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Chapter 1

Introduction

The Standard Model (SM) of particle physics is a very successful theory in describing the

physics of elementary particles. All the experimental results so far indicate that the SM

is the consistent effective theory of elementary particles for energies up to a few hundred

GeV scale. All the fundamental particles predicted by the SM including the Higgs boson

have been found in different experiments. A significant development is that the Large

Hadron Collider (LHC) at CERN has announced the discovery [1, 2] of the Higgs at a

mass around 125 GeV. The couplings of the scalar observed at the LHC are also measured

to be consistent with those of the SM Higgs. However, despite the excellent agreement

with experiments, there are some shortcomings that cannot be addressed within the SM.

The gauge hierarchy problem is one of the main theoretical problems that the SM

cannot address. The fundamental Planck scale (MPl ∼ 1019 GeV) is 16 orders of magnitude

larger than the scale of electroweak symmetry breaking (EWSB) (∼ 103 GeV). If the SM

is valid up to the Planck scale, a severe fine-tuning is necessary in order to keep the Higgs

mass light in the presence of quantum corrections. This is elaborated upon next. The

renormalized physical Higgs mass (mh) is given by

m2
h = m2

0 + δm2
h, (1.1)

where m0 is the bare Higgs mass. The quantity δm2
h is the one-loop Higgs self energy

1



correction with the dominant contribution coming from the top loop which can be expressed

as δm2
h = (yt

2/16π2)Λ2; where yt (∼ 1) is the top Yukawa coupling and Λ is the cut-off

scale. The quadratically divergent quantum correction to the Higgs mass lifts it to the

largest scale in the theory making the Higgs mass of the order of the cut-off scale. One

statement of the naturalness principle [3] is that the quantum correction of a quantity

should be of the same order as (or smaller than) its tree level value, for that quantity

to be natural. When the quantum correction is much larger than the tree level value,

the bare value and the quantum correction will have to have an unexpectedly precise

cancellation to give a result that is much smaller than either components. This will make

the scalar mass unnatural, as for instance is the case for the Higgs boson which was

discovered at the LHC at a relatively light mass of around 125 GeV. In order to keep the

physical Higgs mass (mh) at the scale of the observed particle, an enormous amount of

fine-tuning (cancellation up to 30 decimal places for a cut-off scale Λ ∼MPl) between the

bare Higgs mass and Higgs self energy corrections is required. This unusual “fine-tuning”

is not addressed in the SM. The requirement of δm2
h ∼ m2

h, for the electroweak theory

to be natural, leads to the cut-off scale of the theory around one TeV. If a fine tuning

is to be avoided, some new physics has to be present near the TeV scale. This is one of

the main motivations to extend the SM around the TeV scale. A detailed discussion on

naturalness and the appearance of new physics at the TeV scale can be found in Ref. [4,5].

In addition to the gauge hierarchy problem, the SM also cannot explain the large

hierarchy of fermion masses. For instance, the mass of a top quark (≈ 173 GeV) is 6 and

12 orders of magnitude larger than the mass of an electron (≈ 0.5 MeV) and the mass of

neutrinos (≈ 1eV ) respectively. Although this flavor hierarchy is technically natural [3], it

still leaves a question on whether there is some underlying physics that sets the disparate

masses of the SM fermions.

In addition to the above theoretical arguments for BSM physics, there are some

observed facts such as the nonzero neutrino mass, existence of dark matter and baryon

asymmetry of the universe that strongly indicate that one may have to go beyond the SM
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to explain them. These are discussed briefly below.

Neutrino mass: The nature of neutrinos is not very well understood. Whether

neutrinos are of Dirac (particle and anti-particle are different) or Majorana (anti-particle

is same as the particle) type, may be resolved from the neutrinoless double beta decay

experiments. No sign of neutrinoless double beta decay is observed yet. So, still there

is a possibility of neutrinos being either Dirac or Majorana types. Neutrinos are also

massless in the SM as constructed earlier. However, neutrino oscillation experiments

have shown that neutrinos do have mass. Neutrino mass can be generated in different

ways. One of the simplest ways to generate a Dirac neutrino mass is by adding BSM

right handed neutrinos to the SM, which can lead to the requirement of extraordinary

small Yukawa couplings to provide a small mass to neutrinos, which is of the order of eV.

For Majorana type neutrinos, the simplest way to generate a tiny mass term is through

a seesaw mechanism [6], adding a heavy Majorana neutrino to the SM. A BSM theory

where a tiny Dirac neutrino mass is possible is discussed in this thesis.

Dark matter: Although dark matter is not observed directly, there is evidence from

its gravitational effects on visible matter and radiation such as the rotation curves of

galaxies, gravitational lensing of background radiation and baryon acoustic oscillation

experiments. These effects also have experimental evidence, which clearly suggest that

dark matter exists. Many BSM models have been proposed to present a dark matter

candidate. As an example, widely discussed models of dark matter are assumed to be

composed of weakly interacting massive particles (WIMP). A WIMP with a mass around

the TeV scale interacts with EW strength and can provide the correct relic abundance to

account for the dark matter in the universe.

Baryon asymmetry: If the Big Bang had created equal amounts of matter and

antimatter in the early universe, the baryon asymmetry of the Universe should be zero.

Observations at the current time indicate that our universe is almost entirely made up of

matter with very little anti-matter. To explain the observed matter-antimatter imbalance,

large CP violating effects are required. The CP violation in the SM is orders of magnitude
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too small to account for the observed baryon asymmetry [7].

Furthermore, the fact that the weak coupling constants for quarks and leptons are

the same, flavor universality of quarks and leptons etc. could have origins in beyond the

SM physics. In the last few decades, enormous effort has been made to construct and

test the bigger theory which will address some of the unanswered questions of the SM.

Supersymmetric (SUSY) theories, models with extra spatial dimension, dynamical models

of EWSB such as technicolor, little-Higgs models etc. are some well-known examples of

these BSM theories. Till now there is no concrete experimental evidence of the presence

of BSM physics. In the recent past, an excess was reported by CMS and ATLAS in the

γγ channel at the 13 TeV run of the LHC [8,9]. It was a hint (confidence level ∼ 3σ) of a

new scalar resonance with a mass around 750 GeV. As more LHC data was analyzed and

reported at the ICHEP conference [10,11], the diphoton excess appears to have been a

statistical fluctuation.

The focus of this PhD work is to explore some of the BSM models which have larger

symmetries than the SM to provide solutions to some of the problems stated above. These

models have bigger gauge or global symmetries which are usually broken at a higher scale

and broken explicitly by a small amount to retain the SM symmetries at the TeV scale.

Another feature of many of these BSM models is the presence of new heavy scalars apart

from the 125 GeV Higgs. These extra scalars can come as SU(2) singlets, doublets in

a way similar to the two Higgs Doublet model (2HDM) and even as triplets. To either

address gauge hierarchy or neutrino mass generation issues of the SM, the models with

extended symmetry also require extra new fermions to be present. The main focus of this

thesis is to study the LHC phenomenology of such heavy scalars in two types of models

with extended symmetries namely the SU(6)/Sp(6) little-Higgs model and the gauged

U(1)B−L model, based on Ref. [12] and Ref. [13] respectively.

The little-Higgs models are one class of the BSM theories which address the hierarchy

problem as the Higgs mass does not receive any quadratically divergent correction at one

loop. In these models, the Higgs boson and the new scalars are pseudo Nambu-Goldstone
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bosons. The 2HDM like structure is present in a number of little-Higgs models at the

TeV scale. The SU(6)/Sp(6) little-Higgs model is one such example, which manifest a

2HDM structure along with one extra complex scalar and BSM gauge bosons. The extra

fermions are required in these models to cancel the quadratic divergence at one-loop. It is

interesting to study the phenomenology of the BSM scalars at the LHC, quantifying the

effects of BSM fermions on those heavy scalars.

Previously, the probable observation of an excess at the γγ channel with mass around

750 GeV, hinted at the presence of a BSM scalar. Although it is not observed in further

searches,our study can be useful in searching for a BSM scalar in the diphoton channel,

and can aid future searches at the LHC. Another model with its symmetry extended

beyond the SM by a U(1) B −L symmetry is also explored in this context. These models

with an extra U(1)B−L can explain the smallness of the Dirac or Majorana neutrino mass

and may present a scalar dark matter (DM) candidate with the help of a symmetry that

stabilizes the DM, preventing its decay. This model also contains two additional BSM

scalars; one of which is proposed to be a 750 GeV resonance. In this thesis, the LHC

phenomenology of a heavy scalar is discussed in a gauged B −L model, where Dirac mass

terms for neutrinos are generated.

Some models with their symmetries extended beyond the SM include models with

grand unified theory (GUT) [14–16], little-Higgs models [17–19], Left-Right symmetric

models [20–22], 3-3-1 models [23–25], 3-3-1-1 model [26], models with SM gauge group

extended by one abelian symmetry [27–30] etc. One part of this thesis is on studying the

phenomenology of a BSM theory with an extended symmetry namely the SU(6)/Sp(6)

little-Higgs model, introduced in Ref. [31]. Various other little-Higgs models are also

studied in the literature, where the symmetries are extended beyond the SM. A detailed

description of different kinds of little-Higgs models can be obtained from Refs. [18, 19].

The littlest Higgs model, the simplest construction of the little-Higgs model family is

described in Refs. [19,32]. Various aspects of the littlest Higgs model with extra symmetry

(T-parity) are discussed in Refs. [33, 34]. A littlest Higgs model with custodial symmetry
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is described in Ref. [35]. Construction of several other little-Higgs models are described in

Refs. [33,36,37]. The constraints and the compatibility of the little-Higgs models with the

properties of the 125 GeV state observed at the LHC are discussed in Refs. [38–45]. Some

other studies investigating phenomenological and collider aspects of different little-Higgs

models are given in Refs. [46–48].

Another aim of the thesis is to study the phenomenology of a heavy (∼ 750 GeV)

BSM scalar in the gauged B − L model discussed in Ref. [49, 50]. Different procedures

of neutrino mass generation in the gauged B − L model are described in Refs. [50–53].

Other phenomenological issues and collider signatures related to the gauged B − L model

are presented in Refs. [54–56].

This thesis is structured as follows. In Chapter 2 of the thesis, the Low-Skiba-Smith

(LSS) model i.e. the SU(6)/Sp(6) little-Higgs model is studied in detail along with a

brief discussion on various little-Higgs models, which include the littlest Higgs model,

minimal-moose model etc. The gauge and Yukawa sector of the LSS model are described,

pointing out the presence of a 2HDM structure with VLFs there. In Chapter 3, the

properties of the 2HDM scalar potential of the LSS model are studied. The parameter

space of the LSS model after imposing the 8 TeV LHC constraints is also presented in

this chapter. The production and decay modes of the neutral and charged BSM scalars of

the LSS model are studied in detail.

It is shown in Chapter 4, how the gauged B−L model where the SM is extended by one

U(1) B − L symmetry, can generate the observed tiny neutrino mass and present a dark

matter candidate. The new particles that are introduced in the model for neutrino mass

generation, are also listed. In Chapter 5, one heavy scalar of the gauged B−L model with

mass of 750 GeV is chosen to be studied, following the earlier hint of a diphoton excess at

the LHC. The phenomenology of that scalar is discussed, explaining the enhanced cross

section of the scalar at the diphoton channel. Non-observation of any excess in the other

channels and the decay width of the scalar are also discussed. In Chapter 6, all the main

results of the thesis are summarized, providing a phenomenological overview of the models

6



with extended symmetries.
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Chapter 2

Little-Higgs Models

After the observation of other SM particles in a long series of previous experiments, the

Large Hadron Collider (LHC) discovery of the Higgs boson at a mass of about 125 GeV

has finally confirmed the standard model (SM) to be the consistent description of particle

physics up to the electroweak (EW) (∼ TeV) scale. The quadratic divergent corrections

to the Higgs mass drives the EW scale mass to very high values resulting in the hierarchy

problem of the SM. This can be a hint that some new particles beyond the standard

model (BSM) may be around the EW scale to cancel the one-loop divergences, making

the Higgs mass naturally stable against quantum corrections at the TeV scale.

Among the probable candidates of BSM physics that make the small Higgs mass natural

at the EW scale, there are models where the SM Higgs is a pseudo-Nambu-Goldstone

boson (pNGB). In some of these models, pNGBs apart from the Goldstone bosons appear

as extra physical scalars. Concrete realizations of this idea, for example, are in models of

little-Higgs, composite-Higgs and extra dimensions (for reviews see Refs. [18,19,57,58]). In

little-Higgs models, in addition to the CP-even Higgs boson, new CP-odd (A) and CP-even

(H) scalars can be present. Those extra scalars are also pNGBs due to which their mass

can be much lower than the cut-off scale. Also, extra heavy vector-like fermions (VLF) are

usually introduced which, along with the SM fermions, complete some representation of a

bigger gauge group containing SU(2)⊗ U(1). Apart from solving the hierarchy problem,
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little-Higgs models can provide interesting phenomenology of the new scalar and fermions

that is to be explored in detail. In our work [12], the phenomenology of BSM particles is

discussed in the SU(6)/Sp(6) little-Higgs model.

This chapter is organized as follows: In the first section, different little-Higgs models

which contain extra scalars and fermions due to the extended symmetry of the theory, are

described. In these little-Higgs models, the BSM scalars come as part of an extra scalar

doublet like the 2HDM. Some new fermions are also required, which are usually taken as

vector-like fermions. Therefore, to have a better understanding of the little-Higgs models,

a brief description of the 2HDM and VLFs are given in the next section. In the last

section, the SU(6)/Sp(6) little-Higgs (LSS) model is described, with a detailed discussion

on the scalar and Yukawa sectors, showing how a 2HDM structure with VLFs appears

there. The LSS model is described here, following Refs. [12,31].

2.1 Little-Higgs Models

In the SM, the Higgs mass squared parameter receives quadratically divergent one-loop

radiative corrections sensitive to the cut-off scale of the theory. To naturally stabilize the

electroweak (EW) scale i.e. to keep the fine tuning as small as possible, new physics is

expected at around one TeV. The little-Higgs model [17] is an interesting BSM possibility

that can stabilize the electroweak scale by preventing the Higgs mass from receiving

quadratically divergent corrections at the one-loop level. This is arranged by making the

Higgs a pseudo-Nambu-Goldstone boson (pNGB) (different models with this idea are

reviewed in Refs. [18,19]).

In the general construction of the little-Higgs models, a global symmetry (G) of the

Lagrangian is spontaneously broken to a subgroup H giving rise to Nambu-Goldstone

bosons (NGB) which are massless at the tree-level and live in the coset G/H. The Higgs

boson is taken to be one such NGB in the little-Higgs framework. Some of the other NGBs

of the model emerge as the new physical scalars beyond the SM. As an example, one
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simple little-Higgs model can be constructed with a global symmetry group SU(3) which

is spontaneously broken to SU(2) at a breaking scale f (∼ 1 TeV). The Higgs consists of

four of the resulting Goldstone bosons due to this breaking and transforms as a doublet

under the unbroken SU(2). The other among the five NGBs is an SU(2) singlet. Here,

the Higgs is massless and has no Yukawa and gauge interactions.

The global symmetry (G) in these models is broken explicitly by the gauge and Yukawa

interactions to a subgroup. Due to this explicit breaking, the Higgs boson pick up masses

at the loop-level making the Higgs a pseudo Nambu-Goldstone boson (pNGB). Other

scalars, excluding those which are eaten as the longitudinal component of the gauge

bosons, can also get mass in this way. This breaking is specially arranged to ensure that

the mass picked up by the scalars remain finite at one-loop.

To ensure that the scalars are light, the Higgs multiplet is in a representation of the

global symmetry group, containing the additional scalars. Similarly, extra fermion states

beyond the SM are also introduced to fill up a representation of some bigger symmetry

group, and to have sufficient symmetries to prevent quadratic divergence at one-loop. The

beyond the standard model (BSM) fermions are made relatively heavier by making them

vector-like with respect to the SM gauge group. The extra scalar states can typically

be singlets, doublets, or triplets under the SM SU(2). The vector-like fermions can also

appear as the part of different SU(2) multiplets. Depending on the nature of the symmetry

groups G and H, and how the global symmetries are broken, these extra scalar states

can be much lighter than the global symmetry breaking scale f . Precision electroweak

measurements impose tight constraints on little-Higgs models, typically resulting in a

large fine-tuning. A discrete symmetry, the T -parity, can be incorporated to alleviate this

problem as is shown in Ref. [59].

The “minimal-moose” [60] and the “littlest-Higgs” [32] models are some well-studied

little-Higgs models. Some variants of these little-Higgs models are described below:

• The minimal-moose with T-parity:

The minimal moose model is a two site model based on an SU(3) global symmetry.
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Unlike the original minimal-moose with gauged SU(3)×SU(2)×U(1), in a minimal-

moose model with T-parity (Ref. [33]), a Z2 reflection symmetry is realized when the

[SU(2)× U(1)] group within each of the SU(3) are gauged. The unbroken diagonal

sub-group is identified with the SM gauge group. The low-energy effective theory

much below the scale f is a 2HDM. In the fermionic sector, this model contains

new SU(2) singlet colored vector-like Weyl fermion pair (u′, uc′) that cancel the

divergent radiative correction from the SM top quark.

• Another minimal-moose model with T-parity (Ref. [59]) can be thought of as a UV

completion of the model described above. The SU(3) global symmetry structure at

each site of the minimal moose is enlarged to SO(5) so that the global symmetry

contain the custodial symmetry group SU(2)C which further keeps the T-parameter

under control. Here, to incorporate geometric reflection symmetry, an additional

site is introduced under which mirror fermions are charged and couple with BSM

fermions and makes them massive. The gauge structure is identical to the previous

model, with the low energy effective theory again being a 2HDM. The fermion sector

now include doublets and singlets, replicating the fermionic structure of the SM

with new vector-like quarks and leptons.

• The Littlest Higgs:

This theory is a simple extension of the SM, which contains a naturally light Higgs,

free from quadratic divergences at the one-loop level. The EW sector of the SM

is embedded into the SU(5)/SO(5) non-linear sigma model where the Higgs is a

pseudo Nambu-Goldstone boson. The symmetry breaking scale f is around a TeV,

with the cut-off Λ ≤ 4πf ∼ 10 TeV. Gauging an [SU(2)×U(1)]2 subgroup of SU(5)

explicitly breaks the global symmetry. The Higgs quartic self-coupling is generated

by the gauge and Yukawa interactions, while the top Yukawa coupling generates a

negative mass squared term, triggering electroweak symmetry breaking. The new

particle content at the TeV scale consists of one set of new vector bosons with
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the same quantum numbers as the electroweak gauge bosons (W and Z), an EW

singlet up-type vector-like quark, and an EW triplet scalar. These new particles

through their interaction with the Higgs cancel the one-loop quadratically divergent

corrections to the Higgs mass.

• The Littlest Higgs with T parity:

The strongest Electroweak Precision constraints come from the tree level couplings

of the SM fields to the new gauge bosons, as well as the vacuum expectation value

(vev) of any SU(2) scalar triplet which arises from its coupling to the SM Higgs.

However, new particles are required to couple to the Higgs only at loop level to

cancel the quadratic divergence. Therefore, it is possible to suppress the tree level

contributions due to the new physics without upsetting the cancellation of the

quardrant divergence. The natural way to implement this is to have a new symmetry

acting on new TeV particles, while all the Standard Model fields are neutral under

that new symmetry. The simplest choice for such a symmetry is a Z2, under which

the SM particles are even and the new ones are odd. This would automatically

prevent mixing of SM electroweak gauge bosons with the new heavy ones. With

this new symmetry, the little hierarchy problem can be solved consistently.

• In the littlest-Higgs with T-parity by Low (Ref. [34]), the group SU(5)l×SO(5)r/SO(5)v

is chosen among the two choices of G presented in that work. The low-energy effective

theory is a 2HDM plus a singlet complex scalar. The mass of the extra doublet is

controlled by the ε1 parameter defined in the paper: both the Higgs doublets are

light for ε1 � 1, while for ε1 ∼ 4π, the extra scalar doublet mass is of the order

of 10 TeV. The new fermions are one doublet and two singlet up-type (EM charge

+2/3) vector-like quarks.

• In a little-Higgs model by Kaplan and Schmaltz (Ref. [37]), the global symmetry

structure is [SU(4)/SU(3)]4 with gauged SU(4)× U(1) . The low-energy effective

theory is a 2HDM. The new fermion is an up-type singlet (EM charge +2/3)
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vector-like quark pair.

• The Low-Skiba-Smith (LSS) Model:

A variant of the littlest-Higgs model is constructed by Low, Skiba and Smith (LSS,

Ref. [31]) where the global symmetry structure is taken to be SU(6)/Sp(6), in

which [SU(2)]2 is gauged whose diagonal sub-group is identified with the SM SU(2)

gauge-group. The U(1)Y is not contained in the SU(6). The low-energy effective

theory is a 2HDM. The new fermions are one vector-like quark doublet with Y = 1/6,

and two vector-like quark singlets which are one up-type with EM charge +2/3 and

one down-type with EM charge −1/3.

All these little-Higgs models have extra scalars with new fermions at the TeV scale. The

vector-like fermions are essential in little-Higgs models. In Ref. [61] the phenomenology

of BSM scalars is addressed in a model-independent setting, while some effective models

with inclusion of vector-like fermions are studied also. In this thesis, the main focus is

on the little-Higgs models that have a 2HDM structure. To give a better idea of the

phenomenology of these models, the 2HDM and VLFs are briefly discussed in the next

section.

2.2 General 2HDM & VLFs

In this section, the 2HDM extended scalar sector with VLFs also are discussed. To

understand the phenomenology of the little-Higgs models where these structures appear,

various features that are discussed here will be important.

Two Higgs Doublet Model (2HDM):

In the 2HDM there are two scalar doublets, Φ1 with a hypercharge +1/2 and Φ2 with a

hypercharge −1/2, which can be parametrized as

Φ1 =

 φ+
1

1√
2
(v1 + ρ1 + iη1)

 , Φ2 =

 1√
2
(v2 + ρ2 + iη2)

φ−2

 , (2.1)
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with v1 = v cos β, v2 = v sin β and tan β = v2/v1. The Higgs Lagrangian is given by

L ⊃ |DµΦ1|2 + |DµΦ2|2 − V (Φ) , (2.2)

where the general form of the 2HDM potential is written as

V (Φ1,Φ2) =m2
11|Φ1|2 +m2

22|Φ2|2 −m2
12(ΦT

1 · Φ2 + h.c.) + λ1|Φ1|4 + λ2|Φ2|4+

λ3|Φ1|2|Φ2|2 + λ4[(ΦT
1 · Φ2)(ΦT

2 · Φ1) + h.c.] +
λ5

2
[(ΦT

1 · Φ2)2 + h.c.] . (2.3)

Here, ΦT
1 · Φ2 ≡ ΦT

1 iσ
2Φ2 is the antisymmetric product of the doublets. The m2

12 term

softly breaks the discrete Z2 symmetry, under which Φ1 → −Φ1, dR → −dR with all

other fields unchanged. This symmetry is invoked as it saves the 2HDM from tree-level

FCNCs [62]. The physical mass eigenstates in the 2HDM are the following: a heavy

CP-even scalar H = ρ1 cosα + ρ2 sinα, a light CP-even scalar h = ρ1 sinα − ρ2 cosα,

a CP-odd scalar A = η1 sin β + η2 cos β, and charged scalars H± = φ±1 sin β + φ±2 cos β.

The minima of potential are at 〈Φ1〉 = (0, v1/
√

2)T and 〈Φ2〉 = (v2/
√

2, 0)T , with the

constraint v2
1 + v2

2 = v2. There remains seven free parameters in the 2HDM and those

are taken as, mA, mh, mH , mH± , tan β, α and m2
12, consistent with a notation commonly

used in the literature (see for example Ref. [63]).

Our interest is in the case where the lighter CP-even scalar (h) is the observed 125 GeV

Higgs boson. For this, the cos(β − α) ≈ 0 is the most favored region [64]. It is also

assumed that the “alignment limit” (β −α = π/2) holds sufficiently accurately so that the

h couplings are SM like to match with the properties of the observed 125 GeV state at

the LHC as discussed in Ref. [65]. In this limit, the H → WW and H → ZZ decays do

not give any significant constraints on the parameter space, which is evident from the

LHC result of Ref. [66].

A comprehensive discussion on the theory and phenomenology of general 2HDMs

is given in Refs. [63, 67] and references therein. Constraints on 2HDMs after the LHC

Higgs discovery are discussed in Ref. [68]. The phenomenology of the neutral 2HDM BSM
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scalars A,H is studied later in this thesis, in the context of a little-Higgs model.

Vector-like Fermions:

The SM fermions are chiral since their left and right chiralities belong to different

representations of the SM gauge group. A fermion is defined to be vector-like if its

left and right chiralities belong to conjugate representations of the gauge group of the

theory. In a single Higgs doublet model, the presence of new chiral sequential fourth

generation quarks are not favorable [69] from the Higgs production cross section and the

electroweak precision tests (EWPT). As the chiral quarks couple to the Higgs boson with

a strength proportional to its mass, the heavy chiral quarks do not decouple in the loop

induced Higgs production and decay. On the other hand, heavy vector-like quarks which

do not receive masses from the SM Yukawa-like couplings of the Higgs are less severely

constrained by the recent Higgs-data [70]. This is because the vector-like quarks have a

decoupling property. Although they are the key ingredients for many BSM theories, so

far there is no experimental evidence of the existence of vector-like quarks. For example,

vector-like quarks appear in extra-dimensional theories where higher excitations of the

SM quarks are vector-like, composite Higgs models [71,72], little-Higgs models [43,46],

some non-minimal supersymmetric extensions [73, 74] of the SM etc. For more details on

the vector-like fermions see for example Refs. [75–77].

2.3 The LSS Model

The little-Higgs model by Low, Skiba and Smith (Ref. [31]), namely the LSS model has

been introduced as an extension of the SM, with the Higgs as a pseudo-Goldstone boson.

The LSS model is introduced and discussed in detail in Refs. [31], mainly emphasizing

the construction of the model. The LSS model is also described briefly in our work

Ref. [12], presenting the phenomenological analysis of the model. The main focus of

discussion on the LSS model in this thesis will be on the aspects important to study the

phenomenological side of the model. The BSM vector bosons are required to be somewhat
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heavier in order to avoid precision electroweak constraints. The effective theory at the TeV

scale is then a 2HDM with vector-like fermions and somewhat heavier vector bosons. Our

main focus will be on the phenomenology of the scalars including the effect of vector-like

fermions on them.

In this section, all relevant details necessary to our work is provided following the

discussion in Ref. [12]. The global symmetry structure in the LSS model is SU(6)/Sp(6).

Depending on how the fermion condensate breaks the SU(6)→ Sp(6) symmetry, different

models can be formed and those are listed in Ref. [31]. Here, at a lower energy scale

(∼ 1 TeV) which is phenomenologically interesting at the LHC, the nonlinear sigma model

describing SU(6)/Sp(6) can provide all important information about the model. The

SU(6) has 35 generators and Sp(6) has 21 generators. In this model, the global SU(6)

symmetry is spontaneously broken to Sp(6), generating 14 Goldstone bosons. As the

SU(6)→ Sp(6) breaking also breaks (SU(2)⊗U(1))2 to the SM electroweak gauge group

SU(2)L ⊗ U(1)Y , there exist four BSM heavy gauge bosons. These four gauge bosons get

their longitudinal components from four Goldstone bosons. Eight other Goldstone bosons

form two SU(2)L scalar doublets that provide extra BSM scalars of the theory. So the

extended symmetry gives rise to the BSM scalars here. The remaining two Goldstone

bosons form a complex scalar singlet which is taken to be neutral. This scalar is not

protected from quadratic divergences and therefore, is taken to be heavier than the other

scalars (and at the cutoff scale). A set of massive gauge bosons are also present, but

as discussed later, those bosons are taken to be heavier to evade the constraints from

electroweak precision constraints. So, at the TeV scale, the model effectively becomes a

two Higgs doublet model. The massive gauge bosons present in this model cancel the one

loop divergences to the Higgs mass that originated from the SM gauge sector. Similarly,

the neutral singlet plays an important role to soften the divergences arising from the Higgs

quartic coupling of the SM. The divergent contribution due to the top quark does not

get cancelled in the present set up. To eliminate the divergences related to the fermionic

Yukawa couplings, extra colored vector-like fermions are added. Thus at the TeV scale
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the LSS model is 2HDM with vector-like fermions.

Starting with a non-linear sigma model, its field Σ transforms under a global symmetry

SU(6) transformations. When the SU(6) is broken down to Sp(6) by an antisymmetric

condensate, the pNGBs πa are contained in the field as Σ = eiπ
aXa/f 〈Σ〉 [12,31], with the

antisymmetric condensate

〈Σ〉 =

 0 −I3×3

I3×3 0

 ,

where the Xa are the broken generators of SU(6) and I3×3 is a 3× 3 unit matrix. The

breaking scale f sets the scale of the theory, which is used as an input to the effective

theory. How f can be dynamically generated by the UV completion is not discussed

here. The 2HDM fields are contained in the pNGB πa that remain light after turning

on the gauge and Yukawa couplings. Writing the pseudo-Goldstone states in term of

representations of the SU(2)W , the Σ field is defined through [12,31]

πaXa ⊃



0 0

0 0
φ2

0 s

−s 0
φ1

φ†2 0 −φT1 0

0 −s∗

s∗ 0
−φ∗1

0 0

0 0
φ∗2

φ†1 0 φT2 0


, (2.4)

where the (light) pNGB two Higgs-doublets are presented as φ1 and φ2, with also the

(heavy) singlet as s. Integrating-out the heavy s generates quartic couplings of the φ1 and

φ2.

In the gauge sector of the LSS model collective symmetry breaking is ensured when

SU(2)1 ⊗ SU(2)2 with respective gauge couplings g1 and g2 is gauged. If either of the

SU(2) gauge couplings are turned off, the theory respects two different exact SU(4) global

symmetries. 〈Σ〉 breaks the SU(2)1 ⊗ SU(2)2 gauge group to the electroweak SU(2)W .

The SU(2)1, SU(2)2 generators are taken as Qa
1, Q

a
2 with the Pauli matrices σa in the
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uppermost and lowermost 2 × 2 block respectively and zeros elsewhere. The diagonal

subgroup that is generated by unbroken linear combination of generators is identified with

the SM SU(2) with gauge coupling g. Some of the Goldstone bosons that are represented

by the broken generators are eaten up to become longitudinal components of the BSM

massive gauge bosons.

Both the abelian groups U(1) with hypercharges Yi are not contained in the SU(6). The

hypercharge transformation is denoted as Σ→ eiεY1Σe−iεY2 , with Y1 = diag(0, 1, 0, 0) and

Y2 = diag(0, 0, 0, −1). The condensate 〈Σ〉 breaks U(1)1 ⊗ U(1)2 with gauge couplings

g′1 and g′2 down to the diagonal subgroup, which is identified with the SM U(1)Y . This

results in the hypercharge assignments Yφ1 = +1/2 and Yφ2 = −1/2 and makes the singlet

s neutral. The light SU(2) and U(1) gauge bosons (massless before EWSB) are identified

with the SM Wµ and Bµ respectively, and the corresponding heavy gauge bosons are

presented as W ′
µ and B′µ. The gauge couplings are related as

1

g2
=

1

g2
1

+
1

g2
2

,
1

g′ 2
=

1

g′ 21

+
1

g′ 22

. (2.5)

The fermion sector has to be constructed in a way that a large top Yukawa coupling can

be there, without inducing a quadratic divergence. In this model, in addition to the third

generation SM fermions Q, tc, new vector-like Weyl fermion pairs are introduced. The

new fermions are one vector-like quark doublet Weyl-fermion pair Q′, Q′c with Y = 1/6

and EM charge 2/3, one vector-like pair of up-type quark singlets ψ1, ψ
c
1 with EM charge

±2/3, and one vector-like pair of down-type quark singlets ψ2, ψ
c
2 with EM charge ∓1/3.

The SU(2) structure of the fermions are expanded as Q = (t, b)T , Q′ = (t′, b′)T and

Q′c = (−b′c, t′c)T . In the fermion sector also, collective symmetry breaking is ensured by

a special structure of the Yukawa couplings [12, 31], where Σ couples to the fermionic
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multiplets as

LY uk = λ1f

(
Q′T ψ1 (iσ2Q)T 0

)
Σ∗

0

tc

+λ2f

(
0 0 QT 0

)
Σ



iσ2Q′ c

ψc1

0

ψc2


+ h.c. .

(2.6)

Both of these terms respect a subgroup of the global symmetry group SU(6) to protect the

Higgs mass from one-loop quadratic divergent terms. With the expansion of the Yukawa

couplings and inclusion of Dirac mass terms of the vector-like fermions, the Lagrangian

looks like

Lferm ⊃ −λ1

(
fψ1t

c − iQ′Tφ∗2tc − iQT · φ1t
c
)

+ λ2

(
fQT ·Q′c + iQTφ∗1ψ

c
2 + iQTφ∗2ψ

c
1

)
+λ3fQ

′T ·Q′c + λ4fψ
c
1ψ1 + λ5fψ

c
2ψ2 + h.c. , (2.7)

where again, the “·” represents the anti-symmetric combination of the SU(2) indices.

For generating the bottom mass, an SU(2) singlet field bc is introduced with the

Yukawa coupling as

LbY uk = −iyb1f
(

0 0 QT 0

)
Σ



0

0

0

bc


+ iyb2f

(
0 0 (iσ2Q)T 0

)
Σ∗



0

bc

0

0


+ h.c. .

(2.8)

Expansion of the LbY uk gives

LbY uk ⊃ yb1Q
Tφ∗1b

c − yb2QT · φ2b
c + h.c. . (2.9)

From Eq. (2.7) and Eq. (2.9), the fermion mass matrix can be constructed after the EWSB.
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The EM charge +2/3 and −1/3 fermion mass matrices are [12]

L ⊃
(
t ψ1 t′

)
iλ1

v1√
2

iλ2
v2√

2
λ2f

−λ1f λ4f 0

iλ1
v2√

2
0 λ3f



tc

ψc1

t′c



+

(
b ψ2 b′

)
ybi

vi√
2

iλ2
v1√

2
λ2f

0 λ5f 0

0 0 λ3f



bc

ψc2

b′c

+ h.c. , (2.10)

where vi = {v1, v2}. To work out the couplings of the scalars to top-like fermions in

the mass basis, the mass matrices in Eq. (2.10) are to be diagonalized. A two-step

diagonalization process is implemented: first the f -dependent global symmetry breaking

terms and then the v1,2 dependent EWSB pieces are diagonalized. The transformations

that diagonalize the f dependent terms in the top sector are,


t

ψ1

t′

 =


c23 0 −s23

0 i 0

s23 0 c23



t0

ψ′1

t1

 ;


tc

ψc1

t′c

 =


ic14 is14 0

is14 −ic14 0

0 0 −1



tc0

tc1

t′1
c

 . (2.11)

The transformation in the bottom sector is given as,


b

ψ2

b′

 =


c23 0 s23

0 i 0

s23 0 −c23



b0

ψ′2

b1

 . (2.12)

The ψc2 is transformed as ψc2 → −iψc2 ≡ ψ′c2 . The rotation angles are given as, s23 ≡

sin θ23 = λ2/(
√
λ2

2 + λ2
3), c23 ≡ cos θ23 = −λ3/(

√
λ2

2 + λ2
3), and s14 ≡ sin θ14 = λ1/(

√
λ2

1 + λ2
4).
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After these rotations the mass matrices become

Lmass ⊃
(
t0 ψ′1 t1

)
Mt

11 Mt
12 0

0 Mt
22 0

Mt
31 Mt

32 Mt
33



tc0

tc1

t′ c1



+

(
b0 ψ′2 b1

)
Mb

11 Mb
12 0

0 Mb
22 0

Mb
31 Mb

32 Mb
33



bc

ψ′c2

b′ c

+ h.c. . (2.13)

where
√
λ14 ≡

√
λ2

1 + λ2
4,
√
λ23 ≡

√
λ2

2 + λ2
3 and the elements of the mass matrix are

given by [12]

Mt
11 =

λ1(λ3λ4v1 + λ2λ3v2 − λ2λ4v2)√
λ14

√
λ23

√
2

, Mt
12 =

(λ2
1λ3v1 − λ2λ3λ4v2 − λ2

1λ2v2)√
λ14

√
λ23

√
2

,

Mt
31 =

λ1(λ2λ4v1 + λ2
2v2 + λ3λ4v2)√

λ14

√
λ23

√
2

, Mt
32 =

(λ2
1λ2v1 − λ2

2λ4v2 + λ2
1λ3v2)√

λ14

√
λ23

√
2

,

Mt
22 = f

√
λ14 , Mt

33 = f
√
λ23 ,

Mb
11 = ybi

vi√
2
c23 , Mb

12 = λ2
v1√

2
, Mb

22 = λ5f ,

Mb
31 = ybi

vi√
2
s23 , Mb

32 = −λ2
v2√

2
s23 , Mb

33 =
√
λ23f. (2.14)

The top sector mass matrixMt is to be diagonalized next. This asymmetric mass matrix

diagonalization is done through a bi-orthogonal transformation of the fermionic states,

given by U and V in the top sector as: (t0 ψ
′
1 t1)

T = UT (t̂1 t̂2 t̂3)
T and (tc0 t

c
1 t
′ c
1 )T =

V T (t̂c1 t̂
c
1 t̂

c
3)
T , such that UMtV T ≡ M̂t is diagonal. In the top quark sector the mass

eigenstate fields are denoted as t̂i, t̂ci with (t̂1, t̂
c
1) being identified as the observed top-quark.

The mass eigenvalues in the top sector are denoted as mt,Mt2 ,Mt3 . Analytical expressions

of U, V are not given here as the diagonalization of the v1,2 dependent part is done

numerically in this thesis. In the bottom sector, the vi proportional off-diagonal terms are

numerically insignificant due to smallness of the Yukawa coupling yb and can be ignored.

The (b0, b
c) are identified as the two Weyl fermions that constitute the observed bottom
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quark. The mass eigenvalues in the bottom sector are presented as mb,Mb2 ,Mb3 .

Now the top quark Yukawa coupling yhtt is to be extracted using the rotation of the

fermion fields defined above. In the flavor basis where the mass matrix is not diagonalized,

the htt Yukawa coupling is written as,

Lhtt =
i h√

2

(
t ψ1 t′

)
λ1cα −λ2sα 0

0 0 0

−λ1sα 0 0



tc

ψc1

t′ c

+ h.c. . (2.15)

These can be rewritten in the basis where the f -terms are diagonal with the transformation

of Eq. (2.11). Then the bi-orthogonal transformation U, V can provide the yhtt in the

physical Higgs and top basis. Details of the BSM scalar Yukawa couplings are given in

Chapter 3 where phenomenology of the BSM scalars are discussed.

The s-quark mass is generated in a fashion identical to how it is done in the bottom

sector, with the replacement yb → ys. To generate the c-quark mass an SU(2) doublet

field Q2 = (c, s)T and an SU(2) singlet field cc are introduced with the Yukawa term that

is similar to the Yukawa term of Eq. 2.8 with the replacements ybi → yci , Q→ Q2, b
c → cc.

Expanding the terms, the Lagrangian LcY uk is obtained as:

LcY uk ⊃ yc1Q
T
2 · φ1c

c + yc2Q
T
2 φ
∗
2c
c + h.c. . (2.16)

Similarly, for the τ lepton the Yukawa Lagrangian is obtained as,

LτY uk ⊃ yτ1L
Tφ∗1τ

c − yτ2LT · φ2τ
c + h.c., (2.17)

where L is the SU(2) lepton doublet with Y = −1/2 and τ c is the SU(2) lepton singlet

with Y = 1. Masses for the other light SM fermions can be generated in a similar way as

shown above. This structure of Lb,c,s,τY uk and the other light fermions does not implement

the little-Higgs mechanism. In the light fermionic sector, Yukawa couplings for these
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fermions are all small enough in the phenomenologically acceptable small tan β region

and the fine-tuning required to generate these masses is insignificant.

The effective theory which presents a 2HDM can be obtained integrating out the heavy

BSM gauge bosons and the heavy scalar. The Higgs potential generated in this way at

1-loop in the LSS model is that of Eq. (3.1) [31] which is similar to that of Eq. (2.3) with

some replacement and redefinition. Expressing the effective parameters of the model in

terms of the input Lagrangian parameters the model is analyzed in detail. In particular,

the m2
1 = Σm2

1i, m2
2 = Σm2

2i, b2 and λ′5 are functions of the input Lagrangian parameters,

as given below [12,31]:

λ′5 =
cg2

1 [g2
2 + (c′/c)λ2

2])

g2
1 + g2

2 + (c′/c)λ2
2

, b2 =
3f 2

8π2
λ2

1λ2(λ3 − λ4) log
Λ2

M2
f

,

m2
1 f =

3f 2

8π2
(λ2

1 − λ2
2)(λ2

3 − λ2
4) log

Λ2

M2
f

,

m2
2 f =

3f 2

8π2
(λ2

1λ
2
2 + λ2

2λ
2
5 − λ2

2λ
2
3 − λ2

1λ
2
4) log

Λ2

M2
f

,

m2
1g = m2

2g =
3

64π2

[
3g2M2

g log
Λ2

M2
g

+ g′ 2M2
g′ log

Λ2

M2
g′

]
,

m2
1s = m2

2s =
λ′5

16π2
M2

s log
Λ2

M2
s

, (2.18)

where Λ is the cut-off which is taken to be 4πf . Mf is the heavy vector-like fermion

mass-scale. The heavy gauge-boson masses are Mg = f
√

(g2
1 + g2

2)/2 and Mg′ =

f
√

(g′ 21 + g′ 22 )/2. The singlet scalar (s) mass is Ms = f
√
c(g2

1 + g2
2) + c′λ2

2, where c

and c′ are O(1) parameters that depend on the UV completion details as explained in

Ref. [31].

The gauge and Yukawa coupling structure in the LSS model breaks the global SU(6)

explicitly, allowing the Higgs to acquire a mass at the loop-level. The symmetry breaking

for the little-Higgs model is collective which implies that any non-vanishing quantum

correction to the Higgs mass must necessarily be proportional to a product of both the

gauge coupling constants. In this case if either of the gauge couplings is turned off, there
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is an exactly preserved global symmetry keeping the Higgs massless. Also for the two

Yukawa couplings, if either of them is turned off the Higgs potential will have a new

symmetry. Therefore as shown above, the loop generated Higgs potential terms should

be proportional to a product of both the gauge couplings and similarly both the Yukawa

couplings, which implies that the Higgs mass is finite at 1-loop.
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Chapter 3

Phenomenology of the LSS model

As a concrete example of the phenomenology of new scalars and vector-like fermions in

models with extended symmetry, one focus of this thesis is on the little Higgs model by

Low, Skiba and Smith [31] (LSS), described in Chapter 2. The effective theory at the

TeV scale is a 2HDM with heavy vector-like fermions and relatively heavier vector-bosons.

Here, the scalar sector of the LSS little-Higgs model is studied in detail, and the lightest

CP-even neutral scalar state of the model is matched with the 125 GeV state discovered

at the LHC. Since the observed scalar properties measured at the LHC are very close

to the SM Higgs values, it can constrain the parameter space of the model significantly.

Probing the allowed regions of the parameter space that survive various theoretical and

experimental constraints, is the main issue to be addressed here. This can have important

effects on future LHC searches of extra scalars of various little-Higgs models, including

the LSS model.

In this thesis, one focus is mainly on the phenomenology of the BSM scalar particles

that arise in the LSS model as part of a 2HDM. For the other BSM particles i.e. the

vector-like fermions and heavy vector-bosons in little-Higgs models, a detailed discussion

of their LHC signatures are given in Refs. [19, 47, 48]. The LHC signatures of the t2, t3, b′

will be similar to those studied in Refs. [75,76]. The LHC phenomenology of LSS heavy

vector bosons will be similar to those of Ref. [78–80].
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In this Chapter, the heavy scalar phenomenology of the LSS model, described in

Chapter. 2 is discussed following our work in Ref. [12]. In the first section, a 2HDM

emerging in the LSS model is analysed to show some phenomenological correlation in the

model. The goal of the next section is to scan the parameter space of the LSS model in

order to find regions where the experimental constraints are all satisfied, and to study in

these regions, the scalar, fermion and vector-boson sectors of the LSS model. The heavy

scalars of the LSS model are studied in the last section, with a detailed analysis of their

production and decay channels at the LHC, emphasizing the effects of vector-like fermions

on BSM scalar production. BSM scalar Yukawa couplings with the SM and BSM fermions

are also presented separately.

3.1 Effective 2HDM Analysis

In this section the effective 2HDM that arises in the LSS model is analyzed. The scalar

potential of this model is given as [12,31]:

VLSS = m2
1|φ1|2 +m2

2|φ2|2 + (b2φT1 · φ2 + h.c.) + λ′5|φT1 · φ2|2 , (3.1)

where φ1 and φ2 are the SU(2) doublet scalars with hypercharge +1/2 and −1/2 respec-

tively, and φT1 · φ2 ≡ φT1 iσ
2φ2 is the antisymmetric product of the doublets. Here, the φ1,2

fields are same as the Φ1,2 fields defined in Eq. 2.1. This is the 2HDM potential of Eq. 2.3,

with certain terms made zero and others redefined. As explained in detail in Chapter 2,

this 2HDM structure is generated through loop contributions in the LSS model. In this

effective 2HDM structure the coefficients of the scalar potential, m2
1, m2

2, b2 and λ′5 are

given in terms of free parameters in Eq. 2.18.

For the spontaneous breaking of the electroweak symmetry to electromagnetic U(1)EM ,

the vacuum expectation values (VEV) of the φ1 and φ2 are required to be nonzero at the

minimum of the LSS scalar potential, VLSS. From the expressions of Ref. [31], a sufficient

condition for symmetry breaking is m2
1,2 > 0 and (m2

1m
2
2 − b4) < 0. The input Lagrangian

28



parameters must be such that these conditions are satisfied, in which case, the field VEVs

at the minimum are written as 〈φ1〉 = (0 v1/
√

2)T and 〈φ2〉 = (v2/
√

2 0)T . Using these in

the minimization conditions results in,

tan β ≡ v1/v2 =
√
m2

2/m
2
1

v ≡
√
v2

1 + v2
2 =

2

λ′5

(1 + tan2 β)

tan β

(
b2 −m2

1 tan β
)
. (3.2)

The vacuum expectation value of the doublet containing the Higgs is fixed at v = 246 GeV.

Inside the doublet fields φ1,2, ρ1,2, η1,2 are the CP-even and CP-odd fields respectively. The

linear combinations of η1,2 (G) and φ+
1,2, φ

−
1,2 (G+, G−) are massless Goldstone bosons and

are eaten to become the longitudinal degrees of freedom of the Zµ,W+
µ , W−

µ respectively.

Four physical states, two (real) CP-even scalars (h, H), one (real) CP-odd scalar (A) and

one (complex) charged scalar (H±) are obtained. The fields are rotated as,

ρ1

ρ2

 =

 cα sα

−sα cα


h

H

 ;

η1

η2

 = −

cβ −sβ
sβ cβ


A
G

 , (3.3)

Charged scalars (φ±1 , φ
±
2 ) are rotated to the physical fields (H±, G±), in a way similar to

the CP-odd scalars. The rotation angles are determined from the potential as

tan (2α) =
−2(b2 − v1v2λ

′
5)

(m2
2 + λ′5v

2
1/2)− (m2

1 + λ′5v
2
2/2)

; tan (2β) =
−2b2

(m2
2 + λ′5v

2
1/2)− (m2

1 + λ′5v
2
2/2)

.

(3.4)

The α and β solutions of Eq. (3.4) are picked to ensure mh < mH and mG = 0. cθ ≡ cos θ,

sθ ≡ sin θ are definitions used for convenience. Here, α and β both differ from the α, β of

Section 2.2 by a phase of π/2.
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The mass eigenvalues are calculated as

m2
A = 2b2/ sin (2β)

m2
H± = m2

A − λ′5v2/2

m2
H,h =

1

2

[
m2
A ±

√
m4
A − 4(m2

A −m2
H±)m2

H± sin2 (2β)

]
(3.5)

which are in agreement with Ref. [31]. The lighter CP-even scalar state (h) is identified

to be the 125 GeV resonance observed at the LHC.

The CP-even scalar couplings to W+W− are given by

LhW+W− =
g2v

2
W+
µ W

−µ [sin (β − α)h+ cos (β − α)H] . (3.6)

Similarly, the hZZ coupling is proportional to sin (β − α), andHZZ coupling to cos (β − α).

The hhW+W− is exactly SM like. The hAZ, W±H±h and Hhh couplings are given by

LAZh =
g

2 cos θW
cβ−α (ZµA∂µh− Zµh∂µA) ,

LW±H±h = −ig
2
cβ−α

(
W+µh∂µH

− −W+µH−∂µh+ h.c.
)
,

LHhh = −λ
′
5v

2
(2c2αcβ+α − s2αsβ+α)hhH . (3.7)

The H±W∓
µ A

µ, H±W∓
µ Z

µ, hAµZµ, HAµZµ, HZµh couplings are all zero.

In Fig. 3.1, the contours of λ′5, cos(β − α) and mH± are shown in the mA-tan β plane.

Two free parameters mA and tan β are chosen to be varied after applying the constraints,

mh = 125 GeV and v ≈ 246 GeV. Imposing the constraint that λ′5 must not be imaginary,

the allowed region is shown as the shaded region in Fig. 3.1. The hWW and hZZ couplings

are constrained by the LHC data to be SM-like, which implies cβ−α ≈ 0 from Eq. (3.6).

In the middle one in Fig. 3.1, contours of cβ−α values are presented, showing the amount

of deviation allowed from the alignment limit defined in Section 2.2. The charged Higgs

mass of Eq. 3.5 remains almost constant for a particular mA, because the variation of λ′5
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Figure 3.1: Contours of λ′5 (left), cos(β − α) (middle) and mH± (right) in GeV with
mh = 125 GeV. The part of the parameter space for which λ′5 is real is shown in the
shaded (light-blue) region.

with tan β is really slow except near the funnel region.

Depending on how the fermions couple to Φ1 and Φ2, four types of 2HDM have been

defined in the literature. Still, it is possible for the 2HDM structure in some models

to have a different Yukawa structure altogether where yHtt coupling gets accidentally

suppressed. Consequently, as discussed later in the case of the SU(6)/Sp(6) little Higgs

model, the BR(H,A→ tt̄) becomes small.

3.2 Constraints on the LSS model

In this section, the theoretical and experimental constraints on the LSS model are listed

and how those constrain the LSS model parameter space is discussed. The LSS model

has 12 free parameters, f , g1, g2, g′1, g′2, λ1, λ2, λ3, λ4, λ5, c, c′ in its Lagrangian. The

symmetry breaking scale f is expressed in terms of v = 246 GeV and other free parameters

using Eqs. (3.2) and (2.18). The gauge couplings g, g′ defined in Eq. (2.5) are used to

write the precisely measured W±, Z masses in the SM, with the vev fixed at 246 GeV.

Among the four parameters gi and g′i, g2 and g′2 can be determined in terms of independent

parameters g1, g
′
1 and W±, Z masses, reducing the number of free parameters by two. The

number of free input parameters at this point are reduced to nine, which are listed as

g1, g′1, λ1, λ2, λ3, λ4, λ5, c, c′. The observables like the fermion and scalar masses are
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Table 3.1: The experimental constraints at about the 2 to 3 σ level.

Quantity Constraint Reference
Top mass (MS) 158 < mMS

t < 168.7 GeV Ref. [81]
Higgs VEV v ≡ 246 GeV
Higgs mass 123 < mh < 127 GeV Ref. [82]

Higgs Yukawa 0.63 < |κhtt| < 1.2 Table 15 of Ref. [83]
hW+W− coupling | cos(β − α)| < 0.4 Table 15 of Ref. [83]

VLQ mass Mt′, b′ > 750 GeV Refs. [84], [85]

functions of multiple parameters in a complicated way. So replacing one free parameter

directly in terms of other observables is analytically very difficult. Therefore a scan is

done over the nine free parameters to find out the regions which satisfy the experimental

constraints. How the scan is done and how the allowed points correlate the observable

parameters are detailed later.

All the experimental constraints that are relevant for this analysis, along with the

references of corresponding measurements are given in Table B.1. All the observable

values are included with a statistical error range of 2 to 3 σ.

The top mass in the LSS model, obtained after a two step diagonalization of the

mass matrix, is matched to the top mass shown in the Table B.1. The (1, 1) element of

the diagonal matrix UMtV T is the physical top mass, with U, V being the two rotation

matrices of the left and right handed fermion fields respectively. The top Yukawa coupling

measured at the LHC so far approximately agree with that of the SM, within experimental

error. The h Yukawa couplings in the basis with fields redefined to diagonalize f dependent

terms (with v-terms not diagonalized) are

LYuk
h ⊃ h√

2
[y00t0t

c
0 + y01t0t

c
1 + y10t1t

c
0 + y11t1t

c
1] + h.c. , (3.8)

with y00 ≡ (−λ1cαc14c23 + λ1sαc14s23 + λ2sαs14c23), y01 ≡ (−λ1cαs14c23 + λ1sαs14s23 −

λ2sαc14c23), y10 ≡ (λ1cαc14s23 + λ1sαc14c23 − λ2sαs14s23), y11 ≡ (λ1cαs14s23 + λ1sαs14c23 +

λ2sαc14s23). Using the bi-orthogonal transformation involving U and V , the top Yukawa
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coupling of the 125 GeV Higgs, yhtt in the model is given as

yhtt = [y00U11V11 + y01U11V12 + y10U12V11 + y11U12V12] , (3.9)

where (U, V )ij with i, j = {1, 2, 3}, are the (i, j) elements of the rotation matrices U, V .

Relative magnitude of the top Yukawa coupling compared to the corresponding SM value

is given as κhtt ≡ yhtt/y
SM
htt .

In the 2HDM structure of the LSS model, the lighter CP-even state (h) is identified

with the scalar state discovered at the LHC. LHC results indicate that the magnitude of

the Higgs gauge couplings i.e. the hWW,hZZ vertex factors, almost match the SM values.

From the h couplings of Eq. (3.6), it is evident that | sin(β − α)| ≈ 1 i.e. (α− β) ≈ ±π/2

is required to make the hWW,hZZ vertices exactly SM-like. This limit where one of

the CP-even scalar of the 2HDM gets aligned with the SM Higgs is called the alignment

limit [86,87]. The experimental data has not fixed the sign of the hV V coupling so far. In

accordance to the SM convention, the positive signs of those couplings are usually taken.

The h→ WW,ZZ decays are not sensitive to the sign of hV V coupling as the tree-level

amplitudes dominate these modes. But the h→ γγ decay, being at the loop-level with the

interference between the gauge-boson and top-loop, is sensitive only to the relative sign

between the hV V and htt couplings. Thus, to keep the Higgs observables independent of

the sign of the couplings two possibilities exist: either hV V and htt both are positive, or

alternately both are negative. Both these possibilities can be realized in the alignment

limit; therefore when hV V is negative, htt is also taken negative. It will be important to

find the collider observables that are sensitive to both the hff and hV V sign reversal

and those can be probed in future. The hV V coupling constraint shown in Table B.1 is

for the case when it is assumed that no new particles contribute in the hgg loop. This is

a good approximation in the LSS model as the vector-like fermions that are usually very

heavy, contribute minimally in the hgg loop. Therefore, use of the hV V coupling value

chosen here will provide a more conservative bound. The deviations of the SM Higgs
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couplings due to the presence of vector-like fermions at one-loop are discussed in Ref. [77].

The direct LHC limit on the vector-like quarks (VLQ) are given as Mt′,b′ > 750 GeV.

In the LSS model, after imposing the constraints of W+, Z mass and v, there are nine

free Lagrangian parameters. The nine dimensional parameter space is scanned to carve out

the parameter region satisfying all the experimental constraints discussed above. In these

allowed regions the LSS model BSM particles are studied with emphasis on the correlation

of the masses of the LSS model scalars, fermions and vector bosons. Dividing the range

of all the parameters in tiny steps and scanning over the nine dimensional parameter

space to get the points which satisfy the constraints of the Table B.1 is computationally

time consuming and challenging. An alternative method, where the points in the nine

dimensional parameter space are randomly chosen, is adopted instead. Here a χ2 function

is defined to measure the deviation of various observables from their expected values as,

χ2 ≡ (mh − 〈mh〉)2

σ2
mh

+
(mt − 〈mt〉)2

σ2
mt

+
(|κhtt| − 〈κhtt〉)2

σ2
htt

+
(cβ−α − 〈cβ−α〉)2

σ2
cβ−α

, (3.10)

and this function is minimized implementing a method of steepest descent mechanism

for each point in a randomly sampled parameter space. Here the chosen values are

〈mh〉 = 125 GeV, 〈mt〉 = 163.3 GeV, 〈κhtt〉 = 1, 〈cβ−α〉 = 0, with the corresponding

standard deviations, σmh = 3 GeV, σmt = 5.4 GeV, σhtt = 0.25, σcβ−α = 0.2. In this

method a random point is picked up as the starting point and the χ2 function and its

partial derivatives with respect to all of the nine parameters are computed at that point.

From those computations, an infinitesimal step is taken around the starting point to reach

the new point with a lower χ2. This point is then made the new starting point and the

same process is iterated till the local minimum of the χ2 is reached. The point is retained

if χ2 < 10, and discarded otherwise, triggering a search for a new random point. In this

manner, a list of points is obtained in the nine dimensional space that have χ2 < 10.

Additional constraints like the requirement of same sign κhtt and sβ−α and vector-like

quarks (t′ and b′) heavier than 750 GeV, are further imposed on this sample. The points
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Figure 3.2: MA vs tan β (left), κhtt vs sβ−α, the ratios of the htt and hV V couplings to
the corresponding SM values, with V V = {W+W−, ZZ}. (right)

that satisfy all these criteria are shown as blue dots in all the plots that follow.

As this model does not contain any symmetry that prohibits the tree-level mixing of

SM and BSM gauge bosons, electroweak precision constraints could be important here.

The constraints on the LSS model coming from the S, T, U parameter bounds have been

discussed in Refs. [36, 88, 89]. To get some idea of the constraints that precision tests

can impose, the “near-oblique” limit discussed in Ref. [88] is considered here, with the

additional requirement of the constraining equationMW ′ > 1800 GeV×(g2
2−2g2)/(g2

2−g2)

to be satisfied. Putting a model independent constraint due to the BSM abelian vector

boson B′ is difficult as its mass generation is more or less model dependent. As discussed in

Ref. [88], B′ can be made massive enough to avoid any significant constraint by invoking a

new symmetry breaking scale. In the plots shown throughout this Chapter, the blue points

represent the points that satisfy all the constraints discussed above except those from

EW precision constraints. The points those are allowed after imposing the EW precision

constraints with previous constraints also included, are indicated as green points. The

LSS Lagrangian parameters and the resulting masses, couplings and other quantities for 9

sample points (the green dots) that satisfy direct and precision electroweak constraints

are listed in App. B.

In Fig. 3.2, some 2HDM related relations are shown in the allowed parameter space.

The left plot shows the correlation of mA− tan β for the allowed points. The allowed tan β

values are typically small, lying in the range of (0.3, 5.4). The κhtt and sβ−α are shown in

Eq. (3.8) and Eq. (3.6), as the ratios of the htt and hV V couplings (V V = {W+W−, ZZ})
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Figure 3.3: The relation of scalar masses of the LSS model for the points that satisfy the
direct experimental constraints along with the precision electroweak constraints.

Figure 3.4: Correlation of the heavy vector-like fermion and vector-boson masses.

to their SM values respectively. In Fig. 3.2 (right), it is shown how κhtt and sβ−α are

correlated in the allowed parameter space. All the allowed points have sβ−α values almost

−1, and therefore satisfy the alignment limit discussed in the beginning of this section

very well. The κhtt values are also very close to −1, making the top Yukawa coupling of

the Higgs SM like in magnitude. Interestingly, the standard sign convention of the SM is

reversed with both the hff and hV V signs negative, for all the points that satisfy the

constraints.

In Fig. 3.3, the correlation of scalar masses, mA, mH and mH± of the 2HDM in the LSS

model is presented. From the Eq. (3.5), scalar masses are related as m2
A −m2

H = m2
h and

m2
A −m2

H± = λ′5v
2. Since mh is fixed to the experimentally measured value, (mA −mH)

falls smoothly like 1/mA. As λ5 takes different values for allowed points, (mA −mH±)

falls with 1/mA along with being scattered due to its dependence on λ5. For the allowed

points, mh is kept fixed and λ5 does not vary much, indicating the heavy scalar masses

mA, mH and mH± to be more degenerate with the increase of mA.

In Fig. 3.4, the correlation of the heavy vector-boson and vector-like fermion masses

are presented. Without imposing precision electroweak constraints, new top-like fermion
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with mass Mt2 can be as light as around 750 GeV and it can have good discovery potential

at the LHC. Similarly for the bottom sector mass of Mb′ = 948 GeV, precision electroweak

constraints are satisfied along with other constraints and LHC discovery is possible.

Expectedly, as shown by the green dots, precision electroweak constraints raises the mass

scale of the BSM states. It is explored later if these vector-like fermions can contribute

significantly to phenomenology of the LSS model at at the one-loop level. In another of

our work in Ref. [61] presents a more general analysis on the effect of vector-like fermions

on the scalar phenomenology. For the allowed points, the heavy abelian vector-boson

mass MB′ can be significantly lower than the heavy SU(2) vector-boson mass MW ′ . The

B′ mass is quite model dependent and can be made heavier if the electroweak precision

constraints are imposed on it.

How the flavor sector observables can put constraints on the LSS model parameter

space is briefly outlined here. Flavor-changing-neutral currents (FCNC) can play an

important role in this aspect, depending on the Yukawa structure of the lighter fermions of

the theory. In the LSS model, as evident from Eq. (2.7), the top-quark couples to both the

scalar doublets φ1 and φ2. This resembles a Type III 2HDM flavor structure, which can

be non-trivially constrained from the FCNCs involving the 3rd generation fermions. For

the other fermions, if the Yukawa structure has yb,τ,c1 6= 0; yb,τ,c2 6= 0, non-trivial constraints

will be placed from the h→ bb, ττ measurement at the LHC. Those constraints can be

avoided either with the assumption, yb,τ,c1 = 0; yb,τ,c2 6= 0 or with yb,τ,c1 6= 0; yb,τ,c2 = 0. With

these kind of assumption extended to all light fermions, a Type I 2HDM framework is

achieved for the light fermion sector, with only the top quark breaking it. For the light

fermions, one alternative Yukawa structure can be explored where y1 6= 0, y2 = 0 for the

up-type fermions, and y1 = 0, y2 6= 0 for the down type ones. In that case the light fermion

sector will be analogous to a Type II 2HDM, with again only the top sector resembling the

Type III structure. A detailed analysis of these flavor issues is beyond the scope of this

thesis. Ref. [90] and references therein, present a detailed analysis of flavor constraints in

the Type III 2HDM.
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3.3 Heavy BSM scalar Phenomenology

The phenomenology of the BSM scalars, heavy CP-even scalar H, CP-odd scalar A and

charged scalar H±, that are part of the 2HDM structure of the LSS model are studied

in this thesis. To understand and calculate the dominant production and decay modes

of BSM scalars, their couplings with the SM/BSM particles are important to know. All

these couplings are presented here, following our work Ref. [12].

3.3.1 BSM Scalar Couplings

The gauge boson couplings of the heavy CP even scalar can be obtained from Eq. 3.6.

The CP-odd scalar does not couple to the SM massive gauge bosons due to CP invariance.

The self couplings between different scalars can be extracted from the 2HDM potential

given in Eq. 3.1. The Yukawa couplings of these scalars are discussed below.

In the LSS model described in Chapter 2, the f dependent terms of the fermion mass

matrices are diagonalized. The fields are redefined there in a way such that the fermion

mass matrix entries become real. The H Yukawa couplings in that basis with v-terms not

diagonalized are

LYuk
H ⊃ H√

2

[
yH00t0t

c
0 + yH01t0t

c
1 + yH10t1t

c
0 + yH11t1t

c
1

]
+ h.c. , (3.11)

with

yH00 ≡ −λ1sαc14c23 − λ1cαc14s23 − λ2cαs14c23,

yH01 ≡ −λ1sαs14c23 − λ1cαs14s23 + λ2cαc14c23,

yH10 ≡ λ1sαc14s23 − λ1cαc14c23 + λ2cαs14s23,

yH11 ≡ λ1sαs14s23 − λ1cαs14c23 − λ2cαc14s23. (3.12)

How the bi-orthogonal rotations U, V can take us to the mass-basis diagonalizing the

v dependent terms is also described in the section. Using those rotation angles, the
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top Yukawa coupling of the heavy CP-even scalar, yHtt in the model is given as, yHtt =[
yH00U11V11 + yH01U11V21 + yH10U12V11 + yH11U12V12

]
, where Uij, Vij with i, j = {1, 2, 3}, is

the (i, j) entry of the rotation matrices U, V . Other Yukawa couplings of the H can be

obtained, using different combinations of U, V matrix elements as,

LYuk
H ⊃ H√

2

[
yH00Uj1Vk1 + yH01Uj1Vk2 + yH10Uj2Vk1 + yH11Uj2Vk2

]
t̂j t̂

c
k + h.c. . (3.13)

The t̂j, t̂k are the fermions in the mass basis after full diagonalization.

The A Yukawa couplings to the top sector fermions are written as,

LYuk
A ⊃ A√

2
[λ1 (cos β t− sin β t′) tc − λ2 (sin β tψc1 + cos β bψc2)] + h.c. . (3.14)

After diagonalizing the f terms, in the basis of Eq. (2.11) and using the field redefinitions

shown there the CP-odd scalar Yukawa coupling is,

LYuk
A ⊃ i A√

2

[
yA00t0t

c
0 + yA01t0t

c
1 + yA10t1t

c
0 + yA11t1t

c
1

]
+ h.c. , (3.15)

with

yA00 ≡ λ1cβc14c23 − λ1sβc14s23 − λ2sβs14c23,

yA01 ≡ λ1cβs14c23 − λ1sβs14s23 + λ2sβc14c23,

yA10 ≡ −λ1cβc14s23 − λ1sβc14c23 + λ2sβs14s23,

yA11 ≡ −λ1cβs14s23 + λ1sβs14c23 + λ2sβc14s23. (3.16)

Diagonalizing the v proportional mass terms via the bi-orthogonal rotations U and V ,

Yukawa couplings in the mass basis are obtained as,

LYuk
A ⊃ i A√

2

[
yA00Uj1Vk1 + yA01Uj1Vk2 + yA10Uj2Vk1 + yA11Uj2Vk2

]
t̂j t̂

c
k + h.c. . (3.17)
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For notational brevity, 173 GeV quark t̂1 is simply denoted as t, and the heavier EM

charge 2/3 fermions t̂2, t̂3 are denoted as t2 and t3 respectively.

The H±tb couplings can be obtained as

LY uk = H+
(
y+

00b0t
c
0 + y+

01b0t
c
1 + y+

10b1t
c
0 + y+

11b1t
c
1

)
+

H−
(
y−00t0b

c + y−10t1b
c + y−02t0ψ

c
2 + y−12t1ψ

c
2

)
+ h.c. , (3.18)

where

y+
00 = λ1sβs23c14 − λ1cβc23c14 + λ2sβc23s14,

y+
01 = λ1sβs23s14 − λ1cβc23s14 − λ2sβc23c14,

y+
10 = −λ1sβc23c14 − λ1cβs23c14 + λ2sβs23s14,

y+
11 = −λ1sβc23s14 − λ1cβs23s14 − λ2sβs23c14,

y−00 = (−yb1cβ + yb1sβ)c23, y−10 = (yb1cβ − yb2sβ)s23,

y−02 = −λ2cβc23, y−12 = λ2cβs23. (3.19)

The rotations U, V , that diagonalize the v1,2 proportional off-diagonal terms are then

applied on these to get the charged Higgs Yukawa couplings. The H±cs and H±τν

couplings can be obtained as

LY uk ⊃ (yc1cβ − yc2sβ)H+scc + (−ys1cβ + ys2sβ)H−csc + (−yτ1cβ + yτ2sβ)H−ντ c + h.c. .

(3.20)

The heavy scalar couplings to the b-type quarks can be obtained from Eq. 2.9 as

L ⊃ c23√
2

[
H
(
yb1sα + yb2cα

)
+ iA

(
yb1cβ − yb2sβ

)]
b0b

c + h.c. .
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Figure 3.5: κAgg (left) and κHgg (right) for the allowed points of the parameter space.

Figure 3.6: κtAgg vs. κ
V LQ
Agg (left), and yAtt and yAt2t2 (right) for the allowed points of the

parameter space.

3.3.2 Production and Decay of Heavy Scalars

In this section, phenomenology of the new scalars at the LHC is explored in the parameter

space allowed after imposing the constraints discussed in Section 3.2. In the constrained

parameter space, the production and decay modes of different BSM scalar states are

studied with emphasis on the neutral scalars, A and H. To explore the detection prospects,

the production cross section of the new scalars is to be studied. As shown in the left side

plot of Fig. 3.2, the tan β values that are allowed are typically small. The bottom fusion

production, with contributions being directly proportional to tan β, is negligible and is

not included here. The gluon fusion production mode is explored here as the dominant

production mode for the neutral scalars. The φgg effective couplings in Fig. 3.5, κφgg

(with φ = {A,H}) along with their one-loop expressions are given in App. A, using the

notation defined in Ref. [61]. The effects of the presence of vector-like fermions in the LSS
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model can be probed in the gluon fusion production channel of the neutral scalars. To

quantify the contributions due to the vector-like quarks compared to their SM counterpart

in the production cross section, it is important to present their relative contribution. The

SM contributions to the effective coupling |κAgg| that provides a measure of the gluon

fusion cross section mainly come from the top-quark (t) and represented by κtAgg. The

contributions from VLQs (i.e. t2, t3 and b2, b3), denoted as κV LQAgg are separately presented

with κtAgg in Fig. 3.6 (left). The total gluon fusion amplitude is a coherent sum of these

two. For some points in the allowed parameter space the VLQ contributions can be

significant either being of the same order as the SM one or sometimes dominating over

the top contribution. To probe the reason behind this, the Yukawa couplings yAtt and

yAt2t2 that quantify the two contributions are separately presented in Fig. 3.6 (right). It

is shown there that for some allowed points the VLQ Yukawa couplings can either be of

similar magnitude or even larger than the top Yukawa. These indicate that the vector-like

fermion contributions play important role in the neutral BSM scalar phenomenology.

Once the production cross section of the scalars are discussed, the focus is next on the

decay modes of those BSM scalars. The total width (Γ) and branching ratios (BR) of the

new scalars into SM final states are explored. How to obtain the analytical expressions of

partial widths in all the relevant channels are outlined for example in Ref. [91]. As all

the 125 GeV scalar couplings are fixed close to the SM values, the BR(h→ XX) does

not deviate much in the alignment limit. Therefore all the the LHC constraints are easily

satisfied. The hbb coupling is not fixed here, so BR to bb could in principle be shifted. If

one of ybi is zero, the ratio of hbb coupling with respect to the SM is ≈ ±1 in the alignment

limit, reducing the coupling to SM values. Similar conclusions can be drawn for the other

lighter fermions, τ, c. In this work, the case is taken where yb,τ,c1 = 0 and yb,τ,c2 are nonzero.

All the total decay widths and the branching ratios of the heavy scalars, A,H,H±

are shown in Figs. 3.7, 3.8, 3.10. Although from the CP symmetry arguments, AV V is

generically zero with HV V non-zero at the tree-level, ΓA and ΓH gives almost identical

numbers. This happens because tree level HV V couplings get suppressed for most of the
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allowed points, as they satisfy the alignment limit to a very good degree. Also, at the

alignment limit the H and A couplings to the SM fermions become identical. Therefore,

the partial widths of H and A to the fermionic decay channels are almost same.

The total width of the CP-odd scalar, ΓA is a sum over the partial-widths to tt, bb, cc, ττ

decay modes. The branching ratios of the CP-odd scalar (A) in the γγ, ττ, bb, tt, Zh

channels are presented in Fig. 3.7. for the allowed points of the parameter space. As the

alignment limit is satisfied for most part of the parameter space, allowed cβ−α values are

mostly closer to zero. Therefore the AZh coupling being proportional to cβ−α reduces

the BR (A→ Zh) to very small values for large part of the parameter space. For the few

points where there are deviations from the alignment limit along with small yAtt couplings

due to accidental cancellations, BR(A→ Zh) can become significant.

In the total decay width (ΓH) of the CP-even scalar (H), major contributions come from

the tt, bb, cc, ττ,WW,ZZ decay modes. The branching ratios of the H in the fermionic

decay modes are quite similar to the corresponding BR(A→ XX) and so they are not

separately presented here. The changes in the H → γγ channel compared to the CP-even

case are minimal with the largest BR for the H is about 4.2× 10−6 which is larger than

highest BR(A → γγ). Unlike the CP-odd scalar A, the H → Zh mode is not possible

here from the requirement of CP-invariance. The CP-even H can additionally decay to

WW,ZZ, hh at tree-level which was not possible for A. As the alignment is satisfied

almost perfectly for most of the allowed points, the decays to WW,ZZ are in general

suppressed in the LSS model. In Fig. 3.8 branching ratios in (H → ZZ,WW, hh) channels

are presented, and it is observed that these BRs can become sizable only for few allowed

points. These modes can become dominant either because of the deviation from the

alignment limit making the HZZ and HWW modes significant or due to the accidental

cancellation between different contributions to the Htt coupling of Eq. (3.8) reducing it

to small values making BR(H → tt) small. To illustrate the first effect, the correlation

of BR(H → ZZ) with |cβ−α| is presented in Fig. 3.9 where cβ−α quantifies the deviation

from the alignment limit. To illustrate the second effect, the correlation of BR(H → ZZ)
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Figure 3.7: BR (A→ γγ) (top left), BR (A→ ττ) (top right), BR (A→ bb) (middle left),
BR (A → tt) (middle right), BR (A → Zh) (bottom left) and total A width (bottom
right) for the allowed points of the parameter space.
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Figure 3.8: BR(H → ZZ) (top left), BR(H → WW ) (top right), BR(H → hh) (bottom
left) and H total width (bottom right) for the allowed points of the parameter space.

Figure 3.9: Correlation between BR(H → ZZ) with |cβ−α| (left), BR(H → tt) with
BR(H → ZZ) (middle) and BR(H → hh) with BR(H → tt) (right) for the allowed points
of the parameter space.

and BR(H → hh) with BR(H → tt) is shown in Fig. 3.9. Those depict that the allowed

points with sizable BR(H → ZZ, hh) correspond to the small BR(H → tt) numbers.

Similar conclusions can be drawn for the H → WW channel.

The charged Higgs total width ΓH± is the sum of partial widths in tb, cs, τν decay

channels. In Fig 3.10, the branching ratios in (H+ → tb̄, τ+ντ , cs̄, W
+h) channels are

presented, with the assumption of nonzero y2’s. BR(H+ → tb̄) is the largest for most part

of the parameter space since the H+tb coupling is generically large. The H+tb coupling

can become small due to partial cancellations between different terms in y+
00 of Eq. (3.19)
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Figure 3.10: BR(H+ → tb̄) (top left), BR(H+ → τ+ντ ) (top right), BR(H+ → cs̄) (middle
left), BR(H+ → W+h) (middle right) and H+ total width (bottom) for the allowed points
of the parameter space.

for few allowed points where sizable values of BR(H+ → τ+ντ , cs̄,W
+h) are possible.

The LHC signatures and the discovery potential in different channels for the LSS model

BSM scalars are briefly discussed here. With the BR(H,A→ XX) and κφgg determined

above for the LSS model, our effective analysis in Ref. [61] can be used to know whether

one point in the parameter space is allowed by the 8 TeV LHC exclusion limits. The

14 TeV signal cross section (σ×BR) of H,A in the γγ, ττ, tt̄ channels at the LHC can also

be found from those. In the constrained LSS model, the allowed BR(φ→ γγ) is so small

(∼ 10−6) that even the lightest A (∼ 600 GeV ) is difficult to be searched at the LHC in

this channel. Due to the lack of efficient LHC probe in the ττ channel, BRττ ∼ 10−2

makes this mode very challenging to search for A,H. Although the BRbb̄ is reasonable, a
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large QCD background makes it difficult to use as a search channel. This leaves the tt̄

mode as a good possibility which is described with an example point of the LSS model.

The κAgg,Hgg ≈ 2.5 for the mA,H ≈ 900 GeV green point in Fig. 3.5, and from Ref. [61],

this point is allowed after the LHC 8 TeV constraints with σ(gg → φ) ≈ 20 fb at the

14 TeV LHC. Since BRtt̄ is large (∼ 1), it can make the tt̄ mode the most promising

discovery channel. Expected BR(H+ → cs̄) values are of same order as BR(H+ → τ+ντ ).

Since both of their coupling involving H± is (mc,τ tan β/v), the former rate enhanced by

a color factor 3 and mc/mτ ≈ 0.7 lead to BR(H+ → cs̄) ≈ 3 ∗ (0.7)2 ∗BR(H+ → τ+ντ ).

The exclusion limit on σ(H+)× BR(H+ → τντ ) from Ref. [92] does not constrain the

LSS model any further. The H± → tb decay channel at CMS and ATLAS is discussed

in Refs. [93] only for mH± < 600 GeV and it can be a very promising H± discovery

channel in future. Detailed analysis of the LHC signatures of the H± in the context

of a CP-violating Type-II 2HDM, is done in Refs. [94, 95], including the B → Xsγ and

perturbativity constraints. A detailed analysis of the LHC signatures, including signal

and background study of the BSM scalars for some LSS benchmark points, can be the

subject of future studies.

To satisfy the experimental constraints, the amount of fine-tuning required in this

model can be quantified by a measurement of sensitiveness of v̂ ≡ v/f to the variation of

all free parameters. Various measures of fine-tuning fT are possible, One measure of fine

tuning which is adopted in this work is along the way outlined in Ref. [96] and fine-tuning

fT is defined as:

f−1
T ≡ Maxi

∣∣∣∣∂(log v̂2)

∂(logαi)

∣∣∣∣ , (3.21)

where αi are the 9 input parameters discussed above. The v̂ dependence on the input

parameters can be obtained via Eq. (2.18) using Eqs. (3.2). The measure of fine-tuning, fT

is presented in Fig. 3.11 as a function of f . Minimum amount of fine-tuning required for

all points that satisfy the constraints of Table B.1 is at a level of about 2 %. This implies

that v cannot remain stable if a free parameter of the LSS model is varied more than 2 %.
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Figure 3.11: The fine-tuning fT as a function of f in the LSS model.

When the precision constraints are also taken into account, the fine-tuning becomes worse

than 0.3 %. The expressions in Eq. (3.2) imply v2/f 2 ∝ (b2/f 2 −m2
1 tan β/f 2), with the

one-loop generated terms in the right-hand side given explicitly in Eq. (2.18). This model

appears to be so severely fine-tuned because, for the allowed points in the parameter

space, the Yukawa and gauge couplings are large, and that makes b2/f 2,m2
1,2/f

2 ∼ O(1),

overcoming the loop suppression. A cancellation between two O(1) quantities becomes

necessary to ensure a small v2/f 2, which in turn heavily fine-tunes the model. As f

increases, the requirement of a more precise cancellation makes the fine-tuning worse as

seen from Fig. 3.11.
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Chapter 4

B-L Model

The ATLAS and CMS collaborations had earlier observed an excess of events at the LHC

in the γγ channel around a mass of 750 GeV [8, 9]. This hint of a new resonance had

enthused the studies of various possible new physics models where potentially a new heavy

BSM scalar can be present. A work [13] was also pursued by us, explaining the excess

from the decay of BSM scalar in a gauged U(1)B−L model [50]. The latest data which

was analyzed few months after our work is published, does not confirm the excess [10, 11].

Many BSM scenario incorporate extended Higgs sector which is expected to have heavy

scalars. Moreover, the γγ channel is an important new physics discovery channel. Here, a

kind of BSM physics with a heavy scalar is explored, that leads to decays to the diphoton

channel. The presence of such a heavy scalar is connected to the generation of neutrino

masses (and their relative smallness) and (or) the presence of dark matter, in the context

of the gauged B − L model [50]. There are three extra scalars apart from the SM Higgs

in this model. This model can also naturally explain the smallness of the Dirac neutrino

mass term along with the presence of a scalar dark matter candidate with the correct relic

abundance.

In this chapter, different gauged B−Lmodels are described, outlining their construction

where tiny Dirac and Majorana neutrino mass terms are possible. Then, a particular

gauged B − L model [50, 97] is chosen, which can naturally explain a tiny Dirac neutrino
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mass. How a scalar particle of that model can be a dark matter candidate with the

required relic density is also demonstrated. The particle content of this model along with

their gauge quantum numbers is provided, keeping in mind the neutrino mass generation,

dark matter and the gauge anomaly cancellation. The structure of the scalar and the

gauge sector of this model is presented, exploring the possibility of a simplified description

of the scalar mass matrix.

4.1 Gauged B − L Model: Neutrino Mass and Dark

Matter

The gauged B − L model [98, 99] is a well studied extension of the SM, where the SM

gauge group is extended by an U(1)B−L symmetry. Historically, Baryon number (B)

and Lepton flavor numbers (Li, i ≡ e, µ, τ) were introduced to explain the stability of

the proton and the absence of lepton flavor changing processes respectively. In the SM,

the Baryon number B and the Lepton number L are accidentally conserved classical

symmetries. Though both the B and L currents are anomalous, the combination B −L is

anomaly free. A detailed analysis of this model is provided in Ref. [50].

4.1.1 Neutrino Mass

One of the most important issues in neutrino physics is to understand the nature of

neutrinos i.e. whether they are Majorana or Dirac particles. Answering this question

is essential in understanding the basic physics of neutrino mass generation and mixing.

Neutrinoless double beta decay experiments (0νββ) can potentially address this issue.

Currently several ongoing experiments are looking for signals of 0νββ, but none has

observed any such signal so far [100–102]. At present, there are no concrete experimental

or cosmological evidences to favor either Dirac or Majorana nature of neutrinos. In this

thesis, one simple model based on a gauged B−L symmetry is chosen, explaining naturally
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tiny mass for Dirac neutrinos.

There are variants of the gauged B − L model that explain either Dirac or Majorana

neutrino mass, depending on the different B − L quantum numbers assigned to the

additional fermions. While B − L is a symmetry of the SM, it is an accidental symmetry

which need not be conserved by BSM physics. The introduction of a new U(1)B−L gauge

symmetry results in new gauge triangle anomalies that need to be cancelled. The relevant

anomalies in the gauged U(1)B−L are, Tr
(
U(1)B−L [SU(2)L]2

)
, Tr

(
U(1)B−L [U(1)Y ]2

)
and Tr (U(1)B−L)3. With the particle content of the SM, the first two anomalies are

automatically canceled. The new particle content of the gauged B−L model has to cancel

the third anomaly to be consistent. The gauged B − L symmetry can be embedded in

other BSM scenarios, for example the Left-Right symmetric model and in GUT groups

e.g. SO(10).

In the conventional gauged B − L model, the B − L symmetry is established to be

an anomaly free gauge symmetry with the addition of three right handed neutrinos νiR,

where each of them transform as −1 under the U(1)B−L [98,99] satisfying
∑
U(1)3

B−L = 0

and the gauge-gravitational anomalies. In addition to the right handed neutrinos, an

SU(2)L singlet scalar χ2 having two units of B − L charge is also introduced. The χ2 ∼ 2

under B −L is chosen to break the gauge symmetry, so that νR can get a Majorana mass.

In this case, the SU(3)C ⊗ SU(2)L ⊗ U(1)Y ⊗ U(1)B−L invariant Yukawa coupling for

neutrinos is given by

−LνY =
∑
i,j

yijL̄iLΦ̂∗νjR +
1

2

∑
i,j

fij ν̄
c
iRχ2νjR + h.c.. (4.1)

Here the VEV of the scalar χ2 breaks this B − L symmetry spontaneously, enabling the

right handed neutrinos to acquire a Majorana mass term MR proportional to the vacuum

expectation value (VEV) u2 of the singlet scalar. Therefore, if the B − L symmetry

breaking scale is far greater than the electroweak scale then the right handed neutrinos get

a large mass, leading to a natural implementation of Type-I seesaw mechanism providing
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a Majorana neutrino mass. But a very high B−L breaking scale with a mass of the order

of seesaw scale (∼ 1014 GeV for Yukawa coupling ∼ 1), makes it very difficult to probe

the model at the LHC.

Apart from Majorana neutrinos, a B − L model for Dirac neutrinos can also be

constructed. To explore the possibility of Dirac neutrinos in this scenario, right handed

neutrinos are added with −1 charge under U(1)B−L which allows one to have a gauge

invariant Yukawa coupling for neutrinos. The SU(3)C ⊗ SU(2)L ⊗ U(1)Y ⊗ U(1)B−L

invariant Yukawa coupling for neutrinos is then given by

−LνY =
∑
i,j

yijL̄iLΦ̂∗νjR + h.c. (4.2)

where Φ̂∗ = iτ2Φ
∗ and Φ = (φ+, φ0)T is the SM Higgs doublet. Since the right as well

as left handed neutrinos transform non-trivially under the gauged U(1)B−L symmetry,

this implies that the Majorana mass term for νiR is forbidden and neutrinos are Dirac

particles. In this case, the U(1)B−L symmetry remains unbroken. However, in such a

scenario the smallness of neutrino masses requires unappealingly small Yukawa couplings

and the model does not provide any explanation for their smallness.

Recently, another simple choice of B − L charges for right handed neutrinos, leading

to an anomaly free U(1)B−L gauge symmetry has been proposed [50]. It is shown that

such a charge assignment can lead to Dirac neutrinos with naturally small masses if the

B − L symmetry is spontaneously broken by SU(2)L singlet scalars χ3, χ6 transforming

as 3 and −6 under the U(1)B−L symmetry respectively. Unlike the previous case, here

the three right handed neutrinos transform as νiR with charges (+5,−4,−4) under the

B − L symmetry [50, 97, 103, 104]. Since νiR charges are (+5,−4,−4) under the U(1)B−L,

one can have

−(+5)3 − (−4)3 − (−4)3 = +3, (4.3)

−(5)− (−4)− (−4) = +3. (4.4)
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Thus, in this case also the model is free from gauge as well as gauge-gravitational

anomalies. Now, the SM Higgs doublet (φ+, φ0)T does not connect νL with νR. Therefore,

the neutrinos do not get mass from the standard electroweak symmetry breaking. To

generate the neutrino masses three heavy Dirac singlet pair of fermions N i
L,R are added,

transforming as −1 under the B − L symmetry. These are required to arrange a seesaw

mechanism for Dirac neutrinos, in a way analogous to that for Majorana neutrinos. The

fermions N i
L,R will not change the anomaly cancellation conditions and the model will

remain anomaly free. Now, for νR2 and νR3, (ν̄L, N̄L) is linked to (νR, NR) through the

2× 2 mass matrix as follows

Mν,N =

 0 m0

m3 M

 , (4.5)

where m0 comes from 〈φ0〉. Moreover, m3 comes from 〈χ3〉, due to the Yukawa coupling

N̄LνRχ3. The N fermion mass, M is naturally large, so the Dirac seesaw [105] yields a

small neutrino mass m3m0/M .

Here, the presence of χ3 with charge 3 under the B − L symmetry means that it is

impossible to construct an operator of any dimension for a Majorana mass term and

L remains a conserved global symmetry, with νL,R and NL,R all having L = 1. Any

pair of left handed or right handed fermions cannot have B − L charge 3,−3 together.

Therefore, they cannot form a B − L invariant Lagrangian term with χ3. Since νR1 has

charge +5 under the U(1)B−L, it does not connect with νL or NL directly, there is one

massless neutrino in this case. The dimension-five operator N̄LνR3χ
∗
3χ
∗
3/Λ is allowed by

U(1)B−L and would give it a small Dirac mass. Alternatively, one can add a second scalar

χ6 with charge −6 under the U(1)B−L to the model to account for mass of νR1. The

spontaneous B − L symmetry breaking (SSB) through 〈χ〉 = u gives the right handed

neutrinos a Majorana mass Mij =
√

2fiju. If u v, the right handed neutrino mass scale

is far greater than the electroweak scale, leading to a natural implementation of Type I

seesaw mechanism.
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4.1.2 Dark Matter

The new B − L model discussed above [50], can also have a dark matter candidate when

one new singlet scalar χ2, with charge 2 under U(1)B−L symmetry, is included in the

model. The possibility of having a long-lived self-interacting dark matter in this model is

discussed in Ref. [106].

All right handed neutrinos νR’s, vector-like fermions N ’s and the singlet scalars χ3 and

χ6 are introduced already with B −L charges required for neutrino mass generation. One

more scalar singlet, χ2 is introduced with B−L charges 2. This singlet scalar with zero vev

is taken as a dark matter candidate in this model. The B − L symmetry is broken by the

vevs of χ3 and χ6. Then the relevant terms like N̄LνR1χ6, χ2NLNL, χ2NRNR, χ
3
2χ6, χ

2
3χ6

will appear in the Lagrangian. There is no symmetry in this model that can stabilize the

dark matter i.e. χ2 decay modes are possible here. To be a dark matter candidate which

is stable, the decay lifetime of χ2 must be bigger than the age of the Universe, which can

be achieved in this model. The χ2 Yukawa coupling with one N is taken as

Lχ2 = f1χ2NLNL + f2χ2NRNR + h.c., (4.6)

with the Yukawa coupling constants f1, f2. The νL−NL and νR −NR mixing can happen

in this model with mixing parameters ξ1, ξ2 respectively, both of which are suppressed

as ∼ 1/mN . The χ2 → νν decay is possible due to these mixing and the decay mode is

function of fi, ξi. With the parameter choice as used in Ref. [106], the limit from the age

of the Universe can put the constraint as

√
fξ < 3× 10−11. (4.7)

This will guarantee χ2 to be stable up to present day, and allow it to be a dark matter

candidate. The mass of the singlet Majorana neutrino is taken as ∼ 1013 GeV, which is

also the usual mass scale for canonical seesaw mechanism.
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The U(1)B−L gauge boson of the model, Z ′ couples to the nuclei through its couplings

to u, d quarks. At the same time Z ′ also can decay to pair of χ2, the dark matter

candidate. From the interaction of χ2 with nuclei through Z ′, the scattering of dark

matter off the nuclei takes place, imposing a significant constraint from dark matter direct

search experiments. Using the scattering cross section upper limit from the recent LUX

data the lower limit on the Z ′ mass is around ∼ 10 TeV [106].

The process of dark matter annihilation into the SM particles pairs determine the relic

abundance of the dark matter. In this model, as discussed in Ref. [106], neither the SM

Higgs nor Z ′ exchange is important for χ2χ2 annihilation. The important contributions

come from the diagrams which emerge from the χ2 interaction with other singlet scalars

χ3,6. The thermal equilibrium with other SM particles are maintained in these diagrams

through the SM Higgs coupling with χ3,6. This scenario can explain the relic abundance

with the assumption that dark matter mass has to be greater than one of the physical

scalars in the χ3,6 sector.

4.2 Particle Content of the Gauged B − L Model

Gauged B−L models require unconventional B−L charges for the newly added particles

to introduce naturally small mass terms for both Majorana [97] and Dirac [49,50] neutrinos.

Here, the particles are added in a way to ensure that only tiny Dirac neutrino mass terms

can be generated. The new particles introduced in any model can potentially lead to

triangle anomalies. Thus, it is important to assign proper B − L charges that ensure the
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model to be anomaly free. The new particles can induce following triangular anomalies:

[SU(3)c]
2 U(1)B−L →

∑
q

(B − L)qL −
∑
q

(B − L)qR ,

[SU(2)L]2 U(1)B−L →
∑
l

(B − L)lL + 3
∑
q

(B − L)qL ,

[U(1)Y ]2 U(1)B−L →
∑
l,q

[
Y 2
lL

(B − L)lL + 3Y 2
qL

(B − L)qL ,
]

−
∑
l,q

[
Y 2
lR

(B − L)lR + 3Y 2
qR

(B − L)qR
]
,

U(1)Y [U(1)B−L]2 →
∑
l,q

[
YlL (B − L)2

lL
+ 3YqL (B − L)2

qL

]
−
∑
l,q

[
YlR (B − L)2

lR
+ 3YqR (B − L)2

qR

]
,

[U(1)B−L]3 →
∑
l,q

[
(B − L)3

lL
+ 3 (B − L)3

qL

]
−
[
(B − L)3

lR
+ 3 (B − L)3

qR

]
,

[Gravity]2 [U(1)B−L] →
∑
l,q

[(B − L)lL + 3 (B − L)qL ]− [(B − L)lR + 3 (B − L)qR ] .

The B − L quantum number of the fermions should be allotted in a way such that all

these anomalies vanish for the usual B − L charge of the SM fermions.

The SU(2)L singlet scalars are introduced in the model to break the gauge B − L

symmetry and construct proper Dirac mass terms. Also, one of them can potentially be

a dark matter candidate. Proper B − L quantum number allocation of these scalars is

also necessary to accommodate a long lived dark matter particle in the model for Dirac

neutrinos, further extended in Ref. [106]. For this thesis, an extended version of the

model discussed in [106] is studied, where two pairs of SU(2)L singlet exotic “quarks”,

XL,R and YL,R are introduced. Although they are SU(2)L singlets, these exotic quarks

do carry SU(3)c colour charges as well as U(1)Y , U(1)B−L charges. It has already been

shown in [50], that for the case when the exotic quarks X, Y are not present, the model is

completely anomaly free. It can also be easily seen that the addition of the X, Y quarks

does not spoil the anomaly cancellation and hence the model remains anomaly free.

In Table 4.1, apart from the SM particles three right handed neutrinos νiR, three
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SU(2)L singlet heavy fermions N i
L,R (as in the previous model [106]) and two pair of

exotic “quarks” XL,R, YL,R which carry color and electromagnetic charges but are singlet

under SU(2)L. The SU(3)c × SU(2)L × U(1)Y and U(1)B−L charge assignment for the

fermions and scalars of the model are as shown in Table 4.1 and Table 4.2 respectively:

Fields SU(3)c × SU(2)L × U(1)Y U(1)B−L Fields SU(3)c × SU(2)L × U(1)Y U(1)B−L

Qi
L (3, 2, 1

3
) 1

3
LiL (1, 2,−1) −1

uiR (3, 1, 4
3
) 1

3
liR (1, 1,−2) −1

diR (3, 1,−2
3
) 1

3
ν1
R (1, 1, 0) 5

ν2
R (1, 1, 0) −4 ν3

R (1, 1, 0) −4
N i
L (1, 1, 0) −1 N i

R (1, 1, 0) −1
XL (3, 1, 4

3
) 3 XR (3, 1, 4

3
) 0

YL (3, 1,−4
3
) −3 YR (3, 1,−4

3
) 0

Table 4.1: The SU(3)c×SU(2)L×U(1)Y and U(1)B−L charge assignment for the fermions.
Here i = 1, 2, 3 represents the three generations.

In Table 4.2, Φ = (φ+, φ0)T is the usual SU(2)L doublet scalar and χi are SU(2)L

singlet scalars. The charge assignment for the scalars in this model (which are same as

in [106]) are as follows:

Fields SU(3)c × SU(2)L × U(1)Y U(1)B−L Fields SU(3)c × SU(2)L × U(1)Y U(1)B−L

Φ (1, 2, 1) 0 χ2 (1, 1, 0) 2
χ3 (1, 1, 0) 3 χ6 (1, 1, 0) −6

Table 4.2: The SU(3)c× SU(2)L×U(1)Y and U(1)B−L charge assignment for the scalars.

4.3 Scalar and Gauge Sector of B − L Model

In this section, the details of the scalar and Yukawa sector of the gauged B-L model are

discussed and probable heavy resonance candidates are identified. With the scalar sector

of the gauged B − L model, given in the Table 4.2, the B − L gauge invariant scalar
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potential of this model is given by

V = −µ2
0(Φ†Φ) +m2

2(χ∗2χ2)− µ2
3(χ∗3χ3)− µ2

6(χ∗6χ6) +
1

2
λ0(Φ†Φ)2 +

1

2
λ2(χ∗2χ2)2

+
1

2
λ3(χ∗3χ3)2 +

1

2
λ6(χ∗6χ6)2 + λ02(χ∗2χ2)(Φ†Φ) + λ03(χ∗3χ3)(Φ†Φ) + λ06(χ∗6χ6)(Φ†Φ)

+ λ23(χ∗2χ2)(χ∗3χ3) + λ26(χ∗2χ2)(χ∗6χ6) + λ36(χ∗3χ3)(χ∗6χ6) + [
1

2
f36(χ2

3χ6) + h.c.]

+ [
1

6
λ′26(χ3

2χ6) + h.c.]. (4.8)

The scalar fields have vacuum expectation values as 〈φ0〉 = v, 〈χ3〉 = u3, 〈χ6〉 = u6 and

the fields are expanded around those minima. Moreover, the singlet scalar χ2, being a

dark matter candidate here, does not acquire any vev i.e. 〈χ2〉 = 0. The minimum of the

V is given as

V0 = −µ2
0v

2−µ2
3u

2
3−µ2

6u
2
6 +λ0

v4

2
+λ3

u4
3

2
+λ6

u4
6

2
+λ03u

2
3v

2 +λ06u
2
6v

2 +λ36u
2
3u

2
6 +f36

u2
3u6

2
,

(4.9)

with the potential minimization conditions,

µ2
0 = λ0v

2 + λ03u
2
3 + λ06u

2
6,

µ2
3 = λ3u

2
3 + λ03v

2 + λ36u
2
6 + f36u6,

µ2
6 = λ6u

2
6 + λ06v

2 + λ36u
2
3 +

f36u
2
3

2u6

. (4.10)

There are (no of scalars) physical scalars in the gauged B − L model and those are

listed below. Since 〈χ2〉 = 0, there is one dark matter scalar boson χ2 with mass given by

m2
χ2

= m2
2 + λ02v

2 + λ23u
2
3 + λ26u

2
6. (4.11)

This model has three CP-odd scalar degrees of freedom, spanning the basisG,
√

2Im(χ3),
√

2Im(χ6).

Two linear combinations amongst these are eaten as Goldstone bosons by the SM Z and
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the neutral Z ′ bosons, leaving one physical CP-odd scalar state as

A =
√

2Im(2u6χ3 + u3χ6)/
√
u2

3 + 4u2
6, (4.12)

with its mass given by

m2
A = −f36(u2

3 + 4u2
6)/2u6. (4.13)

There are three physical CP-even scalar bosons spanning the basis [h,
√

2Re(χ3),
√

2Re(χ6)],

with the 3× 3 mass-squared matrix given by

M2 =


2λ0v

2 2λ03u3v 2λ06u6v

2λ03u3v 2λ3u
2
3 2λ36u3u6 + f36u3

2λ06u6v 2λ36u3u6 + f36u3 2λ6u
2
6 − f36u

2
3/2u6

 . (4.14)

The mass matrix in Eq. 4.14 can be diagonalized to give three CP-even scalars which

will be linear combinations of Φ, χ3, χ6 scalars. However for sake of illustration, a special

case of the generic mass matrix is chosen, and that takes a simple form with the assumption

2λ0v
2 = a2 ⇒ λ0 =

a2

2v2
,

4λ03u3v = ab ⇒ λ03 =
ab

4u3v
,

4λ06u6v = ab ⇒ λ06 =
ab

4u6v
,

2λ3u
2
3 = b2 ⇒ λ3 =

b2

2u2
3

,

4λ36u3u6 + 2f36u3 = b2 ⇒ f36 =
1

2u3

(
b2 − 4λ36u3u6

)
,

2λ6u
2
6 −

f36u
2
3

2u6

= b2 ⇒ λ6 =
1

2u2
6

(
b2 +

f36u
2
3

2u6

)
, (4.15)

where a and b are two independent parameters. With these simplifying assumptions, the
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mass matrix of Eq. 4.14 becomes


a2 ab/2 ab/2

ab/2 b2 b2/2

ab/2 b2/2 b2

 . (4.16)

The eigenvalues of the mass matrix in Eq. 4.16 are given by

Σ1 =
1

4

(
2a2 + 3b2 −

√
4a4 − 4a2b2 + 9b4

)
,

Σ2 =
b2

2
,

Σ3 =
1

4

(
2a2 + 3b2 +

√
4a4 − 4a2b2 + 9b4

)
. (4.17)

The masses of the scalars are then given by

m1 =
√

2Σ1 , m2 =
√

2Σ2 , m3 =
√

2Σ3. (4.18)

One scalar combination mass can be fixed as the 125 GeV and another having a larger mass

(which is taken as 750 GeV in this thesis). For sake of definiteness, the first eigenstate is

identified with the 125 GeV scalar (henceforth called “Higgs”) and the second eigenstate as

the heavy scalar i.e. m1 = 125 GeV and m2 = 750 GeV. The mass of the third scalar then

depends on the value of a and b. Solving for a and b, it is found that a = 108.5 GeV and

b = 750 GeV lead to the desired masses for the scalars, m1 and m2. For this parameter

choice, the mass of the third scalar m3 then becomes m3 = 1.30 TeV.

The masses of the CP-odd scalar, dark matter and Z ′ are dependent on the values of

other free parameters e.g. the value of vevs u3, u6, the U(1)B−L coupling gX as well as

on the quartic coupling of scalars λij. It should be noted that in this limit, other scalars

as well as the Z ′ boson can be made heavy (assuming all couplings to be ∼ O(1) ) in

congruence with the experimental bounds for these particles [106]. Also, the mass of the

Z ′ boson is kept at mZ′ > 12 TeV which is well above the dark matter direct detection
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bound from the LUX experiment [106,107].

It should be noted that in the simplified mass matrix of Eq. 4.16, not all of the

λij are independent parameters, as evident from Eq. 4.15. The mass of dark matter

χ2 is also dependent on the additional parameter m2
2 and the quartic couplings λi2;

i = 0, 3, 6. As required by the constraints from the LUX dark matter direct detection

experiment [106,107], the presence of a heavy Z ′ is secured for a large range of parameter

space. Since the mass of the dark matter mχ2 depends on additional free parameters, it

can be chosen to be lighter than any other scalar. This leads to two distinct cases; when

the dark matter mass is less than half of the heavy scalar mass, then the heavy resonance

can decay into dark matter and it can lead to a significant invisible decay width. In the

case where the dark matter mass is greater than half of the heavy scalar mass, this decay

is kinematically forbidden. In the next chapter, both these cases are studied in detail,

with a discussion on heavy scalar phenomenology.
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Chapter 5

Heavy Scalar in the Gauged B − L

Model

The gauged B−L model discussed in Chapter 4 has a rich structure in the scalar sector at

TeV scale. All the new scalars are introduced in the model either from the requirement of

neutrino mass generation or to have a dark matter candidate. To probe the gauged B−L

model at the LHC, it is important to explore BSM scalar production and decay modes. All

the BSM scalars of the gauged B−L model are SU(2) singlets and EM neutral. Therefore,

their decay to the SM fermions and gauge bosons are highly suppressed. Among other

decay modes, the γγ channel is a clean one i.e. relatively less affected by the background.

So, BSM scalar phenomenology can be studied with an emphasis on the γγ channel.

In this chapter, main focus is on the phenomenology of a heavy BSM scalar. The LHC

phenomenology of BSM scalars of the gauged B − L model described in Chapter 4, is

presented in this chapter. In the models described in Refs. [50, 106], it is hard to directly

probe these models in the diphoton channel at the LHC due to a small cross section.

Compared to the model described in Ref. [106] the fermion sector is modified here, with

the addition of two exotic colored fermion pair, XL,R, YL,R. These newly added fermions

can modify heavy BSM scalar phenomenology at the LHC, contributing through the

triangle loops. These new quarks can boost BSM scalar gluon fusion production and the
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loop dominated γγ, Zγ, ZZ decays, and those effects are quantified in this chapter. For

the purpose of following our work [13], the heavy scalar mass is taken to be 750 GeV. How

the previously observed 750 GeV excess was explained in our work is also outlined.

5.1 Higgs Boson and BSM Scalars

Apart from the 125 GeV Higgs boson, other heavy scalar particles are also present in the

gauged B − L model discussed in Chapter 4. Three extra physical scalars apart from the

SM-like Higgs are present in this model. Two of these scalars are CP-even, while one is

CP-odd. In this work, one CP-even spin-0 particle of the gauged U(1)B−L model is taken

to have mass of 750 GeV. Other BSM scalars are also chosen to be heavier than the SM

Higgs.

In Chapter 4, the scalar sector of the gauged B-L model is analyzed in a simplified

set-up which provides three physical scalar combinations. For the sake of presentation, the

simplified mass matrix of Eq. 4.16 is taken. This matrix mixes real part of the φ0, χ3, χ6

fields i.e. φR0 , χR3 , χR6 states with each other. Diagonalizing the simplified mass matrix,

physical scalar eigenstates are found as

h = cos θ φR0 − sin θ(χR6 + χR3 ),

H1 = (χR6 − χR3 ),

H2 = sin θ φR0 + cos θ(χR6 + χR3 ), (5.1)

with the mass eigenvaluesm1,m2,m3 of Eq. 4.18 being assigned with scalar states h,H1, H2

respectively. The mixing angle θ is expressed as

tan 2θ =
2
√

2ab

3b2 − 2a2
. (5.2)

One of the scalar combinations, h = cos θ φR0 − sin θ(χR6 + χR3 ) can be identified as

the 125 GeV Higgs which is discovered at the LHC. The recent results from both the
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ATLAS and CMS experiments suggest that the 125 GeV scalar couples to the SM gauge

bosons and fermions in a way very similar to the SM Higgs. From Eq. 5.1, it is observed

that in the B − L model, there exists a decoupling limit where h will have almost SM

Higgs-like couplings with other SM particles. As is evident from Eq. 5.1, with sin θ → 0,

the 125 GeV physical scalar state has minimal contribution from the scalar singlets χ3, χ6.

This fixes the h couplings to the SM gauge bosons to be almost SM like.

Another scalar H1 with mass m2, is chosen to have a mass of 750 GeV i.e. b = 750 GeV.

For the case of a = 108.5 GeV and b = 750 GeV which keeps the mass of h state at 125

GeV, the mixing parameters are cos θ = 0.997, sin θ = 0.069. For other a, b values which

can keep h at 125 GeV and H1 with heavier mass, the mixing angle remains small, within

the experimental limit. This implies that in this model the couplings of the scalar h of

mass 125 GeV with W,Z gauge bosons are almost SM like. The deviations from the SM

couplings are small and are well within the experimental limits (see Ref. [108]).

The heavy scalar H1 in this model is chosen to be the BSM scalar whose phenomenology

is going to be explored here. The Yukawa couplings of this scalar with fermions are

discussed in detail in Ref. [106]. Due to inclusion of two new quarks, apart from its

coupling to the scalars, χ3 has following Yukawa couplings:

Lχ3 = fX X̄LXRχ3 + fY ȲLYRχ
∗
3 + h.c.. (5.3)

As evident from Eq. 5.3 both quarks X, Y acquire mass after χ3 spontaneously breaks the

B−L symmetry. The fermionic masses are proportional to the VEV u3 of χ3. In a B−L

symmetric Lagrangian of the model, a Yukawa term of the singlet scalar χ6 (χ6 ∼ −6

under U(1)B−L) with these new quarks, cannot be included. Therefore, the χ3 Yukawa

coupling of Eq. 5.3 generates the Yukawa coupling of the scalar H1 ≡ χ3 − χ6. Owing to

the coupling of χ3 with quarks X, Y ; the heavy scalar H1 (with a mass of 750 GeV) can

be efficiently produced through the gluon-gluon fusion at the LHC. The production and

decay of this scalar are discussed in detail in the next section.
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5.2 Phenomenology of the Heavy Scalar H1

In this section, the details of the LHC production and decay channels of H1 are discussed,

identifying it as a heavy scalar with mass of 750 GeV. It is explained how, in the gauged

B−L model, the enhanced diphoton decay of this scalar can lead to better search prospects

in this channel. Moreover, as the decay rates of H1 to the SM fermion, Higgs and other

gauge boson channels are suppressed, that can explain the non-observation of this scalar

in other channels.

The heavy scalar H1 ≡ χR6 − χR3 does not couple to the SM fermions at the tree level.

So, the H1 production rate through the SM quark dominated triangle loops is negligibly

small. From the χ3 Yukawa coupling to X, Y given in Eq. 5.3, the linear combination

H1 = (χR6 − χR3 ) also can couple to the new quarks. Therefore, H1 can dominantly be

produced by gluon-gluon fusion through the triangle loops involving X, Y .

g

g

H1

X, Y

X, Y

X, Y

X, Y

X, Y

X, Y

γ

γ

Figure 5.1: Gluon fusion production and diphoton channel decay of heavy scalar.

If both X, Y are heavier than mH1/2, then the tree level H1 decay to the pair of X, Y

is kinematically forbidden. In such a case, its decay to two photons through triangular

loop involving X, Y as shown in Fig 5.1, can be significant, leading to an excess in the

diphoton channel. Apart from its decay to two photons, H1 can also decay to a pair of

gluons or Higgs (h) bosons, as shown in Fig. 5.2 and Fig 5.3 respectively. Moreover, if

the mass of the dark matter mχ2 ≤ mH1/2, then it can also decay into a pair of dark

matter particles as shown in Fig. 5.4. This can lead to an appreciable invisible decay

width of H1. From the terms of the scalar potential with coefficients λ03 and λ06 in

Eq. 4.8, using the simplified definitions of Eq. 4.15, it is shown that the pair of SM like

Higgs (h) couple to both χ3 and χ6 with the same coupling strength. This will result in
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g

g

H1

X, Y

X, Y

X, Y

X, Y

X, Y

X, Y

g

g

Figure 5.2: Gluon fusion production and decay of heavy scalar to two gluons.

g

g

H1

X, Y

X, Y

X, Y

h

h

Figure 5.3: Gluon fusion production and decay of heavy scalar to two Higgs. Owing to
negligible H1hh coupling, this decay mode is highly suppressed.

a cancellation of their interaction strength with H1 ≡ χ3 − χ6, resulting in a very small

H1hh coupling. Hence the H1 → hh decay will be negligibly small. The heavy scalar H1

is primarily a mixed state of SU(2)L singlets χ3 and χ6, as shown in Eq. 5.1. Therefore,

it does not have a tree level coupling to the SM fermions as these SU(2)L singlet scalars

cannot form gauge invariant Yukawa term with the SM fermions. As the χ3 and χ6 scalars

are electromagnetically neutral and singlet under SU(2), H1 does not couple to W and Z

boson pair. Therefore, its decays to the dilepton, dijet and diboson channels are extremely

suppressed. This observation is also in line with the experimental results which show lack

g

g

H1

X, Y

X, Y

X, Y

χ2

χ∗
2

Figure 5.4: Production and decay of heavy scalar to dark matter. This decay mode is
only allowed if mχ2 ≤ mH1/2.
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of any statistically significant excess in these channels.

Apart from the earlier hint of the 750 GeV excess, ATLAS and CMS have not seen any

hint or excess in any channel at other masses. Unless they are hidden due to very small

decay rate in all decay channels, all the new particles (except the dark matter) should be

sufficiently massive. So, the mass of the CP-odd scalar of this model can be safely fixed

at mA > 1 TeV. As obtained in Section 5.1, the mass of the other CP-even scalar (H2) is

also greater than 1 TeV. The mass of the dark matter mχ2 is left as a free parameter and

depending on its mass, the H1 → χ2χ
∗
2 decay may or may not be kinematically forbidden

(Here χ∗2 denotes the anti-particle). Both the cases will be considered in the next section.

Thus, the only prominent decay modes of interest are H1 → γγ, H1 → gg and if

mχ2 ≤ mH1/2 then H1 → χ2χ2 also. The partial decay widths of H1 in these modes are

given as,

Γ(H1 → γγ) =
α2mH1

64π3

∣∣∣∣∣2Nc

∑
i=X,Y

fiQ
2
i

√
τi(1 + (1− τi)f(τi)

∣∣∣∣∣
2

,

Γ(H1 → gg) =
α2
smH1

32π3

∣∣∣∣∣2 ∑
i=X,Y

fi
√
τi(1 + (1− τi)f(τi)

∣∣∣∣∣
2

,

Γ(H1 → χ2χ2) =
(κχ2u3)2

32πmH1

(
1 − 4m2

χ2

m2
H1

) 1
2

(5.4)

where τi = 4m2
i /m

2
H1

with mi, Qi being corresponding fermion (X, Y ) masses and electro-

magnetic (EM) charges respectively. The fi s here denote the Yukawa couplings with the

scalar H1 whereas αs, α denote strong and EM interaction coupling strengths respectively.

Nc is the color factor which is 3 for the quarks and 1 for the leptons. Also, without loss of

generality, the dimensionful coupling between χ2 and H1 has been normalized by the vev

u3, with κχ2 being a dimensionless parameter. As given in Eq. 4.8, the κχ2 parameter is a

function of the vevs u3, u6 as well as the quartic couplings between χ2 and χ3, χ6 fields.
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The f(τi) for this case, with mX,Y > mH1/2 is given as

f(τi) = (sin−1[
1√
τi

])2. (5.5)

In addition to these decay modes, H1 can also decay to Zγ and ZZ through the triangular

loops involving the X, Y quarks. For m2
Z << m2

H1
, which is valid here, the decay width

to the Zγ and ZZ channels are given as

Γ(H1 → Zγ) =
α2mH1

32π3s2
W c

2
W

∣∣∣∣∣2Nc

∑
i=X,Y

fiQi(−Qis
2
W )
√
τi(1 + (1− τi)f(τi)

∣∣∣∣∣
2

,

Γ(H1 → ZZ) =
α2mH1

64π3s4
W c

4
W

∣∣∣∣∣2Nc

∑
i=X,Y

fi(−Qis
2
W )2√τi(1 + (1− τi)f(τi)

∣∣∣∣∣
2

, (5.6)

where sW = sin θW , cW = cos θW and θW is the electroweak angle. Since the new quarks

X, Y are both SU(2)L singlets and all the three decays namely H1 → γγ, Zγ, ZZ proceed

through the same triangle loops, the ratio of the partial decay widths in these three

channels are given by

Γ(H1 → Zγ)

Γ(H1 → γγ)
≈ 2 tan2 θW ,

Γ(H1 → ZZ)

Γ(H1 → γγ)
≈ tan4 θW . (5.7)

As clear from Eq. 5.7, the loop decays of H1 to Zγ and ZZ are suppressed compared to

the γγ decays by a factor proportional to the electroweak mixing angle. Thus, H1 is an

ideal candidate for search in the diphoton channel at the future LHC run along with lack

of significant excess in other decay channels.

For H1 to be a viable candidate to be observed in the diphoton channel, it not only

requires to have an enhanced cross section in the 13 TeV run of the LHC but should also

explain the non-observation of any statistically significant excess in different channels in

the previous 8 TeV LHC run. In this model, some significant decay channels for H1 are

the loop induced gg, γγ, Zγ and ZZ decays. Moreover, if mχ2 ≤ mH1/2 then it can also

decay to two dark matter particles through the H1χ2χ
∗
2 tree level coupling. The 8 TeV
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LHC constraints on σ×BR(H1 → fifj); fi,j ≡ g, γ, Z, χ2, of these channels are [109,110]:

σ × Br(H1 → γγ) < 1.5 fb,

σ × Br(H1 → gg) < 2500 fb,

σ × Br(H1 → inv) < 800 fb

σ × Br(H1 → Zγ) < 11 fb,

σ × Br(H1 → ZZ) < 12 fb. (5.8)

Compared to the H1 → γγ, the ZZ, Zγ decays are suppressed. Furthermore, as

shown in Eq. 5.8, the exclusion limits on these decay channels are also relatively weaker.

Thus, the constraints from these decay channels are quite weak and do not impose any

additional constraints on the allowed parameter range. Finally the H1 decay to gluons is

also well below the experimental limit and does not impose any additional constraints on

the allowed parameter range. The only significant constraint from the 8 TeV run comes

from the γγ decay channel which is also plotted in the Fig. 5.5 and Fig. 5.6 later. The

constraints from the other channels, including the invisible decay to dark matter are

rather weak and do not give any additional constraint.

Numerical values of σ × BR for both the cases, mχ2 > mH1/2 and mχ2 ≤ mH1/2 in

all the decay channels are presented. For the numerical analysis, the heavy scalar mass is

taken as 750 GeV. For the first case, a benchmark point (mX = 1 TeV and u3 = 205 GeV)

is chosen on the γγ exclusion line and the values for these decay channels are given as:

σ × Br(H1 → γγ) = 1.5 fb,

σ × Br(H1 → gg) = 490 fb,

σ × Br(H1 → Zγ) = 0.89 fb,

σ × Br(H1 → ZZ) = 0.14 fb. (5.9)

For the second case, the σ ×BR values for these decay channels for a benchmark point
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(mX = 1 TeV and u3 = 180 GeV) on the γγ exclusion line are given as:

σ × Br(H1 → γγ) = 1.5 fb,

σ × Br(H1 → gg) = 409 fb,

σ × Br(H1 → Zγ) = 0.89 fb,

σ × Br(H1 → ZZ) = 0.14 fb,

σ × Br(H1 → χ2χ
∗
2) = 244 fb. (5.10)

The constraints on the model parameter space coming from 8 TeV γγ channel exclusion

limits are shown in Fig. 5.5 and Fig. 5.6.

Finally, before ending this section a brief discussion is done about the total decay width

of H1 for the two cases. In this model, if the H1 decay to dark matter is kinematically

forbidden, then the dominant decay channels will all be loop induced, with H1 → gg being

the most significant. In such a scenario, H1 will be a narrow resonance with a total decay

width only up to a GeV. However, if H1 decay to dark matter is kinematically allowed

then it can have significant invisible decay width owing to the fact that such a decay is

not loop suppressed. In this case, the heavy scalar H1 can be a broad resonance. If the

LHC in the future run demands the heavy scalar to be a broad resonance, then for this

model it will imply a significant invisible decay width. Depending on the value of κχ2 , H1

can have decay width up to around 50 GeV. That happens for a small parameter range,

because the BR(H1 → γγ) becomes insignificant at rest of the parameter points due to a

large width of the scalar resonance. In such a case, a larger σ ×BR can be obtained by

adding a pair of SU(2)L singlet charged leptons to this model, which will improve the

diphoton signal cross section. However, at this stage such an extension of this model is

not necessary.
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5.3 750 GeV Diphoton Excess

Previously observed 750 GeV diphoton excess had drawn significant attention, as it was

explored as a hint of new physics at the LHC. The reports from the ICHEP conference [10,

11], after the analysis with more LHC data, indicate the diphoton excess to be a statistical

fluctuation. Here, it is discussed how a BSM scalar in our work [13] can explain the

previously seen excess.

The ATLAS and CMS collaborations at the LHC had reported an excess of events in

the invariant mass distribution of two photons at
√
s = 13 TeV [111–113]. The ATLAS

Collaboration [112], with 3.2 fb−1 data, had reported an excess of 3.9σ at diphoton

invariant mass around 750 GeV. The significance was 2.3 σ once the Look Elsewhere Effect

is included. That was translated to an excess in signal σ(pp → γγ) of about 10± 3 fb,

with a best fit width ∼ 45 GeV. The CMS collaboration had also found an excess in

diphoton events with local significance 2.6σ [113] at
√
s = 13 TeV with 2.6 fb−1 data at a

mass around 750 GeV. With the assumption of large width (∼ 45 GeV), this significance

reduced to 2.0σ. Corresponding excess in the signal cross section σ(pp → γγ) was of

about 6± 3 fb. These excess events did not have any significant missing energy, leptons

or jets associated with them. No excess of events had been found in ZZ, WW , dilepton,

dijet channels in the same invariant mass region. These were all the experimental details

that one had to satisfy to explain the observed diphoton excess from a BSM particle decay.

Although this excess has turned out to be a statistical fluctuation later, it had drawn

significant attention as it was expected to be a possible new physics particle decay, with

invariant diphoton mass around 750 GeV [114].

From the Landau-Yang theorem, a massive vector boson can not decay to two photons

(see Refs. [115, 116]). So the excess which was previously observed at the LHC, cannot be

attributed to the decay a spin-1 particle. If a resonance has to explain the excess, there

remains the possibility of the particle being either a spin-0 or spin-2 particle. The BSM

model scalar spectrum should have a 125 GeV Higgs boson with properties similar to
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the resonance discovered earlier at the LHC. In this section, it is discussed how a heavy

scalar in the gauged B − L model [50] can generate a diphoton excess at 750 GeV similar

to that observed before. Production channels and decay modes of the 750 GeV BSM

scalar mimic the heavy scalar discussed above, with an important role of exotic fermions.

The numerical results showing the allowed parameter space for both the cases where the

resonance is either wide or narrow are presented. It is also discussed why there are no

excesses observed in various other channels.

In this section, the numerical results are presented, showing the allowed parameter

range that can explain the diphoton excess previously observed at the LHC. Allowed

points are presented by the parameter region of mass and Yukawa couplings of the new

quarks, X, Y . For this part, MadGraph5aMC@NLO [117] with NN23LO1 PDF set [118]

is used to obtain the numerical estimates taking K factor of 1.5 into account for the NLO

correction [119].

As mentioned before, since in this model the dark matter mass mχ2 is not fixed, there

arise two distinct possibilities; either mχ2 > mH1/2 or mχ2 ≤ mH1/2. For the first case,

H1 decay to two dark matter particles is kinematically forbidden and the only prominent

channels are its loop decays to gg, γγ as well as tan θW suppressed loop decays to Zγ

and ZZ. In the second case, H1 can also additionally decay to two dark matter particles.

Both of these possibilities are analyzed below.

In the first case the only important decay modes for H1 are H1 → γγ and H1 → gg

along with H1 → Zγ and H1 → ZZ both of which are θW suppressed. All of these decay

modes are at loop level, going through triangle loops involving X, Y quarks. As g, γ and

Z all couple to the quarks through gauge interactions, their interaction strengths are

fixed, and are proportional to αs, α, the strong and electromagnetic coupling constants

respectively. Hence, for this case of our model the production and decay rate of H1

depends on only two free parameters, the masses of X, Y quarks and the Yukawa coupling

between H1 and quarks. Moreover, since the quarks X, Y acquire mass through the

vev of χ3 so the Yukawa coupling can be equivalently replaced by the vev u3 as a free
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parameter. Fig. 5.5 shows the allowed ranges of the exotic quark masses and the value of

the vev, 〈χ3〉 = u3, that can explain the previously observed 750 GeV diphoton excess

for both the CMS and ATLAS experiments within 95% confidence level. In obtaining
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Figure 5.5: The allowed mX - u3 range corresponding to CMS (green), ATLAS (deep blue)
and the overlap (light blue) ranges with 95% confidence level. Also, shown is the 95%
confidence level H1 → γγ exclusion line (red dashed) from 8 TeV run with the regions on
the left of the line being incompatible with it. The black shaded region is also excluded
by the perturbativity constraints.

the numerical results, for simplicity it is assumed that the masses of the exotic quarks

X, Y are degenerate i.e. mX = mY and they are treated as a single parameter mX . In

addition the perturbativity of all the couplings in our model is ensured. The region of the

parameter space excluded due to non-perturbativity of the couplings is explicitly shown

in Fig. 5.5.

Furthermore, in plotting Fig. 5.5 the 8 TeV exclusion limits are imposed for the

750 GeV scalar in all other channels. The strongest constraint from 8 TeV exclusion limits

actually comes from non-observance of any statistically significant excess in the γγ decay

channel. In Fig. 5.5 the dotted red line corresponds to the γγ exclusion limit of Eq. 5.8.

The parameter space on the left of the red line is incompatible with the 8 TeV data.

As mentioned before, the scalar H1 that is considered here, does not couple significantly

to the SM fermions at tree level. Therefore the limits given in [120] can be easily satisfied.
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The coupling H1hh is also negligibly small and σ(pp → H1 → hh) is well under the

experimental limit [121]. Moreover, the scalar is a EM charge neutral SU(2) singlet.

Therefore, it does not have any tree level coupling to either W or Z bosons. As the newly

added fermions are SU(2) singlets even the H1 → WW decay through the triangle loop

is not possible. However, it can couple to ZZ, Zγ at loop level through triangle loop of

the exotic fermions and it has to be taken into account. As clear from Eq. 5.9, for this

case of our model, apart from the γγ decay channel, the constraints from all other decay

channels are easily satisfied. Even for the γγ channel, our model has enough parameter

space compatible with both the previously observed 13 TeV excess and the current 8 TeV

constraints.

In the second case, in addition to the decay channels discussed in previous case, H1

decay to dark matter is also kinematically allowed and it can have appreciable invisible

decay width. Fig. 5.6 presents the allowed parameter range for the exotic quark masses

and u3, that can explain the observed diphoton excess within 95% confidence level. In

plotting Fig. 5.6 the dark matter coupling with the scalar is taken as κχ2 = 0.5 and have

all the constraints from 8 TeV run listed in Eq. 5.8 are also imposed.

As evident from Eq. 5.10, like the previous case here also only the constraints from

γγ channel for 8 TeV run are important. The constraints from all other channels are

comfortably satisfied. Furthermore, just like the previous case, in this case also our model

has enough parameter space compatible with both the previously observed 13 TeV excess

and the current 8 TeV constraints. Thus, the 750 GeV diphoton excess seen earlier at the

LHC can be understood in our model as the decay of H1 to a pair of photons.

The first thing to note is that given the current low statistics, the estimates of decay

width are very poor. This aspect is highlighted by the fact that while CMS data prefers

narrow decay width of around a few GeV for the resonance, the ATLAS prefers a relatively

broader resonance with decay width ∼ 45 GeV. Thus, the current estimates of decay

width are highly uncertain and are likely to change significantly in the future runs.

The model was originally constructed to obtain Dirac neutrinos with naturally small
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Figure 5.6: The allowed mX - u3 range (for κχ2 = 0.5) corresponding to CMS (green),
ATLAS (deep blue) and the overlap (light blue) ranges with 95% confidence level. Also,
shown is the 95% confidence level H1 → γγ exclusion line (red dashed) from 8 TeV run
with the regions on the left of the line being incompatible with it. The black shaded
region is also excluded by the perturbativity constraints.

masses and also has a long lived dark matter particle. Unlike the conventional gauged

B − L symmetry model where the B − L scale is expected to be quite high, being related

with the seesaw scale, the B − L scale can well be within the LHC range in our model ,

opening up the possibility of testing its various aspects at LHC. Thus to conclude, the

gauged B−L model considered here appears to be a promising candidate for new physics.

It has all the right ingredients to explain not only the previously seen 750 GeV diphoton

excess but all the other experimental results both for a proposed 750 GeV resonance as

well as the 125 GeV Higgs. Moreover, the model also connects the observed new physics

with the already well known and long standing problems of neutrino masses and dark

matter and attempts to provide a unifying solution to all of them.

76



Chapter 6

Conclusion and Summary

This thesis deals with the effects of new fermions on the LHC phenomenology of some

BSM scalars that arise in two models with symmetries extended beyond the SM: the

SU(6)/Sp(6) little Higgs (LSS) model and the gauged U(1)B−L model.

Chapter 1 is an introductory chapter where some theoretical shortcomings of the SM

are briefly discussed to motivate the need for BSM physics that can explain some of the

unanswered questions of the SM. Due to extension of symmetries beyond the SM, many

BSM theories predict the existence of new heavy scalars along with heavy fermions near

the TeV scale. In this thesis, the LHC phenomenology of two types of such new heavy

scalars in presence of heavy fermions, namely the vector-like quarks (VLQ) are discussed.

In Chapter 2, various little Higgs models are reviewed briefly to show that they

can provide a 2HDM structure with the VLFs. It is also discussed, how these models

can address the gauge hierarchy problem of the SM, cancelling the quadratic divergent

contributions at the one-loop level. To provide good understanding of these little Higgs

models, 2HDM and VLF are briefly reviewed. The LSS model is described with a detailed

discussion on the collective symmetry breaking in this model, to ensure the cancellation

of one-loop quadratic divergent contribution to the Higgs mass. The gauge and Yukawa

sector of the LSS model is also studied, showing in detail how the fermion mass matrices

are diagonalized.
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In Chapter 3, the phenomenological analysis of the LSS model described in Chap-

ter 2 is carried out with an emphasis on studying BSM scalars at the LHC. Here, The

2HDM structure emerging at the LSS model is presented, pointing out the correlation

of mA,mH± , sβ−α etc.. All the free parameters are chosen and a scan is done over the

nine dimesional parameter space. Both theoretical and experimental constraints are then

applied to present the allowed parameter space. The constrained parameter space bears

out the degeneracy of the BSM scalar masses, shows preference for low tan β region and

satisfies the alignment limit almost fully. The gluon fusion production cross section of the

neutral scalars are presented, pointing out the dominant contribution of the vector-like

quarks in this mode. For the allowed points, different decay modes of neutral scalars and

their branching ratios in those channels are presented. Various charged Higgs decays are

also studied. Thus, in the LSS model discussed here, the presence of heavy BSM scalars

can be probed in the current 13 TeV run of the LHC. The effects of vector-like fermions

on the flavor sector of this model can be studied in the future.

Chapter 4 describes a BSM theory with its symmetry extended by a U(1)B−L. Three

right handed neutrinos with B−L charges 4, 4,−5 are introduced to construct Dirac mass

terms for neutrinos. Two singlet scalars, χ3 and χ6 are required in order to spontaneously

break the gauged B −L symmetry as well as to obtain Dirac neutrinos with small masses.

Another singlet scalar χ2 is introduced to be the dark matter candidate. The B − L

charges of the new fermions are chosen to construct a model free from triangle anomalies.

The scalar potential of the model is analyzed, forming a simplified mass matrix which is

diagonalized to present CP-even scalar mass eigenstates.

Chapter 5 deals with the possibility that a the scalar particle H1 can have enhanced

decay into two photons. It also has a 125 GeV particle h which has almost the SM Higgs-

like couplings to the other SM particles and satisfies all the other experimental constraints

for the 125 GeV scalar. A heavy scalar of mass 750 GeV is chosen, exploring its production

and decay channels. The effects of the exotic fermions in the gluon fusion production is

studied, pointing out the enhanced diphoton decay due to these fermions. It is shown
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how the model satisfies all the current experimental constraints like non-observation of

any excess in dilepton, dijet, diboson and invisible channels. The total width of the heavy

scalar in this model can vary from small (∼ 1 GeV) to large (∼ 50 GeV) values.

Moreover, the model also connects the observed new physics with the already well

known and long standing issues related to neutrino masses and dark matter and attempts

to provide a unifying solution to all of them. Thus, the gauged B − L model considered

here appears to be a viable candidate for new physics. Also, it has several testable

predictions like existence of heavier particles in ∼ 1 TeV range which can be probed in

current and future run of the LHC. The presence of a dark matter candidate in this model

can also be probed in dark matter direct detection experiments.
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Appendix A

BSM Scalar in Model Independent

Framework

An effective Lagrangian with couplings of the neutral scalars, CP-odd A and CP-even h,H

to SM gauge bosons and fermions is described here. The neutral scalars are collectively

written as φ. In models like 2HDM that contain two CP-even scalars, the lighter one (h)

is taken as the 125 GeV scalar observed at the LHC. For any given new physics model,

effective Lagrangian can be obtained by integrating out heavier fields, following which the

observables of that model can be expressed using the effective couplings defined in this

part.

CP invariance requires the CP-odd scalar A coupling to SM gauge bosons to be only

via higher dimensional operators. The CP-even scalars can couple to the massive gauge

bosons at tree level. Showing only the new physics terms, the effective Lagrangian for any

neutral scalar φ is

Leff =
1

2
∂µφ∂

µφ− 1

2
m2
φφ

2 − yφfifiφf̄iXfi + yφWWφW
µWµ + yφZZφZ

µZµ (A.1)

− 1

64π2M
κφγγφYµνστF

στF µν − 1

32π2M
κφγZφYµνστF

στZµν − 1

64π2M
κφggφYµνστG

στGµν

− 1

64π2M
κφZZφYµνστZ

στZµν − 1

32π2M
κφWWφYµνστW

στW µν ,
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where X = γ5, Yµνστ = εµνστ for the CP-odd scalar, while X = I (identity matrix),

Yµνστ = gµσgντ for the CP-even scalar. Here κφij s contain other fermion and gauge boson

loop contributions. Tree level scalar gauge boson couplings yφZZ , yφWW are zero for the A.

The dimensionless effective couplings κ are created by pulling out a new-physics mass-scale

M which is set as 1 TeV for numerical results. Although the effective couplings κ are

defined by extracting a heavy new-physics mass scale M , SM fermion contributions are

to be included when present. If SM fermions contribute and can go onshell, the κ are

complex. In that case, the κφV V that appear in this section should be read as |κφV V |.

Eq. (A.1) is an effective Lagrangian at a scale just above mφ.

The one-loop expressions for the φgg amplitudes κφgg, with φ = {H,A}, as defined in

Ref. [61] are given here. Defining rf = m2
f/m

2
φ and with f running over all colored fermion

species with mass mf and real Yukawa couplings yφff , and with the electric charge of the

fermion (f) denoted by Qf , the general expressions for κφgg and κφγγ are given as

κφgg = g2
s

∑
f

yφff
M

mf

F
(1)
1/2(rf ) , (A.2)

with F
(1)
1/2(rf ) = 4rf

(∫ 1

0

dy

∫ 1−y

0

dx
g(x, y)

(rf − xy)

)
,

with g(x, y) = (1− 4xy) for the CP-even scalars (h,H) and 1 for the CP-odd scalar (A).

These expressions are used for the LSS model discussed in the text.
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Appendix B

Allowed Points

Nine representative points in the allowed parameter space are given in Table. B.1 and in

Table. B.2.

Table B.1: The allowed parameter space after electroweak precision constraints.

Parameter Pt-1 Pt-2 Pt-3 Pt-4 Pt-5 Pt-6 Pt-7 Pt-8 Pt-9
f 633.5 799.8 1096 1133 1133 1161 1207 1403 1429
g1 0.657 0.655 0.688 0.901 0.851 0.675 0.852 0.679 0.705
g
′
1 0.567 2.869 1.6 2.809 1.448 1.23 1.449 1.161 1.376
y1 1.985 2.774 1.664 2.276 1.568 2.305 1.583 2.763 2.607
y2 1.342 1.422 1.199 1.343 1.257 1.475 1.271 2.525 2.82
y3 2.372 1.964 2.691 2.082 2.391 2.027 2.393 2.113 2.234
y4 0.165 0.358 0.843 0.533 0.798 0.485 0.800 1.64 2.048
y5 2.076 1.185 2.706 1.977 2.602 1.887 2.612 1.464 1.507
c 1.33 1.325 1.51 0.775 0.805 1.169 0.808 1.587 1.558
c′ 1.771 2.579 2.246 2.46 2.172 1.596 2.173 2.681 2.504
g2 6.864 10.9 2.106 0.949 1.021 2.634 1.018 2.395 1.742
g′2 0.465 0.363 0.369 0.363 0.371 0.376 0.371 0.378 0.373
tβ 0.73 0.73 0.6 0.74 0.95 0.88 0.97 1.79 1.9
λ′5 0.568 0.566 0.666 0.561 0.513 0.509 0.517 0.713 0.751
Ms 5163 10220 3573 2719 2496 4039 2681 7283 7202
MW ′ 3089 6177 1716 1048 1065 2231 1133 2470 1898
MB′ 328.6 1636 1272 2269 1198 1056 1276 1212 1440
mh 124.8 124.7 124.7 124.5 124.4 124.1 125 125 124.1
mH 1111 1666 1445 1901 1284 2020 1386 2075 1309
mA 1118 1671 1450 1905 1290 2024 1392 2079 1315
mH± 1111 1666 1443 1901 1284 2020 1386 2074 1307
mt 166.4 159.2 161.1 159.1 158.4 159.7 159.4 163.3 162.7
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Table B.2: The allowed parameter space after electroweak precision constraints.

Parameter Pt-1 Pt-2 Pt-3 Pt-4 Pt-5 Pt-6 Pt-7 Pt-8 Pt-9
Mt2 1218 2376 2037 2537 1987 2626 2134 4402 4707
Mt3 1794 1823 3246 2935 3078 3036 3287 4748 5191
Mb2 1315 947.5 2965 2239 2949 2190 3152 2055 2153
Mb3 1727 1928 3228 2806 3061 2910 3271 4620 5141
κhtt -1.007 -0.987 -1.011 -0.98 -0.969 -0.977 -0.974 -0.998 -1.011
sβ−α -1 -1 -1 -1 -1 -1 -1 -1 -1

84



Bibliography

[1] G. Aad et al. [ATLAS Collaboration], Phys. Lett. B 716, 1 (2012) [arXiv:1207.7214

[hep-ex]].

[2] S. Chatrchyan et al. [CMS Collaboration], Phys. Lett. B 716, 30 (2012)

[arXiv:1207.7235 [hep-ex]].

[3] G. ’t Hooft, NATO Adv. Study Inst. Ser. B Phys. 59, 135 (1980).

[4] R. K. Kaul, arXiv:0803.0381 [hep-ph];

[5] G. Bhattacharyya, Rept. Prog. Phys. 74, 026201 (2011) [arXiv:0910.5095 [hep-ph]].

[6] R. N. Mohapatra and J. W. F. Valle, Phys. Rev. D 34, 1642 (1986).

doi:10.1103/PhysRevD.34.1642

[7] V. A. Kuzmin, V. A. Rubakov and M. E. Shaposhnikov, Phys. Lett. B 155, 36

(1985). doi:10.1016/0370-2693(85)91028-7

[8] The ATLAS collaboration, ATLAS-CONF-2015-081.

[9] CMS Collaboration [CMS Collaboration], CMS-PAS-EXO-15-004.

[10] The ATLAS collaboration [ATLAS Collaboration], ATLAS-CONF-2016-059.

[11] CMS Collaboration [CMS Collaboration], CMS-PAS-EXO-16-027.

[12] S. Gopalakrishna, T. S. Mukherjee and S. Sadhukhan, Phys. Rev. D 94, no. 1,

015034 (2016) doi:10.1103/PhysRevD.94.015034 [arXiv:1512.05731 [hep-ph]].

85



[13] T. Modak, S. Sadhukhan and R. Srivastava, Phys. Lett. B 756, 405 (2016)

arXiv:1601.00836 [hep-ph].

[14] H. Georgi and S. L. Glashow, Phys. Rev. Lett. 32, 438 (1974).

doi:10.1103/PhysRevLett.32.438

[15] H. Georgi, H. R. Quinn and S. Weinberg, Phys. Rev. Lett. 33, 451 (1974).

doi:10.1103/PhysRevLett.33.451

[16] A. J. Buras, J. R. Ellis, M. K. Gaillard and D. V. Nanopoulos, Nucl. Phys. B 135,

66 (1978). doi:10.1016/0550-3213(78)90214-6

[17] N. Arkani-Hamed, A. G. Cohen and H. Georgi, Phys. Lett. B 513, 232 (2001)

[hep-ph/0105239].

[18] M. Schmaltz and D. Tucker-Smith, Ann. Rev. Nucl. Part. Sci. 55, 229 (2005)

[hep-ph/0502182].

[19] M. Perelstein, Prog. Part. Nucl. Phys. 58, 247 (2007) [hep-ph/0512128].

[20] G. Senjanovic and R. N. Mohapatra, Phys. Rev. D 12, 1502 (1975).

doi:10.1103/PhysRevD.12.1502

[21] A. Maiezza, M. Nemevsek, F. Nesti and G. Senjanovic, Phys. Rev. D 82, 055022

(2010) doi:10.1103/PhysRevD.82.055022 [arXiv:1005.5160 [hep-ph]].

[22] N. G. Deshpande, J. F. Gunion, B. Kayser and F. I. Olness, Phys. Rev. D 44, 837

(1991). doi:10.1103/PhysRevD.44.837

[23] W. A. Ponce, Y. Giraldo and L. A. Sanchez, Phys. Rev. D 67, 075001 (2003)

doi:10.1103/PhysRevD.67.075001 [hep-ph/0210026].

[24] J. C. Montero, V. Pleitez and M. C. Rodriguez, Phys. Rev. D 65, 035006 (2002)

doi:10.1103/PhysRevD.65.035006 [hep-ph/0012178].

86



[25] A. G. Dias, C. A. de S.Pires and P. S. Rodrigues da Silva, Phys. Lett. B 628, 85

(2005) doi:10.1016/j.physletb.2005.09.028 [hep-ph/0508186].

[26] P. V. Dong, D. T. Huong, F. S. Queiroz and N. T. Thuy, Phys. Rev. D 90, no. 7,

075021 (2014) doi:10.1103/PhysRevD.90.075021 [arXiv:1405.2591 [hep-ph]].

[27] M. Carena, A. Daleo, B. A. Dobrescu and T. M. P. Tait, Phys. Rev. D 70, 093009

(2004) doi:10.1103/PhysRevD.70.093009 [hep-ph/0408098].

[28] S. Iso, N. Okada and Y. Orikasa, Phys. Rev. D 80, 115007 (2009)

doi:10.1103/PhysRevD.80.115007 [arXiv:0909.0128 [hep-ph]].

[29] T. Appelquist, B. A. Dobrescu and A. R. Hopper, Phys. Rev. D 68, 035012 (2003)

doi:10.1103/PhysRevD.68.035012 [hep-ph/0212073].

[30] L. Basso, A. Belyaev, S. Moretti and C. H. Shepherd-Themistocleous, Phys. Rev. D

80, 055030 (2009) doi:10.1103/PhysRevD.80.055030 [arXiv:0812.4313 [hep-ph]].

[31] I. Low, W. Skiba and D. Tucker-Smith, Phys. Rev. D 66, 072001 (2002) [hep-

ph/0207243].

[32] N. Arkani-Hamed, A. G. Cohen, E. Katz and A. E. Nelson, JHEP 0207, 034 (2002)

[hep-ph/0206021].

[33] H. C. Cheng and I. Low, JHEP 0408, 061 (2004) [hep-ph/0405243].

[34] I. Low, JHEP 0410, 067 (2004) [hep-ph/0409025].

[35] S. Chang, JHEP 0312, 057 (2003) doi:10.1088/1126-6708/2003/12/057 [hep-

ph/0306034].

[36] C. Csaki, J. Hubisz, G. D. Kribs, P. Meade and J. Terning, Phys. Rev. D 68, 035009

(2003) doi:10.1103/PhysRevD.68.035009 [hep-ph/0303236].

[37] D. E. Kaplan and M. Schmaltz, JHEP 0310, 039 (2003) [hep-ph/0302049].

87



[38] J. Reuter and M. Tonini, JHEP 1302, 077 (2013) doi:10.1007/JHEP02(2013)077

[arXiv:1212.5930 [hep-ph]];

[39] J. Reuter, M. Tonini and M. de Vries, JHEP 1402, 053 (2014)

doi:10.1007/JHEP02(2014)053 [arXiv:1310.2918 [hep-ph]];

[40] X. F. Han, L. Wang, J. M. Yang and J. Zhu, Phys. Rev. D 87, no. 5, 055004 (2013)

doi:10.1103/PhysRevD.87.055004 [arXiv:1301.0090];

[41] P. Kalyniak, T. Martin and K. Moats, Phys. Rev. D 91, no. 1, 013010 (2015)

doi:10.1103/PhysRevD.91.013010 [arXiv:1310.5130 [hep-ph]];

[42] C. Han, A. Kobakhidze, N. Liu, L. Wu and B. Yang, Nucl. Phys. B 890, 388 (2014)

doi:10.1016/j.nuclphysb.2014.11.021 [arXiv:1405.1498 [hep-ph]];

[43] J. Berger, J. Hubisz and M. Perelstein, JHEP 1207, 016 (2012)

doi:10.1007/JHEP07(2012)016 [arXiv:1205.0013 [hep-ph]];

[44] J. L. Hewett, F. J. Petriello and T. G. Rizzo, JHEP 0310, 062 (2003)

doi:10.1088/1126-6708/2003/10/062 [hep-ph/0211218].

[45] C. Csaki, J. Hubisz, G. D. Kribs, P. Meade and J. Terning, Phys. Rev. D 67, 115002

(2003) doi:10.1103/PhysRevD.67.115002 [hep-ph/0211124].

[46] T. Han, H. E. Logan, B. McElrath and L. T. Wang, Phys. Rev. D 67, 095004 (2003)

doi:10.1103/PhysRevD.67.095004 [hep-ph/0301040];

[47] T. Han, H. E. Logan and L. T. Wang, JHEP 0601, 099 (2006) doi:10.1088/1126-

6708/2006/01/099 [hep-ph/0506313];

[48] J. Hubisz and P. Meade, Phys. Rev. D 71, 035016 (2005)

doi:10.1103/PhysRevD.71.035016 [hep-ph/0411264];

[49] E. Ma and R. Srivastava, Mod. Phys. Lett. A 30, no. 26, 1530020 (2015)

doi:10.1142/S0217732315300207 [arXiv:1504.00111 [hep-ph]].

88



[50] E. Ma and R. Srivastava, Phys. Lett. B 741, 217 (2015) arXiv:1411.5042 [hep-ph].

[51] S. Kanemura, T. Nabeshima and H. Sugiyama, Phys. Rev. D 85, 033004 (2012)

doi:10.1103/PhysRevD.85.033004 [arXiv:1111.0599 [hep-ph]].

[52] S. Kanemura, T. Matsui and H. Sugiyama, Phys. Rev. D 90, 013001 (2014)

doi:10.1103/PhysRevD.90.013001 [arXiv:1405.1935 [hep-ph]].

[53] S. Khalil, Phys. Rev. D 82, 077702 (2010) doi:10.1103/PhysRevD.82.077702

[arXiv:1004.0013 [hep-ph]].

[54] S. Iso, N. Okada and Y. Orikasa, Phys. Lett. B 676, 81 (2009)

doi:10.1016/j.physletb.2009.04.046 [arXiv:0902.4050 [hep-ph]].

[55] L. Basso, arXiv:1106.4462 [hep-ph].

[56] K. Huitu, S. Khalil, H. Okada and S. K. Rai, Phys. Rev. Lett. 101, 181802 (2008)

doi:10.1103/PhysRevLett.101.181802 [arXiv:0803.2799 [hep-ph]].

[57] R. Contino, arXiv:1005.4269 [hep-ph].

[58] H. Davoudiasl, S. Gopalakrishna, E. Ponton and J. Santiago, New J. Phys. 12,

075011 (2010) [arXiv:0908.1968 [hep-ph]].

[59] H. C. Cheng and I. Low, JHEP 0309, 051 (2003) [hep-ph/0308199].

[60] N. Arkani-Hamed, A. G. Cohen, E. Katz, A. E. Nelson, T. Gregoire and J. G. Wacker,

JHEP 0208, 021 (2002) [hep-ph/0206020].

[61] S. Gopalakrishna, T. S. Mukherjee and S. Sadhukhan, Phys. Rev. D 93, no. 5,

055004 (2016) doi:10.1103/PhysRevD.93.055004 [arXiv:1504.01074 [hep-ph]].

[62] S. L. Glashow and S. Weinberg, Phys. Rev. D 15, 1958 (1977).

[63] G. C. Branco, P. M. Ferreira, L. Lavoura, M. N. Rebelo, M. Sher and J. P. Silva,

Phys. Rept. 516, 1 (2012) [arXiv:1106.0034 [hep-ph]].

89



[64] B. Dumont, J. F. Gunion, Y. Jiang and S. Kraml, arXiv:1409.4088 [hep-ph].

[65] B. Dumont, J. F. Gunion, Y. Jiang and S. Kraml, Phys. Rev. D 90, 035021 (2014)

[arXiv:1405.3584 [hep-ph]].

[66] S. Chatrchyan et al. [CMS Collaboration], Eur. Phys. J. C 73, 2469 (2013)

doi:10.1140/epjc/s10052-013-2469-8 [arXiv:1304.0213 [hep-ex]].

[67] A. Djouadi, Phys. Rept. 459, 1 (2008) doi:10.1016/j.physrep.2007.10.005 [hep-

ph/0503173].

[68] B. Dumont, J. F. Gunion, Y. Jiang and S. Kraml, Phys. Rev. D 90, 035021

(2014) doi:10.1103/PhysRevD.90.035021 [arXiv:1405.3584 [hep-ph]]; B. Dumont,

J. F. Gunion, Y. Jiang and S. Kraml, arXiv:1409.4088 [hep-ph]; A. Broggio,

E. J. Chun, M. Passera, K. M. Patel and S. K. Vempati, JHEP 1411, 058 (2014)

doi:10.1007/JHEP11(2014)058 [arXiv:1409.3199 [hep-ph]].

[69] A. Djouadi and A. Lenz, Phys. Lett. B 715, 310 (2012)

doi:10.1016/j.physletb.2012.07.060 [arXiv:1204.1252 [hep-ph]].

[70] S. Dawson and E. Furlan, Phys. Rev. D 86, 015021 (2012) [arXiv:1205.4733 [hep-ph]].

[71] N. Vignaroli, JHEP 1207, 158 (2012) doi:10.1007/JHEP07(2012)158

[arXiv:1204.0468 [hep-ph]].

[72] A. De Simone, O. Matsedonskyi, R. Rattazzi and A. Wulzer, JHEP 1304, 004

(2013) doi:10.1007/JHEP04(2013)004 [arXiv:1211.5663 [hep-ph]].

[73] P. W. Graham, A. Ismail, S. Rajendran and P. Saraswat, Phys. Rev. D 81, 055016

(2010) doi:10.1103/PhysRevD.81.055016 [arXiv:0910.3020 [hep-ph]].

[74] S. P. Martin, Phys. Rev. D 82, 055019 (2010) doi:10.1103/PhysRevD.82.055019

[arXiv:1006.4186 [hep-ph]].

90



[75] S. Gopalakrishna, T. Mandal, S. Mitra and R. Tibrewala, Phys. Rev. D 84, 055001

(2011) [arXiv:1107.4306 [hep-ph]].

[76] S. Gopalakrishna, T. Mandal, S. Mitra and G. Moreau, JHEP 1408, 079 (2014)

[arXiv:1306.2656 [hep-ph]].

[77] S. A. R. Ellis, R. M. Godbole, S. Gopalakrishna and J. D. Wells, JHEP 1409, 130

(2014) [arXiv:1404.4398 [hep-ph]].

[78] K. Agashe, H. Davoudiasl, S. Gopalakrishna, T. Han, G. Y. Huang, G. Perez, Z. G. Si

and A. Soni, Phys. Rev. D 76, 115015 (2007) doi:10.1103/PhysRevD.76.115015

[arXiv:0709.0007 [hep-ph]];

[79] K. Agashe, S. Gopalakrishna, T. Han, G. Y. Huang and A. Soni, Phys. Rev. D 80,

075007 (2009) doi:10.1103/PhysRevD.80.075007 [arXiv:0810.1497 [hep-ph]];

[80] S. Gopalakrishna, T. Han, I. Lewis, Z. g. Si and Y. F. Zhou, Phys. Rev. D 82,

115020 (2010) doi:10.1103/PhysRevD.82.115020 [arXiv:1008.3508 [hep-ph]].

[81] S. Alekhin, A. Djouadi and S. Moch, Phys. Lett. B 716, 214 (2012) [arXiv:1207.0980

[hep-ph]].

[82] G. Aad et al. [ATLAS and CMS Collaborations], Phys. Rev. Lett. 114, 191803

(2015) [arXiv:1503.07589 [hep-ex]].

[83] The ATLAS and CMS Collaborations, ATLAS-CONF-2015-044.

[84] The ATLAS collaboration [ATLAS Collaboration], ATLAS-CONF-2013-056.

[85] The ATLAS collaboration [ATLAS Collaboration], ATLAS-CONF-2013-060.

[86] J. F. Gunion and H. E. Haber, Phys. Rev. D 67, 075019 (2003) [hep-ph/0207010].

[87] G. Bhattacharyya and D. Das, arXiv:1507.06424 [hep-ph].

91



[88] T. Gregoire, D. Tucker-Smith and J. G. Wacker, Phys. Rev. D 69, 115008 (2004)

[hep-ph/0305275].

[89] Z. Han and W. Skiba, Phys. Rev. D 72, 035005 (2005) [hep-ph/0506206].

[90] A. Crivellin, A. Kokulu and C. Greub, Phys. Rev. D 87, no. 9, 094031 (2013)

doi:10.1103/PhysRevD.87.094031 [arXiv:1303.5877 [hep-ph]].

[91] J. F. Gunion, H. E. Haber, G. L. Kane and S. Dawson, Front. Phys. 80, 1 (2000).

[92] G. Aad et al. [ATLAS Collaboration], JHEP 1503, 088 (2015)

doi:10.1007/JHEP03(2015)088 [arXiv:1412.6663 [hep-ex]].

[93] V. Khachatryan et al. [CMS Collaboration], JHEP 1511, 018 (2015)

doi:10.1007/JHEP11(2015)018 [arXiv:1508.07774 [hep-ex]]; G. Aad et al. [ATLAS

Collaboration], arXiv:1512.03704 [hep-ex].

[94] L. Basso, A. Lipniacka, F. Mahmoudi, S. Moretti, P. Osland, G. M. Pruna

and M. Purmohammadi, JHEP 1211, 011 (2012) doi:10.1007/JHEP11(2012)011

[arXiv:1205.6569 [hep-ph]].

[95] J. Hernandez-Sanchez, S. Moretti, R. Noriega-Papaqui and A. Rosado, JHEP 1307,

044 (2013) doi:10.1007/JHEP07(2013)044 [arXiv:1212.6818];

[96] R. Barbieri and G. F. Giudice, Nucl. Phys. B 306, 63 (1988).

[97] J. C. Montero and V. Pleitez, Phys. Lett. B 675, 64 (2009)

doi:10.1016/j.physletb.2009.03.065 [arXiv:0706.0473 [hep-ph]].

[98] A. Davidson, Phys. Rev. D 20, 776 (1979). doi:10.1103/PhysRevD.20.776

[99] R. E. Marshak and R. N. Mohapatra, Phys. Lett. B 91, 222 (1980). doi:10.1016/0370-

2693(80)90436-0

[100] M. Auger et al. [EXO-200 Collaboration], Phys. Rev. Lett. 109, 032505 (2012)

doi:10.1103/PhysRevLett.109.032505 [arXiv:1205.5608 [hep-ex]].

92



[101] M. Agostini et al. [GERDA Collaboration], Phys. Rev. Lett. 111, no. 12, 122503

(2013) doi:10.1103/PhysRevLett.111.122503 [arXiv:1307.4720 [nucl-ex]].

[102] A. Gando et al. [KamLAND-Zen Collaboration], Phys. Rev. Lett. 110, no. 6, 062502

(2013) doi:10.1103/PhysRevLett.110.062502 [arXiv:1211.3863 [hep-ex]].

[103] A. C. B. Machado and V. Pleitez, Phys. Lett. B 698, 128 (2011)

doi:10.1016/j.physletb.2011.02.051 [arXiv:1008.4572 [hep-ph]].

[104] A. C. B. Machado and V. Pleitez, J. Phys. G 40, 035002 (2013) doi:10.1088/0954-

3899/40/3/035002 [arXiv:1105.6064 [hep-ph]].

[105] P. Roy and O. U. Shanker, Phys. Rev. Lett. 52, 713 (1984) Erratum: [Phys. Rev.

Lett. 52, 2190 (1984)] doi:10.1103/PhysRevLett.52.713.

[106] E. Ma, N. Pollard, R. Srivastava and M. Zakeri, Phys. Lett. B 750, 135 (2015)

[arXiv:1507.03943 [hep-ph]].

[107] D. S. Akerib et al. [LUX Collaboration], Phys. Rev. Lett. 112, 091303 (2014)

[arXiv:1310.8214 [astro-ph.CO]].

[108] G. Aad et al. [ATLAS Collaboration], arXiv:1507.04548 [hep-ex].

[109] R. Franceschini et al., arXiv:1512.04933 [hep-ph].

[110] G. Aad et al. [ATLAS Collaboration], Phys. Lett. B 738, 428 (2014) [arXiv:1407.8150

[hep-ex]]; G. Aad et al. [ATLAS Collaboration], arXiv:1507.05930 [hep-ex]; G. Aad et

al. [ATLAS Collaboration], arXiv:1509.00389 [hep-ex]; V. Khachatryan et al. [CMS

Collaboration], Eur. Phys. J. C 75, no. 5, 235 (2015) [arXiv:1408.3583 [hep-ex]];

G. Aad et al. [ATLAS Collaboration], Phys. Rev. D 91, no. 5, 052007 (2015)

[arXiv:1407.1376 [hep-ex]];

CMS Collaboration [CMS Collaboration], CMS-PAS-EXO-14-005.

[111] ATLAS and CMS physics results from Run 2, talks by Marumi Kado and Jim Olsen,

CERN, 15 December 2015

93



[112] ATLAS Collaboration, Search for resonances decaying to photon pairs in 3.2 fb−1 of

pp collisions at
√
s = 13 TeV with the ATLAS detector, ATLAS-CONF-2015-081

[113] CMS Collaboration, Search for new physics in high mass diphoton events in proton-

proton collisions at 13 TeV, CMS-PAS-EXO-15-004

[114] E. Ma, arXiv:1512.09159 [hep-ph]; E. Ma, arXiv:1601.01400 [hep-ph]; S. Gopalakr-

ishna, T. S. Mukherjee and S. Sadhukhan, arXiv:1504.01074 [hep-ph]; S. Gopalakr-

ishna, T. S. Mukherjee and S. Sadhukhan, arXiv:1512.05731 [hep-ph]; Y. Mambrini,

G. Arcadi and A. Djouadi, arXiv:1512.04913 [hep-ph]; O. Antipin, M. Mojaza and

F. Sannino, arXiv:1512.06708 [hep-ph]; S. K. Kang and J. Song, arXiv:1512.08963

[hep-ph]; K. Harigaya and Y. Nomura, arXiv:1512.04850 [hep-ph]; J. Ellis, S. A. R. El-

lis, J. Quevillon, V. Sanz and T. You, arXiv:1512.05327 [hep-ph]; Y. Jiang, Y. Y. Li

and T. Liu, arXiv:1512.09127 [hep-ph]; Y. J. Zhang, B. B. Zhou and J. J. Sun,

arXiv:1602.05539 [hep-ph]; U. K. Dey, S. Mohanty and G. Tomar, arXiv:1512.07212

[hep-ph]; A. Angelescu, A. Djouadi and G. Moreau, arXiv:1512.04921 [hep-ph];

B. Dutta, Y. Gao, T. Ghosh, I. Gogoladze and T. Li, arXiv:1512.05439 [hep-ph];

S. Ghosh, A. Kundu and S. Ray, arXiv:1512.05786 [hep-ph]; M. Bauer and M. Neu-

bert, arXiv:1512.06828 [hep-ph]; D. Bardhan, D. Bhatia, A. Chakraborty, U. Maitra,

S. Raychaudhuri and T. Samui, arXiv:1512.06674 [hep-ph]; S. Chakraborty,

A. Chakraborty and S. Raychaudhuri, arXiv:1512.07527 [hep-ph]; S. Kanemura,

N. Machida, S. Odori and T. Shindou, arXiv:1512.09053 [hep-ph]; K. Das and

S. K. Rai, arXiv:1512.07789 [hep-ph]; A. E. C. Hernandez and I. Nisandzic,

arXiv:1512.07165 [hep-ph]; R. Benbrik, C. H. Chen and T. Nomura, arXiv:1512.06028

[hep-ph]; A. Falkowski, O. Slone and T. Volansky, arXiv:1512.05777 [hep-ph]; H. Han,

S. Wang and S. Zheng, arXiv:1512.07992 [hep-ph]; A. Ahmed, B. M. Dillon, B. Grzad-

kowski, J. F. Gunion and Y. Jiang, arXiv:1512.05771 [hep-ph]; W. C. Huang,

Y. L. S. Tsai and T. C. Yuan, arXiv:1512.07268 [hep-ph]; A. E. C. HernÃąndez,

arXiv:1512.09092 [hep-ph]; Y. Nakai, R. Sato and K. Tobioka, arXiv:1512.04924

94



[hep-ph]; X. F. Han, L. Wang, L. Wu, J. M. Yang and M. Zhang, arXiv:1601.00534

[hep-ph]; F. Wang, W. Wang, L. Wu, J. M. Yang and M. Zhang, arXiv:1512.08434

[hep-ph]; P. S. B. Dev, R. N. Mohapatra and Y. Zhang, arXiv:1512.08507 [hep-ph];

[115] L. D. Landau, Dokl. Akad. Nauk Ser. Fiz. 60, 207 (1948).

[116] C. -N. Yang, Phys. Rev. 77, 242 (1950).

[117] J. Alwall et al., JHEP 1407, 079 (2014) [arXiv:1405.0301 [hep-ph]].

[118] R. D. Ball et al. [NNPDF Collaboration], Nucl. Phys. B 877, 290 (2013)

[arXiv:1308.0598 [hep-ph]].

[119] J. M. Cline and Z. Liu, arXiv:1512.06827 [hep-ph].

[120] G. Aad et al. [ATLAS Collaboration], Phys. Rev. D 90, no. 5, 052005 (2014)

[arXiv:1405.4123 [hep-ex]]; G. Aad et al. [ATLAS Collaboration], JHEP 1411,

056 (2014) [arXiv:1409.6064 [hep-ex]]; S. Chatrchyan et al. [CMS Collaboration],

[arXiv:1309.2030 [hep-ex]];

[121] The ATLAS collaboration [ATLAS Collaboration], ATLAS-CONF-2014-005.

95


	Introduction
	Little-Higgs Models
	Little-Higgs Models
	General 2HDM & VLFs 
	The LSS Model

	Phenomenology of the LSS model
	Effective 2HDM Analysis
	Constraints on the LSS model
	Heavy BSM scalar Phenomenology
	BSM Scalar Couplings
	Production and Decay of Heavy Scalars


	B-L Model
	Gauged B - L Model: Neutrino Mass and Dark Matter
	Neutrino Mass
	Dark Matter

	Particle Content of the Gauged B - L Model
	Scalar and Gauge Sector of B-L Model

	Heavy Scalar in the Gauged B-L Model
	Higgs Boson and BSM Scalars
	Phenomenology of the Heavy Scalar H1
	750 GeV Diphoton Excess

	Conclusion and Summary
	BSM Scalar in Model Independent Framework
	Allowed Points

