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ABSTRACT

The central part of this thesis deals with the QCD radiative corrections to some important
observables associated with the Drell-Yan, scalar and pseudo scalar Higgs boson produc-

tions at three loop or N°LO order aiming to uplift the accuracy of theoretical results.

The Higgs bosons are produced dominantly at the LHC via gluon fusion through top
quark loop, while one of the subdominant ones take place through bottom quark annihi-
lation. However, in some BSM theories, like minimally supersymmetric Standard Model
(MSSM), it can contribute substantially. Here, we have computed analytically the in-
clusive cross section of the Higgs boson produced in this channel under the soft-virtual
(SV) approximation at N°LO QCD following an elegant formalism. This indeed helps to
reduce the theoretical uncertainties arising from renormalisation and factorisation scales
and consequently improve the reliabilities of the theoretical results. This is the most ac-

curate result for this channel which exists in the literature.

The differential rapidity distribution is among the most important observables, which is
expected to be measured in upcoming days at the LHC. This immediately calls for very
precise theoretical predictions. The SV corrections to this observable at N°LO for the
Higgs boson, produced through gluon fusion, and leptonic pair in Drell-Yan (DY) pro-
duction are computed and the numerical impacts of these results are demonstrated. These
are the most accurate results for the rapidity distributions of these which exist and un-

doubtedly, expected to play very important role in the upcoming run at the LHC.

The CP-odd/pseudo-scalar Higgs boson is one of the most prime candidates in BSM
which has been studied in great details, taking into account higher order QCD radia-
tive corrections, due to similarities with its CP-even counter part. In this thesis, we have
obtained the three loop QCD corrections to the pseudo scalar Higgs boson production and

computed the SV correction to the inclusive production cross section.
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SYNOPSIS

The Standard Model (SM) of particle physics is one of the most remarkably successful
fundamental theories of all time which got its finishing touch on the eve of July 2012
through the discovery of the long-awaited particle, “the Higgs boson”, at the biggest un-
derground particle research amphitheater, the Large Hadron Collider (LHC). It would take
a while to make the conclusive remarks about the true identity of the newly-discovered
particle. However, after the discovery of this SM-like-Higgs boson, the high energy
physics community is standing on the verge of a very crucial era where the new physics
may show up as tiny deviations from the predictions of the SM. To exploit this possibility,
it is a crying need to make the theoretical predictions, along with the revolutionary exper-

imental progress, to a spectacularly high accuracy within the SM and beyond (BSM).

The most successful and celebrated methodology to perform the theoretical calculations
within the SM and BSM are based on the perturbation theory, due to our inability to solve
the theory exactly. Under the prescriptions of perturbation theory, all the observables
are expanded in powers of the coupling constants present in the underlying Lagrangian.
The result obtained from the first term of perturbative series is called the leading order
(LO), the next one is called next-to-leading order (NLO) and so on. In most of the cases,
the LO results fail miserably to deliver a reliable theoretical prediction of the associated

observables, one must go beyond the wall of LO result to achieve a higher accuracy.

Due to the presence of three fundamental forces within the SM, any observable can be

expanded in powers of the coupling constants associated with the corresponding forces,

21
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namely, electromagnetic (agm), weak (agw) and strong (@) ones and consequently, per-
turbative calculations can be performed with respect to each of these constants. However,
at typical energy scales, at which the hadron colliders undergo operations, the contribu-
tions arising from the @, expansion dominate over the others due to comparatively large
values of a,. Hence, to catch the dominant contributions to any observables, we must
concentrate on the @, expansion and evaluate the terms beyond LO. These are called
Quantum Chromo-dynamics (QCD) radiative or perturbative QCD (pQCD) corrections.
In addition, the pQCD predictions depend on two unphysical scales, the renormalisation
(ug) and factorisation (uy) scales, which are required to introduced in the process of renor-
malising the theory. The u arises from the ultraviolet (UV) renormalisation, whereas the
mass factorisation (removes collinear singularities) introduces the pr. Any fixed order
results do depend on these unphysical scales which happens due to the truncation of the
perturbative expansion at any finite order. As we include the contributions from higher
and higher orders, the dependence of any physical observable on these unphysical scales
gradually goes down. Hence, to make a reliable theoretical prediction, it is absolutely
necessary to take into account the contributions arising from the higher order QCD cor-

rections to any observable at the hadron colliders.

This thesis arises exactly in this context. The central part of this thesis deals with the
QCD radiative corrections to some important observables associated with the Drell-Yan,
scalar and pseudo scalar Higgs boson production at three loop or N°LO order. In the

subsequent discussions, we will concentrate only on these three processes.

0.1 Soft-Virtual QCD Corrections to Cross Section at

N°LO

The Higgs bosons are produced dominantly at the LHC via gluon fusion through top quark

loop, while one of the sub-dominant ones take place through bottom quark annihilation. In
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the SM, the interaction between the Higgs boson and bottom quarks is controlled through
the Yukawa coupling which is reasonably small at typical energy scales. However, in the
minimal super symmetric SM (MSSM), this channel can contribute substantially due to
enhanced coupling between the Higgs boson and bottom quarks in the large tan 8 region,
where tan § is the ratio of vacuum expectation values of the up and down type Higgs fields.
In the present run of LHC, the measurements of the various coupling constants including
this one are underway which can shed light on the properties of the newly discovered
Higgs boson. Most importantly, for the precision studies we must take into account all
the contributions, does not matter how tiny those are, arising from sub-dominant channels
along with the dominant ones to reduce the dependence on the unphysical scales and make

a reliable prediction.

The computations of the higher order QCD corrections beyond leading order often be-
comes quite challenging because of the large number of Feynman diagrams and, presence
of the complicated loop and phase space integrals. Under this circumstance, when we fail
to compute the complete result at certain order, it is quite natural to try an alternative ap-
proach to capture the dominant contributions from the missing higher order corrections.
It has been observed for many processes that the dominant contributions to an observable
often comes from the soft gluon emission diagrams. The contributions arising from the
associated soft gluon emission along with the virtual Feynman diagrams are known as the
soft-virtual (SV) corrections. The goal of this section is to discuss the SV QCD correc-
tions to the production cross section of the Higgs boson, produced through bottom quark

annihilation.

The NNLO QCD corrections to this channel are already present in the literature. In ad-
dition, the partial result for the N°LO corrections under the SV approximation were also
computed long back. In this work, we have computed the missing part and completed the

full SV corrections to the cross section at N°LO.

The infrared safe contributions from the soft gluons are obtained by adding the soft part



24

of the cross section with the UV renormalized virtual part and performing mass factorisa-
tion using appropriate counter terms. The main ingredients are the form factors, overall
operator UV renormalization constant, soft-collinear distribution arising from the real ra-
diations in the partonic subprocesses and mass factorization kernels. The computations
of SV cross section at N*LO QCD require all of these above quantities up to 3-loop order.
The relevant form factor becomes available very recently. The soft-collinear distribution
at N°LO was computed by us around the same time. This was calculated from the re-
cent result of N°LO SV cross section of the Higgs boson productions in gluon fusion by
employing a symmetry (maximally non-Abelian property). Prior to this, this symmetry
was verified explicitly up to NNLO order. However, neither there was any clear reason to
believe that the symmetry would fail nor there was any transparent indication of holding
it beyond this order. Nevertheless, we postulate that the relation would hold true even at
N3LO order! This is inspired by the universal properties of the soft gluons which are the
underlying reasons behind the existence of this remarkable symmetry. Later, this conjec-
ture is verified by explicit computations performed by two different groups on Drell-Yan
process. This symmetry plays the most important role in achieving our goal. With these,
along with the existing results of the remaining required ingredients, we obtain the com-
plete analytical expressions of N°LO SV cross section of the Higgs boson production
through bottom quark annihilation. It reduces the scale dependence and provides a more
precise result. We demonstrate the impact of this result numerically at the Large Hadron
Collider (LHC) briefly. This is the most accurate result for this channel which exists in
the literature till date and it is expected to play an important role in coming days at the

LHC.

0.2 Soft-Virtual QCD Corrections to Rapidity at N*LO

The productions of the Higgs boson in gluon fusion and leptonic pair in DY are among

the most important processes at the LHC which are studied not only to test the SM to
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an unprecedented accuracy but also to explore the new physics under BSM. During the
present run at the LHC, in addition to the inclusive production cross section, the differ-
ential rapidity distribution is among the most important observables, which is expected
to be measured in upcoming days. This immediately calls for very precise theoretical

predictions.

In the same spirit of the SV corrections to the inclusive production cross section, the dom-
inant contributions to the differential rapidity distributions often arise from the soft gluon
emission diagrams. Hence, in the absence of complete fixed order result, the rapidity
distribution under SV approximation is the best available alternative in order to capture
the dominant contributions from the missing higher orders and stabilise the dependence
on unphysical scales. For the Higgs boson production through gluon fusion, we work
in the effective theory where the top quark is integrated out. This section is devoted to
demonstrate the SV corrections to this observable at N°LO for the Higgs boson, produced

through gluon fusion, and leptonic pair in Drell-Yan (DY) production.

For the processes under considerations, the NNLO QCD corrections are present, com-
puted long back, and in addition, the partial N°LO SV results are also available. However,
due to reasonably large scale uncertainties and crying demand of uplifting the accuracy
of theoretical predictions, we must push the boundaries of existing results. In this work,
we have computed the missing part and completed the SV corrections to the rapidity dis-

tributions at N°LO QCD.

The prescription which has been employed to calculate the SV QCD corrections is similar
to that of the inclusive cross section, more specifically, it is a generalisation of the other
one. The infrared safe contributions under SV approximation can be computed by adding
the soft part of the rapidity distribution with the UV renormalised virtual part and per-
forming the mass factorisation using appropriate counter terms. Similar to the inclusive
case, the main ingredients to perform this computation are the form factors, overall UV

operator renormalisation constant, soft-collinear distribution for rapidity and mass fac-
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torisation kernels. These quantities are required up to N3LO to calculate the rapidity at
this order. The three loop quark and gluon form factors were calculated long back. The
operator renormalisation constants are also present. For DY, this constant is not required
or equivalently equals to unity. The mass factorisation kernels are also available in the
literature to the required order. The only missing part was the soft-collinear distribution
for rapidity at N°LO. This was not possible to compute until very recently. Because of
the universal behaviour of the soft gluons, the soft-collinear distributions for rapidity and
inclusive cross section can be related to all orders in perturbation theory. Employing this
beautiful relation, we obtain this quantity at N*LO from the results of soft-collinear dis-
tribution of the inclusive cross section. Using this, along with the existing results of the
other relevant quantities, we compute the complete analytical expressions of N°LO SV
correction to the rapidity distributions for the Higgs boson in gluon fusion and leptonic
pair in DY. We demonstrate the numerical impact of this correction for the case of Higgs
boson at the LHC. This indeed reduces the scale dependence significantly and provides a
more reliable theoretical predictions. These are the most accurate results for the rapidity
distributions of the Higgs boson and DY pair which exist in the literature and undoubtedly,

expected to play very important role in the upcoming run at the LHC.

0.3 Pseudo-Scalar Form Factors at Three Loops in QCD

One of the most popular extensions of the SM, namely, the MSSM and two Higgs doublet
model have richer Higgs sector containing more than one Higgs boson and there have been
intense search strategies to observe them at the LHC. In particular, the production of CP-
odd Higgs boson/pseudo-scalar at the LHC has been studied in detail, taking into account
higher order QCD radiative corrections, due to similarities with its CP-even counter part.
Very recently, the N*)LO QCD corrections to the inclusive production cross section of the
CP-even Higgs boson is computed. So, it is very natural to extend the theoretical accuracy

for the CP-odd Higgs boson to the same order of N°LO. This requires the 3-loop quark
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and gluon form factors for the pseudo-scalar which are the only missing ingredients to

achieve this goal.

Multiloop and multileg computations play a crucial role to achieve the golden task of
making precise theoretical predictions. However, the complexity of these computations
grows very rapidly with the increase of number of loops and/or external particles. Nev-
ertheless, it has become a reality due to several remarkable developments in due course
of time. This section is devoted to demonstrate the computations of the 3-loop quark and

gluon form factors for the pseudo-scalar operators in QCD.

The coupling of a pseudo-scalar Higgs boson to gluons is mediated through a heavy quark
loop. In the limit of large quark mass, it is described by an effective Lagrangian that only
admits light degrees of freedom. In this effective theory, we compute the 3-loop mass-
less QCD corrections to the form factor that describes the coupling of a pseudo-scalar
Higgs boson to gluons. The evaluation of this 3-loop form factors is truly a non-trivial
task not only because of the involvement of a large number of Feynman diagrams but also
due to the presence of the axial vector coupling. We work in dimensional regularisation
and use the 't Hooft-Veltman prescription for the axial vector current, The state-of-the-
art techniques including integration-by-parts (IBP) and Lorentz invariant (LI) identities
have been employed to accomplish this task. The UV renormalisation is quite involved
since the two operators, present in the Lagrangian, mix under UV renormalization due
to the axial anomaly and additionally, a finite renormalisation constant needs to be intro-
duced in order to fulfill the chiral Ward identities. Using the universal infrared (IR) fac-
torization properties, we independently derive the three-loop operator mixing and finite
operator renormalisation from the renormalisation group equation for the form factors,
thereby confirming recent results, which were computed following a completely different
methodology, in the operator product expansion. This form factor is an important ingre-
dient to the precise prediction of the pseudo-scalar Higgs boson production cross section

at hadron colliders. We derive the hard matching coefficient in soft-collinear effective
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theory (SCET). We also study the form factors in the context of leading transcendentality
principle and we find that the diagonal form factors become identical to those of N = 4
upon imposing some identification on the quadratic Casimirs. Later, these form factors
are used to calculate the SV corrections to the pseudo-scalar production cross section at

N3LO and N°*LL QCD.
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The Standard Model (SM) of Particle Physics is one of most remarkably successful funda-
mental theories which encapsulates the governing principles of elementary constituents of
matter and their interactions. Its development throughout the latter half of the 20th cen-
tury resulting from an unprecedented collaborative effort of the brightest minds around
the world is undoubtedly one of the greatest achievements in human history. Over the du-
ration of many decades around 1970s, the theoretical predictions of the SM were verified
one after another with a spectacular accuracy and it got the ultimate credence through the

announcement, made on a fine morning of 4th July 2012 at CERN in Geneva:

“If we combine ZZ and vy, this is what we get: they line up extremely well in

a region of 125 GeV with the combine significance of 5 standard deviation!”

33
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The SM relies on the mathematical framework of quantum field theory (QFT), in which
a Lagrangian controls the dynamics and kinematics of the theory. Each kind of particle
is described in terms of a dynamical field that pervades space-time. The construction
of the SM proceeds through the modern methodology of constructing a QFT, it happens
through postulating a set of underlying symmetries of the system and writing down the

most general renormalisable Lagrangian from its field content.

The underlying symmetries of the QFT can be largely categorized into global and local
ones. The global Poincaré symmetry is postulated for all the relativistic QFT. It consists of
the familiar translational symmetry, rotational symmetry and the inertial reference frame
invariance central to the special theory of relativity. Being global, its operations must
be simultaneously applied to all points of space-time On the other hand, the local gauge
symmetry is an internal symmetry that plays the most crucial role in determining the pre-
dictions of the underlying QFT. These are the symmetries that act independently at each
point in space-time. The SM relies on the local SU(3)xSU(2). xU(1)y gauge symmetry.
Each gauge symmetry manifestly gives rise to a fundamental interaction: the electromag-
netic interactions are characterized by an U(1), the weak interactions by an SU(2) and the

strong interactions by an SU(3) symmetry.

In its current formulation of the SM, it includes three different families of elementary
particles. The first ones are called fermions arising from the quantisation of the fermionic
fields. These constitute the matter content of the theory. The quanta of the bosonic fields,
which form the second family, are the force carriers i.e. the mediators of the strong, weak,
and electromagnetic fundamental interactions. In addition to the these, there is a third bo-
son, the Higgs boson resulting from the quantum excitation of the Higgs field. This is
the only known scalar particle that was postulated long ago and observed very recently
at the Large Hadron Collider (LHC) [1,2]. The presence of this field, now believed to
be confirmed, explains the mechanisms of acquiring mass of some of the fundamental

particles when, based on the underlying gauge symmetries controlling their interactions,
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they should be massless. This mechanism, which is believed to be one of the most rev-
olutionary ideas of the last century, is known as Brout-Englert-Higgs-Kibble (BEHK)

mechanism.

Two of the four known fundamental forces, electromagnetism and weak forces which
appear very different at low energies, are actually unified to so called electro-weak force
in high energy. The structure of this unified picture is accomplished under the gauge
group SU(2).x U(1)y. The corresponding gauge bosons are the three W bosons of weak
1sospin from SU(2) and the B boson of weak hypercharge from U(1), all of which are
massless. Upon spontaneous symmetry breaking from SU(2). X U(1)y to U(1)gy;, caused
by the BEHK mechanism, the three mediators of the electro-weak force, the W*, Z bosons
acquire mass, leaving the mediator of the electromagnetic force, the photon, as massless.
Finally, the theory of strong interactions, Quantum Chromo-Dynamics (QCD) is governed

by the unbroken SU(3) gauge group, whose force carriers, the gluons remain massless.

Although the SM is believed to be theoretically self-consistent with a spectacular accu-
racy and has demonstrated huge and continued successes in providing experimental pre-
dictions, it indeed does leave some phenomena unexplained and it falls short of being a
complete theory of fundamental interactions. It fails to incorporate the full theory of grav-
itation as described by general relativity, or account for the accelerating expansion of the
universe (as possibly described by dark energy). The model does not contain any viable
dark matter particle that possesses all of the required properties deduced from observa-
tional cosmology. It also does not incorporate neutrino oscillations (and their non-zero

masses).

Currently, the high energy physics community is standing on the verge of a crucial era
where the new physics may show up as tiny deviations from the prediction of the SM! To
exploit this possibility it is absolutely necessary to make the theoretical predictions, along
with the revolutionary experimental progress, to a very high accuracy within the SM and

beyond. The relevance of this thesis arises exactly in this context.
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The most crucial quantity in the process of accomplishing the job of making any pre-
diction based on QFT is undoubtedly the scattering amplitude. This is the fundamental
building block of any observable in QFT. In the upcoming section, we will elaborate on
the idea of scattering amplitude which will be followed by a brief description of QCD.
We will close the chapter of introduction by introducing the concept of computing the

observables under certain approximation, known as soft-virtual approximation.

1.1 Scattering Amplitudes

The fundamental quantity of any QFT which encodes all the underlying symetries of the
theory is called the action. This is constructed out of Lagrangian density, which is a

functional of the fields present in the theory, and integrating over all space time points:

S = fd4x£[¢,~(x)] . (1.1.1)

By construction the QFT is a probabilistic theory and all the observables calculated based
on this theory always carry a probabilistic interpretation. For example, an important ob-
servable is the total cross section which measures the total probability of any event to
happen in colliders. The computation of the cross section, and in fact, almost all the ob-
servables in QFT requires the evaluation of scattering matrix (S -matrix) elements which
describe the evolution of the system from asymptotic initial to final states due to presence

of the interaction. The S -matrix elements are defined as
(fISli) = 871 + i)' (ps = pi) Misy (1.1.2)

where, the 6 represents the unscattered forward scattering states, while the other part
M,_, ¢ encapsulates the “actual” interaction (For simplicity, we will call M,_, ¢ as scattering

matrix element.). So, the calculation of all those observables essentially boils down to the
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computation of the second quantity. However, the exact computation of this quantity is
incredibly difficult in any general field theory. The only viable methodology is provided
under the framework of perturbation theory where the matrix elements as well as the

observables are expanded in powers of coupling constants, ¢, present in the theory:

Miy= D "MD,. (1.1.3)

n=0

If the coupling constant is small enough, the evaluation of only the first term of the pertur-
bative expansion often turns out to be a very good approximation that provides a reliable
prediction to any observable. However, in QFT, it is a well-known fact that the coupling
constants are truly not ‘constants’, their strength depends on the energy scale at which
the interaction takes place. This evolution of the coupling constant may make it compara-
tively large at some energy scale. In case of Quantum Electro-Dynamics (QED), quantum
field theory of electromagnetism, the magnitude of the coupling constant, ¢ = agy, in-

creases with the increase of momentum transfer:

1 1
apm(Q” ~ 0) ~ 7 and  apu(Q* ~ mi) ~ 8 (1.1.4)

where, my ~ 80 GeV is the invariant mass of the W boson. The smallness of agy at
all typical energy scales which can be probed in all collider experiments guarantees very
fast convergence of the perturbation series to what we expect to be real non-perturbative
result. However, this picture no longer holds true in case of QCD where the coupling

constant, ¢ = @, may become quite large at certain energy scales:
a,(m)) ~ 055~ and  a,(my) ~0.1 (1.1.5)

where, m, ~ 938MeV and m; ~ 90GeV are the masses of the proton and Z boson. Clearly
the magnitude 0.55 is far from being small! Hence, computation of only the leading term

in perturbative series often turns out to be a very crude approximation which fails to
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deliver a reliable prediction. We must take into account the contributions arising beyond

leading term.

In perturbation theory, the most acceptable and well known prescription to compute the
terms in a perturbative series is provided by Feynman diagrams. Every term of a series is
represented through a set of Feynman diagrams and each diagram corresponds to a math-
ematical expression. Hence, evaluation of a term in any perturbative series boils down to
the computation of all the corresponding Feynman diagrams. Given an action of a QFT,
one first requires to derive a set of rules, called Feynman rules, which essentially establish
the correspondence between the Feynman diagrams and mathematical expressions. With
the rules in hand, we just need to draw all the possible Feynman diagrams contributing to
the order of our interest and eventually evaluate those using the rules. Needless to say, as
the perturbative order increases, the number of Feynman diagrams to be drawn grows so

rapidly that after certain order it becomes almost prohibitively large to draw.

In this thesis, we will concentrate only on the aspects of perturbative QCD. We will start
our discussion of QCD by introducing the basic aspects of this QFT which will be fol-
lowed by the writing down the quantum action and corresponding Feynman rules. Then
we will discuss how to compute amplitudes beyond leading order in QCD and eventually

get reliable numerical predictions at hadron colliders for any process.

1.2 Quantum Chromo-Dynamics

Quantum Chromo-dynamics, familiarly called QCD, is the modern theory of strong inter-
actions, a fundamental force describing the interactions between quarks and gluons which
make up hadrons such as the protons, neutrons and pions. QCD is a type of QFT called
non-Abelian gauge theory that has underlying SU(3) gauge symmetry. It appears as an ex-
panded version of QED. Whereas in QED there is just one kind of charge, namely electric

charge, QCD has three different kinds of charge, labeled by “colour”. Avoiding chauvin-
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ism, those are chosen as red, green, and blue. But, of course, the colour charges of QCD
have nothing to do with optical colours. Rather, they have properties analogous to electric
charges in QED. In particular, the colour charges are conserved in all physical processes.
There are also photon-like massless gauge bosons, called gluons, that act as the mediators
of the strong interactions between spin-1/2 quarks. Unlike the photons, which mediate
the electromagnetic interaction but lacks an electric charge, the gluons themselves carry
color charges. Gluons, as a consequence, participate in the strong interactions in addition

to mediating it, making QCD substantially harder to analyse than QED.

In sharp contrast to other gauge theories, QCD enjoys two salient features: confinement
and asymptotic freedom. The force among quarks/gluons fields does not diminish as they
are separated from each others. With the increase in mutual distance between them, the
mediating gluon fields gather enough energy to create a pair of quarks/gluons which for-
bids them to be found as free particles; they are thus forever bound into hadrons such as
the protons, neutrons, pions or kaons. Although literature lacks the satisfactory theoretical
explanation, confinement is believed to be true as it explains the consistent failure of find-
ing free quarks or gluons. The other interesting property, the asymptotic freedom [3-7],
causes bonds between quarks/gluons become asymptotically weaker as energy increases
or distance decreases which allows us to perform the calculation in QCD using the tech-
nique of perturbation theory. The Nobel prize was awarded for this remarkable discovery

of last century.

In perturbative QCD, the basic building blocks of performing any calculation are the

Feynman rules, which will be discussed in next subsection.

1.2.1 The QCD Lagrangian and Feynman Rules

The first step in performing perturbative calculations in a QFT is to work out the Feyn-

man rules. The SU(N) gauge invariant classical Lagrangian density encapsulating the
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interaction between fermions and non-Abelian gauge fields is

(f)

Lclassical = __Fa F + Z lr[/az lmaﬁ,ij - mféaﬁéij) L[’(f) .

4

In the above expression,

Fi, = 0,A5 — 0,A5 + g, f " ALA;

utvo

Daﬁ,ij = ’}/;ﬂD”’ij = ’}/IJ (551'(9“ - lgsTZAZ)

(1.2.1)

(1.2.2)

where, A7 and lﬁg l) are the guage and fermionic quark fields, respectively. The indices

represent the following things:

a,b,---: colorindices in the adjoint representation = [1, N 211,
i, j,---: color indices in the fundamental representation = [1, N],
a,fB,---: Dirac spinor indices = [1,d],

u,v,---:  Lorentz indices = [1,d].

(1.2.3)

Numbers within the ‘[]” signifies the range of the corresponding indices. d is the space-

time dimensions. f is the quark flavour index which runs from 1 to ny. my and g, are the

mass of the quark corresponding to ") and strong coupling constant, respectively. f%¢

are the structure constants of SU(N) group. These are related to the Gellmann matrices

T*, generators of the fundamental representations of SU(N), through
[Ta’ Tb] — l-fabcTc )
The T are traceless, Hermitian matrices and these are normalised with

Tr(T“T”) = Tpo®

(1.2.4)

(1.2.5)
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where, Ty = % They satisfy the following completeness relation

1
Z TT = ( 261 — Ncs,-jdk,) : (1.2.6)

In addition to the above three parent identities expressed through the Eq. (1.2.4, 1.2.5,
1.2.6), we can have some auxiliary ones which are often useful in simplifying colour

algebra:

D UTTy;; = Croyy,

a

Jedfret = Cu8. (1.2.7)

The C4 = N and Cy = %;1 are the quadratic Casimirs of the SU(N) group in the adjoint
and fundamental representations, respectively. For QCD, the SU(N) group index, N = 3

and the flavor number n; = 6.

The quantisation of the non-Abelian gauge theory or the Yang-Mills (YM) theory faces an
immediate problem, namely, the propagator of gauge fields cannot be obtained unambigu-
ously. This is directly related to the presence of gauge degrees of freedom inherent into
the L jassicai- We need to perform the gauge fixing in order to get rid of this problem. The
gauge fixing in a covariant way, when done through the path integral formalism, gener-
ates new particles called Faddeev-Popov (FP) ghosts having spin-0 but obeying fermionic
statistics. The absolute necessity of introducing the ghosts in the process of quantising
the YM theory is a horrible consequence of the Lagrangian formulation of QFT. There
is no observable consequence of these particles, we just need them in order to describe
an interacting theory of a massless spin-1 particle using a local manifestly Lorentz in-
variant Lagrangian. These particles never appear as physical external states but must be
included in internal lines to cancel the unphysical degrees of freedom of the gauge fields.
Some alternative formulations of non-Abelian gauge theory (such as the lattice) also do

not require ghosts. Perturbative gauge theories in certain non-covariant gauges, such as
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light-cone or axial gauges, are also ghost free. However, to maintain manifest Lorentz in-
variance in a perturbative gauge theory, it seems ghosts are unavoidable and in this thesis
we will be remained within the regime of covariant gauge and consequently will include

ghost fields consistently into our computations.

Upon applying this technique to quantise the YM theory, we end up with getting the

following full quantum Lagrangian density:

LYM = £classical + £gauge—fix + Lghost (128)

where, the second and third terms on the right hand side correspond to the gauge fixing

and FP contributions, respectively. These are obtained as

1 2
Lgauge—fix = _E (auA#) ’
Lghost = (aMXa*) D,u,ab/\/b (129)
with
Dya = SasOy — 8 fncAS, . (1.2.10)

The gauge parameter ¢ is arbitrary and it is introduced in order to specify the gauge in
a covariant way. This prescription of fixing gauge in a covariant way is known as R;
gauge. A typical choice which is often used is & = 1, known as Feynman gauge. We will
be working in this Feynman gauge throughout this thesis, unless otherwise mentioned
specifically. However, we emphasize that the physical results are independent of the

choice of the gauges. The field y* and y“* are ghost and anti-ghost fields, respectively.

All the Feynman rules can be read off from the quantized Lagrangian Ly,, in Eq. 1.2.8.
We will denote the quarks through straight lines, gluons through curly and ghosts through

dotted lines. We provide the rules in R, gauge.
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e The propagators for quarks, gluons and ghosts are obtained as respectively:

B I,
— —
P2 D1

b,v a,
TR
— —
P2 D1

b a
_______ | S ——

— —
P2 P1

1
i 2m)* Y (p1 + pa) 51"(—.)
! Py —mytie]

) 1 PPy
i 2m)* 6@ (p) + P2)0up— [_g,uv +(1=§) ;12
p] pl

e

) 1
i 2n)* 8 (py + pa) 6ab?
|

e The interacting vertices are given by:

a,u
1 P3
P2 21
5B i,a
c,p
1 P3
D2, NP1
b,v a,u

ig, 2m)* 6Y (p1 + P2+ P T () g

% Qr)* 6@ (py + pa + p3) f°

X [ (p1 = p2) + &7 (p2 — p3) + & (p3 — p1)']
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a,u
1P3
, —g,2m)* Y (p1 + pa + p3) fD!
/_( -
2 N RNENZ
c b
g’
c.p d,o -0 2n)*6Y (p1 + p2 + p3 + pa)
ps> <P | ‘
{(fac,bd _ fad,cb) gpvgp(r + (fab,cd _ fad,bc) g,upgva'
+ (fac,db _ fab,cd) g,ua'gvp}
20 NP1
b’ v a,u Wlth

fub,cd = fahx fcdx

In addition to these rules, we have keep in mind the following points:

e For any Feynman diagram, the symmetry factor needs to be multiplied appropri-
ately. The symmetry factor is defined as the number of ways one can obtain the

topological configuration of the Feynman diagram under consideration.

e For each loop momenta, the integration over the loop momenta, k, needs to be
performed with the integration measure d?k/(2rr) in d-dimensions (in dimensional

regularisation).

e For each quark/ghost loop, one has to multiply a factor of (-1).

1.3 Perturbative Calculations in QCD

The asymptotic freedom of the QCD allows us to perform the calculations in high en-

ergy regime using the techniques of perturbative QCD (pQCD). In pQCD, we make the
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theoretical predictions through the computations of the scattering matrix (S-matrix) ele-
ments. The S-matrix elements are directly related to the scattering amplitude which is
formally expanded, within the framework of perturbation theory, in powers of coupling
constants. This expansion is represented through the set of Feynman diagrams and the
Feynman rules encapsulate the connection between these these two. Hence, the theoret-
ical predictions boil down to evaluate the set of Feynman diagrams. Using the Feynman

rules presented in the previous Sec. 1.2.1, we can evaluate all the Feynman diagrams.

Achieving precise theoretical predictions demand to go beyond leading order which con-
sists of evaluating the virtual/loop as well as real emission diagrams. However, the con-
tribution arising from the individual one is not finite. The resulting expressions from the
evaluation of loop diagrams contain the ultraviolet (UV), soft and collinear divergences.

For simplicity, together we call the soft and collinear as infrared (IR) divergence.

The UV divergences arise from the region of large momentum or very high energy (ap-
proaching infinity) of the Feynman integrals, or, equivalently, because of the physical
phenomena at very short distances. We get rid of this through UV renormalisation. Be-
fore performing the UV renormalisation, we need to regulate the Feynman integrals which
is essentially required to identify the true nature of divergences. There are several ways
to regulate the integrals. The most consistent and beautiful way is the framework of di-
mensional regularisation [8—10]. Within this, we need to perform the integrals in general
d-dimensions which is taken as 4 + € in this thesis. Upon performing the integrals, all
the UV singularities arise as poles in €. The UV renormalisation, which is performed
through redefining all the quantities present in the Lagrangian, absorbs these poles and
gives rise a UV finite result. The UV renormalisation is done at certain energy scale,
known as renormalisation scale, ug. On the other hand, the soft divergences arise from
the low momentum limit (approaching zero) of the loop integrals and the collinear ones
arise when any loop momentum becomes collinear to any of the external massless parti-

cles. The collinear divergence is a property of theories with massless particles. Hence,
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even after performing the UV renormalisation, the resulting expressions obtained through
the evaluation the loop integrals are not finite, they contain poles arising from soft and

collinear regions of the loop integrals.

To remove the residual IR divergences, we need to add the contributions arising from the
real emission diagrams. The latter contains soft as well as collinear divergences which
have the same form as that of loop integrals. Once we add the virtual and real emission
diagrams and evaluate the phase space integrals, the resulting expressions are guaranteed
to be freed from UV, soft and final state collinear singularities, thanks to the Kinoshita-
Lee-Nauenberg (KLN) theorem. An analogous result for quantum electrodynamics alone
is known as Bloch?Nordsieck cancellation. However, the collinear singularities arising
from the collinear configurations involving initial state particles remain. Those are re-
moved at the hadronic level through the techniques, known as mass factorisation, where
the residual singularities are absorbed into the bare parton distribution functions (PDF).
So, the observables at the hadronic level are finite which are compared with the experi-
mental outcomes at the hadron colliders. Just like UV renormalisation, mass factorisation
is done at some energy scale, called factorisation scale, ur. The ug as well as urp are
unphysical scales. The dependence of the fixed order results on these scale is an artifact
of the truncation of the perturbative series to a finite order. If we can capture the results

to all order, then the dependence goes away.

The core part of this thesis deals with the higher order QCD corrections employing the
methodology of perturbation theory to some of the very important processes within the

SM and beyond. More specifically, the thesis contains

o the soft-virtual QCD corrections to the inclusive cross section of the Higgs boson
production through bottom quark annihilation at next-to-next-to-next-to-leading or-

der (N3LO) [11],

e the soft-virtual QCD corrections at N°LO to the differential rapidity distributions

of the productions of the Higgs boson in gluon fusion and of the leptonic pair in
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Drell-Yan [12],

o the three loop QCD corrections to the pseudo-scalar form factors [13, 14].

In the subsequent subsections, we will discuss the above things in brief.

1.3.1 Soft-Virtual Corrections To Cross Section at N°LO QCD

The Higgs bosons are produced dominantly at the LHC via gluon fusion through top quark
loop, while one of the sub-dominant ones take place through bottom quark annihilation. In
the SM, the interaction between the Higgs boson and bottom quarks is controlled through
the Yukawa coupling which is reasonably small at typical energy scales. However, in the
minimal super symmetric SM (MSSM), this channel can contribute substantially due to
enhanced coupling between the Higgs boson and bottom quarks in the large tan 8 region,
where tang is the ratio of vacuum expectation values of the up and down type Higgs
fields. In the present run of LHC, the measurements of the various coupling constants
including this one are underway which can shed light on the properties of the newly
discovered Higgs boson [1, 15]. Most importantly, for the precision studies we must
take into account all the contributions, does not matter how tiny those are, arising from
sub-dominant channels along with the dominant ones to reduce the dependence on the

unphysical scales and make a reliable prediction.

The computations of the higher order QCD corrections beyond leading order often be-
come quite challenging because of the large number of Feynman diagrams and, presence
of the complicated loop and phase space integrals. Under this circumstance, when we fail
to compute the complete result at certain order, it is quite natural to try an alternative ap-
proach to capture the dominant contributions from the missing higher order corrections.
It has been observed for many processes that the dominant contributions to an observable
often comes from the soft gluon emission diagrams. The contributions arising from the

associated soft gluon emission along with the virtual Feynman diagrams are known as
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the soft-virtual (SV) corrections. The goal of the works published in the article [11] is
to discuss the SV QCD corrections to the production cross section of the Higgs boson,

produced through bottom quark annihilation.

The next-to-next-to-leading order (NNLO) QCD corrections to this channel are already
present in the variable flavour scheme (VES) [16-21], while it is known to NLO in the
fixed flavour scheme (FFS) [22—27]. In addition, the partial result for the N*LO correc-
tions [28-30] under the SV approximation were also computed long back. In both [28,29]
and [30], it was not possible to determine the complete contribution at N°LO due to the
lack of information on three loop finite part of bottom anti-bottom Higgs form factor in
QCD and the soft gluon radiation at N3LO level. In this work [11], we have computed the

missing part and completed the full SV corrections to the cross section at N°LO.

The infrared safe contributions from the soft gluons are obtained by adding the soft part
of the cross section with the UV renormalized virtual part and performing mass factorisa-
tion using appropriate counter terms. The main ingredients are the form factors, overall
operator UV renormalization constant, soft-collinear distribution arising from the real ra-
diations in the partonic subprocesses and mass factorization kernels. The computations
of SV cross section at N°LO QCD require all of these above quantities up to 3-loop or-
der. The relevant form factor becomes available very recently in [31]. The soft-collinear
distribution at N*LO was computed by us around the same time in [32]. This was calcu-
lated from the recent result of N°LO SV cross section of the Higgs boson productions in
gluon fusion [33] by employing a symmetry (maximally non-Abelian property). Prior to
this, this symmetry was verified explicitly up to NNLO order. However, neither there was
any clear reason to believe that the symmetry would fail nor there was any transparent
indication of holding it beyond this order. Nevertheless, we conjecture [32] that the rela-
tion would hold true even at N°LO order! This is inspired by the universal properties of
the soft gluons which are the underlying reasons behind the existence of this remarkable

symmetry. Later, this conjecture is verified by explicit computations performed by two
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different groups on Drell-Yan process [34,35]. This symmetry plays the most important
role in achieving our goal. With these, along with the existing results of the remaining
required ingredients, we obtain the complete analytical expressions of N*LO SV cross
section of the Higgs boson production through bottom quark annihilation [1 1] employing
the methodology prescribed in [28,29]. It reduces the scale dependence and provides a
more precise result. We demonstrate the impact of this result numerically at the LHC
briefly. This is the most accurate result for this channel which exists in the literature till

date and it is expected to play an important role in coming days at the LHC.

1.3.2 Soft-Virtual QCD Corrections to Rapidity at N°’LO

The productions of the Higgs boson in gluon fusion and leptonic pair in Drell-Yan (DY)
are among the most important processes at the LHC which are studied not only to test the
SM to an unprecedented accuracy but also to explore the physics beyond Standard Model
(BSM). During the present run at the LHC, in addition to the inclusive production cross
section, the differential rapidity distribution is among the most important observables,
which is expected to be measured in upcoming days. This immediately calls for very

precise theoretical predictions.

In the same spirit of the SV corrections to the inclusive production cross section, the dom-
inant contributions to the differential rapidity distributions often arise from the soft gluon
emission diagrams. Hence, in the absence of complete fixed order result, the rapidity
distribution under SV approximation is the best available alternative in order to capture
the dominant contributions from the missing higher orders and stabilise the dependence
on unphysical scales. For the Higgs boson production through gluon fusion, we work
in the effective theory where the top quark is integrated out. This work published in the
article [12] is devoted to demonstrate the SV corrections to this observable at N°LO for

the Higgs boson, produced through gluon fusion, and leptonic pair in DY production.
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For the processes under considerations, the NNLO QCD corrections are present [36-38],
computed long back, and in addition, the partial N°LO SV results [39] are also available.
However, due to reasonably large scale uncertainties and crying demand of uplifting the
accuracy of theoretical predictions, we must push the boundaries of existing results. In
this work [12], we have computed the missing part and completed the SV corrections to

the rapidity distributions at N°LO QCD.

The prescription [39] which has been employed to calculate the SV QCD corrections is
similar to that of the inclusive cross section, more specifically, it is a generalisation of the
other one. The infrared safe contributions under SV approximation can be computed by
adding the soft part of the rapidity distribution with the UV renormalised virtual part and
performing the mass factorisation using appropriate counter terms. Similar to the inclu-
sive case, the main ingredients to perform this computation are the form factors, overall
UV operator renormalisation constant, soft-collinear distribution for rapidity and mass
factorisation kernels. These quantities are required up to N°LO to calculate the rapidity
at this order. The three loop quark and gluon form factors [40—43] were calculated long
back. The operator renormalisation constants are also present. For DY, this constant is
not required or equivalently equals to unity. The mass factorisation kernels are also avail-
able in the literature to the required order. The only missing part was the soft-collinear
distribution for rapidity at N3LO. This was not possible to compute until very recently.
Because of the universal behaviour of the soft gluons, the soft-collinear distributions for
rapidity and inclusive cross section can be related to all orders in perturbation theory [39].
Employing this beautiful relation, we obtain this quantity at N°LO from the results of
soft-collinear distribution of the inclusive cross section [32]. Using this, along with the
existing results of the other relevant quantities, we compute the complete analytical ex-
pressions of N°LO SV correction to the rapidity distributions for the Higgs boson in gluon
fusion and leptonic pair in DY [12]. We demonstrate the numerical impact of this correc-
tion for the case of Higgs boson at the LHC. This indeed reduces the scale dependence

significantly and provides a more reliable theoretical predictions. These are the most ac-
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curate results for the rapidity distributions of the Higgs boson and DY pair which exist in
the literature and undoubtedly, expected to play very important role in the upcoming run

at the LHC.

1.3.3 Pseudo-Scalar Form Factors at Three Loops in QCD

One of the most popular extensions of the SM, namely, the MSSM and two Higgs doublet
model have richer Higgs sector containing more than one Higgs boson and there have been
intense search strategies to observe them at the LHC. In particular, the production of CP-
odd Higgs boson/pseudo-scalar at the LHC has been studied in detail, taking into account
higher order QCD radiative corrections, due to similarities with its CP-even counter part.
Very recently, the N°LO QCD corrections to the inclusive production cross section of
the CP-even Higgs boson becomes available [44]. So, it is very natural to extend the
theoretical accuracy for the CP-odd Higgs boson to the same order of N°LO. This requires
the 3-loop quark and gluon form factors for the pseudo-scalar which are the only missing

ingredients to achieve this goal.

Multiloop and multileg computations play a crucial role to achieve the golden task of
making precise theoretical predictions. However, the complexity of these computations
grows very rapidly with the increase of number of loops and/or external particles. Never-
theless, it has become a reality due to several remarkable developments in due course of
time. These articles [13, 14] are devoted to demonstrate the computations of the 3-loop

quark and gluon form factors for the pseudo-scalar operators in QCD.

The coupling of a pseudo-scalar Higgs boson to gluons is mediated through a heavy quark
loop. In the limit of large quark mass, it is described by an effective Lagrangian [45]
that only admits light degrees of freedom. In this effective theory, we compute the 3-loop
massless QCD corrections to the form factor that describes the coupling of a pseudo-scalar

Higgs boson to gluons. The evaluation of this 3-loop form factors is truly a non-trivial
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task not only because of the involvement of a large number of Feynman diagrams but also
due to the presence of the axial vector coupling. We work in dimensional regularisation
and use the ’t Hooft-Veltman prescription [8] for the axial vector current, The state-of-the-
art techniques including integration-by-parts [46,47] and Lorentz invariant [48] identities
have been employed to accomplish this task. The UV renormalisation is quite involved
since the two operators, present in the Lagrangian, mix under UV renormalization due
to the axial anomaly and additionally, a finite renormalisation constant needs to be intro-
duced in order to fulfill the chiral Ward identities. Using the universal infrared factor-
ization properties, we independently derive [13] the three-loop operator mixing and finite
operator renormalisation from the renormalisation group equation for the form factors,
thereby confirming recent results [49, 50], which were computed following a completely
different methodology, in the operator product expansion. This form factor [13, 14] is an
important ingredient to the precise prediction of the pseudo-scalar Higgs boson produc-
tion cross section at hadron colliders. We derive the hard matching coefficient in soft-
collinear effective theory (SCET). We also study the form factors in the context of leading
transcendentality principle and we find that the diagonal form factors become identical to
those of N' = 4 upon imposing some identification on the quadratic Casimirs. Later, these
form factors are used to calculate the SV corrections [14] to the pseudo-scalar production

cross section at N°LO and next-to-next-to-next-to-leading logarithm (N°LL) QCD.
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2.1 Prologue

The discovery of Higgs boson by ATLAS [1] and CMS [2] collaborations of the LHC
at CERN has not only shed the light on the dynamics behind the electroweak symme-
try breaking but also put the SM of particle physics on a firmer ground. In the SM,
the elementary particles such as quarks, leptons and gauge bosons, Z, W* acquire their
masses through spontaneous symmetry breaking (SSB). The Higgs mechanism provides
the framework for SSB. The SM predicts the existence of a Higgs boson whose mass is
a parameter of the model. The recent discovery of the SM Higgs boson like particle pro-
vides a valuable information on this, namely on its mass which is about 125.5 GeV. The
searches for the Higgs boson have been going on for several decades in various experi-
ments. Earlier experiments such as LEP [51] and Tevatron [52] played an important role
in the discovery by the LHC collaborations through narrowing down its possible mass
range. LEP excluded Higgs boson of mass below 114.4 GeV and their precision elec-
troweak measurements [53] hinted the mass less than 152 GeV at 95% confidence level
(CL), while Tevatron excluded Higgs boson of mass in the range 162 — 166 GeV at 95%
CL.

Higgs bosons are produced dominantly at the LHC via gluon gluon fusion through top
quark loop, while the sub-dominant ones are vector boson fusion, associated production
of Higgs boson with vector bosons, with top anti-top pairs and also in bottom anti-bottom
annihilation. The inclusive productions of Higgs boson in gluon gluon [53-61], vector
boson fusion processes [62] and associated production with vector bosons [63] are known
to NNLO accuracy in QCD. Higgs production in bottom anti-bottom annihilation is also
known to NNLO accuracy in the variable flavour scheme (VFES) [16-21], while it is known
to NLO in the fixed flavour scheme (FFS) [22—27]. In the MSSM, the coupling of bottom
quarks to Higgs becomes large in the large tan 8 region, where tan S is the ratio of vacuum

expectation values of up and down type Higgs fields. This can enhance contributions from
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bottom anti-bottom annihilation subprocesses.

While the theoretical predictions of NNLO [53-61] and next to next to leading log (NNLL)
[64] QCD corrections and of two loop electroweak effects [65, 66] played an important
role in the Higgs discovery, the theoretical uncertainties resulting from factorization and
renormalization scales are not fully under control. Hence, the efforts to go beyond NNLO
are going on intensively. Some of the ingredients to obtain N*LO QCD corrections are
already available. For example, quark and gluon form factors [40—-42, 67, 68], the mass
factorization kernels [69] and the renormalization constant [70] for the effective operator
describing the coupling of Higgs boson with the SM fields in the infinite top quark mass
limit up to three loop level in dimensional regularization are known for some time. In ad-
dition, NNLO soft contributions are known [71] to all orders in € for both DY and Higgs
productions using dimensional regularization with space time dimension being d = 4 + €.
They were used to obtain the partial N3LO threshold effects [28,29, 72—74] to Drell-Yan
production of di-leptons and inclusive productions of Higgs boson through gluon gluon
fusion and in bottom anti-bottom annihilation. Threshold contribution to the inclusive

production cross section is expanded in terms of 6(1 — z) and D;(z) where

m) 2.1.1)

1-z2

Di(z) = (

with the scaling parameter z = m?,/§ for Higgs and z = mlz+ /8 for DY. Here my, my+-
and § are mass of the Higgs boson, invariant mass of the di-leptons and square of the
center of mass energy of the partonic reaction responsible for production mechanism re-
spectively. The missing §(1 — z) terms for the complete N°LO threshold contributions
to the Higgs production through gluon gluon fusion are now available due to the sem-
inal work by Anastasiou et al [33] where the relevant soft contributions were obtained
from the real radiations at N°LO level. The resummation of threshold effects [75, 76] to
infra-red safe observables resulting from their factorization properties as well as Sudakov

resummation of soft gluons provides an elegant framework to obtain threshold enhanced
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contributions to inclusive and semi inclusive observables order by order in perturbation
theory. In [32], using this framework, we exploited the universal structure of the soft ra-
diations to obtain the corresponding soft gluon contributions to DY production, which led
to the evaluation of missing 6(1 — z) part of the N*LO threshold corrections. In [35], rele-
vant one loop double real emissions from light-like Wilson lines were computed to obtain
threshold corrections to Higgs as well as Drell-Yan productions up to N*LO level pro-
viding an independent approach. In [34] the universality of soft gluon contributions near
threshold and the results of [33] were used to obtain general expression of the hard-virtual
coefficient which contributes to N*LO threshold as well as threshold resummation at next-
to-next-to-next-to-leading-logarithmic (N®LL) accuracy for the production cross section
of a colourless heavy particle at hadron colliders. For the Higgs production through bb
annihilation, till date, only partial N3LO threshold corrections are known [28—30] where
again the framework of threshold resummation was used. In both [28,29] and [30], it was
not possible to determine the 6(1 —z) at N°LO due to the lack of information on three loop
finite part of bottom anti-bottom higgs form factor in QCD and the soft gluon radiation
at N°LO level. In [30], subleading corrections were also obtained through the method
of Mellin moments. The recent results on Higgs form factor with bottom anti-bottom by
Gehrmann and Kara [31] and on the universal soft distribution obtained for the Drell-Yan
production [32] can now be used to obtain §(1 — z) part of the threshold N*LO contribu-
tion. For the soft gluon radiations in the bb annihilation, the results from [32] can be used
as they do not depend on the flavour of the incoming quark states. We have set bottom

quark mass to be zero throughout except in the Yukawa coupling.

We begin by writing down the relevant interacting Lagrangian in Sec. 2.2. In the Sec. 2.3,
we present the formalism of computing threshold QCD corrections to the cross-section
and in Sec. 2.4, we present our results for threshold N*LO QCD contributions to Higgs
production through bb annihilation at hadron colliders and their numerical impact . The
numerical impact of threshold enhanced N°*LO contributions is demonstrated for the LHC

energy Vs = 14 TeV by studying the stability of the perturbation theory under factor-
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ization and renormalization scales. Finally we give a brief summary of our findings in

Sec. 2.6.

2.2 The Effective Lagrangian

The interaction of bottom quarks and the scalar Higgs boson is given by the action

L= ¢(x)0"(x) = —%cb(X)%(X)t//b(X) (2.2.1)

where, ¥,(x) and ¢(x) denote the bottom quark and scalar Higgs field, respectively. A
is the Yukawa coupling given by V2m;/v, with the bottom quark mass 1, and the vac-
uum expectation value v = 246 GeV. In MSSM, for the pseudo-scalar Higgs boson, we
need to replace /ld)(x)czb(x)wb(x) by ;lg?ﬁ(x)%(x)yy/rb(x) in the above equation. The MSSM

couplings are given by

\/Emhsinoz T _
T eop ¢=h,
p V2my, cos @ 1
A vecosf ° ¢ = H,
\/jmf/tanﬁ , (“ﬁ' —A

respectively. The angle @ measures the mixing of weak and mass eigenstates of neutral
Higgs bosons. We use VFS scheme throughout, hence except in the Yukawa coupling, m;,

is taken to be zero like other light quarks in the theory.

2.3 Theoretical Framework for Threshold Corrections

The inclusive cross-section for the production of a colorless particle, namely, a Higgs

boson through gluon fusion/bottom quark annihilation or a pair of leptons in the Drell-
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Yan at the hadron colliders is computed using

1
.
=0y Y, [axoda(Siadad)  @s

i,j=11@:g T

with the partonic flux
] d
X
D;(x, up) = f %ﬁ(y,u%) f,(;u%) : (2.3.2)

In the above expressions, f,-(y,,u%) and f](f,u%) are the parton distribution functions
(PDFs) of the initial state partons i and j with momentum fractions y and x/y, respec-
tively. These are renormalized at the factorization scale ur. The dimensionless quantity
Al i ( . q%, ,uIZQ, ,u%) is called the coefficient function of the partonic cross section for the pro-
duction of a colorless particle from partons i and j, computed after performing the UV

renormalization at scale ug and mass factorization at ur. The quantity o© is a pre-factor

of the born level cross section. The variable 7 is defined as qz/ s, where

m;,  forl=H,
q = (2.3.3)

my., forl=DY.

my 1s the mass of the Higgs boson and m+-is the invariant mass of the final state dilepton
pair (I*17), which can be e*e™, u*u~, 77", in the DY production. +/s and V3§ stand for the
hadronic and partonic center of mass energy, respectively. Throughout this chapter, we
denote / = H for the productions of the Higgs boson through gluon (gg) fusion (Fig. 2.1)
and bottom quark (bb) annihilation (Fig. 2.2), whereas we write I = DY for the production

of a pair of leptons in the Drell-Yan (Fig. 2.3).

One of the goals of this chapter is to study the impact of the contributions arising from the
soft gluons to the cross section of a colorless particle production at Hadron colliders. The

infrared safe contributions from the soft gluons is obtained by adding the soft part of the
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8

Figure 2.1. Higgs boson production in gluon fusion

Figure 2.2. Higgs boson production through bottom quark annihilation

cross section with the UV renormalized virtual part and performing mass factorisation
using appropriate counter terms. This combination is often called the soft-plus-virtual
cross section whereas the remaining portion is known as hard part. Hence, we write the
partonic cross section by decomposing into two parts as

ISV
A7S

A @ i 7)) = A5V (@ @ i i) + A2 ¢ i 7)) (2.34)

with z = ¢*/5. The SV contributions Af}sv(z, q*, 1%, u%) contains only the distributions of

kind 6(1 — z) and D;, where the latter one is defined through

' -2)
D, = [—(1 2 ] . (2.3.5)
q It
Yz
q -

Figure 2.3. Drell-Yan pair production
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This is also known as the threshold contributions. On the other hand, the hard part Afj’.hard
contains all the regular terms in z. The SV cross section in z-space is computed ind = 4+¢€
dimensions, as formulated in [28, 29], using

AV (@ g i py) = Cexp (¥ (2.4 i - €) )‘ . (2.3.6)

€=

where, ‘I’l’j (z, G, 1 147, 6) is a finite distribution and C is the convolution defined as
f(2) 1 1
Ce’'¥ =6(1 —z)+Ff(z)+ Ef(z)®f(z)+--- ) (2.3.7)

Here ® represents Mellin convolution and f(z) is a distribution of the kind 6(1 —z) and D;.
The equivalent formalism of the SV approximation in the Mellin (or N-moment) space,
where instead of distributions in z, the dominant contributions come from the meromor-
phic functions of the variable N (see [75,76]) and the threshold limit of z — 1 is translated
to N — oo. The ’}’llj (z, G, M s e) is constructed from the form factors 7:5.(&_” 0% 1%, €)
with Q* = —¢?, the overall operator UV renormalization constant Z{j(&s,ulze,/,tz, €), the
soft-collinear distribution @f j(&s, q*, 1%, 2, €) arising from the real radiations in the par-

tonic subprocesses and the mass factorization kernels I 1.1].(&‘?, ,uz, ,uZF, z,€). In terms of the

above-mentioned quantities it takes the following form, as presented in [11,29,32]

7 (2@t 123 €) = (In[ 2@ i, O]+ 1n| T O, e)\z)m )

+ 20 (@, 117, 2, €) — 2CIn T (@ 17, 17, 2, €) - (2.3.8)

In this expression, @, = §*/16x* is the unrenormalized strong coupling constant which
is related to the renormalized one as(,ulze) = a, through the renormalization constant

Z.,(u3) = Z,, as

2\€/2
axsez(—2) Z,.as (2.3.9)
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where, S. = exp [(yg — Indn)e/2)] and u is the mass scale introduced to keep the a; di-
mensionless in d-dimensions. g, is the coupling constant appearing in the bare Lagrangian
of QCD. Z,, can be obtained by solving the underlying renormalisation group equation

(RGE)

—anav = Z d*2B, (2.3.10)
s 120

where, §;’s are the coefficients of the QCD g-function. The solution of the above RGE in

s 4
terms of the B;’s and € up to O(a;)comes out to be

5 4,82+1ﬁ L 8,B3+14,B,B+2,8
s| b0t M s| BP0 T 3PPt T 3 P2

2
—Bo| +
€

Z, =1+a;

16 46 1 (3 10 1
+dg| =By + gﬁfﬁl *3 (5’8% + ?,30,32) + 2—6,33} : (2.3.1D

Results beyond this order involve S5 and higher order ;’s which are not available yet in

the literature. The S up to k = 3 are given by [77]

Bo = %CA - %nf,

B = %CA 2n;Cr — %WCA,

Ba = 2?27 3 - lifcznf + ZicAnf 191 Cpnjy — 21085CFCAnf +Crny,

Bs :NZ(—? +352§3)+N4(— £+ §g3) an(%4 - ?Q)
N (32 - %53) N7 (— el 3243) (% - 33—243)
+niN? | - % + %4’3) + Cpm (%) +Ciny (% - 17643) +Clny (23)
+Cand 25433) CaCrrt? (4224838 24«3) £ CACla; ( % ¥ 1;—653)
+Canj 3196625 + %@) + C4Crny (% —~ 39253) +Coany ( — % + 63—8 3)

o 150653 44 :
A\ 486 9

(2.3.12)
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with the SU(N) quadratic casimirs

N> -1
Cis=N, Cr= . 2.3.13
A T ( )

ny is the number of active light quark flavors.

In this chapter, we will confine our discussion on the threshold corrections to the Higgs
boson production through bottom quark annihilation and more precisely our main goal is
to compute the SV cross section of this process at N°LO QCD. In the subsequent sections,
we will demonstrate the methodology to obtain the ingredients, Eq. (2.3.8) for computing

the SV cross section of scalar Higgs boson production at N*LO QCD.

2.3.1 The Form Factor

The quark and gluon form factors represent the QCD loop corrections to the transition
matrix element from an on-shell quark-antiquark pair or two gluons to a color-neutral
operator O. For the scalar Higgs boson production through bb annihilation, we consider
Yukawa interaction, encapsulated through the operator O” present in the interacting La-
grangian 2.2.1. For the process under consideration, we need to consider bottom quark

form factors. The unrenormalised quark form factors at O(a?) are defined through

S(H,(0) A H,(n)
i _ MING)

bb T \NH(0) AYH(0)
MTIME)

(2.3.14)

where, n = 0,1,2,3,... . In the above expressions I/\A/(le-;(")> is the O(&?) contribution to the
unrenormalised matrix element for the production of the Higgs boson from on-shell bb
annihilation. In terms of these quantities, the full matrix element and the full form factors

can be written as a series expansion in d; as

£

_ N AnQn Q2 & "~(H.(n) _ N AnQn Q2 " F~H,(n)
|MZIB>=ZaSSE(F) |MbE ) ﬂlgzz asSe F /Cb,; , (2.3.15)

n=0 n=0
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where 0° = =2 py.p, = —¢* and p; (p? = 0) are the momenta of the external on-shell
bottom quarks. The results of the form factors up to two loop were present for a long time

n [21,78] and the three loop one was computed recently in [31].

The form factor 7—‘5 (ay, Q%, 2, €) satisfies the KG-differential equation [79—83] which is a
direct consequence of the facts that QCD amplitudes exhibit factorisation property, gauge
and renormalisation group (RG) invariances:

1 . M . O iy
Qd—QzlnTH(as,Q T 6)—5[ bb(a ﬂ§,6)+GZ-)(a #—z,ﬂ’;,e . (23.16)
R

In the above expression, all the poles in dimensional regularisation parameter € are cap-
tured in the Q? independent function KZ) and the quantities which are finite as € — 0 are
encapsulated in GZ;. The solution of the above KG equation can be obtained as [28] (see

also [11,32])

ks
In %% (a5, 0, ﬂz,e):Za’;s’; —2) Ly (o (2.3.17)

with

1 1
£zljbl(6)__z{ 2AZ:1}+ {bbl(e)}

1 1 1
{'BoAbbl} ez{ 5 bb2 'Bonbl(e)} {2 bb2(6)}

o 1
LZIE,3(€) :g{_ _ﬂO bbl} { 181 poa T ﬁoAbb2+_'BO bbl( )}

1 2 4 1
+—{—§AZ,3 S OR M(e)} {3 M(e)} (23.18)

€2

wl’_‘

L (e) =

In Appendix D, the derivation of the above solution is discussed in great details. AZ;’S are

called the cusp anomalous dimensions. The constants G/% ’s are the coefficients of | in
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the following expansions:

0% i ) U dx
GZ‘, (&s, T T E) = GZ; (as(Q ), 1, 6) + f —AH (ay(x’uR))
,UR M %

HR

d
_Za(Q )G (e) + f xAgj;(as(xy,%)). (2.3.19)

“R

However, the solutions of the logarithm of the form factor involves the unknown func-
tions GZ’Bi which are observed to fulfill [40, 84] the following decomposition in terms of

collinear (BZ_)), soft ( f )and UV (ybb) anomalous dimensions:

k Hk
bhz(G) ( bb,i ybbz)+fbbz+cl5ﬂ Z€gbbz (2.3.20)

where, the constants C Z_),i are given by [29]

CH

bb,1 =0,

H _
Cbbz _zﬁogbbl’

Clt s = =2Bgl =280 (gl2) + 2Bogly” ) - (2.3.21)

In the above expressions, XZ_”, with X = A, B, f and 753,- are defined through the series

expansion in powers of aj:
H _ H H _ i H
X5 = E astb, and Yo = E agyyp; - (2.3.22)

i=1 i=1

fl.’7 are introduced for the first time in the article [84] where it is shown to fulfill the max-
imally non-Abelian property up to two loop level whose validity is reconfirmed in [40] at

three loop level:

= (2.3.23)
A

This identity implies the soft anomalous dimensions for the Higgs boson production in
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bottom quark annihilation are related to the same appearing in the Higgs boson production
in gluon fusion through a simple ratio of the quadratic casimirs of SU(N) gauge group.
The same property is also obeyed by the cusp anomalous dimensions up to three loop

level:

C
H _ “F  H
Al = oA (2.3.24)

It is not clear whether this nice property holds true beyond this order of perturbation
theory. Moreover, due to universality of the quantities denoted by X, these are independent
of the operators insertion. These are only dependent on the initial state partons of any
process. Moreover, these are independent of the quark flavors. Hence, being a process
of quark annihilation, we can make use of the existing results up to three loop which are

employed in case of DY pair productions:
H DY 1
X=X =X =Xy (2.3.25)

Here, g denotes the independence of the quantities on the quark flavors and absence of /

H can

represents the independence of the quantities on the nature of colorless particles. f,2

be found in [40, 84], AZ; in [40, 69, 85, 86] and BZ} in [40, 85] up to three loop level. For
readers’ convenience we list them all up to three loop level in the Appendix B. Utilising
the results of these known quantities and comparing the above expansions of G:’B’i(e),
Eq. (2.3.20), with the results of the logarithm of the form factors, we extract the relevant
g:[fi and 7/[7}_),1,’5 up to three loop. For soft-virtual cross section at N°LO we need gZ_;’g in
addition to the quantities arising from one and two loop. The form factors for the Higgs
boson production in bb annihilation up to two loop can be found in [21,28,29] and the

three loop one is calculated very recently in the article [31]. These results are employed

to extract the required gf]_;kl,’s using Eq. (2.3.17), (2.3.18) and (2.3.20). The relevant one
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loop terms are found to be

7 1 47
H1 _ H2 _ H3 _ 2
8p1 = CF{ -2+ 52}, 81 = CF{2 - 5(3}, 8p1 = CF{ -2+ 72t 8042} ,
(2.3.26)
the relevant two loop terms are

—Con 616 10{ 8§ OO 2122 1035 842_'_1525
ng Ff81 927 3% Fla 31 2t 2 3 3

88
+ cﬁ{s +324, — ?422 -~ 60{3},

7 55 130 3100 365 1079
81y = Can{Eéf ~ S0t ol - —} * CACF{ - —4253

243
2923 9142
- — 5145 + e } + C;{?gf — 28005 — 444 + 11645 + 1245 — 24}

and the required three loop term is

6152 2738 976 342263 1136 19582
gfz‘;lg:CiCF{— 3 &+ 9 22+7§2§3— 136 273 &7+ g %3
Q1228 4095263 . Lof 15448{; - 36344 B 2584{4 N 133574
3 %27 78748 4 105 °2 Ty T g %2
11570 1940 613 1064 392 44551
+2964; — 56 55—7}+CAanf{— 1 22+T§2§3+ ERE
B 41552§ - 6119 5 @g _Q“ B 31734 N 15956{
g1 ST a37a [ T\ g5 2 T T3 2 T T g 2T o7 93
368, 32809) ., 40 , 892 320 27352
3 5% 3 L B T A T T,
21584 1644
C;{ 105 o° - 0% + 6240503 — 2750, + 4845 — 2142§3+1272§5+603}.
(2.3.27)

The results up to two loop were present in the literature [28, 29], however the three loop

result is the new one which is computed in this thesis for the first time. The other constants
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yZ_’ » appearing in the Eq. (2.3.20), up to three loop (i = 3) are obtained as

7;[,15’1 =3Cp,
7bb2 ;CQ 967CFCA - ch”f’
Y= %c; - 142@@ + 113;3 CrCh +(—23+244)Ciny
+ (-% —~ 2453) CrCany — 25 Crnj. (2.3.28)

These will be utilised in the next subsection to determine overall operator renormalisation

constant.

2.3.2 Operator Renormalisation Constant

The strong coupling constant renormalisation through Z, is not sufficient to make the
form factor 7 7 completely UV finite, one needs to perform additional renormalisation to
remove the residual UV divergences which is reflected through the presence of non-zero
7;11113 in Eq. (2.3.20). This additional renormalisation is called the overall operator renor-
malisation which is performed through the constant ZZZ' This is determined by solving

the underlying RG equation:

[

d .
d—2 InZf! (@, o 17, €) = ) duiyvi. (2.3.29)
i=1

Using the results of 7’5};' from Eq. (2.3.28) and solving the above RG equation following
the methodology described in the Appendix C, we obtain the following overall renormal-
isation constant up to three loop level:

00 2 kE
ZH =1+ ZaS('Z L ) 210 (2.3.30)
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where,

0= Lscr).

259 = é{ ~22CCy + 18C% + 4nch} + i{967 CpCp + ;CZ gnch},
259 = 5{?@@ 132C%C, + 36C3 — 3?'TznfclpcA +24n,C2 + 392n§.cF}
é{ -~ 4§§0CFCA 2‘3” CZC4 +9C; + %n_chcA 13—0nfc2 ignicF}
é{lizf CrC3 - 423 CZC4 +43C; - %nchcA -~ %nfcﬁ ;?nch
— 1643n;CrCy + 16§3nfc§} : (2.3.31)

2.3.3 Mass Factorisation Kernel

The UV finite form factor contains additional divergences arising from the soft and collinear
regions of the loop momenta. In this section, we address the issue of collinear diver-
gences and describe a prescription to remove them. The collinear singularities that arise
in the massless limit of partons are removed by absorbing the divergences in the bare
PDF through renormalisation of the PDF. This prescription is called the mass factorisa-
tion (MF) and is performed at the factorisation scale uy. In the process of performing this,
one needs to introduce mass factorisation kernels '/ (as, w2, 1 %, Z, €) which essentially ab-
sorb the collinear singularities. More specifically, MF removes the collinear singularities
arising from the collinear configuration associated with the initial state partons. The final
state collinear singularities are guaranteed to go away once the phase space integrals are
performed after summing over the contributions from virtual and real emission diagrams,
thanks to Kinoshita-Lee-Nauenberg (KLN) theorem. The kernels satisfy the following

RG equation :

d
d_2F1 (2o g2 €) = ZP 2 1}) @ Iy (2. 13 €) (2.3.32)
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where, P! (z, ,u%) are Altarelli-Parisi splitting functions (matrix valued). Expanding P! (z, u%)

and I''(z, 2., €) in powers of the strong coupling constant we get

Pz ) = Za(m)P”k @) (2.3.33)
k=1
and
12 k3
Il i €)= 6,501 z)+ZAkS (ﬂ ) Iifa.e. (2.3.34)

The RG equation of I'/(z, ,u%, €), Eq. (2.3.32), can be solved in dimensional regularisa-
tion in powers of @,. In the MS scheme, the kernel contains only the poles in e. The
solutions [28] up to the required order I'®)(z, €) in terms of P¥(z) are presented in the
Appendix (C.0.20). The relevant ones up to three loop, P (z), P/V(z) and P"?(z) are
computed in the articles [69, 85]. For the SV cross section only the diagonal parts of the
splitting functions Pl.[}.(k)(z) and kernels I ll ]’.(k)(z, €) contribute since the diagonal elements
of Pf]’.(k) (z) contain 6(1 — z) and D, whereas the off-diagonal elements are regular in the
limit z — 1. The most remarkable fact is that these quantities are universal, independent
of the operators insertion. Hence, for the process under consideration, we make use of the
existing process independent results of kernels and splitting functions:

rfi=r,=r; and Pl =P, =P; (2.3.35)
The absence of I represents the independence of these quantities on /. In the next subsec-

tion, we discuss the only remaining ingredient, namely, the soft-collinear distribution.

2.3.4 Soft-Collinear Distribution

The resulting expression from form factor along with the operator renormalisation con-

stant and mass factorisation kernel is not completely finite, it contains some residual di-
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vergences which get cancelled against the contribution arising from soft gluon emissions.

Hence, the finiteness of A%V

in Eq. (2.3.6) in the limit ¢ — 0 demands that the soft-
collinear distribution, @Zg(&s, qz, 1%, z, €), has pole structure in € similar to that of residual
divergences. In articles [28] and [29], it was shown that GDZ_? must obey KG type integro-

differential equation, which we call KG equation, to remove that residual divergences:
d 1[—n (. (. ¢
qﬁ(DH (@5 1% 2. €) = 2[Kbl-,(as,ﬂ—g,z,e)+Gb,-,(as,l7,ﬂ—§,z,6 . (2.3.36)
R

EZ—, and EZ; play similar roles as those of KZ; and GZ; in Eq. (2.3.16), respectively. Also,

@' (ay, 4%, 11°, 2, €) being independent of 4, satisfy the RG equation

2 Hon 2 2 _
—@bg(as,q S u,z2,€)=0. (2.3.37)

R

This RG invariance and the demand of cancellation of all the residual divergences arising

from 7—'[5 , ZH and I'% H ! against cD © implies the solution of the KG equation as [28,29]

H /~ 2 2 _ +HH A 2 2 2
dsh[)(asaq ’/l s <5 6) - @ '(asaq (1 _Z) /’l 6)

i a ( Z)z) i (5 '€ Z) " (e (2.3.38)

i=1

with
5 A —H
qs,’f;-,,i(e):zz,’;;,i(e)(Ag — —AlL ;,j(e)egb,-,’j(e)) (2.3.39)

where, fSZ’E l.(e) are defined in Eq. (2.3.18). In Appendix E, the derivation of this solution
is depicted in great details. The z-independent constants ébH,;,i(e) can be obtained by com-

paring the poles as well as non-pole terms in € of cD (e) with those arising from form
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factor, overall renormalisation constant and splitting functions. We find

—H —H N —Hik
Gipi(€) = —fbhg,,i +Cpp + Z Gkgb;;,i, (2.3.40)
k=1
where,
H
Cbl_7,l - 0 ’
—H —H,1
Crpr = —2B0Gp1 »
—H —H,1 —H,1 —H2

However, due to the universality of the soft gluon contribution, QDZB must be the same as
that of the DY pair production in quark annihilation since this quantity only depends on

the initial state partons, it does not depend on the final state colorless particle:

H _ 5#DY _ I
¢b5_¢qq _gqu]

. —=Hk —=DYk —Ik
ie. G = Gogi = Gygi- (2.3.42)
. I _Ivk . . . . .
In the above expression, @, and G, ; are written in order to emphasise the universality
Lk

of these quantities i.e. @gq and G, . can be used for any quark annihilation process, these

99
are independent of the operators insertion. In the beginning, it was observed in [28, 29]

that these quantities satisfy the maximally non-Abelian property up to O(a?):

7 Cr —Ik Cr—lk

_ I
¢qé - C_A@gg and G 9ai ~ ¢ R ggi

(2.3.43)

Some of the relevant constants, namely, é;q] 15 Q([]; I é;’;z are computed [28,29] from the
results of the explicit computations of soft gluon emissions to the DY productions. How-
ever, to calculate the SV cross section at N°LO, we need to have the results of é;j 15 é;jz
These are obtained by employing the above symmetry (2.3.43). In [71], the soft correc-

tions to the production cross section of the Higgs boson through gluon fusion to O(a?)
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was computed to all orders in dimensional regularisation parameter €. Utilising this all

order result, we extract Qgg , and g These essentially lead us to obtain the correspond-

882"
ing quantities for DY production by means of the maximally non-Abelian symmetry. The

third order constant Q is extracted from the result of SV cross section for the produc-

88,3
tion of the Higgs boson at N°LO [33]. We conjecture that the symmetry relation (2.3.43)
holds true even at the three loop level! Therefore, utilising that property we obtain the cor-
responding quantity for the DY production, ?Z;; which was presented for the first time in
the article [32]. Later the result was reconfirmed through threshold resummation in [34]
and explicit computations in [35]. This, in turn, establishes our conjecture of maximally
non-Abelian property at N°LO. Being flavor independent, we can employ all these con-

stants to the problem under consideration. Below, we list the relevant ones that contribute

up to N3LO level:

—H,

Gip1 = Cry —34¢,
—H2 7

Gip1 = CF{§§3},

—HJ3 3
gbl},l = CF{ - E{Zz} 5

—H,1 328 70 32 2428 469 176
G = CF”f{ YE + 342 + ?53} + CACF{ T sz 40" - —53}
—H2 11 203 1414 2077 7288
G = CACF{40§22 - T(zfa * > O+ > {3 +438 - T43}
L 1 2_196 _310 +976
P 42 2727 2797 243
152 1964 11000 765127 536 59648
wa CrCqy {— 5+ 0o+ OB~ g 92t 3 3 - 7 5
1430 7135981 532 1208 105059
-~ CrC -~ 2 -
7 5t gas } F Anf{ 5 & g Lbt a4
45956 148 716509 152 605 2536
-~ Cing{ —— &,° — 88 —
ST &+ 3 5T ;3 } an{ 5’ HEG o+ O+ > &
112 42727 ,[32 ., 1996 2720 11584
3 573, }+ Crny { 90 T3 27 g1 S iy } (2344
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J— ’k .
The above QZ—,J enable us to get the @Z_) up to three loop level. This completes all the
ingredients required to compute the SV cross section up to N°LO that are presented in the

next section.

2.4 Results of the SV Cross Sections

In this section, we present our findings of the SV cross section at N*LO along with the
results of previous orders. Expanding the SV cross section AH SV Eq. (2.3.6), in powers

of a,(u F), we obtain

AN @ o) = ) A WDARN (2, ¢ ) (2.4.1)

i=1

where,
ALY = AV)56(1 - 2) + ZAHSV

Before presenting the final result, we present the general results of the SV cross section

in terms of the anomalous dimensions A, BZ fH ~H and other quantities arising from
bb> “bb’ Y bb> ' bb

form factor and soft-collinear distribution below:

2
q
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+ Ds

Upon substituting the values of all the anomalous dimensions, beta functions and gbb B

ébl_;,i’ we obtain the results of the scalar Higgs boson production cross section at threshold
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I

The results at NLO (AZS]V) and NNLO (AZSZV) match with the existing ones [21]. At

+Z)4

+D5

N3LO level, only AZ;SSVM). were known [28,29], remaining terms were not available due

H2
to absence of the required quantities gbb y gbb from form factors and bez, be3 from

soft-collinear distributions. The recent results of gbb y gbh1 from [31], g,,,—,z from [71] and

ghb 5 from [32] are being employed to compute the missing 6(1 —z) parti.e. A% |5 which

bb,3

HSV

b ) and is presented for

completes the full evaluation of the SV cross section at N*LO (A
the first time in [11] by us. For the sake of completeness, we mention the leading order
contribution which is

A =61 -2) (2.4.4)

and the overall factor in Eq. (2.3.1) comes out to be

(2.4.5)
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The above results are presented for the choice g = pp. The dependence of the SV cross
section on renormalisation scale ug can be easily restored by employing the RG evolution

of ag from ug to ug [87]:

a, (u7) = a, (17) é +a’ () {ﬁ (—m log w) } +a (1) {i (71 = m2)

1
+— (—n% + 1, — 1t log w + i} log? w) (2.4.6)
w

where

—— (2.4.7)

The above result of the evolution of the a, is a resummed one and the fixed order result

can be easily obtained by performing the series expansion of this equation (2.4.6).

2.5 Numerical Impact of SV Cross Sections

The numerical impact of our results can be studied using the exact LO, NLO, NNLO
AZE,:” i = 0,1,2 and the threshold N3LO result AZ%V. We have used /s = 14 TeV for
the LHC, the Z boson mass M; = 91.1876 GeV and Higgs boson mass my = 125.5
GeV throughout. The strong coupling constant a,(uz) (a;, = «,/4n) is evolved using
the 4-loop RG equations with a/?pLO(mz) = 0.117 and for parton density sets we use

MSTW 2008NNLO [88]. The Yukawa coupling is evolved using 4 loop RG with A(m;,) =
V2my,(mp) /v and my,(my,) = 4.3 GeV.

The renormalization scale dependence is studied by varying uz between 0.1 my and 10 my
keeping ur = my/4 fixed. For the factorization scale, we have fixed ug = my and varied

ur between 0.1 my and 10 my. We find that the perturbation theory behaves better if we



include more and more higher order terms (see Fig.2.4).
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Figure 2.4. Total cross section for Higgs production in bb annihilation at various orders in a;
as a function of ug/my (left panel) and of ur/my (right panel) at the LHC with +/s = 14 TeV.

2.6 Summary

To summarize, we have systematically developed a framework to compute threshold con-

tributions in QCD to the production of Higgs boson in bottom anti-bottom annihilation

subprocesses at the hadron colliders. This formalism is applicable for any colorless par-

ticle. Factorization of UV, soft and collinear singularities and exponentiation of their

sum allow us to obtain threshold corrections order by order in perturbation theory. Using

the recently obtained N*LO soft distribution function for Drell-Yan production and the

three loop Higgs form factor with bottom anti-bottom quarks, we have obtained threshold

N3LO corrections to Higgs production through bottom anti-bottom annihilation. We have

also studied the stability of our result under renormalization and factorization scales.






Rapidity Distributions of
Drell-Yan and Higgs Boson at
Threshold in N*LO QCD

The materials presented in this chapter are the result of an original research done in
collaboration with Manoj K. Mandal, Narayan Rana and V. Ravindran, and these are

based on the published article [12].
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3.1 Prologue

The Drell-Yan production [89] of a pair of leptons at the LHC is one of the cleanest
processes that can be studied not only to test the SM to an unprecedented accuracy but also
to probe physics beyond the SM (BSM) scenarios in a very clear environment. Rapidity
distributions of Z boson [90] and charge asymmetries of leptons in W boson decays [91]
constrain various parton densities and, in addition, possible excess events can provide
hints to BSM physics, namely R-parity violating supersymmetric models, models with
Z' or with contact interactions and large extra-dimension models. One of the production
mechanisms responsible for discovering the Higgs boson of the SM at the LHC [1, 2] is
the gluon-gluon fusion through top quark loop. Being a dominant one, it will continue to
play a major role in studying the properties of the Higgs boson and its coupling to other
SM particles. Distributions of transverse momentum and rapidity of the Higgs boson are
going to be very useful tools to achieve this task. Like the inclusive rates [55-61,64,92—
98], the rapidity distribution of dileptons in DY production and of the Higgs boson in
gluon-gluon fusion are also known to NNLO level in perturbative QCD due to seminal
works by Anastasiou et al. [36]. The quark and gluon form factors [40-42,67], the mass
factorization kernels [69], and the renormalization constant [70, 99, 100] for the effective
operator describing the coupling of the Higgs boson with the SM fields in the infinite
top quark mass limit up to three loop level in dimensional regularization with space-
time dimensions n = 4 + € were found to be useful to obtain the N°LO threshold effects
[28,29,72-74] to the inclusive Higgs boson and DY productions at the LHC, excluding
6(1—z) terms, where the scaling parameter is z = mlz+ /8 for the DY process and z = ms, /3§
for the Higgs boson. Here, m;+;-, my and § are the invariant mass of the dileptons, the

mass of the Higgs boson, and square of the center of mass energy of the partonic reaction
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responsible for the production mechanism, respectively. Recently, Anastasiou et al. [33]
made an important contribution in computing the total rate for the Higgs boson production
at N°LO resulting from the threshold region including the §(1-z) term. Their result, along
with three loop quark form factors and mass factorization kernels, was used to compute

the DY cross section at N°LO at threshold in [32].

In this thesis, we will apply the formalism developed in [39] to obtain rapidity distribu-
tions of the dilepton pair and of the Higgs boson at N°LO in the threshold region using
the available information that led to the computation of the N*LO threshold corrections

to the inclusive Higgs boson [33] and DY productions [32].

We begin by writing down the relevant interacting Lagrangian in Sec. 3.2. In the Sec. 3.3,
we present the formalism of computing threshold QCD corrections to the differential ra-
pidity distribution and in Sec. 3.4, we present our results for the threshold N*LO QCD
corrections to the rapidity distributions of the dilepton pairs in DY and Higgs boson. The
numerical impact in case of Higgs boson is discussed in brief in Sec. 3.5. The numerical
impact of threshold enhanced N°>LO contributions is demonstrated for the LHC energy
v/s = 14 TeV by studying the stability of the perturbation theory under factorization and

renormalization scales. Finally we give a brief summary of our findings in Sec. 3.6.

3.2 The Lagrangian

In the SM, the scalar Higgs boson couples to gluons only indirectly through a virtual
heavy quark loop. This loop can be integrated out in the limit of infinite quark mass. The
resulting effective Lagrangian encapsulates the interaction between a scalar ¢ and QCD

particles and reads:

= Gug(x)0" (x) (3.2.1)
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with

1
0"(x) = =7 G}, (NG (x),
2

_ 2N = 2y Mg
Gy = —Tas(/JR)GFCH as(ug), % . (3.2.2)
t

Cu(uz) is the Wilson coefficient, given as a perturbative expansion in the MS renor-
malised strong coupling constant a, = a,(u%), evaluated at the renormalisation scale jg.

This is given by [70, 101, 102]

g 2777 7 1
Ch (as(pi), 57’;) -1+ as{ll} n a§{1—8 +19L, + 1, (—% n ?6L,)}

t

+daj;

2892659 897943 3466
3) _ 2
{ 613 + a4 &+ 9 L, +209L;

L, (40291 110779 1760
7324 216 °°

7L+ 46L,2)

6865 77 32
2 (L2220 Iy 22 2,
+”f( 486 T277 9 ')} 623

up to O(a’) with L, = log (,ufe / mf) and n; is the number of active light quark flavors. For
the DY process, we work in the framework of exact SM with ny = 5 number of active

light quark flavors.

3.3 Theoretical Framework for Threshold Corrections

to Rapidity

The differential rapidity distribution for the production of a colorless particle, namely, a
Higgs boson through gluon fusion/bottom quark annihilation or a pair of leptons in the

DY at the hadron colliders can be computed using

L (n g Y) = 4 (r. o) W (o Vo) (3.3.1)
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In the above expression, Y stands for the rapidity which is defined as

Y

@) (3.3.2)

1

=1

2 ©8 (P 1-9
where, P; and g are the momentum of the incoming hadrons and the colorless particle,
respectively. The variable 7 equals ¢/s with

) m:,  forl =H,

q = (3.3.3)
m;.,. forI=DY.

my 1s the mass of the Higgs boson and m+-is the invariant mass of the final state dilepton
pair (I*I7), which can be e*e™, u*u~, 77", in the DY production. /s and V3 stand for the
hadronic and partonic center of mass energy, respectively. Throughout this chapter, we
denote I = H for the productions of the Higgs boson through gluon (gg) fusion (Fig. 3.1)
and bottom quark (bb) annihilation (Fig. 3.2), whereas we write I =DY for the production

of a pair of leptons in the DY (Fig. 3.3). In Eq. (3.3.2), o, is defined through

8

Figure 3.1. Higgs boson production in gluon fusion

Figure 3.2. Higgs boson production through bottom quark annihilation
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Yz
Figure 3.3. Drell-Yan pair production

1 ] 2’ f — ,
O'IY(T,qZ,Y): O-(Tq Y) orf=H (3.3.4)

Lo (r.¢%.Y) for I =DY.

1,0)

where, o/ (T, qz) is the inclusive production cross section. o, is an overall prefactor

extracted from the leading order contribution. The other quantity W/ is given by

1 1
(,uR) .
WI (T, (]2, Kﬂ%?) 1(0) Z fdxl fdeWl-Ij (Xl,XZ) deé‘(T - ZX[)Cz)
0

5j=4.4:8 )

A 1 Pz.q
x | dPS IPS|Y — = log | —==
Jorsasnip (i)

= ¥ f dx, f QP 1.5 —— I, (5. Vsl Pt €) (335)

1j=4:3:8 Y

where, we have introduced the dimensionless differential partonic cross section A’ 7!
is the overall operator UV renormalisation constant, x; (k = 1,2) are the momentum

fractions of the initial state partons i.e. p; = x; Py and 7:{11] stands for

fi(x1) f; (xp) for I = DY,

ﬂlj (x1, X0) = ﬁ (x1) fAj (x,) for I = H through bb annihilation,

xlfi (x1) xzfj (x,) for I = H in gg fusion.

fi(x;) is the unrenormalised PDF of the initial state partons i with momentum fractions x;.

X is the remnants other than the colorless particle I, dPS |.x is the phase space element
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for the I + X system and M{ ; represents the partonic level scattering matrix element for
the process ij — I. The renormalised PDF, f; (xl, ,u%), renormalised at the factorisation

scale ur, is related to the unrenormalised ones through Altarelli-Parisi (AP) kernel:

o)=Y f ry(anp itz o) f(2) (3.3.6)

J= 4:9:8

where the scale u is introduced to keep the unrenormalised strong coupling constant a,
dimensionless in space-time dimensions d = 4 + €. a, = g*/16n* is the unrenormalized
strong coupling constant which is related to the renormalized one a,(uz) = a, through
the renormalization constant Z, (u) = Z,,, Eq. (2.3.9). The form of e Z,, is presented in

Eq. (2.3.11). Expanding the AP kernel in powers of a,, we get

€

2 k
Il ,up,z,e)—é,]é(l—z)+ZAkS (# ) rifc,e). (3.3.7)

pr®

I l.Ij’.(k)(z, €) in terms of the Altarelli-Parisi splitting functions Iy (z u F) are presented

in the Appendix (C.0.20). Employing the Eq. (3.3.6), we can write the renormalised

1 2
7—(51. (xl,xz,,uF) as

1
dy, Y2 X2
H}, (x1, 20, f—f 2T @ 12 i y1, ©FHL | =, 2 | T, 112, 1%, y2, €)
]le;M v £ }’1}’2ﬂ 72
x

X1

(3.3.8)

In addition to renormalising the PDF, the AP kernels absorb the initial state collinear

singularities present in the ZIQ’U. through

Ay (7. i f i f dyz TN RN )),-_ll'ly,kz(f’ms’ﬂz"lz’ﬂi’f)

1

X (FI (as,,u ,uF,yz, ))ﬂ . (3.3.9)
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The 4%, ;18 free of UV, soft and collinear singularities. With these we can express W!in
terms of the renormalised quantities. Before writing down the renormalised version of the

Eq. (3.3.5), we introduce two symmetric variables x{ and xg instead of Y and 7 through

1 x) 0.0
Y= Elog ik T=XX,. (3.3.10)

X

In terms of these new variables, the contributions arising from partonic subprocesses can
be shown to depend on the ratios z; = x(]?/ x; which take the role of scaling variables at the
partonic level. In terms of these newly introduced variables, we get the renormalised W’

as

1
dz dzp X0 x)
W (X?,Xz,q /JR f_l _7'{”( L 2’ F)Ag/zj(zl’Z%q /JR’/JF)'
“
(3.3.11)

The goal of this chapter is to study the impact of the contributions arising from the soft
gluons to the differential rapidity distributions of a colorless particle production at Hadron
colliders. The infrared safe contributions from the soft gluons is obtained by adding the
soft part of the distribution with the UV renormalized virtual part and performing mass
factorisation using appropriate counter terms. This combination is often called the soft-
plus-virtual (SV) rapidity distribution whereas the remaining portion is known as hard

part. Hence, we write the rapidity distribution by decomposing into two parts as

Ay (@1 2, @ oM7) = A3y (2020, @ i H7) + A3 20, o o ity) - (33.12)
The SV contributions A;lsjv(zl, 22, q29/~l[2g, ,u%) contains only the distributions of kind 6(1 —

21), 8(1 = 2o) and D;, D; where the latter ones are defined through

D, = [lni(l —zl)] , D, = [lni(l - 22)

with i=0,1,2,.... 3.3.13
== (-2 ] (33.13)
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This is also known as the threshold contributions. On the other hand, the hard part A;?;’rd
contains all the regular terms in z; and z,. The SV rapidity distribution in z-space is

computed in d-dimensions, as formulated in [39], using

Aly’ij(zl, 22,4 Uz U7) = Cexp (?’éij (zl, 22,4 o M 6) )' (3.3.14)

where, ¥}, ’ (zl, 22, % s M 6) is a finite distribution and C is the convolution defined as
f(z1.22) 1 1
Ce’ % = 6(1 — z))o(1 — zp) + Ff(Zl,Zz)‘F Ef(zbzz)@f(Zl’ZZ)'i_'” . @33.15)

Here, ® represents the double Mellin convolution with respect to the pair of variables z;, z,
and f(z1,2,) is a distribution of the kind 5(1 —z;), D; and D;. The ¥, (Zl 200 Pt 12, e)
is constructed from the form factors 7-:.5.(&3, 0%, 112, €) with Q% = —¢?, the overall operator
I

UV renormalization constant Z/ (4, i, 4%, €), the soft-collinear distribution @Q’ i(@s, q°%,

j
1%, 21,22, €) arising from the real radiations in the partonic subprocesses and the mass

1

factorization kernels I U(&S,,uz,,u%,z j»€). In terms of the above-mentioned quantities it

takes the following form, as presented in [12,39, 103]

2 2
V(2120 4 13 113 €) = (1n |20 @ .12, 0| + 10 |Fia, O 4 € )6(1 —21)6(1 - 22)

+ 20 (8, ¢ 4P 21022, €) — CInTE(ag, 12, 115, 21, ©5(1 = 22)

— CInTy(@, 1%, i, 22, )8(1 = 21) - (3.3.16)

In this chapter, we will confine our discussion on the threshold corrections to the Higgs
boson production through gluon fusion and DY pair productions. More precisely, our
main goal is to compute the SV corrections to the rapidity distributions of these two pro-
cesses at N°LO QCD. In the subsequent sections, we will demonstrate the methodology to

get the ingredients, Eq. (3.3.16) to compute the SV rapidity distributions at N*LO QCD.
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3.3.1 The Form Factor

The quark and gluon form factors represent the QCD loop corrections to the transition
matrix element from an on-shell quark-antiquark pair or two gluons to a color-neutral
particle. For the processes under consideration, we require gluon form factors in case of
scalar Higgs boson production in gg fusion and quark form factors for DY pair produc-
tions from ¢gg annihilation (happens through intermediate off-shell photon, y* or Z-boson).

The unrenormalised quark form factors at O(a?) are defined through

C11(0)) AL ()
AR
11O A0\’
MOV

7L n=0,1,2,3, (3.3.17)

SO~

with

gg for H,

qq for DY .

In the above expressions I/\A/(f’;")> is the O(a?}) contribution to the unrenormalised matrix
element for the production of the particle I from on-shell i i annihilation. In terms of
these quantities, the full matrix element and the full form factors can be written as a series

expansion in d; as

Y 0*\": ~ () ;N0 0\ ~1(n)
ML) = ag'sz(— M), 7= )y (@St =S| 757, (3.3.18)
; #2 ii ; lu2 ii
where Q% = -2 p;.p» = —¢* and p; (p? = 0) are the momenta of the external on-shell

quarks or gluons. Gluon form factors ng’ up to three loops in QCD were computed in [40—
42,68, 104, 105]. The quark form factors ﬁl?]Y up to three loops in QCD are available

from [40-42,67,68,95,96, 105, 106].

The form factor 7—:.1;(&‘?, 0%, 1%, €) satisfies the KG-differential equation [79-83] which is a

direct consequence of the facts that QCD amplitudes exhibit factorisation property, gauge
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and renormalisation group (RG) invariances:

d 1 A Mfze 1 A Q2 MIZQ

0*'— 100 — In¥ (s, Q° 1%, €) = [ ”(as, /?,e + G5 \as =, /?’E . (3.3.19)
In the above expression, all the poles in dimensional regularisation parameter € are cap-
tured in the Q? independent function Kl’ - and the quantities which are finite as € — 0 are
encapsulated in Gf - The solution of the above KG equation can be obtained as [28] (see

also [11,32])

00 2\k5
InFl@,, Q°, 1% €) = Z ksk(%) L (e (3.3.20)
k=1
with
Pl 1 I 1 1
L, (0) = a2 — 24,0t c Gize,
R 1 1( 1 11
Lo =% ﬁoAl,l} |- 34156, ,1<e>}+ {3600},
1 I 4 2~
113(6) _4 ’80 il +§ §ﬁ1A”1 _ﬁ0A112+§ﬁ0Gif,1(6)
1 2 1 11
+ g{ - §A{B - §ﬁIG{ NGE —,8on ,2(6)} + E{ng ;’3(6)}. (3.3.21)

In Appendix D, the derivation of the above solution is discussed in great details. Af s are
called the cusp anomalous dimensions. The constants Gf -,’s are the coefficients of al in

the following expansions:

2 2 1
. M dx
G!. (a —fz : #—’; e) =G (a,(Q). 1,€) + f , A G)
2 P

"

1
= Za QNG () + f @A{ (a,(xup)) . (3.3.22)

e

However, the solutions of the logarithm of the form factor involves the unknown func-

tions Gf -, Which are observed to fulfill [40, 84] the following decomposition in terms of
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collinear (B!.), soft (f’) and UV (y!.) anomalous dimensions:

Gli(€) = 2(Bl = vi3) + S+ Clip + Ze’gffk, (3.3.23)

where, the constants Cil -, are given by [29]

Cllzl = O
C1112 _zﬁogul’
Cliy = 281877, — 280 ( + 28087 2. (3.3.24)

In the above expressions, le - with X = A, B, f and yf -, are defined through the series

expansion in powers of a;:

[

Xi=Ydxl,,  and o= dY, (3.3.25)

k=1 k=1

fili are introduced for the first time in the article [84] where it is shown to fulfill the max-
imally non-Abelian property up to two loop level whose validity is reconfirmed in [40] at

three loop:

C
fi = c_: " (3.3.26)

This identity implies the soft anomalous dimensions for the production of a colorless
particle in quark annihilation are related to the same appearing in the gluon fusion through
a simple ratio of quadratic Casimirs of SU(N) gauge group. The same property is also
obeyed by the cusp anomalous dimensions up to three loop level:

Al = c, ——Aj, . (3.3.27)

It is not clear whether this nice property holds true beyond this order of perturbation
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theory. Moreover, due to universality of the quantities denoted by X, these are independent
of the operators insertion. These are only dependent on the initial state partons of any
process:

X!

ii

=X (3.3.28)

Moreover, these are independent of the quark flavors. Here, absence of I represents the
independence of the quantities on the nature of colorless particles. f.I_. can be found in
[40, 84], A 1n [40, 69, 85, 86] and BH in [40, 85] up to three loop level. For readers’
convenience we list them all up to three loop level in the Appendix B. Utilising the results
of these known quantities and comparing the above expansions of Gf ;’k(e) with the results
of the logarithm of the form factors, we extract the relevant gf f , and yf 7,1{’5 up to three
loop level using Eq. (3.3.20), (3.3.21) and (3.3.23). The relevant one loop terms for I = H

and i i = gg are found to be

47 3
2 _ 3
8o = Cales  8gr = CA{I - —43}, 8eor = CA{@G - 5}, (3.3.29)

the relevant two loop terms are

67 44 4511 10 40 1724
8gg2 Ca { OH— =G+ —} + CAnf{ e R —}

3 3 81 3 3 81
67
+ CFI’lf{16§3 - ?}
142 1139 141677 259
ggfz = {Eofz —§2§3 - —52 §3 — 395 - 97 } CA”f{_gz
16 604 24103 16 7 92 2027
+ 552 + 7 &+ 136 } + CF”f{ - —éVz - 552 - 53 } (3.3.30)

and the required three loop term is

m oy {128,088 1425, 11372, 272, 5035009
Bge3 = CAT\ T 5oy T geaes T T3 T Ty 93T T3S T ey



100

368 88 1376 6508 568
} CACan{ &+ 4004

+Can{—E§2 —352— 9 &+ 77

L 303, 20384 608 473705} - { 2, 100, 6992,
32" 27 3 324 27927 81 ¢
912301 . ,f 12352 , 5744 , 149 221521 104 ,
4374 } A{ 315 7 T a5 T g 99 e 2730

304

57830 . 3080 39497339
- } + cF2nf{296§3 — 480¢s + T} (3.3.31)

77 8t T3St T

Similarly for I = DY and i i = gg, we have for one loop

3 7
R =cra-n. Q= -2a-Jars)

47 7
g = CF{%§22 +oH+ Z§3 - 8} ; (3.3.32)

94,1

for two loop we require

88 | 88 , 575, 260, 70165
DY,1 _ 2 2 2
842 = Cr {_ 686~ 006 Z} * CACF{?Q T2 3O am }

37 5813
+ Crny Efz - 53 Te2

108 437 09 653
qu;iz = CFZ{?QZ = 28045 - sz + 18445 + 1245 — _6} + CACF{ - —52
N §§ Jan 7297{ B 12479( 514+ 1547797
39T 108 2 54 P > 3888
7 ,, 425 301 129389
+ Can{Egg - 32 §2 + 77 §3 - 1944 } (3333)

and the only required three loop term is

21584 1527
g = CF3{ 105 5% — 5340, + 8404685 — 2064, + 48437 — 213043 + 199275 — T}

15448 , 2432 , 3448 55499 23402

C\Cr{ — - 296457 —
+ Cy F{ 105 O+ 15 O O+ T 2 + 29643 e

3020 230 704 152 7541 19700 368
+Cp? ng

3 {5+ — 3 ——52 ——§2§3— T OH+ 7 - 3 s

73271 152 7271 17 1 11
3 }CAZCF{—65 23271, 1786 083305 36

162 63 > TTop 2 T T 5T Tage 2T T3

3
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L 85883 688 48902713 ) 40{ ) 3466g N 536{
— n — — — —
18 27 3™ 8748 Frr 9°% 81 " g1’
258445 1298 , 392 155008 68660
- - = - -T2
2187 }+CACF”«’"{ 35 T g et gy T g £
3702974 N?>—4 6
W} + an,v( ~ ){ -~ ggzz + 308, + 1443 — 80¢s + 12}. (3.3.34)

ny, is proportional to the charge weighted sum of the quark flavors [42]. The other con-

stants y{ -.» appearing in the Eq. (3.3.23), up to three loop (k = 3) are obtained as

Vgg,l =Po, Vgg,z =2B, 7;,3 =3B,

and ) =0. (3.3.35)

B are the coefficient of QCD-g function, presented in Eq. (2.3.12). These will be utilised

in the next subsection to determine the overall operator renormalisation constants.

3.3.2 Operator Renormalisation Constant

The strong coupling constant renormalisation through Z, may not be sufficient to make
the form factor 7—'1.’7 completely UV finite, one needs to perform additional renormalisation
to remove the residual UV divergences which is reflected through the presence of non-
Zero yl{ - Due to non-zero ygg in Eq. (3.3.35), overall UV renormalisation is required
for the Higgs boson production in gluon fusion. However, for DY this is not required.
This additional renormalisation is called the overall operator renormalisation which is
performed through the constant ZI.I - This is determined by solving the underlying RG

equation:

(o)

d
2 G ur el = ke, 2
Higa InZ! (a5 3o 1, €) = - d iy, (3.3.36)

R k=1

Using the results of yf -, from Eq. (3.3.35) and solving the above RG equation following

the methodology described in the Appendix C, we obtain the following overall renormal-
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isation constant up to three loop level:

©0 2\%2
zl.=1 +Za§5’;(“—§) 210 (3.3.37)
k=1 ,Ll
where,
g~ Ly
g8 - Z ﬁo s
712 — ! 2
g8 - ; ﬁl )
gne L 1
g8 - 62 ﬁoﬁl € ﬁz
and ZPY =1, (3.3.38)

3.3.3 Mass Factorisation Kernel

The UV finite form factor contains additional divergences arising from the soft and collinear
regions of the loop momenta. In this section, we address the issue of collinear diver-
gences and describe a prescription to remove them. The collinear singularities that arise
in the massless limit of partons are removed by absorbing the divergences in the bare
PDF through renormalisation of the PDF. This prescription is called the mass factorisa-
tion (MF) and is performed at the factorisation scale . In the process of performing this,

one needs to introduce mass factorisation kernels I” l’ i

(as, 42, 143, 7j, €) Which essentially ab-
sorb the collinear singularities. More specifically, MF removes the collinear singularities
arising from the collinear configuration associated with the initial state partons. The fi-
nal state collinear singularities are guaranteed to go away once the phase space integrals

are performed after summing over the contributions from virtual and real emission dia-

grams, thanks to Kinoshita-Lee-Nauenberg theorem. The kernels satisfy the following
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RG equation :

2

d
Hr g Tl ©) = ZP 2 7) @ Ty (2 447 €) (3.3.39)
F

where, P! (z s ,u%) are Altarelli-Parisi splitting functions (matrix valued). Expanding P’ (z s ,u%)

and I'/(z;, %, €) in powers of the strong coupling constant we get

(o)

Plizpud) = Y dwhP ") (3.3.40)
k=1
and
12 k3 -
Iz, €) = 5,J5(1—z)+ZAkS (;1 ) rifc,e). (3.3.41)

The RG equation of I'/(z, ,u%, €), Eq. (3.3.39), can be solved in dimensional regularisa-
tion in powers of @,. In the MS scheme, the kernel contains only the poles in e. The
solutions [28] up to the required order I'®)(z, €) in terms of P®(z) are presented in the
Appendix (C.0.20). The relevant ones up to three loop, P (z), P/V(z) and P"?(z) are
computed in the articles [69, 85]. For the SV cross section only the diagonal parts of the
splitting functions P (k)(z) and kernels I (k)(z, €) contribute since the diagonal elements
of Pf]’.(k) (z) contain 6(1 — z) and D, whereas the off-diagonal elements are regular in the
limit z — 1. The most remarkable fact is that these quantities are universal, independent
of the operators insertion. Hence, for the processes under consideration, we make use of

the existing process independent results of kernels and splitting functions:
rif=rp¥=r;,=r; ad Pl=P) =P, =P;. (3.3.42)

The absence of I represents the independence of these quantities on /. In the next subsec-

tion, we discuss the only remaining ingredient, namely, the soft-collinear distribution.
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3.3.4 Soft-Collinear Distribution for Rapidity

The resulting expression from form factor along with the operator renormalisation con-
stant and mass factorisation kernel is not completely finite, it contains some residual di-
vergences which get cancelled against the contribution arising from soft gluon emissions.
Hence, the finiteness of AIYlSY in Eq. (3.3.14) in the limit € — 0 demands that the soft-
collinear distribution, @;i 7(515,q2,,uz,z1,zg, €), has pole structure in € similar to that of
residual divergences. In article [39], it was shown that @;i; must obey KG type integro-
differential equation, which we call KGy equation, to remove that residual divergences:
2 2 2

qzdiqz(p;i ; (&S, qz,,uz,Zl,Zz, 6) = % [f;l ; (&S, Z—g,zl,zZ, 6) + 5;1 7 (&S, Z—%, Z—I;,thz, 6)] .

(3.3.43)

flyﬂ and Ely,i; play similar roles as those of K,I - and Gf - in Eq. (3.3.19), respectively.
Also, QD;J. (@, q*, 1%, 7, €) being independent of 13 satisfy the RG equation

, d

IuR_2®IYJ‘ ;(&37 qz’ﬂza 21,22, 6) = 0' (3'344)
duy

This RG invariance and the demand of cancellation of all the residual divergences arising

from F', Z!- and I'|. against @, - implies the solution of the KGy equation as [39]

00 2 k5
Yl l(aS7 q l‘l Z]a ZZ’ 6) = Z AkS (“2) ®;’,l ;,k(Zl ) 22’ 6) (3'345)

k=1

with

@) (21,22, €) = {(ke)2 X [ =z = )] }q%’y,i 1€

I —z)(1 —2)
A A —
@;,i ?,k(e) = ‘Efi,k (Af - _A{’ G{ - Gy, ?,z(f)) . (3.3.46)
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where, fjll - k(e) are defined in Eq. (3.3.21). In Appendix F, the derivation of this solution
is depicted in great details. The z;-independent constants élyl 7,(€) can be obtained by
comparing the poles as well as non-pole terms in € of QAY;I. - (€) with those arising from

form factor, overall renormalisation constant and splitting functions. We find
—1 P =l
Griin(@ = —fl, + Crinn+ D €Gys (3.3.47)
=1
where

—I
CY,i A 0,

—I —I1
CY,i 2= _Zﬂogxi il

1

_ —I1 —11 —I2
Cyiiz=—2B1Gy;i1 — 2Bo (g)’,i 2+ 2B0Gy; ?,1) . (3.3.48)

In-depth understanding about the pole structures including the single pole [84] of the
form factors, overall operator renormalisation constants and mass factorisation kernels
helps us to predict all the poles of the soft-collinear distribution. However, to determine
the finite part of the SV corrections to the rapidity distribution, we need the coefficients
of € (k > 1), é;l; ;;- Now, we address the question of determining those constants. This

is achieved with the help of an identity which has been found:

! ; do! 1
N-1 ij
[ [ad(ad) " T = [areia, (3.3.49)
0 0 0

In the large N limit i.e. N — oo the above identity relates [39] the QD’YZ. -.(€) with the

corresponding @l{ ;’k(e) appearing in the computation of SV cross section, Eq. (2.3.38):

I'(1 +ke) .

P! . =—— @' (o). 3.3.50
Yi z,k(E) F2(1 + k%) i z,k(e) ( )

Hence, the computation of soft-collinear distribution for the inclusive production cross
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section is sufficient to determine the corresponding one for the rapidity distribution. All
the properties satisfied by 45’ (e) are obeyed by & (e) too, see Sec. 2.3.4 for all the
details. Utilising the relation (3.3.50), the relevant constants gy,,. 7 to determine @Yl. =€)

up to N°LO level are found to be
—DY.1
ngq 1 CF - 42 ’
—DY,2 1
ngq 1 CF 54’/3 s
—DY.3 1
g)’qql CF{S_KZZ}’

—DY,1 44 2428 10 328
Gryan = CACF{ 40,° - —52 - —{3 + } + Can{ &+ (2 - —}

81 81
—DY,2 319 202 469 7288
Gy = CACF{ - méz - —{253 s Sl Tl 4305 — m}
L 976
Fly 52 (2 53 3
—DY,1 17392 1538 4136 379417 536
Grgs = CAZCF{ 315 )+ 15 &+ I CTv S Z5* — 93643
1430 7135981 1372 392 51053
e Sy }+CACan{ &' - 5 bt a4
N 12356{ N 148 716509 ) 1524‘2 316 320 N 11584
— ’/l n — —
81 7 3 % 4374 U145 27 %% 81977 2187

(3.3.51)

6 2t BT T3S

152 275 1672 112 42727
+ Canf{ngz —404 & + }

The corresponding constants for the Higgs boson production in gluon fusion can be ob-
tained by employing the identity

—Hk C,—DYk
Yegi = I Yqqi-
Cr

(3.3.52)

The results up to O(a?) were present in the literature [39] and the term at O(a?) is com-
puted for the first time by us in the article [12]. Using these, the @éﬁ can be obtained
which are presented up to three loops in the Appendix F.0.1. This completes all the ingre-

dients required to compute the SV correction to the rapidity distributions up to N*LO that
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are provided in the next section.

3.4 Results of the SV Rapidity Distributions

In this section, we present our findings of the SV rapidity distributions at N*LO along with
the results of the previous orders. Expanding the SV rapidity distribution , Eq. (3.3.14),

in powers of as(,u%), we obtain
AIYZIS\;/ (Z] 522 q2’ /’l%) = Z a]f(/‘l%')AIY:lS\;ik (Z] 522 qza /'l%") (3'41)

k=1

where,

A = A7 15581 = 2)0(1 = 22) + > A 1, 6(1 = 22)D;

Yii

j=0
S 7o) S e
# D A 15,000 = 2)D; + > A |, 5 DD (3.4.2)
J=0 J®l

The symbol j®! implies j,/ > 0 and j + [ < (2k — 2). Terms proportional to O; and/or D j
in Eq. (3.4.2) were obtained in [39] and the first term is possible to calculate as the results
for the threshold N°LO QCD corrections to the production cross section are now available
for DY [32] and the Higgs boson [33] productions. By setting u% = u% we present the

results. For I = H and i i = gg, we obtain [12]

A3V = §(1 = z1)6(1 - Zz)[CA{lzfz}

Ygg,l
+ DOBO[CA{4} +D6(1 - zz)[CA{4}

+ D61 - zo[cA{zt}],
268 252, 80

e
+ Dpo(1 - zZ)[log (;7) CA{4 ]

F

— q2
+ @05(1 - Zl)[ log (—2) CA{4}]
Hp

q2

40 67
- ?gz} + nfCF{ Y + 16§3} + log (/?) Cf\{ —24 + 5675 — 44(2}

F
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H.SV
AYgg."s

q 7 q
+ log( )nfCA{S + 8{2} + 10g (—z)nfCF{4} + 10g2 (_2) C { - 16§2}]
'uF /‘lF 'uF
8
3

808 44 112
+ D06(1 — Zz)[Ci{ — 7 + 60{3 + ?gz} + nfCA{ﬁ —

268 2 40 2 22
+ lo g(q )CA{ 9 +8§2}+log(q )nfCA{—?}+log2(q—2)Ci{—?}
,Up /lp Hr

2 4 268 40
+ 10g (ZF)nfCA{3} + Z)OZ)O[CZ{T + 8{2} + flfCA{ - 3}

2 2
+10g( )CA{— ﬁ}+10g(q )nfCA{8}+log ( )CA{16}]

1 3 7 3 I
S R R P e B R Bl |
+ DD, CA - — +I’lfCA - +10g CA 48 ¢ | + Do Dy CA 24
3 3 yF
268 40 44

+ Dyo(1 —Zz)lCA{ 9 +8§2}+I’l]¢CA{— E}+10g(ﬂF)CA{_?}

2 8 — 44 8
+log nch{g} +log® (ﬂF) CA{16} + z)lz)o[ci{ - ?} + nch{g}

5 22 4

CA 48 +D11)1 CA 48+ | + D25(1 - 22) CA - ? + I’lfCA g
{ } +Z)21)0[CA{24} + D36(1 —zZ)[ci{g}]

+ Dyd(1 - zl)[CZ{ _ @ + 6043 + —52} + nch{E — §§2}

-

+ log

SIS

+ log

= |»QNt |QN‘: |>Q

SIS

27 3

5 e 40 S 22
+toe[fr) {5 +8€z}+log(w)nf@{ o) (e -5
2 4 268 40
+ log? (Zp)nch{3} + D61 —zl)[c2{T + 852} + nch{ - ?}
2 2
+10g(q )CA{ 44}+10g(q )nfCA{8}+log (q )CA{16}]
I 3 I 3 I
2
+ D,6(1 - zl)[CA{ - g} + nch{4} + log( )CA{24H
3 3 ,uF
+ D30(1 - zo[ci{S}] :

=0(1 —z)é(1 - Zz)[Ci{

215131 1364 54820 1600 , 41914
+ 5 — 3+ ¥
81 9 27 3 27

&

40432, 12032 L[ 98059 1192 2536
880G+ 359 g5 §}+”f A{ 31 "o STy 6
7108 1240 63991 2270
42 - 272{243 77 é/ } + I’lfCFCA{ - 31 + 160{5 + 400{3 - 9 (2
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45 9 27 3
64§ 208§2 2C 8962 224§ 184§ g
—_— — —_— — n —_— J— —_— —
3°27 15 %2 ~F1 781 3 93 g *? 2
2 8284 10408 22528 1276
Cj{ 5 + 22405 + 5 - > & — 224005 — —gz}

4058 11205 . 84884 N 232{2
n
iCi 9 9 27 7 2T T3 %2

616 352 2
”fCFCA{T - —{3 72{2} + log (Z—z) nfC%{ - 4}

F

370 160 q* 104 64
?CA{ - —53 - —52} + log( )nfCF{ — —53}
9 i 3

692 384 2 136
. )03{88 26403 = -0~ =03 } log? (q ) ch{ _ 22 48y,
F 5 ﬂF 3

208 2 44 2 16 16
:“F 3 ,u = 33

2 8 128 176
+ log? (q—z)nchF{g} + log’ (q_) { 0+ —{2}
luF /JF

2 32 297029 27128
+ log? (;1_2 nfci{ - ?gz} + Dod(1 — zZ)[ci{ - + 19245 +

2 729 27

N 180564 B 608“ +§§2 o] 62626 392§ B 6416{; 1_6{
81 7 3 o 2 TREAY 09 3 %7 781 2

1711 304 32 1856 32 160
+ nfCFCA{ - $-8%- 54 } + H?CA{ ~ =50 A0t 752}

176 608 2515 112
+ 2884205 + =6 } fcz{ — 32045 + —§%} n;C { +—0

+ log

+ log

+ log

o N

+ log

-

+ log?

= Q = |Qw = |QN ’;:N|QI\J ;f:N|’Q

&

9 729 27

27
61138 104 2 16844
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:“F

For sake of completeness, we mention the leading order contribution which is

Ayiio =61 =21)5(1 = 29). (3.4.5)
The above results are presented for the choice ug = pr. The dependence of the SV
rapidity distributions on renormalisation scale ug can be easily restored by employing the
RG evolution of a; from up to ug [87] using Eq. (2.4.6). In the next Sec. 3.5, we discuss
the numerical impact of the N*LO SV correction to the Higgs rapidity distribution at the

LHC.
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3.5 Numerical Impact of SV Rapidity Distributions

In this section, we confine ourselves to the numerical impact of the SV rapidity distri-

butions of the Higgs boson production through gluon fusion. We present the relative

HSV

contributions in percentage of the pure N3LO terms in Eq. (3.4.2) with respect to 4 Yze3?

for rapidity ¥ = 0 in Table 3.1 and 3.2. The notation D,D ; corresponds to the sum of

56 6Dy 6D, 6D, 6D; 6D, 6Ds  DyDy DD
% 733 160 9.1 314 10 99 231 -137 -107

Table 3.1. Relative contributions of pure N3LO terms.

DDy  DD; DDy DD, DD, DDy DD,
%  -03 3.1 73 02 3.8 8.6 42

Table 3.2. Relative contributions of pure N3LO terms.

the contributions coming from Z),-Ej and D jﬁi. We have used /s = 14 TeV for the
LHC, Gr = 4541.68 pb, the Z boson mass m; = 91.1876 GeV, top quark mass m, =
173.4 GeV and the Higgs boson mass my = 125.5 GeV throughout. For the Higgs bo-
son production, we use the effective theory where top quark is integrated out in the large
m, limit. The strong coupling constant a(u3) is evolved using the 4-loop RG equations
with @"°(m;) = 0.117 and for parton density sets we use MSTW 2008NNLO [88], as
N3LO evolution kernels are not yet available. In [107], Forte et al. pointed out that the
Higgs boson cross sections will remain unaffected with this shortcoming. However, for
the DY process, it is not clear whether the same will be true. We find that the contribution
from the §(1 — z;)0(1 — z,) part is the largest. Impact of the threshold NNLO and N*LO
contributions to the Higgs boson rapidity distribution at the LHC is presented in Fig. 3.4.
The dependence on the renormalization and factorization scales can by studied by vary-

ing them in the range my /2 < ug, ur < 2my. We find that the inclusion of the threshold
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Figure 3.4. Rapidity distribution of Higgs boson

correction at N°LO further reduces their dependence. For the inclusive Higgs boson pro-
duction, we find that about 50% of exact NNLO contribution comes from threshold NLO
and NNLO terms. It increases to 80% if we use exact NLO and threshold NNLO terms.
Hence, it is expected that the rapidity distribution of the Higgs boson will receive a sig-
nificant contribution from the threshold region compared to inclusive rate due to the soft
emission over the entire range of Y. Our numerical study with threshold enhanced NNLO
rapidity distribution confirms our expectation. Comparing our threshold NNLO results
against exact NNLO distribution using the FEHiP [38] code , we find that about 90% of
exact NNLO distribution comes from the threshold region as can be seen from Table 3.3

and 3.4, in accordance with [108], where it was shown that for low T (m%l /s =~ 107%) values
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the threshold terms are dominant, thanks to the inherent property of the matrix element,

which receives the largest radiative corrections from the phase-space points corresponding

to Born kinematics. Here we have used the exact results up to the NLO level. Because

Y 0.0 0.4 0.8 1.2 1.6
NNLO 11.21 1096 10.70 9.13 7.80
NNLOgy 9.81 9.61 899 8.00 6.71
NNLOsy(A) 10.67 1046 9.84 8.82 748
N3LOsy 11.62 1136 11.07 9.44 8.04
N3LOgy(A) 11.88 11.62 11.33 9.70  8.30
K3 231 229 236 221 217

Table 3.3. Contributions of exact NNLO, NNLOgy, N3LOgy, and K3.

Y 2.0 2.4 2.8 3.2 3.6
NNLO 6.10 423 266 140 0.54
NNLOgy 521 3,66 225 114 042
NNLOsy(A) 590 424 269 142 0.56
N3LOsy 6.27 433 270 140 0.53
N°LOsy(A)  6.51 454 288 153 0.60
K3 207 189 170 1.63 1.51

Table 3.4. Contributions of exact NNLO, NNLOgy, N3LOgy, and K3.

of an inherent ambiguity in the definition of the partonic cross section at threshold one

can multiply a factor zg(z), where z =

7/x1x, and lim__,; g(z) = 1, with the partonic

flux and divide the same in the partonic cross section for an inclusive rate. In [64, 109]

this was exploited to take into account the subleading collinear logs also, thereby making

the threshold approximation a better one. Recently, Anastasiou et al. used this in [33]

to modify the partonic flux keeping the partonic cross section unaltered to improve the

threshold effects. Following [33,110], we introduce G(z;, z2) such that lim,, .,_,; G = 1 in

Eq. (3.5.1):

1
w! (xl’xz’q .UR Z f‘iﬂ

i,j= qqg

1

dz,
22

_7_{lj

g

2aluF) G(Zl»ZZ)
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A;,J (Zla 225 q2’ ﬂ]zea #%7)
G(z1,22)

X lim
21,221

(3.5.1)

We also find that with the choice G(z1,22) = zfz%, the threshold NNLO results are re-
markably close to the exact ones for the entire range of Y [see Table 3.3 and 3.4, denoted
by (A)]. This clearly demonstrates the dominance of threshold contributions to rapidity
distribution of the Higgs boson production at the NNLO level. Assuming that the trend
will not change drastically beyond NNLO, we present numerical values for N3LO distri-
butions for G(z1,2,) = 1,z3z5, respectively, as N°LOgy and N°LOsy(A) in Table 3.3 and
3.3. The threshold N°LO terms give 6%(Y = 0) to 12%(Y = 3.6) additional correction
over the NNLO contribution to the inclusive DY production. Finally, in Table 3.3 and
3.4, we have presented K3 = N3LOgy/LO as a function of Y in order to demonstrate the

sensitivity of higher order effects to the rapidity Y.

3.6 Summary

To summarize, we present the full threshold enhanced N*LO QCD corrections to rapid-
ity distributions of the dilepton pair in the DY process and of the Higgs boson in gluon
fusion at the LHC. These are the most accurate results for these observables available
in the literature. We show that the infrared structure of QCD amplitudes, in particular,
their factorization properties, along with Sudakov resummation of soft gluons and renor-
malization group invariance provide an elegant framework to compute these threshold
corrections systematically for rapidity distributions order by order in QCD perturbation
theory. The recent N°LO results for inclusive DY and Higgs boson production cross sec-
tions at the threshold provide crucial ingredients to obtain 6(1 — z;)d0(1 — z,) contribution
of their rapidity distributions for the first time. We find that this contribution numerically
dominates over the rest of the terms in A’ngg at the LHC. Inclusion of N*LO contributions

reduces the scale dependence further. We also demonstrate the dominance of the thresh-
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old contribution to rapidity distributions by comparing it against the exact NNLO for two
different choices of G(z;,z,). Finally, we find that threshold N3LO rapidity distribution

with G(z1,22) = 1, z%z% shows a moderate effect over NNLO distribution.

3.7 Outlook-Beyond N°LO

The results presented above is the most accurate one existing in the literature. However,
in coming future, we may need to go beyond this threshold N°LO in hope of making
more precise theoretical predictions. The immediate step would be to compute the com-
plete N*LO QCD corrections to the differential rapidity distributions. No doubt, this is
an extremely challenging goal! Presently, though we are incapable of computing this
result, we can obtain the general form of the threshold N*LO QCD corrections to the
rapidity distributions! However, due to unavailability of the quantities, namely, form fac-
tors, anomalous dimensions, soft-collinear distributions at 4-loop level, we are unable to
estimate the contributions arising from this. Nevertheless, the general form of this contri-
bution is presented in the Appendix G which can be utilised to make the predictions once
the missing ingredients become available in future. This result is the new one which is

presented in this thesis for the first time, this was not presented in the article [12].
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4.1 Prologue

The scattering amplitudes play the most crucial role in any quantum field theory. These
are the gateway to unveil the elegant structures associated with the quantum world. At
the phenomenological level, they are the main ingredients in predicting the observables
at high energy colliders for the processes within and beyond the SM. Hence, the efficient
evaluation of the scattering amplitudes is of prime importance at theoretical as well as ex-
perimental level. However, in perturbative QFT, the theoretical predictions based on the

leading order calculation happens to be unreliable. One must go beyond the leading order

127
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to make the predictions more accurate and reliable. While considering the effects arising
from the higher orders, the contributions coming from the QCD radiations dominate sub-
stantially, in particular, at high energy colliders like Tevatron or LHC. In this thesis, we
are concentrating only on the corrections arising from the QCD sector. In the process of
computing these higher order QCD corrections, one has to carry out three different types
of contributions, namely, virtual, real and real-virtual processes. Upon clubbing together
all the three contributions appropriately, finite result for any observable is obtained. As
very much expected, the complexity involved in the calculations grows very rapidly as
we go towards higher and higher orders in perturbation theory, where more and more
different pieces interfere with each other that eventually contribute to the final physical

observables.

In this Chapter, we will confine our discussion only to the higher order QCD virtual or

loop corrections. There exists at least two different formalisms to compute these.

1. Diagrammatic approach: one directly evaluates all the relevant Feynman diagrams

appearing at the perturbative order under consideration.

2. Unitary-based approach: the unitary properties of the scattering amplitudes are

employed extensively to avoid the direct evaluation of all the Feynman diagrams.

Despite the spectacular beauty of the unitary based approach, its applicability to the com-
putation of the amplitudes remains confined mostly to one loop or only few multiloop
problems. Its generalisation to any multiloop computation is still unavailable in the liter-
ature. In these more complicated scenarios, the first methodology of directly evaluating

the Feynman diagrams is more effective and is therefore employed more often.



129

4.2 Feynman Diagrams and Simplifications

For any generic scattering process in QFT, we can expand any observable in powers of all
the coupling constants present in the underlying Lagrangian. Feynman diagrams are the
diagrammatic representations of this expansion. In this thesis, we confine our discussion
into QCD. Let us consider a scattering process involving E external particles with mo-
menta py, pa, -+ , pe. Without loss of generality, we consider the cross-section which can

be expanded in powers of strong coupling constant:

[Se]

TE (PP pE) = ) a0y (prupapi) (42.1)
=0

For the sake of simplicity, we suppress all the dependence on quantum numbers of the
external particles. The index [/ denotes the order of perturbative expansion. The cross

section for / = 0 is called the leading order (LO), [ = 1 is next-to-leading order (NLO)

()

and so on. The cross section at at each perturbative order, o/,

is related to the scattering

matrix elements through

o =K [IM)Pday.

oy =K f 2Re (M IMP))dDp + K f ML) d Py

o? =K f 2Re ((MPIMEY)ddg + K f 2Re ((MD M )) ddg.,
+K f [IMEL) P dDp.

and so on. 4.2.2)

In the above set of equations, | M%)) is the scattering amplitude at /™ order in perturbation
theory involving £ number of external particles. The quantity d P is the phase space ele-
ment. "Re" denotes the real part of the amplitude and K is an overall constant containing

various factors. The amplitudes with £ number of external particles and / > 1 represent
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the contributions arising from the virtual Feynman diagrams, whereas amplitudes with
more than E number of external particles come from the real emission diagrams. In this
chapter, we address the issue of evaluating the virtual diagrams. The scattering matrix

element can also be expanded perturbatively in powers of a; as

(o)

Mgy = )" dIMS). (4.2.3)

=0

Each term in the right hand side can be represented through a set of Feynman diagrams of
same perturbative order. In this chapter, we will explain the prescription to evaluate the

contribution to the matrix element arising from the virtual diagrams.

The evaluation of the scattering matrix element at any particular order begins with the gen-
eration of associated Feynman diagrams. We make use of a package, named, QGRAF [111]
to accomplish this job. QGRAF does not provide the graphical representation of the Feyn-
man diagrams, rather it generates those symbolically. We use our in-house codes written
in FORM [112] to convert the raw output into a format for further computation. Employ-
ing the Feynman rules derived from the underlying Lagrangian, which are the languages
establishing the connection between the diagrams and the corresponding formal mathe-
matical expressions, we obtain the amplitude. The raw amplitude contains series of Dirac
gamma matrices, QCD color factors, Dirac and Lorentz indices. We simplify those us-
ing our in-house codes. We perform the color simplification in SU(N) gauge theory and
follow dimensional regularisation where the space-time dimension is considered to be
d = 4 + €. The amplitude, beyond leading order, consists of a set of tensorial Feynman
integrals. Instead of handling the tensorial integrals, we multiply the amplitude with ap-
propriate projectors to convert those to scalar integrals. Hence, the problem essentially
boils down to solving those scalar integrals. Often, at any typical order in perturbation
theory, this involves hundreds or thousands of different scalar loop integrals. Of course,
start evaluating all of these integrals is not a practical way of dealing with the problem.

Remarkably, it has been found that the appeared integrals are not independent of each



131

other, they can be related through some set of identities! This drastically reduces the in-
dependent integrals which ultimately need to be computed. In the next section, we will

elaborate this procedure.

4.3 Reduction to Master Integrals

The dimensionally regularised Feynman loop integrals do satisfy a large number of re-
lations, which allow one to express most of those integrals in terms of a much smaller
subset of independent integrals (where “independent” is to be understood in the sense of
the identities introduced below), which are now commonly referred to as the Master In-
tegrals (Mls). For a detailed review on this, see [48, 113]. These identities are known as

integration-by-parts and Lorentz invariance identities.

4.3.1 Integration-by-Parts Identities (IBP)

The integration-by-parts identities [46,47] are the most important class of identities which
establish the relations among the dimensionally regularised scalar Feynman integrals.
These can be seen as a generalisation of Gauss’ divergence theorem in d-dimensions.
They are based on the fact that, given a Feynman integral which is a function of space-
time dimensions d, there always exists a value of d in the complex plane where the integral
is well defined and consequently convergent. The necessary condition for the convergence
of an integral is the integrand be zero at the boundaries. This condition can be rephrased

as, the integral of the total derivative with respect to any loop momenta vanishes, that is

ddk 0 1 ~
fﬂ (27T)d akﬂ Dbl . Z)Z,B =0. 4.3.1)

In the expression, k; are the loop momenta, Vs can be loop or external momenta, Vi =

(K

1

k'spl,--, Pl D are the propagators that depend on the masses, loop and
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Figure 4.1. One loop box

external momenta. To begin with, a diagram contains a set of propagators as well as
scalar products involving the loop and external momenta. However, we can express all
the scalar products involving loop momenta in terms of propagators. This is possible
since any Lorentz scalar can be written either in terms of scalar products or propagators.
Both of the representations are equivalent. For our convenience, we choose to work in
the propagator representation. Performing the differentiation on the left hand side of the
above Eq. (4.3.1), one obtains set of IBP identities. Let us demonstrate the role of IBP

identities through an one-loop example.

o Example: We consider an one loop box diagram, depicted through Fig. 4.1 where,
all the external legs are taken to be massless, for simplicity, and the momentum
q = p1 + p> + p3. The corresponding dimensionally regularised Feynman integral

can be cast into the following form

d'k 1
d b b b b
Q) Db b2 Db Dl

= 1[by, by, b3, b4] (4.3.2)

with

Dy =k,
D, = (ki — p1),
D3 =(ky — p1 — p2),

Dy =(ky = p1 — p2—p3). (4.3.3)
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We can obtain 4-set of IBP identities for each choice of the set {b;, b,, b3, bs}. For a

choice of v§ = p// in Eq. (4.3.1), we obtain the corresponding IBP identities as

ddk DQ D] Z)l Z)Z s

0= [b -1+—=+b|(l-—|-b3| - — =

mil™ ( Dl) 2( Dz) ’ (@3 Dy D

D D, S u ] 1
—by|l—-= - . 434
! (D4 Dy Dy Z)4) Z)ll" 1)1272 Z)}f Z)i“ ( )
It can be symbolically expressed as

0=b1(-1+127)+by(1-2"1")=b3(3"1" =327 — s3%)

—by(4717 — 4727 — 54" —ud") (4.3.5)

where, we have made use of the convention as 1¥271[by, b,, b3, by] = I[b; + 1, b, —
1, b3, by] and the associated Mandelstam variables are defined as s = (p; + p»)* =
2p1-p2, t = (p2 + p3)* = 2p2.p3, u = (p1 + p3)* = 2pi.ps. From the Eq. (4.3.5),
it is clear that the IBP identities provide recursion relations among the integrals
of a topology and/or its sub-topologies. Similarly, we can get the IBP identities
corresponding to other external as well as internal momenta. Upon employing
all of these identities, it can be shown that there exists only three Mls, which are
111,0,1,0], I[1,0,0, 1] and I[1, 1, 1, 1]. Hence, at the end we need to evaluate only
three independent integrals corresponding to the problem under consideration. For
higher loop and more number of external legs, the IBP identities often become too
clumsy to handle manually. Hence, these identities are generated systematically
with the help of some computer algorithms in some packages, such as AIR [114],

FIRE [115], REDUZE [116, 117], LiteRed [118, 119].
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4.3.2 Lorentz Invariant Identities (LI)

The Lorentz invariance of the scalar Feynman integrals can be used in order to obtain more

set of identities among the integrals, which are known as Lorentz invariant identities [48]:

y 0
pﬁ-"pk] Z pi,wﬁl(pi) =0. (4.3.6)

It has been recently found [120] that the LI identities are not independent from IBP ones,
since these can be reproduced generating and solving larger systems of IBPs. However,
use of LI identities along with the IBP helps to speed up the solution. Hence, in almost
all of the computer codes for performing automated reduction to MIs, LI identities are

therefore extensively used.

Employing the IBP and LI identities, we obtain a set of MIs which ultimately need to be
evaluated. Upon evaluation of the Mls, we can obtain the final unrenormalised result of
the virtual corrections. Often these contain UV as well as soft and collinear divergences.
The UV divergences are removed through UV renormalisation. The UV renormalised
result of the virtual corrections exhibit a universal infrared pole structures which serve
a crucial check on the correctness of the computation. In the next chapter, we employ
this methodology to compute the three loop quark and gluon form factors in QCD for the

production of a pseudo-scalar.

4.4 Summary

We have discussed the techniques largely used for the computations of the multiloop
amplitudes which is mostly based on the IBP and LI identities. These are employed in the
computer codes to automatise the reduction process. Among some packages, we utilise
LiteRed [118, 119] for our computations. In these articles [13, 121-123], we have applied

this methodology successfully to compute the 2- and 3-loop QCD corrections. In the next
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chapter, we will present the computation of 3-loop QCD form factors for the pseudo-
scalar production where we have essentially made use of the methodology discussed in

this chapter.






Pseudo-Scalar Form Factors at

Three Loops in QCD

The materials presented in this chapter are the result of an original research done
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5.1 Prologue

Form factors are the matrix elements of local composite operators between physical states.
In the calculation of scattering cross sections, they provide the purely virtual corrections.
For example, in the context of hard scattering processes such as Drell-Yan [97, 124] and
the Higgs boson production in gluon fusion [44,54-57,59-61,84,125-128], the form fac-
tors corresponding to the vector current operator %fﬂw and the gluonic operator Gy, G+
contribute, respectively. Here ¢ is the fermionic field operator and Gy, is the field tensor
of the non-Abelian gauge field A corresponding to the gauge group SU(N). In QCD the
form factors can be computed order by order in the strong coupling constant using pertur-
bation theory. Beyond leading order, the UV renormalisation of the form factors involves
the renormalisation of the composite operator itself, besides the standard procedure for

coupling constant and external fields.

The resulting UV finite form factors still contain divergences of infrared origin, namely,
soft and collinear divergences due to the presence of massless gluons and quarks/ anti-
quarks in the theory. The inclusive hard scattering cross sections require, in addition to the
form factor, the real-emission partonic subprocesses as well as suitable mass factorisation
kernels for incoming partons. The soft divergences in the form factor resulting from the
gluons cancel against those present in the real emission processes and the mass factorisa-
tion kernels remove the remaining collinear divergences rendering the hadronic inclusive
cross section IR finite. While these IR divergences cancel among various parts in the
perturbative computations, they can give rise to logarithms involving physical scales and
kinematic scaling variables of the processes under study. In kinematical regions where
these logarithms become large, they may affect the convergence and reliability of the per-
turbation series expansion in powers of the coupling constant. The solution for this prob-
lem goes back to the pioneering work by Sudakov [79] on the asymptotic behaviour of

the form factor in Quantum Electrodynamics: all leading logarithms can be summed up to
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all orders in perturbation theory. Later on, this resummation was extended to non-leading
logarithms [81] and systematised for non-Abelian gauge theories [82]. Ever since, form
factors have been central to understand the underlying structure of amplitudes in gauge

theories.

The infrared origin of universal logarithmic corrections to form factors [83] and scattering
amplitudes results in a close interplay between resummation and infrared pole structure.
Working in dimensional regularisation in d = 4 + € dimensions, these poles appear as
inverse powers in the Laurent expansion in €. In a seminal paper, Catani [129] proposed a
universal formula for the IR pole structure of massless two-loop QCD amplitudes of arbi-
trary multiplicity (valid through to double pole terms). This formula was later on justified
systematically from infrared factorization [130], thereby also revealing the structure of the
single poles in terms of the anomalous dimensions for the soft radiation. In [84], it was
shown that the single pole term in quark and gluon form factors up to two loop level can
be shown to decompose into UV (y;, I = ¢, g) and universal collinear (B;), color singlet
soft (f7) anomalous dimensions, later on observed to hold even at three loop level in [40].
An all loop conjecture for the pole structure of the on-shell multi-loop multi-leg ampli-
tudes in SU(N) gauge theory with n light flavors in terms of cusp (A;), collinear (B;)
and soft anomalous dimensions (/';;, f; - colour non-singlet as well as singlet) was pro-
posed by Becher and Neubert [131] and Gardi and Magnea [132], generalising the earlier
results [129, 130]. The validity of this conjecture beyond three loops depends on the pres-
ence/absence of non-trivial colour correlations and crossing ratios involving kinematical
invariants [133] and there exists no all-order proof at present. The three-loop expressions
for cusp, collinear and colour singlet soft anomalous dimensions were extracted [73, 134]
from the three loop flavour singlet [85] and non-singlet [69] splitting functions, thereby

also predicting [40] the full pole structure of the three-loop form factors.

The three-loop quark and gluon form factors through to finite terms were computed in [31,

41,42, 135] and subsequently extended to higher powers in the € expansion [43]. These
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results were enabled by modern techniques for multi-loop calculations in quantum field
theory, in particular integral reduction methods. These are based on IBP [46,47] and
LI [48] identities which reduce the set of thousands of multi-loop integrals to the one with
few integrals, so called Mls in dimensional regularisation. To solve these large systems
of IBP and LI identities, the Laporta algorithm [136], which is based on lexicographic
ordering of the integrals, is the main tool of choice. It has been implemented in several
computer algebra codes [114—119]. The MIs relevant to the form factors are single-scale
three-loop vertex functions, for which analytical expressions were derived in Refs. [42,

68,105, 137-139].

Recently, some of us have applied these state-of-the-art methods to accomplish the task
of computing spin-2 quark and gluon form factors up to three loops [123] level in SU(N)
gauge theory with ny light flavours. These form factors are ingredients to the precise
description of production cross sections for graviton production, that are predicted in
extensions of the SM. In addition, the spin-2 form factors relate to operators with higher
tensorial structure and thus provide the opportunity to test the versatility and robustness
of calculational techniques for the vertex functions at three loop level. The results [123]
also confirm the universality of the UV and IR structure of the gauge theory amplitudes

in dimensional regularisation.

In the present work, we derive the three-loop corrections to the quark and gluon form
factors for pseudo-scalar operators. These operators appear frequently in effective field
theory descriptions of extensions of the SM. Most notably, a pseudo-scalar state coupling
to massive fermions is an inherent prediction of any two-Higgs doublet model [140-147].
In the limit of infinite fermion mass, this gives rise to the operator insertions considered
here. The recent discovery of a Standard-Model-like Higgs boson at the LHC [1, 15] has
not only revived the interest in such Higgs bosons but also prompted the study of the prop-
erties of the discovered boson to identify either with lightest scalar or pseudo-scalar Higgs

bosons of extended models. Such a study requires precise predictions for their production
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cross sections. In the context of a CP-even scalar Higgs boson, results for the inclusive
production cross section in the gluon fusion are available up to N*LO QCD [44, 59-61],
based on an effective scalar coupling that results from integration of massive quark loops
that mediate the coupling of the Higgs boson to gluons [148—150]. On the other hand for
the CP-odd pseudo-scalar, only NNLO QCD results [61, 151-154] in the effective the-
ory [45] are known. The exact quark mass dependence for scalar and pseudo-scalar pro-
duction is known to NLO QCD [56, 155], and is usually included through a re-weighting
of the effective theory results. Soft gluon resummation of the gluon fusion cross section
has been performed to N3LL for the scalar case [28, 29, 34, 64,72, 74, 156—158] and to
NNLL for the pseudo-scalar case [159]. A generic threshold resummation formula valid
to N°LL accuracy for colour-neutral final states was derived in [34], requiring only the
virtual three-loop amplitudes as process-dependent input. The numerical impact of soft
gluon resummation in scalar and pseudo-scalar Higgs boson production and its combina-
tion with mass corrections is reviewed comprehensively in [160]. The three-loop correc-
tions to the pseudo-scalar form factors computed in this thesis are an important ingredient
to the N*°LO and N3LL gluon fusion cross sections [14] for pseudo-scalar Higgs boson
production, thereby enabling predictions at the same level of precision that is attained in

the scalar case.

The framework of the calculation is outlined in Section 5.2, where we describe the ef-
fective theory [45]. Due to the pseudo-scalar coupling, one is left with two effective
operators with same quantum number and mass dimensions, which mix under renormali-
sation. Since these operators contain the Levi-Civita tensor as well as ys, the computation
of the matrix elements requires additional care in 4 + € dimensions where neither Levi-
Civita tensor nor ys can be defined unambiguously. We use the prescription by 't Hooft
and Veltman [8,49] to define ys. We describe the calculation in Section 5.3, putting par-
ticular emphasis on the UV renormalisation. Exploiting the universal IR pole structure of
the form factors, we determine the UV renormalisation constants and mixing of the effec-

tive operators up to three loop level. We also show that the finite renormalisation constant,
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known up to three loops [49], required to preserve one loop nature of the chiral anomaly, is
consistent with anomalous dimensions of the overall renormalisation constants. As a first
application of our form factors, we compute the hard matching functions for N3LL resum-
mation in soft-collinear effective theory (SCET) in Section 5.5. Section 5.6 summarises
our results and contains an outlook on future applications to precision phenomenology of

pseudo-scalar Higgs production.

5.2 Framework of the Calculation

5.2.1 The Effective Lagrangian

A pseudo-scalar Higgs boson couples to gluons only indirectly through a virtual heavy
quark loop. This loop can be integrated out in the limit of infinite quark mass. The
resulting effective Lagrangian [45] encapsulates the interaction between a pseudo-scalar

@* and QCD particles and reads:
. 1 1
Liy = )| - Ca06(x) - 5C,O,(x)] (5.2.1)
where the operators are defined as
OG(X) = Glawéa,yv = EyvpchZyGZo- s OJ(X) = a,u (lp?’#)/slﬁ) . (522)

The Wilson coeflicients Cg and C, are obtained by integrating out the heavy quark loop,
and Cg does not receive any QCD corrections beyond one loop due to the Adler-Bardeen
theorem [161], while C; starts only at second order in the strong coupling constant. Ex-

panded in a; = g2/(167%) = a,/(4n), they read

1
Co = —a,2iGcotB
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3 2
C,=- [aSCF(— ~3In ”_';) +a2CP +

Co. 5.2.3
> - G (5.2.3)

In the above expressions, G, and ¢ represent gluonic field strength tensor and light quark
fields, respectively and G is the Fermi constant and cotf is the mixing angle in a generic
Two-Higgs-Doublet model. a; = a; (/112{) is the strong coupling constant renormalised at

the scale ui which is related to the unrenormalised one, &, = §2/(16x%) through

2\ €/2
assez(—z) Z,.as (5.2.4)

with S = exp [(yr — In4n)e/2] and u is the scale introduced to keep the strong coupling
constant dimensionless in d = 4 + € space-time dimensions. The renormalisation constant

Z,, [77] 1s given by

2

2 8 14
Zy. =1 +a,|=po| +a’ =By + 75881 + B> (5.2.5)
€ € 3e 3¢

4 2 1 3
_zﬁO + _:81 + a
€ €

up to O(a?). B are the coeflicients of the QCD g functions which are given by [77] and
presented in Eq. (2.3.12).

5.2.2 Treatment of y5 in Dimensional Regularization

Higher order calculations of chiral quantities in dimensional regularization face the prob-
lem of defining a generalization of the inherently four-dimensional objects ys and &“*”
to values of d # 4. In this thesis, we have followed the most practical and self-consistent
definition of ys for multiloop calculations in dimensional regularization which was intro-

duced by ’t Hooft and Veltman through [8]

1

Ys = imavlvmvﬂv')f"zy”y” . (5.2.6)
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Here, &7 is the Levi-Civita tensor which is contracted as

2 %) Ay cOo
6#1 6#1 6#1 5#1
A ok

5#2 5V2 (5 2 5 2
govber o | T T 52.7
8;111/1/110'1 - ( bl )

42 V2 Ao o)
511 511 511 511

1) %) A2 03
O0v, Og, Oy Og

and all the Lorentz indices are considered to be d-dimensional [49]. In this scheme, a
finite renormalisation of the axial vector current is required in order to fulfill chiral Ward

identities and the Adler-Bardeen theorem. We discuss this in detail in Section 5.3.2 below.

5.3 Pseudo-scalar Quark and Gluon Form Factors

The quark and gluon form factors describe the QCD loop corrections to the transition
matrix element from a color-neutral operator O to an on-shell quark-antiquark pair or to
two gluons. For the pseudo-scalar interaction, we need to consider the two operators Og
and Oy, defined in Eq. (5.2.2), thus yielding in total four form factors. We define the

unrenormalised gluon form factors at O(a}) as

~G,(0) AYG.(n) ~GL0)) i (n+1)
~G,(n) — <Mg |M8 ) AJ(n) _ (Mg |Mg )
7Tg = G0)) A 4GLO) 7:5’ = ~GL(0)) (D) (5.3.1)
(MM (MM
and similarly the unrenormalised quark form factors through
A (0)) NYGa(n+1) ~(0)) i)
F~G,(n) — <Mq |Mq > FJ(n) — <Mq |Mq > (5 3 2)
g = ~T0)) AYG(Dy q T 0 VIO e
<Mq()|Mq()> <Mq()|Mq()>
where, n = 0, 1,2, 3,.... In the above expressions I/\A/lg’(")> is the O(a?) contribution to the

unrenormalised matrix element for the transition from the bare operator [O,]z (1 = G, J)
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to a quark-antiquark pair (8 = ¢) or to two gluons (8 = g). The expansion of these

quantities in powers of a, is performed through

) 2\"5 0 2\"5
|Mg>EZa;’sz(%) M) and ﬁgzZ[az(%) s:s&‘;*”]. (5.3.3)

n=0 n=0

where, Q> = -2 p;.p, and pis( pl.2 = () are the momenta of the external quarks and gluons.

Note that I/\A/(g’(")) and I/\A/lg’(”)> start from n = 1 i.e. from one loop level.

5.3.1 Calculation of the Unrenormalised Form Factors

The calculation of the unrenormalised pseudo-scalar form factors up to three loops fol-
lows closely the steps used in the derivation of the three-loop scalar and vector form
factors [31,42]. The Feynman diagrams for all transition matrix elements (Eq. (5.3.1),
Eq. (5.3.2)) are generated using QGRAF [111]. The numbers of diagrams contributing
to three loop amplitudes are 1586 for |M§’<3)), 447 for IAA/(g’G)), 400 for |M§’<3)> and 244
for I/\A/(;’G)) where all the external particles are considered to be on-shell. The raw output
of QGRAF is converted to a format suitable for further manipulation. A set of in-house
routines written in the symbolic manipulating program FORM [112] is utilized to perform
the simplification of the matrix elements involving Lorentz and color indices. Contribu-
tions arising from ghost loops are taken into account as well since we use Feynman gauge
for internal gluons. For the external on-shell gluons, we ensure the summing over only
transverse polarization states by employing an axial polarization sum:
Pid; + 4,y

D& (i 8" (piy 5) = = + AL (5.34)
T Pi-gi

where p; is the i"-gluon momentum, g; is the corresponding reference momentum which

is an arbitrary light like 4-vector and s stands for spin (polarization) of gluons. We choose



146

q1 = p» and g, = p; for our calculation. Finally, traces over the Dirac matrices are carried

out in d dimensions.

The expressions involve thousands of three-loop scalar integrals. However, they are ex-
pressible in terms of a much smaller set of scalar integrals, called master integrals (MIs),
by use of IBP [46,47] and LI [48] identities. These identities follow from the Poincare
invariance of the integrands, they result in a large linear system of equations for the inte-
grals relevant to given external kinematics at a fixed loop-order. The LI identities are not
linearly independent from the IBP identities [120], their inclusion does however help to
accelerate the solution of the system of equations. By employing lexicographic ordering
of these integrals (Laporta algorithm, [136]), a reduction to MIs is accomplished. Several
implementations of the Laporta algorithm exist in the literature: AIR [114], FIRE [115],
Reduze2 [116, 117] and LiteRed [118, 119]. In the context of the present calculation, we

used LiteRed [118, 119] to perform the reductions of all the integrals to MlIs.

Each three-loop Feynman integral is expressed in terms of a list of propagators involving
loop momenta that can be attributed to one of the following three sets (auxiliary topolo-

gies, [42])

Al : {Z)I’DZ’ Z)3’1)12’ D13’1)2331)1;1’DI;IZ’Z)Z;I’DQ;]Z,D3;1’D3;12}
Ay Dy, Dy, D3, D12, D3, Doz, Diza, Dty Doty Do, Dais Do}

A3z Dy, Dy, D3, D12, D3, D123, Diats Dty Doty Diiiny Dy, Din} . (5.3.5)

In the above sets

D; = kl-z,@ij = (ki — kj)z’Z)ijl = (ki —k; - ki),

D;j=ki—p))* Dij = ki — pj— p))*s Dijy = (ki — k; — p1)*
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To accomplish this, we have used the package Reduze2 [116,117]. In each setin Eq. (5.3.5),
P's are linearly independent and form a complete basis in a sense that any Lorentz-
invariant scalar product involving loop momenta and external momenta can be expressed

uniquely in terms of O'’s from that set.

As a result, we can express the unrenormalised form factors in terms of 22 topologically
different master integrals (MlIs) which can be broadly classified into three different types:
genuine three-loop integrals with vertex functions (4,;), three-loop propagator integrals
(B:;) and integrals which are product of one- and two-loop integrals (C,;;). Defining a
generic three loop master integral through

_ dk, dk, do%k; 1

wineerte = ) @yt ) @yt ) @
7

A

i=1,2,3 (5.3.6)

where D; is the j™ element of the basis set A;. We identify the resulting master integrals

appeared in our computation to those given in [42] and they are listed in the figures below.

000 -@ -

Be,1 = A1,111000010101 Bs = A1 11110000101 Bg 1 = Asp11111010101
Bs1 = A1,001101010000 Bs 1 = A1,011010010100 Bs> = A1,001011010100

O O <

Ce,1 = A1,011100100101 Cg,1 = A2.111100011101 As.1 = A1001101100001
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< <€ <

As2 = A1,001011011000 Ae,1 = A1,010101100110 Ag2 = A1,001111011000
A63 = A1,001110100101 A7,1 = A2011110011100 A72 = A2011011001101
A73 = A1011011110100 A7.4 = A2011110001101
%i *@i
A75 = A2,011011010101 Ag,1 = Az001111011101
Ag1 = Arp11111110110 Agp = Az11111011101 Ag 4 = A2111011111100

These integrals were computed analytically as Laurent series in € in [68, 105, 137-139]
and are collected in the appendix of [42]. Inserting those, we obtain the final expressions

for the unrenormalised (bare) form factors that are listed in Appendix H.
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5.3.2 UV Renormalisation

To obtain ultraviolet-finite expressions for the form factors, a renormalisation of the cou-
pling constant and of the operators is required. The UV renormalisation of the operators
[Oclp and [Oy]p involves some non-trivial prescriptions. These are in part related to the

formalism used for the ys matrix, section 5.2.2 above.

This formalism fails to preserve the anti-commutativity of ys with y* in d dimensions. In
addition, the standard properties of the axial current and Ward identities, which are valid
in a basic regularization scheme like the one of Pauli-Villars, are violated as well. As a
consequence, one fails to restore the correct renormalised axial current, which is defined

as [49,162]

7 1 Vivavs.T
S =07y = i v (5.3.7)

in dimensional regularization. To rectify this, one needs to introduce a finite renormalisa-
tion constant ZZ [161, 163] in addition to the standard overall ultraviolet renormalisation

constant Zzsth within the MS -scheme:
|75], = 2z | 5], - (5.3.8)

By evaluating the appropriate Feynman diagrams explicitly, Z;TS can be computed, how-
ever the finite renormalisation constant is not fixed through this calculation. To determine
Z: one has to demand the conservation of the one loop character [164] of the operator
relation of the axial anomaly in dimensional regularization:

[8,1J’51]R - asnz_f [GG]R
ie. [0)]q = asnz_f [0k . (5.3.9)

The bare operator [O;]p is renormalised multiplicatively exactly in the same way as the
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axial current J& through

[0/]r = 25251015 (5.3.10)

whereas the other one [Og]z mixes under the renormalisation through

(06l = Z66 [Oclg + Z6s [0y (5.3.11)

with the corresponding renormalisation constants Zs; and Zg;. The above two equations

can be combined to express them through the matrix equation

[0k = Zi;| 0], (5.3.12)
with
i, ] =1{G, J},
Og Zoc Zgy
0= and Z= . (5.3.13)
0, Zic Zy
In the above expressions
Zi=0 to all orders in perturbation theory,
Zyy =252 . (5.3.14)

We determine the above-mentioned renormalisation constants Zzsws 266, Zgy up to O (af)
from our calculation of the bare on-shell pseudo-scalar form factors described in the pre-
vious subsection. This procedure provides a completely independent approach to their

original computation, which was done in the operator product expansion [50].

Our approach to compute those Z;; is based on the infrared evolution equation for the form
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factor, and will be detailed in Section 5.3.3 below. Moreover, we can fix Z: up to O(a?) by
demanding the operator relation of the axial anomaly (Eq. (5.3.9)). Using these overall
operator renormalisation constants along with strong coupling constant renormalisation

through Z, , Eq. (5.2.5), we obtain the UV finite on-shell quark and gluon form factors.

To define the UV renormalised form factors, we introduce a quantity S%, constructed out

of bare matrix elements, through
S¢ = Zog(MEOIME) + Zg (MTOIMY)
and
SY = Zo{MIOIMEY + Zo MEOIMY) . (5.3.15)

Expanding the quantities appearing on the right hand side of the above equation in powers

of a, :

(o8]

IMp) = alMy™),

n=0
z=) a7 with 1=GG,GJ, (5.3.16)
n=0
we can write
S¢=>diS¢™ and 8§ = alSG". (5.3.17)
n=0 n=1

Then the UV renormalised form factors corresponding to Og are defined as
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S¢ ~ Z6 T MEOIMEDy 4 ZasFH MEOAO)
a, S5 a, [< MEOMEDy 4 Z(GIJ)' M) M;’(O))]

1+ Z |7 e ("> (5.3.18)
where

G,(0) _ G,(0)] AG.(0)

SGO = (MIOIMEDY + ZLUMIOIMIO) . (5.3.19)

Similarly, for defining the UV finite form factors for the other operator O, we introduce

J — 7S7S ~1G.(0) J
S, = ZZ2 AMGOIM)
and
S = Z3ZAMIOIM) . (5.3.20)

Expanding Z;TS and |Mg) in powers of ay, following Eq. (5.3.16), we get

Sy=) disi® and Sy=>) diS;. (5.3.21)
n=1 n=0

With these we define the UV renormalised form factors corresponding to O; through

S! ©
(7] =~ = 27 = 14 ],
sCg n=1
J o0
|77, = o _ 3z Fl =14 ) al|[F (5.3.22)
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where

J(1) — G.0)| Aq-(D)
SHD = (MEOIMID)

S,j’“’) = M;’(‘”l M;,«»). (5.3.23)

The finite renormalisation constant Z7 is multiplied in Eq. (5.3.20) to restore the axial
anomaly equation in dimensional regularisation. We determine all required renormalisa-
tion constants from consistency conditions on the universal structure of the infrared poles
of the renormalised form factors in the next section, and use these constants to derive the

UV-finite form factors in Section 5.3.4.

5.3.3 Infrared Singularities and Universal Pole Structure

The renormalised form factors are ultraviolet-finite, but still contain divergences of in-
frared origin. In the calculation of physical quantities (which fulfill certain infrared-safety
criteria [165]), these infrared singularities are cancelled by contributions from real ra-
diation processes that yield the same observable final state, and by mass factorization
contributions associated with initial-state partons. The pole structures of these infrared
divergences arising in QCD form factors exhibit some universal behaviour. The very first
successful proposal along this direction was presented by Catani [129] (see also [130])
for one and two-loop QCD amplitudes using the universal subtraction operators. The fac-
torization of the single pole in quark and gluon form factors in terms of soft and collinear
anomalous dimensions was first revealed in [84] up to two loop level whose validity at
three loop was later established in the article [40]. The proposal by Catani was gener-
alized beyond two loops by Becher and Neubert [131] and by Gardi and Magnea [132].
Below, we outline this behaviour in the context of pseudo-scalar form factors up to three

loop level, following closely the notation used in [28].

The unrenormalised form factors Tﬁ”(&s, 0%, 1%, €) satisfy the so-called KG-differential
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equation [79-82] which is dictated by the factorization property, gauge and renormalisa-
tion group (RG) invariances:
[

1 n :uR SPR
0 —ln?'ﬁ(ag,Q T e)_ Kﬂ( a,, —., €) + G(a,, =X e (5.3.24)
sz M ﬁ /*tR #2

where all poles in the dimensional regulator € are contained in the Q* independent func-
tion Kg and the finite terms in € — 0 are encapsulated in Gg. RG invariance of the form

factor implies

i 0 = 2L Ga, L o = —alaudn = - 3 deal

ﬂ as, »€) = —Mp—— sy, — > —F,€) = — ag = - as i

R 12 2 e Rdlulze B :“12e 12 B R - RI2B,
(5.3.25)
where, Ag,i on the right hand side are the i-loop cusp anomalous dimensions. It is straight-

forward to solve for Kg in Eq. (5.3.25) in powers of bare strong coupling constant a; by

performing the following expansion

o 2\ 0§
K} ( Z’;,e) - Z il (Z’;) SIK}(e). (5.3.26)
The solutions Kg’i(e) consist of simple poles in € with the coeflicients consisting of A{i
and ;. These can be found in [28,29]. On the other hand, the RGE of Gﬁ (g, 22 ,%.€)
can be solved. The solution contains two parts, one is dependent on 2 whereas the other
part depends only the boundary point w3 = Q. The p dependent part can eventually be

expressed in terms of Ag:

1. L o - Glaod). 1 Ldx 2 53.27
Gy 5.5 = Gia(@). Lo + - Aay (xup)) - (5.327)

KR
The boundary term can be expanded in powers of a; as

(o)

Gha (@), 1,€) = > a(Q)G} (). (5.3.28)

i=1
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The solutions of Kg and Gg, enable us to solve the KG equation (Eq. (5.3.24)) and thereby

facilitate to obtain the In 7'(a;, Q°, i, €) in terms of A3 , G} ; and §; which is given by [28]

B’
2\i5
lngm(as,Q T 6)_2” (%) Séﬁé’i(e) (5.3.29)

i=1

with

A 1
g,l(f) —_2{ 51} { 2,1(6)}a
1 1(1
{ 0A } { - 3452 —ﬁoGg,1<e>} + ;{5%(@},
" 8 1(2 8 4
53(6) 7{ -5 %Aé,l} + ;{gﬁlAé,l + 9B + gﬁgGg,l(f)}

1f 2 1 4 11
+ —{ - ZAjs - g,Bng’l(e) - g,BoGg,z(e)} + Z{gng(e)}. (5.3.30)

All these form factors are observed to satisfy [40, 84] the following decomposition in

terms of collinear (Bg), soft ( fﬁ) and UV (y”) anomalous dimensions:
Gple) =2(Bh; —ypi) + S+ Chi + Z gk, (5.3.31)
where the constants C g’i are given by [29]

C;, =0,
Cg,z - 250851 )

Cis = —2B1gy) — 280 (g5 + 2Bogyy) - (5.3.32)

In the above expressions, X,g, ;with X = A, B, f and 7’;31,,' are defined through

Xp= Y diXi, and  yp= > dy,. (5.3.33)
i i=1

Within this framework, we will now determine this universal structure of IR singular-
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ities of the pseudo-scalar form factors. This prescription will be used subsequently to

determine the overall operator renormalisation constants.

We begin with the discussion of form factors corresponding to O,. The results of the
form factors 7—‘[{ for 8 = g, g, which have been computed up to three loop level in this
article are being used to extract the unknown factors, 7[1 . and gé’f , by employing the KG
equation. Since the TBJ satisfy KG equation, we can obtain the solutions Eq. (5.3.29)
along with Eq. (5.3.30) and Eq. (5.3.31) to examine our results against the well known
decomposition of the form factors in terms of the quantities Xp{ . These are universal,
and appear also in the vector and scalar quark and gluon form factors [40, 84]. They are
known [11, 84-86, 166] up to three loop level in the literature. Using these in the above
decomposition, we obtain 7’/5,1" The other process dependent constants, namely, gé’f can be
obtained by comparing the coefficients of € in Eq. (5.3.30) at every order in &,. We can

get the quantities 75{ ;and g;’]f up to two loop level, since this process starts at one loop.

From gluon form factors we get

7;,1 =0,

44 10
7;,2 = CACF{ - ?} + Can{ - ?} (5.3.34)

Similarly, from the quark form factors we obtain

7;,1 = O’

44 10
7;,2 = CACF{ - ?} + CF”f{ - ?} )

3578 22 26 308
’}/;’3 = CiCF{ - 7} + C%‘n‘f{?} - CFH?{E} + CAC%{T}

149
+ CACFI’lf{ - 7} . (5.3.35)
Note that y{bi = 7’;,1‘ which is expected since these are the UV anomalous dimensions

associated with the same operator [O;]g. The yél. are further used to obtain the overall
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operator renormalisation constant Z;Ts through the RGE:

[ee)

d .
/J,%W InZXa, th, €) = Y aly}. (5.3.36)
R

i=1

The general solution of the RGE is obtained as

1 1 1 1
Z'=1+a, gzyf +a ?{2ﬁoyf + 2(yf)2} + Eyg +a z{wgﬂ +4Bo(y1)?
4y 1 (4B1y! 4Boyi 1 (24
+ 1+ = + +2ytya b+ =4 =20 5.3.37
3 2\ 3 3 LAREY (R I ( )

By substituting the results of )/[g . in the above solution we get ZZTS up to O(ad):

CaCr _H + Crny _I0 CiCr{ —
3e 3¢ 27€>  8le

44 80 52 616 88 298
I R 2f 8V 52 » ] 016 _ %6 298
+Can{96}+Can{2762 816}+CACF{ 9¢ }+CACan{ 2762 816}]’

(5.3.38)

s _ 2
Z;S_1+as

3
- +a

1936 7156}

which agrees completely with the known result in [49]. In order to restore the axial

anomaly equation in dimensional regularization (see Section 5.3.2 above), we must mul-

tiply the Z;Ts [O,]5 by a finite renormalisation constant Z¢, which reads [49]
107 31
Zi =1+ ad—4Cr} + a; {22C§ — =5 CaCr + ECan} : (5.3.39)

Following the computation of the operator mixing constants below, we will be able to

verify explicitly that this expression yields the correct expression for the axial anomaly.

Now, we move towards the discussion of Og form factors. Similar to previous case, we
consider the form factors ZglG [?;G] r, defined through Eq. (5.3.18), to extract the unknown

constants, ygi and gg’ik, by utilizing the KG differential equation. Since, [?‘ﬂG]R is UV
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finite, the product of Z;/. with [?}G] r can effectively be treated as unrenormalised form
factor and hence we can demand that Zg‘G [TﬁG]R satisfy KG equation. Further we make
use of the solutions Eq. (5.3.29) in conjunction with Eq. (5.3.30) and Eq. (5.3.31) to com-
pare our results against the universal decomposition of the form factors in terms of the
constants X. Upon substituting the existing results of the quantities A7, B, and fg’ up
to three loops, which are obtained in case of quark and gluon form factors, we determine
the anomalous dimensions yg ; and the constants gg’l.k . However, it is only possible to get
the factors ygi and gi’i" up to two loops because of the absence of a tree level amplitude in
the quark initiated process for the operator Og. Since [7-'ﬂG] r are UV finite, the anomalous
dimensions ygl. must be equal to the anomalous dimension corresponding to the renor-
malisation constant Zgs. This fact is being used to determine the overall renormalisation

constants Zs; and Zg; up to three loop level where these quantities are parameterized in

terms of the newly introduced anomalous dimensions 7;; through the matrix equation
, d . ..
/.IR—ZZZ'J' = )/ikaj with L J, k= G,J (5340)
duy,
This can be equivalently written as

—zik) (z-l)kj . (5.3.41)

The general solution (See Example 2 in Appendix C) of the RGE up to @’ is obtained as

+a

2
+a; s

2 1 1 (8,
Zij =0 +a, Vi 2 2B0Yij1 + 2Vik1Yeja ¢+ —{ Y2 = gﬁoyij,l
2

4 1(4 4
+ 4B0Yik,1Ykj1 + §7ik,17kl,171j,1} + Z{gﬁl%‘j,l + §ﬁ07ij,2 + 3Yik1Vej2

4 1(2
=y, ; - =i 5.3.42
+ 37’k,27kj,1} + 6{371,3}] ( )
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where, v;; is expanded in powers of a; as
Yij = Z ayYijn - (5.3.43)

n=1

Demanding the vanishing of g, we get

11 2 34 10 2857 1415
YG6G = as[?CA - gnf] + a? ?Ci — ?CAI’lf — ZCFI’lf:| + (l? 54 i - 52 Cil’lf
205 79 11
- KCACan + C%;I’lf + aCAn%c + EC}:H?] .
284 8 1607
YGr = as[ - 12CF + a? - TCACF + 36C12-; + §CFI’lf + Cli - TCiCF

164 52
+461C4CF - 126C; — —CaCrny + 214CEn; + ?ani +288CACrnsls

_ 288C%nf§3] | (5.3.44)

In addition to the demand of vanishing ygi, it is required to use the results of y,;; and
vi6, which are implied by the definition, Eq. (5.3.40), up to O(a%) to determine the above-
mentioned Yy and yg, up to the given order. This is a consequence of the fact that the
operators mix under UV renormalisation. Following Eq. (5.3.40) along with Eq. (5.3.14),
Eq. (5.3.38) and Eq. (5.3.39), we obtain

2
+ a;

107 31
Yir = Cls[ - e2Cr E{ - TCACF + 14C%7 + ECpnf} — 6CFl/lf] (5345)

and
v =0. (5.3.46)

As it happens, we note that y,;’s are e-dependent and in fact, this plays a crucial role in
determining the other quantities. Our results are in accordance with the existing ones, ysg
and ¢y, which are available up to O(a?) [49] and O(Cli) [50], respectively. In addition to

the existing ones, here we compute the new result of yg at O(a?). It was observed through
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explicit computation in the article [49] that

YGG = —E (5.3.47)

N

holds true up to two loop level but there was no statement on the validity of this relation
beyond that order. In [50], it was demonstrated in the operator product expansion that the
relation holds even at three loop. Here, through explicit calculation, we arrive at the same
conclusion that the relation is still valid at three loop level which can be seen if we look

at the ygc3 in Eq. (5.3.44) which is equal to the ;.

Before ending the discussion of y;;, we examine our results against the axial anomaly
relation. The renormalisation group invariance of the anomaly equation (Eq. (5.3.9)),
see [49], gives

ny

Y= aﬁ +Y6e + GSEYGJ- (5.3.48)

Through our calculation up to three loop level we find that our results are in complete

agreement with the above anomaly equation through

B nyp\~!
Yoo = -2 and m:(as—) Yis (5.3.49)

N
in the limit of € — 0. This serves as one of the most crucial checks on our computation.

Additionally, if we conjecture the above relations to hold beyond three loops (which could
be doubted in light of recent findings [133]), then we can even predict the e-independent

part of the y,; at O(a):

142 4
yJJ|5—>0 = Cl%[ - 6CFl’lf + Cl?|: - TCACan + 18C12;I’lf + gCFl’lic . (5350)

The results of y;; uniquely specify Z;;, through Eq. (5.3.42). We summarize the resulting
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expressions of Z;; below:

2 4
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oG a 3e 36nf

1 (484 176 16 34
2 2
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€

8
+ chnf}

1{ 9512

+d?

1 1 284
—2{ — 176C4Cr + 3chnf} + —{ — —CaCr + 84C;
€ €

1 3872 1408 128
+a§ _3{_—C2CF CACan_TCan}

3 3
2200 2272 64 32
— = C3Cr + —=—CuC; + =—=CyCrn; — —Cpny — —CFni}

e2

9 3 9 3 9

1( 3214 5894 328 1096 104
{ 5 —~——CiCr + 5 —C,C7 - 35663—TcAanf+ 5 ——Cing+ — 5

—Cn?
€ Fir

+ 192CACFI’Lf§3 - 192C%~I’lf[j3}] . (5351)

Zcc and Zg; are in agreement with the results already available in the literature up to
O(a?) [49] and O(a?) [50], where a completely different approach and methodology was

used.

5.3.4 Results of UV Renormalised Form Factors

Using the renormalisation constants obtained in the previous section, we get all the UV
renormalised form factors [?E]R, defined in Eq. (5.3.18) and Eq. (5.3.22), up to three

loops. In this section we present the results for the choice of the scales u% = p% = ¢*.

4 8

22 7 14
[ﬁG’(l)]R = 2nfTF{ - 3_6} + CA{ - Z + § + 4 + 42 + 6( - 6 - §§3) + 62(7 - 52
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5.3.5 Universal Behaviour of Leading Transcendentality Contri-

bution

In [135], the form factor of a scalar composite operator belonging to the stress-energy
tensor super-multiplet of conserved currents of N' = 4 super Yang-Mills (SYM) with
gauge group SU(N) was studied to three-loop level. Since the theory is UV finite ind = 4
space-time dimensions, it is an ideal framework to study the IR structures of amplitudes
in perturbation theory. In this theory, one observes that scattering amplitudes can be
expressed as a linear combinations of polylogarithmic functions of uniform degree 2/,

where [ is the order of the loop, with constant coefficients. In other words, the scattering
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amplitudes in N = 4 SYM exhibit uniform transcendentality, in contrast to QCD loop

amplitudes, which receive contributions from all degrees of transcendentality up to 2.

The three-loop QCD quark and gluon form factors [42] display an interesting relation
to the SYM form factor. Upon replacement [167] of the color factors Cx = Cr = N
and Tyny = N/2, the leading transcendental (LT) parts of the quark and gluon form
factors in QCD not only coincide with each other but also become identical, up to a
normalization factor of 2, to the form factors of scalar composite operator computed in

N =4SYM [135].

This correspondence between the QCD form factors and that of the N = 4 SYM can be
motivated by the leading transcendentality principle [167-169] which relates anomalous
dimensions of the twist two operators in N' = 4 SYM to the LT terms of such operators
computed in QCD. Examining the diagonal pseudo-scalar form factors 7—;,6 and 7—:]’ , We
find a similar behaviour: the LT terms of these form factors with replacement C4 = Cr =
N and Tyn; = N/2 are not only identical to each other but also coincide with the LT terms
of the QCD form factors [42] with the same replacement as well as with the LT terms
of the scalar form factors in N' = 4 SYM [135], up to a normalization factor of 2'. This
observation holds true for the finite terms in €, and could equally be validated for higher-
order terms up to transcendentality 8 (which is the highest order for which all three-loop
master integrals are available [170]). In addition to checking the diagonal form factors,
we also examined the off-diagonal ones namely, 7—;0, 7—;,’ , where we find that the LT terms
these two form factors are identical to each other after the replacement of colour factors.

However, the LT terms of these do not coincide with those of the diagonal ones.
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5.4 Gluon Form Factors for the Pseudo-scalar Higgs

Boson Production

The complete form factor for the production of a pseudo-scalar Higgs boson through
gluon fusion, 79;’("), can be written in terms of the individual gluon form factors, Eq. (5.3.3),

as follows:

7:gA:7:G+

8

(zG, 4C, z,,) S MEOIMIDy 5.4.1)

+ = = .
Zoc  Co Zoc) * (MTOIMED)

In the above expression, the quantities Z;;(i, j = G, J) are the overall operator renormal-
ization constants which are required to introduce in the context of UV renormalization.
These are discussed in Sec. 5.3.2 in great detail. The ingredients of the form factor ?”gA,
namely, Tgc and 7-;,’ have been calculated up to three loop level by us [13] and are pre-
sented in the Appendix H. Using those results we obtain the three loop form factor for the
pseudo-scalar Higgs boson production through gluon fusion. In this section, we present
the unrenormalized form factors ?ﬁgA’(") up to three loop where the components are defined

through the expansion

© 2\1%
= Z l(Q ) SIF A <")] (5.4.2)

We present the unrenormalized results for the choice of the scale % = w3 = ¢* as follows:
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The results up to two loop level is consistent with the existing ones [84] and the three
loop result is the new one. These are later used to compute the SV cross-section for the
production of a pseudo-scalar particle through gluon fusion at N°LO QCD [14]. This is

an essential ingredient to compute all the other associated observables.
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5.5 Hard Matching Coefficients in SCET

Soft-collinear effective theory (SCET, [171-177]) is a systematic expansion of the full
QCD theory in terms of particle modes with different infrared scaling behaviour. It
provides a framework to perform threshold resummation. In the effective theory, the
infrared poles of the full high energy QCD theory manifest themselves as ultraviolet
poles [178—180], which then can be resummed by employing the renormalisation group
evolution from larger scales to the smaller ones. To ensure matching of SCET and full
QCD, one computes the matrix elements in both theories and adjusts the Wilson coeffi-
cients of SCET accordingly. For the on-shell matching of these two theories, the matching
coeflicients relevant to pseudo-scalar production in gluon fusion can be obtained directly

from the gluon form factors.

The UV renormalised form factors in QCD contain IR divergences. Since the IR poles
in QCD turn into UV ones in SCET, we can remove the IR divergences with the help
of a renormalisation constant Z?’h, which essentially absorbs all residual IR poles and

produces finite results. The result is the matching coefficient C?’eff, which is defined

through the following factorisation relation:
Com (@ p7) = im(ZH") (e, @) |7 (6. 0 (5.5.1)

where, the UV renormalised form factor [?;A]R, is defined as

s
)= ) S o) 65

8

The parameter u;, is the newly introduced mass scale at which the above factorisation is

carried out. For the UV renormalised form factors [Tg“] g in Eq. (5.5.1), we fixed the other
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scales as y% = u2 = ,ui. Upon expanding the Z?’h and CQ “Tin powers of a; as

Z?’h(e’ Q' pi) =1+ Zai(ﬂh ZAh(G Q% 1),
i=1
Co(@omp) = 1+ ) aluCys™ (O my) (5.5.3)
i=1

as well as CA’l.eﬁ up to three loops

and utilising the above Eq. (5.5.1), we compute the Z
(i = 3). Demanding the cancellation of the residual IR poles of [?;A]R against the poles of

z* h)‘1 we compute Z?’I.h which comes out to be
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After cancellation of the IR poles, we are left with the following finite matching coeffi-

cients:
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In the above expressions, L = In (Qz/ui) = In (—q2 /,ui). These matching coefficients
allow to perform the matching of the SCET-based resummation onto the full QCD calcu-

lation up to three-loop order.

Before ending the discussion of this section, we demonstrate the universal factorisation
property fulfilled by the anomalous dimension of the Zg’h which is defined through the

RG equation

[Se]

_d i
,Ui dluz In Z?JL(E, QZ,,UE) = ,yg,h(QZ,’uZ) — g av(ﬂi)yg’,h(Qz,/Ji) ‘ (5.5.6)
" i=1

The renormalisation group invariance of the UV renormalised [F ?] z(€, Q%) with respect

to the scale w, implies

d d
2 A,h 2 Aeft
— InZ,;" + p,— InC,;*" =0. 5.5.7
/Jhd/,ti g ﬂhdﬂi g ( )

By explicitly evaluating the yg”l.h using the results of Z?’h (Eq. (5.5.4)) up to three loops
(i = 3), we find that these satisfy the following decomposition in terms of the universal

factors A, ;, B, and f,;:

1 1
’y?,’ih = _iAg’iL + (Bg,i + Efg,i) . (558)

This in turn implies the evolution equation of the matching coefficients as

d 1 1
2 InCA" = _A,.L—|B,; + =f.. 5.5.9
#hd#z n 8.l 2 8> 8> 2-fg’ ( )

which is in complete agreement with the existing results [181] upon identifying

1
yY = By + i (5.5.10)
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5.6 Summary

In this part of the thesis, we derived the three-loop massless QCD corrections to the quark
and gluon form factors of pseudo-scalar operators. Working in dimensional regularisa-
tion, we used the 't Hooft-Veltman prescription for y5 and the Levi-Civita tensor, which
requires non-trivial finite renormalisation to maintain the symmetries of the theory. By
exploiting the universal behaviour of the infrared pole structure at three loops in QCD,
we were able to independently determine the renormalisation constants and operator mix-
ing, in agreement with earlier results that were obtained in a completely different ap-

proach [49,50].

The three-loop corrections to the pseudo-scalar form factors are an important ingredient
to precision Higgs phenomenology. They will ultimately allow to bring the gluon fusion
cross section for pseudo-scalar Higgs production to the same level of accuracy that has
been accomplished most recently for scalar Higgs production with fixed order N°LO [44]

and soft-gluon resummation at N3LL [34, 156,158, 160].

With our new results, the soft-gluon resummation for pseudo-scalar Higgs production [159,
160] can be extended imminently to N*LL accuracy [14], given the established formalisms
at this order [34, 156]. With the derivation of the three-loop pseudo-scalar form factors
presented here, all ingredients to this calculation are now available. Another imminent
application is the threshold approximation to the N°LO cross section [14]. By exploiting
the universal infrared structure [34], one can use the result of an explicit computation of
the threshold contribution to the N*LO cross section for scalar Higgs production [33] to
derive threshold results for other processes essentially through the ratios of the respective
form factors (which is no longer possible beyond threshold [44, 182], where the correc-
tions become process-specific), as was done for the Drell-Yan process [32] and for Higgs

production from bottom quark annihilation [11].






Conclusions and Outlooks

No doubt, the whole particle physics community is standing on the verge of a crucial
era, where the main tasks can be largely categorized into two parts: testing the SM with
unprecedented accuracy and searching for the physics beyond SM. In achieving these
golden tasks, precise theoretical predictions play a very crucial role. The field of precision
studies at theoretical level is mostly controlled by the higher order corrections to the
scattering amplitudes, that are the basic building blocks of constructing any observable in
QFT. Among all the higher order corrections, the QCD ones contribute substantially to
any typical observable. This thesis deals with this higher order QCD radiative corrections

to the observables associated with the Drell-Yan, scalar and pseudo-scalar Higgs boson.

The Higgs boson is among the best candidates at hadron collider, and hence it is of ut-
most importance to make the theoretical prediction as precise as possible to the associated
observables. In the first part of the thesis, Chapter 2, we have computed the N*LO QCD
radiative corrections, arising from the soft gluons, to the inclusive production cross sec-
tion of the Higgs boson produced through bottom quark annihilation [11]. Of course, this
is not the dominant production channel of the scalar Higgs boson in the SM, nonetheless
its contribution must also be taken into account in this spectacular precision studies. In or-
der to achieve this, we have systematically employed an elegant prescription [28,29]. The
factorisation of QCD amplitudes, gauge invariance, renormalisation group invariance and

the Sudakov resummation of soft gluons are at the heart of this formalism. The recently
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available three loop Hbb QCD form factors [31] and the soft gluon contributions calcu-
lated [32] from the threshold QCD corrections to the Higgs boson at N°LO [33], enable
us to compute the full N°LO soft-virtual QCD corrections to the production cross section
of the Higgs boson produced through bottom quark annihilation. One of the most beauti-
ful parts of this calculation is that even without evaluating all the hundreds or thousands
of Feynman diagrams contributing to the real emissions, we have obtained the required
contribution arising from the soft gluons! The universal nature of the soft gluons are the
underlying reasons behind this remarkable feature. We have also demonstrated the numer-
ical impact of this result at the LHC. This is the most accurate result for this production
channel existing in the literature till date and it is expected to play an important role in

coming days.

In the second part of the thesis, Chapter 3, we have dealt with an another very important
observable, namely, the rapidity distributions of the Higgs boson produced through gluon
fusion and the leptonic pair in Drell-Yan. The importance of these two processes are quite
self-evident! We have computed the threshold enhanced N°LO QCD corrections [12] to
these observables employing the formalism developed in the article [39]. The skeleton of
this elegant prescription which has been employed is also based on the properties, like, the
factorisation of QCD amplitudes, gauge invariance, renormalisation group invariance and
the Sudakov resummation of soft gluons. With the help of recently computed inclusive
production cross section of the Higgs boson [33] and Drell-Yan [32] at threshold N*LO
QCD, we have computed the contributions arising from the soft gluons to the processes
under consideration. These were the only missing ingredients to achieve our goal. Our
newly calculated part of this distribution is found to be the most dominant one compared
to the other contributions. We have demonstrated numerically the impact of this result for
the Higgs boson at the LHC. Indeed, inclusion of this NLO contributions does reduce
the dependence on the unphysical renormalisation and factorisation scales. It is worth
mentioning that, this beautiful formalism not only helps us to compute the rapidity dis-

tribution at threshold, but also enhance our understanding about the underlying structures
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of the QCD amplitudes.

In the third part of the thesis, Chapter 4, we have discussed the relatively modern tech-
niques of the multiloop computations which have been employed to get some of the re-
sults calculated in this thesis. The backbone of this methodology is the integration-by-
parts [46,47] and Lorentz invariant [48] identities. The successful implementation of

these in computer codes revolutionizes the area of multiloop computations.

The last part, Chapter 5, is dealt with a particle, pseudo-scalar, which is not included in
particle spectrum of the SM, but is believed to be present in the nature. Intensive search
for this particle has been going on for past several years, although nothing conclusive
evidence has been found. However, to make conclusive remark about the existence of
this particle, we need to revamp the understanding about this particle and improve the
precision of the theoretical predictions. This work arises exactly at this context. In these
articles [13, 14], we have computed one of the important ingredients to calculate the inclu-
sive production cross section or the differential distributions for the pseudo-scalar at N°LO
QCD which is presently the level of accuracy for the scalar Higgs boson, achieved very
recently [44]. In particular, we have derived the three loop massless QCD corrections to
the quark and gluon form factors of the pseudo-scalar. Unlike the scalar Higgs boson, this
problem involves the ys which makes the life interesting as well as challenging. We have
handled them under the ‘t Hooft-Veltman prescription for the s and Levi-Civita tensor
in dimensional regularisation. Employing this prescription, however, brings some addi-
tional complication, namely, it violates the chiral Ward identity. In order to rectify this,
we need to perform an additional and non-trivial finite renormalisation. By exploiting the
universal behaviour of the infrared pole structure at three loops in QCD, we were able to
independently determine the renormalisation constants and operator mixing, in agreement
with the earlier results that were obtained in a completely different approach [49,50]. We
must emphasize the approach which we have employed here for the first time is exactly

opposite to the usual one: the infrared pole structures of the form factors have been taken
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to be universal that dictates us to obtain the UV operator renormalisation constants upon
imposing the demand of UV finiteness. With our new results, the threshold approxima-
tion to the N3LO inclusive production cross section for the pseudo-scalar through gluon
fusion are obtained [14] by us. This is also extended to the N*LL resummed accuracy
in [14]. We have also computed the hard matching coeflicients in the context of soft-
collinear effective theory which are later employed to obtain the N*LL’ resummed cross
section [183]. We have also found some interesting facts about the form factors in the
context of Leading Transcendentality principle [167—169]: the LT terms of the diagonal
form factors with replacement C4 = Cr = N and Tyny = N/2 are not only identical to
each other but also coincide with the LT terms of the QCD form factors [42] with the same
replacement as well as with the LT terms of the scalar form factors in N =4 SYM [135],
up to a normalization factor of 2!, This observation holds true for the finite terms in €, and
could equally be validated for higher-order terms up to transcendentality 8 (which is the
highest order for which all three-loop master integrals are available [170]). In addition
to checking the diagonal form factors, we also examined the off-diagonal ones, where we
find that the LT terms these two form factors are identical to each other after the replace-
ment of colour factors. However, the LT terms of these do not coincide with those of the

diagonal ones.

The state-of-the-art techniques, which mostly use our in-house codes, have been em-
ployed extensively to carry out all the computations presented in this thesis. The pre-
scription of computing the threshold correction is applicable for any colorless final state
particle. We are in the process of extending this formalism to the case of threshold resum-
mation of differential rapidity distributions. The methodology of calculating the pseudo-
scalar form factors can be generalized to the cases involving any number of operators

which can mix among each others under UV renormalisation.

In conclusion, it has been a while the Higgs-like particle has been discovered at the LHC

and finally, we are very close to having enough statistics for precision measurements of
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the Higgs quantum numbers and coupling constants to fermions and gauge bosons. This,
along with the precise results from theoreticians like us, hopefully, would help to explore
the underlying nature of the electroweak symmetry breaking and possibly open the door

of new physics.






Appendices
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A Inclusive Production Cross

Section

In QCD improved parton model, the inclusive cross-section for the production of a color-

less particle can be computed using

1 1
2 2 2 2 2 2
org)= ) f dx, f dxa foler K fo s KOy (20 o i) (A1)
avb:q’q’g O 0
where, f’s are the partonic distribution functions factorised at the mass scale up. o, is
the partonic cross section for the production of colorless particle / from the partons a and
b. This is UV renormalised at renormalisation scale g and mass factorised at py. The

other quantities are defined as

q> =mj,
2
=L
S
q2
=L (A.0.2)

§

In the above expression, S and § are square of the hadronic and partonic center of mass

energies, respectively, and they are related by

§=xix28 . (A.0.3)
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By introducing the identity

1 S
fa’zé'(r —X|X7) = — = — (A.04)
X1Xp S
in Eq. (A.0.1), we can rewrite the Eq. (A.0.1) as
1
-
o'(t,q?) = " O(up) Z f dx @ (x, piz) AL, (;, qz,,ui,,u%) : (A.0.5)
ab=q.q.8 *;
The partonic flux @, is defined through
1 d
X
Doy, ) = f %ﬁ(y,u%) J (;,u%) (A.0.6)

X

and the dimensionless quantity 4’, is called the coefficient function of the partonic level
cross section. Upon normalising the partonic level cross section by the born one, we

. I .
obtain 47, i.e.

p—— (A.0.7)
ab — o1(0) . U.



B Anomalous Dimensions

Here we present A [40, 69, 85, 86], f [40,84], and B [40, 85] up to three loop level. The

A’s are given by

Ager = Cal4,

268 40
Agg,z = Ci {T — 8{2} + CAI’lf {—?} ,

490 1072 88 1762 110
Agg,3 = C,i { — 42 + {3 + é’2} + CACFI’lf {—T + 32{3}

3 9 3 5
836 1604, 1124 16
2 2
+CAI’lf{— 77 + 9 - 3 }+CAl’lf {—E}
and
C
Agai = Appi = C—FAgg,i. (B.0.1)
A
The f’s are obtained as
f:gg,l = 0,
22 808 4 112
feg2 = Ci {—?52 — 2843 + 7} + CA”f{g{ - 7} )
352 176 12650 1316 136781
fgg,3:CA3{5§22+ 3 28 4 O - 3 G+ 19205 + 739 }

w2 96,, 2828 728 11842
Al 5{2 31 §2 77 3 79

32 304 1711 40 112 2080
+ CaCrny {?522 +40H + Té% - 7} + Cany’ {—EQ + 743 - W}
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and

c
fuai = fobi = o Fusi- (B.0.2)
A

Similarly the B’s are given by

Bgo1 = Ca {13_1} —ny {%} ’
Byyo = Ci {33—2 + 1253} —nyCy {g} - ”fCF{z}’
B = CiCony { 21481} Cor {fz} Ciny {21383 ; g{z + gé + ?é}
+C3 {%—1652434‘552 fz §3—8045}"‘CF”f{lgl}"'Clz”nf{]}’
By = Cr{3).

3 17 88 2 16
qu’z = C%{E - 122;2 + 24{3} + CACF{34 + ggg - 1243} + nfCFTF{ - 5 - —42} ,

4496 1552 1657 988
Bygs = CAQCF{ -25° + 7 & - Tf@ + 4045 — Y} CACFZ{ - —5422
410 844 151 1336 200
+ 16005 — —fz — 0+ 12005 + — ¢ + CACan 0
3 4 27 )
3 2 29
+20¢ +Cr —{2 — 32005 + 184, + 6885 — 24075 + >
232, 20, 136 80 16 17
+ CF2nf{—§2 §z - —§3 - 23} + Cpny {27§2 - 553 _ ?}

and

Byzi = Byp,; - (B.0.3)



C Solving Renormalisation Group

Equation

To demonstrate the methodoogy of solving RGE, let us consider a general form of an

RGE with respect to the renormalisation scale pig:

d
u,%d—zlnM =N (C.0.1)
R

where, M and N are functions of ug. We need to solve for M in terms of N. Our goal is
to solve it order by order in perturbation theory. We start by expanding the quantities in

powers of a; = a,(u3):
M=1+) dM®,
k=1

N=> dN®. (C.0.2)
k=1

The uy dependence of M and N on uy enters through a,. All the coefficients M® and N®

are independent of ug. Hence, In M can be written as

InM = Z d* M, (C.0.3)
k=1
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with

My =MD,
M, = —%(M“))Z + M2,
M; = %(M(l))3 _ M(I)M(2) n M(3) ,

Using the above expansions in RGE. (C.0.1) and using the RGE of a;

d € <
2 k+2
Up—=as = a5 — E Bra; (C.0.5)
Ral,ulze 2 k:O

we get M;’s by comparing the coefficients of a; as

M, = 2N
6 2
2 1
M, = SN + —N@,
€ €
8 1(4 4 2
M = —BNY + = BNV + NP L+ =N
3 3€3ﬁ0 €2 3ﬂ1 3ﬁ0 3e

4 1 1 1
M, = zﬁgN“) - g{4ﬁ0ﬁ1N“) - 2ﬁ§N<2>} - z{ﬁsz +BIN® + ﬁ0N<3>} + 2—6N<4> :

(C.0.6)
By equating the Eq. (C.0.3) and (C.0.6) we obtain,

MO = Zp0
6 2

M = lz{zﬁozv(” + 2(N“>)2} + e,
€ €

1(8 4 1 (4 4
M = — _IB(Z)N(l) + 4IBO(N(1))2 + _(N(l))3 + — _,BlN(l) + _IBON(Z) + 2ND NP
e |3 3 e |3 3

1 22 2 1 8
M® = E—{4ﬁ8N(” + BN + 4BV + §(zv“))“} + 3{4ﬁoﬁ1N(‘> + /WY
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2 A7(2) 14 (D A7(2) (D2 A7(2) 1 (1) (2) 1 (2)\2 (3)
+2BND + ZBNOND +2ANTPND G+ S BNT + BN + (VD) + BN
€

4 1
+ - NONOL L — ND (C.0.7H
3 2€

We have presented the solution up to O(a?). However, this procedure can be easily gener-

alised to all orders in a;.

e Example 1: RGE of Z,
ui Z g, (C.0.8)
% 1o
Comparing this RGE of Z, with Eq. (C.0.1) we get
N =g,  ke[l,). (C.0.9)

By putting the values of N® in the general solution (C.0.7), we get the correspond-

ing solutions of Z, as
Zy =1+ ) d7ZP (C.0.10)

where

2
Z(l) = ;ﬁo 5
(2) ﬂo + ﬁl )
(3) 2
,30 ,30,31 + 3—6,32’
1/(3 10 1
(4) — _B4 z (Eﬁ% + ?,80,82) + 2—6ﬁ3 . (COll)

The Z,, can also be expressed in powers of a, by utilising the

/.12 €/2
a, = a,S. (—R) z! (C.0.12)
/,l 5
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iteratively. We get

where

, 2
Z\Y = =By
€
1
2 =P

To arrive at the above result, we need to use the Z;YI in powers of a,:
00 2 k6
71— 1 kg Hr 7-1.0)
ay, + as € 2 as
where

A 2
-1,(1) _
Zas 1 _ _zﬁo’

A 4 1
I
a7 @lo Pl

) 8 . 16 2
710 = _ % _Zp,.

ag E3ﬂ0 SEzﬁOﬂl 3€ﬁ2

) 16, 58 1 (3, 14 1
-1,4) _ 2 2
Za, " = "abo 3e3ﬁ0ﬁ1+2(§’81+ 3ﬂ°ﬂ2)_2eﬁ3'

o Example 2: Solution of the Mass Factorisation Kernel

The mass factorisation kernel satisfies the RG equation (2.3.32)

—FI(Z,uF,E)— ZP z,uF ®F,€](Z,,MF,)

where, P! (z, ,u%) are Altarelli-Parisi splitting functions (matrix valued).

(C.0.13)

(C.0.14)

(C.0.15)

(C.0.16)

(C.0.17)

Expanding
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P! (z, u%) and I'(z, u%, €) in powers of the strong coupling constant we get

(59

PlGup) = )P0 (@) (C.0.18)
k=1
and
0 12 k5
r%wiamm—o+§ﬁ$4%)rwb@. (C.0.19)
Jui
k=1

Following the techniques prescribed above, it can be solved. However, unlike the
previous cases here we have to take care of the fact that P’ and I/ are matrix val-
ued quantities i.e. they are non-commutative. Upon solving we obtain the general

solution as

1

ﬂ“ma:{P@@}
€
1 1 1(1

'@ e = 51 = BP" 0@ + 5P 0@ © P0G f+ —4 S PG
€2 2 el2

FI’(3)(Z, E) — %{gﬁépl,(o) _ﬁopl,(o) ® Pl,(O) + éph(o) ® Pl,(O) ® Pl,(O)}
€

(1 1 4 1
+ —<{ — —g, phO L Z pl.® ® plO_ g ptM L~ plD ® pHO
62{ 3P 6 3P0 3

L pe
€l3 ’

'Yz, e = é{ - 285P"0 + %ﬁgp”“’) ® PHO - %ﬁOPl‘O) ® P" @ p'©

1 1(4 1
+ ﬂPl,(o) ® PI’(O) ® PI’(O) ® PI’(O)} + g{gﬁoﬁlpl,(o) _ §ﬁlpl,(o) ® PI’(O)

1 7 1
+ —PI’(O) ® PI’(O) ® PI’(I) _ _IBOPI,(O) ® Pl’(l) + —PI’(O) ® PI’(I) ® Pl,(O)
24 12 12

+ 3BV - %,BOP”(” ® PMO + %P”“) e P'¥® P”(O)}
sl Ly proy Lprogpra _Lg pray Lpro g pro
€ 6 12 2 8

— E/30131’(2) i Lpogpol Hlpel, (C.0.20)
2 4 el4
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In the soft-virtual limit, only the diagonal parts of the kernels contribute. Our find-
ings are consistent with the existing diagonal solutions which can be found in the

article [28].



D Solving KG Equation

The form factor satisfies the KG differential equation (See Sec. 2.3.1):

d 1 Iu2 Q2 #2
2 Iin A2 2 N _ 1 [~ MR 1| A R
0 _dQ2 In ﬁj(as, O, u €)= 3 [K,-j (as, ,u_2 , e) + G,-j (as, _ﬂlzg , u_z €] . (D.0.1)

In this appendix we demonstrate the procedure to solve the KG equation. RG invariance

of the # with respect to the renormalisation scale pg implies
d 2 d 2 2
2Lkl (a ar ] e) -2 LGl (a Q& Hr e) = Al (a,G2) (D.0.2)
H Hy

where, A! ;s are the cusp anomalous dimensions. Unlike the previous cases, we expand

K] in powers of unrenormalised &; as
2 © 2\k5
Ki; (“ =3 f) = ) akst (ﬁ—’;) K (e (D.0.3)

whereas we define the components Afj . through

(9]

Alj= > d (uR) Al (D.0.4)

k=1

Following the methodology discussed in Appendix C, we can solve for K l.’j’k(e)

. 1
Kilj,l(e) = Z{ - 2A{j71},
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N 1 1

Kilj,2(€) - _z{zﬁOAlj 1} E{ AzI]2} ’

N 1 1(2 8 1 2
Kilj,3(€) = { ﬁo z]l} + _2{_B1Az{j,l + gﬁoAz{jl} + g{ - gAfjs} )

. 1 1
Kilj,4(6) = {4ﬁ3AIIJ 1} { ﬁOﬁl il ﬁzAsz 2} { ﬁzAljl +ﬁ1Al{j,2 + 3ﬁ0Al{j,3}
1 1
+ E{ — §Az(j,4} (D.0.5)
Due to dependence of ij on Q?, we need to handle it differently. Integrating the RGE of

(D.0.2), we get

t]’

2

Hp
2 2 2 du?
Gl[j (&S’ Q_, IJ_IZQ’ E) _Gllj (&Sa 17 %’ E) = f IJRAIIJ
? K

2
= ij(as i,Q ) Gl (a(@M),1,€) + f”"’A’ (D.0.6)

Consider the second part of the above Eq. (D.0.6)

d
f Y gy - f Sl
M

“R

o ) .
- f ‘%a’;s’;( )2(2 (Xz)) L (D.0.7)

where we have made the change of integration variable from g to X by u» = X°u?. By

using the Z;Xl (X?) from Eq. (C.0.15) and evaluating the integral we obtain

2
HR kS

[ S s ()
Q #R k=1 lu

2\k5
(%) - 1] Kl (o). (D.0.8)
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The first part of G{ i in Eq. (D.0.6) can be expanded in powers of a,(Q?) as
Gl (a0, 1,€) = > d(@)Gly(e). (D.0.9)

k=1

By putting back the Eq. (D.0.3), (D.0.7) and (D.0.8) in the original KG equation (D.0.1),

we solve for In F(a,, 0%, 1%, €):

e 2 kf
In (4, Q*. 1%, €) = ZA"S ( 2) L (o) (D.0.10)

with

m

1
1(6) = _2{ 2A11]1} { {jﬁl(e)},
1 L
1}2(6) -3 ﬁ 1}1 ? - 2 z] ﬁOGUl(E) 112(6)

1
{ ﬁzAzljl} _3{ l]1+ ﬁoAz]2+ ﬁO ij,1 )}

,]3(6) =

Nl’_‘ %|’—‘
\Oll\) @Ioo

A3 = 3B1Gi (6 - ﬁoG 2<e)} { 3(6)}
l]4<e>—15 l,lﬁo} —{——A’ B~ 2AL oy~ 283G m(e))}

Ajjabo + A zﬁ1+—A,,1ﬁz+ 2 BuBiGL(e) + 382G ,,2<e>>}
*Z{ ;A,’M PG (e - ﬁIG{,-,z(a—EﬁoG{,-,g(e)}

+ é{inM(e)}. (D.0.11)

This methodology can easily be generalised to all orders in perturbation theory.






E Soft-Collinear Distribution

In Sec. 2.3.4, we introduced the soft-collinear distribution @Z_) in the context of computing
SV cross section of the Higgs boson production in bb annihilation. In this appendix, we
intend to elaborate the methodology of finding this distribution. For the sake of generali-
sation, we use [ instead of H and omit the partonic indices. To understand the underlying
logics behind finding @/, let us consider an example at one loop level. The generalisation

to higher loop is straightforward.

As discussed in the Sec. 2.3, the SV cross section in z-space can be computedind = 4 + €

dimensions using

A"8V(z, qz,llzzea,u%) =Cexp (5”’ (z, qz,,u,ze,ufv, e) )‘ (E.0.1)

where, P! (z, G, Ly [ e) is a finite distribution and C is the convolution defined through

Eq. (3.3.15). The ¥! is given by, Eq. (2.3.8)

2 (z, G113 12, e) = (ln [Z’(&s,,u,%,,u{ E)]2 +In '751(&&, 0,12, E)r)é(l -2)

+ 2@1(&” q29 /'129 <, E) - ZC In FI(&S’ luza IJ%?’ <, E) . (EOZ)

For all the details about the notations, see Sec. 2.3. Considering only the poles at O(ay)
with ug = ur we obtain,

4y

In(Z")" = ayu)—*

b
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€2

2\5[ 44! 1
F

2CInI""Y = 2a,(u%) [2—315(1 —2)+ %z) ] (E.0.3)
- s\MF B < € 0 e

where, the components are defined through the expansion of these quantities in powers of

a(uz)

k=1
Inr" =" au})Inr® (E.0.4)
k=1
and
In(1 —
p = | =91 (E.0.5)
1-z
.

Collecting the coefficients of a,(u%), we get

44! 4A]
PO ey = [{__ " i}g(l —2)— —Dy| + 20! (E.0.6)
€2 €

where, we have not shown the In(¢?/u2) terms. To cancel the remaining divergences
appearing in the above Eq. (E.0.6) for obtaining a finite cross section, we must demand

that @' have exactly the same poles with opposite sign:

4A! 4A!
2¢{|poles = - |:{_E_21 fl }5(1 - ) - _IDO (EO7)
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In addition, @' also should be RG invariant with respect to ug:

d
2 ___ @' =0. E.0.8

We make an ansatz, the above two demands, Eq. (E.0.7) and (E.0.8) can be accomplished

if @ satisfies the KG-type integro-differential equation which we call KG:

d U[=t(. K —I @
2 (A 2 .2 ~ R N R

A%} B PR == K S PR +G S ] 9 &9 . E-09
Cldq2¢(aq,£tze) 2[ (aA quze) (a ,zgﬂzze ( )

—I . —I . . . . .
K contains all the poles whereas G consists of only the finite terms in €. RG invari-

ance (E.0.8) of @' dictates
_ 2 4 =l
=—upr—G =Y (E.0.10)

where, we introduce a quantity Y’. Following the methodology of solving the KG equa-

tion discussed in the Appendix D, we can write the solution of @& as

) 2\ k5
(@, Pz €) = Za’;s’; (;%) Di(z, €) (E.0.11)
k=1
with
dl(z, e = I (A{ ~Y.G -G, e)) . (E.0.12)

where we define the components through the expansions

Y= dupy,
k=1

Ge =) dw)Gz o. (E.0.13)

k=1
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This solution directly follows from the Eq. (D.0.10). Hence we get
A7 1 A 2 =t
2d(z,€) = 2~ 4y, + - G,(z,€)¢. (E.0.14)

By expressing the components of @' in powers of a,(u%), we obtain

(59

2\ k5
D' (a5, ¢ 12, 2, €) = Z aksk (/%) Di(z, €)

00 k5
= > 4 (q—z) Pl(z, ) (E.0.15)

and at O(a,(u2)), P! (z,€) = D (z, €) upon suppressing the terms like log(g?/u2). Hence,

by comparing the Eq. (E.0.7) and (E.0.14), we conclude

Y = -Alo(1 - 2),

—] > _
G\(z.€) = —f{6(1 - 2) + 241D + Y €51 (2). (E.0.16)
k=1
The coeflicients of €, g{”‘ (z) can only be determined through explicit computations. These
do not contribute to the infrared poles associated with @’. This uniquely fixes the un-
known soft-collinear distribution @’ at one loop order. This prescription can easily be
generalised to higher orders in a;. In our calculation of the SV cross section, instead of

solving in this way, we follow a bit different methodology which is presented below.

Keeping the demands (E.0.7) and (E.0.8) in mind, we propose the solution of the KG
equation as (See Eq. (E.0.11))

1
1-z2

Dl(z,€) = {ke [(1 - z)z]k% }@i(e)

0 (k6)j+l }"1
={68(1 - — D dle). E.0.17
{( z>+; 019 (E.0.17)
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The RG invariance of @/, Eq. (E.0.8), implies

d —iI d —iI
2~ K =—4—G =Y/ E.0.18

where, we introduce a quantity Y’, analogous to Y. Hence, the solution can be obtained as
29} pL( Al 0o~ A
&l(e) = I (Al. S Y6l o Qi(e)) . (E.0.19)

Hence, according to the Eq. (D.0.11), for k = 1 we get

1 2— 4y!!
20!(z,€) = {z (-4v) + ng (€)) }5(1 ~2)+ { - —1 + g (e)} Z

=0

(E.0.20)

where, Y’/ and él are expanded similar to Eq. (E.0.13). Comparison between the two

solutions depicted in Eq. (E.0.7) and (E.0.20), we can write

v =]

GlO=—fl+) G, . (E.0.21)
k=1

Explicit computation is required to determine the coefficients of €, éik This solution
is used in Eq. (2.3.38) in the context of SV cross section of Higgs boson production.
The method is generalised to higher orders in a;, to obtain the results of the soft-collinear
distribution. In the next subsection, we present the results of the soft-collinear distribution

up to three loops.
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E.0.1 Results

We define the renormalised components of the @2 s« through

00 2 k*
N ~ q
B0 18,26 = Y S (;? e

k=1

Za qqk z,e q pF) (E.0.22)
k=1

where, we make the choice of the renormalisation scale ug = ur. The g dependence can
be easily restored by using the evolution equation of strong coupling constant, Eq. (2.4.6).
Below, we present the @f ik for i i = qg up to three loops and the corresponding compo-
nents for i i = gg can be obtained using maximally non-Abelian property fulfilled by this

distribution:
(E.0.23)

The results are given by

o (g o] v )
o4l

1 1 134
Cpng = 5(1 - Z)[ CFCA{44} + _nfCF{ 8} + ?CFCA{T — 4{2}

| 201 1. (& a4y 1. [ 8
+ znfCF{ - ?} 2 log(#F)CFCA{ 3 }+ =2 lOg(,uF I’lfCF - 5

1 404 11 1 56
+ ZCFCA{ + 144 + —52} + anCF{_ - —§2}

+ Dy + D,

27

| 2 134 | 2 20 1214
+ - log L)erend == -45 + - log L\njcry - = b+ Crcy
12 9 12 9 81

F F

187 469 ) 164 34 35
e TS + 205 0 +nyCpy — 3 T 9Bt gL

2 404 4 2 56 8
+10g(q )CFCA{— 7 + 14{3 + —§Q}+10g(q )I’lfCF{— - —52}
F I




993 —

205

g 67 2 10 11
+ 10g2 (q_z) CFCA{_ - 2§2} + 10g2 (q—z) npr{ — —} + lOg (q2 )CFCA{ }
/’lF 9 l‘tF 9 ’uF 9
1

2
q 2 1 88) 1 16 268
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40
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808 112
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q* 31006 3008 176
log| = |CrC? _
2 8204 q* 110
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HE 81 2 3
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Soft-Collinear Distribution for

Rapidity

In Sec. 3.3.4, we introduced the soft-collinear distribution @f - in the context of comput-
ing SV correction to the differential rapidity distribution of a colorless particle at Hadron
collider. In this appendix, we intend to elaborate the methodology of finding this distri-
bution. For simplicity, we will omit the partonic indices for our further calculation. To
understand the underlying logics behind finding @', let us consider an example at one
loop level. The generalisation to higher loop is straightforward. The whole discussion of
this appendix is closely related to the Appendix E where we discussed the soft-collinear

distribution for inclusive production cross section for a colorless particle.

As discussed in the Sec. 3.3, the SV cross section in z-space can be computed ind = 4 + €

dimensions using

AV (21, 20, ¢ g uF) = Cexp (‘Pf; (Zla 224" Higs 6) )L (FO.DI)

where, ¥ (zl, 20, % sl 6) is a finite distribution and C is the double Mellin convolu-

tion defined through Eq. (??). The ¥/ is given by, Eq. (3.3.16)

2 2
7y (21020, 4 i 13 €) = (1n |20 3,12, 0| + 10 |Fia, Q% 4 ) )6(1 - 2)5(1 - 25)

1

+ 2¢IY,1J(asv qzallza 21,42, 6) - Cln Flj(&sallzaﬂ%W 21, 6)6(1 - ZZ)
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— CInT (@ 12, i3 22, €5(1 — 21) . (F.0.2)

For all the details about the notations, see Sec. 3.3. Considering only the poles at O(ay)

with ug = ur we obtain,

4)/{

’
€

2
In (ZI,(I)) — as(ﬂ%)
2 4AI
In |7_'1,(1)|2 — as(/l?: (q ) [—— + — (Zf1 +4BI 4)/{)] ,

2 2
MHr €

1 1
) 1 2A1
Clnl'V(z) = as(,uF) 5(1 -71)+ TDO )
ClnI"V(z,) = as(,uF)[

241
o(1 —z2)+ —@o] (F.0.3)

where, the components are defined through the expansion of these quantities in powers of

as(uz)

Inf” =" ad)nr'® (F.0.4)
k=1

and

D;

[m"(l —zl)}

1-2z;

D [M} . (F.0.5)
1 — 22 :
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Collecting the coefficients of a,(u%), we get
4AT 211 2A! —
POy potes = [{—E—; + %} 6(1 = 2)3(1 = 22) = = {8(1 — 21Dy + (1 - zQ)Do}]

+ 20}, (F.0.6)

where, we have suppressed the In(¢?/u7) terms. To cancel the remaining divergences
appearing in the above Eq. (F.0.6) for obtaining a finite rapidity distribution, we must

demand that 45; , has exactly the same poles with opposite sign:

; 4AT 2f! 24! _
2B potes = = [{ ="+ - 101 = 2)8(1 = 22) = =+ {81 = 21)Do +6(1 = 22)Dof

(F.0.7)

In addition, QDIY also should be RG invariant with respect to pg:

d
2 __ @l =0. F.0.8
#Rd/l%e Y ( )

We make an ansatz, the above two demands, Eq. (E.0.7) and (E.0.8) can be accomplished
if @, satisfies the KG-type integro-differential equation which we call KGy:
d 1=t 5 —I q* e
2 I(r 2 2 ~ Mg A R
@ ) ) ) ) ’ == K EDE) ) ’ +G Sy A Ao ) ’ .
q qu Y(a qg, .1 ,21,22 6) > [ Y(a qu 21,22 E) Y(a /JIZQ qu 21,22, €
(F.0.9)

Ei contains all the poles whereas EIY consists of only the finite terms in €. RG invari-
ance (F.0.8) of @/, dictates
d —i , d

—I
tr—=Ky = —1z—=Gy = X} (F.0.10)

dus, duy

where, we introduce a quantity X?. Following the methodology of solving the KG equa-
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tion discussed in the Appendix D, we can write the solution of @/, as

0 2\k5
Ion 2 2 EjAk k(4 51
gZSY(aS’q s 521532, E) = aSS€(/.12) QDY,[{(ZUZZ’ E)
k=1

with
A A —I
Bua1,22.0 = L (4] = X}, 6! - Gz @)
where we define the components through the expansions

Xy = d WXy,

k=1
—I - —I
Gy(@1,2,€) = ) WGz, 22, 6).

k=1

This solution directly follows from the Eq. (D.0.10). Hence we get

A 1 2 (=1
2@{11(2, €) = ?{ - 4X{,’1} + E{Gm(zl,Q, e)}.

By expressing the components of @/, in powers of a,(u%), we obtain

00 2 k%

I/A 2 2 ~k gk ¥l

Do, % 41, 21,22, €) = Zassf(—z) &} (21, 22, €)
k=1

s

2\k5
q

2 ) Py (2. €)
HE

k3
k 51
—) Z, q’y,k(Zl,Zz,G)

(F.0.11)

(F.0.12)

(F.0.13)

(F.0.14)

(F.0.15)

and at O(a,(u7.)), QABQ (2, €) = @}, (z, €) upon suppressing the terms like log(¢*/u7). Hence,

by comparing the Eq. (F.0.7) and (F.0.14), we conclude

Xy, = —A16(1 - 2)8(1 — 22),
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5[y,l(Zl,Zz, €) = —fl6(1 = z)8(1 = z2) + A{{é(l —21)Dp + 6(1 - Zz)Do}

+ > . (F0.16)
k=1

The coefficients of €, g’y’j (z) can only be determined through explicit computations. These
do not contribute to the infrared poles associated with @. This uniquely fixes the un-
known soft-collinear distribution @, at one loop order. This prescription can easily be
generalised to higher orders in a;. In our calculation of the SV correction to rapidity dis-
tribution, instead of solving in this way, we follow a bit different methodology which is

presented below.

Keeping the demands (F.0.7) and (F.0.8) in mind, we propose the solution of the KGy
equation as (See Eq. (F.0.11)) (which is just the extension of the Eq. (E.0.17) from one

variable z to a case of two variables z; and z,)

P (21,20, €) = {(ke)2 = - -2 }éﬁ’xk(e)

ke 1 ke 1 ke ) A
={3(1_Z) (1-2)] }{5 ( - 2)’| }@’me)

k 2]+1 21+1
~{oat -z + Z( 2 }6(1— o)+ &@I}Qﬁ/k(f)

— Al
(F.0.17)
The RG invariance of cD{,, Eq. (F.0.8), implies
d —iI d —i
2 2 11
—K, =—-uy—G, =X F.0.18
MR d.u12e Y HR dlhze Y Y ( )

where, we introduce a quantity X! analogous to X§. Hence, the solution can be obtained

as

@ (e)= 11 (A > X1.GL. > G F0.19
Y,k(E) Lk i Y,i» Y,l—>gY,l(6) . ( U )
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Hence, according to the Eq. (D.0.11), for k = 1 we get

2@;1(@, 22,€) = 2@%1@1, 22, €)
2| (ke/2)7*! (ke/2)’+1
= {5(1 —z1)+ JZ:(; TD,}{(S(I Z }

1 2
{? (4x34) + =G (e))} (F.0.20)

—I
where, X}/ and G, are expanded similar to Eq. (F.0.13). Comparison between the two

solutions depicted in Eq. (F.0.7) and (F.0.20), we can write

Xgl = _A{

—I LN sk

Gri(e)=—fi + Z €'Gy, - (F.0.21)
k=1

Explicit computation is required to determine the coefficients of €, élyli This solution is
used in Eq. (3.3.45) in the context of SV correction to differential rapidity distribution of
Higgs boson production or leptonic pair in DY production. The method is generalised to
higher orders in ay to obtain the results of the soft-collinear distribution. Hence, the all

order solution of &/, is

(o)

2\k5
D' (ay, ¢ 12, 21, 22, 6):ZA"S (Z) Dy,(21, 22, €) (F.0.22)

k=1

with

qug’,k(Zl,Zz, €) = {(kf)2 [(1—z)(1 - z2)]** }é’gf,k(G) ,

41 =z = 22)

& (e) = 1! (A? S -ALGL 5§ .(e)) (F.0.23)
Yk k\“i i* Y Y,i . V.
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Up to three loop, é;i(e) are found to be

—I —I N =Lk
Grie) =—f+Cy+ ) €6, (F.0.24)
k=1
where
—I
Y2 - zﬁong ’
—I,1 —I1,2
Y3 = 2ﬁ1§y1 2By (gy,z + 2,30gy,1) . (F.0.25)

These are employed in the computation of rapidity distributions in Chapter 3. In the next

subsection, we present the results of the soft-collinear distribution up to three loops.

F0.1 Results

We define the renormalised components of the @;i -, through

[ee)

2\k3
EzAk k4 A1
Yl ,(as,q /J 215225 6) asSE(/?) gDYJ' f’k(ZIaZZa E)

k=1

= ak (i) By (o122 €. i) (F.0.26)

k=1

where, we make the choice of the renormalisation scale ug = ur. The ug dependence can
be easily restored by using the evolution equation of strong coupling constant, Eq. (2.4.6).
Below, we present the @;i o for/ = Handii = gg up to three loops and the corresponding
components for / = DY and i i = ¢g can be obtained using maximally non-Abelian

property fulfilled by this distribution:

Ca
Cr

DYk = —Pyy k- (F.0.27)
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G Rapidity Distributions at
Threshold N*LO QCD

In this appendix, we present the general form of the QCD corrections to the differential
rapidity distribuions of the Drell-Yan pair or Higgs boson at threshold N*LO. Due to
unavailability of the involved quantities at 4-loop level, we are unable to calculate this

contributions. The result for the choice of the scales ,LlR 7t - = = ¢’ reads:
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Results of the Unrenormalised
Three Loop Form Factors for the

Pseudo-Scalar

In this appendix, we present the unrenormalised quark and gluon form factors for the
pseudo-scalar production up to three loops for the operators [Og]p and [O,]. Specifically,
we present 7:;?’(") and 7};’(”) for 8 = g, g up to n = 3 which are defined in Sec. 5.3. One
and two loop results completely agree with the existing literature [84]. It should be noted
that the form factors at n = 2 for S’:‘qc’(") and ﬁ,]’(") correspond to the contributions arising

from three loop diagrams since these processes start at one loop order.
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Harmonic Polylogarithms

The logarithms, polylogarithms (Li,(x)) and Nielsen’s polylogarithm (S,, ,(x)) appear nat-
urally in the analytical expressions of radiative corrections in pQCD which are defined

through

*dt
ln('x) = 7 ’

1

— X X dt

Li(x) = Z;{i = f —Lia(®,  eg Li)=-In(l-2),
k=1 0

_ (_1)n+p—1 1dl .
Snp(x) = (n——l)'p'fo 7[ln(t)] "[In(1 - x)17,
e.g. S,-1.1(x) =Li,(x). (L.0.1)

However, for higher order radiative corrections (2-loops and beyond), these functions are
not sufficient to evaluate all the loop integrals appearing in the Feynman graphs. This is
overcome by introducing a new set of functions which are called Harmonic Polyloga-
rithms (HPLs). These are essentially a generalisation of Nielsen’s polylogarithms. In
this appendix, we briefly describe the definition and properties of HPL [184] and 2dHPL.
HPL is represented by H(i,;y) with a w-dimensional vector 71, of parameters and its
argument y. w is called the weight of the HPL. The elements of 7i,, belong to {1,0,—1}

through which the following rational functions are represented

1

1 1
f;y) = - fO;y) = -, f=Ly)=——. (1.0.2)
-y y I+y
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The weight 1 (w = 1) HPLs are defined by
H(l,y) = —1In(1 —y), H(0,y) =Iny, H(-1,y)=1In(1 +y). (1.0.3)
For w > 1, H(m, m,,;y) is defined by
H(m,m,;y) = ‘fozdx f(m, x) H(m,; x), meo0,+l. (1.0.4)

The 2dHPLSs are defined in the same way as Eq. (1.0.4) with the new elements {2, 3} in 77,

representing a new class of rational functions

1 1
fQGy=fA-zy = Toy—z fGy) = fzy) = — (L0.5)

y+z

and correspondingly with the weight 1 (w = 1) 2dHPLs

H2y)=-In(1-—==), HGy= 1n(y¥). (L.0.6)

1-z2

1.0.1 Properties

Shuffle algebra : A product of two HPL with weights w; and w, of the same argument y

is a combination of HPLs with weight (w; + w;) and argument y, such that all possible
permutations of the elements of 7, and i, are considered preserving the relative orders

of the elements of i, and i, ,

H( s HOR,0) = )0 H(hysy). (1.0.7)

o - >
My = My L) My

Integration-by-parts identities : The ordering of the elements of 7, in an HPL with weight

w and argument y can be reversed using integration-by-parts and in the process, some
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products of two HPLs are generated in the following way

H(mlvy)H(mZa ""mw;y)

H(,;y) = Himy, my, ...,m,;y)
- H(mQaml’y)H(m37'"7mw;y)

+ .+ (D""H@m,,...,my,my;y).  (1.0.8)
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