here is robust with respect

to these additional features. For instance, they can enable the system to operate at different

time-scales depending on the system parameters. Given the complexity of such a system,

we speculate that more complex dynamics (and possibly novel types of learning) might be

observed. This will introduce a new dimension to our understanding of the capabilities of

intra-cellular signal processing machinery. Although the regimes in the parametric space

over which we observe desensitization, sensitization and alternans are quite limited in the

case of a lone canonical MAPK motif, the complexity of cross-talks and feedback might

broaden these parametric regimes making these phenomena more robust.

Our results of non-associative learning in MAPK cascade may also provide an explicit

mechanistic basis to the excitability paradigm that has been theoretically suggested earlier

in irder to explain the thymic selection and peripheral anergy in the context of tunability of

activation thresholds during repetitive interactions of T cells with self-antigens [176,177].

Although the mechanism of negative and positive selection of maturing T cells in Thy-

mus and clonal deletion of B cells in bone-marrow have been investigated earlier it is not

yet understood how general these are [18, 23, 24]. Our results show that the emergent

dynamics of MAPK cascade, which is known to mediate immune response [178] can

provides an explicit mechanistic basis for a theoretical framework to explain the adap-

tive response of the immune system. It is worth investigating how the maturing T cells
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achieve certain cell fates, what role does stochastic binding with APCs carrying different

MHCs of type I & II play and how the intra-cellular transduction pathways initiate cell

differentiation, proliferation or apoptosis based on periodic or stochastic signals that the

maturing T cells are receiving due to TCR binding with MHC ligands. In this thesis, we

have demonstrated (in the context of signal transduction) that one can obtain completely

different downstream activity over long time-scales if stimulated repeatedly. Tolerance,

sensitization and memory can emerge in such systems even without explicit feedback.

In some biological systems, for instance, in maturing T cells, this can potentially lead

to understanding various cell fates achieved by the maturing cells and can explain the

different decisions taken by cells based on their micro-environment. To the best of our

knowledge, our results are the first to show that simple motifs, such as the MAPK cas-

cade, in the intra-cellular signaling network can exhibit short-term memory and instances

of non-associative learning, that may have biological significance. We would like to note

that a recent experimental study [202] provides support for our proposal of the existence

of short-term memory in cell signaling.

Moving on to the immune system, there are a wide variety of research directions that can

be taken up in the future. For instance, one of the aims could be to understand the process

underlying self/nonself discrimination and its relationship with the nature of temporal dy-

namics of key signal transduction proteins, for instance MAPK proteins. In particular,

how does repeated interaction with antigens/self-antigens impart individual immune cells

with different outcomes in terms of their function and cell fates. The differentiation of the

immune cells into memory cells is yet another problem one can look at. In the case of T

cells, the thymic output does not involve any memory T cell [23]. Through antigenic in-

teractions, the T cells form memory compartments and live for extremely long time. How

do they achieve such a fate? How do they live for such a long time? How do the regula-

tory interactions within the immune network contribute to their development? B cells also

differentiate into memory compartments following antigenic exposures so that they can

mount a stronger response upon subsequent exposure. In this thesis, we have restricted
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ourselves to draw an overall picture of the immune network in cord and adult blood. One

can ask how exposure to stimuli actually alter the connection structure of the network by

considering explicitly cytokine or chemokine mediated molecular interactions take place

during the maturation process of the immune system in the course of development. Simi-

lar techniques to those we use to differentiate the functional correlations between different

immune cell types in the cord blood and adult blood can be used to understand differences

in the immune system of diseased individuals.

To summarize, this thesis has tried to characterize, using the framework of dynamical

systems theory, the broad features of adaptive dynamics (including memory and learning)

displayed by two biological networks that function at very different levels (intra-cellular

and inter-cellular). Our results may initiate new research initiatives in the future to look

at similar dynamics in other biological systems.
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