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Synopsis

For almost fifty years, the Standard Model (SM) has been providing the modern descrip-
tion of particle physics, consistently. While the symmetry group SU(3) xS U2)x U(1) is
the backbone of the finalized version of the SM, Glashow achieved the first step to unify
the electromagnetic and weak interactions. In 1967, Weinberg and Salam incorporated
the Higgs mechanism into Glashow electroweak theory, successfully explaining the ori-
gin of mass in the SM. After the discovery of neutral weak currents by the Gargamelle
bubble chamber in 1973, this theory was widely accepted. Later, in 1983, the discovery
of the vector bosons (W and Z) by UA1 and UA2 collaborations in CERN, established the
electroweak theory thoroughly. In the meantime, the theory of strong interaction, Quan-
tum Chromodynamics (QCD), started to develop with the discovery of color quantum
number for quarks and the phenomena of scaling observed in deep inelastic scattering
experiments. Finally, it was established firmly when the observed logarithmic scaling vi-
olations were found to be in accordance with the predictions of QCD. The only missing
particle was the Higgs boson, till July 2012, when ATLAS and CMS in CERN announced

its existence. With this monumental breakthrough, the Standard Model is now in its full

glory.

Both experimentalists and theorists played important role to achieve this success. While
from experimental side, it took tremendous effort to analyze the huge amount of data,
on the other hand, precision level achieved by theorists to match that accuracy was also

very significant. Specially production channels in hadron colliders are contaminated by



initial and final states QCD radiations, which certainly call for inclusion of higher or-
ders in QCD. We noted the necessity of next-to-leading order (NLO) corrections for the
first time in case of W and Z discovery. Very soon, the need for higher order contribu-
tions became clear and it has now become a natural routine to consider, at least, NLO
corrected results for physics studies. However, the large value of the NLO corrections
to some of the important processes like Drell-Yan (DY) production or the Higgs boson
production in gluon fusion, raise doubt about the reliability of perturbative QCD (pQCD).
Also, the formulation of pQCD introduces unphysical mass scales, like renormalization
and factorization scales, to deal with the divergences, arising from loop and phase-space
integrals. Even though physical quantities are independent of these scales, they appear
as logarithmic functions in each order in the perturbative series. Inclusion of higher or-
der terms reduces this dependence. These two key factors motivated to go beyond and
compute next-to-next-to-leading order (NNLO) corrections for the before mentioned and

many other processes.

In this thesis, we study the above mentioned processes in perturbative QCD taking into

account higher order radiative corrections.

For the DY production, NNLO corrections are small, confirming the reliability of pertur-
bation theory, but the scale dependence still was not convincingly small, hinting the need
to go beyond. The first step beyond NNLO is to compute threshold approximated cross
section at N°LO, as the computation of exact N*LO is very involved and yet to be done. In
the threshold limit, the finite partonic cross section factorizes into the overall renormaliza-
tion constant, the form factor, the splitting kernels and a soft distribution function. Each
factorized part, though, contains singularities, in the end they sum up to produce a finite
result. Moreover, the structure of the singularities for each part is universal. The fact that
the soft distribution function depend only on the initial partons, makes it maximally non-
abelian. We exploit the recently available threshold approximated N*LO cross section for

the Higgs boson production in gluon fusion and use this universality of soft distribution



function to obtain the corresponding one for the DY production. This enable us to obtain
the threshold N*LO QCD correction to DY production. We study its numerical impact

and find the contribution is small, hence validating the reliability of pQCD.

While we are achieving extraordinary precision to establish the SM, it fails to address
issues like providing a consistent quantum field theoretic description of gravity, the origin
of neutrino mass, the existence of dark matter and dark energy, the hierarchy problem, to
name a few. These shortcomings build a way for physics beyond the SM (BSM), followed
by a plethora of ideas. One of such ideas led to TeV scale extra-dimensional models,
introduced mainly to address the hierarchy problem. In these models, gravity lives in
d = 4 + n dimensions where the SM is constrained to a 3-dimensional brane and 7 is the
extra spatial dimension. The projection of d dimensional graviton to 3 spatial dimensions
creates infinite number of Kaluza-Klein (KK) modes, specially containing a massive spin
2 particle for each mode. Considering ADD and RS models, two particular variants of this
scenario, this spin 2 particle couples to the SM particles universally through the energy
momentum tensor of the SM. While experimental bounds have already put constraints
on these models, the recent excess on the di-photon production over the SM predictions
revives the chances of its existence. Hence, search for a generic spin 2 particle at the LHC
becomes very much necessary and DY process can play an important role for this search.
To match the accuracy of the SM predictions, processes involving spin 2 particle also need
to be computed to the same level of accuracy. One of the important ingredients to achieve
this, is the quark and gluon form factors of the energy momentum tensor of the SM. In the
second work in this thesis, we present the details of the computations performed to achieve
these form factors. We consider diagrammatic approach to obtain the matrix elements,
i.e. computing the relevant Feynman diagrams. At third order alone, there are 3374 and
1072 number of Feynman diagrams for gluon and quark form factors, respectively. An
in house code using FORM is used to perform Dirac and color algebra and necessary
simplifications. The arbitrary distribution of loop momenta in the propagators hides a

fact that with proper shifting of the loop momenta, all integrals belong to a few set of



propagators, namely three sets for this case. These shifted integrals now are reduced to a
few number of integrals, the so-called master integrals, by using the integration-by-parts
(IBP) and Lorentz invariant (LI) identities. Finally, the available master integrals (MI)
enable us to obtain the three-loop form factors. While the conserved energy momentum
tensor of QCD makes the form factors UV finite, there exists singularities of infrared kind
in the form factors. We have studied structure of these infrared singularities in these form
factors up to three-loop level using Sudakov integro-differential equation and found that
the anomalous dimensions originating from soft and collinear regions of the loop integrals
coincide with those of the electro-weak vector boson and Higgs form factors confirming
the universality of the infrared singularities in QCD amplitudes. These results will be very
useful in improving the perturbative predictions of spin-2 resonance production beyond
NNLO level at the LHC where searches for such particles are already underway with the

upgraded energy and luminosity.

With the availability of the quark and gluon form factors for the energy momentum tensor,
the next step is to obtain the threshold approximated cross section. The universality of
the soft distribution function, as these depend only on the initial state partons, enable us
to obtain the same by exploiting that of the Higgs boson production in gluon fusion. We
present the threshold approximated partonic cross section at N°LO level for quark and

gluon initiated processes, respectively, for the first time in this thesis.

Among the several BSM models, supersymmetric theories provide an elegant solution to
various phenomena that SM can not explain satisfactorily. In one of its simplest realiza-
tions, the minimal supersymmetric extension of the SM (MSSM), the Higgs sector con-
tains two CP-even (scalar), one CP-odd (pseudo-scalar) and two charged Higgs bosons.
More generally, the existence of additional scalar and pseudo-scalar bosons which couple
to fermions is a prediction of many models which include two Higgs doublets. In the limit
of infinite fermion mass, there exists an effective theory that describes the interaction of

pseudo-scalar Higgs boson with the gluons. The recently discovered Standard-Model-like



Higgs boson at the LHC prompted the study of the properties of the discovered boson to
identify either with lightest scalar or pseudo- scalar Higgs bosons of extended models,
indicating precise predictions for their production cross sections. In the fourth work, we
present the first results on the production of pseudo-scalar Higgs boson through gluon fu-
sion at the LHC to N*LO in QCD taking into account only soft gluon effects. One of the
crucial ingredients is the three-loop form factors of the effective composite operators that
result when top quarks are integrated out and they were computed very recently by some
of us. In this work, we obtain the form factors required for the production of a pseudo-
scalar through gluon fusion, using the ones for the composite operators. Again, the soft
distribution functions, being dependent only on the initial state partons, are same with
that of the scalar Higgs boson production in gluon fusion. Hence, we obtain the threshold
approximated cross section at N°LO level. We present a detailed phenomenological study
of the pseudo-scalar production at the LHC for various center of mass energies as a func-
tion of its mass. While the third order corrections are small, they play an important role in
reducing the theoretical uncertainty resulting from renormalization scale. In addition, we
have made a detailed comparison against scalar Higgs boson production and found their
corrections are very close to each other confirming the universal behavior of the QCD
effects even though the operators responsible for their interactions with gluons are very

different.

The Higgs boson production channel has indeed comparably large NNLO corrections and
going beyond NNLO is very important. It took numerous efforts to finally achieve next-
to-next-to-next-to leading order (N*LO) corrections for the production of the Higgs boson
in gluon fusion. The level of precision level that has been achieved in the gluon fusion
channel and the need to study the Higgs boson coupling to vector bosons and fermions
motivate us to improve the predictions for other production mechanisms for the Higgs
boson, namely bottom quark annihilation, vector boson fusion, etc. On the other hand, to
study the quantum nature of the recently discovered boson in detail, kinematic differential

distributions play a major role. Hence, besides inclusive process, production along with a



jetis very important. For the gluon fusion channel, recent computation reached the preci-
sion at NNLO level. While gluon initiated partonic sub-processes are the dominant one,
it is important to include the sub-dominant ones coming from other channels, e.g. bot-
tom quark annihilation and the first step in this direction is to obtain the two-loop QCD
amplitudes. Also, these amplitudes contribute to N*LO after performing phase-space in-
tegration for one of the partons. With this motivation, in the next work, we obtain the
two-loop amplitudes of the Higgs boson decaying to pair of bottom anti-bottom quarks
along with a gluon, where the Higgs boson couples to bottom quarks through Yukawa
coupling. We consider VES scheme throughout and the bottom quark is massless except
for the Yukawa coupling. We use projection operators to obtain the coeflicients for each
tensorial structure appearing in this process. We consider the diagrammatic approach and
encounter large number of Feynman diagrams with rich Lorentz and gauge structures.
Symbolically we simplify the Lorentz, Dirac and color algebra. In addition, the loop
integrals become increasingly complicated due to their multiple kinematic dependence.
The use of state-of-the-art techniques like IBP and LI identities reduce the large number
of loop integrals to few MI’s, already available in literature. The Yukawa coupling here
needs UV renormalization and the UV finite results contain the universal infrared poles,
indicating the correctness of the computation. The results are presented in terms of Har-
monic Poly-Logarithms (HPLs). To obtain the relevant amplitude for the production of
the Higgs boson along with a jet, we do proper crossing and hence analytic continuation

of HPL.s.

To summarize, in this thesis, we have systematically computed higher order QCD cor-
rections to some very important processes at the LHC. We have achieved this by using
the state-of-the-art modern techniques as well as exploiting the rich universal structure of
QCD amplitudes at higher orders in perturbation theory. Our results are very important

for precision studies at the LHC.
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Introduction

The four fundamental forces in nature: the gravitational, electromagnetic, weak and
strong forces, describe all the interactions between matters, known till today. There have
been continuous efforts to get a better understanding of all these forces in a single frame-
work. While the classical descriptions of these forces were clearly insufficient, the success
of quantum physics and special theory of relativity led to the modern description of each
fundamental force in terms of quantum fields. Such a description is the quantum field
theory which uses, in addition, the local symmetry. The excitations of the underlying
fields define the matter particles. To establish the invariance under local symmetry, it is
necessary to introduce gauge fields which, in quantum field theory, represent particles that
describe the interaction between the matter particles. The coupling constant defines the

strength of the interaction.

The Standard Model (SM) of particle physics collectively describes all the forces, except
gravity. Combining electromagnetic and weak interactions with the strong interaction and
incorporating the Higgs mechanism, the SM forms a modern theoretical description of el-
ementary particle physics. Till today, it successfully describes most of the experimental
phenomena of elementary particles. While the modern version of the SM is based on the
local symmetry group S U(3)xS U(2)xU(1), the first step was to unify the electromagnetic
and weak interaction by Glashow [1]. In 1967, Weinberg [2] and Salam [3] incorporated
the Higgs mechanism [4—8] into Glashow’s electro-weak theory, successfully explaining

the origin of mass of the SM particles, in a gauge invariant way. Finally, the sponta-
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neously broken S U(2) x U(1) gauge theory describes the electro-weak interaction and the

unbroken S U(3) color gauge theory describes the strong interaction.

The SM contains vector bosons that are responsible for interactions:

Force Electromagnetic Weak Strong

Gauge boson vy W=,Z g

and the matter particles consisting of three generations of leptons and quarks:

Genl GenlIl Genlll

u,d c, S b,t

To each fermion, one associate an anti-fermion by charge conjugation. With these particle

contents, the SM becomes the holy grail of particle physics.

The SM is not only mathematically profound in the sense that it is renormalizable but
also its predictions are consistent with the experimental observations, putting it in firm
footing. The first of them was in 1973, the discovery of neutral current predicted by
electro-weak theory in the Gargamelle bubble chamber [9]. One had to wait ten more
years till 1983 to finally find the vector bosons (W and Z) by UA1 [10] (led by Carlo
Rubbia) and UA2 [11] (led by Pierre Darrilat) collaborations in CERN. These discoveries
established the electro-weak sector of the SM thoroughly. On the other hand, crucial event
for strong interaction was the discovery of the J/i resonance, a charmed particle (which
contains a charm quark (c)) by a team at the SLAC [12] and one at the BNL [13] in 1974.
In 1977, Fermilab E288 experiment [ 14, 15] produced bottomonium and thus discovering
bottom quark. Later, in 1995, the discovery of top quark (¢) by CDF [16] and D@ [17],
Tevatron marked another milestone in establishing the SM. Finally, the long-waited and

sought after discovery happened in 2012, when ATLAS [18] and CMS [19] in CERN



13

announced the existence of the Higgs boson. With this monumental breakthrough, the

SM is now in its full glory.

Behind this success, there lies tremendous effort from experimentalists to achieve precise
results from a huge amount of data, as well as from theorists to match that precision by
computing contributions from all possible channels and to sufficient orders in perturba-
tion series. It was clear that when experiments became more accurate, there was a need
for more precise theoretical predictions and it implied to consider higher order effects. It
was first noted in the UA1 and UA2 collaborations when the production rates for the W
and Z [20,21] bosons were in good agreement with the first higher order results in the
literature [22-26]. Along with the first order Quantum Chromodynamics (QCD) correc-
tions for the Drell-Yan (DY) process, the same was obtained for Deep Inelastic Scattering
(DIS) [27,28]. Later, the direct searches of the Higgs boson at Large Electron-Positron
Collider (LEP) [29] at CERN and Tevatron [30] were crucial in narrowing the search re-
gion. Specially direct searches at the LEP excluded the Higgs boson mass below 114.4
GeV and the indirect constraints from electroweak precision measurements [31] bound

Higgs boson mass to be less than 152 GeV at 95% confidence level (CL).

With the advent of accelerators in multi-GeV energy range, there is dire need of more
precise results from theoretical computations, specially for the hadron colliders, like the
Large Hadron Collider (LHC) at CERN. The initial states in such colliders strongly in-
teract and due to the asymptotic freedom of QCD, the QCD corrections play a vital
role. While the next-to-next-to leading order (NNLO) corrections to Drell-Yan pro-
cess [32-35] was extensively necessary to fine-tune the extraction of parton distribution
function (PDF), the discovery of the Higgs boson was made possible due to such state-of-

the-art computations [36—44].

However, in spite of its significant success, there remain a few questions unanswered.
Firstly, a proper quantum field theoretic description of gravitational force still remains

missing. The existence of the intermediate boson for gravity, namely graviton, is still
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a subject of experimental search. There are ample evidences for the existence of dark
matter and dark energy, while it can not be explained within the framework of the SM.
The SM particle content describes only ~ 5% of this universe, while the rest are still in
dark. Another shortcoming of the SM is the mass of neutrinos. Neutrinos are massless
in the model, whereas experimental observation like neutrino oscillation requires them
to be massive. All these unexplained scenarios clearly indicates new physics beyond the

Standard Model (BSM).

To be able to observe such hints of new physics beyond the SM, it is crucial to have
very accurate theoretical predictions of what is expected in the SM, in order to clearly
distinguish deviations from the expectations with the maximal significance. The context
of this thesis is to acquire results, as precise as possible, for two most important inclusive

processes at the LHC, namely the Drell-Yan production and the Higgs boson production.

The physics of massive lepton pair production in hadronic collisions is an interesting sub-
ject for last fifty years. In 1970, Christenson et al. [45,46] first observed this production in
proton nucleus collisions. Many experiments for this were then followed with increasing
energies and more precision. The motivation behind this was to find new vector mesons at
the beginning and later, it became an important channel to study the structure of hadrons.
Specially, the determination of PDFs are done by a fit on large number of cross section
data points for channels like DIS or DY. The large size of first order corrections [22-26]
raised the doubt about reliability of perturbative QCD (pQCD) and inherently indicating
the need for the second order corrections. While the NNLO corrections [32—-35] turned
out to be small, to check the consistency in the perturbative series, higher order correc-
tions are of much need. Moreover, the factorization of long distance physics from the
short distance one via mass factorization and ultraviolet (UV) renormalization introduce
two unphysical scales, namely factorization scale and renormalization scale, in the theory.
While each order in perturbation series is contaminated with the logarithmic contributions

from these scales, they get canceled as we include higher orders and eventually their de-
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pendence go away if the entire series is summed. These important factors motivated us to

compute Drell-Yan production beyond NNLO.

Physics beyond the SM is dominated by numerous interesting ideas through various mod-
els in order to explain the unanswered questions of the SM. One of them was the extra-
dimensional models, introduced to remove the hierarchy problem, the large difference
between the electro-weak scale and Planck scale which can not be explained within the
SM. In these models, the SM is confined in a 3-spatial dimensional brane, while gravity
lives in the bulk. The d = 4 + n dimensional graviton, when projected on the 4 space-time
dimension, creates a tower of massive spin-2 modes (Arkani-Hamed Dimopoulos Dvali
(ADD) model) or large number of massive spin-2 resonances (Randall Sundrum (RS)
model). These spin-2 resonances can decay into two leptons and thus mimic the Drell-
Yan process. On the other hand, models containing multiple Higgs boson, like Minimal
Supersymmetric extension of the SM (MSSM), can provide a Higgs with spin-2. Hence
a search for a generic spin-2 in the LHC context is very much necessary. This moti-
vated to compute the first order QCD corrections for spin-2 mediated Drell-Yan like pro-
cesses [47-51] and the results have been extensively used to constrain the corresponding
model parameters. The K-factors are really large and so the scale dependence, doubting
the reliability of perturbative series and hence indicating the need for more precision. Re-
cently, in [52], the computation for two-loop quark and gluon form factors was performed,
followed by the threshold approximated result in [53] for the production of a generic spin-
2 at the LHC. We have obtained the full NNLO contribution very recently in [54]. To go
beyond NNLO, we need to compute three-loop quark and gluon form factors. Also, such
computations provide a theoretical laboratory to study the universal structure of the UV

and infrared (IR) poles in QCD amplitudes.

Other strong candidates of BSM physics are the supersymmetric theories, providing ele-
gant solutions to some of the unexplained phenomena as mentioned earlier. In one of its

simplest realizations, the MSSM, the Higgs sector contains multiple Higgs: two CP-even
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(scalar), one CP-odd (pseudo-scalar) and two charged Higgs bosons. More generally,
the existence of additional bosons which couple to fermions of the theory, is a predic-
tion of many BSM models e.g. two-Higgs doublet model. An experimental detection
of such additional bosons require extensive search at the LHC as well as precise theo-
retical predictions. We consider one such pseudo-scalar Higgs boson and an effective
theory in the limit of infinite fermion mass, which describes the interaction of pseudo-
scalar Higgs boson with the gluons. The recent discovery of Standard-Model-like Higgs
boson at the LHC prompted the study of the properties of the discovered boson to identify
either with lightest scalar or pseudo-scalar Higgs bosons of extended models, indicating
the need for precise predictions of their production cross sections. For this production,
pQCD predictions are already available at NNLO level [44,55,56]. While, for the scalar
Higgs boson production, the predictions accuracy have reached through NNLO [42-44]
to next-to-next-to-next-to leading order (N*LO) [57]. This demands similar precision for
the pseudo-scalar Higgs boson production and it becomes the key motivation to obtain

beyond NNLO cross sections for this production.

As the search of Higgs boson is concerned, the higher order corrections played an impor-
tant role. The first order corrections [36—-39] were large and even the second order correc-
tions [40—44] were not sufficient to stabilize the perturbation, as compare to the Drell-Yan
process. Going beyond NNLO was must and a plethora of works appeared [58—70] to
finally achieve the third order corrections [57] for the Higgs boson production in the ef-
fective theory, where infinite top mass limit gives rise to a gluon-gluon-Higgs effective in-
teraction. While the amount of accuracy obtained through this computation, is incredible,
it certainly indicates also to consider the contributions from the sub-dominant channels.
One of them is to consider Higgs production in bottom quark annihilation process where
bottom quark is treated as massless except in the Yukawa coupling. Second order QCD
corrected result [71] is available for this channel, and though the contribution is not large
compared to the gluon fusion channel, it certainly competes with its third order correction.

On the other hand, studying the production of Higgs boson with an exclusive jet provides
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a detailed quantum nature of the Higgs boson. And perturbative corrections have the key
factor. The next-to leading order (NLO) [72—74] and NNLO [75-79] corrections for the
production of a Higgs boson along with a jet in the gluon fusion channel clearly confirms
that the corrections are large. This motivates us to compute the same in bottom quark
initiated process. As first step, we have computed the two-loop amplitudes that contribute

to the process. In the following, we present the outline of this thesis.

Outline

This thesis contains a selection of published works providing a comprehensive picture of

the higher order contributions that we have obtained.

In the next Chapter we present a short description on the basics of pQCD. In Chapter 3,
following [62, 63], the formalism to obtain the threshold corrected cross section, is dis-
cussed in detail. We present a general structure for the threshold approximated partonic
cross section here. The universal behavior of QCD amplitudes and factorization proper-
ties enable us to unravel the IR and UV structures. A detailed study reveals a Casimir
scaling relation between quark and gluon initiated processes for a specific component of

the threshold approximated partonic cross section, namely soft distribution function.

In Chapter 4, we use the maximally non-abelian nature of the soft distribution function,
showed in Chapter 3, and obtain threshold approximated cross section for the Drell-Yan
production at third order [80]. We present a numerical study to find the impact of our new
results. We find, the numerical contribution at three-loop level is small, thus confirming
the reliability of the perturbation theory. And the dependence on the unphysical scales
gets reduced, as expected. Spin offs of this result are the computation of N3LO threshold
corrections to the Higgs boson production through bottom quark annihilation [81] and
also in association with vector boson [82] at the hadron colliders. Also, rapidity distribu-

tion of the Higgs boson in gluon fusion [83], DY [83] and Higgs boson in bottom quark



18 Introduction

annihilation [84] were obtained at the same level of accuracy.

The first step to obtain beyond NNLO corrections for the production of a massive spin-2
resonance, is to compute the quark and gluon form factors. Chapter 5 contains detail de-
scription of the computation of these form factors up to three-loop [85]. We consider dia-
grammatic approach to obtain the matrix elements, i.e. we compute the relevant Feynman
diagrams. The huge number of diagrams poses first difficulty and we use QGRAF [86]
to deal with. An in-house code using FORM [87, 88] is used to perform Dirac and color
algebra and necessary simplifications. We follow the standard technique to reduce nu-
merous Feynman integrals to a few number of integrals, the so-called master integrals
(MIs), by using integration-by-parts (IBP) identities [89, 90] through LiteRed [91, 92].
Of course, shifting of loop momenta makes the integrals to belong to few topologies,
which is achieved by using Reduze2 [93] before the reduction. Finally, the available MIs
enable us to obtain the three-loop form factors. As we use dimensional regularization
with space-time dimension d = 4 + €, the poles appear as Ei While, conserve energy
momentum tensor of QCD makes this theory UV finite, the IR poles exhibits a universal
structure, which in turn acts as a check on the computation. With the availability of the
form factors, we present a new result, namely threshold corrected partonic cross section

at third order for production of a massive spin-2 resonance.

In Chapter 6 we present the first results [94] on the production of pseudo-scalar Higgs
boson through gluon fusion at the LHC to N*LO in QCD taking into account only soft
gluon effects. One of the crucial ingredients is the three-loop form factors of the effective
composite operators that result when top quarks are integrated out and they were com-
puted very recently by some of us [95]. In [94], we obtain the form factors required for
the production of a pseudo-scalar through gluon fusion, using the ones for the compos-
ite operators. Again, the soft distribution functions, being dependent only on the initial
state partons, are same with that of the scalar Higgs boson production in gluon fusion.

Hence, we obtain the threshold approximated cross section at N°LO level. In this chap-
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ter, we present a detailed phenomenological study of the pseudo-scalar production at the
LHC for various center of mass energies as a function of its mass. While the third order
corrections are small, they play an important role in reducing the theoretical uncertainty
resulting from renormalization scale. In addition, we have made a detailed comparison
against scalar Higgs boson production and found their corrections are very close to each
other confirming the universal behavior of the QCD effects even though the operators

responsible for their interactions with gluons are very different.

In Chapter 7 we present two-loop amplitude for the Higgs boson production along with a
jet in bottom anti-bottom annihilation using VFS scheme. We compute the decay ampli-
tude for H — b + b + g, by obtaining first the general tensor structure and then finding
appropriate projectors for each coefficient of the tensor basis. The computational proce-
dure follows the earlier one. The Yukawa coupling here needs UV renormalization and
finally the UV renormalized result shows a universal structure in IR poles. We present the
poles and finite part in € in terms of iterated integrals, namely harmonic polylogarithms
(HPLs). To obtain the amplitude for the specific process b + b — H + g, we have done

the crossing of kinematic variables in the HPL’s through analytic continuation.

Finally, in Chapter 8 we make concluding remarks and importance of the computations.






2 Quantum Chromodynamics

In this Chapter we present a very basics concerning QCD, introduce parton model and
mass factorization. This chapter is by no means intended for a review on QCD, rather a

short introduction to fix the convention and notations.

2.1 Basics of QCD

QCD is the quantum field theory to describe the fundamental strong force. This field the-
ory is a non-Abelian gauge theory based on the symmetry group SU(3). While the formal-
ism to construct the theory is simple, the manifestation is of great complexity. In the very
beginning, strong interaction was pictured to center on the general principle of scattering
amplitudes without any information on elementary constituents. In this context, theories
based on the analytic features of S matrix, such as Regge theory, developed. This was fol-
lowed first by the technique of current algebra [96] and then came the idea of quarks and
partons. The quark model [97-99] successfully accounted for the hadron spectroscopy. In
the same time, the idea of parton model [100-102] showed that elementary constituents
could explain the experimental results successfully. Soon the concept of color [103, 104]
grew and earned a natural extension to gauge theory [105—-107]. On the other hand, the
study on the renormalization group and operator product expansion [108—111] made it
clear that the coupling constant for the quantum field theory describing the strong interac-

tion have to be energy dependent, strong at low energies (long distance physics) and weak

21



22 Quantum Chromodynamics

at high energies (short distance physics). The concept of asymptotic freedom [112, 113]
met this demand remarkably, manifesting the vanishing of the strong coupling constant
at high energies. This inherently justified the perturbative expansion of QCD around the
free field theory. Yet, the search for free quarks or gluon continued to produce null re-
sults. Evidently, the hypothesis of confinement i.e. quarks and gluons can not exist as
free particles, the only possibility is to form a color-singlet bound hadron state, was born.
Finally, these two terms: asymptotic freedom and confinement define the success of QCD
in describing the strong interaction. While asymptotic freedom refers to the weakness of
the short distance interaction, the confinement of quarks follows from its strength at long
distances. However, many predictions of the theory, mainly but not exclusively associ-
ated with inclusive processes, do not depend upon its long distance behavior. These short

distance predictions are the realm of pQCD.

In the following, we will briefly outline the corresponding Lagrangian, followed by the
evolution of the strong coupling constant. We will introduce the parton model and mass

factorization in the next.

2.1.1 QCD Lagrangian

The QCD Lagrangian can be formulated with the partonic constituents i.e. quark and

gluon fields. It reads

1 NI ij ij 1 a —a acy .C
Loco = =7 Fu F¥" + Wiy D] = ms") ¥ - E(aﬂA#)Z +(=" D). (2.0)

The field strength F*

s the covariant derivative in fundamental representation Z)Lj and the

covariant derivative in adjoint representation O, are defined by

a _ a VAa A prabc Ab pc
Fo, = 3"A% = &A% + g, fAbA (22)

v

D = 80, - ig(T*V/A%, (23)
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DY =670, - 8. S A;, (2.4)
with the following definitions

A? : the gauge field (gluons)
Y, : the fermionic field (quarks)
c” : the ghost field

(T*)” : generators of the group SU(3)

f4%¢ : the structure constants of the group SU(3)

i, j : indices for fundamental representation

a, b, c : indices for adjoint representation
m : mass of the quark field

¢ @ the gauge parameter

8, : the bare strong coupling constant

The first two terms in Eq. 2.1 are the kinetic ones for the gauge and fermionic fields,
respectively. While the third term, the gauge fixing component of the Lagrangian in co-
variant gauge, is introduced to in order to define the gluon propagator at the time of quan-
tization to obtain a consistent quantum field theory. It originates from the fact that gluon
propagator has additional degrees of freedom which gets removed by these constrained
gauge fields. Ghost fields cancel the unphysical polarization states of gluon which would
appear in the physical measurable quantities. So, the gauge fixing term must be supple-

mented with the fourth term in Eq. 2.1, the kinetic term for ghost.
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2.1.2 Ultraviolet divergences and renormalization

While the exact solution for the QCD Lagrangian is not yet attainable, the asymptotic
freedom of QCD, which means the coupling constant decreases for high energies, enables
the application of perturbative expansion around the free field theory. The strong coupling
constant g, is considered to be the expansion parameter. The standard procedure can be
followed starting from computing the Feynman rules to obtaining the physical observ-
ables. The leading order (LO) computation is often straightforward. But, the calculation
of higher order corrections involves phase space and loop integrals and these integrals
yield divergences, of different kinds. To perform the integrals in a well defined man-
ner, we should introduce a regulator. We choose dimensional regularization [114] i.e. the
space-time dimension to be d = 4 + € instead of 4. The singularities, then, appear as ei

terms (where n is a positive integer).

According to their origin, the singularities can be classified as follows. Firstly, the singu-
larities which show up in loop integrals, where the loop momentum goes to infinity, are
called UV divergences. The IR divergences arise when a parton momentum become soft

or collinear to another parton. In this section, we deal with UV divergences.

In dimensional regularization, the UV divergences takes the form é To remove these kind
of divergences, the idea of renormalization is introduced. The basic idea is to redefine the
fields and coupling constants such that any physical observable is finite as € — 0. We
define the bare fields by a hat on the field notation. The bare strong coupling constant g
acquires mass-dimension in dimensional regularization and to make it dimensionless, we
introduce the scale yy. The divergences in the bare fields are factorized through Z’s, the

renormalization constants, providing

¢ = Zs(up)d(ur) » ¢=AY,c (2.5)
8s = Zg(ur)gs(ur) - (2.6)
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This factorization of UV divergences introduces a new scale dependence, the renormaliza-
tion scale (ug). The Lagrangian with the renormalized fields now contains proper counter
terms to cancel the UV divergences at all order. The freedom in absorbing a finite part
in addition to the poles in Z is fixed by the scheme of renormalization. In this thesis, we
will use MS scheme [115], where in addition to the poles, a finite piece In 47 — y is also

taken. yg is Euler constant with numerical value yg = 0.5772.

2.1.3 Running of the strong coupling constant

A 52
Because of renormalization, the strong coupling constant runs. We define a, = 3* = li;z
@ g .
and a; = 32 = {255 to obtain
a As. . o a )
=S = 2R = 2703, 2.7)
Ho Mg Mg

a, does not have explicit dependence on the renormalization scale (ug), which leads to the
renormalization group equation (RGE)

, dag

MR~
dus,

=0. (2.8)

Differentiating Eq. 2.7 w.r.t 4% and using RGE, we arrive at

dlna,(u%) € dInZ(uz)
et e adinZes) 29)
duy 2 duy,

In MS scheme, the QCD S-function is defined as

Qdas(/hze) _ € + 1

€ 2
Mg a0 2wl Blas(ug)) (2.10)

where

Bla() = = ) B i) .11)
n=0
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Now, Z can be solved in expansion of a; in terms of §; as

85 14 2
Z(#R) =1+ as(.UR)( ﬁo) (#R)(ﬂ + @) 3(#1?)( ’30 Sﬁeozﬁl 31862)
168 46 98 + 20
+a‘;(,1§)( f(’ ; i(;ﬁl + 2B +6€2ﬁ°ﬂ2 '83) 0> (12)) . 2.12)

We enlist the available [112,113,116—121] g;’s in the following

11 2
Bo = ?CA —3M
34 20
ﬁ = ?Cz —41’I,fTFCF - ?nfTFCA .
2857 ., 1415, 158 .
,32 = 54 C 77 C Tan + 77 CATF’I’I,f
44 2,2 205 5
CFTF ;T 9 CFCATan + 2CFTF’I’I,_f ,
17152 448 s 4204 352
3 = (—243 + Tfs) CaCrTEn% + ( -7 7 Tfs) CaCiTrny
424 s s, (1073 656 ) . 7930 224\ o
CAT f (243 - 53)(3' CFTan+( 31 {3)0 TF 7
L1232 (39143 136 ) 150653
+ 543 OrTen; ( 81 {3)0 Teng + ( 486 _{3)
1352 704\ .. . 512 1664\  N(N?+6)
+ (7 - {3) C Tan +46C3 Tan (? - 3 3) nfT
704 512 (N* = 6N? + 18) 704\ N*(N? + 36)
A 9 & 2.13
(9+3§3)"f 96N? +(9+3‘:3) o @b

where, Cr and C4 are the Casimirs of the SU(N) gauge theory in fundamental and

adjoint representations, respectively. They read

N? -1
2N

Cs=N, Cp= (2.14)

n s denotes the number of active quark flavors. With the S-functions, Z takes care of the
UV singularities originating from the strong coupling constant, while the counter terms

from the Z, remove the rest UV divergences, and thus making the observable UV finite.

Note that, for ny < 17 (and so far ny = 6), B is positive. Hence, a, decreases as ,u,ze
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increases, implying the asymptotic freedom. Conversely, at low energies a; increases
and at some point exits the perturbative regime. However, if we continue computing the
perturbative solution of the RGE at low energies, the running coupling a; hits a singularity
at some pu% = A? called the Landau pole. This scale A indicates the region of non-
perturbative QCD and typically is of the order of MeV. It is clear that at low energies, QCD
indeed is strongly coupled, implying confinement. Of course, there exist descriptions
relating the short distance behavior to the long distance ones. Such a description, the

parton model, will be addressed in the following section.

2.2 The parton model

The parton model is very successful describing the correlation between the low energy
confined hadron states to high energy free partons. In this model, hadrons are made
of underlying constituents, the so-called partons. A set of distribution functions (f.(x))
distinguishes partonic states and such a function £.(x) gives the probability of finding
the parton ‘c’ in the hadron, carrying a momentum fraction x of its parent hadron. The
partons are considered to be observed in a frozen state, i.e. within a hadron, they do not
interact with each other. This makes the scattering process as a weighted, incoherent sum
of parton scattering processes, which are calculable within a dynamical theory describing

the partons. For example, we consider the following hard-scattering process
Hi(P\) + H,(Py) —» F({gi}) + X (2.15)

where the collision of two hadrons H; and H, with momenta P; and P, produces the final
state F', a system of colorless particles such as lepton pairs, Higgs boson, and so forth.
For this process, the idea of parton model is depicted in Figure 2.1 where the followed
notations are generic. x; is the fraction of the parent hadron’s momentum, p; = x;P;,

i=1,2. ACH '(x1), ﬁle(xz) are the distribution functions of the partons ¢ and d in the hadrons
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H,

partonic process ~ )-------

H,

Figure 2.1: A schematic representation of parton model.

H, and H,, respectively. In mathematical terms, the hadronic cross section (S, ¢*) is
related to the partonic contributions through the following factorization formula

1 1
. N A i T
o, q?) = § f dxlf dxy () £ (x) ai;,(—,qz) (2.16)
cd YT T XX

/x1 1X2

where, I represents the inclusive production of colorless final state/s such as pair of lep-
tons (y*), scalar Higgs (H), pseudo-scalar Higgs (A) or a massive spin-2 resonance (7), i
indicates the type of initial partons involved at the LO, like quarks (g) or gluons (g). The

scaling variable 7 is defined as

vy,

2.17)

with ¢° being the invariant mass of the produced colorless final state/s and S = (P, + P»)?
is the hadronic center of mass energy. We introduce the Mellin convolution with the

notation ® as

1 1
fl(x)®...®fn(x):f dxl...f dx, fi(x1) ... fu(x)o(x — x1...x,). (2.18)
0 0
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In this notation, Eq. 2.16 takes the following form

dim)y=7 ) e ft oAl @), (2.19)
cd
where,
Al 2
g o\,
M. = T (2.20)
<

This simple assumption to factorize the long distance physics from the short distance
physics via the PDFs, reproduces some important, experimentally verified phenomena,
leading the parton model to its success. But, this comes with a price. The bare cross
section Aé j contains divergences, of the IR kind, and that leads to mass factorization. To
see how this happens, we will first address the IR behavior of partonic cross section in the

next section, followed by another section introducing mass factorization.

2.3 Radiative corrections and infrared safety

The parton model does not account for the rest of the partons which do not take part in
the hard process. Hence, to obtain QCD corrections to the partonic process, we have to
consider loop as well as real emission contributions. These corrections are UV finite,
after renormalization, but still contain another kind of divergences, the IR ones. The IR
divergences, also called mass singularities, appear in two forms, called soft and collinear.
The soft divergences arise when a loop momentum goes to zero, or there happens a soft
real emission. According to Bloch-Nordsieck theorem [122], these singularities cancel
when contributions from both virtual and real emission diagrams are added up. Finally,
there can be divergences when momenta of two massless particles become parallel. These
collinear divergences also cancel owing to the powerful theorem by Kinoshita, Lee and
Nauenberg [123, 124]. It states that all divergences arising due to collinear massless par-
tons cancel, after summing up contributions from all possible degenerate states. Now, we

consider an inclusive process and hence, this condition is met for the final states only.
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So, the left over divergences in the final expression are initial state collinear divergences.
These singularities are removed by renormalization of the PDFs, the so-called mass fac-

torization [125—132] procedure.

Similar to the strong coupling constant renormalization, mass factorization introduces a
new unphysical mass scale (ur). The mass factorization theorem states that after strong
coupling constant renormalization and cancellation of all other IR poles, the remain-
ing collinear divergences of Aﬁ’;(z, g*) can be factorized as singular splitting functions

I'.u(z, ,u%, €) which transforms the bare PDFs fCH to renormalized ones fCH through

felad) = Y Teluh @ f (7). 2.21)

The renormalized version of parton model then can be written as
gy =7 ) R @ £ wh) © Al i, ) (2.22)
cd

where, the finite Ai’; contains the bare partonic cross section Aij(z, g*) convoluted with
the universal splitting functions. It is certain that the hadronic cross section or any other
physical quantity does not explicitly depend on the mass factorization scale (ur). The pp-
dependence of the partonic cross section is fixed by the choice of the factorization scheme,
analogous to the subtraction scheme in renormalization. Once the scheme is fixed, the
up-dependence is computable in perturbation theory. Moreover, it does not depend on
process or observable, since it is strictly related to the divergent piece. Then the pp-
independence of a physical quantity leads us to the formulation of renormalization group
equation (RGE) for PDFs which we will discuss in the section 3.4 in detail. However, the

important facts about mass factorization are

e Factorization of collinear singularities: the divergent part of the bare partonic cross

section factorizes
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e Universality of collinear divergences: the factorized part i.e. the splitting functions
depend only on the initial partons. They are independent of the observable or the

process.

Finally, to obtain the hadronic cross section o(r, qz), the renormalized version of parton
model is used, as presented in Eq. 2.22. Both, the renormalized partonic cross section Af, ;
and the PDFs £ are free of divergences. Ai j’s are obtained considering the perturbative
expansion in a,(u3%) and this introduces the ug-dependence in the obtained result, order by
order. While this dependence on ui will disappear after summing over the contributions
from all orders, terminating at some fixed order exposes an explicit yg-dependence. On

the other hand, the PDFs are experimentally measured and universal.






The Threshold Framework

In this Chapter we briefly present the formalism to obtain the threshold approximated
cross sections for a inclusive process at the LHC. We discuss the universality of QCD
amplitudes and it’s factorization and following [62, 63], we present a method to obtain
the threshold approximated results, which are often called soft-and-virtual (SV) cross
sections. Finally we obtain a general form for the cross section up to four-loop level in
pQCD, in terms of the anomalous dimensions and process dependent components from

the form factors and soft contributions.

3.1 Introduction

In the renormalized version of parton model, as in Eq. 2.22, the finite partonic contribu-
tion Ai ’é(T, ur) modulated by the flux factor i ) ® ff *(u2), provides the total cross
section. The dependency of Aff;(r,uF) on z comes through the threshold distributions

o(1 — z) and D; and functions which are regular in z, where

[In’(l——z)] _ (3.1)

D,
1-z2

The emission of soft gluons defines the threshold limit, where the produced colorless bo-
son carries almost all the partonic center of mass energy i.e. ¢° — § or z — 1. Near

the threshold region, the flux density becomes large. On the other hand, the functions,

33
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regular in z, contributes negligibly in this region. Hence, the contributions from the plus-
distributions become primary in this limit, and thus threshold approximated results be-

come very important.

We normalize A’ (we will not carry the parton indices, until required) such that at LO,
it is (1 — z) . For n™ order in perturbative expansion, the appearance of D; is bound by

0 <i < 2n - 1. Mathematically,

A =61 = 2) + a[a;6(1 = 2) + anDy + a3 Dy + R (2)]

+a[and(1 —2) + ...+ asDs + Ry(2)] + ... (3.2)

Owing to the famous works by Sterman [133] and Catani et al. [134, 135], the contribu-
tions from plus-distributions factorize and exponentiate. The threshold only part of Al
can be separated as

A =AY, + AL (3.3)

reg

where, Af’eig contains all the terms regular in z. Keeping in mind, the factorization of
overall renormalization constant, form factors and splitting functions, the threshold only

part of Al i.e. AL, can be given the following structure

Az @ i p7) = Cexp (Y2 ¢, iz 113 ©))| (3.4)

where the finite function W/ is

i Lic A 2 i
Yz, ¢ g Uy €) = (ln |FM(@,, 0% 1, 0| 6(1 = 2) + In[Z"(ay, i 12, ©)) (1 - 2)

-2m C In rii(&sa /’lza /’l%"’ 2, E) + 2(D1’i(&sa 512, ﬂz, 2y 6)) . (35)
C denotes a specific ordered exponentiation as

Ce’ = 5(1-2)+ %f(z) + %f(z) ® f(@) +- (3.6)
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and m indicates the number of initial QCD legs e.g. for DIS, m = % and for DY, m = 1.
The equivalent formalism of the SV approximation is in the Mellin (or N-moment) space,
where instead of distributions in z the dominant contributions come from the meromorphic
functions of the variable N (see [133,134]) and the threshold limit of z — 1 is translated to
N — co. In this Chapter we study in detail the universal structures of all the components

in W/, specifically their singularities and how they cancel to provide a finite output.

3.2 Overall renormalization constant

For cases like the Higgs boson production in gluon fusion or a pseudo-scalar Higgs boson
production in gluon fusion, it involves an effective Lagrangian which manifests a non-
conserved operator. For these cases, in addition to the strong coupling constant renormal-
ization, a overall operator renormalization constant appears to preserve the UV finiteness
of the theory. This overall operator renormalization constant Z(ay, uz, 14, €) satisfies the

following RGE

(o)

d . _
2 1,i/~ 2 2 _ ny, 25\ L0
'URW InZ" (G, pg, u”, €) = Z as(,uR)yn_1 , (3.7)

R n=1

where ' is the UV anomalous dimension. After performing a perturbative expansion of

ZM(y, pig, 12, €) in @ as
) ,U2 ns
Z"(ay, up, 12, €) = &’;(—R) Szl (3.8)
? Z; "

the Lh.s. of Eq. 3.7 takes the following form

d ' 2\5 ) 2\72 ) )
7" = a, (’“‘—’;) S.ZM + & (“—’;) % (z{’l2 - 225")
dg M Hu

2
~3 [ MR 3 (13 Ligl,i Li
+a (—2) 53(71 - 3zp'7y + 371)
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€

2
+at (@) 5 (z{”’4 — 47! 7l 27l g azlizli - 421’1') LO@). (3.9)
u

Now, using Eq. 2.7 with Eq. 2.12, we solve Eq. 3.7 and obtain Z." up to 4™ order in &, in

terms of so-called UV anomalous dimensions, as presented below

1i _
Zy' =1,
Zl,i _ 1 2 1
1= g( Yo ) ’
] , N oL,
1i 1,i\2 L,i 1
Zz Z (2(70 ) - 2:807 ) + - (71 ) ’
;1 (4 N ini 2, i 8,
zy' = g(g(y ) - 4Bo(ys) + —B%yé) (273 =3B - §ﬁ07?)

1(2 ,,
vl

- 1
Zy = ( et = 4By +—,30(76’) —4ﬁ?ﬂé’)

1
(2<y O ﬁl(y y? ——ﬁové’)/{l+ ,30,3170 +6ﬁ3y¢)

1 4 R i i 1(1 i
+ 3 ( O+ 3% - —ﬁzyo -pin' - 3ﬁ07§’) = (Eyé’ ) . B0
Below we present the relevant y."’s for the considered processes.

:ﬂ()’/yf]’g:zﬁl’/yg]’g:?)ﬁZ”yg[’g:Al'ﬁ?:,
7n=0,
)
3 97 5
b _ 2 _
=C {2}+CFCA{6} CF"’”{3}’
03{129} Cch{lig} CF02{11413}+ 2n f{ 23+24g3}

108
278 35
+CFCAnf{— 7 —24{3} CFR;{E},
Yy =0,
7, 1=0,

= B0, Y\ = B1.,75 =B (3.11)
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3.3 The form factor

Form factors £ are the matrix elements of local composite operators between physical
states, where the operator is color-neutral. I = H,y*,A and T indicates production of
the color-neutral Higgs boson, DY, pseudo-scalar Higgs boson and a massive spin 2 field,
respectively. i denotes the initial on-shell states, i.e. g, g and b for gluons, quark-antiquark

and bottom quark, respectively.

The bare form factors F(a,, Q?, 11, €) satisfy [ 136—139] the following integro-differential

equation which follows from the gauge invariance

d RPN U i Hi in O M
de—Qz In FH(ay,, Q% 4%, €) = 5 |K'@s, 'u—lze,e) + GM(a,, = M—’;,e) (3.12)
R

where, all the poles in € are contained in K' and G’ is consist of terms finite in €. On the

other hand, RG invariance of F'* leads to the following equation

d .. M d ..
Hr—K'(as, =, €) = —uz—G"(a,,

2 2
. & M o= Al (3.13)
dug H duy

EEEREE) )
X M

where, A”’s are the standard cusp anomalous dimensions and are perturbative series in a;

(o8]

Al = Z a" (L)AL (3.14)

n=1

The coefficients A?, A, and A% are explicitly known [81, 134, 135, 140-142]. They read

A = Ci{4},
. 268 40
Alz = CZCA _— = 8{2 + C,;’nf -,
9 9
‘ 490 1072 1762 11
AL = CZ-C’j{ 20 - 09 &, 8253 + 542} +C;Crny {—TO + 3243}

836 1605, 112 16
+ C;Cany {— t 942 - 353}+Cm2 {_E} (3.15)
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These A”s are maximally non-abelian i.e. they are universal except the overall Casimir
element C;, depending on the type of colliding partons. Fori = g, C; = C4 and for
i = g, C; = Cp. This overall dependence on Cj;, which is conventionally known as
Casimir scaling relation, follows from the soft parton origin of A’. The validity of this

relation beyond O(a?) is a subject of current theoretical study [143].

With the coefficients A’ it is straightforward to obtain the solution for K’ in Eq. 3.13 by

performing the following expansion in powers of a,

12 n§

,'A H N n in
( e ) > ( §) S"K™(€). (3.16)

n=1

2|

The solutions [62] for K*"(€) consist of poles in €, as considered in the KG equation

Eq. 3.12. They are

Ki’l(e)—é( 2A),
0= L) ).
0= )l o) o -3,
K’4(e)—é(4 gA’)+ ( ﬁoﬁ]Al 6ﬁ§A;)
é(lﬁzA +BIAL +3ﬁ0Al) é(—%Ag). (3.17)

We note that all poles at four-loop level can be obtained except the single pole as it in-

volves the fourth order cusp anomalous dimension A}.

. 2
To solve the RGE for G"(a;, f—;, Z—’;, €), we re-parametrize the integral variable, shifting
R
the scale dependence from the boundary term as follows

GI’ (aS7 l?, Iu_lzev €l = GI S(I’LR)
R

R

. Laaz .
= G"(a,(QM). 1, €) + L A (a,(%up)) . (3.18)

HR
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while the boundary term can be expressed as perturbative expansion in ay,

(o9

GM(a(QM), 1,€) = ) di(QNG(e), (3.19)

n=1
and performing the integration results in

[ee)

1 792 2\"5
dAa i AN 'uR
le = A as(/l E a ( )

n=

2\15
(%) - 1] S K" (e) (3.20)
Hg

/‘R

The solutions of RGE 3.13 provides a structure of In £/(a,, 02, 4, €) in terms of A, G1'

and S, after the perturbative expansion in &, and solving the KG equation 3.12

2\15 )
In Fli(a,, Q% 112, e)_ZA"(i) S" L (e) (3.21)

n=1

with
ffgi’l(e)—é{ 2A}+ {G“(e)}
10 - ] 3{- i -ntic) o).
2o =={- ,B’ZA’} il + oposy + —/BSG”"@)}
é{ % ——ﬁlG"(e)— ,BOG“(G)} {G”(e)}
“4(6)_é{ SA’} { ﬁoﬁlA’ ,BgAi—zﬁSG”’(e)}
é{& Al + 3B+ 2P+ SRBIG O + IFGL)
b o] - - GO - 3BGHE - SpGhE) + {16} 322)

In the above expansion of the form factor, only G,"’s contain the information about the
process, while A”’s indicates the kind of colliding partons and the rest is universal S-
function. Also, to note that, at a given order in aj, all the poles except the single one
can be predicted without explicit computation, upon having sufficient information of the

lower orders. Comparing the output of explicit computation of the form factors with the
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above expansion, G.'’s can be obtained. While doing so for the quark and gluon form

factors, a universal structure for Gﬁ’i was observed in [144] for the first time as follows
Ghi(e) = 2(B, =y )+ fi+ Cli + Z gl (3.23)
where, the constants Cf,’i read [63]

cl'=0,
Cll__2ﬁ0glll’
C~Il_ zﬁlglll_zﬁo( 111+2ﬁg112),

C“——Zﬁzg“l—Zﬁl( 111+4ﬁ0g112) zﬁo( 111+2ﬁ0g1l2+4ﬁ(2)gql3) (324)

B'’s are the collinear anomalous dimensions which originates from the collinear partons.

They are explicitly known [141] up to third order in a;

et}
{212}~ cuny (3] -com,

241 29 233 8 4 80
B§ = CAC'an {——} + CATL; {—} - Cjnf {K + g{z + 5522 + ?4/3}

79 11
+C3 {——16§2§3+ §2+ fz 53_80§S}+0an{?}+(7;‘;nf{l},

Bl = Cp{1},

3 17 88 1 8
Cz{— - 12(2 + 24{3} + CACF{3—4 + ggz - 1243} Cpnf{g + g{z} s
4496 1552 1657

27 27 g St A0 36}
410 844 151
+ CACF { - —52 + 16(2(3 - —{2 + —53 + 120(5 + T}

1336 200
{2 + —{3 + 20} + CF {—{22 — 32{253 + 1852

29 232 136
682 — 24075 + 7} + Canf{—gz —42 -4 - 23}

80 16 _1_7}
72798 g

By = Ca*Cr{ - 207 +

+ CACF’n,f{ggzz -

-l-CF’I’Lf {

(3.25)
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f?’s are analogous to the cusp anomalous dimension A’. f* have purely soft origin and also
demonstrate the maximally non-abelian nature similar to A’. This was first introduced in
the article [144] confirming the property up to two-loop level. Later, in [145], it was

verified to be true even at three-loop. The known f*’s are

fi=0,
. 22 808 112

1 =CiCA{——§2—28§3 >7 }"‘Cnf{ {2——} ,
. 352 176 12650 1316 136781
= Cer 1250 g - _ 192

»=CiCy { O+ 3 043 21 O 3 £+ 19205 + 79 }

O+ 3 —

282 72 11842
+CiCAnf {——{224- 828 8 8 }

81 27 729
304 1711
+ CiCan{ L+ A0 + —53 - 7}
. 112 2080
+Cing {—ﬁfz 75" g } (3.26)

The study of the form factor clearly emphasize the universality in the structure. The
anomalous dimensions are only initial state dependent. The constants g5 contain the
explicit information for the production of a massive particle. The computation of quark
form factor for Drell-Yan production Fra [32,33,145-151] and gluon form factor for the
Higgs boson production F#¢ [145, 148—152] are available up to three-loop level for few
years. A recent computation also made F™? [63,71,153, 154] available up to three-loop
level. The quark and gluon form factors for the production of a massive spin-2 resonance
were available [47,52] up to two-loop level and recently, we have obtained the same at
three-loop level in [85]. The technical details of the three-loop computation is part of
this thesis and will be discussed in Chapter 5. Later, we also calculated quark and gluon
form factors at three-loop level for the operators describing the pseudo-scalar Higgs boson
interaction in [95] and the gluon form factor for the pseudo-scalar Higgs boson production
in gluon fusion is obtained in [94]. With all the available form factors, we extract gl bk

which are relevant for three-loop and enlist them in Appendix A.
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3.4 Splitting functions

The appearance of initial state divergences, which are due to the masslessness of both
quarks and gluons, are removed by renormalization of the parton densities, by introducing
the mass factorization kernel I'(é,, 42, /J%, Z, €). This mass factorization procedure yields a

new scale (1) dependence and a corresponding RGE as follows

dd2 I'(z, ,uF,e) = 1 (z,,uF) ®F(z,,uF, ) (3.27)

where, P (z, p%) are Altarelli-Parisi splitting functions (matrix valued). To solve the RGE,
we perform a perturbative expansion for both P (z, u%) and I'(z, %, €) in a, and &j, respec-

tively as follows

[

P(z,u7) = Z a'(ur)P" V(2)

n=1

[z piz€) = 6(1-2) + Z (

E

/Jz 2
= ) Sz €). (3.28)

Similar procedure as solving for Z' finally provides solution for the RGE of I'(z, u2., €),

Eq. 3.27. The solution up to four-loop level are presented in the following

M ¢ = ~PO()
6 = 5(5P70 8 POQ) - fPO0) + (5700
e = é(%ﬁ%P(O’ (@) = BoP(2) ® P(2)
+ PR ® PO @ PO + l(éP(O)(z) ® PVQ) - 34,P0)
1
+ 3P ® PO - 2P + - (5PO0)
M0 = 4 (=P 8 POR) @ PO © PO()

et (24
1 11
— E'BO PO() ® PO(2) @ PO(z) + < 133 PO(2) @ PO(z)
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- 2/33P<°>(z)) + é(iﬂ%) ® PO(z) ® P(z)

- %ﬂlP“”(z) ® PO(z) + gﬁoﬁlp(o)(Z) + %P(O)(z) ® PV(2) ® PO(2)
- %,BOP(O)(Z)P(I)(Z) + %P(l)(z) ® PO(7) ® PO(z)
- ZﬁoP(”(z) ® PO(z) + 3ﬁéP(1)(z))

1/1 1 1
+ 5 5P ® P - B2PO@) + P ® PV
e\12 6 8

1 1 3 1/1
= 3BPYQ) + 1PUE 8 POQ) - P + <(1PV0)

PO(z), PY(z) and PP(z) are computed in the articles [140, 141]. In the threshold limit
z — 1, only the diagonal parts of the splitting functions, PE?)(Z) and kernels, l"g’)(z, €)

contribute, as the non-diagonal terms only contain contributions which are regular in z.

3.5 Soft distribution functions

The overall renormalization constant (Z'), the form factor (F'*) and the splitting func-
tions (I';;) follow a universality to gain the singular structure. A detail study reveals that
the UV and collinear part of the single pole in £/ gets canceled by that of from the Z
and T';;, respectively. Demanding the finiteness of !, the soft distribution function ®’*
must cancel the remaining singularities which in turn suggests that ®'¥ should satisfy

Sudakov type integro-differential equation similar to /. Hence, the ansatz is

d ;. 1|=i ua —Li el
2 Li(s 22 _ . Hg . R
q dqzq) (as’q M2, 6) = Q[K (Cls,/?,z, €)+G (Cls,lu—%e,l?,z,é (3.29)
where K and G ' play similar role to K’ and G i.e. K contains all the poles in € and G"

is finite as € — 0. Also, @’ does not have explicit dependence on (uz), implying a RGE

similar to Eq. 3.13

d
u,%—d (a5, q%, 1%, 2,€) = 0. (3.30)
U

R
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These two equations lead to
za’—iA,U,zg 2d—I,iAq,ufe —i
Ur—K as,/?,z,e = —ur—G a5 — s %€ = -o0(1 —2)A (3.31)

where, to cancel the poles exactly, A’ must have to be equal and opposite in sign to A’.

Similar to Eq. 3.16, we perform the following expansion of X in ag

sl 2

?i( Z,Z, ) 6(1 _Z)Z&n (IUR) 2 Z?i,n(e) (332)

and the solutions [62] also come out to be same except for a sign, as

£ (e) = é(ZAi )
o= Hoama): )
L TR ST
K0 = (- 4pai)+ (ﬁoﬁlA’+6ﬁ§A)
é( %ZA _BA! —3ﬁoAg)+é(%Ag). (3.33)

Again, we use the similar idea to solve the RGE for 5”, by re-parametrizing the integral

variable, shifting the scale dependence from the boundary term as

—1i 2 2
G (a_w q I;’Z’ E) = ( S(#R) 2 ’Z’ )
:“R H My
2

_ 61,1‘ (as(qz), 1,z e) -0(1 -2 ﬁzl %Ai (a-"(/lzll?g ) .
iz

Now, the soft distribution function can be solved as in Eq. 3.21. However, observing the
source of plus distribution from the Feynman integrals, we expand @ as a perturbative

expansion as follows

00 2 1—Z 2\1% ne o
®Il(asaq ll Z,E) Z Zl(q(lu—z)) SZ(l_Z) ¢1,l,n(€) (334)

n=1



3.5 Soft distribution functions 45

where

Blin(e) = (F‘”(e) i Ei’i(e)) . (3.35)
ne

—Li . . . —Li
Note that, Gnl(e) is not perturbative coefficient of G l(as(qz), 1, €) as the case for form fac-
tor, rather is related to it through a combination of plus distributions. Now, for simplicity,

. _I,. _17. . .
instead of Gnl(e), we use in(e), which are related via

S (#) $1G% 0 = Y a0 - 97) 8 (336)

n=1

and the solution of Eq. 3.29 becomes similar to that of Eq. 3.22 as

$""(e) = [:f;‘*"(e)|( (3.37)

Alm-AL Gl @)
. _17. . . .

The z-independent constant in(e) can be obtained by comparing the e-coefficients of

¢V (€) with those arising from the rest in Eq. 3.4 demanding the finiteness at e — 0. We

_1’ [ . . .
find gnl(e) emerges out to have the following universal structure as Gli(e)

GlO=-fi+C+ > ¢G,", (3.38)
k=1
where
—I,i AL .
C' = gy (3.39)

—lik . . . . . .
The constants in are input from the explicit computations. For the first time in [62,63],
it was noted that, up to two-loop, these constants also satisfy the Casimir scaling relation
ie.

—y".q.k Cr—Hgk

G, = C.n (3.40)

and does not contain any information about the final state /. This fact leads the soft
distribution function @’ to be maximally non-abelian too. The universality of the soft
distribution function can be understood by noting that the soft contribution to the cross

section is always independent of the spin, color, flavor or any other quantum numbers after
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factoring out the Born contribution. It solely depends on the gauge group describing the
interaction, e.g. SU(N). Once we know the soft distribution function for a process e.g. the
Higgs boson production in gluon fusion, this universality help us to achieve the soft dis-
tribution functions for all other process. We present é,lf’k, relevant for N*LO computation

in Appendix B.

3.6 The SV cross section

Collinear

Collinear

The detailed study of the overall renormalization constant (Z'), the form factor (F'*),
the splitting kernels (I';;) and the soft distribution function (®’) provides a structure for
the threshold approximated partonic cross section Ag’v As shown in the above schematic
diagram, all of them contain divergences of any of the three kinds: UV, collinear or soft.
But, in the end, they cancel each other and beautifully sum up to provide a finite partonic

. Li Li . .. . .
cross section Ag,. We compute A, by expanding it in perturbative series of a; as

(9

Ay = > dGRAG (3.41)

n=0
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In the following, we present Aglv" up to four-loop level.

AL = 501 - (26, +2g1 +30A1 + L, (2B - 2y)

+ Do(L,,, (A1) - 2f1) + D1 (4A) (3.42)
A2 = 51— @0 + 260" + gt + aghG ! 1 2gh % 4 2p,G "
+ 28081 = SGAL S = 20 f 4 3075+ 606G, A} + 641" A]
+30Buf + 6CoB) - 6§2ﬁoy{;" +2L0A 4 1,28, + 4GB
+4g1 B = 2y — 4G -yl - 280G, — 2pogl " + 8531
+ALALfl + 6LAL B, — 60yyb AL = 30B0AY) + 12,2B." — 4y} B
+ 2957 = BoB) + Boyh = 26A10)) + Dy(L,, (~4B\ fi + 241 + 4G, Al
+AgH AL + Ayl T4 2B f1 - 20A17) + L2, (AAL B — dylTAL — ByA)
=26 - 4G\ S~ 45l 1 - 488\ + 16047 + 2041 )
+ D1 (L, (~8A! fi + 8ALB} — 8y AL — 4BoA}) + L2, (4AT7) + 4

+4AL +8G," AL + 8gHAL + 4B, f1 - A5A1) + Dy(L,, (12417)

— 1241 i — 4B,A1) + D5(8A1Y) (3.43)
. 2—1ril —1Iil 1;1 4—rin3 2 i1l
ALS =6(1 - z)(§QS +2G, gz gl + 5 + 20 lgl

111 L1 Liiabb! 1;1 1;1 1112 “1 1113

—1,i,2 —1i,1—I,i,2 1i2

4, L2 —hi2
+ ﬁlQl —,3181” +—,30§2 +4B0G, G, —ﬁogz

Sl Sl Sl I, Il3 1,
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where,

L =tog(Z
= log(=). (3.46)

F

Each AI”’” contains the process independent anomalous dimensions A, B and f and

—Lik
process dependent terms like y,, , gﬂ’ * and G, "






DY Production at Threshold to
Third Order in QCD

In this Chapter we apply the technique to obtain threshold approximated partonic cross
section, presented in the previous chapter, to the Drell-Yan pair production. We present
the missing (1 — z) part at N’LO. The numerical impact of our findings establish the

reliability of pQCD and also reduce the dependence of the scale uncertainty.

4.1 Introduction

From determining electro-weak model parameters, constraining the PDFs to calibrating
the detector, the Drell-Yan process works as a standard candle. High production rate with
clean signature makes this process an important one. As discussed earlier, the physics
of massive lepton pair production in hadronic collisions gained interest almost fifty years
before, when in 1970, Christenson et al. [45,46] first observed this production in proton
nucleus collisions. Slowly, it became one of the most important process from both ex-
perimental and theoretical perspectives. The need to multiply a large K-factor with the
LO result to match the experimental data, urged to compute QCD corrections. While
the first order corrections [22-26] successfully addressed the issue, but the largeness of
the correction raised the doubt about reliability of pQCD and inherently indicating the

need for the second order corrections. A plethora of marvelous works put the current
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accuracy at NNLO level, both for the integrated cross section [32-35] and rapidity dis-
tribution [155, 156]. While the NNLO corrections turned out to be small, to check the
consistency in the perturbative series, higher order corrections are of much need. A large
abundance of events collected at the LHC RUN-II, combined with a very precise theoret-
ical determination of the process, can be a very powerful test of perturbative QCD. While
computing exact N*LO is still non-achievable, to go beyond NNLO, there have been sev-
eral attempts, starting with resumming the large threshold logarithms to obtain accuracy
at next-to-next-to leading log (NNLL) level in [142]. Partial results were obtained for
threshold approximated cross section at N°LO in [59—63], where the term proportional to

o(1 — z) was missing.

Alike the DY process, one other process with such importance is the production of Higgs
boson, the recent discovery of which by the ATLAS [18] and CMS [19] collaborations
has put the SM in firm footing. Theoretical advances played an important role in this
discovery. While first order corrections [36—39] were known for long, it took almost ten
years to finally achieve the next order [40—44] corrections. Later, the resummed result at
NNLL QCD corrections [58] supplemented with two-loop electroweak effects [157, 158]
also were crucial. In [59-63], partial threshold approximated cross section was obtained

also for the Higgs boson production in gluon fusion, excluding the 6(1 — z) contribution.

Note that the finite, mass factorized threshold contribution to the inclusive production
cross section is expanded in terms of 6(1 — z) and D;(z). The §(1 — z) part of N°LO
threshold contribution for both the processes was not known until recently because of the
unavailability of the complete soft contributions arising from real emissions, while the ex-
act two [148] and three-loop [145,147,149,151] quark and gluon form factors and NNLO
soft contributions [159] to all orders in € are already known. The recent computation by
Anastasiou et al [66] considering all these soft effects from gluon radiations, provides the
full threshold N*LO result for the Higgs boson production in gluon fusion. In this chapter,

we investigate the impact of these soft gluon contributions on §(1 — z) part of the N*LO
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to DY production. This enables to compute the full threshold approximated N>LO cross

section for DY production.

4.2 The Drell-Yan formalism

In this section, we present the Drell-Yan formalism. We will start with defining the pro-
cess as

H+H,-»>V+X->L+L+X (41)

where H, and H, are the incoming hadrons and V is a on-shell vector boson (y* or Z),
which decays into a pair of lepton (/;, [;). In Figure 4.1, we have depicted the relevant

kinematics. The corresponding equation for the parton model Eq. 2.19 takes the following

H,

H,

Figure 4.1: A schematic representation for Drell-Yan process.

form for DY production

dor" g dGT
25 ST =) f"efite2s dez 4.2)
cd

where the notation followed are mentioned earlier. g is the momentum of the intermediate

*
~v*.q
deo’,

vector boson and Q? = ¢%. 2§ o denotes the partonic cross section. As the pair of lep-
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tons come only from the decay of the intermediate vector boson, the leptonic contribution

*
~¥".q
dc,,

to 2§ 700

can be distinguished with the vector boson propagator as

Jdol!
8 = —
dQ> ~ 2n

3 f dPS MR, P(g). Piq). LV (g)  (43)
Jr=vZ

In the above equation IM;;l_’jj/l2 represents contribution from hadrons while L indicates
the leptonic part. The “dot product” symbol in the above equation represents sum over
Lorentz indices between the propagators and matrix element squared. The m + 1 body

phase space is defined as

n

_ - L PSRN Y I P S
fdPSm+1 - IU((zﬂ)nzﬂé (pz))((zﬂ.)n27r5 ((] Q ))

x(2m)"s" [pl +p—q-), ki) (44)

k;’s are momenta, carried by initial state parton emissions. j/j" denotes the vector boson

and specifically jj* = yZ indicates the interference term. The propagators read

Py(q) = —ég,w = ¢, P,(0), 4.5)
[

— o PAO?
(Q* - M - iM T = 8urPz(Q7), (4.6)

Pz(q) = -

where M is mass of the Z boson. The leptonic tensor L/~ (g) involves the decay
y/Z — I + 1, and as a result LV =" (q) = (-g,, + %)UT(QZ). Below, we enlist

L7 (Q? for jj =vyy,yZ,ZZ

LY(QY) = QZ%“ (4.7)
Zem2y — )2 2ag,

DAQY = ~07 (4.8)

L7(0) = 02 _(¢" + ¢7) (4.9)

2 2
3cy, sy
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In this above set of equations, « is fine structure constant, cy = cos 8y, sy = sin 6y with

fw being the weak mixing angle. g}/ and g;} are defined as
1
g =311 -0 & =-3T; (4.10)

with Q being the charge and T; being the isospin of the fermion. Finally, Eq. 4.2 takes

the form
sz 0% = ﬂ D, BB L (@ Y fheftesl, @1
JJ'=vZ cd
where
A cd—jj 2 qﬂqv
&l = f dPS My~ P(=gy + =57). (4.12)

We will casually ignore the leptonic part from now and apply the mass factorization to

the above equation to obtain

dQ2 dort o = D et oA (4.13)
cd

Our aim is to compute the full threshold only component of Ay “ie. A7 7

4.3 Computation of complete threshold contribution

As discussed in chapter 3, the threshold component Ag*",” for DY can be expanded in a

perturbative series of a; as

[ee)

AL(@) = Z a"(LB)AL " (7, p13)  where
n=0
2n-1

AL @) = AL GuRlso(1 = 2) + Y AL (W), D (4.14)

J=0
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The availability of all the anomalous dimensions: UV (vl ), cusp (A7), collinear (BY)
and soft (£7), components of the form factors (g ") up to three-loop level i.e. n = 3,
and components of the soft distribution functions @Z*’q’k) up to two-loop level i.e. n = 2,
enabled the authors to obtain Ag*‘}q"”l@i at N°LO level in [59-63]. As from Eq. 3.44, evi-
dently, the missing ingredient to compute Ag*","’"(pi)l(g is ?Z*’q’l. In [66], Anastasiou et al.
have presented the cross section for the threshold production of the Higgs boson in gluon
fusion i.e. specifically they have obtained A?§’3|5 through exact computation. Moreover,
the corresponding elements %), A%, BS, £ and g-"** were known up to required accu-
racy. We use them along with Eq. 3.44 to extract the three-loop component, ég“"l of
the soft distribution functions. We find that @f’g’l, as expected, has a overall Casimir of

adjoint representation of SU(N). In following, we present the result for ég’i’l.

it L 152 1964 11000 765127 536
G; =0C;Cy (a o+ 9 5+ 9 Ol — 186 O+ 3 32
59648 1430 7135981 532, 1208
Ty 83 Gt gy )P CGiCany (-5 & - 5 66
, 105059 45956 148 716509)
3 2T TR SBT3 ST T3
152, 605 2536 112 42727
+ C;Cpny (F O™ - 88040+ ; O+ 77 &+ 3 5 3 )
L 32, 1996 2720 11584
FOm* (5 &~ &~ =7 6+ 57) (4.15)

and again, n; is the number of light flavors and C; = Cy4, Cr for i = g, g respectively.
Finally, supplemented with the findings of Chapter 3, the following equation

—y'ak Cp—=Hgk

G, = c.9 (4.16)

. . *’ ’l . . .
we determine the corresponding three-loop component, @Z ! , of the soft distribution
functions for the DY production and thus Ag*‘}qsl(g. This completes the evaluation of full

DY SV contributions at N°LO level. The Ag*‘}qﬁlg is presented below

13264 , 14611 _, 884
o+ -
315 135 3

. 400
ALl = C/%CF( HE+843 0 — =3 &
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where, n, is proportional to the charge weighted sum of the quark flavors [151]. With
the newly obtained result, we present the complete threshold approximated N3LO result

in the following

A =601 - 2{Cr(-16 + 80)| + Di{ Cr16)|
1535 592

* 12 511
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. . _Isivl . .
The new information on G; also enables us to obtain coeflicients of ), term at N*LO

for the Higgs boson production in gluon fusion as well as DY production
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We have set puz = p2 = ¢* and their dependence can be retrieved using appropriate

renormalization group equation. The four-loop cusp anomalous dimension A} has been
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obtained numerically by employing the [1/1] Padé estimate by Moch et al in [160]

A} =7849,4313,1553 forn; = 3,4,5 (4.21)

Considering the validity of Casimir scaling relation at four loop level for the cusp anoma-
lous dimension
A§ = 17660, 9704, 3494

forny = 3,4,5. (4.22)

4.4 Numerical analysis

We present the contribution from A;glé to pure N°LOy, as dy31o and the contributions
from Af}glﬂis to pure N°LO;, as Dy31o in Table 4.1 for different invariant masses (m+- =
Q) of the di-leptons. The corresponding parameters, throughout we have used for this
numerical study, are VS = 14 TeV for the LHC, number of light quark flavors n; = 5,
Fermi constant Gy = 4541.68 pb, the Z boson mass m; = 91.1876 GeV and top quark
mass m, = 173.4 GeV. The strong coupling constant a,(u%) is evolved using the 4-loop

renormalization group equations with afls\]}]“o(mz) = 0.117 and for PDFs we have used

MSTW 2008NNLO [161].

Q0 | 10°60 | 10°Dy0 | NNLO(sv) | NNLO | N°LO(sv) | N°LO,,
30 11.386 -8.397 0.497 0.543 0.500 0.546
50 2.561 -2.053 0.147 0.158 0.148 0.158
70 1.724 -1.466 0.117 0.124 0.118 0.124
90 140.114 -124.493 10.749 11.296 10.765 11.311
100 5.410 -4.865 0.436 0.458 0.436 0.459
200 | 4.567 107 | -4.421107% | 4917 107 | 5.233107° | 4.918 10™° | 5.234 10~
400 | 3.153 107 | -3.368 10~° | 4.364 10~* | 4.694 10~* | 4.362 10~* | 4.692 10~*
600 | 6.47310™* | -7.45510~* | 1.03210™* | 1.116 10~* | 1.032 10 | 1.116 107*
800 | 2.006 107 | -2.456 10~* | 3.538 10~ | 3.836 10~ | 3.534 10~ | 3.832 107>
10° | 7.755 10 | -9.959 107 | 1.480 107 | 1.607 10~ | 1.478 10~ | 1.605 107>
Table 4.1:  Contributions of Sy3; 0, Dniro» NNLO (sv), exact NNLO, N3LO (sv) and

N3LO,,
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We find that the ¢ contribution is almost equal and opposite in sign to sum of the con-
tributions from the D;’s. Hence adding the § part reduces the pure N°LOy, term to one
order in magnitude, establishing the dominance of the ¢ term. We have studied the effect
of threshold corrections resulting from distributions such as (1 — z) and O, both at NLO
as well as NNLO levels. In the following, we report our findings based on the numerical
analysis presented in Table 4.1 for two different ranges of Q, namely O = 200—-1000 GeV
(above my) and 30 — 100 GeV (below mz). At NLO, if we keep only the distributions and
drop contributions from hard radiations coming from gg and ¢(q)g initiated processes, we
find that the resulting NLO corrected cross section is about 95% of the exact result at NLO
level. Similarly, if we keep the distributions and drop all the hard radiations both in NLO
as well as in NNLO terms, we find that resulting NNLO corrected result (NNLO(sv)) is
about 95% of the exact one at NNLO level. Hence, it is expected that the sum (N*LO,) of
threshold contributions of N*LO terms and the exact NNLO corrected result would con-
stitute the dominant contribution at N3LO level. Like NNLO, the threshold contributions

in N°LO terms are also moderate and hence the perturbation theory behaves well.

In Figure 4.2, we have plotted QZ;—EZ against Q resulting from LO, NLO, NNLO and

N3LO,,. We note that like NNLO, N3LO, does not change cross section significantly.

Q*dc/dQ? [nb]

—II‘HI\‘\IH‘IH\‘IH\|\HI|
200 300 400 500 600 700
QI[GeV]

Figure 4.2: Total cross section for DY production at LHC.

In Figure 4.3, we have shown the dependence of our result on renormalization scale at
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various orders in perturbation theory. We have plotted R?” = ¢®® /@) where i = NLO,

NNLO, N3LO,, versus ”—5 and the reduction in the scale dependence is evident as we

increase the order in the perturbative expansion.

Q=20GevV ———— NELOS/

g
5
TTTT T T T

R(l)
g >
R S .

Figure 4.3: Renormalization scale (ug) variation for DY production at LHC.

4,5 Conclusions

To summarize, systematically we have obtained threshold corrected inclusive cross sec-
tions for DY production up to N°LO level in pQCD. In process, we have exploited the
universality of QCD amplitudes, namely factorization of soft and collinear divergences,
renormalization group invariance and resummation of threshold contributions. We use
the recent N°LO SV contribution to production cross section of the Higgs boson in gluon
fusion to obtain corresponding 5(1 — z) part of DY production at N°LO. The numerical
study of the acquired results establish the importance of the 6 term. We find that the
impact of the & contribution is quite large to the pure N°LO,, corrections. We have also
demonstrated the dominance of threshold corrections at every order in perturbation the-
ory. The results presented in this Chapter will not only be a benchmark for the full N°LO
contribution but also an important step in the precision study with Drell-Yan process at

the LHC.



Spin-2 Form Factors at Three

Loop in QCD

In this Chapter we present the three-loop QCD corrections to the spin-2 quark-antiquark
and spin-2 gluon-gluon form factors in SU(N) gauge theory with n, light flavors. These
form factors contribute to both quark-antiquark and gluon-gluon initiated processes in-
volving spin-2 particle in the hadronic reactions at the LHC. The detailed study of the
structure of IR singularities in these form factors up to three-loop level using Sudakov
integro-differential equation reveals that the anomalous dimensions originating from soft
and collinear regions of the loop integrals coincide with those of the electro-weak vector
boson and Higgs form factors confirming the universality of the IR singularities in QCD

amplitudes.

5.1 Introduction

In the context of the recent discovery of the new boson at the LHC, with mass of about 125
GeV [18, 19], there has been renewed interest in massive spin-2 resonance which could
also lead to similar final states [162]. The massive spin-2 could be a Kaluza-Klein (KK)
graviton of the TeV scale gravity models [163-166] as a result of gravity propagating in
the extra dimensional bulk or any generic spin-2 resonance in some other new physics

scenarios. It was noted in [167] that gauge symmetry and Lorentz invariance forbid oper-

81
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ators of dimension four that could lead to a coupling of a massive spin-2 resonance to a
pair of the SM particles. Further, if the flavor and CP symmetries of the SM are respected
by these new physics scenarios, the leading dimension five operator is none other than the
energy momentum tensor 7, of the SM particles. The structure of the operator coupling
thus being identical to the KK graviton, though the constant coeflicients could be different
for the KK graviton or any generic spin-2 imposter. Nonetheless, methods to distinguish
KK graviton from the imposter have been proposed [167] and will be of importance for
BSM searches at the LHC which is now operational at higher energies and luminosity.
The increasing accuracy of the experimental data at the LHC Run-II, demands an equally

precise theoretical predictions.

It is imperative that the search for a signal from BSM scenarios at the LHC requires
same level of accuracy as the background processes. While there are significant amount
of works to obtain results, as precise as possible, in the processes like the Drell-Yan
production [34, 80, 168], the Higgs boson production in gluon fusion [42-44,57, 66,67,
69], the Higgs boson production in bottom quark annihilation [71, 81] and associated
production of the Higgs with a vector boson [82, 169] at the LHC, it is imperative that
competing BSM models are also available to the same accuracy. To this direction, one
of the essential ingredients for QCD corrections are the form factors. The gg — spin-
2 and gg — spin-2 form factors act as a principal building block for phenomenological
study and is at present available up to two-loop in QCD [52], while for many processes of
interest they are now available to the three-loop order [145,147,149,151,154,170]. On the
other hand, precise theoretical predictions for various observables up to NLO in QCD, put
stringent bounds [171-173] on the parameters of ADD and RS models. Also, inclusion of
higher order terms to the Born contributions, reduced the large uncertainties arising from
renormalization and factorization scales, evidently. The NLO QCD predictions based
on fixed order as well as parton shower improved in the MApDGraPHS_aAMC@NLO [174]
framework for di-final states [47, 49, 50, 175—-180] productions in the gravity mediated

models have already played crucial role in constraining the parameters of ADD and RS
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models. Also production of di-photon along with a jet through gravity mediated model
was presented in [181] at NLO accuracy. In [53], NNLO corrections for the graviton
production were obtained in the threshold limit. Recently some of us have computed the
full NNLO QCD contributions [54] to the production of a graviton which decays to a pair
of leptons. Graviton production along with a jet in gluon fusion has been computed in
[182] to improve these predictions beyond NNLO. As these corrections are only sensitive
to the tensorial interaction and not sensitive to the details of the model, these results are
applicable to production of any generic spin-2 resonance. Hence, in this chapter, we take
the first step towards going beyond NNLO for the resonant production of a generic spin-2
particle at the LHC, namely the computation of quark and gluon form factors at three-loop
level in pQCD with n light flavors. We report the first results on the threshold effects at
N3LO in the next chapter and demonstrate the importance of such corrections at the LHC

in the context of spin-2 resonance searches.

In addition to the phenomenological importance with respect to precise predictions of
some observable, form factors in QCD are of considerable theoretical interest in terms
of the factorization and universal nature of the singular structure. Studying the IR pole
structure and factorization properties of these IR singularities in multi-loop QCD ampli-
tudes with tensorial coupling to 3-loop order and to confirm the standard expectation of
QCD amplitudes [183—186] is an essential prerequisite. The spin-2 field being a tensor
of rank-2 is coupled to the energy-momentum tensor 7,,, which is a symmetric and con-
served quantity. The operator T, of QCD is finite [187], which would imply no UV
renormalization is required. Further T}, consists of gauge invariant terms and in addition
gauge dependent and ghost terms, we explicitly observe that to the three-loop order these
form factors are independent of the gauge dependent and ghost terms [187, 188], which
is an important check of the calculation. From a computational point of view three-loop
amplitudes with higher tensorial coupling is being attempted for the first time. At the
intermediate stages of the computation this leads to higher rank tensorial integrals result-

ing from more than 3000 three-loop Feynman amplitudes contributing to the gluon form
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factor alone. This computation again establishes the power of several state-of-the-art

techniques namely IBP and LI identities.

In the next section 5.3, we describe the effective Lagrangian. In section 5.4, after defining
the quark and gluon form factors, we present the computational details at three-loop level
followed by the results. The details of UV renormalization and universal structure of IR
poles are given in section 5.5 and section 5.6 respectively. In section 5.8, we study the
universality of the leading transcendental (LT) terms in both the quark and gluon form
factors by setting C4 = Cp = N and ny = N. Finally we conclude with our findings in

section 5.9.

5.2 The LED models

A generic spin-2 can arise from extension of supersymmetric models or models in TeV
scale gravity. We will concentrate in the second one, the gravity models with extra di-
mensions. These models were introduced mainly to address the hierarchy problem, the

large difference between the electro-weak scale and Planck scale.

Based on the string theory ideas, the first models of its kind was introduced in 1998
by Arkani-Hamed, Dimopolous and Dvali, later named as ADD model [163—165]. This
consists of the idea that gravity propagates in all dimensions while the SM is confined to a
3-dimensional brane. Another proposal came from Randall and Sundrum, namely the RS
model [166], where a single extra-dimension was considered in an Anti-deSitter (AdSs)

metric.

5.2.1 ADD model

We start by reviewing the conventional Kaluza-Klein (KK) scenario. To begin with, we

consider the space-time dimension d = 4 + n, where n, the extra spatial dimensions,
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are compactified over the scale R. The fundamental scale Mg, now, becomes different
from the 4-dimensional Planck scale Mp and can be closer to the electro-weak scale, thus
removing the hierarchy. Mp is no longer a relevant scale, rather can be related to Mj
through

M3 ~ M{PR". (5.1

On the other hand, the extra dimensions effects the basic electromagnetic theory, which
is already tested to high precision. To save this, one confines the SM to a 3-dimensional

brane, while gravity propagates in the d dimensions.

We will follow the formalism presented by Han, Lykken and Zhang (HLZ) [189]. The
d = 4 + n gravity is compactified on a n-dimensional torii with the scales set to R. To
obtain the self-interaction terms, Fierz-Pauli Lagrangian is considered. Since, our interest
lies in the phenomenological appearance of a generic spin 2, we do not discuss the details
regarding self-interaction. The information to collect, is that from the four-dimensional
perspective, the zero modes of the (4 + n)-dimensional graviton become the graviton, n
massless U(1) gauge bosons and n(n + 1)/2 massless scalar bosons, while the KK modes
in each level re-organize themselves to a massive spin-2 particle, (n — 1) massive vector
bosons and n(n — 1)/2 massive scalar bosons. We denote the KK modes by h’;,v where 7
is a d-dimensional vector with all positive components. The mass corresponding to each

mode is given by

An’it?
"= — (5.2)
The corresponding interaction Lagrangian then takes the following form
K o y
L=-3 Z T, (x) K (). (5.3)
=0

where x = /162G with G, the Newton constant in d = 4 + n dimension. T},

is the energy momentum tensor for the localized SM fields. Following HLZ [189], the
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. . uy .
propagator for the massive spin-2 states /" is

. | BHviPo
INYF(q) = & 5.4)
q° - mé + i€
where
g V O M A0 Y 0
By = (g,,p_ 7'q )(gm_ q'q )+(g,w_ 7'q )(gvp_ 7'q )
q.9 q.9 q.9 q.9
2 TpnY 0 0
d-1 q.9 q.9

with g being the spin-2 momentum. One can construct five polarization tensors and the

polarization sum can be obtained as

> enen = Buo - (5.6)

N

Since the KK states are almost degenerate in mass, the effective propagator can be ob-

tained after summing over the propagator with the following KK state density

R'm"™?

plmi) = m , 5.7

and the effective graviton operator can be expressed as

. 2 V00
AP (g) = lD(ZQ )Bj i (Q) (5.8)
q* —m; + i€
where
1
2y _
Qn—2Rn ) MS
= —(471)”/2F(n/2)|: — T+ 21(6) (59)
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with
n/2—-1 2% 2
I(—)=- —(—) ——1lo (——1) n = even
(n=1)/2 2k-1
1 Mg 1 Mg + QO
-y (% -1 ( ) = odd . 5.10
kZZIJZk—l(Q) 2% =) "7° >-10)

The coupling k suppresses the interaction of KK modes to the SM fields. However, the
collective effect of summing over large number of accessible KK modes compensates the
suppression, making the effective coupling large enough to have significant observable

effects.

5.2.2 RS model

The RS model contains only one spatial extra dimension (y) which is compactified on a
§1/7? orbifold with radius R. Two fixed points of the orbifold holds two 3-dimensional
branes: the one at y = 0 with positive tension is called the Planck brane and the other
one at y = R with negative tension is called the TeV brane. The 5-dimensional Einstein

equation provides a warped solution with the metric

ds* = e g dx'dx’ + R*dy* . (5.11)

This space is non-factorizable and have a constant negative curvature. K is the curvature
of this AdSs space-time and g, is the usual Minkowski metric. The exponential warp
factor can generate the hierarchical difference between Planck and electro-weak scales
for KR ~ O(10), thus avoiding the hierarchy problem. Further, the value of KR can be
stabilized without fine tuning by introducing [190, 191] a modulus field in the bulk and
minimizing its potential. As earlier, the graviton and the modulus field propagate in the
bulk, while the SM is constrained to the TeV brane and the projection of 5-dimensional

graviton in the 4-dimensional bulk generates the spectrum of KK modes. The zero mode
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is Mp suppressed and the excited modes are massive and only TeV suppressed. We denote

the massive KK modes by /" which interacts with the SM fields as follows

1 - en?(R © -
Liy ~ —=—T,(x) i) (x) + — T,,(x) R (x). (5.12)
AL 0 7R ; H
The mass of each /7" is given by
m, = x, KR (5.13)

with x, being the zeroes of the Bessel function J;(x). Evidently, except for the overall

warp factor, the Feynman rules [189, 192] are same for both ADD and RS model.

5.3 The effective Lagrangian

To describe the interaction of a generic spin-2 field with the SM fields, we consider the
following effective Lagrangian, written down in a gauge invariant way with denoting the
spin-2 field by #*” and the SM energy momentum tensor by 7},,. Since we are interested
only in the QCD corrections to processes involving spin-2 fields, we restrict ourselves to

the QCD part of 7, and the corresponding action reads [163-166] as
S=Ssu+Sh— g f d*x T2P(x) " (x), (5.14)

where Sg), is the SM action, S, is the kinetic energy part of the action corresponding to

spin-2 fields, « is a dimensionful coupling and T#QVCD is the energy momentum tensor of
QCD given by
TP = L F&F% — Lo 0P(ASF AL) + L(A%0,(07 A%) + A%,(@° A"
ny - _g/.lV QCD - upot v - Eg/,tv ( 1% o') + E( v /l( g') + " V( g'))

I — 2 . aAa — . aa - 3 H apa
+ 1970 — ig T ADY =9, +ig T ADy Y +¥y(9, — ig T ADY
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— . apa —a a abc ¢ b
—l/’( au + lgsT A#)'va] + a/tc ((9‘,6‘ - gsf Ayc )

+0,¢°(0,c" — gof AL, (5.15)

gs 1s the strong coupling constant and ¢ is the gauge fixing parameter. The 7¢ are genera-
tors and f*° are the structure constants of S U(3). Note that spin-2 fields couple to ghost

fields (c¢*) [193] as well in order to cancel unphysical degrees of freedom of gluon fields

(A9).

5.4 The form factors

The form factors are basic vertex functions, and are as such fundamental ingredients for
many precision calculations in QCD. They couple an external, color-neutral off-shell cur-
rent to a pair of partons. For the spin-2 case, the quark and gluon form factors can be
defined by sandwiching the energy-momentum tensor between on-shell quark and gluon

states respectively normalized by their respective Born amplitudes:
-~
MM,
(0 A% (0)
MM,

© Q2 n§ o~
Za?(/?) SeF (), i=4q.8 (5-16)
n=0

TAT,I'(QZ , 6)

where M; are the unrenormalized amplitudes computed in powers of the bare strong cou-

pling constant &, using dimensional regularization in d = 4 + € dimensions, that is

S 2\15
M(Q%e)= ) ! (%) STM"(e), (5.17)
n=0 H
where Q> = —2p; - p» and p,, p, are the momenta of external quark or gluon on-shell

states.

In [52], both one and two-loop form factors were presented in dimensional regularization
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and later on, they were used in [53] to compute the threshold corrections to Drell-Yan pro-
duction at the LHC in ADD and RS models to second order in strong coupling constant.

In the following, we present the third order correction to the form factors in QCD.

5.4.1 Computational procedure

This section is devoted to the description of the computational procedure that we follow
to obtain both the quark and gluon form factors of the energy momentum tensor to third
order in strong coupling constant using dimensional regularization. The relevant Feynman
diagrams are generated using QGRAF [86]. At third order alone, there are 3374 and 1072
number of Feynman diagrams for gluon and quark form factors respectively. The QGRAF
generated amplitudes are then converted into a suitable format using routines developed
using the symbolic manipulation program FORM [87]. Both group as well as Lorentz
indices are carefully handled to express the form factors in a suitable color basis involving
Casimir operators of S U(N) with the coefficients containing three-loop scalar integrals.
For the gluon form factor we have summed only the physical polarizations of the external
gluons using
(4 + ;P

D (i e (pry 5) = —g" + T (5.18)
s Pi-qi

where, p; is the i-gluon momentum and ¢; is the corresponding light-like momentum.
We choose ¢; = p, and g, = p; for simplicity. For the external spin-2 fields, we have
used the d dimensional polarization sum given in Eq. 5.6. We have used Feynman gauge

throughout.

At three-loop level, we find that the diagrams contributing to form factors can have at
most 9 independent propagators involving two external momenta p,, p, and three internal
loop momenta kj, k», k3, while the maximum number of scalar products that can appear
in the numerator of each diagram can be 12. Hence we need to increase the number

of propagators to 12 which allow us to classify all the three-loop diagrams into three
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different auxiliary topologies. We take the help of Reduze2 [93] for this purpose. The

topologies [151] that are used in our computation are given below

A D1, D5, D5,D12, D13, D23, Di.t, Diaz, Doty Doz, Dia, Diign
Ay Dy, Dy, D5, Dz, Dis, Doz, Dizay Diiny Doty Doy Diity Daan

A3 : Dl’DZ’ 2)3’ 1)12, Z)13’ D123’ Dl;laﬂl;u’ z)2;1»1)2;12’ z)3;1’ D3;12 (519)

where,
D=k, Dij= (ki — k)’ Dy = (ki — k; — k),

Di;j = (ki — Pj)z, Di;jl = (ki - Pj— Pl)z, Z)ij;l = (ki — kj - Pl)2 . (5.20)

The resulting integrals classified in terms of three topologies, are then reduced to a set
of master integrals by using a systematic approach that uses Integration by parts (IBP)
[89,90] and Lorentz invariant (LI) [194] identities. The IBP identities follow from the fact
that within dimensional regularization, the integrals are finite and well-behaved and hence
any integrand at the boundary must be zero. Following this, the generalization of Gauss

theorem implies the integral of the total derivative with respect to any loop momenta to

&'k, d'k; 8 I
f (W"'f (2n>da_k[(v-’nlD7’)_O’ 62D

where n; is an element of 7 = (ny,- - -, ny,) with n; € Z and D;s are propagators which

be zero, that is

depend on the loop and external momenta. The four vector v‘j‘ can be both loop and
external momenta. Performing differentiation on the left hand side and expressing the

scalar products of k; and p; linearly in terms of ©;’s, one obtains the IBP identities as

Z (li.](b,"l +ny, ..., bi,12 + l’l12) =0 (522)

1

where
d%k, d%ksy 1

JOm) = JGmy, - omo) = | g G [, D"

(5.23)
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with b; ; € {~1,0, 1} and g; are polynomial in n;. The LI identities follow from the fact that
the loop integrals are invariant under Lorentz transformations of the external momenta,

that is

) p
pip; (; Pk[v(rpi]) J(i) = 0. (5.24)

For the case of three-loop form factor, there are 15 IBP identities and 1 LI identity for
each integrand, and hence there are large number of equations for the whole system.
These equations can be solved to relate the large number of scalar integrals and express
them in terms of a set of fewer integrals which are the so called master integrals. To solve
this large system of equations, there are dedicated computer algebra tools like AIR [195],
FIRE [196], REDUZE [93, 197], LiteRed [91, 92] etc. We use the Mathematica based

package LiteRedV1.82 along with MintV1.1 [198].

We find that the form factors at three-loop level can be expressed in terms of 22 master
integrals. Following the same notation as of [151], the master integrals can be distin-
guished into three topological types: genuine three-loop integrals with vertex functions
(A;;), three-loop propagator integrals (B;;) and integrals which are product of one and

two-loop integrals (C;;). Defining a generic three-loop master integral as

| 'k (dk [ d%s 1

A i = —
i iy’ (27[)0{ (27T)d (27T)d 1_[ Dm’]
I

i=1,23 (5.25)

where D; is the j™ element of the set A;, we identify the resulting master integrals in our

computation with those given in [151] and they are listed' in Figure 5.1 and Figure 5.2.

The master integrals were computed in [90, 148, 150, 199-203] to relevant orders in € and
we have used them to complete our computation of the form factors up to three-loop level.
The electronic version of the results of both quark and gluon form factors in terms of the
master integrals A; ;, B; ; and C;; for arbitrary d is attached with the arXiv version. In

the next section, we present the three-loop results for both the form factors expanded in

"These figure have been taken from [151].
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Ce,1 = A1,011100100101 Cs,1 = A2,111100011101

Figure 5.1: Two-point and factorizable three-point three-loop master integrals.

powers of € along with already known one and two-loop results.

5.4.2 Results

In this section we present one, two and three-loop quark and gluon form factors after
expanding in powers of € to relevant order. The one and two-loop results completely

agree with [52] and the three-loop ones are new.

8 122 203 2879 7 37307 77
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A72 = A2,011011001101 A73 = A1,011011110100 A74 = A2,011110001101
% %
A75 = A2011011010101 Ag,1 = Az 01111011101
% %
Ag1 = A111111110110 Agp = Azp11111011101 Ag 4 = A2111011111100

Figure 5.2: Genuine three-loop master integrals with vertex function.
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where C4 = N, Cr = (N> = 1)/2N and n ¢ 18 the number of active quark flavors. Note
that the color factors that appear in the above form factors are the same ones that one
finds in the quark and gluon form factors [151] except in the Fg’(l) where there is an
additional term proportional to ny. This is simply because of the fact that the energy
momentum tensor contains both quark as well as gluon fields and its matrix element
between gluon states at one-loop level can have quark loop contribution giving rise to
explicit ny dependence. Beyond one-loop level, no new color structure is expected. In
the next section, we describe how these form factors can be renormalized up to three-loop
level through coupling constant renormalization. We then study the universal structure
of the IR poles in € through Sudakov’s KG equation up to three-loop level. It provides a

crucial check for our new results on the form factors.

5.5 Ultraviolet renormalization

Using the Eq. 2.7 and Eq. 2.12, we can express M; (Eq. 5.16) in powers of renormalized

a, with UV finite matrix elements ME")

M= (MO + M+ EMP + EMD + 0 532)
where,
MO = SO
MO = 2% A
i 'uIZe 1
2\€ 2
M2 = (&) #een (S
,UR :uR
2\ 5 2\€ 2\
(2] 5 en (2] s e o
'uR l‘lR #R

Using above equations, we can obtain the renormalized form factors F7 in terms of a.
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5.6 Infrared singularities and universal pole structure

The results on multi-parton amplitudes beyond LO in pQCD have not only played an im-
portant role in understanding the IR structure of the theory but also allowed us to success-
fully carry out various resummation programs for physical observables in the kinematic
regions where the fixed order perturbation theory breaks down. The most important one
along this line was the very successful proposal by Catani [183] (see also [184]) on one
and two-loop QCD amplitudes using the universal subtraction operators. In [144], for the
first time, the structure of single pole term in both quark and gluon form factors up to
two-loop level was unraveled. It was shown explicitly that the single pole can be written
as a linear combination of UV, collinear and soft anomalous dimensions. The fact that this
feature continues to hold even at three-loop level for the same form factors was observed
in [145]. The structure of the single pole term for the multiparton amplitudes was studied
in detail in [204,205]. Later on, the generalization of the proposal by Catani was achieved

by Becher and Neubert [185] and also by Gardi and Magnea [186] beyond two-loop.

We consider the generic solution to the KG integro-differential equation (Eq. 3.12) satis-
fied by the form factors and extract the cusp anomalous dimensions by comparing Eq. 3.22

with the form factors presented in the previous section. We find

Al = {4},
. 268 40
AN =CiCy {T - 8{2} + Ciny {_j} ;
: 490 1072 88 17642 110
Ag’l = Czc,%{ 3 - 9 42 + 353 + 542} + C,'CFI’lf {—T + 3253}
836 1604, 1124 , [ 16
+C,CAnf{ 77 + 9 3 }+C,nf (-

where C; = Cp fori = g and C; = C, for i = g. We find that they not only are maximally

non-abelian but also coincide with those that appear in the quark and gluon form factors
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which are available up to three-loop level in the literature [140, 141].

Ca

Al =
" Cr

—Z Al and A=Al i=q.g. (5.34)

Following Eq. 3.23, the same structure for G,"(¢) is also observed, and we extract B."

and £ from the form factors computed up to three-loop level. They read

11 2
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112 2080
} . (5.36)

40
R

We find that the above B." are identical to the ones that appear in quark and gluon form

factors of [145]:
B, =B,, i=q,8 n=123. (5.37)

Similar to cusp anomalous dimensions, fiT’i also satisfy the property of maximally non-
abelian and in addition, they coincide with those that appear in the quark and gluon form

factors which are available up to three-loop level in the literature [144],
T.g _ Ca T.q Ti _ gi . _
fre = C—fn and  fIM=f i=q,8 n=1,273. (5.38)
F

The UV anomalous dimensions are found to be identically zero due to the conservation

of QCD energy momentum tensor, i.e.,
Ya' =0. (5.39)

The universal behavior of IR poles in terms of the cusp (A’), collinear (B’) and soft ()
anomalous dimensions provides a crucial check on our computation. The remaining terms
namely g2"*’s in Eq. 3.23 can be extracted from the form factors and they are listed in

Appendix A.

5.7 Threshold approximated cross sections at N°LO
The availability of gl** enable us to obtain the threshold approximated partonic cross
sections for the production of a massive spin-2 resonance in quark and gluon initiated

process. Following the method described in chapter 3, we expand AST", in a perturbative
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series of a, as

[

ALY D) = ) ARAS G k) (5.40)

n=0

) : —1i,1 . =Ll
To obtain Ag", at N°LO, the only missing pieces were gT’1 and Q; . We obtained g3’
in [80] and this recent computation provides us the first one. Below, we present the

threshold approximated partonic cross sections up to three-loop level
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+n,C3( - TO) + nch(2—6) + log( ){C Oa( - 1550) + c3(768)

n mc;(@)} n log( ) {03(1024)}] n @4[0;(1,4( - %)

¥ nfcg(@) +log (;’—j {c3(1280)} | + Ds| c3(512)|. (5.48)
F

The numerical impact of these findings will be studied somewhere else.

5.8 Universal behavior of Leading Transcendental con-

tribution

The form factor of a scalar composite operator belonging to the stress-energy tensor
super-multiplet of conserved currents of N' = 4 super Yang-Mills (SYM) theory with
gauge group SU(N) was studied in the article [206] to three-loop level. In this theory, ob-
servation shows that scattering amplitudes can be expressed as a linear combinations of
polylogarithmic functions of uniform degree 2/ with constant coeflicients, where [/ is or-
der of the loop. In other words, the scattering amplitudes in N' = 4 SYM exhibit uniform

transcendentality unlike QCD loop amplitudes.

In addition to the above-mentioned interesting property exhibited by the scattering am-
plitudes in N' = 4 SYM, the authors of [206] have made an interesting observation in
the context of form factors, which is, the results of the quark and gluon form factors in
QCD can be related to the form factors of scalar composite operator in N-extended SYM
upon employing the identification [207] for the SU(N) color factors as C4 = Cr = N
and ny = NN. For N = 1 the LT part of the quark and gluon form factors in QCD
not only coincide with each other but also become identical to the form factors of scalar
composite operator computed in N' = 4 SYM, up to a normalization factor of 2'. This

holds true even for terms proportional to positive powers of € up to transcendentality 8
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(which is the highest order for which all three-loop master integrals are available [208]).
In the above-mentioned article [206], this observation has been made up to three-loop
level. This correspondence between the QCD form factors and that of the N = 4 SYM
is inspired by the well known leading transcendentality principle [207,209,210] which
relates anomalous dimensions of the twist two operators in N' = 4 SYM to the LT terms
of such operators computed in QCD. However, unlike the case for N' = 1, the quark and
gluon form factors in QCD get additional contributions arising from diagrams with scalar
particles in N = 2 and N = 4 SYM [210]. Having learned these interesting behavior
of the form factors and anomalous dimensions, we are led to examine the LT terms of
the form factors ?A"gT and ?’A"qT appearing in the context of spin-2. To our surprise, we find
the similar behavior, namely, upon employing the same substitution of the color factors
for N = 1, the LT terms of these form factors are not only identical to each other but
also coincide with the LT terms of the QCD form factors as well as with the LT terms
of the scalar form factors in N = 4 SYM [206]. We find that this is indeed true even
for positive powers of € up to three-loop level providing another evidence for the leading

transcendentality principle.

5.9 Conclusions

We have presented both quark-antiquark and gluon-gluon form factors of the spin-2 fields
that couple to fields of SU(N) gauge theory with n; light flavors. We have used state-
of-the-art methods to perform this computation efficiently as the number of Feynman
diagrams involved is quite large compared to other known form factors. We have used
IBP and LI identities to express the form factors in terms of 22 master integrals. We have
presented the form factors in terms of these master integrals for arbitrary d as well as in
powers of € = d — 4 to appropriate order, thanks to the availability of the master integrals
to relevant orders in € for further study. These form factors are important components to

the scattering cross sections involving spin-2 fields beyond LO in QCD. We have shown
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that these form factors do satisfy Sudakov integro-differential equation and hence exhibit
identical IR structure of other form factors such as those appearing in electro-weak vector
boson and Higgs productions up to three-loop level. We have also shown these factors
do not require overall renormalization due to the conservation property of the energy
momentum tensor. We also find striking similarities between the LT terms of the form
factors presented here and those of the quark and gluon form factors in QCD as well as
the scalar form factor in N = 4 SYM upon employing appropriate substitution of the
SU(N) color factors. Our results will be useful in improving the perturbative predictions
of spin-2 resonance production beyond NNLO level at the LHC where searches for such

particles are already underway with the upgraded energy and luminosity.



Pseudo-scalar Higgs Boson
Production at Threshold N°LO and
N3LL QCD

In this Chapter we present the first results on the production of pseudo-scalar Higgs boson
through gluon fusion at the LHC to N*LO in QCD taking into account only soft gluon
effects. We have considered the effective theory where the pseudo-scalar Higgs boson
couples with the gluons in the large top quark mass limit. The recent computation of
the three-loop pseudo-scalar Higgs boson form factor and the third order universal soft
distribution function in QCD enable us to achieve this. Along with the fixed order results,
we also present the process dependent resummation coeflicient for threshold resummation
to N°LL in QCD. Finally, we study the phenomenological impact of these threshold N*°LO
corrections to pseudo-scalar Higgs boson production at the LHC and their role to reduce

the renormalization scale dependence.

6.1 Introduction

The spectacular discovery of the Higgs boson [18, 19] at the LHC has put the SM of
elementary particles as well as the theory of electro-weak symmetry breaking [4—8] in the

firm footing. The consistency of the measured decay rates of the Higgs boson to a pair of
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vector bosons namely W*W~, ZZ and fermions bb, 7T with the precise predictions of the
SM for the measured Higgs boson mass of 125 GeV within the experimental uncertainty
[211,212] makes this discovery very robust. In addition, there is a strong evidence that
the discovered Higgs boson has spin zero and even parity [213,214]. The ongoing 13 TeV
run at LHC will indeed provide further scope to study the properties of the Higgs boson

in great detail.

While all the predictions of the SM has been tested experimentally, making it a com-
plete theory, the model fails to explain phenomena like baryon asymmetry in the Uni-
verse, existence of dark matter, neutrino mass efc. There are several extensions of the
SM, motivated to address these issues and the minimal version of Supersymmetric Stan-
dard Model (MSSM) [215] is one of the most elegant one. The Higgs sector of it is
comprised of a pair of Higgs doublets which after symmetry breaking gives two CP even
Higgs bosons h, H, one CP odd (pseudo-scalar) Higgs boson (A) and two charged Higgs
bosons H* [216-223] . The predicted upper bound on the mass of the lightest Higgs bo-
son (h) up to three-loop level is consistent [224-226] with the recently observed Higgs
boson at the LHC. There are continuous efforts to test the predictions of MSSM or its
variants and the second phase of the LHC will surely shed more light on them. One of the
interesting possibilities is to look for the CP odd Higgs boson in the gluon fusion through
heavy fermions as its coupling is appreciable in the small and moderate tan 8 region, the
ratio of vacuum expectation values v;,i = 1,2. In addition, large gluon flux can boost the

Cross section.

Since, the production mechanism of the pseudo-scalar Higgs boson of mass my4 in gluon
fusion is through heavy quarks, besides tan 3, the cross section is proportional to square
of the strong coupling constant. Similar to the scalar Higgs boson in the SM, the LO
prediction of the pseudo-scalar Higgs boson production at the LHC suffers from theo-
retical uncertainties arising from the unphysical scales of the theory. In particular, large

uncertainties come due to the renormalization scale ug, introduced in the strong coupling
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constant renormalization and mild uncertainties arise due to the factorization scale ur in
the PDFs. Predictions based on one-loop pQCD corrections [39,227-229] reduce these
uncertainties (in the conventional range with the central scale u = m,/2 and m, = 200
GeV) from about 48% to 35% while increasing the LO cross section substantially, by as
large as 67%. To go beyond NLO, following the approach introduced for the scalar Higgs
boson in the SM, one introduces an effective theory considering large top quark mass
limit. Such an approach [38,39], in the case of scalar Higgs boson production turned out
to be the most successful one as the finite quark mass effects were found to be within
1% [230-234] of the effective theory output [42—44] at NNLO level. For the production
of pseudo-scalar Higgs boson at the hadron colliders, up to NNLO pQCD predictions are
available both in the effective theory [44,55,56], as well as considering the finite mass
effect of the top quark [235,236]. The small contributions from the finite mass effect of
the top quark, again, justifies the validity of the effective theory approach. In the effective
theory, for the pseudo-scalar Higgs boson, the NNLO correction increases the NLO cross
section by about 15% and reduces the scale uncertainties to about 15%. Due to large
gluon flux at the threshold, namely when m, approaches to the partonic center of mass
energy, the cross section is dominated by the presence of soft gluon contributions. These
contributions often can spoil the reliability of the predictions based on fixed order pertur-
bative computations. Resummation of large logarithms, resulting from soft gluons, to all
orders in the perturbation theory solves this problem. The systematic predictions based
on the NNLL resummed result [58—65,70] demonstrate the reliability of the approach and

also reduce the scale uncertainties.

A complete calculation at NNLO [42-44], leading logarithms at N°LO in the threshold
limit [59—63] and NNLL soft gluon resummation [58] for production of the scalar Higgs
boson in gluon fusion are known for more than a decade. Recently there have been series
of works on predicting inclusive scalar Higgs boson production in gluon fusion beyond
this level in pQCD. The computation to obtain the full threshold approximated cross sec-

tion [66] i.e. the missing (1 — z) contribution at N*LO level, was the first among them.
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This was confirmed independently in [67]. Later, the sub-leading collinear logarithms
were computed in [68,69]. A milestone in this direction was recently achieved by Anas-
tasiou et. al. who have accomplished the complete N*LO prediction [57] of the scalar
Higgs boson production through gluon fusion at the hadron colliders in the effective the-
ory. These third order corrections increase the cross section by a few percent, about 2%
and reduce the scale uncertainty by about 2%. Using these predictions, the soft gluon
resummed results are obtained at N°LL level in [168,237]. In [238], the authors have per-
formed resummation in soft-collinear effective theory (SCET) approach for the first time
for the scalar Higgs boson production at N°LL. We also note that the three-loop virtual
corrections are already available in [239] considering the finite top mass effects and the

full result is yet to be computed.

While the next step in the wish list is to obtain the complete N°LO predictions for produc-
tion of the pseudo-scalar Higgs boson in gluon fusion, the first task in this direction is to
obtain the threshold enhanced cross section at N°LO level. One of the crucial ingredients
is the form factor of the effective composite operators that couple to the pseudo-scalar
Higgs boson, computed between partonic states. One and two-loop results for them be-
tween gluon states were computed for NNLO production cross section in [55, 56, 144].
The analytic expressions up to two-loop level can be found in [144], computed consid-
ering the space-time dimension d = 4 + €. Threshold corrections to production of the
pseudo-scalar Higgs boson at N°LO level requires the knowledge of the form factors up
to three-loop level. Also, one and two-loop corrections are required to desired accuracy
in €, namely up to € for one-loop and up to € at two-loop. In [95], we obtained the
three-loop form factors of the effective composite operators between quark and gluon
states along with the lower order ones to desired accuracy in €. In the present Chapter we
will describe how threshold corrections at N°LO level can be obtained from the formal-
ism developed in [62, 63] and discussed in Chapter 3 using the available information on
recently computed three-loop form factor of the pseudo-scalar Higgs boson [95], the uni-

versal soft-collinear distribution [80] and operator renormalization constant [95,240,241]
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and the mass factorization kernels [140, 141] known to three-loop level. In addition, we
compute third order corrections to the N-independent part of the resummed cross sec-
tion [133, 134] using our formalism [62,63]. We also present the numerical impact of our

findings with a brief conclusion.

The underlying effective theory is discussed in Section 6.2. This is followed by a brief
description of the framework of the computation in Section 6.3. In Section 6.4 we present
the analytic expressions of our findings up to N°LO level in pQCD. In Section 6.5, the
N-independent parts of the threshold resummed cross section in Mellin space have been
presented up to third order in pQCD. Before making concluding remarks, in Section 6.6

we demonstrate the numerical implications of the new results.

6.2 The effective Lagrangian

The pseudo-scalar Higgs boson couples to gluons only indirectly through a virtual heavy
quark loop which can be integrated out in the infinite quark mass limit. The effective
Lagrangian [242] describing the interaction between the pseudo-scalar Higgs boson y*

and QCD particles in the limit of infinite top quark mass, is given by
" 1 1
Ly =x"0[ - 5C606(x) = 5C,0,(x)] (6.1)
where the composite operators are defined as
O6(x) = G Gupy = €4peGPGET,  05(x) = 0, (V' ysY) - (6.2)

G, and y represent gluonic field strength tensor and quark field, respectively. Similar
to the scalar Higgs boson in the SM, the Wilson coefficients C; and C; of these two
operators appear as a result of integrating out the heavy quark loop. The Adler-Bardeen

theorem [243] prevents Cg to receive any QCD corrections beyond one-loop, whereas C;



114 Pseudo-scalar Higgs Boson Production at Threshold N°LO and N°*LL QCD

starts only at second order in a;. These Wilson coeflicients [242] are given by

1
Cs = —aSZ%G;,cot,B,

2
Mg 2,(2)
—2)+61SCJ +

m;

3
C] = - [aSCF (E —3In . CG . (63)

Gr is the Fermi constant and cot is the mixing angle in the Two-Higgs-Doublet model.
m, symbolizes the mass of of the top quark. To define 5, we have followed the prescrip-

tion in dimensional regularization, introduced by ’t Hooft and Veltman through [114]

1
s =i— 8V1V2V3V47 )’ 7 7 (64)

4

Here, &7 is the Levi-Civita tensor and all the Lorentz indices are d-dimensional [240].

The renormalization of the strong coupling constant, as in Eq. 2.7, is through

Z—js = L Z(a1)) (6.5)

0 R

The renormalization constant Z(a,(uz)) up to O(a?}) is presented in Eq. 2.12.

6.3 Threshold corrections

The inclusive cross section for the production of a colorless pseudo-scalar in gluon fusion

at the hadron colliders can be computed using

O'A(T mA)_O'A(O)(,UR) Z fdy D4 (y, :uF)Aab( mAn“RuuF) (6.6)

a.b=q.4.8

where, the Born cross section at the parton level including the finite top quark mass de-

pendence is given by

7T\/_F2

o O@uz) = scot’B [ra f(Ta)l’. (6.7)
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Here
4m?
Ty = 2’ (6.8)
ny
and the function f(7,) is given by
arcsinzx/% T2 1,
fa) = . (6.9
—}1 In=Y_—TA T4 < 1.
1+ Vl —TA
@, is the parton flux and it reads
2 'dx 2 Y 2
Qo) = [ e (2 (6.10)
y

where, f, and f, are the PDFs of the initial state partons a and b, renormalized at the
factorization scale pif. A%, (f, ms, i, ,u%) is the partonic cross section, for the sub-process
initiated by the partons a and b, computed after performing the overall operator UV renor-
malization at scale uz and mass factorization at a scale up. As earlier, the scaling variable

7 is defined as ¢*/s with ¢* = m3.

The aim of this chapter is to study in detail the impact of the soft gluon contributions to
the pseudo-scalar Higgs boson production cross section at hadron colliders. We obtain
the IR safe contribution by adding the soft part of the cross section to the UV renormal-
ized virtual part and performing mass factorization using appropriate counter terms. This
combination is often called the SV cross section whereas the rest is known as hard part.
Following the formalism presented in Chapter 3, specially Eq. 3.3, we find that the SV
cross section A/;"f is constructed from the form factors F44(a,, Q?, u?, €) with Q* = —¢?,
the overall operator UV renormalization constant Z*#(a;, uz, 2, €), the soft distribution
functions ®*4(a,, g%, 42, z, €) arising from the real radiations in the partonic sub-processes
and the mass factorization kernels I'yz(a;, ,u%,,uz,z, €), as presented in Eq. 3.4. The cor-
responding form factors and overall operator renormalization constant up to three-loop

level were presented in [94], while the mass factorization kernels were known [140, 141]
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up to three-loop level and the soft distribution functions were obtained to required accu-
racy in [80]. With the availability of the required components, we present the threshold

approximated cross section at third order in pQCD in the next section.

6.4 SV cross sections

In this section, we present our findings of the SV cross section at N°LO along with the

results of previous orders. Expanding the SV cross section A/;’f,’ in powers of a,, we obtain
NSV (e, @ o pi3) = ) @A (@, 0 i i) 6.11)

i=0

where,

A = AMSYV)6(1 = 2) + Z ALY

j

Here, we present the results of the pseudo-scalar Higgs boson production cross section up

to N°LO level for the choices of the scale u% = % for which the Eq. 6.11 reads

oo

AV ) = ) d( PN (@ ). (6.12)

i=0

with the following A%V (z, g% u2.):

AyE? =61 -2), (6.13)
AYE! = 5(1 - z)[CA(8 ; 84“2)] ; Z)o[log (#i) CA( )] LD [CA(16)] (6.14)
; nfCF( - % 162 + 1210g(;i))+ log(/i) {Cj;( - 93—2 + 15245 — ?42)

+ nfCA(23—O + 1—6§2)} + log (ZZ) { ( 32{2)}] [ j( 12;6 + 31245

F
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The SV cross section up to NNLO are in agreement with the existing ones, computed in

the article [44,55,56]. The result at N°LO i.e. A?§’3 is the new one.
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6.5 Threshold resummation

The computation of the fixed order results, in power series expansion of the strong cou-
pling constant a;, has already reached a milestone with spectacular accuracy. However, in
certain cases, it becomes necessary to resum the dominant contributions to all orders in a,
to achieve more reliable predictions and to reduce the scale uncertainties significantly. In
case of threshold approximations, due to soft gluon emission, the fixed order corrections
in pQCD may yield large threshold logarithms of the kind D;, defined in Eq. 3.1. Hence
we must resum these logarithmic contributions to all orders in a,. The resummation of
these so-called Sudakov logarithms is usually pursued in Mellin space using the formal-
ism developed in [133, 134,244,245]. Another approach is to utilize the framework of

SCET [246-252]. Here, we consider the Mellin space formalism.

6.5.1 Mellin space prescription

Under this prescription, the threshold resummation is performed in Mellin-N space where
the N-th order Mellin moment is defined with respect to the partonic scaling variable z. In
Mellin space, the threshold limit z — 1 corresponds to N — oo and the plus distributions
D;, Eq. 3.1, take the form In"!' N. These logarithmic contributions are evaluated to all

orders by performing the threshold resummation through [133, 134,244,245]

NN i 17) = ™G i ) AN () - (6.17)

The component C?’th depends on both the initial as well as final state particles, though it
is independent of the variable N. On the other hand, the remaining part A, 5 does not care
about the details of the final state particle, it only depends on the initial state partons and
the variable N. Being independent of the nature of the final state, A, y can be considered

as a universal quantity which is same for any operator. In addition, it is investigated in
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the articles [133, 134] that it arises solely from the soft parton radiation and it resums all
the perturbative contributions g’ In" N (m > 0) to all orders. Our goal is to calculate the
threshold resummation factor C?’th which encapsulates all the remaining N-independent
contributions to the resummed partonic cross section 6.17. Below, we demonstrate the
prescription based on our formalism to calculate this quantity C?’th order by order in

perturbation theory.

In the article [63], it was shown how the soft distribution functions ®*¢(= ®¥) captures
all the features of the N-space resummation. In this section, we discuss that prescription

briefly in the present context. Using the well known identity

= la-2]" = o -0 (%Z (- Z>2]j§)+ ’ @19

we can express the soft distribution function as

1-z2 A2

2
R
+6(1-2) )

n=1

q)A,g _ [L{ f‘] (1-2) d_/leg (as(/lz)) i EA,g (as(qZ(l _ Z)Z), 6) }J
u

4
2\"5 o 2\"5

q n3A.g.n 1 AN IJR n8"

=1 SIi¢p™*"(e) +|—— all|—=| S!K (e 6.19
(uz) S (1—Z)+,,Z‘ S(/ﬂ) K9 1)
where, A¢ is the cusp anomalous dimension corresponding to gluonic operator. All the
poles in € are contained within K® and the finite terms are dumped into EA’g. The compo-
nents Eg’n(e) are defined through the expansion of K’in powers of a; as in Eq. 3.32. The
identification of the first plus distribution part of ®*¢, Eq. 6.19, with the factor contribut-

ing to the process independent Ag,N(qz) has been discussed in [63] which reads

Aex = exp [ fo 1 dZZNI_I_‘Zl{z [ o L4 () + 1 (g1 - ) }] (6.20)
q

with

D* (ay(q*(1 = 2))) = 2G" (ax(@*(1 = 2)), €) leco - (6.21)
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In the above expression, the superscript A has been omitted to emphasize the universal
nature of these quantities. The remaining part of the Eq. 6.19 along with the other parts,
namely, form factor, operator renormalization constant and mass factorization kernel in

Eq. 3.5 contribute to Cg’th. Expanding this in powers of a, as

&J

Cit =1+ aCat (6.22)

we determine Cz’;.h up to three-loop (j = 3) order which are provided below (with the

choice p = u2 = ¢%):

M = C’A{S + 842},
404 1112,
3 779

1 2
N Cpnf{ - % n 12111(51 )+ 16{3}

t

Ath _ 2
cr=caf 5

82 8}
3

+128 - —43} + Cang{ -5 - —52 -3¢

. 1498 40 32, 224 (457
C?:;h :nfcg){ }+Can{ 9 T 9T Bﬁ {3}+CF'rLf{T + 2083
. 113366 10888 17192 , 584 464 808
_320§S}+CA"’“{_ ST el Lt etz e 52{”755}
114568 137756 4468 , 32 . 80308 616
+C§‘{ I TR I T Gl S c i S SRS
| 3476 6914 1696 608 , 688
§5}+CAnf{ 31 — 31 2 — 45 {3}+CACan{— 1797
2\ 4160 7 176 1856
+961n(q ) §2+96ln( )g 22 200 19204
m? 9 m? 45
+ 16045}. (6.23)

The above new result of C?’;h along with the universal factor A, y provide the threshold
resummed cross section of the pseudo-scalar Higgs boson production at N°LL accuracy.
The more elaborate discussion on this prescription to perform threshold resummation is

presented later in [253].
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6.6 Numerical impact of SV cross section

In this section, we present our findings on the numerical impact of threshold N*LO pre-
dictions in QCD for the production of a pseudo-scalar Higgs boson at the LHC and also
make comparison with the corresponding results for the SM Higgs boson. While we have
all the ingredients up to three-loop level, the one of the Wilson coefficients, namely, C(Jz) is
known only to two-loop level. Note that Cg is exact due to Adler-Bardeen theorem [243].
Due to the unavailability of C(Jz) in the literature, we discuss the impact of missing three-
loop contribution later on in this section by varying this quantity. As we are interested in
quantifying the QCD effects, we assume that pseudo-scalar Higgs boson couples only to
top quarks. Hence, the dominant contribution resulting from bottom quark initiated pro-
cesses can be included in a systematic way in our numerical study but we do not perform
it here. Moreover, our predictions are based on the effective theory approach where the
top quarks are integrated out and we have only light quarks. Like in the case of predic-
tions for the scalar Higgs boson production in the effective theory, for the pseudo-scalar
Higgs boson production we multiply the born cross section computed using the finite top
mass (m, = 172.5 GeV) with higher orders which are obtained in the effective theory.
Without loss of generality, we normalize the cross section by cot’8. The mass of the
pseudo-scalar Higgs boson is taken to be ms = 200 GeV. We use MSTW2008 [161] PDFs
throughout where the LO, NLO and NNLO parton level cross sections are convoluted
with the corresponding MSTW22081lo, MSTW2008nlo and MSTW2008nnlo PDFs while
for N°LOgy cross sections we use MSTW2008nnlo PDFs. The strong coupling constant is
provided by the respective PDFs from LHAPDF with a (m;) = 0.1394(LO), 0.12018(NLO)
and 0.11707(NNLO).

To estimate the impact of QCD corrections, we define the K-factors as

NLO NNLO 0_N3 LOsy

g K¥=2___ (6.24)

I _
K= oL0”’ oLo oLo
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In Figure 6.1, for LHC13, we plot the pseudo-scalar Higgs boson production cross section
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Figure 6.1: Pseudo-scalar Higgs boson production cross section (left panel) for LHC13
and the corresponding K-factors (right panel). The observed spike at 345 GeV indi-
cates the top quark pair threshold region.
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Figure 6.2: Same as Figure 6.1 but for smaller values of m,.

as a function of its mass my,. Since we retain the dependence on the m, at the born level,
beyond the top pair threshold (4 > 1), due to change in the functional dependence of
74 one finds a spike at 2m;, (left panel). We note here that the effective theory (EFT)
formalism formally holds only for the pseudo scalar masses up to top pair threshold.
However, from the knowledge of the QCD corrections to Higgs boson production up to
NNLO, we notice that below the top pair threshold, the difference between the results of

EFT and finite top contributions is about 5% and is even smaller at NNLO, about 1%. We
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assumed the same to hold in the QCD corrections for pseudo scalar production for scalar
masses above the top pair threshold. The corresponding K-factors are given in the right
panel and are in general found to increase with m,. The NLO correction enhances the
LO predictions by as much as 100% for m, = 1 TeV, whereas the NNLO correction adds
about an additional 45%. On the other hand the N?LOgy correction is found to be about
1.5% of LO for small mass region m, < 300 GeV and for higher m, values the correction
at the N*LOgy level becomes even smaller, about 0.3% for m, = 1 TeV. In either case,
these N°LOgy effects show a convergence of the perturbation series. In Figure 6.2, we
present similar results but only for pseudo-scalar masses below the top pair threshold

where the effective theory approximation works very well.
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Figure 6.3: Pseudo-scalar Higgs boson production cross sections as a function of VS
(left panel) and the corresponding K-factors (right panel).

In Figure 6.3, we present the cross sections as a function of the center of mass energy V.S
of the incoming protons at the LHC. The increase in the cross sections (left panel) with
VS is simply because of the increase in the corresponding parton fluxes for any given
my. On the contrary, the corresponding K-factors (right panel) increase with decreasing
VS for fixed m,. A similar pattern is shown both in Figure 6.1 & Figure 6.2 where the
K-factors increase with m, for a given VS. The guiding principle for the behavior of the
K-factors in these two cases is the same, namely, as m, approaches VS, the cross sections

are dominated by large soft gluon effects.
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SM Higgs Pseudo-scalar
KD [K? [ K® [ KD [K? [ KO
7 1.83 | 231|244 | 1.84 | 2.34 | 2.37
8 1.79 | 2.27 | 240 | 1.81 | 2.29 | 2.33
10 1.74 | 2.19 | 2.33 | 1.76 | 2.22 | 2.26
13 1.68 | 2.10 | 2.24 | 1.69 | 2.13 | 2.18
14 1.66 | 2.08 | 2.22 | 1.67 | 2.10 | 2.16

VS TeV

Table 6.1: K-factors for the scalar and pseudo-scalar Higgs boson production cross sec-
tions up to N°*LOgy for different energies at LHC. Here, my = my = 125GeV.

The QCD corrections to pseudo-scalar Higgs boson production are found to be similar
to those of the SM Higgs production due to universal IR structure of the gluon initiated
processes. We give a numerical comparison between their K-factors at various orders. We
take my = my = 125 GeV and ignore bottom as well as other light quarks and electro-
weak effects for both the cases. Although the full N°LO QCD corrections are already
available for the SM Higgs boson, for comparison we take into account only the N*LOgy.
Table 6.1 contains the K-factors, defined in Eq. 6.24 up to N3LOgy in QCD for both
Higgs and pseudo-scalar Higgs boson as a function of VS . For this mass region, the QCD
corrections are positive and hence the K-factors increase with the order in the perturbation
theory. Moreover, these K-factors, following the line of argument given before, are found
to decrease with VS but they are identical in both the cases. The difference between the
Higgs and the pseudo-scalar Higgs boson cross sections in their respective K-factors is
noticed at the second decimal place only. At three-loop level, K is found to be around

2.4(2.2) for 7(14) TeV case.

SM Higgs Pseudo-scalar
LO [ NLO | NNLO | N°LOsy | LO | NLO | NNLO [ N°LOgy
124 | 20.32 | 34.08 | 42.76 | 45.60 | 47.02 | 79.46 | 100.03 | 102.54
125 | 20.01 | 33.58 | 42.13 | 4492 | 4632|7835 | 98.61 | 101.06
126 | 19.70 | 33.10 | 41.51 4426 | 45.63 | 77.26 | 97.22 | 99.62

Mass

Table 6.2: Scalar and pseudo-scalar Higgs boson cross sections up to N°LOgy for LHC13.

The tiny difference between them can be attributed to the presence of an additional oper-

ator present in the effective interaction, namely O, which along with the matching coef-
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ficient formally enters from NNLO onwards for the gluon initiated processes. For quark
anti-quark initiated processes, this contribution vanishes as the quark flavors are mass-
less. The gluon initiated processes involving only O, can contribute at N*LO and beyond.
However, the interference effects of Og and O, will show up in the gluon initiated pro-
cesses at NNLO. Thus, the operator O, has non-zero contributions at the lowest order
namely at two-loop level. However, the presence of such an interference contribution is
found to be very small and is the main difference between the SM Higgs and the pseudo-
scalar Higgs boson contribution. The QCD corrections through soft and collinear gluon
emissions for this interference contribution will be of even higher order and hence will
contribute at the three-loop level and beyond. In Table 6.2, we present the Higgs and
pseudo-scalar Higgs boson production cross sections up to N°LOsy as a function of the
scalar mass around 125 GeV. The pseudo-scalar Higgs boson cross section is about twice
as big as that of the Higgs boson and the convergence of perturbation series is good and

the K-factors are roughly the same for both the cases.

We have also studied the impact of missing three-loop contribution to C; i.e. C(Jz). At
higher orders starting from N°LOgy onwards, the second term C(JZ) in the Wilson coeffi-
cient C,; can given non-zero contribution. To estimate the numerical impact of this term,

we assume the following form of C(Jz) as

2 2
22 pinEE |, (6.25)

C? =laln
n; n;

and vary the parameters a, b and c in the range [—10, 10]. We found that the contribution
of such a C&Z) term changes the cross sections only at the third decimal place and hence

we ignore its contribution in the rest of our phenomenological study.

Since the predictions are sensitive to the choice of parton density functions, we have es-
timated the uncertainty resulting from them by choosing the central fit for various well
known PDF sets such ABM11 [254], CT10 [255], MSTW2008 [161] and NNPDF23 [256].

For N®*LOgy cross sections, however, we use NNLO PDF sets. The corresponding strong
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SM Higgs Pseudo-scalar
NLO \ NNLO \ N°LOsy | NLO \ NNLO \ N°LOsy
ABMI11 33.19 | 39.59 | 4199 | 77.42| 92.66 | 94.64
CT10 3179 | 41.84 | 44.67 | 74.15 | 97.94 | 100.44
MSTW2008 | 33.59 | 42.13 | 4492 | 7835 | 98.61 | 101.06
NNPDF 23 | 33.55 | 43.01 45.87 | 78.26 | 100.70 | 103.19

PDF set

Table 6.3: PDF uncertainties in the scalar and pseudo-scalar Higgs boson production cross
sections up to N*LOgy for LHC13 and for my = my = 125GeV.

coupling constant is directly taken from the LHAPDF [257]. In Table 6.3, we present
the SM Higgs boson and pseudo-scalar Higgs boson production cross sections at NLO,
NNLO and N3LOgy for LHC13. We find that for NLO, CT10 gives lowest cross section
while MSTW2008 gives highest, whereas for NNLO and N°LOgy, ABM11 gives lowest
and NNPDF23 gives highest. The percentage uncertainty arising from PDF sets at any or-

o2 /o4 %100 where, o4

min min max

der is defined as (o4

max

and O"::lin are the highest and lowest
cross sections at any order obtained from the PDFs considered, respectively. This PDF
uncertainties in the case of Higgs boson cross sections are about 5.7% at NLO, 8.6% at
NNLO and 9.2% at N°LOgy. For pseudo-scalar Higgs boson production the cross sections
are approximately twice the Higgs cross sections, but the percentage of PDF uncertainties

are almost the same.

The SV corrections give a rough estimate of the fixed order (FO) QCD corrections and
are often useful in absence of the latter. However, the relative contribution of these SV
corrections to the full FO results crucially depends on the kinematic region and in some
cases on the process under study. For the SM Higgs or pseudo-scalar Higgs boson with a
mass of about 125 GeV, it is far from the threshold region 7 = m%,/S — 1 for VS =13
TeV. Since, the parton fluxes corresponding to this mass region are very high, apart from
the threshold logarithms the contributions of the regular terms as well as of other sub-
processes present in the FO corrections are expected to be reasonably very high. For
Higgs or pseudo-scalar Higgs boson, the prediction at NLOgy level differs from the LO by

only a few percent whereas the regular terms at NLO contribute significantly and increase
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LO prediction by about 70%. Similar is the case even at NNLO. Thus the SV corrections
poorly estimate the FO ones, however, if we redefine the hadron level cross sections
without affecting the total cross sections in such a way that the parton fluxes peak near the
threshold region [66, 83,258], then the SV contributions can be shown to dominate over
the regular ones. This is due to arbitrariness involved in splitting the parton level cross
section in terms of threshold enhanced and regular ones. Using a regular function G(z),

we can write the hadronic cross section as

L A (3)
@) =ot® Y f dy G (—) D(y) > (6.26)
ab=q.q.4 7" Y G (5)
where A(z)/G(z) can be decomposed as
A@R)/G(z) = AV (2) + A"(2) (6.27)

In the above equation the ASY is independent of G(z) (if lim,_,; G(z) — 1) and contains
only distributions, whereas the hard part A" is modified due to G(z). Hence the SV part
of the cross section at the hadron level depends on the choice of G(z). For the peculiar
choice G(z) = Z%, the ASY dominates over A" in such a way that almost the entire
NLO and NNLO corrections (Eq. 6.26) results from ASY alone. As was noted earlier
G(z) = 1 corresponds to the standard SV contribution. Note that the flux @, is modified
to (Dfa‘}fd(y) = @,,(y)G(7/y) which is responsible for this behavior. We may denote the SV
cross sections thus obtained with these modified fluxes as NLOy,), NNLO,) and N3LO(SV)
while those obtained with the normal fluxes as NLO,,, NNLO,, and N°LOy,. In Figure
6.4, we depict the comparison between the SV cross sections obtained from the modified
parton fluxes using G(z) = z* and the normal fixed order results that are obtained from the
standard parton fluxes, for both the SM Higgs boson (left panel) and the pseudo-scalar
Higgs boson (right panel). We notice that the SV results are significantly closer to the
corresponding fixed order ones. Incidentally, this agreement is good for NLO as well

as for NNLO where different sub-processes appear, and also for several values of VS
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Figure 6.4: Modified soft-plus-virtual vs fixed order results for scalar and pseudo-
scalar Higgs boson production cross sections for different energies at LHC.

where the integration range over the parton fluxes is different. While this could be purely
accidental, this good agreement might hint some subtle aspect hidden and might be useful

in the phenomenology.

Motivated by the above observation, one can convolute the perturbative coefficients A(s3\)/
with the modified parton fluxes ®7°4(y) for the choice of G(z) = z* to get N’LO(, which
could approximate the full N°LO result. This way, we present in Figure 6.4, the SV
corrections obtained using G(z) = 1 and G(z) = z* for Higgs as well as pseudo-scalar

Higgs boson productions.

Next, we present the scale (ug, pr) uncertainties up to N°LOgy in Figure 6.5 for the choice
of my = 200 GeV. In the rest of our numerical analysis for studying the scale uncertain-
ties, we simply use the modified parton fluxes for the choice G(z) = z* at three-loop level.
In the left panel, we vary the renormalization scale ug between my,/4 and 4my, keeping
ur = my fixed. Unlike the Drell-Yan process, for the pseudo-scalar Higgs boson produc-
tion the renormalization scale uy enters even at LO through the strong coupling constant
a,. This is identical to the SM Higgs boson production in the gluon fusion channel. This
is the main source of large scale uncertainty at LO. It gets significantly reduced when we

include NLO and NNLO corrections as expected and it continues to do so at N°LO level.
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Figure 6.5: Scale uncertainties associated with the pseudo-scalar Higgs boson pro-
duction cross sections for LHC13. Variation with uz keeping ur = my fixed (left panel).
Variation with ur keeping ug = my fixed (right panel).

In the right panel, we show the factorization scale uncertainties by varying up from m, /4
to 4m, and fixing ug = myu. Here, the fixed order results show improvement in the re-
duction of factorization scale uncertainty from NLO to NNLO. However, due to the lack
of PDFs at N°LO level and also due to the missing regular contributions from the parton
level cross sections, the N*LOgy cross sections do not show any improvement of the fac-
torization scale uncertainties. However, we observe that with the modified parton fluxes,
the factorization scale uncertainties in N°LOsy, get significantly reduced compared to

N3LOgy. In Figure 6.6, we show the combined effect of uz and uy scale uncertainties by
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Figure 6.6: Scale uncertainties associated with the pseudo-scalar Higgs boson pro-
duction cross sections for LHC13 with u = ug = ur.
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varying the scale u between m, /4 and 4m,, where u = ug = up. Here, the NNLO cross
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Figure 6.7: Renormalization scale (ug) uncertainties associated with the scalar (left
panel) and pseudo-scalar (right panel) Higgs boson production cross sections for
LHC13, keeping ur = my = my fixed.

sections show a good improvement over the NLO ones against the scale variations, while

the N*LO sy, cross sections are found to be more stable than the NNLO ones.

FL e e e T (LI o e o e = e
b LHC 13 Tev 1 E LHC 13 TeV E
60 [ do(pp— H) (pb) MSTW2008 ] MSTW2008 3
: Mg =my=125GeV Hp=m, =125GeV ]
S0 e A P T 3
o prm T SRR
30;"—' ] o e 4
: 1 e E E
20 Fooeie e . E E
' I owp E
........... LO B E E
0r —77C NLO E Eoomemm LO ]
' ____ NNLO 1 20F ——-e- NLO E
0 r N°LO E E ____ NNLO 3

[ mmmmemeees (sv) ] F 3
i 1 0F e N'LO, 3
o Dl b v b b b b A P U R S BT B BT
0.5 1 1.5 2 25 3 35 4 0.5 1 1.5 2 2.5 3 35 4

W/ my Mg/ my

Figure 6.8: Factorization scale (ug) uncertainties associated with the scalar (left panel)
and pseudo-scalar (right panel) Higgs boson production cross sections for LHC13,
keeping ug = my = my fixed.

Further, we also study the renormalization and factorization scale variations of both the
cross sections for the production of SM Higgs boson and pseudo-scalar Higgs boson for

my = my = 125 GeV by varying them between m,/4 and 4m,. In Figure 6.7, the
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Figure 6.9: Scale (u = ug = ur) uncertainties associated with the scalar (left panel)
and pseudo-scalar (right panel) Higgs boson production cross sections for LHC13.

renormalization scale uncertainties are given for Higgs boson (left panel) and for pseudo-
scalar Higgs boson (right panel), for ur = my = my. In Figure 6.8, we present similar
results but for the factorization scale uncertainties keeping ug = my = my. Moreover,
in Figure 6.9, we present the combined effect by varying u = ug = ur. The pattern of
the results for the g, ur and the combined variations are similar to the earlier analysis
for my = 200 GeV where the renormalization scale uncertainties get stabilized further
after including the third order threshold corrections while the scale uncertainties due to

W = pg = pp variation get significantly improved at N°LOsy, than at NNLO.

6.7 Conclusions

In this Chapter, using the recently available pseudo-scalar Higgs boson form factors up to
three-loop and the third order soft distribution function from the real radiations, a com-
plete N°LO threshold correction to the production of pseudo-scalar Higgs boson at the
LHC has been obtained. The computation is performed using z space representation of
resummed cross section. We have exploited the universal structure of soft function that ap-
pears in scalar Higgs boson production at the LHC. We found that the singularities result-

ing from soft and collinear regions in the virtual diagrams cancel against those from the
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universal soft functions as well as from mass factorization kernels. Using our approach,
we have also computed the process dependent coefficient that appears in the threshold
resummed cross section. This will be useful for resummed predictions at N°LL in QCD.
Using threshold corrected N°LO results, we have presented a detailed phenomenological
study of the pseudo-scalar Higgs boson production at the LHC for various center of mass
energies as a function of its mass. While the third order corrections are small, they play
an important role in reducing the theoretical uncertainty resulting from renormalization
scale. In addition, we have made a detailed comparison against scalar Higgs boson pro-
duction and found their corrections are very close to each other confirming the universal
behaviour of the QCD effects even though the operators responsible for their interactions

with gluons are very different.






Two-loop QCD Corrections to

Higgs — b + b + g Amplitude

To study the properties of the Higgs boson, the production channels of the Higgs boson in
association with jets are important. Exclusive observables like production rates involving
cuts on the final state jets or differential distributions of rapidity, transverse momentum
of the observed Higgs boson etc. are often well suited. While the dominant contributions
come from the gluon initiated partonic sub-processes, it is important to include the sub-
dominant ones coming from other channels. In this chapter, we study one such channel
namely the Higgs boson production in association with a jet in bottom anti-bottom anni-
hilation process. We compute the relevant amplitudes for H — b + b + g up to two-loop
level in QCD where Higgs couples to bottom quark through Yukawa coupling. After ob-
taining the general tensor structure of this process, we use projection operators to find the
coefficients for each tensorial structure. We have demonstrated that the UV renormalized
amplitudes exhibit the universal IR structure predicted by the QCD factorization in dimen-
sional regularization. The finite parts of the one and two-loop amplitudes are presented in

Appendix D after subtracting the IR poles using Catani’s subtraction operators.
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7.1 Introduction

The tests of the SM have been going on for several decades in various experiments and
most of its predictions have been tested in an unprecedented accuracy. The recent dis-
covery of Higgs boson by ATLAS [259] and CMS [260] collaborations at the LHC puts
the SM on firm footing. The Higgs boson results from Higgs mechanism that provides
a framework for electro-weak symmetry breaking. Elementary particles such as leptons,
quarks, gauge bosons and Higgs boson acquire masses through the Higgs mechanism.
The mass of the Higgs boson being a parameter of the theory can not be predicted by the
SM and hence its discovery provides a valuable information on this. Results from Higgs
searches at LEP [29] and Tevatron [30] were crucial ingredients to the recent discovery in
narrowing down the search regions for the LHC collaborations. The direct searches at the
LEP excluded Higgs of mass below 114.4 GeV and the precision electro-weak measure-
ments [31] hinted for Higgs boson in the mass less than 152 GeV at 95% confidence level
(CL). Tevatron on the other hand excluded Higgs of mass in the range 162 — 166 GeV at
95% CL.

The dominant production mechanism for the Higgs production at the LHC is gluon gluon
fusion through top quark loop. The sub-dominant ones come from vector boson fusion,
associated production of Higgs with vector bosons and top anti-top pairs and bottom anti-
bottom annihilation. The inclusive production cross section for the Higgs production is
known to an unprecedented accuracy due to many breakthroughs in the computation of
amplitudes, loop and phase space integrals. For gluon-gluon [37-44, 58], vector boson
fusion processes [261], and associated production with vector bosons [169,262], the in-
clusive rates are known to NNLO accuracy in QCD. There are also studies related to the
Higgs production in association with bottom quarks which were also motivated to study
Higgs boson in certain SUSY models, namely MSSM. The coupling of bottom quarks

become large in the large tan S region, where tan g is the vacuum expectation values of
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up and down type Higgs fields in the Higgs sector of MSSM. Such large couplings can
enhance gluon fusion as well as bottom quark fusion sub-processes. Fully inclusive cross
section for Higgs production in association with bottom quark to NNLO level accuracy
is also known in the variable flavor scheme (VFES) [71,263-267], while it is known only
up to NLO level in the fixed flavor scheme (FFS) [268-273]. In the VFS, one assumes
the initial state bottom quarks inside the proton. They are there as a result of emission of
collinear bottom anti-bottom states from the gluons intrinsically present inside the proton.
They being collinear give large logs which need to be resummed. The resummed contri-
bution is the source for non-vanishing bottom and anti-bottom PDFs inside the proton in

the VFS scheme.

The differential distributions for Higgs production and its decay to pair of photons [274]
or massive vector bosons [275,276] have also been known at NNLO level in QCD in
the infinite top quark mass limit. Such exclusive observables allow direct comparison of
theoretical predictions with experimental results which include kinematical cuts on the
final state particles. In particular, observables with jet vetos enhance the significance
of the signal considerably allowing us to study the properties of Higgs boson and its
coupling to other SM particles. NNLO QCD prediction [75] for production of Higgs with
one jet through effective gluon-gluon-Higgs vertex in the infinite top quark mass limit
is available, thanks to various ingredients that are computed to the required accuracy by
different groups [277-280]. As the experimental accuracy improves, it will be important
to include other sub-dominant production mechanisms. In this chapter, we provide the
relevant one and two-loop amplitudes for the process H — b + b + g which is analytically
continued also to obtain the production of Higgs boson with one jet in bottom anti-bottom
annihilation, i.e., b + b — H + g, where Higgs couples to bottom quark through Yukawa
coupling denoted by 4. We use VFS scheme throughout. This will be an important
supplement to the Higgs boson with one jet at NNLO level as it includes the bottom

quark effects in VFS scheme.
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Beyond LO in perturbation theory, one encounters large number of Feynman amplitudes
with rich Lorentz and gauge structures. In addition, the loop integrals become increas-
ingly complicated due to their multiple kinematic dependence. Generation of diagrams,
simplification of Lorentz, Dirac and color indices can be done symbolically. Using in-
tegration by parts (IBP) and Lorentz invariant (LI) identities the large number of loop
integrals can be reduced in a rather straight forward way to few master integrals (MI).
The two-loop MIs for four legs processes where all fields but one external leg are mass-
less were solved by Gehrmann and Remiddi [281] using an elegant method of differential

equations.

In this chapter we present one and two-loop QCD amplitudes for the process H — b+b+g
treating both bottom and other four light quarks massless. We do not include top quark
in our analysis. To obtain IR safe observables, we require, in addition to these two-loop
amplitudes, one-loop corrected H — b + b + 2 partons and tree level H — b + b +
3 partons amplitudes. Note that they are individually IR singular due to the presence
of massless partons in the amplitudes. There exist several equally efficient frameworks
which use these IR sensitive contributions to combine them to obtain IR safe observables.
They go by the names sector decomposition [282-288], gr-subtraction [289] and antenna
subtraction [290-296] methods. More recently the method developed by Czakon using
sector decomposition and FKS [297] phase space slicing, was applied to obtain top quark
pair production [298-300] at NNLO level and NNLO QED corrections [301] to Z —
e*e”. Antenna subtraction was used to obtain NNLO QCD corrections to di-jet production
at the LHC. The NNLO corrections to Higgs plus one jet resulting from only gluon-
gluon-Higgs effective interaction are obtained recently in [280] making best use of the
subtraction methods in an efficient way. The amplitudes presented in this chapter, will
constitute contributions coming from bottom-antibottom-Higgs interactions to Higgs plus
one jet observable at NNLO level. We have presented the amplitudes in the form suitable
for easier implementation to study IR safe hadron level observables involving Higgs plus

one jet at NNLO in QCD.
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In the next section, we discuss the Lagrangian that describes coupling of Higgs boson with
bottom quark, explain how the projector technique can be used to obtain the amplitudes
and describe the renormalization and factorization properties of the amplitudes. Section
7.3 1s dedicated to the computational details. Final results in compact form are given in
Section 7.4 and corresponding coefficients are given in the Appendix. In section 7.5, we

conclude with our findings.

7.2 Theory

We consider the Yukawa interaction of the Higgs boson with the bottom quark in the VFS

scheme, as shown in the above figure. The interaction part of the action is given by

Sy = G d* x PO, (X)W (x) (7.1)

A
2
where, ¥, (x) denotes the bottom quark field and ¢(x) the Higgs field. A is the Yukawa
coupling given by V2m,/v, with m, being the bottom quark mass and the vacuum ex-
pectation value v = 246 GeV. For the pseudo-scalar Higgs of MSSM, the interaction part

/l¢(x)%(x)lpb(x) of the action gets replaced by ﬁé(x)ab(x)yswb(x) in the above equation

where, the MSSM couplings are

_ \/§m1, sin

vcosfB ? ¢ = h’
A
\/En:/btanﬁ , (3 — A

respectively. The angle « is the measure of mixing of weak and mass eigenstates of neutral
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Higgs bosons. In the VFS scheme, except in the Yukawa coupling, m,, is zero elsewhere
like other light quarks in the theory. The initial state bottom quarks in this approach arise
from gluon splitting in the proton, parametrized in terms of bottom quark PDFs. We work

in Feynman gauge throughout.

7.2.1 Notation and kinematics

We consider the decay of Higgs boson to a bottom quark, anti-bottom quark and a gluon

H(q) — b(p1) + b(p2) + 8(p3) ., (7.2)

with the on-shell conditions pi2 =0, i =1,2,3. The associated Mandelstam variables are

defined as

s =(p1 + pa), t=(pa+ ps), u=(p +ps)’ (7.3)

which satisfy

s>0,r>0, u>0, s+t+u:M12LIEQ2>O (7.4)

where, My is the mass of the Higgs boson. Unlike the two-loop four-point functions
with all legs on-shell, which can be expressed in terms of Nielsen’s polylogarithms [302],
the closed analytic expressions for two-loop four-point functions [281,303] with one leg
off-shell contain two new classes of functions: HPLs [304, 305] and two-dimensional
harmonic polylogarithms (2dHPLs) [306], which will be discussed in detail in Appendix
C. We define the following dimensionless invariants which appear in HPLs and 2dHPLs

as

x=s5/0% y=u/Q% z=1/Q° (7.5)

satisfying 0 < x,y,z < 1 with the constraint x + y + z = 1. We will use Q%, y and z as

independent variables.
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Analytical continuation

In order to obtain the amplitudes, as listed below, relevant for production of the Higgs

boson along with a jet, we need to perform proper crossing on the decay amplitudes.

1. b(=p1) + b(=p2) — g(p3) + H(ps)
2. b(—py) + g(=p3) = b(p1) + H(ps)

3. b(=p1) + g(=p3) = b(pa) + H(pa) (7.6)

We follow the prescription presented in [307] for this purpose. In the decay process,
Q? is time-like and all the Mandelstam variables are positive. The relevant region is the
inner triangle of the kinematical plane, the shaded region as shown in the l.A.s of Figure
7.1. Note that, in this region, y and z are both real and positive and hence all the HPLs
and 2dHPLs are analytic and real. While, for the crossed processes, Q? is time-like too,

but not all the Mandelstam variables are positive. For the process 1, Q> = M% > 0,

. \\ / , \\\ /
\ N/
N/ \/
\\ \ / /\)(\
\ / N/ / N\ 4
\ / \ // 23—>14 /,/ N/ 13->24
d \ x=0 y >< x=0
/ \ / N/ N\
/ \ / \ / \
x=1 / Y x=1
\ / \
// /// \ \ // ’ ) \\
/ // \\ \ y / \\
=1 / / \\ \\ y=1 z=1 / // \ \\ y=1
z= / \ = y 12->34 \
z=0 // \\ y=0 z=0 // \ y=0

Figure 7.1: Regions of the kinematic plane relevant to the processes.

s >0, t <0andu < 0, with the region 12 — 34 as shown in the r.h.s of Figure 7.1. In
this region, y and z being negative, we introduce the dimensionless parameters u; and v,

with the following definitions

U =——, v = — (1.7)
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such that 0 < u; < 1 and O < v; < 1. In terms of these new variables, HPLs and 2dHPLs
are analytic, thus these new variables enable us to map the region 12 — 34 to the inner
triangle. Similarly, for the process 2, shown by the region 23 — 14 in the r.A.s of Figure
7.1, 0% = M,ZJ > 0,5 <0, t>0and u < 0 and the required dimensionless parameters are

u, and v, with the following definitions
U = ——, Vv, = — (7.8)

such that 0 < u; < 1 and 0 < v, < 1. The last one, as shown by the region 13 — 24 in the

r.h.s of Figure 7.1, is trivially related to the second one.

7.2.2 The general structure of the amplitude

In this section, we describe the projector technique which we used to obtain the coeffi-
cients for each tensorial structure of the amplitude for H — b+ b+ g. Since the amplitude

contains one external gluon, i.e. a single Lorentz index, it can be expressed as
IM) = S, (b, b; g)é" (7.9)

where, € is the gluon polarization vector. Three independent momenta p;, p,, p3 and the
Dirac matrices only can carry the Lorentz index p. On the other hand, Dirac equation
for the quarks needs to be satisfied and also ps;.e = 0. These provide the amplitude the

following general structure in terms of the coefficients A’, A" and A;:
Su(b,b;g) = W(p A" pry+ A" poy+ Az pyyulv(pa) . (7.10)
Meanwhile, QCD Ward identity gives

A prps+ A" prps=0 = A =—A" % = Ay paps . (7.11)
1-/3
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Hence, the amplitude takes the following form

S,(b,b;8) € = u(p){A1 (p2.P3 Py — P1-P3 Do) + Az pyyuv(pa) €

=A T +AT,. (712)
We define the tensor structures as

Ti = a(pO{(p2-P3 P1u — P1-P3 P2)IV(p2) €,

Ty = a(pO{psvulvip2) €. (7.13)

The coefficients A,, (m = 1,2) can be obtained from the amplitude | M) using appropriate

projectors P(A,,)

An = PANSUbB;g) ¢ = ) PANIM) (7.14)

spins spins

where, in d space-time dimensions, the projectors are found to be

2d-2) . 1
= Y ot — T f
2ru@d=3) " Tstu@d=3 >’

1 . 1 .

Ay — — T4 — T
Pl = Tna—» " nd=3) 2

PA) =

: (7.15)
Expanding the coefficients A,, in powers of strong coupling constant a,, we obtain
A
Ay = — An\a,THAD + a,Al) + ;A + O(a)) (7.16)
Hg

where, T“ are the Gell-Mann matrices, a is adjoint and i, j are fundamental indices of
SU(3) and yy is the renormalization scale. These coefficients A% completely specify the
amplitude order by order in perturbation theory. As described in section 7.2.1, for Higgs
+ 1 jet production, the above amplitudes have to be suitably crossed and the coefficients

A,, will be expressed in terms of corresponding u; and v;.
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7.2.3 Ultraviolet renormalization

The Feynman amplitudes for the process H — b + b + g beyond LO develop UV diver-
gences in QCD. We have used dimensional regularization to regulate them taking space-
time dimension to be d = 4 + €. The scale yj is introduced to scale the mass dimension
of the dimension-full strong coupling constant in d dimensions. As usual, the dimension-
less strong coupling constant is denoted by g2, in d dimensions, and the unrenormalized

amplitude can be expanded in terms of &, = §2/16x° as

Ao (s Ve oy . (9% sy, (% e @ 53
|M>:—ES€ _eSf |M >+ _esf |M >+ _ESe |M >+O(Cls) (717)
Ho  \Hy Ho Ho
where, S, = exp[%(yE — In4n)] with Euler constant yz = 0.5772. .., results from loop
integrals beyond LO. |[M®) is the unrenormalized color-space vector which represents the
i loop amplitude. The UV renormalization of the strong coupling constant follows the
prescription presented in the section 2.1.3. Specifically, in MS scheme, the renormalized
coupling constant a; = a,(u3) at the renormalization scale yp is related to unrenormalized

coupling constant &, by Eq. 2.7. The bare Yukawa coupling constant A is renormalized by

N

A A
=S = —Z(up)
Ho Mg
A 1 1 1
= —|1+a, (—m,_l) +a (—zmn + —mz,,) + O(ai)] , (7.18)
M € e " e’
with A = A(u3) and
3 97 10
rp, = 6CF s Thpp = (18C%~ + 6,8()CF) s Ty = (ECIZT + FCFCA - ?CFTpl’lf) . (719)

Using Eq. 2.7, Eq. 2.12 and Eq. 7.18, we now can express |M) (Eq. 7.17), as perturbative

expansion in a, with UV finite matrix elements |M®)

M) = 2 @) (M) + alMD) + @M + O@). (7.20)
Hg
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The UV finite matrix elements |M®) are related to the unrenormalized ones through

1

1)\> ~
IMP) = i IMPy
R
3
1V [ -~ Tu A
M) = (| [ I 4 it + M) |
Mg 2
1 o 31y, N ¥y 7’,% Ya, T A
M) =2 ) [ IV s 5 +ml)|M“>>+u,%f[72 -y +mz)|M<°>>]
R
(7.21)
with
1 1 1
Fay = (Ezﬁo) , Tay = (?4,3(2) + 2,31) s
1 1 1
ra = (Zr/ll;l) > ryp = (zr/b;z + ;rﬂZ;l) : (722)

In section 7.3, we present the computational details to obtain the unrenormalized ampli-

tudes |IM®y, 1=0,1,2.

7.2.4 Infrared factorization

In addition to UV divergences, the amplitudes beyond LO suffer from divergences of soft
and collinear types, due to the presence of soft gluons and collinear massless partons.
According to the KLN theorem [123, 124], to obtain IR safe observables, we need to
include appropriate contributions coming from real emission processes along with mass
factorization counter terms and to perform sum over degenerate configurations. Thanks
to factorization properties of QCD amplitudes, the IR divergence structure of the am-
plitudes is well understood. The earliest account on two-loop QCD amplitudes was by
Catani [183], who predicted the IR poles in € of multi-parton QCD amplitudes in di-
mensional regularization excluding two-loop single pole. In [184], Sterman and Tejeda-

Yeomans demonstrated the connection of single pole in € to a soft anomalous dimension
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matrix, later computed in [204,205] using factorization properties of the scattering am-
plitudes along with IR evolution equations. The decomposition of single pole term into
universal collinear and soft anomalous dimensions at two-loop level in QCD was first ob-
served in electromagnetic and Higgs form factors [144]. Becher and Neubert [185], using
soft collinear effective theory, derived the exact formula for the IR divergences of scat-
tering amplitudes with an arbitrary number of loops and legs in massless QCD including
single pole in dimensional regularization. Gardi and Magnea also arrived at, a similar
all order result [186] using Wilson lines for hard partons and soft and eikonal jet func-
tions in dimensional regularization. Following Catani [183], we express the renormalized

amplitudes |M®) in terms of the universal subtraction operators I} (€) as follows'

|M(l)> - 2 I;l)(e) |M(0)> + |M(1)fin> ,

IM®) 21"(€) IMD) + 417 (e) IMO) + IMP iy (7.23)

The corresponding subtraction operators for this process are

I = ;l"(61 :)[( : )(CA - ZCF){( - ﬂi;)}

(0 R

@ g 2B0], e TA+ o[ o ()
I7(e) = - I ()[I (e) — ]+ T+ 9 [ €+K]Ib(26)
+ (2HP(e) + HY(6)) (7.24)
with
67 2 10
(E - %) CA - ngnf N (725)

H;z)(f) = é{CACF( - % ?Zfz - _53) (13_6 - 552 343)

25 1
* CF”f(m - ‘52)}

1The numerical coefficients 2 and 4 with I come due to the different definition of a5 between ours and Catani.
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1 5 11 1 20 1 1 5
Hfgz)(e) = {Ci( ————0 - 4—1{3) + CA”f(_ + _52) - -Cpny — 5_4”%

€ 24 48 54 ' 24 4 } (7.26)

The process dependent parts are the Born amplitude | M®) and the finite parts |[M®/), [ =

1,2 and explicit computation is required for their determination.

7.3 Calculation of the amplitudes

We now describe the computational details of the coefficients A,, from the amplitudes
IMDY for the process H — b + b + g up to two-loop level in QCD perturbation theory.
We have used QGRAF [86] to generate the Feynman amplitudes for this process. The
numbers of diagrams are 2, 13 and 251 at tree level, one-loop level and two-loop level,

respectively, excluding tadpole and self energy corrections to the external legs.

Using FORM [87, 88] and Mathematica, output of the QGRAF is converted to a form,
suitable for further symbolic manipulation. Using the projectors as in Eq. 7.15, we have
computed unrenormalized A; from these amplitudes. They contain only scalar products
among internal and external momenta. The physical polarization sum for the external
on-shell gluon leg is taken as

Piq + ¢ p;
P3.q

D& (P39 (ps, ) = —g" + (7.27)

where, p; is the gluon momentum and ¢ is an arbitrary light-like four-vector for which
we choose ¢ = p;. The Lorentz contractions and Dirac algebra are performedind = 4 + €
dimensions. Evaluating the one and two-loop tensor integrals, makes it a challenge, as
it involves a large number of integrals as well as complicated kinematics. We overcome
this by using the technique of reduction i.e. first reducing them to an irreducible set of
MIs using IBP identities and LI identities and substituting the MlIs evaluated to desired
accuracy in €. We have used a Mathematica package LiteRed [91, 92] to use IBP [89,

90] and LI identities [194] in an efficient manner. The relevant MIs for the kinematic
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Figure 7.2: Planar topologies of master integrals.

configuration of the problem at hand are analytically known from the seminal works of
Gehrmann and Remiddi [281]. We use them to obtain the unrenormalized coefficients in
a Laurent series in €. In order to optimize the use of LiteRed, we have reduced all the
one and two-loop integrals to belong to few integral sets. This is done by shifting the
loop momenta suitably using an in-house and FORM based algorithm. We find that the

sets for both one and two-loop integrals are exactly same as those given in [182] for the
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case of massive spin-2 resonance — 3 gluons. The topologies of the appearing planar

and non-planar master integrals are shown in Figure 7.2 and Figure 7.3 respectively. For
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Figure 7.3: Non-planar topologies of master integrals.

one-loop diagrams, the integral belongs to one of the following sets:

{Z)la Dl;la Z)l;129 @1;123},{@1, Z)l;29 Z)l;23’ 2)1;123}5{1)1, 91;3’ 1)1;31’ D1;123}- (728)

At two-loop, there are nine independent Lorentz invariants, namely {(k,-kg), (ko-pi)}, @, B =
1,2; i = 1,..., 3. Shifting of loop momenta guarantees each two-loop Feynman integral to

contain terms belonging to one of the following six sets:

{Do, D1, Ds, Dyt Doty Diias Doioy Dicinzs Doiinad,
{Do, D1, Dr, D1y, Drs, Dins, Doz, Diiins, Doinsls
{Do, D1, Dy, D13, Doz, Dists Dozt Dicinzs Doinal,
{Do, D1, Dy, Di.1, Doty Doz, Drizs Doiay Disinzhs
{Do, Dy, Dy, D12, Do, Doty Dinzs Donzy Diinzhs

{Do, D1, Dy, D13, Do, Dooy Disi, Dozis Dozl (7.29)
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where,

Dy = (ky - k2)2, D, = k(zy, Da;i = (ko — Pi)z, Z)a;ij = (ke — pi — Pj)z,

Do, = (ki —ky = pi)?y Daiijr = ko — pi— pj = Pr)* - (7.30)

The UV singularities present in the bare coeflicients are systematically removed using
Eq. 2.7 & Eq. 7.18. The resulting UV finite coeflicients do contain divergences from soft
and collinear partons. In the next section, we will demonstrate that our results correctly
reproduce divergences described in the section 7.2.4 at one and two-loop level. We will

also present the finite parts of the coefficients A,, up to two-loop level.

7.4 Results

In this section, we present the results up to two-loop level in QCD for the amplitude
H — b+ b+ ginthe MS scheme. The results are presented after subtracting the one and
two-loop universal subtraction operators I}()i)(e), i = 1,2 as described in the section 7.2.4.

Following Eq. 7.12, Eq. 7.16 & Eq. 7.20, the ["* loop amplitude can be written as
IM®Py = dn THAPT, + AJT) (7.31)

Following Eq. 7.21, the renormalized coefficients A are related to their bare counterparts

AY through

a0 — (L A0

My

3
(1) i ’ A1) € 1 £(0)

Am - € Am +luR +r1 Am H

Hg

L\ « 3r, . Ty T, T4 .
AR = = [AE,? +u§( 21 - rﬂl)Aﬁ,P +,u12{(72 - ? + 71% + rﬂz)Afjj) ] . (132)

R
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As discussed in the previous section, we follow the procedure to compute the bare co-
efficients A and Eq. 7.32 give the renormalized coefficients. The finite parts of the
coefficients A are defined after subtracting terms proportional to universal subtraction

terms 11(71) as follows

AD =21"(e) AD + AV,

A? =21"(e) AV + 417 (e) AD + AD/ (7.33)

where, we have used Eq. 7.12 & Eq. 7.23.

Expanding the r.h.s. Eq. 7.32 and Eq. 7.33 in powers of €, we find exact agreement of all
the poles in €, providing a crucial test on the correctness of our computation. We organize

the finite parts of the coeflicients with the following expansions

i
in n Q2
ap =y a9 50w (- 2 (7.34
n=0
where,
4i 1 1
A(lo) . and A(ZO) =i(-+-) (7.35)
l‘ u t u

and the remaining coefficients B,(,?,, are presented in Appendix D. We also performed an
independent computation of (M@ M®) for [ = 1,2 without using any projectors and then
compared against one obtained using the projectors, i.e using the coefficients AD We find

both give the same result, providing an independent check on our computation.

Following [307] 2, we have obtained results for the crossed reactions given in Eq. 7.6
relevant for the production of Higgs boson along with a jet at hadron colliders. The

corresponding finite coefficients A,(fz)f " are attached with the arXiv submission of [308].

2We thank Thomas Gehrmann for providing relevant analytically continued HPLs and 2d HPLs.
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7.5 Conclusions

We have presented the amplitudes for the partonic sub-process H — b + b + g and other
sub-processes related by crossing, up to two-loop level in QCD that contribute to exclusive
observables involving the Higgs boson and a jet. The dominant one is from gluon fusion
which is already known to this accuracy. We have used dimensional regularization to
perform our computation. Using appropriate projectors, the amplitude is expressed in
terms of two scalar coefficients A,,. We have found that the IR structure of the amplitude
is according to Catani’s prediction on QCD amplitudes up to two-loop level. Also, the
coeflicient of single pole term is found to be in agreement with predictions based on the

observation of the universal behavior of poles in the multi-parton QCD amplitudes.



8 Conclusion

The physics program at the LHC depends not only on the precise measurements but also
predictions from the theory with same level of precision in order to unravel the mysteries
of nature. Higher order QCD as well as electro-weak corrections play important role first
to confirm the predictions of SM to an unprecedented level of accuracy and then to hint
physics beyond the SM, if any, through deviations. To set bounds on the parameters of the
BSM, unambiguous predictions taking into radiative corrections become indispensable.
In this context, we have systematically computed higher order QCD corrections to some
of the important processes at the LHC, namely Drell-Yan, Higgs production in bottom
quark fusion, pseudo-scalar boson production. We have achieved them by using the state-
of-the-art modern techniques as well as exploiting the rich universal structure of QCD

amplitudes at higher orders in perturbation theory.

In Chapter 2 we have presented a brief introduction to perturbative QCD. Chapter 3 con-
tains the detailed description of the formalism to obtain threshold contributions to inclu-
sive production of a colorless particle in hadron collisions to all orders in perturbation
theory. We exploit the universality of the QCD amplitudes, namely the factorization the-
orems and renormalization group equations, to achieve this. Demanding the finiteness
of hadronic cross section, a physical observable, we find that the soft distribution func-
tion, which contains distributions of the kind 6(1 — z) and 9;, depends only on the initial
state partons i.e. except a overall Casimir depending on the initial quark or gluon. In

other words, but for overall Casimir, the soft distribution functions of quark and gluon are

153
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found to be same.

In Chapter 4 we implement the findings of the previous Chapter to obtain the threshold
approximated cross section to N°LO in pQCD for the Drell-Yan process at the LHC.
For DY, NNLO QCD corrected predictions were already available for long and these
corrections are small. Still, to confirm the reliability of perturbation theory and to reduce
the dependence on the unphysical scales, which still was not convincingly small, one
needs to go beyond NNLO. While the computation of exact N°LO is very involved and
yet to be done, the first step is to obtain threshold approximated cross section at this
order. In this Chapter we exploit the recently available threshold approximated N*LO
cross section for the Higgs boson production in gluon fusion and use the universality of
soft distribution function, as described in Chapter 3, to obtain the corresponding one for
the DY production. This enables us to obtain the threshold N*LO QCD correction to DY
production. We study in detail its numerical impact and find the contribution is small

validating the reliability of pQCD.

Next, in Chapter 5 we present the quark and gluon form factors of a massive spin-2 res-
onance that couples to the fields of SU(N) gauge theory with nf light flavors through the
energy momentum tensor. It involves the large number of Feynman diagrams and the
complicated Lorentz and Dirac algebra resulting from spin-2 interaction. Hence the com-
putation is extremely challenging. We have used state-of-the-art techniques to overcome
the difficulties. QGRAF is used to generate the corresponding Feynman graphs and an in-
house code is used to convert the output into a suitable for for further manipulation. We
have extensively used FORM for Lorentz and Dirac algebra. These simplifications result
into numerous numbers of scalar integrals which have been reduced to 22 Master Inte-
grals using IBP and LI identities. Thanks to the availability of the MIs, we finally present
the form factors in powers of € = d — 4. The form factors do contain divergences, of IR
kind, as the conservation of energy momentum tensor ensures the absence of UV ones.

Moreover, these form factors do satisfy Sudakov integro-differential equation and hence



155

exhibit identical IR structure of other form factors such as those appearing in electro-weak
vector boson and Higgs productions up to three-loop level. Additionally, with the newly
available form factors, we compute the threshold approximated partonic cross section for
production of a massive spin-2 resonance at N°LO QCD and present in this thesis for the
first time. The detailed numerical study will be presented elsewhere. We also find strik-
ing similarities between the LT terms of the form factors presented here and those of the
quark and gluon form factors in QCD as well as the scalar form factor in N = 4 SYM
upon employing appropriate substitution of the SU(N) color factors. Our results will be
useful in improving the perturbative predictions of spin-2 resonance production beyond
NNLO level at the LHC where searches for such particles are already underway with the

upgraded energy and luminosity.

Chapter 6 is dedicated to achieve the first results on the production of pseudo-scalar Higgs
boson through gluon fusion at the LHC to N*LO in QCD taking into account only soft
gluon effects. The crucial ingredients are the three loop form factors of the effective
composite operators, resulting from the fact that top quarks are integrated out and the
soft distribution functions. Very recently we have computed the required form factors
and presented in [94] along with this work. Again, the soft distribution functions, being
dependent only on the initial state partons, are same with that of the scalar Higgs boson
production in gluon fusion. Using these, we obtain the threshold approximated cross
section at N*LO level. We present the phenomenological impact of the threshold corrected
N3LO cross section, studying the pseudo-scalar production cross section at the LHC for
various center of mass energies as a function of its mass. While the third order corrections
are small, they play an important role in reducing the theoretical uncertainty arising from
renormalization scale. Additionally, we have made a relative study of these results against
production of the scalar Higgs boson at the LHC, considering equivalent parameters and
found the behavior of the corrections is very close to each other confirming the universal
behavior of the QCD effects even though the operators responsible for their interactions

with gluons are very different.
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In Chapter 7 we compute two-loop amplitudes of the Higgs boson decaying to a pair of
bottom anti-bottom quarks along with a gluon, where the Higgs boson couples to bottom
quarks through Yukawa coupling. We consider VFS scheme throughout and the bottom
quark is massless except for the Yukawa coupling. To start with, we study the general
tensor structure of the amplitude and then we use projection operators to obtain the co-
efficients for each tensorial structure appearing in this process. As the computation is
performed considering the diagrammatic approach, large number of Feynman diagrams
appear with rich Lorentz and gauge structures. Symbolically we perform the Lorentz,
Dirac and color algebra. Moreover, due to multiple kinematic dependence, the loop inte-
grals become increasingly complicated. Using IBP and LI identities, we reduce the large
number of loop integrals to few MI’s, already available in literature. The Yukawa cou-
pling here needs UV renormalization and the UV finite results contain the universal IR
poles a la Catani, indicating the correctness of the computation. The results are presented
in terms of Harmonic Poly-Logarithms (HPLs). To obtain the relevant amplitude for the
production of the Higgs boson along with a jet, we have done a proper crossing and hence

analytic continuation of HPLs.



A Components of the form factor

In this Appendix we present the process dependent component of the form factor g,

defined in Section 3.3, for the inclusive production of a massive colorless particle (/) like
the Higgs boson (H), a pair of leptons (y*), a massive spin-2 resonance (7') or a pseudo-
scalar Higgs boson (A) in either gluon (i = g) or quark (i = g) or specifically bottom

quark (i = b) initiated process, up to three-loop.

For production of the Higgs boson in gluon fusion considering the effective theory, the

Lik

corresponding / = H and i = g and g,"", are presented as follows

g = Caty,
g = CA{l - —53}
3

67 44 4511 40 1724
g =o(Fa- o S| Cand - T~ To - 47
67
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(A.1)

For the Drell-Yan production, I = y* and i = ¢ and the corresponding g5"* up to three-loop

level are presented in the following

gl " =Cri{s -8},
a2 3.7
g =CF{—Z§2—§§3+8},
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N?-4
N

L Crnygy ( ){ - ggf + 302, + 1425 — 8075 + 12}. (A2)

For the Higgs boson production in bottom quark annihilation, considering the VFS scheme,

we denote / = H and i = b, and the corresponding g~ are

gl = Cri-2+4),
Hb2 CF{2— _43}

47
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For the production of a massive spin-2 resonance in gluon fusion, / = T, i = g and

correspondingly g~ are
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For the production of a massive spin-2 resonance in quark anti-quark annihilation, / = T,

i = ¢ and correspondingly g5™* are as follows

ghl = CF{ ~ 10 +42}
g2 = el 12- 36 - —42}

47
g = F{ 13+ §3+ 42 04%},

107 88 1693 452
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For the production of a pseudo-scalar Higgs boson in gluon fusion in the effective theory,

we denote I = A, i = g and correspondingly g5 are
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B Components of the soft part

In this Appendix we present a component of the soft distribution function éff’k, which
depends only on the initial state partons, as discussed in Section 3.5. Depending on the
initial state partons, each éi’i’k acquires an overall Casimir C;, where for gluon initiated
process (i = g), C; = C 4 and for quark initiated process (i = q), C; = Cr. Note that,

—I, .’k . . .
gn’ contains no information about the process (/).
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C Harmonic polylogarithms

The generalized polylogarithms S, ,(x) of Nielsen [302] turn out to be insufficient for
the computation two-loop integrals involving multiple scales. To overcome this limita-
tion, HPLs was introduced [281, 303, 304]. HPLs are some kind of iterated integrals
i.e. obtained by the repeated integration of rational factors, the so-called kernels. When
the kernels contain only the integration variable, the resulting functions are called one-
dimensional HPLs or simply HPLs [304,305]. If the kernels depend on a further variable,
besides the integration variable, it results to 2dHPLs [306]. In the following, we recall

their definitions and summarize their properties.

C.1 One-dimensional harmonic polylogarithms

HPL, represented by H(i,,; y), is one variable function of say y, which is called it’s argu-
ment. Another dependency is on the set of indices,represented by a w-dimensional vector
m,, whose elements are {1, 0, —1} and whose number indicates the weight w of the HPL.

The elements {1, 0, —1} represent three kernels as follows

1 1
f;y) = - fO;y) = -, f=Ly)= —. (C.1)
-y y l+y
The weight 1 (w = 1) HPLs are defined as
H(1,y) = —In(1 - y), H(0,y) =Iny, H(-1,y) =1In(1 +y). (C.2)
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For w > 1, the definition of H(m, m,,; y) reads
y
H(m,m,;y) = f dx f(m, x) H(m,,; x), meo0,+l. (C.3)
0

The known polylogarithms, i.e. the Nielsen polylogarithms and Euler polylogarithms can
be expressed in terms of HPLs as follows where 6m and fm imply all the m components

are 0 and 1, respectively.

Sy = H(O,, T3 y)

Li,(y) = HO,1, 15 ) (C.4)

Properties of the HPLs

e The HPLs are linearly independent.
e Product algebra: The product of two HPLs with weights w; and w, of the same argu-

ment y is a combination of HPLs of argument y with weight w = w; + w»,

H( s WHO,3) = ) HOsy) (C.5)
n_"lw:’ﬁwl wr?lwz
where 7i,, W i, represents all mergers of ri,, and i, preserving the relative order of
the elements of both sets.

o Integration-by-parts identities: HPLs fulfill the following identity

H(my,my,...,my;y) = Hm;;y)H(my, . ..,m,;y) — Hmy, my; y)H(ms, . ..,m,;y)

+o 4+ (D" H(m,,...,my,m;y). (C.6)

Both the identities relates a HPL of weight w to other HPLs of same weight and product of
HPLs of lower weights. Hence, we can choose a ‘minimal’ set for a weight w and express
all other HPLs of same weight in terms of the elements of that set and lower weight HPLs.

We note that, in our context, the element ‘—1" does not appear.
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C.2 Two-dimensional harmonic polylogarithms

The generalization of the HPLs to 2dHPLs involve introducing one more variable in the
kernels and to mark these new rational function, the new elements {2, 3} appear in 7i,,.

They represent the following kernels
1 1
feyn=fAd-zy=—"-—" [fGy=fay=_— (C.7)
-y-z y+z
and correspondingly the weight 1 (w = 1) 2dHPLs read
+2Z
H2»=-In(l-77)  HGy)=h(—). (C8)

We do not consider any kernel corresponding to ‘—1’, as it does not appear for our case.

Below we present few necessary relations used in our computation

H(0,2,0,y) = H(0,y)H(0,2,y) —2H(0,0, 2, y),

H(1,0,2,y) = H(1,y)H(0,2,y) — H(0,1,2,y) — H(0,2, 1, y),
H(1,2,0,y) = H(1,y)H(2,0,y) — H(2,1,y)H(0,y) + H(0,2,1,y),
H(2,0,0,y) = H(22,y)H(0,0,y) — H(0,2,y)H(0,y) + H(0,0,2,y),
H2,0,2,y) = H(22,y)H(0,2,y) —2H(0,2,2,y),

H2,2,2,9) = SHO)H2,),

H2,2,0,y) =H2,y)H(2,0,y) — H(2,2,y)H(0,y) + H(0,2,2,y),
H(3,0,2,y) = H3,y)H(0,2,y) — H(0,3,2,y) — H(0,2,3,y),
H@3,2,0,y) = H3,y)H(2,0,y) — H(22,3,y)H(0,y) + H(0,2,3,y),
H@3,3,2,y) =H@G,y)H3,2,y)-HQ3,3,y)H?2,y) + H(2,3,3,y),
H(2,1,0,y) =HQ2,y)H(1,0,y) — H(1,2,y)H(0,y) + H(0, 1,2, ),

H(2,3,2,y) =HQ2,y)H(3,2,y) —2H(3,2,2,y). (C.9)






D Resultsfor H - b+b+g

In this Appendix we present the coefficients Bf,l,);n as noted in Section 7.4.
D.1 One-loop coefficients

1
B = c(=11Cy = 18Cr +2ny)

B = %( — 6H(0,y)H(0,z) — 6H(0,y)H(1,z) — 6H(2,y)H(0,7) + 12H(3,y) H(1,2)

- 10H(,y) -9H(2,y) — 6H(0,2,y) —6H(2,0,y) + 12H(3,2,y) — 10H(0, 2)
-9 H(l,z) + 6H(0,1,z) — 6H(1,0,2) — 6£) + Cr(2H(0,y)H(1, 2)
-4H@3,y)H(1,2) + 2H(2,y)H(0,z) + 3H(2,y) + 12 H(0,2,y) — 2H(1,0,y)

+2H(2,0,y)—4H(3,2,y) +3H(1,27) —2H(0,1,z) - 2) + nf%(H(O,y) + H(0,2))

1
By = c(=11Cy = 18Cr +2ny)

B = %( — 6H(0,y)H(0,z) — 6H(0,y)H(1,2) — 6H(2,y)H(0,7) + 12H(3,y) H(1,2)

- 10H(0,y) -9H(2,y) —6H(0,2,y) —6H(2,0,y) + 12H(3,2,y) — 10H(0, 2)
-9 H(l,z) + 6H(0,1,z) — 6H(1,0,2) — 64, + 6) + Cr(2H(0,y)H(1,z)
-4H@3,y)H(1,2) +2H(2,y)H(0,z) + 3H(2,y) + 2H(0,2,y) —2 H(1,0,y)

+2H(2,0,y)—4H(3,2,y) +3H(1,2) —2H(0,1,z7) - 3) + nfé(H(O,y) + H(0,2))
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D.2 Two-loop coefficients

(2) _
81;2 -

(2)
Bl;l

(2) _
BI;O -

1
ﬁ(mcj +44C4(6CF — ny) + 4(27CF — 12Cpny + n7))

=C} L(594H(O,y)H(O, 2) +594H(0,y)H(1,z) + 594H(2,y)H (0, 2)

4108
— 1188 H(3,y)H(1,z) + 990H(0, y) + 891H(2,y) + 594H(0, 2, y)

+594H(2,0,y) — 1188 H(3,2,y) + 990H(0, 7) + 891H(1,z) — 594H(0, 1,7)
1
+594H(1,0,2) +495 {3 ~ 10845 = 702) + CaCr oo~ 1188H(O.)H(1.2)

+ 54H(0, y)(6H(0,2) + 6H(1,2) + 10) — 1188 H(2,y)H(0,2)

+ 54(6H(2,y) + 10)H(0, ) + 1728 H(3, y)H(1,2) — 1296H(2, y)

— 864 H(0,2,y) + 1188H(1,0,y) — 864H(2,0,y) + 1728H(3,2,y)
— 1296H(1,z) + 864 H(0, 1,z) + 324H(1,0,z) + 1566, — 280875

1
—1048) + C%ﬁ( —648H(0,y)H(1,z) — 648H(2,y)H(0, 2)

+ 1296H(3,y)H(1,7) — 972 H(2,y) — 648H(0,2, y) + 648H(1,0,)
— 648H(2,0,y) + 1296H(3,2,y) — 972H(1,7) + 648 H(0, 1,7)

1
~ 12962, + 25920 + 648) + Cany 7o (= 2 = 27(4H(3,3) = 3)H(1,2)

+81H(2,y) + 54H(0,2,y) + 54 H(2,0,y) — 108H(3,2,y) — S4H(0, 1,7)
+54H(1,0,7) + 450, — 206) — 9H(0,y) (12H(0,z) + 12H(1,z) + 31)

- 9(12H(2,y) + 31)H(0,z2)) + Can5i4(108H(O, WH(,z) + 108H(2,y)H(0, 2)

- 216H3,y)H(1,2) —27H(0,y) + 162 H(2,y) + 108H(0,2,y)
— 108H(1,0,y) + 108H(2,0,y) — 216H(3,2,y) — 27H(0,z) + 162 H(1,z7)

1
— 108H(0,1,z7) — 54, +32) + n§5—4(9H(0, y) +9H (0, 7) — 20)

C3{439/8) + & — H(0.) ~ 6H(1L,y) + 11H(2,y) — H(0,2) + 5H(1,2)

+6(t +1)/s + 407 /36) ; {2(108s2H(O, YH(O,7)
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+725*H(1,y)H(0, ) + 1085*H(0, y)H(1,2) + 725> H(1,y)H(1,2)
+3652H(2,y)H(0,2) — 72s*H(3,y)H(1,2) + 147s*H(0,y) + 453 s*H(2,y)
+1085*H(0,2,y) + 72s*H(1,2,y) + 365*H(2,0,y) — 725> H(3,2,y)
+1475*H(0,z) + 237s*H(1,2) + 365*H(0, 1,2) + 365°H(1,0,2) + 72 s*H(1, 1,z2)

—216s(s +t)H(1,y) — 1085tH(0,z) — 108s5uH(0,y) —216su H(1,z) — 40s°

+ 96tu)/(36s2) + ( - 14—3H(2,y)H(1,z) + 1iﬁLLHG,y)H(l,z) +7H(0,0,y) H(1,z7)
2 2 13
- §H(O, 2,y)H(1,2)-T7TH(0,3,y)H(1,z)— §H(2, 0,y) H(1,2)+ ?H(2, 3,y)H(1,z2)

4 22
- 7H(3’ O’y)H(la Z) + §H(3, 2,)7) H(I’Z) + ?H(3, 3,)7)H(1,Z)

+2H(0,0,2,y)H(1,z) + 2H(0,2,0,y) H(1,z) + 4H(0,3,0,y)H(1, 2)
+4H(0,3,3,y)H(1,z) + 2H(1,0,3,y)H(1,2) -2 H(1,2,3,y)H(1,z2)
+2H(2,0,0,y)H(1,z) + 2H(2,0,3,y)H(1,2) + 2H(2,1,0,y) H(1,z2)
+4H((2,2,3,y)H(1,2) +2H(2,3,0,y)H(1,z) = 8H(2,3,3,y)H(1,z2)

+4 H(3,0,3,y)H(1,2) +4H(3,3,0,y)H(1,z) — 16H(3,3,3,y)H(1, 2)

361 361 80
~ 37 H(l,z) - QH(Q,Y) + 3[‘1(0, 0,y) +7H(2,y)H (0,0, z)

80 11 1
+2 H(0,0,y)H(0,0,z2) + ?H(O, 0,2) + ?H(2,y) H@O,1,2) + §H(3,y)H(O, 1,2)

179
+2H(0,0,y)H(0,1,2) + T3 H(,1,z) +2H(0,0,2)H(0,2,y)

89
- 2H(05 19Z)H(072ay) - EH(Oa 2,)’) -2 H(Oa 19Z)H(O’ 3,)’)

N 8tuH(1,0,y) 8tuH(1,0,z)

352 3S2 +6H(2$y)H(1’O7Z)_7H(3’y)H(1aO’Z)

89 4
+2H(0,0,y)H(1,0,2) - 6H(0,3,y) H(1,0,2) - EH(LO, z) + §H(3,y)H(1, 1,2)

13
+2H(0,0,y) H(1,1,2) - ZH(I’ 1,2) = 2H(0,1,2)H(1,2,y)
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+2H(1,0,2)H(1,2,y) +2 H(0,0,2)H(2,0,y) + 2H(0, 1,2)H(2,0, y)
89
+2H(1,0,2)H(2,0,y) — 3 H(2,0,y) +2H(0,0,2)H(2,2,y) + 4H(0,1,2)H(2,2,y)
13
+4H(1,0,2) H22,2,y) — ZH(2, 2,y)-6H(0,1,2)H(2,3,y)+ 2H(1,0,2)H(2,3,y)

134
+ 2 H(O, I,Z)HG,O,)’) - 2H(1’O’Z)H(3a 0,)’) + TH(3’ 2»)’) - 12H(O’ 1az) H(3’ 3ay)

+ 4H(1’07 Z)H(3’ 3’)’) - 2H(1’)7)H(0, 0’ 1’ Z) - 2H(2ay)H(O’ O’ 1’ Z)
3u H(,1,0,y) N 3tH(0,1,0,2)
S S

1

~8H(3,»H(0,0,1,2)+7H(0,0,1,2)+7H(0,0,2,y) +
2

+2H(1,y)H(0,1,0.2) + 6H(2,y) H(0,1,0,2) + 4H3,y)H(0,1,0,2) + 2H(0, 1. 1.2)

2
+7H(0,2,0,y) — gH(O, 2,2,y)—T7TH(0,3,2,y) + 2H(2,y)H(1,0,0,z) + 7 H(1,0,0, 2)

6(s+1H(,1,0,y)
s

11
-2H(1,y)H(1,0,1,2) + 6H(2,y)H(1,0,1,2) + 3 H(,0,1,2) -

6uH(1, 1,0, 3H(1,0,
—u+2H(1,y)H(1,1,0,z)+6H(2,y)H(l, 1,0,z)+H(O,y)(—&
) S
8u 8 14 89 13 17
+ g + (ﬁ — ?) H(O,Z) — EH(LZ) + 7H(0,0,Z) — FH(O, 1,Z) + ? H(l,O,Z)

2 142
- §H(1, 1,2) -2H(0,0,1,2) - 2H(0,1, 1,2) + 2H(1,0,0,2) + 2 H(1, 1,0, 2) - 7)

2 20 2 13
+7H(2,0,0,y) - 3 H(2,0.2,y) + =HQ2,1,0,y) - 3H(2,2,0,y) + = H(2,3.2.)

4 22 8t
-7H(3,0,2,y) - 7H(3,2,0,y) + §H(3, 2,2,y) + 3 H(3,3,2,y)+ H(O, z)(—3
s

2 H(l 2
- —?ZH(Z,y) +7 H(0,0,y) + —69H(O, 2,y) - 3+ DHL,0.y) —23 H(2,0,y)
S

2
—§H(2,2,y)—7H(3,2,y)+2H(0,0,2,y)+2H(0, 2,0,y)-2H(0,2,2,y)-6H(0,3,2,y)
-2H(1,0,2,y) +2H(2,0,0,y) + 2H(2,2,0,y) + 2 H(2,3,2,y) —2H(3,0,2,y)

142

-2H(3,2,0,y)+4H(@3,3,2,y) — 7) +8 H(0,0,1,0,2) + 2H(0,0,1,1,2)
+2H(0,0,2,2,y) +2H(0,1,0,1,2) + 6H(0,1,1,0,2) + 2 H(0,2,0,2,y)
+4H(0,2,1,0,y)+2H(0,2,2,0,y)+4H(0,3,0,2,y)+4H(0,3,2,0,y)+4 H(0,3,3,2,y)
+6H(1,0,1,0,2)+2H(1,0,3,2,y)+2H(1,1,0,0,2)+4H(1,1,0,1,2)+6 H(1,1,1,0,2)
-2H(1,2,3,2,y)+2H(2,0,0,2,y)+2H(2,0,1,0,y)+2H(2,0,2,0,y)+2 H(2,0,3,2,y)

+2H(2,1,0,2,y)+2H(2,1,2,0,y) + 2H(2,2,0,0,y) + 4H(2,2,1,0,y)
+4 HQ2,2,3,2,y) +2H(2,3,0,2,y) + 2H(2,3,2,0,y) — 8H(2,3,3,2,y)

571
+4H(3,0,3,2,y) + 4 H(3,3,0,2,y) + 4H(3,3,2,0,y) - 16H(3,3,3,2,y) - ﬁ)}
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47 4u* 8(t+u) 335

93
+CaCr{G(5)+ G Q2H(, )= I8HQ, )+ 4H(1,2) + = + 25 - £33
4 s2 52 s 18

) +&(

4t2H(1, y) 2t2H(O, 2) 2u? HQ,y) 4u2H(1, 2) N 8tH(1,y) N 4t H(0, 2) N 4uH (0, y)
B 52 B 52 B 52 B 52 s s s

N 8uH(l,z) 1077HQ2,y) 797°H(l,2) 119mHQ,y) 9lwuH(l,z) 107u*H(2,y)
s 6 (t + u)’ 6(f + u)? 3(t+u)’ 3(t + u)? 6 (t + u)’

2
- % = 2H(1,y)H(0,2) = 6H(0,y) H(1,2) = 2H(1,y)H(1,2) — 4H(2,y)H(0, 2)
u
+ 13—4H(1,y) +2H(0,2,y) + 6 H(1,0,y) - 2H(1,2,y) — 4H(2,0,y) — 8H(2,1,y)

18tu 21 2u?
8H(2,2, 2H(O, 1, 2H(1,0,2) -2 H(1,1,2) - - -
+8H(2.2,) + 2H(0.1.2) + 2H(1.0.2) (1.1.2) 2 s(t+u) s(t+u

B g) . ( C2H(1,0.0)  5H(2,y)H(1,0,2)7 | 2H(1,0, 2 , 10H0. 1,0, e
6 s(t + u) 3 (1 + u)> s(t + u) 3(t + u)*

N 2H(0,1,0,2) N 28H(0, 1,0, 7)1 B 4H(1,1,0, y)f N 6H(1,1,0,z) 1>
52 3(t + u)? s? (t +uy’

| 3HQ, 1,0,y 3H(1,2) HG, )t | QuH(10.y)  18uH(1,0.) 1 152H(1,0.y)1
(t +u)* u s(t + u) 52 ot + u)

4uH(1,0, 2)t B 18uH(1,0, 2)t B 22uH((2,y)H(1,0, 2)t B H(1,0,2)t B 3H(@3,2,y)t
s(t+u) 52 3(t+u)’ (t+u) u

, 32uH©, 1,0,y  68uH(0,1,0,9t 4H(0,1,0,2)t  8H(1,1,0,y)
3(t + u)? 3(t+u)? s s

H(1.1 2uHO. 1 4 4
LBuH 1,090 2uHQ, ’O’y)’+6207 H(l,z)+2H(1,z)H(2,y)+%H(2,y)

(t + u)® (t + u)®
304 22
- TH(l,z)HG,y) - 14H(1,2)H(0,0,y) — 14H(2,y) H(0,0,z) - ?H(2,y)H(O, 1,2)
20 197 14
- ?H(3, yH(,1,z) —4 H(0,0,y)H(0, 1,z) — TH(o, 1,2) - ?H(l,z)H(O, 2,y)

107
-4 H(an»Z)H(Oa 2,)’) + 6H(0a 19Z)H(Oa 2,)’) + TH(()’ 2’)’) + ZOH(19Z) H(Oa 3,)’)

2u*H(1,0,y) 143u H(1,0,y)

s(t+u) 9t + u) +3H(1,2)H(1,0,)

+4H(0,1,2)H(0,3,y) +
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2u? H(1,0,7) SuH(1,0,7) 5u*H(2,y) H(1,0,2)

st + u) (t+u) 3(1 + u)’
+20H(3,y)H(1,0,2) — 4H(0,0,y)H(1,0,z) + 8H(0,2,y) H(1,0,z)

28
+16H(0,3,y)H(1,0,2) + 2H(1,0,y)H(1,0, 2) + ?H(3,y) H(1,1,2)
—8H(0,0,y)H(1, 1,2) + 4H(0,3,y)H(1,1,2) + 2H(1, 1,2) + 6H(0, 1, z) H(L,2,y)
14
—2H(1,0,2)H(1,2,y) - ?H(I,Z)H(Z,O,y) —4H(0,0,z) H(Z,0,y)

-2H(0,1,2)H(1,0,y) -

107
—2H(0,1,2)H(2,0,y) = 6H(1,0,2)H(2,0,y) + THQ’ 0,y) -8 H(0,0,2)H(2,2,y)

-16H(0,1,2)H(2,2,y) - 8H(1,0,2)H(2,2,y) +2 H(2,2,y) — §H(1,2)H(2, 3,y)
+12H(0,1,2)H(2,3,y) —4H(1,0,z) H(2,3,y) + 20H(1,2)H(3,0,y)

28
-4H(0,1,2)H3,0,y) +4H(1,1,2) H3,0,y) + ?H(I,Z)H(3,2,y)

304 80
—4H(0,1,2)H(3,2,y) - 4H(1,0,2) H3,2,y) - TH(3,2,y) - ?H(I,Z)H(i 3,y

+28H(0,1,z2) H(3,3,y) - 12H(1,0,2)H(3,3,y) - 8H(1,1,2)H(3,3,y)
2
+6H(1,y)H(0,0,1,2) + 16 H(3,y)H(0,0,1,z2) — §H(O, 0,1,2)

212H(0, 1,0,
— 8H(1,2)H(0,0,2,y) — 14H(0,0,2,y) + 4 H(1,2)H(0,0,3,y) + — (S2 Y)

102H(0,1,0,y)  4uH(0, 1,0, 284> H(0, 1,0,
 JOuwH( . y) _ duH( Y 2H(1, DH(O, 1,0,y) + o . 2
3 (1 +u) s 3(1 + u)

- 2H(1,)’)H(O, 1509Z) - 12H(2,Y)H(O, 15 09Z) -4 H(3,Y)H(O, 1a O’Z)

14
-4H3,y)H(0,1,1,2) + ?H(O, 1,1,z) - 8H(1,z) H(0,2,0,y) — 14H(0,2,0,y)

14
- ?H(O, 2,2,y)+2H(1,2)H(0,2,3,y) - 8 H(1,2)H(0,3,0,y) + 4H(1,2)H(0,3,2,y)

+20H(0,3,2,y) - 12H(1,2)H(0,3,3,y) + 4 H(1,2)H(1,0,0,y) + 14H(1,0,0,y)
-4H(2,y)H(1,0,0,z) + 6H(1,y)H(1,0,1,z) = 18 H(2,y)H(1,0,1,2)

13
_4H(3,)’)H(1,0, 1’Z) - ?H(I’O’ 17Z) + 3H(1,0,2,Y) - 6 H(I’Z)H(lao’ 3’)7)

8tu dtu 3u 107
2H0, - _Hl,
T e PRHOD (G HLD

14 !
+ 5 H(,1,0.y)+ HQO,y)(( -

1, 19H(1,0,2) 7 S54ut  50uH(1,0,2) ¢ 10z 36
byl S LA - I3 HO,1,2)
3 (t+u) s(s +1) (t+u) (s+1) (s+1)
6u*H(1,0 194 H(1,0 12uH(1,0
_ bu (2, .2)  19u (,2,Z)+ uH(I, ’Z)—14H(1,1,z)+12H(0,0,1,z)
s (t + u)
10
+6 H(O,l,O,z)+24H(O,1,1,z)+6H(1,0,l,Z)—12H(1,l,0,z)+( +St)))
N

~ 4u’H(1,1,0,2) N 6u’> H(1, 1,0, 2) N 8uH(1,1,0,z)

52 (f + u)*
— 18 H(2,y)H(1,1,0,2) —4H(3,y)H(1,1,0,2) + 3H(1,2,0,y) + 6H(1,2)H(1,2,3,y)

14
-8 H(1,2)H(2,0,0,y) — 14H(2,0,0,y) — ?H(2,0, 2,y)—4H(1,2) H2,0,3,y)

-2H(1,y)H(1,1,0,2)
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s 3u*H(2,1,0,y)
(t + u)®

14
- 2H(1’Z) H(2$ 1,0,}’) - ?H(2’2$ 0,)’) - 16H(1’Z)H(2’2’ 3,)’)

-4H(1,z) H2,3,0,y) — §H(2, 3,2,y)+16H(1,2)H(2,3,3,y) +4H(1,2) H(3,0,2,y)
+20H(@3,0,2,y) - 12H(1,2)H(3,0,3,y) + 4H(1,2)H(3,2,0,y) + 20 H(3,2,0,y)

28 3t
+ 3 H@3,2,2,y)-8H(1,2)H(3,2,3,y) — 12H(1,z) H(3,3,0,y) + H(0,z)((—
u

107 | 47THQ,0,y)  S4ut  106uH2,0,y) 36

) po,yy 4 (- ZEGO I ur | J0uHB 930!
9 3 (t+ u) s(s + u) (t + u) (s + 1)
10 61 12t 47u* H(2,0,

2 0,2, + (- 2+ B agyma o0,y - 2 HZ00)
(s +u) 52 s (t + u)?

- 14H(2,2,y) + 60H(3,2,y) —24H(0,0,2,y) + 6 H(0,1,0,y) + 12H(0,2,2,y)
+48H(0,3,2,y) + 12H(1,0,0,y) + 12H(1,0,2,y) + 6 H(1,2,0,y) — 12H(2,0,0,y)
+6H(2,0,2,y) -6H(2,1,0,y) - 12H(2,2,0,y) — 12 H(2,3,2,y) + 24H(3,0,2,y)

0s

+12H(3,2,2,y) — 36H(3,3,2,y) +
(s+u

80
)) —8H(1,2)H(3,3,2,y) — ?H(3, 3,2,y)

+40 H(1,2)H(3,3,3,y) +4H(0,0,1,0,y) - 8H(0,0,1,0,z) - 8H(0,0, 1,1, 2)

-8 H(0,0,2,2,y) +4H(0,0,3,2,y) —8H(0,1,0,1,2) + 2H(0, 1,0, 2,y)
-12H(0,1,1,0,z) +2 H(0,1,2,0,y) - 8H(0,2,0,2,y) - 2H(0,2,1,0,y)
-8H(0,2,2,0,y)+2H(0,2,3,2,y) -8 H(0,3,0,2,y) —8H(0,3,2,0,y)
+4H(0,3,2,2,y) - 12H(0,3,3,2,y) —2H(1,0,0,1,2) + 4 H(1,0,0,2,y)
+4H(1,0,1,0,y) —4H(1,0,1,0,2) + 4H(1,0,2,0,y) — 6H(1,0,3,2,y)

-12 H(1,1,0,1,2) - 14H(1,1,1,0,2) +4H(1,2,0,0,y) + 4H(1,2,1,0,y)
+6H(1,2,3,2,y)-8 H(2,0,0,2,y)-8H(2,0,2,0,y)-4H(2,0,3,2,y)+4H(2,1,0,0,y)
-2H(2,1,0,2,y)-8H(2,1,1,0,y)-2H(2,1,2,0,y)-8H(2,2,0,0,y)-8H(2,2,1,0,y)
-16H(2,2,3,2,y) -4 H(2,3,0,2,y) —4H(2,3,2,0,y) + 16H(2,3,3,2,y)
+8H(@3,0,1,0,y) +4H(3,0,2,2,y) - 12 H(3,0,3,2,y) + 4H(3,2,0,2,y)
-8H(3,2,1,0,y) +4H(3,2,2,0,y) —8H(3,2,3,2,y) — 12 H(3,3,0,2,y)

467 3uH(1,2)HG,
- 12H(3,3,2,0,5) - 8H(3.3,2,2.)) + 40 H(3,3,3,2.y) - = = = ( Zt) (3.y)

3u H(0,1,2) N 3uH(0,2,y) 3u2H(1,O,y) N 3uH(2,0,y) 3uH(3,2,y))}
t t (t+u)t t t
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4 4?8 (¢
+ CHu(=22) 4 &(~ 16H(1,y) + 8HQ,3) = 8H(1,2) - =5 = =5 + ( . 2
4°H(1,y) 2£HO,7) 2u* HO,y) 4PH(l,7) 8tH(1,y)
—30) + & > Yy > + > Yy > - 4
A A S A S
4t HQO,z) 4uH(O,y) 8uH(l,z7) N 61> H(2,y) N 612H(1,7) N 16tu H(2,y)
s s s (t+u)? (t + u)? (t +u)?
16tuH(1 61> H(2 6u*H(1
N tu(,z)+u (,y)+bt (1,2)

(t + u)? (f + u)? (t + u)?

-8H(2,y)H(1,z) +8 H(0,1,y)

12¢ u 21 2u?
52 - s(t + u) * s(t + u)
2H(1,0,y)*  2H(1,0,2)f N 12H(0,1,0,y)>  2H(0,1,0,2) £
s(t+u) s (t+u) (f + u)* 52

—8H(0,2,y) + 8H(1, 1,y) + 8H(2,1,y) — 16H(2,2,y) +

+16)+(

L AHALL0)P  6H(L1,0.9 72 12HQ2.1,0.0)°  6H(1,2) HG.y)t

52 (t + u)’ (t + u)’ u
B 4uH(1,0,y)t N 12uH(1,0,y) t N 6H(1,0,y)t B 4uH(1,0, 2)t N 12uH(1,0, 2)t

s(t + u) 52 (t+u) s (t+u) 52

N 4uH2,y)H(1,0,2) t B 2H(1,0,2)¢t N 6H(3,2,y)t N 20uH (0, 1,0, y)t

(t + u)> (f + u) u (t + u)?
_4uH(0, 1,0,2) t+4H(0, 1,0,2)t B 8H(1, l,O,y)t_ 8uH(1,1,0, z)t_ 20uH(2,1,0,y)t

(t + u)? s s (t + u)’ (t + u)?

- 18 H(1,2) + 9H(1,2)H(2,y) — 18H(2,y) + 8H(1,2)H(3,y) + 12H(3,y)H(0, 1, 2)
+4 H(O’ 19Z) + 12H(LZ)H(O,2,Y) _4H(O$ LZ)H(O,Z,)/) _4H(072’y)

2u*H(1 H(l
_12H(1,2) H(0,3,y) - =2 (1,0,y)  8uH(,0,y)

- 6H(1,2)H(1,0,y)

s(t+u) (t+u
2u® H(1,0,7) 2uH(1,0,z)
+4H(0,1,2)H(1,0,y) + i) + 0 - 12H(3,y)H(1,0,z2)

-8 H(0,2,y)H(1,0,z) — 8H(0,3,y)H(1,0,z) —24H(3,y)H(1, 1,2)

+8H(0,0,y) H(1,1,z) —8H(0,3,y)H(1,1,2) + 9H(1,1,z) —4H(0,1,2)H(1,2,y)

+ 12H(1,z) H(2,0,y) —4H(0,1,2)H(2,0,y) —4H(2,0,y) + 8H(0,0,2)H(2,2,y)
+16H(0,1,z2) H(2,2,y) +9H(2,2,y) — 12H(1,2)H(2,3,y) — 12H(1,2)H (3,0, y)
-8H(1,1,z) H(3,0,y) —24H(1,2)H(3,2,y) + 8H(0,1,2)H(3,2,y)
+8H(3,2,y)+24H(1,z) H(3,3,y) - 8H(0,1,2)H(3,3,y) + 8H(1,0,2)H(3,3,y)
+16H(1,1,2)H3,3,y) -4 H(1,y)H(0,0,1,2) + 8H(2,y)H(0,0, 1, 2)
2u’H(0,1,0,y) N 12u> H(0,1,0,y)

+8H(1’Z)H(0,0,2’)’)_SH(I’Z) H(070’37y)_ ) P
S (t+u

4uH(0,1,0,
¢ HHOLOY) 41, HH©0,1,0,y) + 4 H, y)HO, 1,0,2) + 8HG, )H(O, 1,1,2)

- 12H(07 1’ laZ) + 8H(1’Z)H(0?2a0’y) + 12 H(Oa 2’ 2»)’) - 4H(1’Z)H(0a 27 3,)’)
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-8H(1,2)H(0,3,2,y) — 12H(0,3,2,y) + 8H(1,z) H(0,3,3,y) — 8H(1,2)H(1,0,0,y)

H(l, 0 2) u? _ 26(s =3+ w)H(O,2)u 2H(1,0,z)u 2tH(1,0,2)u

+2HO, ) $2(t + u) s (f + u)®

LN (- STM —2)H(1,z) + 6H(1,1,2) - 4H(0,1,1,2) - 2 H(1,0,1,2))

-4H(1,y)H(1,0,1,2) + 12H(2,y)H(1,0,1,2) + 8H(3,y) H(1,0,1,z2)

4u* H(1,1,0,z)

-6H(1,0,1,2) - 6H(1,0,2,y) +4H(1,2)H(1,0,3,y) + >
s

6u’H(1,1,0,z) 8u H(1,1,0,z2)
(t+u)2 s

+4H(2,y)H(1,1,0,2) —6H(1,2,0,y)

12u*H(2,1,0,y)

(t + u)’
—4H(1,2) H(2,1,0,y) + 12H(2,2,0,y) + 16H(1,2)H(2,2,3,y) — 12H(2,3,2,)
—8H(1,z) H(3,0,2,y) — 12H(3,0,2,y) + 8H(1,2)H(3,0,3,y) — 8H(1,2)H(3,2,0,y)
—12 H(3,2,0,y) — 24H(3,2,2,y) + 16H(1,2)H(3,2,3,y) + 8H(1,2)H(3,3,0,Y)
3H(2 0,y) 1 (s +H(1,0,y)t

+ u)2 52

3(s+1H(1,0,y)
s

-4H(1,2)H(1,2,3,y) + 8H(1,z) H(2,0,0,y) + 12H(2,0,2,y) —

+16H(1,2) H(3,3,2,y) + 24H(3,3,2,y) + 2H(0, z)(

8uH(2 0,y) t
(t + u)?

(———2)H(2 v+6 HQO,2,y) -

+3u2 H(2,0,y)
(t +u)*

-4H(3,0,2,y)—-4H(3,2,2,y)+4H(3,3,2,y))-16H(1,z) H(3,3,3,y)+8H(0,0, 1, 1, 2)
+8H(0,0,2,2,y)-8H(0,0,3,2,y)+8H(0,1,0,1,z)-4 H(0,1,0,2,y)+8H(0,1,1,0,y)
+8H(0,1,1,0,2)—-4H(0,1,2,0,y)+8H(0,2,0,2,y)-4 H(0,2,1,0,y)+8H(0,2,2,0,y)
-4H(0,2,3,2,y)-8H(0,3,2,2,y)+8H(0,3,3,2,y)+4 H(1,0,0,1,z)—-8H(1,0,0, 2, y)
+4H(1,0,1,0,y)-8H(1,0,2,0,y)+4H(1,0,3,2,y)+8 H(1,1,0,0,y)+8H(1,1,0, 1, 2)
+8H(1,1,1,0,y)+8H(1,1,1,0,2)-8H(1,2,0,0,y)-4 H(1,2,1,0,y)-4H(1,2,3,2,y)
+8H(2,0,0,2,y)-4H(2,0,1,0,y)+8H(2,0,2,0,y)-8 H(2,1,0,0,y)-4H(2,1,0,2,y)
+8H(2,1,1,0,y) —4H(2,1,2,0,y) + 8H(2,2,0,0,y) + 16 H(2,2,3,2,y)
-8H(3,0,1,0,y) - 8H(3,0,2,2,y) + 8H(3,0,3,2,y) - 8H(3,2,0,2,y)
+8 H(3,2,1,0,y) - 8H(3,2,2,0,y) + 16H(3,2,3,2,y) + 8H(3,3,0,2,y)
N 6uH(1,2)H(3,y)

t
N 6u H(0,1,z)  6uH(0,2,y) N 6u’H(1,0,y) _ 6uH(2,0,y) N 6uH(3,2,y))}

t t (t+u)t t t

+6H(2’ 2’)’)_6H(3, 2,)’)+4H(0,0, 2,}’)_4[{(0, 39 2’y)_2H(2509 2,)’)

+8H(3,3,2,0,y) + 16 H(3,3,2,2,y) — 16H(3,3,3,2,y) + 6
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37 1 1 1 1 tu 7
+CM4QV;§+@VGH@w+EH@w—gH@a+gH@w+§;—%

+ (%H(O, (H (O, z)( +20)+31 H(1,2)-36H(0,0,2) +24H(0, 1,z) —36H(1,0, 2)

12 tuH(1,0, tuH(1,0,
£ 2AH( 1,5 + 124 4 g6y 4 MU0y mH10.2)
s 352 352

1 2 r 43
- H(,0,y) - 3 H(,2,y) - H(2,0,y) + §H(2, 2,y)+H@3,2,y) + 3 + ﬁ)

12tu
2

31
+ H(0,z2) (%H(Z y)

+HQ AL, ~ S HG A2 ~ HO,0.5) H(12) + SHO,2,)H(, )

+ H(0,3,y)H(1,2) + %H(Z, 0,y) H(1,z) — gH(Z,:S,y)H(l,Z) + H(3,0,y)H(1,2)

- SHG.2,9) H(L2) = SHG,3,0H(,2) - HRDH0,0,9 - SH2,) HO, 1,2
—%H(?),y)H(O, 1,20+ H3,y)H(1,0,z) - gH(3,y) H1,1,2)+ ;—;H(Zy)— %H(0,0,y)

1 1 2
+ §_6 H(0,2,y) + §—6H(2,0,y) +HQ2,2,y) - 30 H(@3,2,y)-H(0,0,2,y) - H(0,2,0,y)

2 2 2

*3 H(0,2,2,y)+ H(0,3,2,y) - H(2,0,0,y) + §H(2,0, 2,y) - 3 H(2,1,0,y)
2 4 4

+ §H(2’ Zaovy) - § H(27 3’ Zay) + H(3’O?2’y) + H(3,2’ an) - §H(37 2,2’)7)
4 17 41 49 31

-—-H 2 —H(l,2) — —H - — H(@O,1 —H(1
3 (3,3,2,y) + 77 (1,2) 3 0,0,2) 36 0,1,2) + 36 (1,0,2)

1 2 2 65
+H@L@—§H@QL@—gH@LL@—H@QQ@—gH@QLm+ﬂ§»

1 1 279
+ Can{§3( - §) + {2(5(4H(1,)’) —-5H(2,y) - H(1,2) + 1)) + ( - 5 HO.yH(1.2)

27
—108H(0, y)H(0, 1,2)+27H(0, y)H(1,0,2) - 108 H(0, y)H(1, 1,2) - TQH(Z VH(O,2)

- 162H2,y)H(1,z) + 360H(3,y) H(1,z) + 162H(0,0,y)H(1,z) + 162H(2,y)H(0,0, 2)
+108H(2,y)H(0,1,2)+54H(3,y) H(0,1,2)+54H(0,2,y)H(0,z)—108H(0, 2, y)H(1, 2)
— 162H(0,3,y)H(1,z) — 27 H(1,0,y)H(0,7) — 108H(2, y)H(1,0,2)

—162H(3, y)H(1,0,2) + 216H(3,y) H(1,1,7) + 54H(2,0,y)H(0, 2)

— 108H(2,0,y)H(1,z) — 108H(2,2,y)H(0,z) + 216 H(2,3,y)H(1,z2)
—162H(3,0,y)H(1,z) — 162H(3,2,y)H(0,z) + 216H(3,2,y) H(1,z)

279
+216H(3,3.5)H(1.2) = 27H(0.y) = 102H(2.y) = =~ H(0,2,3) + 180 H(1,0.y)

279
~ 5 H(2,0.5) ~ 162H(2,2,y) + 360H(3,2,3) + 162H(0.0,2.y) - 27 H(0.1,0.)

+162H(0,2,0,y) - 108H(0,2,2,y) — 162H(0,3,2,y) — 162H(1,0,0,y)
+ 108 H(1,1,0,y) + 162H(2,0,0,y) — 108 H(2,0,2,y) — 108 H(2,2,0,y)
+216H(2,3,2,y) - 162 H(3,0,2,y) — 162H(3,2,0,y) + 216H(3,2,2,y)

441 81
+216H(3,3,2,y)-27H(0,z)—102 H(l,z)+7H(0, 1,z)+7H(1,O, 2)—162H(1,1,z7)

+54 H(0,0,1,z) -=27H(0,1,0,z) + 108 H(0,1,1,z) + 108 H(1,0, 1,z2) + 200)/81}
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N n;,{l_(l)g(H(o, WGH(0,2) - 20) + 15H(0,0, y) — 20H(0,2) + 15H(0,0,2) + 6 42)}

1
B = ﬁ(121CA2 +44C(6Cr — ng) + 4 (27Cr* — 12Crny + ns%))

I
82 = Cﬁ{ﬁ(594H(O, WH(O, 7) + S94H(0,y)H(1,2) + S94H(2, y)H(0, 2)

— 1188 H(3,y)H(1,2) + 990H(0,y) + 891H(2,y) + 594H(0,2, )

+594H(2,0,y) — 1188 H(3,2,y) + 990H(0,z) + 891H(1,z) — 594H(0, 1,2)

|
+ 594H(1,0,7) + 495 £, — 108Z; — 1296)} ; CACF{ﬁ( — 1188 H(0, y)H(1, 2)

+ 54H(0,y)(6H(0,z) + 6H(1,2) + 10) — 1188 H(2,y)H(0,z2)
+54(6H(2,y) + 10)H(0,z2) + 1728 H(3,y)H(1,z) — 1296 H(2,y) — 864 H(0,2,y)

+ 1188H(1,0,y) — 864H(2,0,y) + 1728H(3,2,y) — 1296H(1, 7) + 864 H(0, 1,7)
1
+324H(1,0,7) + 1566 — 2808¢; — 778)} + c%{l—og( — 648H(0, y)H(1, 7)

- 648H(2,y)H(0,z) + 1296H(3,y)H(1,2) — 972 H(2,y) — 648H(0,2,y)

+648H(1,0,y) — 648H(2,0,y) + 1296H(3,2,y) — 972H(1,z) + 648 H(0, 1, 2)

— 1296, + 259245 + 972)} + cAnf{ﬁ( —2(-27(4H(3,y) - 3)H(1,2)

+81H(2,y) + 54H(0,2,y) + 54 H(2,0,y) — 108H(3,2,y) — 54H(0, 1, 7)

+54H(1,0,z) + 45, — 260) — 9H(0,y) (12H(0,z) + 12H(1,z7) + 31)

—9(12H(2,y) + 31)H(0, z))} + anf{ng( — 2(54(4H(3,y) — 3)H(1,2)

- 162H(2,y) — 108H(0,2,y) + 108 H(1,0,y) — 108H(2,0,y)

+216H(3,2,y) + 108H(0, 1, z) + 544, +22) —9H(0,y) (6 — 24H(1,z))

1 1 10
— 9(6 — 24H(2, y))H(0, z))} + n?{gH(O, )+ gHO,2) - ﬁ}
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39
8 = (5 )+ & - HO.»  6H(Ly) + 1IHQ. )~ H0,2) + SH(1,2) - (255 + w)
+25° (79¢% + 266tu + T9u*) + s*(1331° + 1097 2u + 1097t u* + 133u°)

+ 25tu(2417 + 806tu + 241u*) + 4578 (1 + w)u?)/(36(s + £)*(s + u)*(t + u)))

+§2((H(0, 2)(s2(109¢ +49u) + 25t (115t + 6 1u) + 21211+ 85 u)))/(12(s + £)2(¢ + u))

+ (H(O0, y)(s*(49¢ + 109u) + 2 su(61¢ + 115u) + u*(85¢ + 121u)))/(12(s + u)*(t + u))
+ (HQ,y)( - 1445 = 257s*(t + u) — 25°(35 £* + 202tu + 35u?)

+ 52(438 — 25¢%u — 25tu* + 43u’) + 2 stu(55¢° + T4tu + 55u°)

+ 795 (t + wu?))/(12(s + £)*(s + w)*(t + u)) + (H(1,z)( = 72s° — s*(113 t + 41u)
+ 25 + 14tu + 73u?) + s2(43 + 19172u + 407 tu* + 115u°) + 2stu(55¢

+ 182tu + 127u?) + (79 t + 151u)))/(12(s + )*(s + u)*(t + u))

N 6(s+1) H(l,y)
(t+u)

+2H(1,y) H(1,2) + H2,y)H(0,2) —2H(3,y)H(1,2) + 3H(0,2,y) + 2H(1,2,y)

+3H(0,y)H(0,z) + 2H(1,y)H(0,z) + 3H(0,y)H(1, 2)

+H(2,0,y) -2 H(3,2,y) + H0,1,2) + H(1,0,2) + 2H(1,1,2) — (285’ (t + u)

+ 5228 £ + Tltu + 28u?) + 34st(t + wyu — 3:°u*) /(9s(s + H)(s + u)(t + u)))

— 17)H(0,2)H(0, y) — ((179u*

(

( 2(143¢ + 89u)H(0, y) .\ 1 tu
27(t + u) 3 s (t+u)

+ 161su + 107tu + 107 st)H(1,z)H(0, y))/(18(s + u)(t + u)) + 7H(0,0,2)H(0, y)
—(((1314+25u) s + 2u(19¢ +28u)s+31(¢ + u) u>)H(0, 1, 2)H(0, y))/(6(s + u)*(t + u))
+ (17t + 23u) H(1,0,2)H(0,y))/(2(t + u)) — %H(l, 1,2)H(0,y)

—2H(0,0,1,2) H(0,y) - 2H(0, 1, 1,2)H(0, y) + 2H(1, 0,0, 2)H(0, y)

2897 + 143w)H(0,2) 140
- ha,
27( + u) 57 H(1.2)

+2H(1,1,0,2)H(0,y) —

— ((179¢ + 1615t + 107ut + 107su)H(0, 2)H(2,y))/(18(s + 1) (¢ + u))
13 140

- ZH(I,z)H(Z, y) — 7H(z, y) + ((188 s + 197(f + u)s

+206tu)H(1,2)H(3,¥))/(9(s + 1) (s + u)) + TH(0,z)H(0,0,y) + TH(1,2)H (0,0, y)
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80
+5H 0,0,y) +7 H(2,y)H(0,0,z) + 2H(0, 0, y)H(0, 0, 2)

80
+ 3}1(0, 0,2) + (((215 t + 269u)s* + (215¢* + 520ut + 287u’)s

+ tu(233t + 305u)) H(0,1,2))/(18(s + t)(s + u)(t + u)) + ((18s°
+59 (¢t + u)s* + (6172 + 152ut + 61u?)s® + 4(5£ + 31u * + 31u’t + 5u’)s*

+ 341(t + u)’us + 112 + u) u?)HQ,y)H(0, 1,2))/(3(s + )*(s + u)* (t + u))
+ %H(3,y)H(O, 1,2) + 2H(0,0,y)H(0,1,2) — (179 u? + 161su + 107tu
+107st)H(0,2,¥))/(18(s + u) (t + u)) + (17t + 29u)s* + 21(141 + 23u)s
+ 112 (t + w)H(0,2)H(0, 2,))/(6(s + 1)*(t + u)) — % H(1,2)H(0,2,y)

+2H(0,0,2)H(0,2,y) — 2H(0,1,2)H(0,2,y) — (((5t + 9 u)s* + (9¢* + 28ut
+19u%)s® + 226 + 14ur® + 21u* t + 5u°)s* + 2tu(5¢ + 14ut + 9u?)s
+ 72t + u) u?)H(,2)H(0,3,))/((s + 1)*(s + u)*(t + u)) — 2H(0, 1, z) H(0,3,y)

3MH(O, Z)H(la O’ )’)

2
+ (u(65” — 2ts + us + tu)H(1,0,y))/(3s(s + u) (t + u)) — m

— (s +t+u) H(1,2)H(1, 0, )/((t + u)) — (125t + 107u)s>

+1(125¢ + 119u) s — 6r°u)H(1,0,2))/(18s(s + 1)(t + u)) + ((= 3 °

— (t = 3u)s® + 8t(t + u)s + 61°(t + u))H(2,y) H(1,0,2))/((s + O)*(t + u))

- 7H(3’y)H(1’OaZ) + 2H(O’an)H(1’07Z) - 6 H(Oa 37y)H(170aZ)
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4 13
+ gH(3,y)H(1, la Z) + 2H(09 an) H(l’ 192) - ZH(l’ 19Z) - 2H(0’ LZ)H(LZ,)’)
+2H(1,0,2) H(1,2, y) = (1796 + 16 1su + 10761+ 107s0)H(2, 0, ))/(18 (5 + w)(t + 1))

23 2
2
+ 2H(1a O’ Z) H(2, O’y) - §H(O’ Z)H(27 2ay) + 2H(O’ 0’ Z)H(z, 2’y)

13
+4H(O,1,2) H2,2,y) +4H(1,0,2)H(2,2,y) — ZH(Z’ 2,y) + ((185° + 61 (¢ + u)s*

+ 51382 + 32ut + 13u?)s® + 2(118 + 67u * + 67u’t + 11u°)s* + 38¢(t + u)*us
+ 136%(t + ) u?)H(1,2)H(2,3,1)/(3(s + O)*(s + u)*(t + u)) — 6 HO, 1,2)H(2,3,y)
+2H(1a O’Z)H(27 3ay)_7H(l9Z)H(3a O,)’)+2H(0, I’Z) H(39 an)_zH(la OaZ)H(3’ O’y)

+ (18852 + 197(¢ + u)s + 206t u)H(3,2,))/(9(s + £)(s + u)) — TH(0, 2)H (3,2, y)
4 22
+3 H(LYHB,2.y) + T H(L.)HG.3.y) - 12H0. 1. 9H(3.3.y)

+4H(1,0,2) H(3,3,y) + (Tu = 505 + (= 138 + 4ut + 17u?)s> = 2 (46> + 8ut* — 13u’t
— 5u?)s? + 2tu( = 52 + 2ut + 7 u?)s + (¢t + wyu*)H(0,0, 1,2))/(3(s + £)* (s + u)*(t + u))
— 2H(1,y)H(0,0,1,2) — 2H(2,y)H(0,0,1,z) — 8H(3,y) H(0,0,1,z)
+2H(0,2)H(0,0,2,y) + 2H(1,2)H(0,0,2,y) + 7TH(0,0,2,y) — (u(s*

+ (u —26)s — 3tu)H(0, 1,0,)/((s + u)* (¢ + u)) — (t(s* + (t — 2u)s

—3tu) H(0, 1,0,2))/((s + £)*(t + w)) + 2H(1,y)H(0, 1,0,2) + 6H(2,y) H(0,1,0,2)

2
+4H(3,y)H(0,1,0,2) + §H(0, 1,1,2) + 2H(0,2)H(0,2,0,y) + 2 H(1,2)H(0,2,0,y)

2
+7H(0,2,0,y) —2H(0,2)H(0,2,2,y) — §H(O,2, 2,y)+4 H(1,2)H(0,3,0,y)

— (((5¢ +9u)s™ + (97 + 28ut + 19u?) s° +2(2F + 14ut® + 21u*t + 5u’)s?
+ 2tu(58% + 14u t + 9u?)s + TH2(t + w)u?)H(0, 3,2,1))/((s + £)* (s + u)*(t + u))

— 6H(0,2)H(0,3,2,y) + 4H(1,2)H(0,3,3,y) + 2H(2,y) H(1,0,0,z2)
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+7H(1,0,0,2) + ((95° + 32(t + u)s* + (341* + 80 ut + 34u*)s® + (117 + 61ur® + 61u’t
+110) 5%+ tu (166% +23ut + 16u?) s +262(t + wu?) H(1,0,1,2))/(3(s + £)*(s + u)*(t + u))
—2H(1,y)H(1,0,1,2) + 6 H2,y)H(1,0,1,2) — (3(s + t + u)H(1,0,2,))/((z + u))
—2H(0,7) H(1,0,2,y) + 2H(1,2)H(1,0,3,y) + (6(s + 1) H(1,1,0,))/(( + u))

+ (2t + 3u)s* + 1(5t + 14u)s + 3%(t + 3 w))H(1, 1,0,2))/((s + D)*(t + u))

3(s+t+uH(1,2,0,y)

+2H(1,y)H(1,1,0,2) + 6H(2,y) H(1,1,0,2) - (t+u)

—2H(1,z) H(1,2,3,y) + 2H(0,2)H(2,0,0,y) + 2H(1,2)H(2,0,0, )
+7H(2,0,0,y) - % H(2,0,2,y) +2H(1,2)H(2,0,3,y) + (= 95° + (11¢ — u)s*
+28( + u) us + 20(¢ + wyu?)H(2,1,0,y))/(3(s + u)*(t + u)) + 2H(1,z) H2,1,0,y)
+2H(0,2)H(2,2,0,y) — %H(2, 2,0,y) +4H(1,2)H(2,2,3,y) + 2 H(1,2)H(2,3,0, )
+((185° + 61(¢ + u)s* + 5(137 + 32u 1 + 13u?)s® + 2(11£ + 67ut® + 67u’t

+ 11’)s? + 38 (¢ + u)us + 1365(t + wyu*)H(2,3,2,7))/(3(s + 1)* (s + u)*(t + u))

+2H(0,2)H(2,3,2,y) - 8H(1,2)H(2,3,3,y) - 2H(0,z) H(3,0,2,y) — 7H(3,0,2,y)

4
+4H(1,2)H(3,0,3,y) - 2H(0,2)H(3,2,0,y) -7 H(3,2,0,y) + §H(3, 2,2,y)

22
+4H(1,2)H(3,3,0,y) + 4H(0,2) H(3,3,2,y) + ?H(3, 3,2,y) - 16H(1,2)H(3,3,3,y)

+8H(0,0,1,0,2)+2 H(0,0,1,1,2)+2H(0,0,2,2,y)+2H(0,1,0,1,2)+6H(0,1, 1,0, 2)
+2H(0,2,0,2,y)+4 H(0,2,1,0,y)+2H(0,2,2,0,y)+4H(0,3,0,2,y)+4H(0,3,2,0,y)
+4H(0,3,3,2,y)+6 H(1,0,1,0,2)+2H(1,0,3,2,y)+2H(1,1,0,0,2)+4H(1,1,0, 1, 2)
+6H(1,1,1,0,2)-2 H(1,2,3,2,y)+2H(2,0,0,2,y)+2H(2,0,1,0,y)+2H(2,0,2,0,y)
+2H(2,0,3,2,y)+2 H(2,1,0,2,y)+2H(2,1,2,0,y)+2H(2,2,0,0,y)+4H(2,2,1,0,y)

+4H((2,2,3,2,y)+2 H(2,3,0,2,y) + 2H(2,3,2,0,y) - 8H(2,3,3,2,y)

761
+4H(3,0,3,2,y) +4H(3,3,0,2,y) + 4 H(3,3,2,0,y) - 16H(3,3,3,2,y) + 8_1)}
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+ CACF{Q(%) + 53(22H(1, V) = 18H(2, y) + 4H(1,2) + (8035°(¢ + u) + 45*(424

+ 965tu + 424u°) + s3(821F + 53297%u + 53291u® + 821 u®) + s*( — 721" + 19663 u
+53361°u + 1966tu® — 72 u*) + stu( — 1441 + 1307 2u + 1307tu* — 144u°)

— 728 W22 + 1)) (185(s + 12(s + u)(t + u))) ; §2( — (2H(1,y)(185% + 2351 + 11su

—61%))/(3s (t + u)) + (tH(0, 2)( = 105’ = 35> (Tt + 2u) = Ost(t + u) +2 £°))/(s(s + £)*(t + u))
+ (uH(O,y)( = 105* = 35*(2 t + Tu) — 9s(t + wu + 2u?))/(s(s + u)* (t + u))

+ (H2,y)(1445°(t + u) + s*(289F + 554t u + 289u?) + 45°(32¢ + 147u + 1471
+320%) + 5% (= 17¢* + 902 u + 166¢°u* + 901w’ — 17u*) — 2stu(35 £ + 1117%u

+ 1111u? + 35u°) — P (7162 + 166tu + 71 u?)))/(6(s + > (s + u)*(t + u)*) — (H(1, 2) (
— 7255t + u)* = $°(1012 + 2317%u + 183tu* + 53 1) + 4s*(t + u)* (87 + 25tu + 26u?)
+5°(61 £ + 427 u + 1120°u* + 1216¢%u° + 523tu* + 61u°) + 2% (t + u)*u(79¢°
+2361%u + 79tu* — 12u°) + stu® (115t* + 369 u + 3212u* + 19tu® — 48u®)

— 241% (t + u)*u*))/(65(s + £)*(s + u)*(t + u)*) — 2 H(1,y)H(0,z) — 6H(0, y)H(1,72)
—2H(1,y)H(1,2)—4H(2,y)H(0,2) +2H(0,2,y)+6 H(1,0,y)—2H(1,2,y)—4H (2,0, y)
—~8H(2,1,y) + 8H(2,2,y) + 2H(0, 1,z) + 2H(1,0,2) = 2 H(1,1,2) + (195°(¢ + u)

+ $2(197 + 1820 + 192) + 145 st(t + wyu + 108242)/(65(s + 1)(s + )t + u)))

+ (((26t2 +26st + 33ut + 155u)H(0,y))/(3(s + 1) (¢t + u)) + ((18tu)/(s(t + u))

+3)H(0,2) H(O,y) + ((242u® + 215su + 134tu + 134st)H(1, 2)H(0, y))/(9 (s + u)(t + u))
+ (((13¢ + 31u)s® + u(44t + T1u)s + 40 (t + wu?)H (O, 1,2)H(0, ))/(3(s + u)* (¢ + u))
— ((19s£* + 62sut + 31su* — 6(t + wyu*) H(1,0,2)H(0,y))/(3s(t + u)?)

14

- ?H(l, 1,2)H(0,y) + 4H(0,0, 1,z) H(0,y) +2H(0,1,0,2)H(0, y)

+8H(0,1,1,2)H(0,y) + 2H(1,0,1,2)H(0,y) —4 H(1,1,0,2)H(0, y) + ((26u* + 26su
803

+33tu + 15st)H(0,2))/(3 (s + u)(t + u)) + gH(l, 2) + ((2428 + 2155t + 134 ut

+ 1345u)H(0,2)H(2,¥))/(9(s + t)(t + w)) + 2H(1,z) HQ2,y) + S,S%H(Z,y) — ((4665*
+493(t + u)s + 5207 u)H(1,2)H(3,¥))/(9(s + H)(s + u)) — 14H(1,2)H(0, 0, y)

— 14 H2,y)H(0,0,2) — (((251f + 332u)s* + (251¢* + 637ut + 359 u?)s

+ 2tu(139¢ + 193u))H(0, 1, 2))/(9(s + t)(s + u) (¢t + u)) — ((36s° + 112(¢ + u)s* + (1077
+268ut + 107 u?)s® + (312 + 191ut* + 1910t + 31u°)s* + 2tu (22¢* + 35ut + 22u*)s
+ 42 + wu?)H2,y) H(0,1,2))/(3(s + )*(s + u)*(t + u)) — 23—0H(3, y) H(0,1,z)

— 4H(0,0,y)H(0, 1,2) + ((242u* + 215su + 134tu + 1345 £)H(0, 2,¥))/(9(s + u)(t + u))
— (((29¢ + 47u)s* + t (49¢ + 76u)s + 206%(t + u))H(0, 2)H(0,2,))/(3(s + H)* (t + u))

— 13—4H(1, 2)H(0,2,y) — 4H(0,0,2)H(0,2,y) + 6H(0, 1,2) H(0,2,y) + ((2(7t + 13u)s*

+5(52 + 16ur + 11u4?) s* + (116 + 79ur® + 1211t + 29u°)s* + 4tu(71
+20u t + 13u?)s + 2062 (t + wu?)H(1,2)H(0, 3, 1)) /((s + £)* (s + u)*(t + u))
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+4H(0,1,2)H(0,3,y) + (( = 2(761 + 103u) s> + (37t — 233u)us
+162tu*)H(1,0,1))/(9s(s + u) (¢ + u)) + (2(3£* + 8st

6s

+ 14su)H(0,2)H(1,0,y))/(3s (t + u)) + ((t T

+ 9)H(1, Z)H(17an)

—2H(0,1,2) H(1,0,y) + (((t = 2u)s* + 1(t + 19u)s + 187u)H(1,0,2))/(s (s + 1)(t + u))
+((18(t + w)s® + (3172 + 32ut + 13 u?)s* — t(£* + 1Tut — 8u?)s — 21°(7¢
+20ut + 7 u?))H(2,y)H(1,0,2))/(3(s + O)*(t + u)*) + 20H(3,y) H(1,0,2)

—4H(0,0,)H(1,0,2) + 8H(0,2,y)H(1,0,2) + 16H(0, 3, y)H(1,0,2)
28
+2 H(1,0,y)H(1,0,2) + =-HG,y)H(1, 1,2) - 8H(0,0,y)H(1, 1,7)

+4 H(0,3,y)H(1,1,2) + 2H(1, 1,2) + 6H(0, 1,2)H(1,2,y) - 2H(1,0,2) H(1,2,y)

+ ((242u* + 215su + 134tu + 1345H)H(2,0,9))/(9 (s + u)(t + u)) — (471
14
+153ur® + 153u*t + 47u°) H(0,2)H(2,0,¥))/(3(t + u)’) - ?H(l,z)H(Z, 0,)
- 4H(09 O’Z) H(29 O’y) - 2H(O’ 1’Z)H(2a 0,)’) - 6H(19 O’Z)H(za an)
14
- ?H(O’Z) H(2a 2,)’) - 8H(0’ OaZ)H(za 2,)’) - 16H(0’ I,Z)H(Z, 2,)’)

—8H(1,0,2)H(2,2,y) +2 H(2,2,y) — ((365” + 98(t + u)s* + (79¢* + 212ut

+79 u?)s® + (176 + 121uf® + 1216t + 17u’)s? + 2tu (88 + Tut + 8u*)s

—106%(t + wu*)H(1, 2) H?2,3,9)/(3(s + )*(s + u)*(t + u)) + 12H(0, 1,2)H(2,3,)
—4 H(1,0,2)H(2,3,y) + 20H(1,2)H(3,0,y) — 4H(0, 1,2)H(3,0, )

+4H(1,1,z) H3,0,y) — ((466s> + 493(f + u)s + 520tu)H(3,2,9))/(9 (s + )(s + u))

28
+20H(0’ Z)H(37 2,)7)+?H(1’Z)H(3, 2,)7)_4H(0, 1’Z)H(3’ zay)_4H(170’ Z)H(3’ 2,)’)

80
- ?H(laZ)H(3’ 3ay) + 28 H(O7 1a Z)H(39 3,)7) - 12H(17 Oa Z)H(3a 3,)’)

—8H(1,1,2)H(3,3,y) + ((4(4 1 — 5u)s* + (411> — 8ut — 49u?)s® + (256> + 53ur® — 73u* t

—29u°)s” + Stu(4t* — ut — Su*)s — 26°(t + u) u?)H (0,0, 1,2))/(3(s + £)*(s + u)*(t + u))
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+6H(1,y) H(0,0,1,2) + 16H(3,y)H(0,0,1,7) — 8H(0,2)H(0,0,2,y)
—8H(1,2)H(0,0,2,y) — 14 H(0,0,2,y) + 4H(1,2)H(0,0,3,y) + (( - 6(¢ + u)u*

— s(17 £ + 22ut + 17u*)u® + s*(2¢* + 19ut — Tu*)u + 25> (5¢* + 13ut
+2u*))H(0,1,0,¥))/(Bs(s + u)* (t + u)*) + 2H(0,2)H(0, 1,0,y) + 2H(1,2)H(0, 1,0, )
+((= 6 (t+wt* + (£ + 14ut + u*)? + s*(29¢ + 9ut + 38 u?)t + 5°(22F* + 62ut

+28u*))H(0, 1,0,2))/(3s (s + H*(t + u)*) —2H(1,y)H(0, 1,0, z) — 12H(2,y)H(0, 1,0, z)

14
-4H@3,y) H,1,0,z2) —4H@3,y)H(0,1,1,2) + ?H(O, 1,1,2) - 8H(1,z) H(0,2,0,y)

14
- 14H(07 2’05y) + 4H(09Z)H(0a 2’ 2»)’) - ?H(092a 2,)’) + 2 H(l’Z)H(Oaza 3,)7)

—~8H(1,2)H(0,3,0,y)+((2(7t + 13u)s* +5(5 £ + 16ut + 11u?)s” + (1122 + T9ut* + 121u*t
+29u%) 5% +4tu(T12 +20ut + 13u?) s +206%(t + wyu®) H(0,3,2,9))/((s + £)*(s + u)*(t + u))
+ 16H(0,2)H(0,3,2,y) + 4 H(1,2)H(0,3,2,y) — 12H(1,2)H(0,3,3,)
+4H(0,2)H(1,0,0,y) + 4H(1,7) H(1,0,0,y) + 14H(1,0,0,y) — 4H(2,y)H(1,0,0, z)
—((185° +49 (¢ + u)s* + (35¢* + 88ut + 35u®)s® + 4(£> + Sur® + 5 u’t + u’)s*

— 2tu(5¢* + 28ut + 5u)s — 23¢* (t + wu)H(1,0,1,2))/(3(s + 1)*(s + u)*(t + u))

6
+6 H(1,y)H(1,0,1,z) - 18H(2,y)H(1,0,1,z) —4H(3,y)H(1,0,1,z) + ( +S

(t+u)
+9)H(1,0,2,y) + 4H(0,2)H(1,0,2,y) — 6H(1,z) H(1,0,3,y) — (2(185> + 235 + 11us
—6)H(1,1,0,v)/(Bs (t + u)) — (Qu(3t + u)s®> + (3£ + 21ur® + 6u*t — 4 u’)s*

+ 136 + 18ut® + 3uPt — 8u’)s — 48 (t + wu?)H(1, 1,0, 2))/(s(s + )*(t + u)*)
—2H(1,y) H(1,1,0,z) — 18H(2,y)H(1,1,0,z) — 4H(3,y)H(1,1,0,2)

6s

e

+9)H(1,2,0,y) + 2H(0,2)H(1,2,0,y)
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+6H(1,2)H(1,2,3,y) — 4 H(0,2)H(2,0,0,y) — 8H(1,2)H(2,0,0,y) — 14H(2,0,0,y)
+2H(0,7) H(2,0,2,y) - 13—4H(2, 0,2,y) —4H(1,2)H(2,0,3,y) + ((6 (¢ + u)s® + (9¢*
+20ut + 15u®)s* + u(126% + 13ut + 9 u?)s — 4t)H(2, 1,0,))/((s + u)*(t + u)*)
—2H(0,z) H(2,1,0,y) — 2H(1,2)H(2,1,0,y) — 4H(0,2)H(2,2,0,y) — 13—4 H(2,2,0,y)

~16H(1,2)H(2,2,3,y) — 4H(1,2)H(2,3,0,y) — (365> + 98 (t + u)s* + (79¢*

+212ut + 79u?)s® + (176 + 121u £ + 1210%t + 17u6)s* + 2tu(8F + Tut + 8u?)s

—10 At + wu?)H(2,3,2,¥)/(3(s + 1)*(s + u)* (t +u)) —4H(0,2)H(2,3,2,)
+16H(1,2)H(2,3,3,y) + 8H(0,2)H(3,0,2,y) + 4 H(1,2)H(3,0,2,y) + 20H(3,0,2, y)
—12H(1,2)H(3,0,3,y) + 4H(1,2)H(3,2,0,y) + 20 H(3,2,0,y) + 4H(0,2)H(3,2,2,)

28
+ ?H(3, 2,2,y)-8H(1,2) H3,2,3,y)—12H(1,2)H(3,3,0,y) - 12H(0,2)H(3,3,2,y)

-8H(1,z) H3,3,2,y) — 83—0H(3, 3,2,y) +40H(1,2)H(3,3,3,y) + 4H(0,0, 1,0, y)

-8 H(0,0,1,0,2)-8H(0,0,1,1,2)-8H(0,0,2,2,y)+4H(0,0,3,2,y)-8H(0, 1,0, 1, 2)
+2 H(,1,0,2,y) - 12H(0,1,1,0,2) + 2H(0, 1,2,0,y) — 8H(0, 2,0, 2,y)
-2H(0,2,1,0,y) -8 H(0,2,2,0,y) +2H(0,2,3,2,y) — 8H(0,3,0,2,y)
-8H(0,3,2,0,y) +4H(0,3,2,2,y) - 12 H(0,3,3,2,y) —2H(1,0,0, 1, 2)
+4H(1,0,0,2,y) +4H(1,0,1,0,y) —4H(1,0,1,0,2) + 4 H(1,0,2,0,y)
-6H(1,0,3,2,y) - 12H(1,1,0,1,z) - 14H(1,1,1,0,2) + 4H(1,2,0,0,y)

+4 H(1,2,1,0,y)+6H(1,2,3,2,y)-8H(2,0,0,2,y)-8H(2,0,2,0,y)—4H(2,0,3,2,y)
+4H(2,1,0,0,y)-2H(2,1,0,2,y)-8H(2,1,1,0,y)-2H(2,1,2,0,y)-8H(2,2,0,0,y)
-8 H(2,2,1,0,y) - 16H(2,2,3,2,y) —4H(2,3,0,2,y) —4H(2,3,2,0,y)
+16H(2,3,3,2,y)+8 H(3,0,1,0,y) +4H(3,0,2,2,y) — 12H(3,0,3,2,y)
+4H(3,2,0,2,y) -8H(3,2,1,0,y) +4 H3,2,2,0,y) —8H(3,2,3,2,y)

— 12H(3,3,0,2,y) - 12H(3,3,2,0,y) - 8 H(3,3,2,2,y) + 40H(3,3,3,2,y) - ——

4003 )}
162

+ c%,{g( - 22) + 53( —16H(1,y) + 8H(2, y) — 8H(1,2) — (2(255°(t + u) + s*(51
+ 112tu + 51u*) + 45> (662 + 3712u + 37tu? + 6u’) — 2 s*(t* — 27Fu — 691 u* - 271w’

+ut) + stu( — 468 + 33 Pu+ 330 — 4u®) = 202132 + u?) /(s (s + 1*(s + u)*(t + u)
) ( ) ( )/ )

+ {z((ZtH(O, (45> + 254t + u) + 3st(t + u) — £))/(s (s + )*(t + u)) + (QuH(0, y)(4s°

+25%(t + du) + 35 (1 + wu — 1)) /(s(s + w)*(t + ) + QHQ,y)(s* (5¢ + 12tu

+5u%) + P11 +392%u + 39tu* + 11 1) + s2(61* + 426u + 767°u* + 420° + 6u®)

+ 2stu (760 + 261°u + 26tu* + Tu’) + £u (9% + 20tu + 9 u*)))/((s + )*(s + u)*(t + u)*)
+(2H(1,2) (s°(5¢ + 16tu + 9u®) + s*(117 + 47F%u + 53t u* + 17u°) + s°(61* + 46 u
+ 927U + 54t + 6 ut) + 257 u(7t + 298 u + 2907 u* + 61’ — ut) + st (9 + 20¢7u
+ 5t — 4u®) = 265(t + wu)) /(s (s + £)*(s + w) (¢ + u)*) + (4t2s — )H(1,y))/(s (t + u))
—8H(2,y)H(1,2) + 8H(0,1,y) — 8H(0,2,y) + 8H(1,1,y) + 8H(2,1,y) — 16 H(2,2,y)

+ (2657t + u) + s2(61% + 4tu + 6u*) — 5 1(t + wu — 6:°u*))/(s(s + 1)(s + u)(t + u)))
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; ( — (120uH (0, y)H(0,2))/(s( + u))

— (2352t + u) + (7t + 3u)) H2,y)H(0,2))/((s + O)(t + u))

+ (2((41 + 6u)s* + t(7t + 10 u)s + 3£2(¢ + u))H(0, 2, )H(0,2))/((s + £)* (t + u))

— (2 + s(t + 3u))H(1,0,y)H(0,2))/(s (¢ + u)) + (6 + 22ur* + 22u*t
+6u’)H(2,0,y) H(0,2)/((t + u)*) + 12H(2,2,y)H(0,z) — 12H(3,2,y)H(0, )
+8H(0,0,2,y) H(0,z) — 8H(0,3,2,y)H(0,z) — 4H(2,0,2,y)H(0, )
—8H(3,0,2,y)H(0,2) — 8 H(3,2,2,y)H(0,2) + 8H(3,3,2,y)H(0, 2)

— (2(3s(t +2u) + u(3t + Tu)) H(O, y)H(1,2))/((s + u)(t + u)) —9H(1,2) + 9H(1,2)H(2, y)
— 9 H(2,y) + (205> + 22(t + u)s + 24tu)H(1,z) H(3,y))/((s + 1)(s + u))

+ (2((41 + Tu)s* + (42 + 13u t + 8u?)s + tu(S5t + 9u))H(0, 1,2))/((s + 1)(s + u) (t + u))
— Qu((s + 1) + u)2s + 3u)H (0, y)H(0, 1,2))/((s + u)* (t + u)) — 22t + u)s*

+ (5 + 12ut + 5u*) s° + (36 + 19uf® + 19u’t + 3u’) s + 2tu(46* + 1u t

+4uP)s + 66°(t + wu?)H(2,y)H(0, 1,2))/((s + £)* (s + u)*(t + u))

+ 12H(3,y)H(0,1,2) — (2(3s(r + 2u) + u(3t + 7 w))H(0, 2, y))/((s + u)(t + u))
+12H(1,2)H(0,2,y) — 4H(0, 1,2) H(0,2,y) — (2(4(t + 2u)s* + (7¢*

+ 24ut + 17u?) s° + (3 + 23uf® + 37u’t + 9u’)s® + Stu(f* + 3ut + 2 u?)s

+665(t + wu?)H(1,2)H(0,3,y)/((s + D7 (s + u)*(t + ) + (2((3t + 5u)s* + (6u*

— 4t u)s — 6tuP)H(1, 0,1))/(s(s + u)(t + u)) — 6H(1,2) H(1,0,y) + 4H(0, 1,2)H(1,0,y)

— (21(s* + (t + Tu)s + 6tu) H(1,0,2))/(s(s + )t + u))

+ (2u(2s(2t + u) — (t + wu) HO,y)H(1,0,2))/(s(t + u)*) + (2t(2(t + 2u)s* + (5 £ + 11ut
+2u®)s + t(3¢% + 8ut + 3u?))H(2,y) H(1,0,2))/((s + )*(t + u)*) — 12H(3,y)H(1,0,7)
—8H(0,2,y) H(1,0,2)—8H(0,3,y)H(1,0,2) + 12H(0, y)H(1, 1,2) - 24H(3,y)H(1, 1,2)
+8 H(0,0,y)H(1,1,2) — 8H(0,3,y)H(1,1,2) + 9H(1, 1,2) — 4H(0, 1,2)H(1,2,y)

— (2 (Bs(t + 2u) + u(3t + Tu))H(2,0,¥))/((s + u)(z + u)) + 12H(1,2) H(2,0,y)

—4H(0,1,2)H(2,0,y) + 8H(0,0,2)H(2,2,y) + 16H(0,1,2)H(2,2,y) + 9 H(2,2,y)
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—(2(8(t + w)s* + (176 +36ut + 17u*) s° + (922 +49ut* + 49u*t + 9u’)s* + 2tu(10£* + 23u t
+10u?)s+ 122t + wu?)H(1, 2)H(2, 3, ) /((s + £)* (s + u)*(t + u))— 12H(1,2)H(3,0, y)
—8H(1,1,2) H(3,0,y) + ((20s* + 22(t + u)s + 24tu) H(3,2,7))/((s + 1)(s + u))
—24H(1,2)H(3,2,y) + 8H(0,1,2)H(3,2,y) + 24 H(1,2)H(3,3,y)
—8H(0,1,2)H(3,3,y) + 8H(1,0,2)H(3,3,y) + 16H(1,1,2) H(3,3,y) — (25(t — u)(2s*
+5(t + u)s® + (3 + 10ut + 3 u?)s + 41t + wyu)H(0, 0, 1,2))/((s + £)*(s + u)* (t + u))
—4H(1,y)H(0,0, 1,2) + 8H(2,y)H(0,0, 1,2) + 8H(1,2)H(0,0,2, )

—8 H(1,2)H(0,0,3,y) + (2((t + wu* + s(92 + 16ut + 9 u>)u* + 25*(7¢* + 12ut + Tu)u
+25°(3¢% + Su t + 3u?))H(0, 1,0,¥))/(s(s + u)*(t + u)*) — 4H(1,z) H(0, 1,0,) + (2«
—2us® + 2( + u?)s® + t(3 £ + dut + 3u*)s + (¢ + u))H(0, 1,0,2))/(s(s + 1)* (t + u)?)
+4H(2,y)H(0,1,0,2) — 8H(0,y)H(0, 1, 1,2) + 8H(3,y)H(0, 1, 1,2)

— 12 H(0,1,1,72) + 8H(1,2)H(0,2,0,y) + 12H(0,2,2,y) — 4H(1,2)H(0,2,3,)

— (2 (4t + 2u)s* + (77 + 24ut + 17u?)s® + (3 + 23u * + 37u’t + 9u?) s>

+ 8tu(t* + 3ut + 2u®)s + 6¢° (¢t + wyu?)H(0,3,2,9))/((s + 1)*(s + u)*(t + u))

— 8 H(1,2)H(0,3,2,y) + 8H(1,2)H(0,3,3,y) — 8H(1,2)H(1,0,0,y)

— (205 (¢t + w)s* + (1172 + 24ut + 11u°)s> + (6£ + 34ut® + 34 u’t + 6u°)s*

+ 2tu(76% + 17ut + Tu?)s + 92 (t + wu)H(1,0, 1,2))/((s + £)*(s + u)*(t + u))

—4 H(0,y)H(1,0,1,2) — 4H(1,y)H(1,0, 1,z)

+12H(2,y)H(1,0,1,2) + 8H(3,y) H(1,0,1,2) — 6H(1,0,2,y) + 4H(1,2)H(1,0,3,y)
+(42s — OtH(1,1,0,y))/(s (t + u)) — (> = 2ut — u?)s® + (£ — Tut* = 2 u’t
+2u°)s% + (4t — 68u)s + 262(t + u) u?)H(1,1,0,2))/(s(s + )*(t + u)?)
+4H(2,y)H(1,1,0,2) — 6 H(1,2,0,y) —4H(1,2)H(1,2,3,y) + 8H(1,2)H(2,0,0,y)
+12H(2,0,2,y) — (2 ((6¢* + 8ut + 4u?)s* + u(10£> + 13ut + Tu?) s + u*(3¢* + 4ut
+3u?))H(2,1,0,9))/((s + u)* (t +u)*) — 4H(1,2)H(2,1,0,y) + 12H(2,2,0,y)

+ 16H(1,2)H(2,2,3,y) — (2 (8(t + u)s* + (17¢* + 36ut + 17u®)s> + (9 + 49 ut* + 49u°t
+9u°) 5% +2tu(106* +23ut + 10u?) s+ 12 (¢ + w)u*)H(2, 3,2, ))/((s + £)*(s + u)* (t + u))
—8H(1,2)H(3,0,2,y) — 12H(3,0,2,y) + 8H(1,2)H(3,0,3,y) — 8H(1,2) H(3,2,0,y)
—~12H(3,2,0,y) —24H(3,2,2,y) + 16H(1,2)H(3,2,3,y) + 8H(1,2) H(3,3,0,y)
+16H(1,2)H(3,3,2,y) + 24H(3,3,2,y) — 16H(1,2)H(3,3,3,y) + 8 H(0,0,1,1,2)
+8H(0,0,2,2,y)-8H(0,0,3,2,y)+8H(0,1,0,1,2)—4H(0,1,0,2,y)+8 H(0, 1, 1,0, y)
+8H(0,1,1,0,2)—4H(0,1,2,0,y)+8H(0,2,0,2,y)—4H(0,2,1,0,y)+8 H(0,2,2,0,y)
~4H(0,2,3,2,y)-8H(0,3,2,2,y)+8H(0,3,3,2,y)+4H(1,0,0,1,2)-8 H(1,0,0,2,y)
+4H(1,0,1,0,y)-8H(1,0,2,0,y)+4H(1,0,3,2,y)+8H(1,1,0,0,y)+8 H(1,1,0,1,z)
+8H(1,1,1,0,y)+8H(1,1,1,0,2)-8H(1,2,0,0,y)—4H(1,2,1,0,y)—4 H(1,2,3,2,y)
+8H(2,0,0,2,y) —4H(2,0,1,0,y) + 8H(2,0,2,0,y) — 8H(2,1,0,0,y)

-4 H(22,1,0,2,y) + 8H(2,1,1,0,y) — 4H(2,1,2,0,y) + 8H(2,2,0,0,y)
+16H(2,2,3,2,y) -8 H(3,0,1,0,y) — 8H(3,0,2,2,y) + 8H(3,0,3,2,y)
—~8H(3,2,0,2,y) + 8H(3,2,1,0,y) — 8 H(3,2,2,0,y) + 16H(3,2,3,2,y)

19
+8H(3,3,0,2,y)+8H(3,3,2,0,y) + 16 H(3,3,2,2,y) — 16H(3,3,3,2,y) + 7)}



190 Results forH - b+ b + g

37 1 1 ! ! U

+Can{( = T )+ & = SHOD + ZHEY) = SHO.2+ 2 H(1,2) - i
7 5 tu tu H(1,0,y) 31 tu

- %) " (H(O’y)H(O’ G- 50w asaawm FHL09GE -3

(29t + 20w)H(0,y) (20t +29u) H(0,z) . 31
9t + 1) * o+ 1) + 3¢ HO.0H(,2) ~ H(O,y) H(0,0,2)

2 2 31
+ §H(0,y)H(O, 1,z) - H(0,y)H(1,0,2) + §H(0,y) H(l,1,2) + %H(Z)’)H(O,Z)
20
+HQ2,y)H(1,7) — EH(?),y) H(1,z) — H(0,0,y)H(0,z) — H(0,0,y)H(1,2)
2 1 1
- H(Q,Y)H(O,O,Z) - §H(29y) H(O’ 1aZ) - §H(3,)’)H(O, l»Z) - §H(09 2,)’)H(0,Z)
2 4
*3 H(0,2,y)H(1,2) + H(0,3,y)H(1,2) + H3,y)H(1,0,2) - §H(3,y) H(1,1,2)
2 2 4
- H(2,0,y)H(0,2) + §H(2, 0,yH(1,2) + gH(Z, 2,y) H(0,z2) - §H(2,3,y)H(1,z)
4 4
+H@3,0,y)H(1,2) + H(3,2,y) H(0,2) - §H(3,2,y)H(1,z) - §H(3,3,y)H(1,z)
17 41 31 31 20
— HQ2,y)— —H —H(0,2 — H(2 H?2,2,y)— —HQ@3,2
+ 5 (2,y) T (O’O’y)+36 O, ,Y)+36 (2,0,y) + H(2,2,y) 9 (3,2,y)
2 2
—H(O,O,Z,y)—H(O,Z,O,y)+§H(O,2,2,y)+H(0,3,2,y)—H(2,O,O,y)+§H(2,0,2,y)
2 2 4
- § H(2’ 1’O’y) + §H(2’2,0,)’)— § H(273’2’y) +H(3,0,2’)7)+H(3,2,0’)’)
4 4 17 41 49
-=-H@3,2,2,y)— = H 2 —H(l,2)— —H - — H(0,1
3 (3,2,2,y) 3 (3,3,2,y) + 77 (1,2) 13 0,0,2) 36 0,1,2)
439

1 2 2
H(1,1.2) - ~H(0,0,1.2) — = H(0.1,1,2) — H(1,0,0.2) — ZH(1,0.1, ——)}
+H(1,1,z2) 3 ( 2) 3 ( 2) ( 2) 3 ( 2) T
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1 4 5 1 1 7t + 3u)H(0,
e L R R R S
Bt +Tu)H©O,z) 31 4 1
T ea+w g HO-H(,2) = 2HO,y) H(O,1.2) + H(0,y)H(1,0,2)

- %LH(O, y) H(1,1,2) - %H(Z, YH(0,2) — 2H2,y)H(1,z) + %H(S,y} H(1,2)
+2H(0,0,y)H(1,2) + 2H(2,y)H(0,0,2) + gH(Z, y) H(0,1,2) + %H(3, YH(O,1,7)

+ %H(O, 2,y)H(0,z) - %1 H(0,2,y)H(1,z) - 2H(0,3,y)H(1,z) - %H(l, 0,y)H(0,2)

= g H(2,y)H(1,0,2) — 2H(3,y)H(1,0,2) + §H(3,y)H(1, 1,2) + % H(2,0,y)H(0,2)

- %H(Z, 0,yH(1,7) - gH(Z,Z, y) H(0,2) + gH(Z, 3,y)H(1,2) - 2H(3,0,)H(1,2)
~2H(3,2,y) H(0,2)+ §H(3, 2, y)H(1,2)+ §H(3, 3,9)H(1,2)- % HQ2,y)- ?—;H(O, 2,)
+%H(1, 0, y)—%H(ZO, Y-2H(2,2, y)+?H(3, 2,y)+2H(0,0, 2,y)—%H(0, 1,0,)
+2 H(0,2,0,y) - gH(O, 2,2,y) - 2H(0,3,2,y) - 2H(1,0,0,y) + g H(1,1,0,y)
+2H(2,0,0,y) - gH(2,0, 2,y) - g H(2,2,0,y) + gH(Z, 3,2,y) - 2H(3,0,2,y)
~2H(3,2, O,y)+§H(3,2,2,y)+§H(3, 3,2,y)—%H(1,z)+T—z H(0, 1,z)+%H(1,0,z)
~2H(1,1,2) + %H(O, 0,1,2) - % H(0,1,0,2) + gH(O, 1,1,2) + gH(l,O, 1,2) + ﬂ)}

81

1 > g 5 5 e
A —H(0,y)H(0,7) — —H " _ 2y Sy _}
+"f{36 (0.9)H(0,2) = ZH(0,) + 22 H(©0,0,y) = = H(0,2) + 7H(0,0,2) + T
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