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Synopsis

Overview

The gauge/gravity correspondence (holography) has emerged as one of the most useful

tools in exploring quantum properties of conformal field theories and gravitational/string

theories over the last two decades. It frames an equivalence between a d-dimensional

conformal field theory (CFTd) and a string theory in a (d + 1)-dimensional Anti-de Sitter

(AdSd+1) background geometry. The conjecture and a duly formed dictionary of AdS/CFT

correspondence [1–3] equip us with a prescription to compute CFT correlation functions

in terms of so-called Witten diagrams in the bulk AdS gravity.

The correlation functions of a set of primary operators in a given CFT admit an expansion

in terms of conformal partial waves (CPW); in a sense these are the basic building blocks

of CFT correlators. In general (for d > 2, and for d ≤ 2 only the global part) the CPWs

satisfy two types of differential equations, namely the ward identity and the conformal

casimir equations [4–6]. In principle one can solve these partial differential equations

with appropriate boundary conditions to get explicit expressions for the CPWs. Assuming

the AdS/CFT holds one may wonder if the CPWs are computable using bulk theory. This

question is answered recently with a interesting method [7] which involves computing the

so-called geodesic Witten diagrams (GWD) in the bulk.

The GWD methods to compute CFT correlation functions and the partial waves are well
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suited when the bulk gravitational theory is formulated in terms of metric, namely the

Einstein-Hilbert formulation. However, sometimes it is convenient/essential to write the

gravitational theory as extensions of tetrad formulation (Hilbert-Palatini formalism, also

known as first order formalism). For example the higher spin gauge theories in three

dimensions are described as Chern-Simons theories in which the gravity sector is written

in the first order formalism [8–10]. It is also essential when one deals with spinors in

a gravitational background. In dimensions greater than three, the theory of gravity with

negative cosmological constant can be written in the Hilbert-Palatini formalism, a BF-

type gauge theory [11–13]. Therefore it is important to ask how to compute CPWs in this

formalism.

In this thesis we answer this question providing a new prescription to compute CPWs in

Euclidean CFTd holographically in the Hilbert-Palatini formulation of Euclidean AdSd+1

gravity. In the first order formalism, the gravitational theory is seen as a gauge theory

where the diffeomorphisms and the local Lorentz transformations (LLT) are correspond-

ing gauge symmetries of the theory. The basic fields, vielbeins (ea) and the spin connec-

tions (ωab) of AdSd+1 gravity can be packaged into one so(1, d + 1) algebra valued gauge

connection.

A =
1
2
ωabMab +

1
`

ea M0a

where M0a and Mab are the generators of so(1, d + 1) with a, b = 1, · · · d + 1 and ` de-

termines the radius of the AdS space. The action for this connection, A is in general an

appropriate BF theory. The flat connections satisfying

F = dA + A ∧ A = 0

describe locally AdSd+1 spaces. In d ≤ 2 this is also the equation of motion (all solutions

are locally AdS). Given two points in the space-time, in a gauge theory one can define a bi-

local operator, the Wilson line which depends on the representation of the gauge algebra

(R) and the co-ordinates (Xi) of the given bulk points. The co-ordinates of the bulk points
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are denoted by Xα = {ρ, xa}where xa are the boundary co-ordinates. We glue three Wilson

lines joining at a point by contracting the representation indices with the Clebsch-Gordan

coefficients (CGC) of the so(1, d + 1) gauge algebra. This results in a trivalent vertex

which we can treat as a basic building block and construct a spin-network with open

Wilson lines (OWN). Such an OWN operator with N end-points, WN(X1,R1; . . . XN ,RN)

transforms covariantly as a tensor operator under gauge transformations. It turns out that

the leading order contribution of the expectation value of an OWN operator computed in

a specific state, namely the cap-state, evaluates CPW of primary operators in boundary

CFT when the end-points of the corresponding OWN (Xi) are taken to the boundary.

When the external points of an OWN are taken to boundary our computation reduces to

simple Feynman-like rules that require the notion of what we describe as “legs" (also

known as conformal wave functions) and the CG coefficients. Furthermore, our results

introduce a simplification in the computation of OWN using OPE modules which are

close analogs of the well studied OPE blocks.

The thesis contains the following results:

• Differential equations satisfied: The expectation value of a generic OWN satisfies

the conformal ward identity and conformal Casimir equation when the external

points are taken to boundary [14].

• Computing blocks in d ≤ 2: Using our prescription explicit evaluations of OWNs

with two, three, four and five points in AdS3 reproduces corresponding 2d CPWs

which are already know in the literature [14]. The most general cap-state in 1d

has been provided and four scalar conformal partial waves have been calculated in

1d [15].

• d-dimensional scalar block: Our prescription is implemented explicitly to com-

pute the CPWs for scalar primary operators in any dimensional CFTd. Taking var-

ious limits of our answer for 4-point scalar CPWs we reproduce the known results
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in d = 2, 3, 4 and 1 [15].

In what follows we present a brief summary of these results.

Basic ingredients

As alluded earlier the basic ingredients needed to compute an OWN explicitly are the

Wilson line, CGCs and the cap-states.

Wilson line

The non-local Wilson line operators are defined as

WX
Y (R,C) = P exp

[∫ X

Y
A
]

where C is a curve connecting X and Y , R is a representation of the gauge algebra. A is the

pull back of the gauge connection onto the curve C and as usual P means path ordering.

Under a gauge transformation A → hAh−1 + hdh−1 the Wilson line operator transforms

covariantly as

WX
Y → h(X)WX

Y h−1(Y)

For any locally AdS space one can write A = g dg−1 locally where g is an element of

S O(1, d + 1) and satisfies the following equation

dg +
1
2
ωabMab g +

1
`

eaM0a g = 0

for flat connections. The above equation is invariant under LLT and this makes g(X) an

element of the coset so(1, d+1)/so(d+1) which is the Euclidean AdSd+1. Thus the Wilson
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line becomes

Pe
∫ X

Y A = g(X)g−1(Y)

Finally one finds the g(X) for AdSd+1 geometry described by the metric

`−2 ds2 = dρ2 + e2ρ
d∑

a=1

dxa dxa

to be

g(X) = e−ρM0(d+1) e−xa(M0a+Ma(d+1))g0 .

The CFT lives on the boundary of the AdS space at ρ→ ∞.

CG coefficients

The second ingredient in the definition of the OWN expectation values is the Clebsch-

Gordan (CG) coefficients of the gauge algebra so(1, d + 1). One glues the three OWLs

joining at a point by contracting the representation indices into the CG coefficients. These

are invariant tensors in R1 ⊗ R2 ⊗ R3

R1[g(X)]m1m′1R2[g(X)]m2m′2C
R1,R2;R3
m′1,m

′
2,m

′
3
R3[g(X)−1]m′3m3 = CR1,R2;R3

m1,m2,m3
(1)

where Ri[g(X)]mim′i is used to denote the matrix elements of the group element g(x) in the

representation Ri with basis elements labeled collectively by mi. In terms of the algebra

elements this reads:

R1[Mαβ]m1m′1C
R1,R2;R3
m′1,m2,m3

+ R2[Mαβ]m2m′2C
R1,R2;R3
m1,m′2,m3

= CR1,R2;R3
m1,m2,m′3

R3[Mαβ]m′3m3 (2)

which is the recursion relation that determines the CGC.
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The equation (1) eliminates the coordinate dependence of the junction where the Wilson

lines meet when the OWN is evaluated in flat connections. This can be done at every

trivalent vertex in our spin-network eliminating the dependence of the locations of the

vertices. Therefore OWNs are topological.

The cap-states

We are interested in computing the partial waves of the correlation function of a set of

primary operators in the dual CFT. According to AdS/CFT the dual of a boundary primary

operator is a bulk field. The fields in the bulk transform in finite dimensional non-unitary

representations of LLT. Therefore, we would like to restrict each open end of WN down to

the corresponding finite dimensional representation of the LLT algebra so(d + 1). Then in

the boundary limit each end point will transform as the corresponding dual primary.

This step can be achieved by capping the ith external leg of the OWN in the representation

Ri with appropriate cap-states. Then the OWN transforms in the finite dimensional repre-

sentation of so(d + 1). We can construct such special states which we call the cap-states,

|R〉〉. For scalar such cap-states are constructed in [16] (see also [17, 18] for d = 2 case).

Once projected on to the cap-state, it turns out that one particular component of such a

tensor has the leading fall-off behavior, as the points Xi approach the boundary, compared

to the other components. That specific component will be related to a partial wave in the

correlator of the corresponding primary operators of the CFT.

Legs and OPE module

As mentioned earlier to proceed further we need to compute the in-going legs and the

out-going legs. These are obtained by computing the matrix elements of g(X) and g−1(X)

between the cap-state |R〉〉 and the normalized basis elements |R,m〉 of the corresponding
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module in the boundary limit. These are appropriately called conformal wave functions

in the literature. Conformal waves provide appropriate representations and the conjugate

representations of conformal algebra when the generators are represented as differential

operators.

The standard way to find the CGCs is to solve the recursion relations they satisfy with the

appropriate unitary conditions. But our prescription inherently leads one to calculate the

specific CGCs required to compute corresponding CPWs in an easier method. One can

amputate three legs from the three-point function of the primary operators in the boundary

CFT to find the CGCs.

To compute the CPWs (such as four-point one) we actually need CGCs with two legs

attached. It suggests that this object can be easily obtained from three-point function

amputating only one leg. This quantity depends on the co-ordinates and the conformal

data of the two boundary operator insertions and carries the labels of the module of the

third primary. We refer to this as OPE module which is a close cousin of the so-called

OPE blocks [19, 20].

Having all the basic ingredients in hand we analyze the properties of the OWNs. We

show that a generic OWN satisfy global Ward identity (a first order PDE) and conformal

Casimir equation (a second order PDE).

Differential equations satisfied

In the first order formalism the Killing vectors of AdSd+1 are given by

(ξ[αβ])µ = −` Eµ
a(R[g−1])αβ

0a
= −` Eµ

a(R[g])0a
αβ

7



where Eµ
a is the inverse vielbein and (R[g−1])αβ

0a are matrix elements of g in its adjoint

representation. Using the following identities

g(X) Mαβ = ξ
µ
αβ(X)∂µg(X) +

1
2

Mbcg(X)
[
ωbc
µ (X) ξµαβ(X) + (R[g(X)])bc

αβ

]
Mαβg−1(X) = −ξ

µ
αβ(X)∂µg−1(X) +

1
2

[
ωbc
µ (X) ξµαβ(X)

+(R[g(X)])bc
αβ

]
g−1(X)Mbc

it can be shown that these matrix elements simply turn out to be those obtained by the

action of the boundary conformal transformation of a primary operator on the matrix

element without the insertion in the boundary limit. Finally we make use the recursion

relations that CGCs satisfy (2.16) to show that the OWN satisfy the global Ward identity

as well as the conformal Casimir equations.

Everything has been stated so far can be implemented in full generality in d ≤ 2 and for

scalar conformal partial waves in general dimensions.

CPWs in 2d CFT

We start with Euclidean AdS3 with boundary R2. The Lie algebra of the gauge group in

this case is so(1, 3) which can be decomposed as sl(2,R) ⊕ sl(2,R). The coset element

g(x) takes the following form

g(x) = eρ(L0+L̄0)e−L−1(x1+ix2)e−L̄−1(x1−ix2) (3)

where L−1, L0, L1 (L̄−1, L̄0, L̄1) are generators of sl(2,R) algebra (another copy).
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The cap-state

A (quasi) primary operator in 2d-CFT carries the representation label (h, h̄). Working in

the basis, |h, n〉 with n ∈ Z+, we find the appropriate cap-state for the primary operator to

be

|h, h̄; j, p〉〉 = λ(h, h̄)
∞∑

n=0

(−1)
p
2 +n

√
(n + p)!

n!p!

×

√
Γ(2h̄ + n)

Γ(2h + n + p)Γ(2h̄ − 2h + 1 − p)
|h, n + p〉 ⊗ |h̄, n〉 (4)

with

λ(h, h̄)2 = (−1)h̄−h (2h̄ − 2h)!Γ(2h)
Γ(2h̄)

where p ∈ {0, 2 j } and h̄ − h = j ≥ 0. For scalar primaries (h = h̄) the above expression

agrees with the known results [16].

Legs

Using (3) and (4) we obtain the in-going leg to be

lim
ρ→∞

eρ(h+h̄) 〈〈h, h̄;− j, p|g(X)|h, h̄; k, k̄〉 =
λ(−1)−p/2 Γ(2h̄+k̄)Γ(2h̄−p+k)

Γ(2h̄−p)√
k!k̄!Γ(2h + k)Γ(2h̄ + k̄)Γ(2 j + 1 − p)p!

×e−ρ(2 j−p)z−2h̄z̄−2h̄zp−kz̄−k̄ (5)

and the out-going leg

lim
ρ→∞

eρ(h+h̄) 〈h, h̄; k, k̄|g−1(X)|h, h̄; j, p〉〉 =
λ(−1)p/2

Γ(2h + p)

√
k!k̄!Γ(2h + k)Γ(2h̄ + k̄)
p!Γ(2h̄ − 2h + 1 − p)

× e−ρp zk−p

(k − p)!
z̄k̄

k̄!
(6)
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In the above expressions for the legs we have neglected the sub-leading terms in e−ρ. In

the boundary limit ρ→ ∞ one can see that the most leading term will come from p = 2 j

in (5) and p = 0 in (6). The thesis shows that these legs reproduce the two-point function

for primary operators.

CG coefficients

Stripping the legs we just found from three point function of (quasi) primary operators

with conformal weights (h1, h̄1), (h2, h̄2) and (h, h̄) we find the CGCs explicitly. Thus the

sl(2,R) CGCs take the form

Ch1,h2;h
k1,k2;k =

1∏3
i=1

√
ki!(Γ(2hi + ki)

f (k1, k2; k3)

with

f (k1, k2; k3) ∼ Γ(2h2 + k1 + k2)Γ(k3 − k2)k2! δh1+k1+h2+k2−h3−k3

×3F2

(
−k1,−k3, h3 + h1 − h2

1 + k2 − k3, 1 − 2h2 − k1 − k2
; 1

)

CPWs

Having got all the ingredients ready we evaluate an OWN with four external points. In

the boundary limit this results in

|z|∆−l
[
zl

2F1[∆−l
2 − h12,

∆−l
2 − h34, ∆ − l, z]2F1[∆+l

2 − h12,
∆+l

2 − h34, ∆ + l, z̄]

+(z→ z̄, hi j → h̄i j)
]

(7)

where hi j = hi − h j etc. and ∆ = h + h̄, l = h − h̄. The above expression exactly matches

with the well known result for (global) four-point conformal partial waves for primary op-

erators with conformal dimensions (hi, h̄i) and (h, h̄) being that of the exchanged primary
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in the intermediate channel [6].

In a similar way we compute five-point conformal block with perfect agreement with

known results [21].

Similar general analysis is done in the thesis to compute the OWNs in d = 1.

Scalar CPWs in arbitrary dimension

The next part of the thesis will contain the implementation of our prescription to compute

four-point CPWs for scalar primary operators in CFTd. We also show that our methodol-

ogy reproduces the known answers.

Legs

The cap-states for a scalar primary operator in a d-dimensional CFT are found in [16]. A

generic basis state |∆; l,m, s〉 in the module for scalar representation (∆, l = 0) of so(1, d +

1) is defined as

(P2)s Ml
m(P)|∆〉 = Al,s|∆; {l,m, s}〉

〈∆|(K2)s Ml
m(K) = A∗l,s〈∆; {l,m, s}|

where Ml
m(x) = xl Yl;m(Ωx); Yl;m(Ωx) being the hyperspherical harmonics and m de-

notes (m1, . . . ,md−2) [22, 23]. Assuming the orthonormality, 〈∆; {l′,m′, s′}|∆; {l,m, s}〉 =

δss′δll′δmm′ we find the normalization constant to be

|Al,s|
2 =

22l+4sΓ [l + s + d/2]Γ[∆ + l + s]Γ
[
∆ + s − (d−2)

2

]
s!

4 a2 π
d
2Γ[d/2]Γ[∆]Γ

[
∆ − (d−2)

2

]
11



where a is a d dependent constant. Then the in-going leg becomes

lim
ρ→∞

eρ∆〈〈∆|g(x)|∆; {l,m, s}〉 = 4aπd/2 2l+2s

Al,s
× (x2)−∆−l−s Ml

m(x) (∆)l+s

(
∆ −

d − 2
2

)
s

(8)

while the out-going leg takes the following form

lim
ρ→∞

eρ∆〈∆; {l,m, s}|g−1(y)|∆〉〉 =
4aπd/2

2l+2s Al,s
(y2)s

(s)!Γ(l + s + d/2)
Ml∗

m(y) (9)

where (a)n is the Pochhammer symbol. In the thesis we checked that these legs used in

our prescription reproduces the right two-point function for the scalar primaries.

CPWs

Having found the legs (8) and (9) we can compute the OPE modules required for com-

puting an OWN. To compute an OWN with end points (∞,u, x, 0) at the boundary with

u · u = 1 we need two types of OPE modules. One can be obtained starting from scalar

three-point function with operator insertions at (∞,u, y) by amputating the out-going leg

that ends at y when the other one is obtained by amputating the in-going leg starting from

y from the three-point function with the operator insertions (y, 0, x).

Finally gluing the OPE modules thus obtained we have evaluated the OWN to be

W (d)
∆,0(∆i, x) = (x2)

(∆−∆3−∆4)
2

Γ
(

d−2
2

)
4πd/2 Γ(d/2)

∑
l,s

(2l + d − 2)
(
∆−∆12

2

)
l+s

(
∆+∆34

2

)
l+s

s! (d/2)l+s (∆)l+s

(
∆ − d−2

2

)
s

×

(
∆ − ∆12

2
−

d − 2
2

)
s

(
∆ + ∆34

2
−

d − 2
2

)
s

xl+2s C
d−2

2
l

(x · u
x

)
(10)

where Cµ
l (x) are the Gegenbauer polynomials. The above expression matches with the

known results for four-point partial wave for scalar primaries with operator dimensions

(∆i) with i = 1, 2, 3, 4 located at (∞,u, x, 0) at the boundary respectively [6].

We take limits of our answer in d to match with the known results in the special cases of

12



interest, namely d ≤ 4 [6, 24].

Conclusion

This synopsis contains a brief summary of our prescription [14, 15] and its successful

implementation in some specific cases. We have shown that a generic gravitational open

Wilson network satisfies the defining differential equations for conformal partial waves.

We reproduced many known results which include CPWs for primary operators in d ≤ 2

as well as scalar CPWs in an arbitrary dimensions. This prescription has been found

applicable in different contexts.

Plan of the thesis:

1. The first chapter will contain a brief introduction to AdS/CFT correspondence in-

cluding the first order formalism of AdS gravity and various methods for computing

conformal partial waves.

2. The second chapter will contain specification of our prescription and its properties.

3. The third chapter will contain implementation of the prescription in d ≤ 2 to com-

pute conformal blocks from OWNs.

4. The fourth chapter will contain a detail calculation of scalar blocks in arbitrary

dimensions using OWNs and recovering some special cases.

5. The fifth chapter will contain a discussion of the results, open problems and general

outlooks.
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Chapter 1

Introduction

Conformal transformations of a space are those coordinate transformations that leave the

metric invariant up to a (local) scale factor. Such coordinate transformations form a group

called the conformal group of that space. The group of conformal transformations of

the d-dimensional flat spacetime includes, in addition to the Poincaré transformations,

(global) scaling and coordinate inversion. A quantum field theory that is invariant under

such transformations is called a Conformal Field theory (CFT).

Conformal field theories have been studied for a long time because of their relevance to

many physical systems. Theories with scale invariance are used to describe many lattice

systems such as the Ising models, near their phase transitions, as the characteristic length

scale of the systems becomes infinity. And systems with scale invariance, more often than

not, also admit the full conformal invariance. Also, a generic QFT at the fixed point of its

renormalization group flow is expected to be described by a CFT. At a more formal level

CFTs have been playing a pivotal role in the famous AdS/CFT correspondence. The fact

that the conformal symmetry algebra is infinite dimensional in d = 2 has lead to enormous

control over them. Even in higher dimensions the conformal symmetry lends itself helpful

towards classification of such field theories via the conformal bootstrap program.

Some of the best known and well studied examples of CFTs include massless free field
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theories in any dimension, (infinitely large) classes of exact CFTs, such as Minimal mod-

els, WZW models etc., in two dimensions, the Wilson-Fisher fixed point of the O(N)

vector models in d = 4, and a host of supersymmetric CFTs that have relevance to holog-

raphy, such as the N = 4 SU(N) SYM theory in d = 4, the ABJM theory in d = 3,

D1 − D5 CFT in d = 2 etc.

We will now review some relevant aspects of CFTs in general dimensions that will be

useful for us later in this thesis.

1.1 Conformal group

Let us consider a d-dimensional Riemann manifold with a (Euclidean) metric gab(x). Then

its conformal transformations are defined as the coordinate transformations, x → x′(x)

which leave the metric gab invariant up to a (local) scale factor, i.e.,

g′ab(x) = Ω2(x)gab(x). (1.1)

where a, b = 1, . . . d. We will consider the subgroup of conformal transformations con-

nected to identity. When the manifold in question is simply the flat space Rd with Carte-

sian coordinates, and considering infinitesimal coordinate transformations xa → x′a =

xa + ξa(x), the condition (1.1) becomes the conformal Killing vector equation

∂aξb + ∂bξa =
2
d
∂cξ

c δab (1.2)

For d ≥ 3, the general solution to this equation is

ξa = aa + ωa
b xb + λ xa + bc(x2δa

c − 2xaxc) (1.3)
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with ωab + ωba = 0. The number of independent parameters of these conformal trans-

formations is 1
2 (d + 2)(d + 1) and the commutator algebra of the vector fields ξa ∂a is a

representation of the corresponding algebra. When d = 1 the conformal transformations

is Di f f (R1), and for d = 2 it is generated by two commuting copies of Witt algebras.

The global parts of the conformal group even in d = 1 and d = 2 cases are isomorphic to

so(1, 2) and so(1, 3) respectively.

The conformal group (in dimension d ≥ 3 and the global subgroup in d ≤ 2) contains as

a subgroup the (Euclidean version of the ) Poincare group IS O(d) generated by 1
2d(d −

1) rotation (Lorentz) generators Lab, d momenta Pa. The rest of the generators of the

conformal group are the d special conformal generators Ka and one dilatation D. These

generators obey the following commutation relations:

[Pa,Kb] = −2(δabD + Lab), [Lab,Vc] = − δacVb + δbcVa,

[D, Pa] = Pa, [D,Ka] = − Ka,

[Lab, Lcd] = δadLbc − δacLbd + δbcLad − δbdLac (1.4)

where Va = Pa, Ka. Using the standard identifications

D = −M0,d+1, Pa = M0a + Ma,d+1, Ka = −M0a + Ma,d+1, and Mab = Lab (1.5)

it is seen that the Lie algebra of the Euclidean conformal group is isomorphic to so(1, d+1)

algebra

[Mαβ,Mγδ] = ηαδMβγ − ηαγMβδ + ηβγMαδ − ηβδMαγ (1.6)

where α, β = 0, 1, . . . , d + 1 and ηαβ = diag{−1, 1, . . . 1}. These can be more naturally

thought of as Lorentz rotations of R1,d+1 spacetime with co-ordinates xα. The correspond-

ing Minkowski version is obtained by Wick rotating the xd+1 coordinate of this (d + 2)-

dimensional space into a time-like one, and the resulting algebra is so(2, d).
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In d = 2 when the co-ordinates (x1, x2) on the Euclidean plane R2 are written as complex

variables as

z = x1 + ix2; z̄ = x1 − ix2 (1.7)

the conformal transformations becomes

z→ f (z); z̄→ f̄ (z̄) (1.8)

where f (z) and f̄ (z̄) are any holomorphic and anti-holomorphic functions respectively.

As an infinite number of parameters is needed to specify any analytic functions the two-

dimensional conformal group is infinite dimensional. The corresponding Lie algebra

reads,

[ln, lm] = (n − m)ln+m

[l̄n, l̄m] = (n − m)l̄n+m

[ln, l̄m] = 0 ,

(1.9)

and the generators are represented by

ln = −zn+1∂z; l̄n = −z̄n+1∂z̄. (1.10)

This algebra (1.9) is called Witt algebra. As realised by the 2d CFTs at quantum level,

a quantity called the “central charge”, c (which is measure of the number degrees of

freedom) appears in the algebra of the corresponding charges, and each copy of the Witt

algebras (1.9) is modified to a Virasoro algebra,

[Ln, Lm] = (n − m)Ln+m +
c

12
n(n2 − 1)δn+m,0

[L̄n, L̄m] = (n − m)L̄n+m +
c̄

12
n(n2 − 1)δn+m,0

[Ln, L̄m] = 0 ,

(1.11)
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where Ln are the quantum generators. The set comprising {L−1, L0, L1} is called the global

part of the conformal algebra and forms an sl(2,R) subalgebra of Virasoro algebra.

In d = 1 the conformal group becomes even larger as the CKV equation (1.2) is identically

satisfied for any ξ(x). It contains all diffeomorphisms of the line R1 – whose algebra can

be taken to be one copy of Witt algebra, generated by the vector fields Tn = −xn+1∂x. The

maximal finite dimensional subalgebra is again sl(2,R) generated by {T0,T±1}.

Having described the conformal symmetries as coordinate transformations, we now want

to discuss some basic facts about field theories which are invariant under conformal trans-

formations, namely the conformal field theories.

1.2 Conformal field theory

A conformal field theory can be defined with the spectrum of local operators and associ-

ated conformal data, namely, the conformal weights and spins, the OPE coefficients etc.,

without referring to any microscopic theory (e.g. Lagrangian description etc.).

1.2.1 Local operators

An operator which transforms under finite conformal transformation, x
g
−→ x′ as

Oi(x)
g
−→ O′i(x′) =

∣∣∣∣∣∂x′

∂x

∣∣∣∣∣− ∆d Ri
j(g)O j(x) = Ω∆ Ri

j(g)O j(x) (1.12)

is called (quasi) primary operator with conformal dimension ∆. Under infinitesimal trans-

formations the operator transforms as

PaO
i(x) = ∂aO

i(x)

LabO
i(x) = (xa∂b − xb∂a)Oi(x) + (Σab)i

jO
j(x)

DOi(x) = xν∂νOi + ∆Oi(x)
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KaO
i(x) =

(
2xaxb∂b − x2∂a + 2xa ∆

)
Oi(x) + 2xb(Σab)i

jO
j(x) (1.13)

where i, j are the irreducible representation indices of so(d). One finds the finite transfor-

mations by exponentiating the above relations.

All the operators present in a CFT can be classified into conformal families each corre-

sponding to a specific primary operator O and its descendants. The conformal families

are denoted as [O]. Under a conformal transformation the elements of a given conformal

family transform under themselves. Thus each conformal family provides an irreducible

representation of conformal group. The vacuum state |0〉 in a CFT is invariant under con-

formal transformations (under only global part in d ≤ 2). The primary operator with

conformal dimension ∆ acts on the vacuum to create an state |∆〉 = O(0) |0〉 where we

have suppressed the internal indices of the primary operator O for simplicity. The fact

that the operator O(x) is primary reflects from

Ka|∆〉 = 0; D|∆〉 = ∆|∆〉; Mab|∆〉 = Σab|∆〉 (1.14)

Using the rest of the conformal generators Pa the infinite tower of descendant states can

be obtained from |∆〉.

Apart from the kinematic quantities (determined by symmetries of the theory) one needs

some dynamical input to specify a CFT. Operator product expansion (OPE) in a CFT

defines such dynamical quantities, namely OPE coefficients. The basic idea of OPE is

to write the product of two local operators in a CFT as series expansion of the operators

present in the CFT

On(x)Om(y) ∼
∑

p

Cp
nm(x − y; ∂y)Op(y). (1.15)

whereCp
nm(x−y; ∂y) are differential operators and (n,m) labels are used to indicate different

local operators with internal indices suppressed. The right hand side is constrained by

symmetries and associativity. The coordinate dependence of Cp
nm(x − y, ∂y) is fixed by
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the conformal symmetries up to some constant coefficients, called OPE coefficients, that

are the dynamical inputs to the theory. We denote the OPE coefficients as Cp
nm. If one

knows the spectrum of primary operators and all their OPE coefficients of a given CFT in

principle one can write down all the correlation functions of the CFT.

Having discussed the local operators and the operator algebra in a CFT we now consider

a special local operator, the stress tensor which plays an important role in CFT.

1.2.2 Stress tensor

The Poincare symmetries guarantee the existence of a stress tensor Tab which is symmetric

(Tab = Tba) and conserved (∂aTab = 0) [25]. In addition the scale invariance implies the

tracelessness of the stress tensor, T a
a = 0. All the generators of the conformal symmetries

in the quantum theory can be obtained using the stress tensor by computing the Noether

charges

Qξ =

∫
dd−1x ξµ[αβ]T

0
µ (1.16)

where ξ is the Killing vector corresponding to the conformal symmetry.

However in general the vacuum expectation value 〈T a
a〉 is found to be non-vanishing in

even-dimensional curved spacetime. This is called trace anomaly. For example when we

quantize a conformal field theory on a two-dimensional curved manifold with curvature

R(x), then the expectation value of the trace of the energy-momentum tensor becomes,

〈T a
a(x)〉 =

c
24π

R(x) (1.17)

where c is the central charge. But in the rest of this thesis we only consider the CFT where

the trace anomaly is absent. So the trace anomaly does not play any role in our discussion.

The consequence of infinitesimal conformal transformations at quantum level may be
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expressed via Ward identities which involve the stress tensor and other conserved currents

in the theory.

1.2.3 Ward identities

Any infinitesimal transformation can be written as,

O′(x) ∼ O(x) −
1
2
ωαβMαβO(x) (1.18)

where we have suppressed the internal indices of the local operator O for simplicity and

the conformal generators Mαβ are written in appropriate representation with the infinites-

imal, constant parameters ωαβ.

Now if we denote the product of n local operators, at coordinates xi, i = 1, ..., n by X, then

for any ωαβ we can write the Ward identity for the conserved current ja
[αβ] as,

∂a 〈 ja
[αβ] X〉 = −

n∑
i=1

δ(x − xi) 〈O(x1) . . . M(i)
αβO(xi) . . .O(xn)〉 (1.19)

Now considering the action of generators (1.13) upon a generic local operator we can

easily deduce the Ward identities for conformal transformations from (1.19). For transla-

tional invariance,

∂a〈T a
b X〉 = −

∑
i

δ(x − xi)
∂

∂xb
i

〈X〉 (1.20)

Using (1.20) we find the Ward identity associated with rotation to be

〈(T ab − T ba) X〉 = −
∑

i

δ(x − xi)Σab
i 〈X〉 (1.21)

and finally for scale invariance,

〈T a
a X〉 = −

∑
i

δ(x − xi)∆i〈X〉. (1.22)
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Equations (1.20-1.22) are the three Ward identities associated with conformal transforma-

tion. We see that the stress tensor becomes conserved, symmetric and traceless within the

correlation functions, except at the points of operator insertions in the correlator. One can

integrate (1.19) over the space that includes all the points xi to show

∑
i

M(i)
αβ〈X〉 = 0 (1.23)

considering the fact that the correlator 〈 ja
[αβ] X〉 vanishes sufficiently fast at the boundary

of the space considered.

The correlations functions solve the Ward identities. For a given quantum field theory,

if the correlation functions are known then one can extract all other information from

these. One can constrain the correlation functions to some extent if the QFT has a large

symmetry algebra. In particular if the QFT is conformally invariant we may be able to

say a little more about the correlation functions than otherwise. In the next section we

shall address the constraints imposed on correlation functions by conformal invariance in

a generic CFT.

1.3 Conformal correlators and partial waves

In a CFT two- and three-point functions are fixed by the conformal symmetry apart from

some constant coefficients. For example, two-point correlation function for the scalar

quasi-primary operators, O1 and O2 with conformal dimensions ∆1 and ∆2 respectively

takes the form,

〈O1(x1)O2(x2)〉 =


C12

|x1−x2 |2∆
if ∆1 = ∆2 = ∆

0 if ∆1 , ∆2

(1.24)

where C12 is a constant coefficient. The three-point function for scalar primaries becomes

〈O1(x1)O2(x2)O3(x3)〉 =
C123

|x12|
∆1+∆2−∆3 |x23|

∆2+∆3−∆1 |x13|
∆3+∆1−∆2

(1.25)
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where xi j ≡ xi − x j and C123 are the OPE coefficients that depend on the theory.

However unlike two- and three- point functions, the n-point functions cannot be fixed by

conformal invariance for n ≥ 4. There exist conformally invariant cross ratios – given

four points one can construct two independent cross ratios

u =
x2

12x2
34

x2
13x2

24

and v =
x2

14x2
23

x2
13x2

24

(1.26)

The n-point functions may have an arbitrary dependence on such cross ratios.

Nevertheless we can use (1.15) in n-point function to separate it out into kinematic and

dynamic parts. This procedure is called partial waves expansions. For example the four-

point function of four scalar primary operators can be decomposed as:

〈O1(x1)O2(x2)O3(x3)O4(x4)〉 =
∑
O

C12OCO34W∆,l(∆i; xi) (1.27)

where C12O are the OPE coefficients and the partial wave W∆,l(∆i; 1xi) is

W∆,l(∆i; xi) =

(
x2

24

x2
14

)1
2 (∆1−∆2) ( x2

14

x2
13

)1
2 (∆3−∆4)

G∆,l(u, v)

(x2
12)

1
2 (∆1+∆2)(x2

34)
1
2 (∆3+∆4)

(1.28)

The pre-factor is determined by the conformal invariance and the conformal block G∆,l(u, v)

depends only on the conformally invariant cross ratios u, v. Thus the basic building blocks

of the correlation functions of primary operators in a CFT are the partial waves which in-

turn are proportional to conformal blocks. The conformal blocks are important inputs

into the Bootstrap approach [26–55] to constrain the dynamical data of any CFT. There

are different methods to compute conformal partial waves.

1. Solving differential equations: In general (for d ≥ 2, and for d ≤ 2 restricting

to the contribution of global conformal blocks alone) the partial wave W∆,l(xi) is
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expected to satisfy two types of differential identities:

(M(1)
AB + M(2)

AB + M(3)
AB + M(2)

AB)W∆,l(xi) = 0

(M(1)
AB + M(2)

AB)(MAB
(1) + MAB

(2) )W∆,l(xi) = C2(∆, l)W∆,l(xi)

= (M(3)
AB + M(4)

AB)(MAB
(3) + MAB

(4) )W∆,l(xi)

(1.29)

where M(i)
AB is the operator representing the global conformal transformation gen-

erator acting on the primary operator Oi(xi) and C2 is the quadratic Casimir of the

representation of the operator O being exchanged in the intermediate channel. The

first one is the reflection of the fact that the partial wave is covariant under the global

conformal transformations. The second is the conformal Casimir equation [4–6].1

These can be solved with appropriate boundary conditions to obtain explicit expres-

sions [4–6] for the partial waves.

2. Using projectors: The projector onto the conformal family containing a primary O

(internal indices are suppressed) is defining as

| O | =
∑
α, β

|α 〉N−1
αβ 〈 β |; Nαβ ≡ 〈α | β〉 (1.30)

where α, β represents the primary and its descendents in the conformal family. The

projector satisfies the relation

I =
∑
O

| O | (1.31)

where is the sum is carried over all the primaries present in the theory.

One can insert the projector inside the correlator, e.g. for four-point function one

1If there are non-trivial higher order Casimir operators of the conformal algebra then one has to impose
the corresponding differential equations as well.
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can write

〈O1(x1)O2(x2)O3(x3)O4(x4)〉 =
∑
O

〈0| R {O3(x3)O4(x4)} | O | R {O3(x3)O4(x4)} |0〉

(1.32)

where R stands for radial ordering and one can choose the origin such that |x3,4| ≥

|x1,2|. Each term in the above sum associates with the square of OPE coefficients

and a conformal block with the primary operator O and its descendents exchanged

in the intermediate channel.

3. Series expansion: We discuss this method with a simple case which corresponds

to the four-point function of identical scalar operators O with the operator dimen-

sion ∆O. The conformal transformations can be used to put all four operators

on a plane [56, 57] (see also [58]). The operator insertions can be mapped to

x1 = −r, x2 = r, x3 = −u and x4 = u with u · u = 1 and r = ρn. In radial

quantization this mapping takes the operators to diametrically opposite points ±n

and ±u respectively on S d−1 with n · u = cos θ. The two pairs (1, 2) and (3, 4) are

separated by time τ = − log ρ.

The set of descendants of a primary operator O∆ with conformal weight ∆ and spin

j are denoted as |∆, j; m〉 µ1...µ j with energy ∆ + m. Rotational invariance implies

〈0|O(−r)O(r)|∆, j; m〉 µ1...µ j = C
ρ∆+m

ρ2∆O

(
nµ1 . . . nµ j − traces

)
(1.33)

where C is a constant. Finally using the above relation and inserting the projector

into the four-point function one can write the conformal block in terms of Gegen-

bauer polynomials Cµ
j (cos θ) as

G∆,l(u, v) =
∑
m, j

Bm, j ρ
∆+m C

d−2
2

j (cos θ) (1.34)

where j ∈ {|l−m|, |l−m|+ 2, . . . (l + m)} and m sums over all positive even integers.
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Several different techniques, e.g. embedding-space formalism [59–66], use of shadow

operators [62] etc. have been used along with the methods described above to deal

with the spinning operators as well as some other difficult problems.

4. Recursion relations: There exist some powerful recursion relations that enable one

to compute the conformal partial waves in a given dimension in terms of those in

lower dimensions [62,67]. For instance, one such recursion relation among the even

dimensional conformal partial waves was given in [62]. Recently a generalization

of such a relation among the odd dimensional conformal partial waves has been

provided [15].

5. Mellin space technique: The Mellin transform is defined as

f (x) =

∫
C

ds x−s f̃ (s) (1.35)

Assuming f̃ (s) falls off at infinity sufficiently fast the power law behavior of f (x) is

captured by finding the poles of f̃ (s). For example, if f (x) = 1/x∆ with ∆ > 0, then

f̃ (s) = 1/(s − ∆).

The Mellin amplitude Mn(si j) of a general n-point CFT correlation functions of

primaries Oi with conformal weight ∆i is given by [68, 69]

〈O1(x1) . . .On(xn)〉 =

∫ i∞

−i∞
[dsi j]

n∏
i< j=1

x−2si j

i j Γ(si j)Mn(si j) (1.36)

with the constraints on the Mellin variables,
∑

j,i si j = ∆i. For example let us

consider the Mellin transform of the four-point function (1.27). In this case there

are two independent Mellin variables which can be written as

s12 =
∆1 + ∆2

2
− s and s14 = −t (1.37)

Then the Mellin amplitude B(s)
∆,l(s, t) of the s-channel conformal block G(s)

∆,l(u, v) is
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given by [54, 70, 71]

B(s)
∆,l(s, t) = eiπ2 (2s−∆+l) (−2πi)Γ(∆−l

2 − s)

Γ(s + 1 − n + ∆−l
2 )Γ(∆1+∆2

2 − s)Γ(∆3+∆4
2 − s)

P(s)
∆−n,l(s, t)

(1.38)

where P(s)
∆−n,l(s, t) are the Mack polynomials.

The Mellin space approach to compute conformal blocks has following advantages.

The Mellin amplitudes are meromorphic function having only simple poles. The

poles in different channel (s, t) correspond to twist τ = ∆ − l of the operators in that

channel. The residues at the poles are related to three-point functions (factorization

property). This leads to the recursion relations which can be solved to compute

Mellin amplitudes in terms of lower point amplitudes [72–74].

6. Holographic approach: The gauge/gravity correspondence has emerged as one of

the most useful tools in exploring quantum properties of conformal field theories

and gravitational/string theories over the last two decades. It frames an equivalence

between a d-dimensional conformal field theory (CFTd) and a string theory in a

(d + 1)-dimensional Anti-de Sitter (AdSd+1) background geometry. The conjecture

and a duly formed dictionary of AdS/CFT correspondence [1–3] equip us with a

prescription to compute CFT correlation functions in terms of so-called Witten dia-

grams in the bulk AdS gravity. Given this it is a natural question to ask if the partial

waves can be computed using holographic techniques. This thesis addresses this

issue and provides a novel prescription to compute conformal partial waves using

holography.

Before proceeding further let us review some essential aspects of the AdS/CFT

correspondence.
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1.4 The AdS/CFT correspondence

The (d + 1)-dimensional Anti-de-Sitter (AdS) spacetime which solves the Einstein equa-

tion in vacuum with negative cosmological constant, Λ is given by the hyper-surface in

R2,d,

− X2
−1 − X2

0 + X2
1 + · · · · +X2

d = −l2. (1.39)

with the curvature R = −d(d + 1)/l2. The Euclidean version of AdS d+1 which we will

work on can can be obtained starting from R1,d+1. In Poincaré patch parameterized by

{ρ, xi} the metric of AdS d+1 becomes,

l−2 ds2 = dρ2 + e2ρ
d∑

i=1

dxidxi. (1.40)

The conformal boundary of AdS d+1 (ρ→ ∞) is identified with Rd [3].

The AdS/CFT conjecture states the theory of quantum gravity (often called “bulk the-

ory”) in AdS d+1 is dual to d-dimensional conformal field theory (often called “boundary

theory”) on the Minkowski space. Further each field in the bulk is associated with an

operator on the boundary and vice versa. For instance, a scalar field of mass m in the bulk

is dual to an operator of scaling dimension ∆ = d/2 +
√

(d/2)2 + m2 on the boundary.

Similarly the graviton in the bulk is dual to the energy-momentum tensor on the boundary

and a gauge field is dual to conserved currents. The bulk action generally takes the form

S bulk =
1

16πGd+1

∫
dd+1x

√
g (R − 2Λ +Lmatter) (1.41)

where Gd+1 is the Newton constant in (d + 1)-dimension and Λ = −
d(d−1)

2l2 .

The AdS/CFT conjecture for computation of correlation functions relates the on-shell

(evaluated in the space of solutions with appropriate boundary conditions) bulk partition
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function

Zbulk =

∫
Dφ e−S bulk (1.42)

to the generating functional of the CFT correlators in the boundary theory

Zbulk[Φ0(x)] = 〈 e
∫

ddx Φ0(x) O(x) 〉CFT (1.43)

where the boundary value of a generic bulk field Φ0 becomes the source of the dual

operator O in the generating functional. We have suppressed the internal indices of the

bulk field as well as the boundary operators for simplicity. Differentiating (1.43) with

respect to Φ0 one can evaluate the CFT correlation functions

δ

δΦ0(x1)
· · ·

δ

δΦ0(xn)
Zbulk[Φ0(x)]

∣∣∣∣∣
Φ0=0

= 〈 O(x1) · · · O(xn) 〉 (1.44)

For illustration let us consider a massive scalar field φ in the matter sector in (1.41)

Lmatter =
1
2
∂µφ∂

µφ +
1
2

m2φ2 + V(φ) (1.45)

where V(φ) is the interaction term in the action. When the theory is free i.e. V(φ) = 0 the

equation of motion is given by

(
�g + m2

)
φ ≡

1
√

g
∂µ

(√
ggµν∂νφ

)
+ m2φ = 0 (1.46)

Using the Green function Kd,∆(ρ, x; x′) the solution of (1.46) can be found with the bound-

ary condition

lim
ρ→∞

e ρ (d−∆) φ(ρ, x) = φ0(x) (1.47)
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and regularity requirements at (ρ→ ∞) as

φ(ρ, x) =

∫
ddx′ Kd,∆(ρ, x; x′) φ0(x′) (1.48)

where the “bulk-to-boundary propagator" Kd,∆(ρ, x; x′) satisfies the following conditions

(
�g + m2

)
Kd,∆(ρ, x; x′) = 0

lim
ρ→∞

e ρ (d−∆) Kd,∆(ρ, x; x′) = δ(d)(x − x′)

lim
ρ→−∞

Kd,∆(ρ, x; x′) = 0 (1.49)

One finds the bulk-to-boundary propagators for scalar fields to take the form [75]

Kd,∆(ρ, x; x′) =

(
e−ρ

e−2ρ + |x − x′|2

)∆
(1.50)

If we add a cubic interaction V(φ) = −λ3φ
3 to the action, the equation of motion becomes

(�g + m2)φ = λφ2 (1.51)

which can be solved perturbatively in λ. Substituting φ = φ(0) + λ φ(1) + O(λ2) in (1.51)

we get

(�g + m2) φ(0) = 0; (�g + m2) φ(1) = φ2
(0) (1.52)

To solve these equations we introduce the Green function Gd,∆(ρ, x; ρ′, x′), also known as

“bulk-to-bulk propagator" which are defined as

(�g + m2) Gd,∆(ρ, x; ρ′, x′) =
1
√

g
δ(ρ − ρ′) δ(d)(x − x′)

lim
ρ→∞

eρ(d−∆)Gd,∆(ρ, x; ρ′, x′) = 0

lim
ρ→−∞

Gd,∆(ρ, x; ρ′, x′) = 0 (1.53)
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The bulk-to-bulk propagator for bulk scalar field is given by [75]

Gd,∆(ρ, x; ρ′, x′) = e−∆σ(ρ,x; ρ′,x′)
2F1

(
∆,

d
2

; ∆ + 1 −
d
2

; e−2σ(ρ,x; ρ′,x′)
)

(1.54)

where σ(ρ, x; ρ′, x′) is the geodesic distance between points (ρ, x) and (ρ′, x′)

σ(ρ, x; ρ′, x′) = log

1 +
√

1 − ξ2

ξ

 ; ξ =
2e−(ρ+ρ′)

e−2ρ + e−2ρ′ + |x − x′|2
(1.55)

The solutions of equations of motion (1.52) are

φ(0)(ρ, x) =

∫
ddx′ Kd,∆(ρ, x; x′) φ0(x′)

φ(1)(ρ, x) =

∫
dρ′

∫
ddx′

∫
ddx′′

∫
ddx′′′

√
g φ0(x′′) Kd,∆(ρ′, x′; x′′)Gd,∆(ρ, x; ρ′, x′)

× Kd,∆(ρ′, x′; x′′′) φ0(x′′′)

(1.56)

Diagrammatically this can be shown as

×
(ρ, x)

(ρ′, x′)
λ

Figure 1.1: Witten diagram for solving φ.

where the blue lines represent the bulk-to-boundary propagators, red lines represent the

bulk-to-bulk propagators and the cubic vertex is denoted as red dot. One substitutes the

solution for φ in the bulk partition function and then differentiating with respect to the

boundary value φ0 computes three-point function in a perturbative expansion in λ. The

cubic vertex contributes to the four-point function at O(λ2) as shown in the following

diagram (s-channel)
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O∆(x1)

O∆(x2)

O∆(x3)

O∆(x4)

λλ

Figure 1.2: 4-point function using cubic vertex

along with the similar diagrams with the end-points permuted (t-channel and u-channel).

In a similar manner one can consider the quartic interaction −g
4φ

4 in addition to the cubic

interaction in the bulk action and compute the four-point function as

= g +

λ λ
+ · · ·

Figure 1.3: Witten diagrams for 4-point function.

The rules to evaluate such diagrams are fairly simple. The vertex points are connected

to the locations of boundary operators via bulk-to-boundary propagators. Two vertices in

the bulk can be connected through bulk-to-bulk propagators. Finally one has to integrate

the locations of vertices over the bulk geometry.

Similarly the correlators of non-scalar boundary operators can be computed by consider-

ing the appropriate fields and the interaction terms in the bulk theory [76].
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Since AdS/CFT provides a natural avenue to answer questions in CFTd in terms of AdS d+1

gravity (and vice versa) it is natural to ask how to compute the conformal partial waves of

a given correlation function of primary operators in a CFT holographically.

1.5 Holographic conformal partial waves

Recently a novel prescription has been provided to compute conformal partial waves holo-

graphically by evaluating so-called geodesic-Witten diagrams in the bulk AdS d+1 grav-

ity [7].

1.5.1 Geodesic Witten diagrams

A geodesic Witten diagram is a similar object to an ordinary Witten diagram. The only

difference is that instead of integrating the locations of vertices over the bulk one has to

integrate the vertices over the geodesics connecting each pair of the boundary operator

insertions. For example the four-point semi-classical scalar conformal partial waves can

be obtained by evaluating the diagram

O1(x1)

O2(x2)

O3(x3)

O4(x4)

∝ W∆,l (∆i; xi)(∆, l)

γ34γ12

Figure 1.4: Geodesic Witten diagram

In Fig. 1.4 the solid blue lines represent the bulk-to-boundary propagators, the dashed blue

lines are bulk-to-bulk propagators for traceless symmetric tensor fields and the geodesics

connecting the pairs of boundary points γ12 and γ34 are denoted by red lines. The diagram
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becomes

W∆,l (∆i; xi) =

∫
γ12

dλ
∫
γ34

dλ′Gb∂(X(λ), x1; ∆1) Gb∂(X(λ), x2; ∆2)

×Gbb(X(λ), X(λ′); ∆, l) ×Gb∂(X(λ′), x3; ∆3) Gb∂(X(λ′), x4; ∆4)

(1.57)

when the geodesics γ12 and γ34 are parameterized by λ and λ′ respectively. Carrying out

the integration in the above expression one can obtain the conformal partial waves. It is

shown in [7] that a generic geodesic Witten diagram satisfies the global Ward identity and

the conformal Casimir equation (1.29).

This method has been applied in locally AdS 3 geometries. Considering the backreaction

of heavy operator insertions the semi-classical Virasoro block in 2d CFT has been com-

puted [77, 78]. Using the prescription the global conformal partial waves are obtained

when the boundary CFT lives on the torus. It is shown that the one-point toroidal block

can be written as geodesic Witten diagrams in thermal AdS 3 [79]. This method is also

generalized further to compute spinning blocks [80,81], conformal blocks involving anti-

symmetric tensor primaries [82] and fermions [83] etc.

The geodesic Witten diagrams (GWD) methods to compute CFT the partial waves are

well suited when the bulk gravitational theory is formulated in terms of metric, namely

the Einstein-Hilbert formulation. However, sometimes it is convenient/essential to write

the gravitational theory as extensions of tetrad formulation (Hilbert-Palatini formalism,

also known as first order formalism). For example, the higher spin gauge theories in three

dimensions are described as Chern-Simons theories in which the gravity sector is written

in the first order formalism [8–10]. It is also essential when one deals with spinors in

a gravitational background. In dimensions greater than three, the theory of gravity with

negative cosmological constant can be written in the Hilbert-Palatini formalism, a BF-

type gauge theory [11,13]. Therefore, it is important to ask how to compute CPWs in this
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formalism.

In this thesis this question has been answered with a new prescription to compute CPWs

in Euclidean CFTd holographically in terms of gravitational open Wilson line networks

in the Hilbert-Palatini formulation of Euclidean AdSd+1 gravity.

1.5.2 Gravitational open Wilson network

In the Hilbert-Palatini formulation of AdS d+1 gravity the gravitational fields, namely

the vielbein 1-forms ea and the spin-connection 1-forms ωab can be packaged into one

so(1, d + 1) adjoint valued gauge connection

A =
1
2
ωabMab +

1
l
ea M0a (1.58)

where M0a and Mab are the generators of so(1, d + 1) with a, b = 1, · · · d + 1 as in (1.6).

The parameter l with dimensions of length sets the radius of AdS d+1 vacuum. The action

for the connection A is in general an appropriate BF type theory [11–13].

S [A, B, Φ] =

∫
M

Tr (B ∧ F) +
1
2

Tr (B ∧Φ(B)) (1.59)

where F is the field strength F = dA+A∧A, B is a Lie algebra valued (d−1)-form field and

Φ is the Lagrange multiplier which couples with B in a specific way to form a Lie algebra

valued 2-form, denoted by Φ(B). For example, in d = 1 the action becomes [84–86]

S =

∫
M2

Tr (Φ F) (1.60)

where Φ is a zero-form field and the gauge algebra is sl(2,R). This action is dynamically

equivalent to that of Jackiw-Teitelboim model [87,88]. In d = 2 the corresponding action
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is

S =

∫
M3

Tr (B ∧ F) (1.61)

where B is a one-form field. This action can be recast as Chern-Simmons action [8–10]

S CS =
k

4π

∫
M3

Tr
(

A ∧ dA +
2
3

A ∧ A ∧ A
)

(1.62)

where the connection takes values in the adjoint representation of so(1, 3). In d = 3 the

action contains a fixed S O(5) vector vA [13]

S =

∫
M4

(
BIJ ∧ FIJ −

1
2

BIJ ∧ BKL εIJKLM vM

)
(1.63)

where I, J = 1, . . . , 5. The flat connection, F = 0 leads to the equations

dea + ωa
b ∧ eb = 0 (1.64)

dωab + ωc
d ∧ ω

db +
1
l2 ea ∧ eb = 0. (1.65)

The eq. (1.64) is the torsionless condition and the eq. (1.65) describes the locally AdS d+1

spaces. In d ≤ 2, (1.64) and (1.65) becomes the equations of motion for the gauge

fields. This implies that all solutions of the gravity theory in d ≤ 2 are locally AdS space

where as there are more general solutions in d ≥ 3. One can couple matter particles as

external sources to the AdS d+1 gravity considering the Wilson line operators for the gauge

connection (1.58) in an appropriate representation of the gauge algebra along the curve

given by the trajectory of the particle [89, 90].

Our aim is to provide a prescription to compute the conformal partial waves of the bound-

ary CFT in this first order formalism of bulk gravity. Recall that these (global) partial

waves constitute the non-dynamical building blocks of any CFT correlation function.

Therefore one expects that they should be computable holographically without putting too
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much dynamical information about the bulk theory and its interactions. Indeed, our pro-

posal on the gravity side uses certain “tree-level" (no loop) open Wilson network (OWN)

operators for the connection (1.58). The operators of our interests will be associated to

directed trivalent open spin networks (every line in the graphs carries representation la-

bels, i.e. “spins" of the conformal algebra so(1, d + 1)) such as the graphs in Fig. 1.5 with

their end points on the boundary of AdS d+1. We propose that (a subset of) the expectation

values of such OWNs compute the (global) partial waves of the dual CFT [14].

ORn (xn)

OR1 (x1)

OR2 (x2)

RR′

R′′

R(k)

Figure 1.5: A typical directed trivalent Open Wilson Network

The representations of the external legs are determined by the data of the primary oper-

ators in a correlation function of the CFT whose partial waves we want to compute. We

glue together the lines joining at a vertex with an appropriate Clebsch-Gordan coefficients

(invariant tensors of the three representations involved) of the gauge algebra. We further

project the external Wilson lines on to those states in the representation of that external

leg that transform in a finite dimensional representation of local Lorentz/rotation algebra

so(d + 1). We call these states as “cap-states". Such states that transform in the scalar

representation of the local Lorentz algebra have appeared in the recent literature in the

context of construction of local bulk operators [16–18].

It will be shown that the open Wilson network operators evaluated the background of

pure AdS geometry satisfies the global conformal Ward identities such as (1.29) when the

external points are taken to the boundary. We will also establish that a certain subset of
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the diagrams satisfies the appropriate set of conformal Casimir equations such as the one

in (1.29). We will also evaluate such diagrams explicitly in the limit of the ends going to

the boundary of the AdS space and reproduce the known answers in several cases; general

cases in d ≤ 2 and scalar conformal waves in general d.

The rest of the thesis is organised as follows. In chapter 2 we elaborate on the construction

of the open Wilson networks of interest and show that they satisfy the right identities such

as the global conformal Ward identities and the conformal Casimir equations. In chapter 3

we initiate explicit evaluation of these diagrams in d ≤ 2 and compare our results with the

known answers in the literature. The chapter 4 contains the construction of the modules

and the conformal wave functions required for the computation of scalar blocks. We also

introduce the concept of OPE module here and use it to carry out the computation of the

4-point scalar blocks in arbitrary dimensions. We also show here how our answers match

with several known results in d ≤ 4. We provide a discussion of our results and open

questions in chapter 5. The appendices contain some relevant mathematical results used

in the thesis.
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Chapter 2

CPW as OWNs: generalities

We are interested in providing a prescription to compute partial waves of correlation func-

tions of the dual CFTd in terms of the first order action of AdS d+1 gravity. As alluded to

in the introduction the basic ingredients are the gauge covariant and non-local Wilson line

operators:

W x
y (R,C) = P exp

[∫ x

y
A
]

(2.1)

where x and y are two points in the space (with a boundary Rd), C is a curve connecting

those, R is a representation of the gauge algebra so(1, d + 1) and A is the pull back of

the gauge connection onto the curve C. As usual the symbol P denotes the standard path

ordering prescription. Under a gauge transformation A→ hAh−1 + hdh−1 the Wilson line

operator transforms covariantly as

W x
y → h(x)W x

y h−1(y) . (2.2)

One can consider open Wilson network operators such as the one alluded to in the in-

troduction where we take several directed open Wilson lines in different representations

of the gauge algebra and glue the ends of any three lines ending at the same point by

contracting the representation indices into the Clebsch-Gordan coefficients relating those
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representations. Such an open Wilson network operator will depend on the coordinates

of the end points, the representations of each open Wilson line and, in general, the spin

network N that went into its construction. Let us call such an operator with n end points

WN (x1,R1; x2,R2; · · · ; xn,Rn). Then under gauge transformations it will transform covari-

antly as a tensor in the tensor product of all the representations (R1, · · · ,Rn). We will be

interested in only those representations of so(1, d + 1) which are related to the unitary

(infinite dimensional) irreducible representation of the corresponding so(2, d) relevant to

the Lorentzian CFT.

In a general gauge theory we cannot hope that the expectation value of such an open Wil-

son network operator represents any physical quantity as it will not be gauge invariant.

However the gauge transformations of (1.58) with gauge group S O(1, d + 1) can be split

into two subclasses representing both Local Lorentz transformations and the diffeomor-

phisms in the Euclidean AdS d+1 gravity in the Hilbert-Palatini formulation. If we call the

generators of S O(1, d + 1) as {Mab, M0a} with a, b = 1, · · · , d + 1 where Mab’s generate

the maximal compact subalgebra so(d + 1) and M0a’s are like the boost operators of the

Lorentz group - then the gauge transformation with parameter in the subalgebra so(d + 1)

correspond to (the Euclidean analogs of) the Local Lorentz transformation of the vielbein

ea and the spin-connection ωab.

Furthermore, since the bulk theory is supposed to describe geometries that are asymp-

totically AdS d+1 which have a boundary the observables do not necessarily have to be

invariant under all the gauge transformations but only under small gauge transformations,

namely, those which do not have a non-trivial action on the boundary [91].

According to AdS/CFT the dual of a boundary primary operator is a bulk field. The

fields in the bulk transform in finite dimensional representations of the group of local

Lorentz transformations. For instance if one considers a bulk field φν1ν2···
µ1µ2··· with spacetime

indices then the (inverse) vielbeins can be used to convert all the spacetime indices into

the tangent space indices so that the field transforms in a finite dimensional irreducible
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representation of the tangent space rotation algebra so(d + 1). Therefore, we would first

like to project the quantity WN (x1,R1; x2,R2; · · · ; xn,Rn) which is an element of the ten-

sor product of the infinite dimensional representations Ri of so(1, d + 1) down to that of

the finite dimensional representations of the local Lorentz algebra so(d + 1). This step

can be achieved by projecting the ith external leg of the Wilson network operator in the

representation Ri of so(1, d + 1) onto vectors in this representation which provide the ap-

propriate finite dimensional representation of the sub-algebra so(d + 1). As we will see

(explicitly later in chapter 3 and 4) such special states do exist and their construction is

closely related to those in [16, 18]. It will turn out that one particular component of such

a tensor has the leading fall off behaviour, as the points xi approach the boundary, com-

pared to the other components. This component will be related to the partial wave of the

corresponding primary operators of the CFT.

Having defined the open Wilson network (OWN) operators of interest classically, the

next issue is how to define the expectation value of these operators in the quantum gauge

theory. One can use a path integral definition [92] for this. However we will not attempt

to do this in this thesis (see [93] for an extension beyond the semi-class analysis in d =

2). Instead we will restrict ourselves to computing the values of these operators in the

background of pure AdS space - which corresponds to evaluating the expectation values

of these operators in the (semi-) classical limit.

For any locally AdS space the corresponding gauge field strength of A in (1.58) vanishes.

For such pure gauge configurations one can take A = g dg−1 locally where g is an ele-

ment of the group S O(1, d + 1). Then it follows from the definition (1.58) that such a

configuration describes a given space with the corresponding ea and ωab satisfying the

equation:

dg +
1
2
ωabMab g +

1
l
eaM0a g = 0. (2.3)

If we are interested in finding the gauge field A for a given geometry with given ea and

ωab we just have to solve this equation for g and then use A = −dg g−1. The integrability
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condition of the equation (2.3) reads:

[∂µ +
1
2
ωab
µ Mab +

1
l
ea
µM0a, ∂ν +

1
2
ωcd
ν Mcd +

1
l
ec
νM0c] g(x) = 0 (2.4)

which may be written as:

1
2

[Rµν
ab +

1
l2 (ea

µe
b
ν − ea

νe
b
µ)]Mab g(x) +

1
l
(∂µea

ν − ∂νe
a
µ + ωab

µ eb
ν − ω

ab
ν eb

µ)M0a g(x) = 0

(2.5)

Thus any configuration that satisfies the equations F = 0 will lead to a g and the inte-

grability does not impose any further conditions. In higher dimensions integrability will

impose non-trivial constraints as F = 0 is not the equation on motion.

Notice that the equation (2.3) for g has a gauge invariance. It is covariant under an arbi-

trary local Lorentz transformation: ea → (Λ)acec, ωab → (Λ)acωcd(Λ−1)db + (Λ)acd(Λ−1)cb

and g → Λg where Λ is any element of the subgroup S O(d + 1) and (Λ)ab are the matrix

element of Λ in the vector representation thus defining an equivalence relation between g

and Λg. This makes the physical solution (representative of the gauge equivalence class)

g an element of the coset so(1, d + 1)/so(d + 1). Notice also that the equation satisfied by

g is equivalent to

dg−1 −
1
2
ωabg−1Mab −

1
l
eag−1M0a = 0 (2.6)

This coset element g turns out to be one of the ingredients in our prescription to compute

boundary partial waves. Before turning to the other ingredients let us point out a relation

between Killing vectors of the AdS d+1 geometry and matrix elements of g in the adjoint

representation. We claim that the components of the Killing vectors (l[αβ])µ are given by

(l[αβ])µ = −l Eµ
a(R[g−1])αβ

0a
= −l Eµ

a(R[g])0a
αβ (2.7)
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where Eµ
a is the inverse vielbein and (R[g−1])αβ

0a are matrix elements of g in its adjoint

representation. One can recognize the similarity of Killing spinor equation of AdS d+1

with the equations (2.3, 2.6). To prove the relation (2.7) let us start with the definition of

the vector operator (an element of the Lie algebra):

ξµ = ea
µ g−1M0a g. (2.8)

and calculate Dµξν = ∂µξν − Γ
λ
µνξλ. One can show using the equations satisfied by g and

g−1 (2.3, 2.6) that

∂µξν = (∂µea
ν + ωµ

acec
ν) g−1M0ag +

1
l
ea
µe

b
ν g−1Mabg = Γλµνe

a
λ g−1M0ag +

1
l
ea
µe

b
ν g−1Mabg

(2.9)

where we have used ∂µea
ν + ωµ

acec
ν − Γ

λ
µνe

a
λ = 0. This implies

Dµξν =
1
l
ea
µe

b
ν g−1Mabg . (2.10)

Taking the symmetric part clearly shows that the vector operators ξµ satisfy the Killing

vector equations Dµξν + Dνξµ = 0. The relation between the Killing vector components

(2.7) found here is a generalisation of a similar relation in the Killing spinor context to a

more general representation of the local Lorentz algebra. This Killing vector operator can

be expanded into a linear combination of the generators

ξµ = ea
µ

[
(R[g−1])0b

0aM0b +
1
2

(R[g−1])bc
0aMbc

]
(2.11)

where R[g−1] is the representation of g−1 in the adjoint representation. One can raise the

index on the Killing operator as ξµ = Eµ
ag−1M0ag:

ξµ = Eµ
a

[
(R[g−1])0b

0aM0b +
1
2

(R[g−1])bc
0aMbc

]
. (2.12)
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This enable one to immediately read out the components of the Killing vectors

(l[αβ])µ = l Eµ
a(R[g−1])αβ0a (2.13)

or equivalently

(l[αβ])µ = −l Eµ
a(R[g−1])αβ

0a
= −l Eµ

a(R[g])0a
αβ (2.14)

It can be verified that these Killing vector fields lµαβ(x)∂µ satisfy the same algebra as their

corresponding algebra generators Mαβ. We will make use of (2.7) to establish some dif-

ferential equations satisfied by our OWN operators shortly.

The second ingredient is the set of states in the representation space which a given external

Wilson line is in that transform in a (finite dimensional) irreducible representation of the

subalgebra so(d+1).1 We will construct several examples of such states later in this thesis

and make use of them to compute the OWN operators.

The last ingredient in the computation of the OWN expectation values is the Clebsch-

Gordan coefficients (CGC) of the gauge algebra so(1, d + 1). Here we propose a method

to derive them using the 3-point functions.

For this first recall that the CGCs are defined as the invariant tensors in the product of

three representations. That is, the CGCs that appear in the tensor product decomposition

R1 ⊗ R2 → R3 satisfy:

R1[g(x)]m1m′1R2[g(x)]m2m′2C
R1,R2;R3
m′1,m

′
2;m′3

R3[g(x)−1]m′3m3 = CR1,R2;R3
m1,m2;m3

(2.15)

where Ri[g(x)]mim′i is used to denote the matrix elements of g(x) in the representation Ri,

whose basis elements are collectively labelled by mi. In terms of the algebra elements

1An identical problem has appeared in [16] in a closely related context.
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MAB with A, B = 0, 1, · · · , d + 1, this eq. (2.15) reads:

R1[MAB]m1m′1C
R1,R2;R3
m′1,m2;m3

+ R2[MAB]m2m′2C
R1,R2;R3
m1,m′2;m3

= CR1,R2;R3
m1,m2;m′3

R3[MAB]m′3m3 (2.16)

which is the recursion relation that determines the CGC. Now we argue that this is equiv-

alent to the conformal Ward identity of the 3-point function of primary operators corre-

sponding to the irreps (R1,R2,R3). The prescription of [14] for the 3-point function of

scalar primaries is to extract the leading term, i.e, the coefficient of e−ρ(∆1+∆2+∆3) term – in

the boundary limit of

〈〈R1|g(x1)|R1,m1〉 〈〈R2|g(x2)|R2,m2〉 CR1,R2;R3
m1,m2;m3

〈R3,m3|g−1(x3)|R3〉〉 (2.17)

It will be shown shortly that this type of quantities by construction satisfy the conformal

Ward identity. It is of course true that the Ward identity completely determines the coor-

dinate dependence of the 3-point function. Therefore, the question of finding the CGC is

translated into finding expressions for the quantities 〈〈R|g(x)|∆,m〉 and 〈R,m|g−1(x)|R〉〉 in

the large radius limit, and then amputating them from the corresponding 3-point function

(Fig. 2).

Q
S

Q

OR2 (x2)

OR1 (x1)

OR(x)

Figure 2.1: Clebsch-Gordan coefficients.

The expressions for these for general representations in d ≤ 2 and scalars in general d are

derived in the appendix A and B respectively.
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2.1 CPW as OWNs

Now we are ready to provide the prescription to compute various boundary partial waves.

This can be obtained by simply evaluating the OWN in the flat connection corresponding

to the AdS d+1 geometry. The Wilson line evaluated in a flat connection (corresponding to

a locally AdS geometry) is

Pe
∫ x

y A
= g(x)g−1(y) (2.18)

where the coset elements of g(x) and g−1(x) are the solutions of (2.3) and (2.6) respec-

tively. This is taken in an irreducible (infinite dimensional) representation of so(1, d + 1)

algebra- particularly, the one which would correspond to unitary representation of so(2, d)

which is the relevant gauge algebra of the Lorentzian case – as mentioned earlier. Such a

representation is labeled by the appropriate Casimirs (∆, l1, · · · , l[d/2]) of so(1, d + 1). On

the other hand the representations of the subalgebra so(d + 1) are labeled by the “angular

momenta" ( j1, · · · j[d/2]). We will label a state in the finite dimensional irrep of so(d + 1)

found as a linear combination of states in the infinite dimensional irrep of so(1, d + 1) by

|{∆, li} : { ji}, {mi}〉〉.

We are now ready to form OWN operators that transform nicely under the local Lorentz

rotation (LLR) algebra. We start with a spin network of the type given in the introduction

in Fig. 1.5. Associate to it a Wilson network operator as prescribed above. Then project

each external leg with an outgoing arrow with a ket-type state in a representation of LLR

algebra, and each incoming external leg of the operator onto a bra-type dual state. This

results in an object with n floating indices (for an OWN with n external legs) each of

which transforms either by R[h] or R[h−1] (depending on the index carried by the outgo-

ing leg or the incoming leg of the OWN). It turns out that the quantity that satisfies the

global conformal ward identities of a partial wave of the correlation function of primary

operators corresponds to one particular component of this tensor.
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2.2 Locations of vertices do not matter

Since we are restricting ourselves to computing the expectation values of the OWN op-

erators classically we simply evaluate them in the flat connection corresponding to the

AdS d+1 background. Now we will show that for this computation the positions of the

vertices do not matter. For this we first note that at each vertex we have the following

combination depending on the position of that vertex:

R1[g(x)]m1m′1R2[g(x)]m2m′2C
R1,R2;R3
m′1,m

′
2;m′3

R3[g(x)−1]m′3m3 = CR1,R2;R3
m1,m2;m3

(2.19)

where Ri[g(x)]mim′i is used to denote the matrix elements of g(x) in the representation Ri,

whose basis elements are collectively labelled by mi. and CR1,R2;R3
m1,m2;m3 is the relevant CGC.

This is the relevant object when the trivalent vertex has two legs in representations R1 and

R2 going out of it and the one in representation R3 going into it. If the arrows are reversed

on all legs then we simply have to replace the corresponding g by g−1. Now we use

the identity (A.37) in appendix A to replace this by one CGC eliminating the coordinate

dependence of the junction. This can be done at every trivalent vertex in our spin network

thus eliminating the dependence of the locations of all the vertices as claimed.

2.3 Differential equations satisfied

The global blocks/partial waves are expected to satisfy some differential relations as stated

in the introduction. Now we want to show that an OWN such as the one in Fig.1.5 will

also satisfy the same set of differential identities expected of the corresponding partial

wave. To proceed further we note the following identities:

g(x) Mαβ = lµαβ(x)∂µg(x) +
1
2

Mbcg(x)
[
ωbc
µ (x)lµαβ(x) + (R[g(x)])bc

αβ

]
(2.20)
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Mαβg−1(x) = −lµαβ(x)∂µg−1(x) +
1
2

[
ωbc
µ (x)lµαβ(x) + (R[g(x)])bc

αβ

]
g−1(x)Mbc (2.21)

where g(x) (g−1(x)) is a solution to (2.3) ((2.6)), lµαβ(x) are the components of the Killing

vector of the background geometry carrying the indices of the corresponding algebra gen-

erator Mαβ of the left hand side.

To prove the identity (2.20) we start with the left hand side

g(x) Mαβ = g(x) Mαβ g−1(x)g(x)

= (R[g(x)])0a
αβ M0a g(x) +

1
2

(R[g(x)])bc
αβ Mbc g(x) (2.22)

From (2.3) we obtain

M0a g(x) = −lEµ
a ∂µg(x) −

l
2

Eµ
a ω

bc
µ Mbc g(x) (2.23)

Now substituting this in (2.22) and using the relation (2.14) we recover right hand side

of (2.20). Similarly one can use the differential equation (2.6) and (2.14) to prove the

identity (2.21).

The ingredients in our OWN are the matrix elements of g(x) or g−1(x) between a generic

state |∆; li, mi〉 in the representation of the particular external leg and the state |{∆, li} :

{ ji}, {mi}〉〉 in the finite dimensional representation of the subalgebra so(d + 1). It turns out

that these quantities in the limit of bulk point x approaching the boundary of AdS d+1 can

be computed (which will be done in the later chapters). We can also compute these with

either the additional insertions of Mαβ to the right of g(x) or −Mαβ to the left of g−1(x)

depending on the direction of the external leg. It can be shown (again will be illustrated

explicitly later on) further that these matrix elements simply turn out to be those obtained

by the action of the boundary conformal transformation of a primary (or descendent)

operator on the matrix element without the insertion in the boundary limit. Now the left

hand side of the global conformal Ward identity is simply given by the boundary limit of
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sum of the OWN operators with the insertion of the corresponding generator (Mαβ after

g(x) if it is an ingoing leg and −Mαβ before g−1 for the outgoing one). Using the recursion

relations that the CGCs are expected to satisfy it can be seen that this sum will vanish. This

establishes the identity that under simultaneous transformation of the primary operators

under the global conformal transformations the OWN expectation value is left invariant.

Now we turn to the Casimir equations that the global conformal blocks are expected to

satisfy. Because the partial wave decomposition of a correlation function involves taking

the contribution of one primary (and its global descendants) they are expected to satisfy

the conformal Casimir equation with eigenvalue given by the Casimir invariant of the

primary in question. One expects one Casimir equation for each channel of decomposition

of the correlator. In our context this translates to the expectation that our OWN operator

(associated to a spin network such as the one in Fig. 1.5) satisfies a Casimir equation for

each (“1-particle reducible”) edge of the spin network graph that when cut the diagram

falls apart into two disjoint pieces (which is the case of any intermediate leg of a tree-level

network, i.e., without closed loops). We now want to argue that this is indeed the case.

We will use the 4-point partial wave (in the s-channel decomposition) in d = 2 as the

illustrative example. In this case there are two independent quadratic Casimir operators

(one for each of the two commuting sl(2,R) algebras in so(1, 3)). The partial wave is

expected to satisfy one Casimir equation corresponding to the quadratic Casimir of the

full algebra so(1, 3). However, our OWNs satisfy two equations - one for each of the two

quadratic Casimirs of so(1, 3). It will turn out that there are two OWNs for each inter-

mediate (“1-particle reducible”) edge (connecting two trivalent vertices) with the same

eigenvalue of the quadratic Casimir of the full algebra so(1, 3) related by the interchange

h ↔ h̄ in that edge. Therefore any linear combination of these two OWNs will satisfy

the Casimir equation. Then one should be guided by the boundary conditions expected

(from the OPEs in the CFT as one takes the coincidence limits of various vertices). We

will comment on this aspect again later on.
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The value of a 4-point OWN (see Fig. 3.3) with external legs in representations (hi, h̄i)

with i = 1, 2, 3, 4 becomes2

〈〈h1, h̄1; j1,m1|g(x1)|h1, h̄1; k1, k̄1〉〈〈h2, h̄2; j2,m2|g(x2)|h2, h̄2; k2, k̄2〉

〈h3, h̄3; k3, k̄3|g−1(x3)|h3, h̄3; j3,m3〉〉〈h4, h̄4; k4, k̄4|g−1(x4)|h4, h̄4; j4,m4〉〉

×Ch1h2h
k1,k2,k

×Ch̄1h̄2h̄
k̄1k̄2k̄
×Ch3h4h

k3k4k ×Ch̄3h̄4h̄
k̄3k̄4k̄

(2.24)

where the sum over repeated indices is assumed. Then the action of the Casimir differen-

tial operator on the partial wave in eq.(1.29)

(M(1)
AB + M(2)

AB)(MAB
(1) + MAB

(2) )Wh,h̄(xi) (2.25)

is obtained by summing over three diagrams with the first one with an insertion of the

Casimir operator MαβMαβ after g(x1), the second one with an insertion of MαβMαβ after

g(x2) and the third one with one insertion of Mαβ after g(x1) and one insertion of Mαβ

after g(x2) with a factor of two and summing over the α and β indices. Let us consider

the Casimir made of {L0, L±1} first (see appendix A for our conventions on so(1, 3) gener-

ators). Then the answer of this sum contains the following terms:

(L(1)
a La

(1))k1k′1
Ch1h2h

k′1k2k + (L(2)
a La

(2))k2k′2
Ch1h2h

k1k′2k + (L(1)
a )k1k′1

(La
(2))k2k′2

Ch1h2h
k′1k′2k + (La

(1))k1k′1
(L(2)

a )k2k′2
Ch1h2h

k′1k′2k

= (La
(1))k1k′′1

[
(L(1)

a )k′′1 k′1
Ch1h2h

k′1k2k + (L(2)
a )k2k′2

Ch1h2h
k′′1 k′2k

]
+ (La

(2))k2k′′2

[
(L(1)

a )k1k′1
Ch1h2h

k′1k′′2 k + (L(2)
a )k′′2 k′2

Ch1h2h
k1k′2k

]
= (La

(1))k1k′1
Ch1h2h

k′1k2k′(L
(0)
a )k′k + (L(2)

a )k2k′2
Ch1h2h

k1k′2k′(L
(0)
a )k′k

=

[
(La

(1))k1k′1
Ch1h2h

k′1k2k′ + (L(2)
a )k2k′2

Ch1h2h
k1k′2k′

]
(L(0)

a )k′k = Ch1h2h
k1k2k′′(L

a
(0))k′′k′(L(0)

a )k′k (2.26)

where we denoted the matrix elements of the generator La in the representation (h1, h̄1)

by L(1)
a etc. and in representation (h, h̄) by L(0)

a . Substituting this result back into the sum

of diagrams we started with we see that the result is simply given by the value of the

2The leading term of this particular OWN corresponds to the 4-point conformal partial waves of corre-
lators of primary operators with conformal weight (hi, h̄i) when the end points of the external legs of the
OWN are taken to boundary. This will be shown in the next chapter.
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Casimir operators LaLa in the representation (h, h̄) times the original diagram. It can be

easily checked that our digram satisfies the corresponding Casimir equation for the second

quadratic Casimir operator made of {L̄0, L̄±1} as well. This proof generalises to any spin

network straightforwardly. The identity can also be generalised to higher dimensions as

well. Finally one just needs to ensure that the right boundary conditions are imposed to

show that our OWN operators indeed compute the partial waves- this will be discussed

case by case.
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Chapter 3

Conformal blocks in d ≤ 2

Having defined and elaborated on the OWN operators we now turn to computing them

explicitly in the d ≤ 2 cases in this chapter. In the course of this various properties argued

in the previous chapter will be demonstrated. We are starting with d = 2 case.

3.1 Euclidean AdS 3 with boundary R2

We consider the Eucidean AdS 3 geometry with boundary R2. The metric is

l−2 ds2 = dρ2 + e2ρ(dx2
1 + dx2

2) (3.1)

where l is the radius of AdS 3 and the ranges of the coordinates are −∞ < ρ, x1, x2 < ∞. In

these coordinates ρ→ ∞ is the conformal boundary. The Killing vectors of this geometry

are:

L−1 = −∂z, L0 = 1
2∂ρ − z∂z, L1 = z∂ρ − z2∂z + e−2ρ∂z̄

L̄−1 = −∂z̄, L̄0 = 1
2∂ρ − z̄∂z̄, L̄1 = z̄∂ρ − z̄2∂z̄ + e−2ρ∂z (3.2)
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where z = x1 + ix2 and z̄ = x1 − ix2 and the Killing vectors satisfy the commutator algebra

[Lm, Ln] = (m − n)Lm+n, [L̄m, L̄n] = (m − n)L̄m+n, [Lm, L̄n] = 0. Let us choose the frame:

e1 = l eρ dx1, e2 = l eρ dx2, e3 = l dρ. Then the non-vanishing spin-connections are:

ωa3 = 1
l ea for a = 1, 2. The equation dg + 1

2ω
abMabg + 1

l eaM0ag = 0 satisfied by the coset

element g in this case reads

dg + dρM03g + eρdx1 (M13 + M01)g + eρdx2 (M23 + M02)g = 0. (3.3)

Its solution may be written as

g = e−ρM03e−x1(M13+M01)e−x2(M23+M02)g0 (3.4)

up to a multiplication by a constant group element on the right. Written in terms of the

generators of the two sl(2,R) factors in so(1, 3) as in appendix A

L0 = −J(+)
0 , L1 = i(J(+)

1 + i J(+)
2 ), , L−1 = −i(J(+)

1 − i J(+)
2 )

L̄0 = J(−)
0 , L̄1 = −i(J(−)

1 − i J(−)
2 ), L̄−1 = i(J(−)

1 + i J(−)
2 ) (3.5)

where

J(±)
1 =

i
2

(−iM23 ± M01), J(±)
2 =

i
2

(−iM31 ± M02), J(±)
0 =

1
2

(−iM12 ± M03) (3.6)

the coset element g reads:

g = eρ(L0+L̄0)e−L−1(x1+ix2)e−L̄−1(x1−ix2)g0 . (3.7)

Since the Wilson line for locally AdS takes the form Wy
x(R,C) = g(x)g−1(y) we can choose

g0 to be identity I without loss of generality. The basic building blocks of the open Wilson

networks are again 〈h, h̄; k, k̄|g−1(x)|h, h̄; j,m〉〉 and 〈〈h, h̄; j,m|g(x)|h, h̄; k, k̄〉. To evaluate

these we need the states |h, h̄; j,m〉〉 and 〈〈h, h̄; j,m|.
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3.1.1 Constructing the states |h, h̄; j,m〉〉

The sub-algebra so(3) in so(1, 3) is generated by:

L0 − L̄0 = iM12, L1 + L̄−1 = iM23 + M13, L−1 + L̄1 = −iM23 + M13 (3.8)

We define |h, h̄; j,m〉〉 as1

|h, h̄; j,m〉〉 =

∞∑
n=0

Cn,p(h, h̄) |h, n + p〉 ⊗ |h̄, n〉 (3.9)

such that it satisfies the following conditions (corresponding to hD = − j as expected

from [94])

(L0 − L̄0)|h, h̄;− j, p〉〉 = (− j + p)|h, h̄;− j, p〉〉

(L−1 + L̄1)|h, h̄;− j, p〉〉 =
√

(p + 1)(−2 j + p) |h, h̄;− j, p + 1〉〉

(L1 + L̄−1)|h, h̄;− j, p〉〉 =
√

p(−2 j + p − 1) |h, h̄;− j, p − 1〉〉 (3.10)

where p = j + m and h̄ − h = j ≥ 0. (When h − h̄ ≥ 0 one can write a similar set of states

obtained by interchanging h with h̄ and the order of the states in the tensor product.) We

assume that j ∈ Z/2 and thus p = 0, 1, · · · 2 j. The above conditions (3.10) result in the

recursion relations for Cn,p

Cn+1,p

√
(n + 1)(2h̄ + n) + Cn,p

√
(2h + n + p)(n + p + 1) = Cn,p+1

√
(p + 1)(2h̄ − 2h + p)

Cn,p

√
(n + p)(2h + n + p − 1) + Cn−1,p

√
n(2h̄ + n − 1) = Cn,p−1

√
p(2h̄ − 2h + p − 1)

(3.11)

1When the bulk field dual to the primary operator at hand is a gauge field one expects classes of the cap
states reflecting the gauge symmetry [16] – we do not consider this case here.
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Solving the above recursion relations for Cn,p we find

Cn,p(h, h̄) = (−1)
p
2 +nλ(h, h̄)

√
(n + p)!

n!p!

√
Γ(2h̄ + n)

Γ(2h + n + p)Γ(2h̄ − 2h + 1 − p)
(3.12)

Therefore the cap-states become

|h, h̄; j,m〉〉 = λ(h, h̄)
∞∑

n=0

(−1)
p
2 +n

√
Γ(2h̄ + n)

Γ(2h + n + p)Γ(2h̄ − 2h + 1 − p)

×

√
(n + p)!

n!p!
|h, n + p〉 ⊗ |h̄, n〉 (3.13)

The factor λ(h, h̄) is arbitrary constant at this stage - will be chosen to be

λ(h, h̄)2 = (−1)h̄−h (2h̄ − 2h)!Γ(2h)
Γ(2h̄)

(3.14)

for convenience. Notice that when j = 0 this state is closely related to the one written

down in [18] and for other j advocated for in [16] (see also [17]).

These cap-states form a non-unitary finite dimensional representation of the twisted diag-

onal sl(2,R) generated by {LD
0 := L0 − L̄0, LD

1 := L1 + L̄−1, LD
−1 := L−1 + L̄1}. The local

Lorentz group S O(3) is generated by {J3 = LD
0 , J+ = ±iLD

−1, J− = ±iLD
1 }. Then these

states can be seen to provide the unitary representation labeled by the angular momentum

j (with the identification |h, h̄;− j, p〉〉 → |h, h̄; j,m〉〉 which we will use interchangeably)

of the su(2) algebra generated by these {J3, J±}.

3.1.2 Computing 〈〈h, h̄; j,m|g(x)|h, h̄; k, k̄〉 in ρ→ ∞ limit

We start with eq.(3.7) with z = x1 + ix2

g(x) = eρ(L0+L̄0)e−zL−1e−z̄L̄−1 (3.15)
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Then

〈〈h, h̄;− j, p|g(x)|h, h̄; k, k̄〉

= λ

∞∑
n=0

(−1)
p
2 +n

√
(n + p)!

n!p!

√
Γ(2h̄ + n)

Γ(2h + n + p)Γ(2h̄ − 2h + 1 − p)

×〈h, n + p|eρL0e−zL−1 |h, k〉〈h̄, n|eρL̄0e−z̄L̄−1 |h̄, k̄〉

= λ
(−z)p−k(−z̄)−keρ(h+h̄+p)(−1)n+

p
2√

Γ(2h + k)Γ(2h̄ + k̄)k!k̄!p!Γ(2 j + 1 − p)

∞∑
n=max(k−p,k̄)

(n + p)!Γ(2h̄ + n)
(n + p − k)!(n − k̄)!

(
−e2ρ|z|2

)n

k−p≥k̄
=

λ
eρ(h+h̄+p)(−z)p−k(−z̄)−k̄k!Γ(2h̄ + k − p)(−1)p/2√
k!k̄!p!Γ(2h + k)Γ(2h̄ + k̄)Γ(2h̄ − 2h + 1 − p)

(−e2ρ|z|2)k−p

(k − k̄ − p)!

× 2F1(k + 1, 2h̄ + k − p, k − p − k̄ + 1,−e2ρ|z|2)

k−p≤k̄
=

λ
eρ(h+h̄+p)(−z)p−k(−z̄)−k̄Γ(2h̄ + k̄)(k̄ + p)!(−1)p/2√

p!k!k̄!Γ(2h + k)Γ(2h̄ + k̄)Γ(2h̄ − 2h + 1 − p)

(−e2ρ|z|2)k̄

(k̄ − k + p)!

× 2F1(k̄ + 1 + p, 2h̄ + k̄, p + k̄ − k + 1,−e2ρ|z|2)

We would like to take the ρ → ∞ of these expressions. For this we use the well-known

Euler’s identity (see, for instance, [95])

2F1(α, β, γ, x) = (1 − x)γ−α−β2F1(γ − α, γ − β, γ, x) (3.16)

Using this we have

2F1(k + 1, 2h̄ + k − p, k − p − k̄ + 1,−e2ρ|z|2)

ρ→ ∞

−→
(−1)p+k̄(e2ρ|z|2)p−k−2h̄ (k − k̄ − p)!Γ(2h̄ + k̄)

Γ(2h̄ − p)k!
(3.17)
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2F1(k̄ + 1 + p, 2h̄ + k̄, p + k̄ − k + 1,−e2ρ|z|2)

ρ→ ∞

−→
(−1)k(e2ρ|z|2)−k̄−2h̄ (k̄ − k + p)!Γ(2h̄ + k − p)

Γ(2h̄ − p)(p + k̄)!
(3.18)

When we take the ρ→ ∞ limit both the cases reduce to the same expression given by

〈〈h, h̄;− j, p|g(x)|h, h̄; k, k̄〉 → λ(−1)−p/2 eρ(h−3h̄+p)z−2h̄z̄−2h̄zp−kz̄−k̄√
k!k̄!Γ(2h + k)Γ(2h̄ + k̄)Γ(2 j + 1 − p)p!

×
Γ(2h̄ + k̄)Γ(2h̄ − p + k)

Γ(2h̄ − p)
+ · · ·

At this point let us note that since p runs from 0 to 2 j the leading terms in the ρ→ ∞ limit

comes by setting p = 2 j which goes as e−ρ(h+h̄) and lower values of p lead to sub-leading

terms in this limit. Therefore, the special case of p = 2 j should correspond to insertion

of a primary operator at the corresponding boundary point. To substantiate this we now

show that the matrix element 〈〈h, h̄; j,m|g(x)Mαβ|h, h̄; k, k̄〉 is the conformal transformation

of the answer without the insertion of Mαβ. By explicit computation of eqs.(3) we find

g(x)L−1 = −∂zg(x)

g(x)L0 = −z∂zg(x) +
1
2

(∂ρ + (L0 − L̄0))g(x) = (−z∂z + L0)g(x)

g(x)L1 = −z2∂zg(x) + z(∂ρ + (L0 − L̄0))g(x) + e−ρ(L1 + L̄−1)g(x) + e−2ρ∂z̄g(x)

g(x)L̄−1 = −∂z̄g(x)

g(x)L̄0 = −z̄∂z̄g(x) +
1
2

(∂ρ − (L0 − L̄0))g(x)

g(x)L̄1 = −z̄2∂z̄g(x) + z̄(∂ρ − (L0 − L̄0))g(x) + e−ρ(L−1 + L̄1)g(x) + e−2ρ∂zg(x)

(3.19)

Notice that the terms leading in ρ → ∞ limit do not mix different states in the irrep of

the twisted diagonal sl(2,R) whereas the sub-leading ones do. Using matrix elements just

62



computed we can write down the effect of insertion of Ln’s and L̄n’s. We find:

〈〈h, h̄; j, j|g(x)L−1|h, h̄; k, k̄〉 = −∂z〈〈h, h̄; j, j|g(x)|h, h̄; k, k̄〉

〈〈h, h̄; j, j|g(x)L0|h, h̄; k, k̄〉 = −(z∂z + h)〈〈h, h̄; j, j|g(x)|h, h̄; k, k̄〉

〈〈h, h̄; j, j|g(x)L1|h, h̄; k, k̄〉 = −(z2∂z + 2zh)〈〈h, h̄; j, j|g(x)|h, h̄; k, k̄〉

〈〈h, h̄; j, j|g(x)L̄−1|h, h̄; k, k̄〉 = −∂z̄〈〈h, h̄; j, j|g(x)|h, h̄; k, k̄〉

〈〈h, h̄; j, j|g(x)L̄0|h, h̄; k, k̄〉 = −(z̄∂z̄ + h̄)〈〈h, h̄; j, j|g(x)|h, h̄; k, k̄〉

〈〈h, h̄; j, j|g(x)L̄1|h, h̄; k, k̄〉 = −(z̄2∂z̄ + 2z̄h̄)〈〈h, h̄; j, j|g(x)|h, h̄; k, k̄〉 (3.20)

in the ρ→ ∞ limit. These results (3.20) establish that the functions

Φ(h,h̄)
k,k̄

(x) := 〈〈h, h̄; j, j|g(x)|h, h̄; k, k̄〉 (3.21)

in the ρ→ ∞ provide a representation of the (global) conformal algebra sl(2,R)⊕ sl(2,R)

with the action of its generators given by the differential operator representation appro-

priate for its action on primaries under the corresponding conformal transformation (see

for instance [96]). Remarkably the representation (for either the holomorphic or the anti-

holomorphic part) that we find here is the same as the one used in [97] (see also [94]) in

the study of unitary irreps of sl(2,R) algebra around z→ ∞ in the complex plane.

3.1.3 Computing 〈h, h̄; k, k̄|g−1(x)|h, h̄; j,m〉〉 in ρ→ ∞ limit

This can also be computed and the calculation is simpler than the previous one. Starting

with

g−1(x) = ez̄L̄−1ezL−1e−ρ(L0+L̄0) (3.22)
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we obtain

〈h, h̄; k, k̄|g−1(x)|h, h̄; j,m〉〉

= λ

∞∑
n=0

(−1)n+
p
2

√
(n + p)!

n!p!

√
Γ(2h̄ + n)

Γ(2h + n + p)Γ(2h̄ − 2h + 1 − p)

×〈h, k|ezL−1e−ρL0 |h, n + p〉〈h̄, k̄|ez̄L̄−1e−ρL̄0 |h̄, n〉

= λ(−1)p/2e−ρ(h+h̄+p)

√
Γ(2h + k)Γ(2h̄ + k̄)k!k̄!
p!Γ(2h̄ − 2h + 1 − p)

×

min(k−p,k̄)∑
n=0

(−e−2ρ|z|−2)n

n!(k̄ − n)!Γ(2h + n + p)(k − n − p)!

= λ(−1)p/2 e−ρ(h+h̄+p)

Γ(2h + p)

√
k!k̄!Γ(2h + k)Γ(2h̄ + k̄)
p!Γ(2h̄ − 2h + 1 − p)

zk−p

(k − p)!
z̄k̄

k̄!

×2F1[−k̄,−k + p, 2h + p;−e−2ρ|z|−2]

ρ→∞
=

λ(−1)p/2 e−ρ(h+h̄+p)

Γ(2h + p)
zk−p

(k − p)!
z̄k̄

k̄!

√
k!k̄!Γ(2h + k)Γ(2h̄ + k̄)
p!Γ(2h̄ − 2h + 1 − p)

+ O(e−ρ(h+h̄+p+1))

(3.23)

Let us note that the leading term from this leg comes from p = 0 (m = − j) which again

goes as e−ρ(h+h̄) and higher values of p give sub-leading terms in the ρ → ∞ limit. In this

case the p = 0 answer corresponds to insertion of a primary with dimensions (h, h̄) at the

boundary point. This can again be seen on similar lines as before by first observing the

identities (3):

L−1g−1(x) = ∂zg−1(x)

L0g−1(x) = z∂zg−1(x) −
1
2

(∂ρg−1(x) − g−1(x)(L0 − L̄0))

L1g−1(x) = z2∂zg−1(x) + z(−∂ρg−1(x) + g−1(x)(L0 − L̄0)) + e−ρg−1(x)(L1 + L̄−1) − e−2ρ∂z̄g−1(x)

L̄−1g−1(x) = ∂z̄g−1(x)
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L̄0g−1(x) = z̄∂z̄g−1(x) −
1
2

(∂ρg−1(x) + g−1(x)(L0 − L̄0))

L̄1g−1(x) = z̄2∂z̄g−1(x) − z̄(∂ρg−1(x) + g−1(x)(L0 − L̄0)) + e−ρg−1(x)(L−1 + L̄1) − e−2ρ∂zg−1(x)

Using these we can show as ρ→ ∞ that:

〈h, h̄; k, k̄|(−L−1)g−1(x)|h, h̄; j,− j〉〉 = −∂z〈h, h̄; k, k̄|g−1(x)|h, h̄; j,− j〉〉

〈h, h̄; k, k̄|(−L0)g−1(x)|h, h̄; j,− j〉〉 = −(z∂z + h)〈h, h̄; k, k̄|g−1(x)|h, h̄; j,− j〉〉

〈h, h̄; k, k̄|(−L1)g−1(x)|h, h̄; j,− j〉〉 = −(z2∂z + 2zh)〈h, h̄; k, k̄|g−1(x)|h, h̄; j,− j〉〉

〈h, h̄; k, k̄|(−L̄−1)g−1(x)|h, h̄; j,− j〉〉 = −∂z̄〈h, h̄; k, k̄|g−1(x)|h, h̄; j,− j〉〉

〈h, h̄; k, k̄|(−L̄0)g−1(x)|h, h̄; j,− j〉〉 = −(z̄∂z̄ + h̄)〈h, h̄; k, k̄|g−1(x)|h, h̄; j,− j〉〉

〈h, h̄; k, k̄|(−L̄1)g−1(x)|h, h̄; j,− j〉〉 = −(z̄2∂z̄ + 2z̄h̄)〈h, h̄; k, k̄|g−1(x)|h, h̄; j,− j〉〉

(3.24)

This again means that the functions

Ψ (h,h̄)
k,k̄

(x) := 〈h, h̄; k, k̄|g−1(x)|h, h̄; j,− j〉〉 (3.25)

in the ρ → ∞ limit also provide a representation of the generators of algebra sl(2,R) ⊕

sl(2,R) after the implementation of the automorphism M → −MT where M is any gener-

ator, thereby providing a dual representation to that of Φ(h,h̄)
k,k̄

s. Again the (anti-) holomor-

phic part has appeared in [94, 97].

The last ingredient we want is the CGCs of unitary irreducible positive discrete series

representations [97] of sl(2,R). These have been known for a long time [98] which we

rework in the Appendix A using our conventions. These are given as

Ch1h2;h3
k1k2;k3

= 〈h1, h2; k1, k2|h1, h2; h3, k3〉 =
1∏3

i=1

√
ki!(Γ(2hi + ki)

f (k1, k2; k3) (3.26)

with f (k1, k2; k3) are as given by (A.31) in the Appendix A. We will not fix the normali-

sation as we do not need it.
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Finally we are ready to put together various components of our OWN diagrams with n

external legs with the corresponding representations (hi, h̄i) and compute them explicitly.

The final answer will be proportion to e−ρ
∑n

i=1 hi × e−ρ
∑n

i=1 h̄i times a function that is a

product of a holomorphic part and an anti-holomorphic part. Let us now summarize the

rules to compute the holomorphic part:

Feynman rules for OWN :

• For each in-going external leg in representation (hi, h̄i) we associate the factor:

ihiz−2hi−ki
i

√
Γ(2hi + ki)
ki!Γ(2hi)


• For each out-going external leg in representation (hi, h̄i) associate the factor

(−i)hizki
i

√
Γ(2hi + ki)
ki!Γ(2hi)


• For each trivalent vertex with two in-going (out-going) edges in representations

(hm, h̄m), (hn, h̄n) and one out-going (in-going) edge in the representation (hl, h̄l) we

associate a CGC Chmhn;hl
kmkn;kl

.

• Finally sum over all repeated kis.

The rules to compute the anti-holomorphic factor in the OWN are simply obtained from

the above ones by replacing hi → h̄i, ki → k̄i and then complex conjugating the rest.

The boundary CFT answers are the same as the OWN answers but for the ρ-dependent

pre-factors.
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3.1.4 The 2-point function recovered

The 2-point function of two primary operators in a CFT is completely determined by the

symmetries and therefore it is our simplest partial wave. We should be able to derive it

from the simplest OWN which is just a line with the end points approaching the boundary.

〈k, k̄||k, k̄〉
∑

k,k̄ x1 x2

Figure 3.1: Spin network for 2-point function

According to our prescription it is given by2

〈〈h, h̄; j, j|g(x1)g−1(x2)|h, h̄; j,− j〉〉

=

∞∑
k,k̄=0

〈〈h, h̄; j, j|g(x1)|h, h̄; k, k̄〉〈h, h̄; k, k̄|g−1(x2)|h, h̄; j,− j〉〉

ρ1=ρ2=ρ→∞
=

λ2 (−1)− jΓ(2h̄)
Γ(2h)(2 j)!

z−2h
1 z̄−2h̄

1

∞∑
k,k̄=0

Γ(2h + k)
k!Γ(2h)

(
z2

z1

)k
Γ(2h̄ + k̄)
k̄!Γ(2h̄)

(
z̄2

z̄1

)k̄

=
e−2ρ(h+h̄)

(z1 − z2)2h(z̄1 − z̄2)2h̄
(3.27)

where we have used the value of λ as in (3.14). Therefore the correctly normalised 2-point

function is obtained by taking

〈O(h,h̄)(z1, z̄1)O(h,h̄)(z2, z̄2)〉 = e2ρ(h+h̄)〈〈h, h̄; j, j|g(z1, z̄1, ρ)g−1(z2, z̄2, ρ)|h, h̄; j,− j〉〉
∣∣∣
ρ→∞

2Our prescription for the 2-point function appears similar to the one used in [99, 100] – as it is also the
matrix element of the Wilson line operator between the highest and the lowest weight states of a non-unitary
(finite dimensional) irrep of an sl(2,R) algebra. Note, however, that [99,100] use a non-unitary irrep (taken
to be the same) for either sl(2,R) component of the gauge algebra sl(2,R) ⊕ sl(2,R) – where as we use
a non-unitary irrep of the twisted diagonal sl(2,R) sub-algebra constructed from two (generically distinct)
unitary (infinite dimensional) irreps of each sl(2,R) component of the gauge algebra.
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=
1

(z1 − z2)2h(z̄1 − z̄2)2h̄
(3.28)

It should be clear that when we consider the 2-point function of primaries with different

conformal dimensions the corresponding Wilson line vanishes as the Wilson line operator

does not change the representation of the state 〈〈hh̄; j, j| (|h, h̄; j,− j〉〉) when it acts to the

left (right) and the resultant overlap simply vanishes as the representations (h1, h̄1) and

(h2, h̄2) will be orthogonal when h1 , h2 or h̄1 , h̄2.

Note that this computation suggests that the conjugate to the state 〈〈h, h̄; j,m| should be

taken to be |h, h̄; j,−m〉〉. This is not an unreasonable choice as the conformal transforma-

tion that takes the representation provided by the functions 〈h, h̄; k, k̄|g−1(x)|h, h̄; j,m〉〉 to

the representation provided by 〈〈h, h̄; j,m|g(x)|h, h̄; k, k̄〉 is z → −1/z, z̄ → −1/z̄. In polar

coordinates on the complex plane this is r → 1/r which corresponds to the time-reversal

operation on the cylinder under the state-operator correspondence. It is well known that

the time-reversal operation acts on angular momentum eigenstates in this fashion.

3.1.5 The 3-point function recovered

We can now turn to computing the 3-point function which is also a partial wave on its

own. For this we consider a three-pronged Open Wilson Network as given below:

O(h2 ,h̄2)(x2)

O(h1 ,h̄1)(x1)

O(h3 ,h̄3)(x3)

Figure 3.2: Spin network for CFT 3-point function.
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Following our prescription we associate the following answer to this diagram:

∞∑
ki=0

(−1)−
h1
2 e−ρh1zk1

1

√
Γ(2h1 + k1)
k1!Γ(2h1)

 ×
(−1)−

h2
2 e−ρh2zk2

2

√
Γ(2h2 + k2)
k2!Γ(2h2)


×

(−1)
h3
2 e−ρh3z−2h3−k3

3

√
Γ(2h3 + k3)
k3!Γ(2h3)

 ×Ch1h2h3
k1k2k3

×

∞∑
k̄i=0

(−1)
h̄1
2 e−ρh̄1 z̄k̄1

1

√
Γ(2h̄1 + k̄1)
k̄1!Γ(2h̄1)

 ×
(−1)

h̄2
2 e−ρh̄2 z̄k̄2

2

√
Γ(2h̄2 + k̄2)
k̄2!Γ(2h̄2)


×

(−1)−
h̄3
2 e−ρh̄3 z̄−2h̄3−k̄3

3

√
Γ(2h̄3 + k̄3)
k̄3!Γ(2h̄3)

 ×Ch̄1h̄2h̄3

k̄1k̄2k̄3
(3.29)

Clearly the answer is a product of holomorphic and anti-holomorphic pieces each of

which can be computed separately. The holomorphic part becomes:

∞∑
ki=0

(−1)−
h1
2 e−ρh1zk1

1

√
Γ(2h1 + k1)
k1!Γ(2h1)

 ×
(−1)−

h2
2 e−ρh2zk2

2

√
Γ(2h2 + k2)
k2!Γ(2h2)


×

(−1)
h3
2 e−ρh3z−2h3−k3

3

√
Γ(2h3 + k3)
k3!Γ(2h3)

 × δk1+k2−k3+h1+h2−h3

×
Γ(k3 − k2)k2!Γ(2h2 + k1 + k2)Γ(h3 + h1 − h2)
√

k1!k2!k3!Γ(2h1 + k1)Γ(2h2 + k2)Γ(2h3 + k3)
3F2

(
−k1,−k3, 2h1 + k1 + k2 − k3

1 + k2 − k3, 1 − 2h2 − k1 − k2
; 1

)

∼ z−2h3
3

∞∑
ki=0

1
k1!k3!

Γ(2h2 + k1 + k2)Γ(k3 − k2)
Γ(h1 + h2 − h3)Γ(2h2 + k1 + k2 − k3)

× zk1
1 3F2

(
−k1,−k3, 2h1 + k1 + k2 − k3

1 + k2 − k3, 1 − 2h2 − k1 − k2
; 1

)
zk2

2 z−k3
3 δk1+k2−k3+h1+h2−h3

∼ z−2h3
3

∞∑
ki=0

min(k1,k3)∑
n=0

Γ(k3 − k2 − n)Γ(2h2 + k1 + k2 − n)Γ(2h1 + k1 + k2 − k3 + n)
Γ(h1 + h2 − h3)Γ(2h2 + k1 + k2 − k3)Γ(2h1 + k1 + k2 − k3)

×
zk1

1 zk2
2 z−k3

3

n!(k1 − n)!(k3 − n)!
δk1+k2−k3+h1+h2−h3

(3.30)

where we have used the explicit series representation of 3F2. Next we write k1 = n2 + n3,

k3 = n1 + n2 n = n2 and k2 = n1 − n3 + h3 − h1 − h2. Then the four sums can be reduced
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to three sums over n1, n2, n3 at the expense of removing the Kronecker delta to obtain an

expression exactly proportional to

∼
1

(z1 − z2)h1+h2−h3(z2 − z3)h2+h3−h1(z3 − z1)h3+h1−h2
(3.31)

where (and henceforth) “∼" indicates that we have dropped some non-zero constant fac-

tors. Similarly the the anti-holomorphic part will give an answer proportional to

1
(z̄1 − z̄2)h̄1+h̄2−h̄3(z̄2 − z̄3)h̄2+h̄3−h̄1(z̄3 − z̄1)h̄3+h̄1−h̄2

(3.32)

Multiplying both these factors together one recovers the precise coordinate behaviour of

the 3-point function of primaries in the CFT.

3.1.6 The 4-point partial wave recovered

For this we consider the OWN in Fig. 3.3 below:

O(h1 ,h̄1)(x1)

O(h2 ,h̄2)(x2) O(h3 ,h̄3)(x3)

O(h4 ,h̄4)(x4)

O(h,h̄)

Figure 3.3: Partial Wave of 4-point function.

whose answer is

∑
ki,k̄i

〈〈h1, h̄1; j1, j1|g(x1)|h1, h̄1; k1, k̄1〉 × 〈〈h2, h̄2; j2, j2|g(x2)|h2, h̄2; k2, k̄2〉

×〈h3, h̄3; k3, k̄3|g−1(x3)|h3, h̄3; j3,− j3〉〉 × 〈h4, h̄4; k4, k̄4|g−1(x4)|h4, h̄4; j4,− j4〉〉
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×
∑
k,k̄

Ch1h2h
k1k2k ×Chh3h4

kk3k4
×Ch̄1h̄2h̄

k̄1k̄2k̄
×Ch̄h̄3h̄4

k̄k̄3k̄4
(3.33)

where xi = (zi, z̄i, ρ → ∞). One can in principle compute this quantity and recover the

full coordinate dependence of this 4-point partial wave (as guaranteed by the differential

relations we had established earlier). However to simplify the presentation and as it is

standard we take z1 → ∞, z2 → 1, z3 → z and z4 → 0. Then the partial wave in the

decomposition of the 4-point function of four primaries of dimensions (hi, h̄i) for i =

1, 2, 3, 4 takes the form:

W(h,h̄)(x) = z−2h1
1 z̄−2h̄1

1 G(h,h̄)(z) (3.34)

From the CFT it is known that G takes the following form:

G(h,h̄)(z, z̄) ∼ z−h3−h4 z̄−h̄3−h̄4Fh(z)F̄h̄(z̄) (3.35)

where F and F̄ are supposed to be the corresponding conformal blocks. We can now

compute using our prescription this partial wave and hence the blocks. When we set

z1 → ∞, z2 → 1, z3 → z and z4 → 0 then each component in the above expression

simplifies as follows:

〈〈h1, h̄1; j1, j1|g(x1)|h1, h̄1; k1, k̄1〉 → (−1)
h1
2 e−ρh1z−2h1

1 δk1,0 × (−1)−
h̄1
2 e−ρh̄1 z̄−2h̄1

1 δk̄1,0

〈〈h2, h̄2; j2, j2|g(x2)|h2, h̄2; k2, k̄2〉 → (−1)
h2
2 e−ρh2

√
Γ(2h2 + k2)
k2!Γ(2h2)

×(−1)−
h̄2
2 e−ρh̄2

√
Γ(2h̄2 + k̄2)
k̄2!Γ(2h̄2)

〈h3, h̄3; k3, k̄3|g−1(x3)|h3, h̄3; j3,− j3〉〉 → (−1)−
h3
2 e−ρh3zk3

√
Γ(2h3 + k3)
k3!Γ(2h3)

×(−1)
h̄3
2 e−ρh̄3 z̄k̄3

√
Γ(2h̄3 + k̄3)
k̄3!Γ(2h̄3)
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〈h4, h̄4; k4, k̄4|g−1(x4)|h4, h̄4; j4,− j4〉〉 → (−1)−
h4
2 e−ρh4δk4,0 × (−1)

h̄4
2 e−ρh̄4δk̄4,0 (3.36)

We now need the CGCs which again fall into different cases. Let us first assume that we

have h1 + h2 ≥ h and h3 + h4 ≥ h. In this case the relevant CGCs are

Ch1,h2,h
0,k2,k

∼ δh1+h2+k2−h−k ×
Γ(k − k2)
√
Γ(2h1)

×

√
k2!Γ(2h2 + k2)

k!Γ(2h + k)
(3.37)

Ch,h3,h4
k,k3,0

∼ δh3+h4+k3−h−k ×
Γ(k − k3)
√
Γ(2h4)

×

√
k3!Γ(2h3 + k3)

k!Γ(2h + k)
(3.38)

The holomorphic part of (3.33) becomes

∼ (−1)
1
2 (h1+h2−h3−h4)e−ρ(h1+h2+h3+h4)z−2h1

1

∑
ki,k

√
Γ(2h2 + k2)
k2!Γ(2h2)

√
Γ(2h3 + k3)
k3!Γ(2h3)

zk3

×δh1+h2−h+k2−k
Γ(k − k2)
√
Γ(2h1)

√
k2!Γ(2h2 + k2)

k!Γ(2h + k)
× δh3+h4+k3−h−k

Γ(k − k3)
√
Γ(2h4)

√
k3!Γ(2h3 + k3)

k!Γ(2h + k)

∼ e−ρ(h1+h2+h3+h4)z−2h1
1

∞∑
k=0

Γ(h − h1 + h2 + k)Γ(h + h3 − h4 + k)
Γ(2h + k)k!

zk

∼ e−ρ(h1+h2+h3+h4)z−2h1
1 zh−h3−h4

2F1[h − h1 + h2, h + h3 − h4, 2h, z] (3.39)

where in the second step we carried out the sums over k2 and k3 using the Kronecker

deltas. One gets for the anti-holomorphic part

∼ e−ρ(h̄1+h̄2+h̄3+h̄4)z̄−2h̄1
1 z̄h̄−h̄3−h̄4

2F1[h̄ − h̄1 + h̄2, h̄ + h̄3 − h̄4, 2h̄, z̄]. (3.40)

Comparing our answer with (3.34, 3.35) we recover the well-known answer [101] for the

4-point spinning global conformal block

Fh(z) ∼ zh
2F1[h − h1 + h2, h + h3 − h4, 2h, z]

F̄h̄(z̄) ∼ z̄h̄
2F1[h̄ − h̄1 + h̄2, h̄ + h̄3 − h̄4, 2h̄, z̄] (3.41)
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As mentioned above in this calculation we have assumed h ≤ h3 + h4 and h ≤ h1 + h2.

There are three other possibilities which can also be computed easily using the appropriate

expressions of the CGCs (A.31) to give answers exactly of the same form.

Note that what we have computed satisfies two independent conformal Casimir equations

– one for each of the two sl(2,R) factors in the 2d global conformal algebra with eigen-

values 2h(h − 1) and 2h̄(h̄ − 1) respectively. The global partial wave however is supposed

to satisfy one conformal Casimir equation with the Casimir operator given by the sum of

these two Casimirs with eigenvalue 2h(h − 1) + 2h̄(h̄ − 1). This eigenvalue is invariant

under h ↔ h̄. The OWN considered above continues to be a solution to this one Casimir

equation. But there is a second independent solution with the same eigenvalue obtained

from the above OWN by interchanging h with h̄.3 Therefore any linear combination of

these two OWNs would provide a solution to the conformal Casimir equation. A basis

in this space of solutions can be taken to be the symmetric and the antisymmetric com-

binations under h ↔ h̄. As advocated, say, in [6] the symmetric combination is the one

satisfying the appropriate boundary conditions. This in our context gives us the G∆,l(z, z̄)

given by z−h3−h4 z̄−h̄3−h̄4 times :

|z|∆−l

(
zl

2F1

[
∆ − l

2
− h12,

∆ − l
2
− h34, ∆ − l, z

]
2F1

[
∆ + l

2
− h12,

∆ + l
2
− h34, ∆ + l, z̄

]

+ (z→ z̄, hi j → h̄i j)
)

(3.42)

where hi j = hi − h j etc. and ∆ = h + h̄, l = h − h̄. This is our final answer for the 4-point

partial wave of primaries and clearly matches with the result for scalar conformal partial

3The two states |h, h̄〉 and |h̄, h〉, when h − h̄ is an integer, could be thought of as the duals of the two
physical polarisations of an appropriate higher spin field in the bulk with spin |h − h̄| as in, say [102].
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waves given in [6]

G∆,l = |z|∆−l

[
zl

2F1

(
∆ − ∆12 + l

2
,
∆ + ∆34 + l

2
, ∆ + l; z

)

× 2F1

(
∆ − ∆12 − l

2
,
∆ + ∆34 − l

2
, ∆ − l; z̄

)
+ (z↔ z̄)

]

when we take hi = h̄i as it is appropriate for scalar operators in the external legs and

satisfies the same boundary conditions as z, z̄ → 0. We have considered in here the

case of the boundary conditions imposed when cross ratios (z, z̄) approach zero. One can

similarly consider diagrams that compute blocks with boundary conditions imposed as

(z, z̄) approaches (1, 1) or (∞,∞).

3.1.7 The 5-point conformal block recovered

The last example we consider here is the conformal partial wave that appears in the pants

decomposition of the 5-point function of primaries. For this we consider the following

Open Wilson Network (Fig. 3.4).

O(h2 ,h̄2)(1)

O(h1 ,h̄1)(∞) O(h5 ,h̄5)(0)

O(h4 ,h̄4)(z4)

O(h3 ,h̄3)(z3)

O(h, h̄) O(h′ , h̄′)

Figure 3.4: A Partial Wave of 5-point function.
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The value of the holomorphic part of this diagram is up to a factor e−ρ(h1+h2+h3+h4+h5):

∼ z−2h3
3

∑
k2,k3,k4,k,k′

Ch1h2;h
0k2;k

√
Γ(2h2 + k2)
k2!Γ(2h2)

Chh3;h′

kk3;k′

√
Γ(2h3 + k3)
k3!Γ(2h3)

Ch4h5;h′

k40;k′

√
Γ(2h4 + k4)
k4!Γ(2h4)

z−k3
3 zk4

4

(3.43)

Let us further assume that h1 + h2 ≥ h, h + h3 ≥ h′ and h4 + h5 ≥ h′.4 The CGCs are given

by

Ch1,h2,h
0,k2,k

∼ δh1+h2+k2−h−k
Γ(k−k2)
√
Γ(2h1)

√
k2!Γ(2h2+k2)

k!Γ(2h+k)

Ch4h5;h′

k40;k′ ∼ δh4+h5+k4−h′−k′
Γ(k′−k4)
√
Γ(2h5)

√
k4!Γ(2h4+k4)
k′!Γ(2h′+k′) (3.44)

and

Chh3;h′

kk3;k′ = δh+h3−h′+k+k3−k′
Γ(k′ − k3)k3!Γ(2h3 + k + k3)Γ(h + h′ − h3)
√

k!k3!k′!Γ(2h + k)Γ(2h3 + k3)Γ(2h′ + k′)

× 3F2

(
−k,−k′, 2h + k + k3 − k′

1 + k3 − k′, 1 − 2h3 − k − k3
; 1

)
(3.45)

Then the value of 5-point block thus becomes

z−2h3
3

∑
k,k′

∑
k2,k3,k4

z−k3
3 zk4

4 3F2

(
−k,−k′, 2h + k + k3 − k′

1 + k3 − k′, 1 − 2h3 − k − k3
; 1

)

×
Γ(k − k2)Γ(k′ − k4)Γ(k′ − k3)Γ(2h3 + k + k3)Γ(2h2 + k2)Γ(2h4 + k4)Γ(h + h′ − h3)

k!k′!Γ(2h + k)Γ(2h′ + k′)
×δh1+h2+k2−h−k δh4+h5+k4−h′−k′ δh+h3−h′+k+k3−k′

(3.46)

4All the other possibilities can also be considered and computed with the suitable CGCs resulting in
expressions with the same coordinate dependence.
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The 5-point global block has been computed recently using the CFT methods in [21] and

to compare with their answer we write above expression as

z−2h3
3 zh−h3−h′

3 zh′−h4−h5
4

∑
k,k′

∑
k2,k3,k4

q−h3−k3+h4+k4+h5−h
1 qh4+k4+h5−h′

2

×3F2

(
−k,−k′, 2h + k + k3 − k′

1 + k3 − k′, 1 − 2h3 − k − k3
; 1

)

×
Γ(k − k2)Γ(k′ − k4)Γ(k′ − k3)Γ(2h3 + k + k3)Γ(2h2 + k2)Γ(2h4 + k4)Γ(h + h′ − h3)

k!k′!Γ(2h + k)Γ(2h′ + k′)
×δh1+h2+k2−h−k δh+h3−h′+k+k3−k′ δh4+h5+k4−h′−k′

(3.47)

where q1 = z3 and q2 = z4/z3. Then we do k2, k3, k4 sums using 1st, 2nd and 3rd Kronecker

deltas respectively in the above expression. The result becomes

∼ z−2h3
3 zh−h3−h′

3 zh′−h4−h5
4

∑
k,k′

qk
1q2

k′

k!k′!

×
Γ(−h1 + h + h2 + k)Γ(h − h′ + h3 + k)Γ(−h + h′ + h3 + k′)Γ(h′ + h4 − h5 + k′)

Γ(2h + k)Γ(2h′ + k′)

×3F2

(
−k,−k′, h + h′ − h3

h − h′ − h3 − k′ + 1,−h + h′ − h3 − k + 1
; 1

)
(3.48)

The hypergeometric function here can be rewritten using the (Shepperd’s) identity [95]

3F2

(
−n, a, b

d, e
; 1

)
=

(e − a)n

(e)n
3F2

(
−n, a, d − b

d, a + 1 − n − e
; 1

)
(3.49)

as

3F2

(
−k,−k′, h + h′ − h3

h − h′ − h3 − k′ + 1,−h + h′ − h3 − k + 1
; 1

)

=
Γ(h − h′ + h3 + k − k′)Γ(h − h′ + h3)
Γ(h − h′ + h3 − k′)Γ(h − h′ + h3 + k) 3F2

(
−k,−k′,−2h′ − k′ + 1

h − h′ − h3 − k′ + 1, h3 + h − h′ − k′
; 1

)
(3.50)
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Finally we get the holomorphic part of the 5-point block in the form

∼ z−2h3
3 zh−h3−h′

3 zh′−h4−h5
4

∞∑
k,k′=0

Fk,k′qk
1q2

k′ (3.51)

where

Fk,k′ =
1

k!k′!
Γ(h + h2 − h1 + k)Γ(h′ + h4 − h5 + k′)

Γ(2h + k)Γ(2h′ + k′)
τk,k′ (3.52)

with

τk,k′ =
Γ(h3 − h + h′ + k′)Γ(h3 + h − h′ + k − k′)

Γ(h3 + h − h′ − k′)

×3F2

(
−k,−k′,−2h′ − k′ + 1

h − h′ − h3 − k′ + 1, h3 + h − h′ − k′
; 1

)
(3.53)

which apart from a purely hi-dependent pre-factor is exactly identical to the one obtained

in [21]. The anti-holomorphic part can also be computed on similar lines and put together

with the holomorphic part to find the contribution of the OWN in Fig.(5) to the 5-point

partial wave.

The 5-point block is a solution to two pairs of Casimir equations (two each for each of

the two intermediate edges) as discussed earlier. However just as in the case of the 4-

point partial wave we need impose only two Casimir equations. Then we have four OWN

diagrams related to the one in Fig.(5) under (h ↔ h̄) or (h′ ↔ h̄′) all of which solve

these two equations. Again the generic solution would be a linear combination of all

four solutions and one would have to pick appropriate combinations depending on the

boundary conditions one imposes.

Now that we have demonstrated our method at work successfully one can in principle

compute straightforwardly the higher point (global) blocks as well as the partial waves

for a given decomposition of that higher point function of primaries. We next turn to
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d = 1 analysis.

3.2 d = 1 analysis

First we would like to compute the cap state for 1d case and then the 1d global blocks.

We begin with the infinite dimensional matrix representations [94] of global conformal

algebra sl(2,R) for CFT1:

L1|h, n〉 =
√

n(2h + n − 1) |h, n − 1〉

L−1|h, n〉 =
√

(n + 1)(2h + n) |h, n + 1〉

L0|h, n〉 = (h + n) |h, n〉 (3.54)

where D = L0, P = L−1 and K = L1. The bulk is the H2 space whose tangent space

rotation group is S O(2). Therefore the cap state |h, θ〉〉 transform as a 1-dimensional irrep

of S O(2):

(L1 − L−1)|h, θ〉〉 = θ|h, θ〉〉 (3.55)

The parameter θ, a purely imaginary number, is related to the spin of the general bulk

field – we will elaborate further on this shortly. This equation can be solved for |h, θ〉〉 as

a linear combination of states in the module:

|h, θ〉〉 =

∞∑
n=0

Cn|h, n〉 (3.56)

The Cn can be given by Cn =

√
Γ(2h)

n!Γ(2h+n) fn with the fn satisfying the recursion relation

fn+1 = θ fn + n (2h + n − 1) fn−1 . (3.57)
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It is not difficult to see that the fn are generated by G(x) =
∑∞

n=0
xn

n! fn where

G(x) = (1 − x)−h− θ2 (1 + x)−h+ θ
2 . (3.58)

We find that the coefficient of xn

n! in G(x) to be:

fn = (−1)n
(
h −

θ

2

)
n

2F1

(
−n, h +

θ

2
, −h +

θ

2
− n + 1;−1

)
(3.59)

Having obtained the expression for the most general cap state in d = 1, we can repeat the

rest of the exercises carried out in section 2 on these caps. Working with the coset element

g(x) = eρL0 e−xL−1

we can extract the leading terms in the large-ρ limit of 〈〈h, θ|g(x)|h, k〉 and 〈〈h, θ|g(x)|h, k〉.

With some further analysis we find the following simple answers in the ρ→ ∞ limit:

lim
ρ→∞

eρh〈〈h, θ|g(x)|h, k〉 = (−1)−h− θ2

√
Γ(2h + k)
k! Γ(2h)

x−2h−k

lim
ρ→∞

eρh〈h, k|g−1(y)|h, θ〉〉 = yk

√
Γ(2h + k)
k!Γ(2h)

(3.60)

Notice that even though the general cap states depend on the spin-parameter θ the final

expressions for the legs only have very simple dependence on it. For example, putting

the legs together and performing the sum over k gives the following result for two point

function

lim
ρ→∞

e2ρh〈〈h, θ|g(x)g−1(y)|h, θ〉〉 = (−1)−h− θ2 x−2h
∞∑

k=0

Γ(2h + k)
k! Γ(2h)

(
x
y

)k

= (−1)−h− θ2
1

(x − y)2h

(3.61)

A comparison of the d = 1 legs here with the holomorphic part of the d = 2 case of the

previous section enables us to immediately write down the 1d blocks [24,103] by starting

79



with the holomorphic parts of d = 2 blocks and replacing h→ ∆ and z→ |x|.

The interpretation of θ

We have seen so far that the θ despite being part of the cap state does not enter the legs in

the ρ→ ∞ limit except as a phase factor. So what is the interpretation of this θ? To better

understand the role of θ we must first look at the linearised bulk equations satisfied by the

the legs 〈h, k|g−1(x)|h, θ〉〉. To this end we first list the following identities [14] satisfied by

g−1(x)

L0 g−1(x) = (−∂ρ + x∂x) g−1(x)

L−1 g−1(x) = −∂xg−1(x)

L1 g−1(x) = (2x ∂ρ − x2∂x + e−ρ∂x) g−1(x) + g−1(x) e−ρ(L1 − L−1) (3.62)

Using these relations we can easily compute the action of the sl(2,R) Casimir operator C2

on g−1(x)

C2 = 2L2
0 − L1L−1 − L−1L1

C2g−1(x) = 2 (∂2
ρ + ∂ρ + e−2ρ∂2

x) g−1(x) + e−ρ∂xg−1(x) (L1 − L−1) (3.63)

Thus we see that the legs satisfy the second order PDE:

(∂2
ρ + ∂ρ + e−2ρ∂2

x + θ e−ρ∂x)〈h, k|g−1(x)|h, θ〉〉 = ∆(∆ − 1)〈h, k|g−1(x)|h, θ〉〉 (3.64)

We would now like to interpret this equation as that of a bulk local field in the background

AdS 2 geometry with metric ds2
H2 = dρ2 + e2ρ dx2.

Since the boundary isometry group is just Z2 we would expect the boundary conformal

primary operators to be characterised by a scaling dimension ∆ and a parity ±1. But any

general bulk local field in two dimensions (once one trades off the tangent space indices
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for spacetime ones) has to have only two parameters: the mass and the spin on which the

bulk covariant derivative acts as

Dµψ(x) = ∂µψ(x) +
1
2
ωab
µ Labψ(x) (3.65)

where Lab is the tangent space rotation generator in the representation of ψ(x). Redefining

the coordinates z = e−ρ + ix , z̄ = e−ρ − ix the metric of AdS 2 becomes ds2 = 4dzdz̄
(z+z̄)2 . For

this geometry we have the following non-zero vielbeins, spin-connections and Christoffel

connections:

e+ =
2dz

(z + z̄)2 , e− =
2dz̄

(z + z̄)2 , ω
+

+ =
dz − dz̄
(z + z̄)

= −ω−−, Γ
z
z z =

−2
z + z̄

= Γz̄
z̄ z̄ (3.66)

Since the tangent space is just R2, there is only one rotation generator L+−, and we can

take the field ψ(x) to be an eigenstate of it with eigenvalue i θ. We can now find the

Laplacian operator which acts on φ. It is easy to show that such a field satisfies the

following equation

(� − m2)ψ(x) = (∂2
ρ + ∂ρ + e−2ρ∂2

x + θ e−ρ∂x)ψ(x) − (m2 +
1
8
θ2)ψ(x) = 0 (3.67)

Comparing (3.64) and (3.67) we make the following identifications:

∆(∆ − 1) = m2 +
θ2

8
. (3.68)

Therefore, we conclude that, when it is available, the parameter θ represents the spin of

the bulk field.5

5Amusingly the same equation (3.67) shows up when one considers a complex scalar in AdS 2 minimally
coupled to a background electric field whose strength is given by θ.
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Chapter 4

Scalar CPW from OWNs

Even though the general prescription for computing the partial waves of correlators of any

set of primaries (in arbitrary representations of the rotation group of the boundary theory)

in general CFTd using OWNs was laid down in chapter 2, to carry through the explicit

computations in higher dimensions one needs to find out the basic ingredients. Most of

these ingredients are not known yet. For example the CGCs in generic representations

of conformal group so(1, d + 1) are mostly not known. Even when they have existence

in the literature (for example the CGCs for traceless symmetric representations are found

in [104]), they are not in a form we can use. The cap-states for a generic tensor primary

in CFTd are not known.

In this chapter we would like to report some progress in this direction. In particular,

we will demonstrate how to implement our prescription explicitly for the scalar CPW

W (d)
∆,0(∆i, xi) in any CFTd. This will be shown by computing the OWNs in AdS d+1 spaces,

with all lines (both external and internal) carrying scalar representations. Our results

include a simplification of the computations of OWN using the concept of OPE modules

- which are close analogues of the OPE blocks that were studied in the literature [19, 20].

With this simplification we compute the scalar 4-point blocks in general dimension and

show that our prescription reproduces the known answers [6]. Remarkably, our results are
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naturally given in terms of Gegenbauer polynomial basis [6, 57].

4.1 Collecting the Ingredients

We start with collecting these ingredients: (i) Wilson lines, (ii) the cap states, and (iii) CG

coefficient.

Wilson Lines

We will be evaluating the OWN in the background of the Euclidean AdS d+1 geometry

with Rd boundary (i.e, Poincare AdS d+1) with the metric:

l−2 ds2
AdS d+1

= dρ2 + e2ρ
d∑

i=1

dxidxi. (4.1)

For this, working with the frame:

ei = l eρ dxi, ed+1 = l dρ (4.2)

we find only non-vanishing spin-connections to be ωi(d+1) = 1
l ei = −ω(d+1)i. Solving the

eq. (2.3) for g(x) in this frame we find

g(x) = e−ρM0,d+1e−xa (M0,a+Ma,d+1)g0 , (4.3)

where the algebra generators are taken in the representation R of so(1, d + 1). Using the

standard identification of so(1, d + 1) generators as the conformal generators of Rd (1.5)

the coset element g(x) reads:

g(x) = eρDe−xa Pag0. (4.4)
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This gives us the Wilson lines

W x
y (R,C) = P exp

[∫ x

y
A
]

= g(x) g−1(y) (4.5)

Without loss of generality we can choose g0 to be identity I.

The Scalar Caps

To project the external legs of the OWN operator we seek states, in the representation

space R carried by that external leg, that transform in a (finite dimensional) irrep of the

subalgebra so(d+1) with generators {Mab,Ma,d+1} [16]. In particular, for the scalar cap this

finite dimensional representation is the trivial one, that is, annihilated by {Mab,Ma,d+1}.

Let us now construct these states.

In terms of the generators in (1.5) the so(1, d+1) algebra reads (1.4). We work with irreps

R of so(1, d + 1) that become UIR of so(2, d) obtained by Wick rotation. This implies the

following reality conditions

M†

0,d+1 = M0,d+1, M†

0a = −M0,a, M†

a,d+1 = Ma,d+1, M†

ab = −Mab . (4.6)

In terms of the generators in (1.5) these mean:

D† = D, P†a = Ka, M†

ab = −Mab. (4.7)

Then the scalar cap state |∆〉〉 is defined to be a state in the scalar module (∆, li = 0) that

satisfies the conditions:

Mab|∆〉〉 = (Pa + Kb)|∆〉〉 = 0. (4.8)

We can construct it as a linear combination of states in the module over the scalar primary
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(lowest weight) state |∆〉 which satisfies

D|∆〉 = ∆ |∆〉, Mab |∆〉 = Ka |∆〉 = 0. (4.9)

Rest of the basis states of the module take form |∆, ki〉 = N~k Pk1
1 · · · P

kd
d |∆〉. The solution

to the scalar cap state equation (4.9) was provided first in [16]. We re-derive it here for

completeness. For this note that the cap state has to be a singlet under so(d) and therefore

can only depend on PaPa. So we write

|∆〉〉 =

∞∑
n=0

Cn(∆, d) (PaPa)n|∆〉 , (4.10)

and impose (Pa + Ka)|∆〉〉 = 0 to determine the coefficients Cn. Carrying out this straight-

forward exercise gives

Cn(∆, d) =
(−1)n

22nn! (∆ − µ)n
(4.11)

With these (4.10) can be seen to be equivalent to the one in [16]. We will need the dual

(conjugate under (4.7)) of this cap state which is given by:

〈〈∆| =

∞∑
n=0

Cn(∆, d) 〈∆| (KaKa)n (4.12)

with the same Cn as in (4.11).1

In fact one can obtain more general cap states. For instance, in the previous chapter case

of d = 2, we provided expressions for cap states in the module over the primary state

|h, h̄〉 that transform under ( j,m) representation of so(3) algebra. In other dimensions one

should seek caps that transform under arbitrary finite dimensional irreps of so(d + 1) – to

be used in computing the OWNs with primaries that are not just scalars for the vector cap

state – provided for illustration). We however will not pursue this further here (work in

1This scalar cap in the d = 2 case can be seen to be equivalent to that with h = h̄ cap used in chapter 2
(see also [18] and more recently [105] for a different perspective).
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progress).

CGCs

The last ingredient in the computation of the OWN expectation values is the Clebsch-

Gordan coefficients (CGC) of the gauge algebra so(1, d + 1). Some of these are known

– see for instance [104]. Those are however not in a form that lends itself readily to our

purposes. As elucidated in chapter 2 we can extract the relevant CGC from scalar three-

point functions. An explicit expression has beed derived in appendix B. However one can

bypass this exercise making use of OPE modules which we will introduce later in this

chapter.

4.2 Processing the Ingredients

To proceed further we need the explicit expression for the in-going legs 〈〈∆|g(x)|∆,m〉 and

the out-going legs 〈∆,m|g−1(x)|∆〉〉 which are matrix elements of g(x) and g−1(x) between

the cap states |∆〉〉 and normalised basis elements |∆,m〉 of the scalar module. So we turn

to finding a suitable orthonormal basis for the module over a scalar primary |∆〉 next.

Scalar Module for d ≥ 2

The descendent states take the form |∆, {k1, k2, . . . , kd}〉 ∼
∏d

i=1 Pki
i |∆〉. These states are

eigenstates of the dilatation operator D with eigenvalue ∆ +
∑d

i=1 ki. States with different

eigenvalues of D are orthogonal. The set of states with a given conformal weight form a

reducible representation of the rotation algebra so(d) – which can be decomposed into a

sum of irreps of so(d). Then states belonging to different irreps will also be orthogonal.

Therefore, a more suitable basis to work with would be in terms of the hyperspheri-

cal harmonics of the boundary so(d) rotation algebra, (P2)sMl
m(P)|∆〉 where m denotes

87



(md−2, · · · ,m2,m1), whose conformal dimension is ∆ + l + 2s. In the rest of the thesis

we follow the conventions of [23, 106] for hyperspherical functions. It turns out that this

choice is responsible for giving the CPW as a sum over contributions of given spin l,

namely the Gegenbauer polynomial basis.

We define orthonormal states in this basis as follows

(P2)sMl
m(P)|∆〉 := Al,s |∆; {l,m, s}〉 (4.13)

〈∆|(K2)s Ml
m
?
(K) := A∗l,s 〈∆; {l,m, s}| (4.14)

with

〈∆; {l′,m
′

, s′}|∆; {l,m, s}〉 = δll′δmm′δss′ (4.15)

Note that the so(d) symmetry dictates that the normalisations Al,s of these states do not

depend on m. To find the normalisation Al,s let us start with the state O∆(x)|0〉 which can

be rewritten as

O∆(x)|0〉 = ex·PO∆(0) e−x·P|0〉 = ex·P |∆〉 (4.16)

where we have used the fact that the vacuum is conformally invariant. The Hermitian

conjugation (BPZ dual) is defined as

O
†

∆(y) = (y2)−∆O†∆(y/y2) (4.17)

On the other hand using the Hermiticity of the conformal generators (4.7) we find

(
ey·P |∆〉

)†
= 〈∆| ey·K (4.18)
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Finally we compute the following inner product

〈∆|ey·Kex·P|∆〉 = (y2)−∆ 〈0| O†∆(y/y2)O∆(x) |0〉

=
1

(1 − 2 x · y + x2 y2)∆
(4.19)

On the left hand side of the above identity we expand the plane waves ex·P in terms of

spherical waves:

ex·P =

∞∑
l=0

(2l + d − 2)(d − 4)!! jd
l (x P) C

d−2
2

l

(
x · P
x P

)
(4.20)

where jd
l (x) is the spherical Bessel function and Cµ

l (z) is the Gegenbauer polynomials as

defined below

jd
l (x) =

∞∑
s=0

(−1)s(x)l+2s

(2s)!!(d + 2l + 2s − 2)!!
. (4.21)

and

C
d−2

2
l (x) =

1
(d − 4)!!

[l/2]∑
k=0

(−1)k (2l − 2k + d − 4)!!
(2k)!!(l − 2k)!!

xl−2k (4.22)

Even though this formal expansion looks odd as it apparently depends not only on P

whose square is P · P, but also in the denominator of the argument of the Gegenbauer

polynomial – we will shortly see that this is not really a problem once interpreted cor-

rectly. One can also write Gegenbauer polynomials in terms of hyperspherical harmonics

using the well known identity

∑
m

Y∗l;m(Ωx)Yl;m(Ωy) =
Γ[ d−2

2 ](2l + d − 2)
4πd/2 C

d−2
2

l

(
~x · ~y
x y

)
. (4.23)

Substituting these into the (4.20) we get:

ex·P = 4 a π
d
2

∞∑
l=0

∞∑
s=0

(x2)s

2l+2ss!Γ[l + s + d
2 ]

∑
m

Ml∗
m(x)Ml

m(P)(P2)s (4.24)
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where Ml
m(x) = xl Yl;m(Ωx) and

a =


1

2(d−2)/2Γ[ d−2
2 ]
, if d is even

√
π

2(d−1)/2Γ[ d−2
2 ]
, if d is odd

(4.25)

Similarly

ey·K = 4 a π
d
2

∞∑
l=0

∞∑
s=0

(y2)s

2l+2ss!Γ[l + s + d
2 ]

∑
m

Ml∗
m(y)Ml

m(K)(K2)s (4.26)

Therefore the left hand side of (4.19) takes the following form

〈∆|ey·Kex·P|∆〉 =

∞∑
l=0

∞∑
s=0

(x2)s(y2)s
∑

m

Ml
m(y) Ml∗

m(x) |Al,s|
2

 4 a π
d
2

s! 2l+2s Γ(l + s + d/2)

2

.

(4.27)

Next we want to expand the right hand side of (4.19) in the same basis. For this we first

write

1
(1 − 2 x · y + x2 y2)∆

=
1

(1 − 2 ξ t + t2)∆
(4.28)

with t = x y and ξ = t−1x · y. We would now like to expand this quantity in terms of

Gegenbauer polynomials Cµ
n(x). Luckily this exercise was done in [107] which reads2

1
(1 − 2 ξ t + t2)∆

=
Γ(µ)
Γ(∆)

∞∑
k=0

Cµ
k (ξ) tk Γ(∆ + k)

Γ(µ + k) 2F1(∆ + k, ∆ − µ; µ + k + 1; t2) (4.29)

However, we are interested in expanding the left hand side in d-dimensional hyperspher-

ical harmonics in x which requires us to choose µ = (d − 2)/2. Using the series represen-

2This is a remarkable generalisation of how the Gegenbauer Polynomials Cµ
k (x) are defined through its

generating function when ∆ = µ.
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tation of the hypergeometric function:

2F1(∆ + k, ∆ − µ; µ + k + 1; t2) =
Γ(µ + k + 1)

Γ(∆ + k)Γ(∆ − µ)

∞∑
n=0

Γ(∆ + k + n)Γ(∆ − µ + n)
Γ(µ + k + n + 1)

t2n

n!

(4.30)

and using the identity (4.23) we finally arrive at

1
(1 − 2 x · y + x2 y2)∆

=
4 π

d
2

Γ(∆)

∞∑
l,s=0

Γ(∆ + l + s)Γ(∆ + s − d−2
2 )

Γ(l + s + d/2) s!
(x2)l+2s(y2)l+2s

∑
m

Ml
m(y) Ml∗

m(x)

(4.31)

Comparing (4.27) with (4.31), we get

|Al,s|
2 =

22l+4sΓ [l + s + d/2]Γ[∆ + l + s]Γ
[
∆ + s − (d−2)

2

]
s!

4 a2 π
d
2Γ[d/2]Γ[∆]Γ

[
∆ − (d−2)

2

] (4.32)

Having found an orthonormal basis for the scalar module we would like to now compute

the legs (conformal wave functions) as described in the beginning of this section.

In-going legs

For this we start with g(x) = eρDe−x·P. Then

〈〈∆|g(x)|∆; {l,m, s}〉

=

∞∑
n=0

(−1)nCn〈∆| (K2)n eρDe−x·P|∆; {l,m, s}〉

=

∞∑
n=0

(−1)nCn

Al,s
A∗0,n 〈∆, {0, 0, n}| e

ρDe−x·P (P2)s Ml
m(P)|∆〉

=
4aπ

d
2

Al,s

∞∑
n=0

(−1)nCnA∗0,n
∞∑

l′=0

∞∑
s′=0

(x2)s′

s′! 2l′+2s′ Γ(l′ + s′ + d/2)

∑
m′

Ml′∗
m′(−x)
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× 〈∆, {0, 0, n}| eρD(P2)s+s′Ml′
m′(P)Ml

m(P)|∆〉

Now using the identity for the spherical harmonics

Ml
m(P)Ml′

m′(P) =
∑

L

∑
n

 l l′ L

m m′ n

 (P2)
l+l′−L

2 ML
n (P) (4.33)

where
[ l l′ L

m m′ n
]

is so(d) CGCs, we find

〈〈∆|g(x)|∆; {l,m, s}〉

=
4aπ

d
2

Al,s

∞∑
n=0

(−1)nCnA∗0,n
∞∑

l′=0

∞∑
s′=0

(x2)s′

s′! 2l′+2s′ Γ(l′ + s′ + d/2)

∑
m′

Ml′∗
m′(−x) eρ(∆+l+l′+2(s+s′))

×
∑

L

∑
n

 l l′ L

m m′ n

 〈∆; {0, 0, n}|(P2)s+s′+(l+l′−L)/2ML
n (P)|∆〉

=
4aπ

d
2

Al,s

∞∑
n=0

(−1)nCnA∗0,n
∞∑

l′=0

∞∑
s′=0

(x2)s′

s′! 2l′+2s′ Γ(l′ + s′ + d/2)

∑
m′

Ml′∗
m′(−x) eρ(∆+l+l′+2(s+s′))

×
∑

L

∑
n

 l l′ L

m m′ n

 AL,s+s′+ l+l′−L
2
δL0 δn0 δn

(
s+s′+ l+l′−L

2

)

Carrying out the summation over L and n we find

〈〈∆|g(x)|∆; {l,m, s}〉

=
4aπ

d
2

Al,s

∞∑
n=0

(−1)nCnA∗0,n
∞∑

l′=0

∞∑
s′=0

(x2)s′

s′! 2l′+2s′ Γ(l′ + s′ + d/2)
Ml

m(−x) eρ(∆+l+l′+2(s+s′))

× δll′ A0,s+s′+ l+l′
2
δn

(
s+s′+ l+l′

2

) (4.34)

where we have used

∑
m′

 l l′ 0

m m′ 0

 Ml′∗
m′(x) = δll′ Ml

m(x) . (4.35)
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Therefore

〈〈∆|g(x)|∆; {l,m, s}〉

=
4aπ

d
2

Al,s

∞∑
n=0

(−1)nCnA∗0,n
∞∑

s′=0

(x2)s′

s′! 2l+2s′ Γ(l + s′ + d/2)
Ml

m(−x) eρ(∆+2(l+s+s′)) A0,s+s′+l δn(s+s′+l)

= eρ∆
4aπ

d
2

Al,s
(x2)−l−s Ml

m(−x)
∞∑

n=0

(−1)nCn|A0,n|
2

(
e2ρ x2

)n

(n − s − l)! 22n−2s−l Γ(n − s + d/2)

= e−ρ∆
4aπd/2 2l+2s

Al,s
× Ml

m(−x) × (−1)s+l × (e2ρ)∆+l+s(l + d/2)s (∆)l+s

× 2F1

(
∆ + l + s, l + s + d/2; l + d/2; −e2ρx2

)
(4.36)

Now we want to take ρ → ∞ limit. We rewrite the hypergeometric function in the above

expression using the identity

2F1( a, b; c; z) = (1 − z)−a
2F1

(
a, c − b; c;

z
z − 1

)
(4.37)

as

2F1(∆ + l + s, l + s + d/2; l + d/2; −e2ρx2)

= (1 + e2ρx2)−∆−l−s
2F1

(
∆ + l + s, −s; l +

d
2

;
e2ρx2

1 + e2ρx2

)
(4.38)

In the ρ → ∞ limit the argument of the hypergeometric function tends to unity. As the

following identity holds

2F1(−n, b; c; 1) =
(c − b)n

(c)n
=
Γ(c − b + n)Γ(c)
Γ(c − b)Γ(c + n)

, (4.39)

to the leading order in e−ρ the in-going leg becomes

〈〈∆|g(x)|∆; {l,m, s}〉 → e−ρ∆
4aπd/2 2l+2s

Al,s
(−1)s+l Ml

m(−x) (x2)−∆−l−s (∆)l+s (d/2 − ∆ − s)s + · · ·

where dots are subleading terms in ρ→ ∞ limit. Finally we use (−x)n = (−1)n(x−n + 1)n
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and (−1)lMl
m(x) = Ml

m(−x) to get

lim
ρ→∞

eρ∆〈〈∆|g(x)|∆; {l,m, s}〉 = 4 a πd/2 2l+2s

Al,s
(∆)l+s

(
∆ −

d − 2
2

)
s

(x2)−∆−l−s Ml
m(x)

(4.40)

Out-going legs

For this we start with g−1(y) = ey·Pe−ρD, and compute

〈∆; {l,m, s}|g−1(y)|∆〉〉

=

∞∑
n=0

(−1)nCn e−ρ(∆+2n)〈∆; {l,m, s}|ey·P(P2)n|∆〉

= 4aπd/2
∞∑

n=0

(−1)nCn e−ρ(∆+2n)
∞∑

l′=0

∞∑
s′=0

(y2)s′

s′! 2l′+2s′ Γ(l′ + s′ + d/2)

∑
m′

Ml′∗
m′(y)

×Al′,s′+n δll′ δmm′ δs(s′+n)

= 4aπd/2
∞∑

n=0

(−1)nCn Al,s e−ρ(∆+2n) (y2)s−n

(s − n)! 2l+2(s−n) Γ(l + s − n + d/2)
Ml∗

m(y)

= e−ρ∆
4aπd/2

2l+2s Al,s

∞∑
n=0

(−1)nCn e−2nρ 22n (y2)s−n

(s − n)!Γ(l + s − n + d/2)
Ml∗

m(y) (4.41)

As ρ→ ∞, to the leading order only the n = 0 term contributes, so that we have the result

lim
ρ→∞

eρ ∆ 〈∆; {l,m, s}|g−1(y)|∆〉〉 =
4aπd/2

2l+2s Al,s
(y2)s

(s)!Γ(l + s + d/2)
Ml∗

m(y) (4.42)

The results of these rather lengthy exercises are (4.40, 4.42). These two sets of functions

(4.40) and (4.42) provide a representation and its conjugate representation respectively of

the conformal algebra so(1, d + 1), on which the conformal generators {D,Mαβ, Pα,Kα}

act through their differential operator representations on scalar primaries with dimension

∆. One can use these to derive matrix representations of the conformal generators and

therefore, can be more appropriately called the conformal wave functions.

Finally let us quickly carry out a check on our conformal wave functions, namely, that
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when they are used in our OWN prescription they have to reproduce the appropriate two-

point function for the scalar primaries. According to our prescription the two-point func-

tion can be obtained as

〈O∆(x)O∆(y)〉 = lim
ρ→∞

e2∆ρ〈〈∆|g(x)g−1(y)|∆〉〉

= lim
ρ→∞

e2∆ρ
∞∑

l=0

∞∑
s=0

∑
m

〈〈∆|g(x)|∆; {l,m, s}〉〈∆; {l,m, s}|g−1(y)|∆〉〉

(4.43)

〈l,m, s||l,m, s〉
∑

l,m,s

Figure 4.1: 2-point function

As ρ→ ∞ the above diagram evaluates to

∞∑
l=0

∞∑
s=0

l∑
m=−l

〈〈∆|g(x)|∆; {l,m, s}〉〈∆; {l,m, s}|g−1(y)|∆〉〉

= e−2∆ρ(x2)−∆(4aπd/2)2
∞∑

l=0

∞∑
s=0

(∆)l+s

(
∆ − d−2

2

)
s

Γ(l + s + d/2) s!

(y
x

)2s
× (x2)−l

∑
m

Ml
m(x)Ml∗

m(y)(4.44)

Finally using (4.23) and comparing with (4.29) we obtain

〈O∆(x)O∆(y)〉 = 4a2πd/2(x2)−∆
(
1 − 2

x · y
x2 +

y2

x2

)−∆

= 4a2πd/2|x − y|−2∆ (4.45)

This is the expected result for two-point function (up to an overall constant factor - which
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can be gotten rid of by multiplying the cap states by appropriate overall factors).

4.3 Introducing OPE module

Finally we need to amputate the legs we have found in the previous section from the

correlation function of three scalar primaries to find the CGC we need. The explicit

expressions adapted to our method are given in the appendix A. However, to compute, for

example, the 4-point conformal partial waves we need CGCs that are already connected

to two legs at a time – which is obtained easily by starting with an appropriate 3-point

function and amputating only one leg. This object depends on the boundary coordinates

where two of the primaries are inserted, and carries labels of basis vectors of the module

of the third primary. This is a close cousin of the so called OPE block [19, 20] which we

call the OPE module.

These OPE modules can be characterised by two types of identities. To spell them out

let us label the representations of the conformal algebra so(1, d + 1) of interest by (∆, l)

where ∆ is the conformal dimension and l represents all the independent Casimirs of the

representation. States in such a representation R can be labelled by (∆, l; m, s) where m is

again a collective index of magnetic quantum numbers. It turns out there are two types of

these OPE modules which we denote by B(∆1,l1;x1),(∆2,l2;x2)
(∆3,l3;m3,s3) and B(∆3,l3;m3,s3)

(∆1,l1;x1),(∆2,l2;x2). Then these

OPE modules are supposed to satisfy the Ward identities:

(
Lx1[MAB] +Lx2[MAB]

)
B

(∆1,l1;x1),(∆2,l2;x2)
(∆,l;m,s) = M(∆,l;m,s)

(∆,l;m′,s′)[MAB]B(∆1,l1;x1),(∆2,l2;x2)
(∆,l;m′,s′)

(
Lx1[MAB] +Lx2[MAB]

)
B

(∆,l;m,s)
(∆1,l1;x1),(∆2,l2;x2) = −B

(∆,l;m′,s′)
(∆1,l1;x1),(∆2,l2;x2)M(∆,l;m′,s′)

(∆,l;m,s)[MAB]

(4.46)

where we denote the differential operator representation and the matrix representation of

the conformal generator MAB by L[MAB] andM[MAB] respectively. From these identities
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it is very easy to see that both types of OPE modules satisfy corresponding conformal

Casimir equations. The solutions of these equations can be obtained by starting with the

3-point functions and amputating from them either an in-going leg or an out-going leg.

The following picture demonstrates this aspect diagrammatically.

Q

O∆2 (x2)

O∆1 (x1)

O∆(x)
amputation

|∆, s, l,m〉

O∆1 (x1)

O∆2 (x2)

Figure 4.2: OPE module from 3-point function.

Finally the method to obtain the 4-point conformal partial wave using the OWN pre-

scription reduces to taking two types of OPE modules defined above and contracting the

module indices. Next we turn to using these to compute the 4-point scalar partial waves.

4.4 Computing the 4-point scalar CPW

Having equipped ourselves with all the ingredients needed, we now turn to compute four-

point conformal blocks for scalar primaries of conformal weights ∆i for i = 1, 2, 3, 4. For

simplicity we take the operator insertion points to be at x1 → ∞, x2 → u, x3 → x and

x4 → 0 with u · u = 1. As elucidated earlier this four-point conformal block can be

computed using two specific OPE modules.

One of the OPE modules we need can be extracted from the three-point function, with the

operator insertions at (∞, u, y) by amputating the out-going leg anchored at the boundary-

point y. The corresponding OPE module is shown in the figure given below.
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O∆2 (u)

O∆1 (∞)

ρ→ ∞

|∆; l,m, s〉

Figure 4.3: An OPE module

The three-point function takes the form

〈O∆1(∞)O∆2(u)O∆(y)〉 = lim
z→∞

(z2)∆1 〈O∆1(z)O∆2(u)O∆(y)〉 =
1[

(u − y)2] ∆2+∆−∆1
2

(4.47)

which can be expanded in terms of hyperspherical harmonics using (4.29) as

〈O∆1(∞)O∆2(u)O∆(y)〉

= (4πd/2)
∞∑

l=0

∞∑
s=0

(
∆2+∆−∆1

2

)
l+s

(
∆2+∆−∆1

2 − d−2
2

)
s

s!Γ(l + s + d/2)
(y2)s

∑
m

Ml
m(u) Ml∗

m(y) (4.48)

Amputation of the out-going leg ending at y from the above expression gives the following

answer for the desired OPE module

 4πd/2

s! (d/2)l+s (∆)l+s

(
∆ − d−2

2

)
s


1
2 (
∆ − ∆12

2

)
l+s

(
∆ − ∆12

2
−

d − 2
2

)
s

Ml
m(u) (4.49)

where ∆i j ≡ ∆i − ∆ j. Similarly we can find the other OPE module from the three-point

function with operator insertions at (x, 0, y) by amputating in-going leg starting from y.

We start with the three-point function

〈O∆(y)O∆3(x)O∆4(0)〉 = (y2)
∆3−∆4−∆

2 (x2)
∆−∆3−∆4

2
1[

(y − x)2] ∆+∆3−∆4
2

(4.50)
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Expanding in hyperspherical function we get

〈O∆(y)O∆3(x)O∆4(0)〉

= (4πd/2)(x2)
∆−∆3−∆4

2

∞∑
l,s=0

(
∆+∆3−∆4

2

)
l+s

(
∆+∆3−∆4

2 − d−2
2

)
s

s!Γ(l + s + d/2)
(x2)s(y2)∆−l−s

∑
m

Ml
m(y) Ml∗

m(x)

(4.51)

〈∆; l,m, s|

O∆3 (x)

O∆4 (0)

ρ→ ∞

Figure 4.4: Another OPE module.

Now amputating the in-going leg starting from y from the above expression for the three-

point function, we obtain the othe type of OPE module:

(x2)
(∆−∆3−∆4)

2

 1

4πd/2 s! (d/2)l+s (∆)l+s

(
∆ − d−2

2

)
s


1
2

1
Γ(d/2)

×

(
∆ + ∆34

2

)
l+s

(
∆ + ∆34

2
−

d − 2
2

)
s

(x2)sMl∗
m(x)

(4.52)

Finally we glue the OPE modules (4.49) and (4.52) to compute the four-point conformal

partial waves. Diagrammatically this procedure is shown in the figure 7 given below.
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〈l,m, s||l,m, s〉
∑

l,m,s

O∆1 (x1)

O∆2 (x2)

O∆4 (x4)

O∆3 (x3)

O∆1 (x1)

O∆2 (x2) O∆3 (x3)

O∆4 (x4)

O∆

Figure 4.5: 4-point block from OPE modules.

Thus the corresponding four-point conformal partial wave becomes

W (d)
∆,0(∆i, x) = (x2)

(∆−∆3−∆4)
2

1
Γ(d/2)

∑
l,s

(
∆−∆12

2

)
l+s

(
∆+∆34

2

)
l+s

s! (d/2)l+s (∆)l+s

(
∆ − d−2

2

)
s

×

(
∆ − ∆12

2
−

d − 2
2

)
s

(
∆ + ∆34

2
−

d − 2
2

)
s
(x2)s

∑
m

Ml
m
?
(x) Ml

m(u)

(4.53)

Using (4.23) we can also express our result in terms of Gegenbauer polynomials

W (d)
∆,0(∆i, x) = (x2)

(∆−∆3−∆4)
2

Γ
(

d−2
2

)
4πd/2 Γ(d/2)

∑
l,s

(2l + d − 2)
(
∆−∆12

2

)
l+s

(
∆+∆34

2

)
l+s

s! (d/2)l+s (∆)l+s

(
∆ − d−2

2

)
s

×

(
∆ − ∆12

2
−

d − 2
2

)
s

(
∆ + ∆34

2
−

d − 2
2

)
s

xl+2s C
d−2

2
l

(x · u
x

)
(4.54)

This is our final result for the scalar conformal partial wave in any d ≥ 2. As we will

see in the next section this result also works for d = 1. Notice that as advertised earlier

our answer is naturally given in terms of the Gegenbauer polynomial basis. A result for

the same quantity already exists in the literature in terms of the cross ratios [6]. We now

prove the following identity towards establishing the equivalence between our answers
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and theirs. We claim

∞∑
l,s=0

(
∆−∆12

2

)
l+s

(
∆+∆34

2

)
l+s

(∆)l+s

(
∆−∆12

2 − µ
)

s

(
∆+∆34

2 − µ
)

s

(∆ − µ)s

1 + l
µ

s!(µ + 1)l+s
(zz̄)s+ l

2 Cµ
l (

z + z̄

2
√

zz̄
) (4.55)

is equal to

∞∑
r,q=0

(
∆+∆12

2

)
r

(
∆−∆12

2

)
r+q

(
∆−∆34

2

)
r

(
∆+∆34

2

)
r+q

r!q! (∆)2r+q (∆ − µ)r
(zz̄)r (z + z̄ − zz̄)q (4.56)

To establish this we first note the following identities/definitions:

(zz̄)
l
2 Cµ

l (
z + z̄

2
√

zz̄
) :=

[l/2]∑
k=0

(−1)k (µ)l−k

k! (l − 2k)!
(z + z̄)l−2k (zz̄)k (4.57)

(z + z̄ − zz̄)q =

q∑
p=0

(−1)p

(
q
p

)
(z + z̄)q−p(zz̄)p (4.58)

Using the double sum identity:

∞∑
q=0

q∑
p=0

ap,q−p =

∞∑
m=0

∞∑
n=0

an,m =

∞∑
l=0

[l/2]∑
k=0

ak,l−2k (4.59)

the first expression can be written as

∞∑
s=0

(
∆−∆12

2 − µ
)

s

(
∆+∆34

2 − µ
)

s

s! (∆ − µ)s

∞∑
m,n=0

(
∆−∆12

2

)
s+m+2n

(
∆+∆34

2

)
s+m+2n

(∆)s+m+2nn! m!

(
1 + m+2n

µ

)
(µ)m+n

(µ + 1)s+m+2n

× (−1)n (zz̄)n+s (z + z̄)m

(4.60)

The second of the expressions can be manipulated to:

∞∑
r=0

(
∆+∆12

2

)
r

(
∆−∆34

2

)
r

r! (∆ − µ)r

∞∑
m,p=0

(
∆−∆12

2

)
r+m+p

(
∆+∆34

2

)
r+m+p

m! p! (∆)2r+m+p
(−1)p(zz̄)r+p (z + z̄)m (4.61)
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In the next step we extract the coefficients of (zz̄)q(z + z̄)m in both these expressions. For

this in the first expression we change n → p, s → q − p and in the second we change

p → p, r → q − p. Then in both the expressions the indices q and m run freely over all

non-negative integers and the index p runs over 0, 1, · · · , q. The corresponding coefficient

for the first expression is:

q∑
p=0

(
∆−∆12

2 − µ
)

q−p

(
∆+∆34

2 − µ
)

q−p

(q − p)! (∆ − µ)q−p

(
∆−∆12

2

)
m+p+q

(
∆+∆34

2

)
m+p+q

(∆)m+p+q p! m!
µ + m + 2p

(µ + m + p)q+1
(−1)p (4.62)

and for the second expression is:

q∑
p=0

(
∆+∆12

2

)
q−p

(
∆−∆34

2

)
q−p

(q − p)! (∆ − µ)q−p

(
∆−∆12

2

)
m+q

(
∆+∆34

2

)
m+q

m! p! (∆)m+2q−p
(−1)p (4.63)

Now the final step is to compare these two expressions (4.62) and (4.63) for arbitrary

integers {d ≥ 1, q ≥ 0,m ≥ 0}. We conjecture that these expressions are identical. We

have verified this claim for various special cases exactly, and for large subsets of the

integer parameters {d ≥ 1, q ≥ 0,m ≥ 0} using Mathematica.

In principle one can put together the conformal wave functions of section 2, and the

CGC of appendix A many times over to generate the scalar CPW for any higher point

correlation function.

4.5 Recovery of scalar CPWs in d ≤ 4

In this section we want to recover the known results for four-point scalar conformal partial

waves in d ≤ 4 from our answer above (4.54). To take limits in d it is convenient to express

our answer in different variables, namely (z, z̄). If x · u = x cos θ, then we define

z = x eiθ; z̄ = x e−iθ (4.64)
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In terms of these variables our answer for four-point CPW takes the form

W (d)
∆,0(∆i; z, z̄) = (zz̄)

(∆−∆3−∆4)
2

1
4πd/2

∞∑
l,s=0

(2l + d − 2)
(
∆−∆12

2

)
l+s

(
∆+∆34

2

)
l+s

s! (d/2)l+s (∆)l+s

(
∆ − d−2

2

)
s

×

(
∆ − ∆12

2
−

d − 2
2

)
s

(
∆ + ∆34

2
−

d − 2
2

)
s
(zz̄)s+ l

2
2

(d − 2)
C

d−2
2

l

(
z + z̄

2
√

zz̄

)

(4.65)

d = 4

In d = 4 the four-point CPW for scalar primaries takes the following form

W (4)
∆,0(∆i, z, z̄) =

1
z − z̄

(zz̄)
1
2 (∆−∆3−∆4)

∞∑
l,s=0

Γ(
1
2

(∆ − ∆34) + l + s)Γ(
1
2

(∆ − ∆12) + l + s)

× Γ(
1
2

(∆ − ∆12) + s − 1)Γ(
1
2

(∆ − ∆34) + s − 1)

×
(l + 1)Γ(∆)Γ(∆ − 1)

s! (l + s + 1)!Γ(∆ + l + s)Γ(∆ + s − 1)
(zl+s+1z̄s − zsz̄l+s+1)

=
1

z − z̄
(zz̄)

1
2 (∆−∆3−∆4) Γ(α)Γ(α − 1)Γ(β)Γ(β − 1)[

z 2F1(α, β, ∆, z) 2F1(α − 1, β − 1, ∆ − 2, z̄) − z̄ 2F1(α, β, ∆, z̄) 2F1(α − 1, β − 1, ∆ − 2, z)
]

(4.66)

where α = 1
2 (∆ − ∆12) and β = 1

2 (∆ − ∆34). We now demonstrate how to go from the first

to the second expression. We start by expanding the answer in power series.

z 2F1(α, β, ∆, z) 2F1(α − 1, β − 1, ∆ − 2, z̄) =

∞∑
m=0

∞∑
n=0

Γ(α + m)Γ(α + n − 1)
Γ(α)Γ(α − 1)

Γ(β + m)Γ(β + n − 1)
Γ(β)Γ(β − 1)

Γ(∆)Γ(∆ − 2)
Γ(∆ + m)Γ(∆ + n − 2)

zm+1z̄n

m!n!
(4.67)

We now divide the right hand side into three terms with m + 1 > n, m + 1 < n and

m + 1 = n. The piece coming from terms with m + 1 = n are real and therefore cancel
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with the corresponding terms from the complex conjugate combination. The remaining

parts are obtained by considering the restricted sums

∞∑
n=0

∞∑
m=n

+

∞∑
m=0

∞∑
n=m+2

(4.68)

Let us consider the conjugate term next:

z̄ 2F1(α, β, ∆, z̄) 2F1(α − 1, β − 1, ∆ − 2, z) =

∞∑
m=0

∞∑
n=0

Γ(α + m)Γ(α + n − 1)
Γ(α)Γ(α − 1)

Γ(β + m)Γ(β + n − 1)
Γ(β)Γ(β − 1)

Γ(∆)Γ(∆ − 2)
Γ(∆ + m)Γ(∆ + n − 2)

z̄m+1zn

m!n!
(4.69)

again we split this into three types of terms as above and drop the term that is real. Then

we can split the rest into two types of terms by writing the sum as before in two parts:

∞∑
n=0

∞∑
m=n

+

∞∑
m=0

∞∑
n=m+2

(4.70)

Noticing that the first sum in the first term and the second sum in the second have more

z’s than z̄’s we would like to combine them. In these two we introduce two new variables

m = n + p and n = m + 2 + q to replace m and n respectively. Combing these we have:

∞∑
n=0

∞∑
p=0

Γ(α + n + p)Γ(α + n − 1)
Γ(α)Γ(α − 1)

Γ(β + n + p)Γ(β + n − 1)
Γ(β)Γ(β − 1)

Γ(∆)Γ(∆ − 2)
Γ(∆ + n + p)Γ(∆ + n − 2)

×
zn+p+1z̄n

(n + p)!n!

−

∞∑
m=0

∞∑
q=0

Γ(α + m)Γ(α + q + m + 1)
Γ(α)Γ(α − 1)

Γ(β + m)Γ(β + q + m + 1)
Γ(β)Γ(β − 1)

Γ(∆)Γ(∆ − 2)
Γ(∆ + m)Γ(∆ + q + m)

×
z̄m+1zq+m+2

m!(q + m + 2)!

(4.71)
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In the second term we can replace m → m − 1 and still sum over the new m from 0 to ∞

as there will be term (m − 1)! in the denominator which kills the m = 0 term. Then

∞∑
n=0

∞∑
p=0

Γ(α + n + p)Γ(α + n − 1)
Γ(α)Γ(α − 1)

Γ(β + n + p)Γ(β + n − 1)
Γ(β)Γ(β − 1)

Γ(∆)Γ(∆ − 2)
Γ(∆ + n + p)Γ(∆ + n − 2)

×
zn+p+1z̄n

(n + p)!n!

−

∞∑
m=0

∞∑
q=0

Γ(α + m − 1)Γ(α + q + m)
Γ(α)Γ(α − 1)

Γ(β + m − 1)Γ(β + q + m)
Γ(β)Γ(β − 1)

×
Γ(∆)Γ(∆ − 2)

Γ(∆ + m − 1)Γ(∆ + q + m − 1)
z̄mzq+m+1

(m − 1)!(q + m + 1)!

(4.72)

Now we change dummy variables n→ s, p→ l in the first term and m→ s and q→ l in

the second term and combine terms to write this as:

∞∑
l=0

∞∑
s=0

Γ(α + l + s)Γ(α + s − 1)
Γ(α)Γ(α − 1)

Γ(β + l + s)Γ(β + s − 1)
Γ(β)Γ(β − 1)

Γ(∆)Γ(∆ − 2)
Γ(∆ + s − 2)Γ(∆ + l + s − 1)

×
zl+s+1z̄s

(s − 1)!(l + s)!

[
1

(∆ + l + s − 1) s
−

1
(∆ + s − 2)(l + s + 1)

]
(4.73)

Using

1
(∆ + l + s − 1) s

−
1

(∆ + s − 2) (l + s + 1)
=

(∆ − 2)(l + 1)
(∆ + l + s − 1)(∆ + s − 2)(l + s + 1)s

(4.74)
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This can be seen to be:

∞∑
l=0

∞∑
s=0

Γ(α + l + s)Γ(α + s − 1)
Γ(α)Γ(α − 1)

Γ(β + l + s)Γ(β + s − 1)
Γ(β)Γ(β − 1)

×
Γ(∆)Γ(∆ − 1)

Γ(∆ + s − 1)Γ(∆ + l + s)
zl+s+1z̄s

s!(l + s + 1)!
(4.75)

which is precisely the first term in our OWN computation of the block. The remaining

two terms are simply conjugates of what we have dealt with so far and therefore are going

to reproduce the second term in our OWN computation. Thus it is shown that our answer

perfectly matches with the known results [6].

d = 3

In d = 3 the Gegenbauer polynomials we are using to express the answer for four-point

scalar CPW becomes the Legendre polynomials, i.e. C1/2
l (cos θ) = Pl(cos θ). Therefore,

our answer reads

W (3)
∆,0(∆i; z, z̄) = (zz̄)

(∆−∆3−∆4)
2

1
π3/2

∞∑
l,s=0

(l + 1/2)
(
∆−∆12

2

)
l+s

(
∆+∆34

2

)
l+s

s! (3/2)l+s (∆)l+s (∆ − 1/2)s

×

(
∆ − ∆12

2
−

1
2

)
s

(
∆ + ∆34

2
−

1
2

)
s
(zz̄)s+ l

2 Pl

(
z + z̄

2
√

zz̄

)
(4.76)

We are not aware of any closed form for this case. There exists a conjectured formula

by [67] where the d = 3 4-point block is written as a single infinite sum over products of

pairs of 2F1 functions. We have checked that our answer also agrees with [67] to some

finite order.
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d = 2

To recover the answer for d = 2 we have to take d → 2 limit of our answer. Then we find

W (2)
∆,0(∆i; z, z̄)

= (zz̄)
(∆−∆3−∆4)

2
1
π

∑
l,s

(
∆−∆12

2

)
l+s

(
∆+∆34

2

)
l+s

s! (l + s)! (∆)l+s (∆)s

(
∆ − ∆12

2

)
s

(
∆ + ∆34

2

)
s
(zz̄)s+ l

2 cos(lθ)

=
1

2π
(zz̄)

(∆−∆3−∆4)
2

∑
l,s

(
∆−∆12

2

)
l+s

(
∆+∆34

2

)
l+s

(l + s)! (∆)l+s

(
∆−∆12

2

)
s

(
∆+∆34

2

)
s

s! (∆)s
(zl+sz̄s + zsz̄l+s)

(4.77)

where we have used the following identity

lim
µ→0

1
µ

Cµ
l (cos θ) =

2
l
Tl(cos θ) =

2
l

cos(lθ) (4.78)

satisfied by the Chebyshev polynomials of the first kind, Tl. Finally performing the sum-

mations we get back the familiar answer for scalar CPW in two dimensions (see chapter

3)

W (2)
∆,0(∆i; z, z̄) =

1
π

(zz̄)
(∆−∆3−∆4)

2 2F1

[(
∆ − ∆12

2

)
,

(
∆ + ∆34

2

)
; ∆; z

]

× 2F1

[(
∆ − ∆12

2

)
,

(
∆ + ∆34

2

)
; ∆; z̄

]
(4.79)

d = 1

This case corresponds to µ = −1/2 and the Gegenbauer polynomial for this value of µ
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takes the following form:

C−
1
2

l (χ) = δl,0 − χ δl,1 + θ(l − 2)
1 − χ2

l(l − 1)
d

dχ
Pl−1(χ) (4.80)

Further, in this case all the positions of the operators are simply real numbers. In particular

the unit vector u becomes either 1 or −1. Without loss of generality we take u = 1. Then

the argument of the Gegenbauer polynomial in (4.54), x̂ · u also becomes ±1 depending

the sign of x. For both the cases the Gegenbauer polynomial simplifies to

C(−1/2)
l (±1) = δl0 ∓ δl1 = δl0 − sign(x) δl1 (4.81)

Then the expression for 4-point CPW splits into two parts as follows

W (1)
∆,0(∆i, x) = (x2)

(∆−∆3−∆4)
2

1
2
√
π

 ∞∑
s=0

(α)s (β)s

s! (1/2)s (∆)s

(
∆ + 1

2

)
s

(
α +

1
2

)
s

(
β +

1
2

)
s

x2s

+ sign(x)
∞∑

s=0

(α)s+1 (β)s+1

s! (1/2)s+1 (∆)s+1

(
∆ + 1

2

)
s

(
α +

1
2

)
s

(
β +

1
2

)
s

x2s+1


(4.82)

where α = 1
2 (∆−∆12) and β = 1

2 (∆+∆34). Now using the following identities for Pochham-

mer symbols

(A)s

(
A +

1
2

)
s

=
1

22s
(2A)2s , (A)s+1

(
A +

1
2

)
s

=
1

22s+1
(2A)2s+1

(4.83)

for A ∈ {α, β, ∆}, and

s!
(
1
2

)
s

=
(2s)!
22s , s!

(
1
2

)
s+1

=
(2s + 1)!

22s+1 (4.84)

we can show that the above expression (4.82) for 4-point CPW can be written as a single
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sum, which can be carried out to yield the answer

W (1)
∆,0(x) =

1
2
√
π

x∆−∆3−∆4
2F1 (2α, 2β; 2∆; x) (4.85)

where x = |x|, and this expression agrees with the known result [24, 103] for the d = 1

case.
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Chapter 5

Conclusion and outlook

In this thesis we have provided an alternative prescription to compute conformal partial

waves of correlators of primaries in arbitrary dimensional CFTs holgraphically in terms

of certain gravitational open Wilson networks. The gravitational OWNs are for the gauge

field A in the adjoint of the algebra so(1, d + 1) for the AdS d+1 gravity written as a gauge

theory in its first order Hilbert-Palatini formulation.

The results of this thesis include

• Definitions of the OWNs and establishment of the necessary Ward identities and

Casimir equations for their interpretation as CPWs in chapter 2.

• Explicit computation of the OWNs in d = 1 and d = 2 case for generic OWNs and

recovery of many of the known results in chapter 3.

• Explicit computation of the 4-point scalar CPWs using the OPE modules and ob-

taining the expressions for them in Gegenbauer basis in chapter 4.

Computational techniques have been developed to a state from where the answers associ-

ated with a given OWN can be written down using simple Feynman like rules which are

easily stated.
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For d = 2 a similar prescription is provided also by other authors [108]. They use the

finite dimensional representations of the conformal algebra and rely on producing the re-

sults for the unitary irreducible representations of the Lorentzian algebra through some

analyticity properties of CPWs which are functions of conformal weights of the external

primaries and as well as the primary (and its descendants) being exchanged in the inter-

mediate channel. In this case the exercise reduces to computing S L(N) matrix elements

in finite dimensional representations. Setting N = 2 in [108] the known results for the

global conformal blocks are obtained. The authors also reproduced the heavy-light Vira-

soro blocks taking two operators to be heavy (with operator dimension h/c >> 1). For

N = 3 theW3 blocks are found and a generalization to arbitrary N has been carried out.

The answers match with those found in the literatures [109, 110]. In this approach the

primaries having negative conformal dimensions have been considered and finally the an-

swer is analytically continued to positive conformal weights to obtain answers in unitary

regime.

In chapter 3 what we computed for the d = 1 and d = 2 cases are the global blocks –

which don not use the fact that the corresponding CFTs have infinite dimensional con-

formal algebras (Virasoro). To go beyond this large approximation one needs to include

the quantum effects of the bulk gauge theory. A prescription for this now exists in the

literature [93]. One of the original motivation was to apply our prescription to bulk the-

ories which do not have (or hard to find) second order formulations – such as the higher

spin theories. A few results in this direction are now available – following our prescrip-

tion [99].

The OWNs that we have used is a vey small subset of all possible spin networks. For

instance, we have only used the tree level spin networks (no loops). It is natural to ask that

the interpretation of all other OWNs are. They all are expected to satisfy Ward identities

but no Casimir equations.

In a novel way of implementing the bootstrap in [54, 71] the authors have used the ex-
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change Witten diagrams. It will be interesting to see if one can make use of the OWNs.

One may also wonder how the geodesic Witten diagrams are related to the open Wilson

line network operators.

In [111] the holographic entanglement entropy was defined using a Wilson-line operator

calledWR(P,Q) connecting the points P and Q and in the two dimensional (non-unitary)

representation of sl(2,R) ⊕ sl(2,R) corresponding to h = h̄ = −1/2 [94] as:

S A =
c
6

log
[
WR(P,Q)

∣∣∣
P,Q→boundary

]
. (5.1)

We note that one can define the entanglement entropy using our capped open Wilson lines

as

S A = −
c
6

log
[
〈〈h, h̄; j, j|g(P)g−1(Q)|h, h̄; j,− j〉〉

∣∣∣
P,Q→boundary

]
(5.2)

where we take the representation to be that of h = h̄ = 1/2 (and j = 0) which is a unitary

representation of the conformal algebra sl(2,R) ⊕ sl(2,R). Using (the Lorentzian analog

of) (3.27) with the UV cutoff a = le−ρ in (5.2) one can immediately recover the famous

entanglement entropy formula S A = c
3 log ∆x

a . We expect this definition (5.2) to reproduce

other results of [111] of entanglement entropy relevant to the global AdS 3 and the BTZ

black hole contexts as well. The 1/c correction in this case needs to be further investigated

and interpreted.

One may be interested in computing OWNs in different backgrounds other than pure

AdS . For instance, we computed two-point functions in [15] in the BTZ background and

recovered the thermal correlators. Other higher point CPWs can also be computed. In

d > 2 we can have solutions that are not necessarily locally AdS d+1. How to compute

the OWN in them and what would be their interpretation? In higher dimension there are

Rindler-AdS spaces which are locally AdS. So we can use our techniques to OWNs in

them. One expects the answers to resemble thermal CPWs.
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As a by product we have given a prescription to compute CGC of infinite dimensional

irreducible representations of so(1, d + 1) in terms of the conformal three-point functions-

which are dictated by Ward identities. We can also generalize the explicit matrix elements

of the generators of so(1, d + 1) using conformal wave function representations we have

found using the OWNs. For demonstration we give them for scalar modules of so(1, 4) in

appendix C.

Generalization of the computational techniques of generic OWNs in arbitrary dimensions

is under progress.

An interesting set of further investigations in this directions should include exploring the

role of Weight shifting operators [112] in our formalism.

There is an alternative way to compute the Wilson lines using the quantum mechanics of

particles in AdS. This approach was followed in [105]. It will be interesting to see how

the junctions would work there.

The prescription in [93] to go beyond the large c limit of OWNs in d = 2 has been

used in study of the self energy of the gravitational point particles in AdS 3 to obtain the

1/c corrections to the anomalous dimensions of the operators in CFT2 [113]. The loop

diagrams play an important role there. They exist in all dimensions among the full set of

OWNs. It will be interesting to see if they play a similar role in all dimensions.

The correlators and the conformal blocks have been computed using OWNs in higher

spin AdS 3 holography [114, 115]. Recently the OWN method to generalized to compute

superconformal blocks [116].

We took the boundary to be R2 in section 3. We can easily take it to be either S 2, H2 or

S 1 × R. It will be interesting to consider the case of the boundary being any Riemann

surface as well.

Of course one would like see if our method gives answers in forms more amenable to po-

tential applications, such as in the bootstrap approach towards the classification of CFTs.
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Since our answers are in Gegenbauer polynomial basis it is possible that they may be

found more suitable as working with this basis is much more easy (as we have seen in

section 4 for example).

It may be of interest to compute objects similar to our OWNs in both flat and de Sitter

gravity theories. Such diagrams could provide a basis of partial waves for S-matrices for

scattering problems in these spaces.

We hope that this program will naturally lend itself to answering dynamical questions as

well in CFTs.
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Appendix A

S O(1, 3) group

In this appendix we review some necessary group theory for the computations we have

done in the text. Let us begin by setting our conventions of so(1, 3) algebra and its repre-

sentations. We take its generators to be Mµν with the algebra:

[Mαβ,Mγδ] = ηαδMβγ + ηβγMαδ − ηαγMβδ − ηβδMαγ (A.1)

where µ, ν, · · · = 0, 1, 2, 3 and η = diag{−1, 1, 1, 1}. One way of writing this algebra is as

so(1, 3) = su(2) ⊕ su(2) with the generators:

J(±)
1 =

1
2

(−iM23 ± M01), J(±)
2 =

1
2

(−iM31 ± M02), J(±)
3 =

1
2

(−iM12 ± M03) (A.2)

with the algebra

[J(±)
a , J(±)

b ] = i εabcJ(±)
c , [J(±)

a , J(∓)
b ] = 0. (A.3)

Working with unitary representations for each S U(2) factor provides a finite dimensional

non-unitary representation of so(1, 3). So a general finite dimensional non-unitary repre-

sentation is labeled by two half-integers ( j1, j2). We are interested in constructing repre-

sentations of the “diagonal" S U(2) out of these representations labeled by one single j.
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Another way to write the algebra of so(1, 3) is as sl(2,R) ⊕ sl(2,R) with the generators:

J(±)
1 =

i
2

(−iM23 ± M01), J(±)
2 =

i
2

(−iM31 ± M02), J(±)
0 =

1
2

(−iM12 ± M03) (A.4)

with the algebra

[J(±)
a , J(±)

b ] = i εab
cJ(±)

c , [J(±)
a , J(∓)

b ] = 0. (A.5)

with ε012 = 1 and ηab = diag{−1, 1, 1} used to raise and lower indices. Working with uni-

tary representations of each sl(2,R) factor provides infinite dimensional but non-unitary

representations of so(1, 3). These generators of sl(2,R) can be mapped to the standard

ones used in the 2d CFT language by defining:

L0 = −J(+)
0 , L1 = i(J(+)

1 + i J(+)
2 ), , L−1 = −i(J(+)

1 − i J(+)
2 )

L̄0 = J(−)
0 , L̄1 = −i(J(−)

1 − i J(−)
2 ), L̄−1 = i(J(−)

1 + i J(−)
2 ) (A.6)

which satisfy the algebra:

[Lm, Ln] = (m − n)Lm+n, [L̄m, L̄n] = (m − n) L̄m+n, [Lm, L̄n] = 0. (A.7)

The representation where the generators have the hermiticity properties:

L†0 = L0, L†1 = L−1; L̄†0 = L̄0, L̄†1 = L̄−1 (A.8)

is the relevant one for us here. We will consider the unitary highest (lowest) weight

representation of each of these two sl(2,R) as in, for instance, [94, 97]. The sub-algebra

so(3) in so(1, 3) is generated by:

L0 − L̄0 = iM12, L1 + L̄−1 = iM23 + M13, L−1 + L̄1 = −iM23 + M13 (A.9)
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The rest of the generators are

−M03 = L0 + L̄0, M01 + iM02 = −L1 + L̄−1, M01 − iM02 = L−1 − L̄1 (A.10)

So the finite dimensional representation of the “local Lorentz algebra" so(3) are thus

associated to the finite dimensional non-unitary representation of the twisted diagonal

sl(2,R) generated by Ln − (−1)nL̄−n for n = −1, 0, 1.

We are interested in decomposing each of the representations of so(1, 3) given by the

tensor product of the infinite dimensional unitary representation of each of the sl(2,R)

algebras in so(1, 3) into a given irreducible representation of the twisted diagonal sl(2,R)

sub-algebra.

The fundamental (and the defining representation) of the Lorentz algebra so(1, 3) is the

vector representation in which we take the generators to be 4 × 4 real trace-less matrices

given by:

(Mab)αβ = δαa ηbβ − δ
α
bηaβ (A.11)

with η−1(−MT
µν)η = Mµν. The 6 × 6 adjoint representation is given by

(Mab)gh
mn = ηan(δg

bδ
h
m − δ

g
mδ

h
b) + ηbm(δg

aδ
h
n − δ

g
nδ

h
a) (A.12)

−ηam(δg
bδ

h
n − δ

g
nδ

h
b) − ηbn(δg

aδ
h
m − δ

g
mδ

h
a) (A.13)

such that one has

[Mab,Mmn] =
1
2

(Mab)gh
mnMgh = −

1
2

(Mmn)gh
abMgh (A.14)

Defining O[ab][cd] = ηacηbd−ηadηbc and the identity matrix as I[ab]
[cd] = δc

aδ
d
b−δ

d
aδ

c
b we again

have O−1(−MT)O = M. At the level of the group elements in the adjoint representation

this translates to R[g−1] = O−1(R[g])TO where R[g] is the 6 × 6 adjoint representation of

the group element g.
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There are two quadratic Casimirs of the Lie algebra so(1, 3):

• (i) C(1)
2 = M0cM0c −

1
2 MabMab

• (ii) C(2)
2 = M01M23 + M23M01 − M02M13 − M13M02 + M03M12 + M12M03.

Written in terms of the two sl(2,R) factors these read:

C(1)
2 = C2 + C̄2, i C(2)

2 = C2 − C̄2 (A.15)

or equivalently

C2 := 2L0L0 − {L1, L−1} =
1
2

[C(1)
2 + i C(2)

2 ], C̄2 := 2L̄0L̄0 − {L̄1, L̄−1} =
1
2

[C(1)
2 − i C(2)

2 ]

Hermitian representations of sl(2,R)

Let us review some facts regarding the hermitian representations of the algebra sl(2,R) as

in [94]. The quadratic Casimir operator of the algebra [Lm, Ln] = (m − n) Lm+n is again

C2 = 2L0L0 − 2L0 − 2L−1L1 = 2L0L0 + 2L0 − 2L1L−1 (A.16)

Consider a state |h, 0〉 which is a highest weight state: L1|h, 0〉 = 0 and L0|h, 0〉 = h|h, 0〉

with C2|h, 0〉 = 2h(h−1)|h, 0〉. The rest of the states in this representation can be obtained

by successively operating with L−1 starting from the highest weight state, that is |h, n〉 ∼

Ln
−1|h, 0〉. Thus we have states in this highest weight representation given by |h, n〉 such

that

L0|h, n〉 = (h + n)|h, n〉, C2|h, n〉 = 2h(h − 1)|h, n〉. (A.17)
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which in-turn imply

L−1|h, n〉 =
√

(2h + n)(n + 1) |h, n + 1〉,

L1|h, n〉 =
√

n(2h + n − 1) |h, n − 1〉. (A.18)

For a positive h there is no state |h, n〉 with a non-negative integer n which is annihilated

by L−1 and so they are all infinite dimensional and unitary.

Clebsch-Gordan coefficients

We need some more group theory - namely, the Clebsch-Gordan coefficients that appear in

the decomposition of the tensor product of two unitary representations of sl(2,R) algebra

into other unitary irreducible ones. We take the basis states of the tensor product of two

irreducible representations of sl(2,R) labeled by (the non-negative real numbers) h1 and

h2 by |h1, n1〉 ⊗ |h2, n2〉 = |h1, h2; n1, n2〉 which diagonalize {C(1)
2 ,C(2)

2 , L(1)
0 , L(2)

0 } with the

eigen values {2h1(h1 − 1), 2h2(h2 − 1), h1 + n1, h2 + n2} respectively. The generators of

sl(2,R) act on the tensor product as

Ln = L(1)
n ⊗ I + I ⊗ L(2)

n . (A.19)

We make a change of basis to states |h1, h2; h, n〉 which diagonalize {C(1)
2 ,C(2)

2 ,C2, L0} with

eigen values {2h1(h1 − 1), 2h2(h2 − 1), 2h(h − 1), h + n} respectively. We also have

L0|h1, h2; h, n〉 = (h + n)|h1, h2; h, n〉

L−1|h1, h2; h, n〉 =
√

(2h + n)(n + 1) |h1, h2; h, n + 1〉,

L1|h1, h2; h, n〉 =
√

n(2h + n − 1) |h1, h2; h, n − 1〉. (A.20)
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Taking the matrix element of the operator L0 − L(1)
0 − L(2)

0 as

〈h1, h2; h, n|L0 − L(1)
0 − L(2)

0 |h1, h2; n1, n2〉 (A.21)

= (h + n − h1 − n1 − h2 − n2)〈h1, h2; h, n|h1, h2; n1, n2〉 = 0 (A.22)

Imposes the condition

h − h1 − h2 = n1 + n2 − n. (A.23)

Given that n1, n2, n are integer the allowed values of h are discrete and integer spaced. On

the other hand considering the action of L1 gives:

√
n(2h + n − 1) 〈h1, h2; n1, n2|h1, h2; h, n − 1〉

=
√

(n1 + 1)(2h1 + n1) 〈h1, h2; n1 + 1, n2|h1, h2; h, n〉

+
√

(n2 + 1)(2h2 + n2) 〈h1, h2; n1, n2 + 1|h1, h2; h, n〉 (A.24)

and the action of L−1 gives:

√
(n + 1)(2h + n) 〈h1, h2; n1, n2|h1, h2; h, n + 1〉

=
√

n1(2h1 + n1 − 1) 〈h1, h2; n1 − 1, n2|h1, h2; h, n〉

+
√

n2(2h2 + n2 − 1) 〈h1, h2; n1, n2 − 1|h1, h2; h, n〉 (A.25)

when we write

|h1, h2; h, n〉 =

∞∑
m1,m2=0

|h1, h2,m1,m2〉〈h1, h2; m1,m2|h1, h2; h, n〉 (A.26)
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and when |h1, h2,m1,m2〉 and |h1, h2; h, n〉 are basis vectors of unitary representations (as

it is when h1, h2, h > 0) one should impose

∑
h,n

〈h1, h2; n1, n2|h1, h2; h, n〉〈h1, h2; m1,m2|h1, h2; h, n〉 = δn1,m1δn2,m2 (A.27)

Later on we will need explicit expressions for these CGCs. So let us derive them here

(see also [98]). To proceed let us first write the CGC 〈h1, h2; n1, n2|h1, h2; h, n〉 as

〈h1, h2; n1, n2|h1, h2; h3, n3〉 =
1∏3

i=1

√
ki!(Γ(2hi + ki)

f (k1, k2; k3) (A.28)

where the f’s satisfy

k3(2h3 + k3 − 1) f (k3 − 1) − f (k1 + 1) − f (k2 + 1) = 0 (A.29)

f (k3 + 1) − k1(2h1 + k1 − 1) f (k1 − 1) − k2(2h2 + k2 − 1) f (k2 − 1) = 0 (A.30)

modulo h1 + k1 + h2 + k2 − h3 − k3 (as a consequence of the Kronecker delta in the CGC).

There are two cases we have to consider carefully: h1 + h2 − h3 ≥ 0 and h1 + h2 − h3 ≤ 0.

The CGCs are:

f (k1, k2; k3) ∼ Γ(2h2 + k1 + k2)Γ(k3 − k2)k2! δh1+k1+h2+k2−h3−k3

×3F2

(
−k1,−k3, h3 + h1 − h2

1 + k2 − k3, 1 − 2h2 − k1 − k2
; 1

)
; for hi + h j ≥ hk or h3 + h1 ≤ h2

∼ (−1)k1
Γ(2h2 + k1 + k2)k2!
Γ(k2 − k3 + 1)

δh1+k1+h2+k2−h3−k3

×3F2

(
−k1,−k3, h3 + h1 − h2

1 + k2 − k3, 1 − 2h2 − k1 − k2
; 1

)
for h1 + h2 ≤ h3

∼ (−1)k3
Γ(k3 − k2)k2!

Γ(h1 − h2 − h3 + k3 + 1)
δh1+k1+h2+k2−h3−k3

×3F2

(
−k1,−k3, h3 + h1 − h2

1 + k2 − k3, 1 − 2h2 − k1 − k2
; 1

)
for h2 + h3 ≤ h1 (A.31)
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Substituting them (any of the above four cases) into the left hand side of (A.29) ((A.30))

comes out to be proportional to δh1+k1+h2+k2−h3−k3+1 (δh1+k1+h2+k2−h3−k3−1) times

de3F2

(
a, b, c
d, e

; 1
)

+ a(c − d)3F2

(
a + 1, b + 1, c
d + 1, e + 1

; 1
)

+ d(a − e)3F2

(
a, b + 1, c
d, e + 1

; 1
)

where a = −k3, b = −k1 − 1, c = h3 + h1 − h2, d = −2h2 − k1 − k2 and e = 1 + k2 − k3

(a = −k1, b = −k3−1, c = h3 +h1−h2 = k2−k3−k1−1, d = k2−k3 and e = 1−2h2−k1−k2)

for either case h1 + h2 ≥ h3 or h1 + h2 ≤ h3. Happily this vanishes identically (at least for

when either a or b is a negative integer as it is the case in our case)

de3F2

(
a, b, c
d, e

; 1
)

= a(d − c)3F2

(
a + 1, b + 1, c
d + 1, e + 1

; 1
)

+ d(e − a)3F2

(
a, b + 1, c
d, e + 1

; 1
)

(A.32)

To see this we begin by applying the identity [117]

a(b − c) 3F2

(
a + 1, a2, a3

b + 1, c + 1
; z

)
− c(b − a) 3F2

(
a, a2, a3

b + 1, c
; z

)
+ b(c − a) 3F2

(
a, a2, a3

b, c + 1
; z

)
= 0

at z = 11 to the right hand side of (A.32) to give

a(d − c)
[
e(d − a)
a(d − e) 3F2

(
a, b + 1, c
d + 1, e

; 1
)
−

d(e − a)
a(d − e) 3F2

(
a, b + 1, c
d, e + 1

; 1
)]

+d(e − a) 3F2

(
a, b + 1, c
d, e + 1

; 1
)

which further simplifies to

1
a(d − e)

[
ae(d − a)(d − c) 3F2

(
a, b + 1, c
d + 1, e

; 1
)
− ad(e − a)(e − c) 3F2

(
a, b + 1, c
d, e + 1

; 1
)]

(A.33)

1we note here that in general the hypergeometric function 3F2 is not well defined at z = 1, but we will
be using it only for the case where a = −k3 ± 1, b = −k1 ± 1, c = h3 + h1 − h2 ± 1, d = −2h2 − k1 − k2 ± 1
and e = 1 ± k2 − k3 in which case 3F2 is a polynomial and the limit is easily taken.
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Now we apply the identity [117]

b 3F2

(
a, a2, a3

b, b2
; z

)
− a 3F2

(
a + 1, a2, a3

b + 1, b2
; z

)
+ (a − b) 3F2

(
a, a2, a3

b + 1, b2
; z

)
= 0

at z = 1 to both terms of (A.33) to yield

de [(d − a)(d − c) − (e − a)(e − c)]
b(d − e) 3F2

(
a, b, c
d, e

; 1
)

−
e(d − a)(d − c)(d − b)

b(d − e) 3F2

(
a, b, c

d + 1, e
; 1

)

+
d(e − a)(e − c)(e − b)

b(e − d) 3F2

(
a, b, c

d, e + 1
; 1

)
(A.34)

Finally we apply the identity [117]

(a + (a2 + a3 − d − e)z) 3F2

(
a, a2, a3

d, e
; z

)
+

(d − a)(d − a2)(d − a3)
d(d − e) 3F2

(
a, a2, a3

d + 1, e
; z

)

+
(e − a)(e − a2)(e − a3)

e(e − d) 3F2

(
a, a2, a3

d, e + 1
; z

)
− a(1 − z) 3F2

(
a + 1, a2, a3

d, e
; z

)
= 0

to (A.34) at z = 1 to get

de
b

[(d + e − a − c) + (a + b + c − d − e)] 3F2

(
a, b, c
d, e

; 1
)

= de 3F2

(
a, b, c
d, e

; 1
)

which proves our claim.

Next we will establish two important relations satisfied by the CG coefficients of sl(2,R)

and the unitary representations of the algebra elements. First of them is

(L(h1)
n )k1k′1

Ch1h2;h
k′1k2k3

+ (L(h2)
n )k2k′2

Ch1h2;h
k1k′2k3

−Ch1h2;h
k1k2k′3

(L(h3)
n )k′3k3 = 0 (A.35)

where n = −1, 0, 1. To verify this first note that the matrix elements of the generators Ln
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are:

(L(h)
0 )k,k′ = (h + k)δk,k′ ,

(L(h)
1 )k,k′ =

√
(k + 1)(2h + k) δk,k′−1,

(L(h)
−1)k,k′ =

√
k(2h + k − 1) δk,k′+1 (A.36)

Taking the case of n = 0 implies that the CGCs vanish unless h1 + k1 + h2 + k2 = h + k. It

is easily seen that for n = −1, 1 this identity follows simply from the recursion relations

satisfied by the CGCs. The second identity is

Rh1[g(x)]k1k′1
Rh2[g(x)]k2,k′2

Ch1h2;h
k′1k′2;k′3

Rh3[g
−1(x)]k′3k3 = Ch1h2;h

k1k2;k3
(A.37)

where Rh[g(x)] is the representation of the group element g(x) in the lowest weight rep-

resentation of sl(2,R) labeled by h. We will now prove it for an element of the S L(2,R)

group of the form g(x) = eω
a(x)La (summed over a = −1, 0, 1). Then we can write

Rh[g(x)] =
∑∞

n=0
1
n!ω

a(L(h)
a )n where L(h)

a is the representation of the generator La in rep-

resentation labeled by h. To establish this identity we look at terms involving a fixed

number of parameters ωa. To the order O(ω0
a) the right hand side is already taken care of.

At the O(ω1
a) the terms sum to zero from (A.35). At the O(ω2

a) we have

ωaωb[1
2

(L(1)
a L(1)

b )k1k′1
C(k′1) +

1
2

(L(2)
a L(2)

b )k2k′2
C(k′2) +

1
2

C(k′3)(L(3)
a L(3)

b )k′3k3

+(L(1)
a )k1k′1

(L(2)
b )k2k′2

C(k′1, k
′
2) − (L(1)

a )k1k′1
C(k′1, k

′
3)(L(3)

b )k′3k3 − (L(2)
a )k2k′2

C(k′2, k
′
3)(L(3)

b )k′3k3

]

=
1
2
ωa(L(1)

a )k1k′′1
ωb[(L(1)

b )k′′1 k′1
C(k′1) + (L(2)

b )k2k′2
C(k′′1 , k

′
2) −C(k′′1 , k

′
3)(L(3)

b )k′3k3

]

+
1
2
ωa(L(2)

a )k2k′′2
ωb[(L(2)

b )k′′2 k′2
C(k′2) + (L(1)

b )k1k′1
C(k′1, k

′′
2 ) −C(k′′2 , k

′
3)(L(3)

b )k′3k3

]

+
1
2
ωb[C(k′3)(L(3)

b )k′3k′′3
− (L(1)

b )k1k′1
C(k′1, k

′′
3 ) − (L(2)

b )k2k′2
C(k′2, k

′′
3 )

]
ωa(L(3)

a )k′′3 k3
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And using the identity (A.35) each of the three terms vanishes. One can generalise this

to any higher order in powers of ωa’s establishing the identity we claimed. The term of

O(ωn+1) is

∑
n1+n2+n3=n+1

(−1)n3

n1!n2!n3!
[(ωaL(1)

a )n1]k1k′1
[(ωbL(2)

b )n2]k2k′2
C(k′1, k

′
2; k′3)[(ωcL(3)

c )n3]k′3k3

=
1

n + 1
ωd(L(1)

d )k1k′1

∑
n1+n2+n3=n

(−1)n3

n1!n2!n3!

{
(ωaL(1)

a )n1]k′1k′′1
[(ωbL(2)

b )n2]k2k′2
C(k′′1 , k

′
2; k′3)[(ωcL(3)

c )n3]k′3k3

+[(ωaL(1)
a )n1]k1k′1

[(ωbL(2)
b )n2]k′2k′′2

C(k′1, k
′′
2 ; k′3)[(ωcL(3)

c )n3]k′3k3

− [(ωaL(1)
a )n1]k1k′1

[(ωbL(2)
b )n2]k2k′2

C(k′1, k
′
2; k′′3 )[(ωcL(3)

c )n3]k′′3 k′3

}
Therefore assuming the relation to be true at nth order means it is true at order n + 1th

order. This establishes the identity we want.
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Appendix B

S O(1, d + 1) CGC

Here we record results of CGC of the representations considered in the text for the algebra

so(1, d + 1). These are needed to compute the CPW for higher-point functions from

OWNs. Before we present the detailed derivation of the CGC from the 3-point functions

we collect a few facts about the irreducible representations of so(d) which we will use in

the extraction of the Clebsch-Gordan coefficients.

A finite dimensional irreducible representation of so(d) is uniquely defined by its highest

weight [µ1, µ2, ...µk] with

µ1 ≥ µ2 ≥ · · · ≥ µk−1 ≥ |µk| for d = 2k

µ1 ≥ µ2 ≥ · · · ≥ µk−1 ≥ µk ≥ 0 for d = 2k + 1 (B.1)

The components µi are either simultaneously integers (tensorial representations) or half-

integers (spinorial representations). We only consider symmetric traceless representations

of so(d) as these are the only relevant ones for the scalar CGC of so(d + 1, 1). These

could be represented on the Hilbert space H of square integrable function on S d−1. The

Hilbert space can be decomposed into an orthogonal sum of subspaces Hl of homogenous

polynomials of degree l in d variables. We introduce a complete orthonormal basis |l,M〉
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on Hl, where M = (md−2,md−3, ...,m2,m1) label these basis states provided they fulfil:

l = md−1 ≥ md−2 ≥ · · · ≥ m2 ≥ |m1| m1 ∈ Z mi ∈ Z>0 i ≥ 2 (B.2)

The dimension of the space H is dl = (2l + d − 2) (l+d−3)!
l!(d−2)! - the number of independent

components of a general symmetric traceless tensor of rank l in d dimensions. The matrix

elements of the representation Dl read:

Dl
M M′(g) = 〈l,M|Dl(g)|l,M′〉 (B.3)

In particular,

Dl
M 0(g) =

1
√

dl
Nd

l M

d−2∏
k=1

Cmk+k/2
mk+1−mk

cos(Φk+1) sinmk(Φk+1) eim1Φ1 (B.4)

where Nd
l M is the normalisation w.r.t the Haar measure on so(d), Cn

λ(z) are the Gegenbauer

polynomials. The angles 0 ≤ Φ1 ≤ 2π and 0 ≤ Φi ≤ π for i , 1 can be identified

with the Euler angles of a rotation g which maps the north pole a = (0, · · · , 0, 1) ∈ Rd

to an arbitrary point on S d−1. Then the hyperspherical harmonics on S d−1 are defined as

follows:

|e〉 = Dl(g)|a〉, Yl M(e) = 〈e|l, M〉, 〈a|l, M〉 =

√
dl

Vd
δM 0 (B.5)

where Vd = 2πd/2

Γ(d/2) is the volume of unit S d−1 sphere. Therefore, we get

Yl M(e) =

√
dl

Vd
Dl ∗

M 0(g) (B.6)

We finally list the following properties of hyperspherical harmonics which can be easily

derived using the definitions given above:

1. Y∗l M(e) = (−1)m1Yl M̄(e) where M̄ = (md−2, · · · ,m2,−m1).
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2. Yl1 M1(e)Yl2 M2(e) =
∑

l3,M3

(
l1 l2 l3

M1 M2 M3

) (
l1 l2 l3
0 0 0

)
Y∗l3 M3

(e)

3.
(

l1 l2 l3
0 0 0

)
= 0 unless l1 + l2 + l3 is an even integer and l3 = |l1 − l2|, · · · , l1 + l2.

4.
(

l l′ 0
M M′ 0

)
=

(−1)l−m1
√

dl
δl l′δM M′

5.
∑
{mi}

(−1)(m2)1
(

l1 l3 L2
m1 m3 M2

) (
l1 l2 L3

m̄1 m2 M3

) (
l2 l3 L1

m̄2 m̄3 M1

)
= (−1)l2+L2−L3

(
L3 L1 L2

M̄3 M̄1 M2

) 
L1 L2 L3

l1 l2 l3


so(1, d + 1) CGC for Scalar irreps

The prescription of [14] for the 3-point function of scalar primaries is to extract the leading

term, i.e, the coefficient of e−ρ(∆1+∆2+∆3) term – in the boundary limit of

〈〈∆1|g(x1)|∆1,m1〉 〈〈∆2|g(x2)|∆2,m2〉 C∆1,∆2;∆3
m1,m2;m3

〈∆3,m3|g−1(x3)|∆3〉〉 (B.7)

We show that this quantity satisfies the conformal Ward identity. To see this we note the

following identities:

g(x) MAB = lµAB(x)∂µg(x) +
1
2

Mbcg(x)
[
ωbc
µ (x)lµAB(x) + (R[g(x)])bc

AB

]
MABg−1(x) = −lµAB(x)∂µg−1(x) +

1
2

[
ωbc
µ (x)lµAB(x) + (R[g(x)])bc

AB

]
g−1(x)Mbc (B.8)

where the lµAB(x) are the components of the Killing vector of the background geome-

try (4.1) carrying the indices of the corresponding so(1, d + 1) algebra generator MAB ∈

{M0a,Mab} of the left hand side. Next we consider:

〈〈∆1|g(x1)MAB|∆1,m1〉 〈〈∆2|g(x2)|∆2,m2〉C∆1,∆2;∆3
m1,m2;m3

〈∆3,m3|g−1(x3)|∆3〉〉

+〈〈∆1|g(x1)|∆1,m1〉 〈〈∆2|g(x2)MAB|∆2,m2〉C∆1,∆2;∆3
m1,m2;m3

〈∆3,m3|g−1(x3)|∆3〉〉

−〈〈∆1|g(x1)|∆1,m1〉 〈〈∆2|g(x2)|∆2,m2〉C∆1,∆2;∆3
m1,m2;m3

〈∆3,m3|MABg−1(x3)|∆3〉〉 (B.9)
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which vanishes identically as a consequence of the recursion relation (2.16) for the CGC.

On the other hand using the identities (3) above and the fact that the scalar cap is killed by

Mab’s we see that the OWN for the 3-point function (B.7) is invariant under simultaneous

transformation of the three bulk points (x1, x2, x3) under any AdS d+1 isometry. This in

turn implies the conformal Ward identity in the limit of the external points xi approach-

ing the boundary. Therefore, the question of finding the CGC is translated into finding

expressions for the quantities 〈〈∆|g(x)|∆,m〉 and 〈∆,m|g−1(x)|∆〉〉 in the large radius limit,

and then amputating them from the corresponding 3-point function.

We extract CG coefficients for so(1, d + 1) for three scalars from the three-point function

for scalar primary operators amputating the out-going and in-going legs we had found

earlier. The out-going and in-going legs takes the following forms respectively

lim
ρ→∞

eρ∆〈〈∆|g(x)|∆; {l,m, s}〉 =
2l+2s

Al,s

Γ(∆ + s + l)Γ(∆ + s − µ)
Γ(∆)Γ(∆ − µ)

Ml
m(x) (x2)−∆−l−s

=

[
(∆)l+s(∆ − µ)s

(µ + 1)l+ss!

]1/2

(x2)−∆−l−s Ml
m(x)

(B.10)

and

lim
ρ→∞

eρ∆〈∆; {l,m, s}|g−1(y)|∆〉〉 =
Al,s

2l+2s

(y2)s

(s)!Γ(l + s + 3/2)
Ml ∗

m(y)

=

[
(∆)l+s(∆ − µ)s

(µ + 1)l+ss!

]1/2

(y2)s Ml ∗
m(y)

(B.11)

The 3-point function of the scalar primary operators with conformal dimensions ∆1, ∆2

and ∆3

1
|x2 − x1|

∆1+∆2−∆3 |x3 − x2|
∆2+∆3−∆1 |x3 − x1|

∆1+∆3−∆2
(B.12)
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can be expanded as

(
4π d/2

)3
3∏

i=1

∞∑
li=0

∞∑
si=0

∑
mi

(∆12/2)l1+s1(∆12/2 − µ)s1

(µ + 1)l1+s1 s1!
(∆23/2)l2+s2(∆23/2 − µ)s2

(µ + 1)l2+s2 s2!

×
(∆31/2)l3+s3(∆31/2 − µ)s3

(µ + 1)l3+s3 s3!
(x2)−∆1−l1−l3−s1−s3 (y2)−∆23/2−l2+s1−s2 (z2)s2+s3

× Ml1
m1

(x) Ml3
m3

(x) Ml ∗1
m1(y) Ml2

m2
(y) Ml ∗2

m2(z) M
l ∗3
m3(z)

(B.13)

where

∆12 ≡ ∆1 + ∆2 − ∆3, ∆23 ≡ ∆2 + ∆3 − ∆1, ∆31 ≡ ∆3 + ∆1 − ∆2 (B.14)

We use the following identities:

Ml
m(x)Ml′

m′(x) =
∑
L,M

(
l l′ L

m m′M

) (
l l′ L
0 0 0

)
(x2)

l+l′−L
2 ML ∗

M (x) (B.15)

Ml ∗
m(x) = (−1)m1Ml

m̄(x) (B.16)

where, m̄ = (mn−2, ...,m2,−m1) to rewrite the product of spherical harmonics in the sum-

mand as

Ml1
m1

(x)Ml3
m3

(x)Ml ∗1
m1(y)Ml2

m2
(y)Ml ∗2

m2(z)M
l ∗3
m3(z)

= (−1)m1+m2+m3 Ml1
m1

(x)Ml3
m3

(x)Ml1
m̄1

(y)Ml2
m2

(y)Ml2
m̄2

(z)Ml3
m̄3

(z)

= (−1)m2

3∏
i=1

∑
Li,Mi

(−1)M2

(
l1 l3 L2

0 0 0

) (
l1 l2 L3

0 0 0

) (
l2 l3 L1

0 0 0

)
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×

(
l1 l3 L2

m1 m3 M2

) (
l1 l2 L3

m̄1 m2 M3

) (
l2 l3 L1

m̄2 m̄3 M1

)

× (x2)
l1+l3−L2

2 (y2)
l1+l2−L3

2 (z2)
l2+l3−L1

2 ML2
M2

(x) ML3
M3

(y) ML1
M1

(z) (B.17)

Inserting the above relation in the summand and performing the {mi} summations we get

∑
{mi}

(−1)m2

(
l1 l3 L2

m1 m3 M2

) (
l1 l2 L3

m̄1 m2 M3

) (
l2 l3 L1

m̄2 m̄3 M1

)

= (−1)l2+L2−L3

(
L3 L1 L2

M̄3 M̄1 M2

) 
l2 l1 L3

L2 L1 l3


= (−1)l2+L2−L3

(
L3 L1 L2

M̄3 M̄1 M2

) 
L1 L2 L3

l1 l2 l3

 (B.18)

Now the three-point function takes the form

(
4π d/2

)3
3∏

i=1

∞∑
li=0

∞∑
si=0

∑
mi

(∆12/2)l1+s1(∆12/2 − µ)s1

(µ + 1)l1+s1 s1!
(∆23/2)l2+s2(∆23/2 − µ)s2

(µ + 1)l2+s2 s2!

×
(∆31/2)l3+s3(∆31/2 − µ)s3

(µ + 1)l3+s3 s3!

3∏
i=1

∑
Li,Mi

(−1)l2+L2−L3+M2

(x2)−∆1−l1−l3−s1−s3+
l1+l3−L2

2 (y2)−∆23/2−l2+s1−s2+
l1+l2−L3

2 (z2)s2+s3+
l2+l3−L1

2 ML2
M2

(x) ML3
M3

(y) ML1
M1

(z)

(
l1 l3 L2

0 0 0

) (
l1 l2 L3

0 0 0

) (
l2 l3 L1

0 0 0

) (
L3 L1 L2

M̄3 M̄1M2

) 
L1 L2 L3

l1 l2 l3


which can also be written as

(
4π d/2

)3
3∏

i=1

∞∑
li=0

∞∑
si=0

∑
mi

(∆12/2)l1+s1(∆12/2 − µ)s1

(µ + 1)l1+s1 s1!
(∆23/2)l2+s2(∆23/2 − µ)s2

(µ + 1)l2+s2 s2!

(∆31/2)l3+s3(∆31/2 − µ)s3

(µ + 1)l3+s3 s3!

3∏
i=1

∑
Li,Mi

(−1)l2+L2−L3
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(x2)−∆1−l1−l3−s1−s3+
l1+l3−L2

2 (y2)−∆23/2−l2+s1−s2+
l1+l2−L3

2 (z2)s2+s3+
l2+l3−L1

2 ML2

M̄2
(x) M

L ∗3
M̄3

(y) ML ∗1
M̄1

(z)

(
l1 l3 L2

0 0 0

) (
l1 l2 L3

0 0 0

) (
l2 l3 L1

0 0 0

) (
L3 L1 L2

M̄3 M̄1M2

) 
L1 L2 L3

l1 l2 l3


Note that the so(d) 3 j- coefficients

(
l l′ L
0 0 0

)
is non-vanishing only when l + l′ − L is even

integer. This suggests to change the following variables as

l1 + l3 = 2K2 + L2, l1 + l2 = 2K3 + L3, l2 + l3 = 2K1 + L1 (B.19)

i.e.

l1 =
L2 + L3 − L1

2
+ K2 + K3 − K1

l2 =
L3 + L1 − L2

2
+ K3 + K1 − K2

l3 =
L1 + L2 − L3

2
+ K1 + K2 − K3 (B.20)

Then the powers of x2, y2, z2 becomes (excluding the powers within the spherical har-

monics)

(x2)−∆1−L2−K2−s1−s3 (y2)−
∆23

2 −
L3+L1−L2

2 +s1−s2−K1+K2 (z2)s2+s3+K1 (B.21)

respectively. Comparing with the legs we want to amputate from the three-point function

we make the following change of variables in the summand

K2 + s1 + s3 = S 2 (B.22)

K1 + s2 + s3 = S 1 (B.23)

−
∆23

2
−

L3 + L1 − L2

2
+ s1 − s2 − K1 + K2 = S 3 (B.24)
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The last one of the above relations impose the following selection rule

(∆2 + L1 + 2S 1) + (∆3 + L3 + 2S 3) = (∆1 + L2 + 2S 2) (B.25)

So S 3 is not an independent variable and s3 is undetermined in terms of new variables.

We call it s3 = S . In terms of the new variables the three-point function becomes

(
4πd/2

)3

Γ(∆12/2)Γ(∆23/2)Γ(∆31/2)Γ(∆12/2 − µ)Γ(∆23/2 − µ)Γ(∆31/2 − µ)
×

3∏
i=1

∞∑
Li=0

∞∑
S i=0

∑
Mi

δ(∆2 + L1 + 2S 1 + ∆3 + L3 + 2S 3 − ∆1 − L2 − 2S 2)
∞∑

K3=0

S 1∑
K1=0

S 2∑
K2=0

min(S 2−K2,S 1−K1)∑
S =0

Γ(∆2 + L3 + S 1 + S 3 + K3 − S − K1)Γ(∆12/2 + S 2 − K2 − S − µ)
Γ( L2+L3−L1

2 + K3 − K1 + S 2 − S + d/2) (S 2 − K2 − S )!

×
Γ(K3 − K2 + S 2 − S 3 − S )Γ(∆23/2 + S 1 − K1 − S − µ)
Γ( L3+L1−L2

2 + K3 − K2 + S 1 − S + d/2) (S 1 − K1 − S )!

×
Γ(∆3 + L1 + S 1 + S 3 − S 2 + K1 + K2 − K3 + S )Γ(∆31/2 + S − µ)

Γ( L1+L2−L3
2 + K1 + K2 − K3 + S + d/2) S !

× (−1)
L1+L2−L3

2 +K3+K1−K2

( L2+L3−L1
2 + K2 + K3 − K1,

L1+L2−L3
2 + K1 + K2 − K3, L2

0 0 0

)

×

( L2+L3−L1
2 + K2 + K3 − K1,

L3+L1−L2
2 + K3 + K1 − K2, L3

0 0 0

)

×

( L3+L1−L2
2 + K3 + K1 − K2,

L1+L2−L3
2 + K1 + K2 − K3, L1

0 0 0

)

×


L1 L2 L3

L2+L3−L1
2 + K2 + K3 − K1

L3+L1−L2
2 + K3 + K1 − K2

L1+L2−L3
2 + K1 + K2 − K3


×

(
L3 L1 L2

M3 M1 M2

)
(x2)−∆1−L2−S 2(y2)S 1(z2)S 3 ML ∗2

−M2
(x) ML3

−M3
(y) ML1

−M1
(z)

(B.26)
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where we have arranged the order as well as the limits of the summations appropriately.

According to our prescription the three-point function can be recovered as

3∏
i=1

∞∑
Li=0

∞∑
S i=0

∑
Mi

〈〈∆1|g(x)|∆1; {L2,M2, S 2}〉 〈∆2; {L1,M1, S 1}|g−1(y)|∆2〉〉

〈∆3; {L3,M3, S 3}|g−1(z)|∆3〉〉C
(∆2,S 1), (∆3,S 3); (∆1,S 2)
(L1,M1), (L3,M3); (L2,M2) (B.27)

where C(∆2,S 1), (∆3,S 3); (∆1,S 2)
(L1,M1), (L3,M3); (L2,M2) is so(1, d+1) CG coefficient. Comparing above with the three-

point function we write

C(∆2,S 1), (∆3,S 3); (∆1,S 2)
(L1,M1), (L3,M3); (L2,M2)

=

(
4πd/2

)3
δ(∆2 + L1 + 2S 1 + ∆3 + L3 + 2S 3 − ∆1 − L2 − 2S 2)

Γ(∆12/2)Γ(∆23/2)Γ(∆31/2)Γ(∆12/2 − µ)Γ(∆23/2 − µ)Γ(∆31/2 − µ)
×

×

[
Γ(∆1 + L2 + S 2)Γ(∆1 + S 2 − µ)

Γ(∆1)Γ(∆1 − µ)Γ(L2 + S 2 + d/2)S 2!

]1/2 [
Γ(∆2 + L1 + S 1)Γ(∆2 + S 1 − µ)

Γ(∆2)Γ(∆2 − µ)Γ(L1 + S 1 + d/2)S 1!

]1/2

×

[
Γ(∆3 + L3 + S 3)Γ(∆3 + S 3 − µ)

Γ(∆3)Γ(∆3 − µ)Γ(L3 + S 3 + d/2)S 3!

]1/2 ∞∑
K3=0

S 1∑
K1=0

S 2∑
K2=0

min(S 2−K2,S 1−K1)∑
S =0

Γ(∆2 + L3 + S 1 + S 3 + K3 − S − K1)Γ(∆12/2 + S 2 − K2 − S − µ)
Γ( L2+L3−L1

2 + K3 − K1 + S 2 − S + d/2) (S 2 − K2 − S )!

×
Γ(K3 − K2 + S 2 − S 3 − S )Γ(∆23/2 + S 1 − K1 − S − µ)
Γ( L3+L1−L2

2 + K3 − K2 + S 1 − S + d/2) (S 1 − K1 − S )!

×
Γ(∆3 + L1 + S 1 + S 3 − S 2 + K1 + K2 − K3 + S )Γ(∆31/2 + S − µ)

Γ( L1+L2−L3
2 + K1 + K2 − K3 + S + d/2) S !

× (−1)
L1+L2−L3

2 +K3+K1−K2

( L2+L3−L1
2 + K2 + K3 − K1,

L1+L2−L3
2 + K1 + K2 − K3, L2

0 0 0

)

×

( L2+L3−L1
2 + K2 + K3 − K1,

L3+L1−L2
2 + K3 + K1 − K2, L3

0 0 0

)
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×

( L3+L1−L2
2 + K3 + K1 − K2,

L1+L2−L3
2 + K1 + K2 − K3, L1

0 0 0

)

×


L1 L2 L3

L2+L3−L1
2 + K2 + K3 − K1

L3+L1−L2
2 + K3 + K1 − K2

L1+L2−L3
2 + K1 + K2 − K3


×

(
L3 L1 L2

M3 M1 M2

)
(B.28)
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Appendix C

Matrix elements

We compute matrix elements of so(1, 4) generators in the orthonormal basis we found.

The dilatation generator acts on a basis state as:

D|∆; {l,m, s}〉 = (∆ + l + 2s)|∆; {l,m, s}〉 (C.1)

Therfore

〈∆; {l′,m′, s′}|D |∆; {l,m, s}〉 = (∆ + l + 2s) δll′ δmm′ δss′ (C.2)

To find the matrix elements for the translation and special conformal generators we have

to rewrite the generators in terms of spherical tensor using the identities:

M1
−1(P) =

√
3

8π
(P1 − i P2) (C.3)

M1
0(P) =

√
3

4π
P3 (C.4)

M1
1(P) = −

√
3

8π
(P1 + i P2) (C.5)
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as

P1 =

√
2π
3

(
M1
−1(P) − M1

1(P)
)

(C.6)

P2 = −i

√
2π
3

(
M1
−1(P) + M1

1(P)
)

(C.7)

P3 =

√
4π
3

M1
0(P) (C.8)

Similarly the special transformation generators Ki’s can be rewritten in terms of M1
m(K)

with m ∈ {−1, 0, 1}.

Let us compute the matrix element:

〈∆; {l′,m′, s′}|M1
−1(P) |∆; {l,m, s}〉

=
1

Al,s
〈∆; {l′,m′, s′}|(P2)s M1

−1(P) Ml
m(P) |∆〉

=
1

Al,s

∑
L

√
3(2l + 1)

4π(2L + 1)
〈1, 0; l, 0| 1, l; L, 0〉 〈1, −1; l, m| 1, l; L, m − 1〉

× 〈∆; {l′,m′, s′}|(P2)s+ 1+l−L
2 ML

m−1(P) |∆〉 (C.9)

where we have used the identity (B.15). Now using the definition of the basis states we

find

〈∆; {l′,m′, s′}|M1
−1(P) |∆; {l,m, s}〉

=
1

Al,s

∑
L

√
3(2l + 1)

4π(2L + 1)
〈1, 0; l, 0| 1, l; L, 0〉 〈1, −1; l, m| 1, l; L, m − 1〉

× AL,m−1, s+ 1+l−L
2

〈
∆; {l′,m′, s′}

∣∣∣∣∣∣∆;
{

L, m − 1, s +
1 + l − L

2

}〉
=

1
Al,s

∑
L

√
3(2l + 1)

4π(2L + 1)
〈1, 0; l, 0| 1, l; L, 0〉 〈1, −1; l, m| 1, l; L, m − 1〉

× AL, s+ 1+l−L
2
δLl′ δm′(m−1) δ

(
s +

1 + l − L
2

− s′
)

(C.10)

140



Performing the sum over L with δLl′ we find

〈∆; {l′,m′, s′}|M1
−1(P) |∆; {l,m, s}〉

=
Al′, s+ 1+l−l′

2

Al,s

√
3(2l + 1)

4π(2l′ + 1)
〈1, 0; l, 0| 1, l; l′, 0〉 〈1, −1; l, m| 1, l; l′, m − 1〉

× δm′(m−1) δ

(
s +

1 + l − l′

2
− s′

)
(C.11)

Similarly

〈∆; {l′,m′, s′}|M1
1(P) |∆; {l,m, s}〉

=
Al′, s+ 1+l−l′

2

Al,s

√
3(2l + 1)

4π(2l′ + 1)
〈1, 0; l, 0| 1, l; l′, 0〉 〈1, 1; l, m| 1, l; l′, m + 1〉

× δm′(m+1) δ

(
s +

1 + l − l′

2
− s′

)
(C.12)

and

〈∆; {l′,m′, s′}|M1
0(P) |∆; {l,m, s}〉

=
Al′, s+ 1+l−l′

2

Al,s

√
3(2l + 1)

4π(2l′ + 1)
〈1, 0; l, 0| 1, l; l′, 0〉 〈1, 0; l, m| 1, l; l′, m〉

× δmm′ δ

(
s +

1 + l − l′

2
− s′

)
(C.13)

Similarly we compute the matrix elements for M1
m(K) for the special conformal transfor-

matio generators. For example,

〈∆; {l′,m′, s′}|M1
0(K) |∆; {l,m, s}〉

=
1

Al′,s′
〈∆|(K2)s′ Ml′

m′(K)M1
0(K) |∆; {l,m, s}〉
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= 1
Al′ ,s′

∑
L

√
3(2l′+1)

4π(2L+1) 〈1, 0; l′, 0| 1, l′; L, 0〉 〈1, 0; l′, m′| 1, l′; L, m′〉

×〈∆|(K2)s′+ 1+l′−L
2 ML

m′(K) |∆; {l,m, s}〉

=
1

Al′,s′

∑
L

√
3(2l′ + 1)

4π(2L + 1)
〈1, 0; l′, 0| 1, l′; L, 0〉 〈1, 0; l′, m′| 1, l′; L, m′〉

× AL, s′+ 1+l′−L
2
δLl δmm′ δ

(
s′ +

1 + l′ − L
2

− s
)

(C.14)

Therefore

〈∆; {l′,m′, s′}|M1
0(K) |∆; {l,m, s}〉

=
Al, s′+ 1+l′−l

2

Al′,s′

√
3(2l′ + 1)
4π(2l + 1)

〈1, 0; l′, 0| 1, l′; l, 0〉 〈1, 0; l′, m′| 1, l′; l, m′〉

× δmm′ δ

(
s′ +

1 + l′ − l
2

− s
)

(C.15)

Similarly we can compute the matrix elements for other spherical harmonics, M1
m(K)

using the above results and the following replacements

( l←→ l′ ), ( m←→ m′ ), ( s←→ s′ ) =⇒ ( P←→ K ) (C.16)

Now we consider the matrix elements for the rotation generators which takes the familiar

forms

〈∆; {l′,m′, s′}| J0 |∆; {l,m, s}〉 = m δll′ δmm′ δss′ (C.17)

and

〈∆; {l′,m′, s′}| J± |∆; {l,m, s}〉 =
√

(l ∓ m)(l ± m + 1) δll′ δm′(m±1) δss′ (C.18)
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