
Non-equilibrium Dynamics in Complex Networks

By
Rishu Kumar Singh
PHYS10201204008

The Institute of Mathematical Sciences, Chennai

A thesis submitted to the

Board of Studies in Physical Sciences

In partial fulfillment of requirements

For the Degree of

DOCTOR OF PHILOSOPHY

of

HOMI BHABHA NATIONAL INSTITUTE

November, 2017

















ACKNOWLEDGEMENTS

I am grateful to Prof. Dr. Sitabhra Sinha to provide me an opportunity to work under his
supervision in I.M.Sc., Chennai, after spending my two years in H.R.I., Allahabad. The
work reported in the thesis could not have been brought to its present form without his
insightful efforts.

I consider myself very fortunate to be in contact with a number of people: Rajarshi,
Sadhana, Ram lal, Ritesh, Siddharth, Bhuvanesh, Abhishek, Abhishek, Adarsh, Vineet,
Rajesh, Jitendra, Rahul, Shradha, Anamika, Praveen, Naveen, Utkarsh, Rakesh, Bharat,
Piyush, Amit, Tanmay, Aradhana, Janaki, Anand, Soumya, Ashraf, Abhijeet, Shakti,
Anupama, Deepika, Chandrasekhar, and Trilochan whose experiences have been invalu-
able in both life and work.

I thank my parents to give me the freedom to walk my path.

Finally, I thank the examiners for a critical review of the thesis and making suggestions
for its improvement.





PUBLICATIONS

a. Published:

1. Singh, R. K. and Bagarti, T. (2015). Synchronization in an evolving network.
Europhysics Letters, 111, 50010.

2. Singh, R. K. and Bagarti, T. (2016). Coupled oscillators on evolving networks.
Physica D, 336, 47.

3. Singh, R. K. (2017). Noise enhanced stability of a metastable state containing
coupled Brownian particles.
Physica A, 473, 445.

4. Singh, R. K. (2017). Kramers problem for a dimer: effect of noise correlations.
Physical Review E, 95, 042132.

5. Singh, R. K. and Sinha, S. (2017). Optimal interdependence enhances robustness
of complex systems.
Physical Review E, 96, 020301(R).

b. Accepted:

c. Communicated:

1. Singh, R. K. and Sinha, S. (2017). Resolving the complexity-stability debate: A
matter of time-scales.





Contents

Synopsis 1

1 Introduction 9

1.1 Nonlinearity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

1.2 Networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

1.3 Interdependent Networks . . . . . . . . . . . . . . . . . . . . . . . . . . 15

1.4 Financial Markets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

1.5 Overview of the thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2 Optimal interdependence enhances the dynamical robustness of complex sys-
tems 23

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.2 Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.3 Results and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

2.4 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

3 Resolving the complexity-stability debate: A matter of time-scales 39

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

3.2 Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

3.3 Results and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

3.4 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

3.A Appendix: Empirical data analysis . . . . . . . . . . . . . . . . . . . . . 52

4 Non-equilibrium dynamics in a financial market 55

i



4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

4.2 Description of the data . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

4.3 Results and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

4.3.1 Distribution of trade sizes . . . . . . . . . . . . . . . . . . . . . 58

4.3.2 Distribution of waiting times and log-returns . . . . . . . . . . . 61

4.3.3 Properties of log-returns and waiting times . . . . . . . . . . . . 63

4.4 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

5 Conclusions 69

5.1 Summary of main results . . . . . . . . . . . . . . . . . . . . . . . . . . 70

5.2 Outlook . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

Bibliography 73

Bibliography 85

ii



List of Figures

2.1 (a) Schematic diagram representing two interdependent networks, each
comprising N nodes, that have intra-network directed nonlinear interac-
tions (indicated by arrows) and inter-network diffusive coupling between
M (≤ N) pairs of corresponding nodes . . . . . . . . . . . . . . . . . . . 27

2.2 (a-c) Probability that nodal activity persists for longer than the duration
of simulation P(τ > T ) for an interdependent system of two networks
decreases monotonically with increasing connection density . . . . . . . 29

2.3 Time-evolution of a system of two diffusively coupled logistic maps hav-
ing r > 4, showing (in black) the regions of phase space I2 : (0, 1)× (0, 1)
that correspond to initial states which lead to trajectories moving out of
the I2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

2.4 Bifurcation diagrams showing the attractor of the dynamical state x of
a representative element as a function of the diffusive coupling strength
between (a-b) two maps and (c) two networks each comprising N = 256
nodes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

2.5 The optimal range of inter-network coupling strengths D where the asymp-
totic fraction of active nodes factive is finite . . . . . . . . . . . . . . . . . 37

3.1 (a) Schematic diagram (left) indicating that high in-degree node (i) tends
to have weaker interactions (link strength represented by edge thickness)
compared to one with low in-degree ( j) as suggested by empirical data . . 43

3.2 (a) Scaling of the interaction strengths of a node i by its degree ki (α = 1)
results in a significantly longer transient period during which the fraction
of active nodes factive remains much higher than in the asymptotic state . . 45

3.3 (a) Schematic diagram representing network evolution. The initial net-
work of active nodes (t = t1) reduces through extinction of activity in
nodes (black node, at t = t2) but also increase through occasional arrival
of new nodes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

iii



3.4 Variation of connection weights(on a logarithmic scale) with in-degree
of the nodes. Top left shows the empirical data for the dry season and
bottom left for the wet season respectively. Corresponding weight matrix
is shown on the right, with the color code representing the trophic flow on
a logarithmic scale. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

4.1 Representative time-series of RELIANCE stock for 30 minutes beginning
at 0950 hrs on December 1, 2012 showing (a) price p(t) of the stock, (b)
log-returns r(t), and (c) trade size q(t) as a function of time. Time is
measured in seconds, with the origin (0) set at 0950 hrs. . . . . . . . . . . 56

4.2 Cumulative probability distribution P(Q ≥ q) of the trade sizes q for NSE
for the month of December for the years 1999 to 2012. Note the dou-
bly logarithmic axis of the graphs, which means that a linearly decaying
tail implies the existence of power-law decay of the distribution (the line
represents a power-law fit with exponent 1.6). . . . . . . . . . . . . . . . 58

4.3 Cumulative probability distribution of trade sizes q for the stocks of (a)
HDFCBANK, (b) INFOS YS , (c) RELIANCE, and (d) S UNPHARMA.
The distributions are shown for the December months for the years 2003
(black squares), 2007 (red circles) and 2010 (blue triangles). Similar to
the case of the markets, the distribution of trade sizes for individual stocks
also exhibits a power law form. . . . . . . . . . . . . . . . . . . . . . . 59

4.4 Maximum likelihood estimates of the power law distribution of trade sizes
for (a) entire market and (b) for the representative stocks: HDFCBANK
(black squares), INFOS YS (red circles), RELIANCE (blue triangles),
and S UNPHARMA (maroon inverted triangles), for the months of De-
cember from 1999 to 2012. Please note that the data for INFOS YS is
not available for the years 2011 and 2012. Bars represent the error in
estimating the exponents, obtained using bootstrap technique. The hor-
izontal broken line indicates α = 3 which demarcates distributions with
Levy-stable nature from those that will eventually converge to Gaussian. . 60

4.5 A magnified view of the time series of Fig. 4.1 showing that multiple
transactions share the same time stamp because the temporal resolution
of the recording is limited to 1 second. Also shown is the waiting time
τw between two successive trades, specifying an interval during which no
transaction takes place. . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

4.6 Cumulative probability distribution of waiting times for successive trades
in RELIANCE stock for the month of December in 2005. The empirically
obtained distribution (circles) has been fitted with an exponential distri-
bution (solid curve) having the same mean waiting time 〈τw〉 ≈ 0.453.
The inset shows a fit with a theoretical distribution that is a sum of three
exponentially decaying curves

∑
i ai exp(−(τw/bi)) having different char-

acteristic times τw/bi (i = 1, 2, 3) [see text for details]. . . . . . . . . . . . 62

iv



4.7 Distribution of log-returns of RELIANCE (each return being measured
over an interval of 1 tick) for the month of December 2005. . . . . . . . 63

4.8 Scatter plot of waiting times τw between successive trades and the corre-
sponding log-return r of RELIANCE for all transactions that took place
in the month of December 2005. . . . . . . . . . . . . . . . . . . . . . . 64

4.9 Conditional distribution P(r|τw) of log-returns r(t) conditioned on the
waiting times τw for successive trades involving RELIANCE stock in the
month of December 2005. . . . . . . . . . . . . . . . . . . . . . . . . . 65

4.10 Intra-day volatility σ2(t) (measured by variance of the log-returns) dur-
ing a period ∆t shown as a function of time of day t for RELIANCE on
December 1, 2005, for different intervals ∆t. . . . . . . . . . . . . . . . 65

4.11 Scaled cumulative variance of the log-returns for intra-day tradingσ2
c(t)∆t

as a function of time of day t for RELIANCE on December 1, 2005. It
is observed that scaling by interval ∆t over which the variance is calcu-
lated, the curves for cumulative variance σ2

c(t) for different choices of ∆t
overlap. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

v



vi



Synopsis

Complex systems comprising a large number of strongly interacting components that pos-

sess non-trivial dynamics are ubiquitous in nature, examples ranging from the immune

system of organisms that consist of an enormous variety of cells performing various spe-

cialized functions in a coordinated manner to ecological food webs coupling a large num-

ber of species to each other in terms of trophic relations. In the economic domain also

we observe a variety of complex systems, such as financial markets and the network of

international trade between nations. A common framework often used for describing the

structure of such systems is that of networks [1–4], a network being defined as a set of

nodes (or vertices) that are connected with one another through links (or edges). For ex-

ample, in the context of ecology, nodes are the different species and links are the possible

predator-prey, competitive or mutualistic interactions between them.

While the topological arrangement of the connections between the constituent parts of a

complex system can often reveal fascinating insights, such an exclusively structural ap-

proach often cannot explain its dynamical behavior. Complex systems in nature are often

subject to various types of environmental stimuli and perturbations that keep them far

from equilibrium. To describe the behavior of such non-equilibrium systems we need to

take recourse to a dynamical perspective. In this thesis, we look at the relation between

the structural properties of a complex system and the features arising from the collective

dynamics of its elements. We focus on understanding how robustness of a complex sys-

tem (either in terms of survival of activity in its components or stability of the statistical
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properties of its dynamics) can arise as a result of the interaction between its different

parts. We show that a set of concepts from statistical physics can provide a common

toolbox for explaining features of widely different out-of-equilibrium complex systems,

e.g., random walks for explaining movement of prices in markets as well as extinction

of species in ecological communities. Similarly the concept of waiting time is useful

when considering phenomena involving the intervals between successive extinctions in

an ecological system or the duration between two successive transactions in a financial

market.

We begin with a short overview of the literature on dynamics of complex networks in

Chapter 1. We give special emphasis on the long-standing debate as to whether in-

creased complexity in systems is conducive for its robustness, known in the literature as

the stability-diversity debate [5].

In Chapter 2 we consider the role of inter-dependence on the global stability of coupled

networks [6,7]. Many complex systems that occur in biological, technological and socio-

economic contexts are seen to be strongly influenced by the behavior of other systems.

Such interdependence can result in perturbations in one system propagating to others,

potentially resulting in a cascading avalanche through the network of networks. Recent

studies of percolation of failure processes in a system of two or more connected networks

have suggested that interdependence makes the entire system fragile. However, a proper

appraisal of the role of interdependence on the stability of complex systems necessar-

ily needs to take into account the dynamical processes occurring on them. Compared to

a purely structural approach (such as percolation, that considers the effect of removing

nodes or links), a dynamical systems perspective provides a richer framework for assess-

ing the robustness of systems. Indeed, investigating how fluctuations from equilibrium

in a local region of a complex system can propagate to other regions forms the basis for

addressing the dynamical stability of systems. Extending this framework to the context

of interdependent networks can potentially offer us insights on why such systems are
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ubiquitous in the real world in spite of their structural fragility.

Motivated by these observations, in this chapter we describe the results of our investiga-

tions on the dynamics of coupled networks. Our principal finding is that an optimally

strong interdependence between networks can increase the robustness of the system in

terms of its dynamical stability. Unlike percolation-based approaches where failure is

often identified exclusively with breakdown of connectivity so that increasing interdepen-

dence necessarily enhances fragility, our dynamical perspective leads to a strikingly dif-

ferent conclusion. In particular, we show that the system has a much higher likelihood of

survival for an optimal interdependence, with both networks facing almost certain catas-

trophic collapse in isolation. Our results suggest that interdependence may be essential in

several natural systems for maintaining diversity in the presence of fluctuations that are

potentially destabilizing. Thus, interdependence need not always have negative repercus-

sions. Instead its impact may depend strongly on the context, e.g., the nature of coupling

and the type of dynamics being considered.

In Chapter 3 we consider the stability-diversity debate, viz., the question of whether

higher complexity (e.g., as a result of increasing the number of nodes, connection density

or the range of interactions strengths in a network) makes a system more vulnerable to

disturbances arising from small perturbations in the state variables. While empirical ob-

servations appear to suggest that more diverse (and hence more complex systems) tend

to be more resistant to external interventions and also less likely to show catastrophic

collapses, theoretical investigations suggest otherwise. We view this question in the per-

spective of long-term dynamical evolution of many coupled dynamical elements where

activity in each of the nodes may cease (corresponding to extinction) as a result of inter-

action with other modes [9, 145]. A cascading sequence of failures across the network

will manifest as a large-scale catastrophic collapse of the system resulting from initially

small perturbations in the dynamical variables and we ask under what conditions such

phenomena will be possible. An important variation we introduce in our model is the
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dependence of the interaction strengths with which a node interacts with its neighbors on

the total number of neighbors that it has. In particular we focus on the case when the av-

erage interaction strength of a node is inversely proportional to its in-degree (i.e., the total

number of incoming connections from other nodes of the network). Such a reciprocal

relation between strength and degree is motivated by empirical observations over several

decades, e.g., “...species that interact feebly with others do so with a great number of other

species. Conversely with species with strong interactions are often part of a system with

a small number of species..." (R. Margalef, Perspectives in Ecological Theory, University

of Chicago Press, Chicago, 1968, p. 7).

While the extreme long-term behavior of the model is qualitatively similar to the case

when the strengths are independent of degree, viz., the asymptotic fraction of nodes with

persistent activity is inversely related to the number of nodes, the connection density

and the dispersion of interaction strengths, a critical difference is that scaling strength by

degree makes the the system exhibit extremely long transients during which most nodes

remain active. Surprisingly, the more connected a system, the longer is the duration of the

transient period characterized by the network possessing a large fraction of active nodes.

Thus, observations made in short timescales may well conclude that systems having more

nodes (i.e., more diversity) and higher link density (i.e., more connected) will be more

stable in the sense of having a higher fraction of nodes exhibiting dynamical activity than

systems that are less diverse or less connected – in agreement with claims made in the

empirical literature. On the other hand, at extremely long times, the results will be more

consistent with theoretical studies which shows that more complex systems would tend to

have lower number of active nodes surviving. Thus, we provide a novel resolution to the

long-standing debate over the relation between complexity and stability by showing that

the answer depends on the time-scale of observation.

In Chapter 4 we consider a different type of complex system than the ones we have

considered so far, viz., financial markets. Financial markets constitute a prototypical ex-

4



ample of a complex system because of the large number of components involved whose

dynamics is often unpredictable. However, despite such unpredictability, the existence of

statistical regularities that have been reported for many different markets across geograph-

ically separated locations, e.g., the observation of “inverse cubic law” in the distribution

of price fluctuations (measured in terms of logarithmic returns, i.e., difference in the log-

arithm of prices at successive time intervals). Many studies reporting these observations

have used daily trade data, thereby neglecting the significant intra-day patterns in trad-

ing activity. Motivated by these observations, we study the high-frequency (HF) [10, 11]

trade data obtained from the National Stock Exchange (NSE), India to characterize the

statistical properties of the collective dynamics of such a complex non-equilibrium sys-

tem. Such HF data, by providing information about market movements at the maximum

possible resolution, helps one to understand the microstructure of the dynamics of this

complex system. Such an analysis will also provide benchmarks against which existing

models of collective behavior in markets can be tested.

Using HF data from different intervals we show that the gross statistical properties of the

market as a whole are in general stationary even though those of its constituents, i.e.,

individual stocks, are not. In particular we see that the distribution of transaction sizes

(i.e., units of stock involved in a single transaction) when trades carried out in the entire

market are considered does not change its nature over time. However, for individual

stocks, this distribution can differ significantly between one period and another. We have

also investigated the statistics of waiting times between successive trades. For individual

stocks we observe that the distribution of waiting times is non-exponential which we

link to the frequent occurrence of successive transactions that involve large returns (price

changes). We also find that the cumulative volatility of price movements increases linearly

with time within a trading day. However there is deviation from linearity at the ends

suggesting that the non-Gaussian character arises because of significant volume of end-

of-day trading. The correlation between the intervals separating successive trades and the

magnitude of price fluctuations implies that the distributions of the waiting times and that
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of step lengths of the random walk [12, 13] executed by the price of a financial asset may

not be completely independent unlike what is generally assumed in many studies.

We conclude in Chapter 5 with a summary and general discussion of the implications of

our results.
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Chapter 1

Introduction

The concept of equilibrium has been central to physics from the advent of Newtonian

mechanics in the seventeenth century. The key idea of competing forces that act on an

object of interest balancing each other, such that the dynamical properties of the object

become time-invariant, has permeated beyond classical mechanics into statistical physics

where it is associated with the principle of detailed balance. It is a crucial simplifying

assumption that enables theoretical analysis of a large number of physical phenomena.

However, many processes in nature, in particular those that occur in the living world, are

far from equilibrium and thus could not be analyzed using the tools of physics for a long

time. This is because while techniques for studying equilibrium phenomena have been

developed much earlier, it is only in late 19th and early 20th centuries that the first steps

were taken to theoretically understand out-of-equilibrium phenomena starting with inves-

tigations in kinetic theory. Einstein’s development of the theory of Brownian motion [1] is

one of the early landmarks in this venture. Around the same time, an alternative approach

based on analyzing individual trajectories of random dynamical systems was proposed by

Langevin [2]. In this approach, the time-evolution of a variable of interest is described

using a stochastic differential equation [3], which is a physically more intuitive approach

than the one based on description of probability densities as in the Fokker-Planck equa-
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tion [4]. These two complementary approaches for studying non-equilibrium systems,

one based on a description of dynamical trajectories and the other on probability densi-

ties, are fundamentally connected by the concept of random walks [5].

One of the earliest examples of the theoretical treatment of non-equilibrium dynamics

of systems is provided by the seminal work of Kramers [6] in calculating the thermal

rate of escape of a particle by jumping across a potential barrier. The escape problem has

since been applied to domains ranging from chemical kinetics (e.g., calculating the rate of

chemical reactions) to transport theory [7, 8]. The question of how long it takes for a par-

ticle to escape from a potential well can also be seen as a specific case of the more general

class of first-passage problems [9]. Such problems are fundamentally connected to the

question of persistence in a dynamical system (e.g., how long does the system remain in a

given region in phase space) [10], and have applications across widely different domains.

For instance, the framework of first-passage has been used to study problems as diverse

as the inter-spike intervals in the firing of neurons [11] and the time taken by asset prices

to cross a given threshold [12]. Non-equilibrium systems also exhibit irreversibility and

dissipation, demonstrating the “arrow” of time manifest in all macroscopic phenomena

in nature. In addition, far-from-equilibrium processes are often characterized by self-

organization leading to patterns in space and/or time [13]. One of the most striking exam-

ples of these is the occurrence of temporal oscillations in the molecular concentrations, as

well as, propagating target and spiral waves in the Belusov-Zhabotinsky chemical reac-

tions [14–16]. The investigation of such processes were pioneered by among others, Ilya

Prigogine [17, 18] whose contributions were recognized with the Nobel Prize in Chem-

istry in 1977 [19], and Hermann Haken, whose work on lasers provides a classic example

of how a system system comprising many degrees of freedom exhibit self-organization

when driven with a supra-threshold stimulus [20,21]. Indeed, most complex systems that

are composed of many interacting components (or subsystems) and whose collective be-

havior cannot be simply expressed in terms of the superposition of properties of individual

elements, typically exhibit non-equilibrium behavior.
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One of the signatures of complex self-organization in natural systems is the occurrence

of 1/ f noise [22], i.e., the the observable of interest has a frequency spectrum such that

the power spectral density for a particular frequency is inversely proportional to the fre-

quency. This type of frequency spectrum is ubiquitous in nature and has been observed

in phenomena as different as the statistics of flooding of the river Nile to the luminosity

of stars [23]. Occurrence of 1/ f noise has been identified with self-organized critical-

ity [24,25] in driven dynamical systems. Such processes exhibit scaling phenomena with

algebraic decay of correlations across space and/or time, that have been connected with

the occurrence of statistically self-similar structures in nature such as in mountains and

coastlines [26] and in fluid turbulence [27].

Thus, beginning from the investigation of simple systems in the early 20th century, such

as a particle diffusing in a solution, the study of non-equilibrium phenomena in physics

has come a long way, addressing problems associated with complex systems such as the

living cell and ecosystems. It is striking that while these developments were taking place

in the physical sciences, simultaneously a parallel approach was being constructed in the

realm of social sciences for studying similar phenomena. Strikingly, five years before

Einstein’s seminal paper on Brownian motion, Bachelier had proposed his own theory

of the same phenomenon [28] in the context of describing the behavior of fluctuating

prices in markets. Although unnoticed at the time, the work of Bachelier was used as a

starting point by Itô to develop stochastic calculus and the theory of geometric Brownian

motion [29]. This theory has played a fundamental role in modern financial theory and

practice, including the development of option pricing formulas pioneered by Black and

Scholes [30] and independently by Merton [31]. While most of these theoretical devel-

opments have assumed Gaussian behavior for price fluctuations, empirical studies have

shown that the distribution of asset price returns exhibit strong deviation from Gaussian

nature [32, 33]. In particular, evidence suggests that the second moment of the distribu-

tion may diverge in many cases in reality. This problem was sought to be resolved in

subsequent work by Mantegna and Stanley [34], wherein they showed that even though
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price fluctuation distributions exhibit fat tails, the tails are exponentially decaying at the

far ends resulting in a finite second moment for the price variations. From the 1990s

physicists have used various techniques from statistical physics to understand the prop-

erties of such distributions associated with the dynamics of markets. This link between

non-equilibrium phenomena in natural (e.g., Brownian motion) and socio-economic (e.g.,

financial markets) domains have provided a rich cross-fertilization of ideas between these

two apparently very different areas [35].

1.1 Nonlinearity

A primary reason that the dynamical properties of complex systems cannot be derived in

a straightforward manner from that of their subsystems is the intrinsically nonlinear char-

acter of such systems. Nonlinearity leads to the failure of the principle of linear superpo-

sition, e.g., in a pendulum undergoing large-amplitude oscillations [36], and is ubiquitous

in natural and man-made systems [37,38]. The analysis of such systems is generally prob-

lematic as techniques designed for analyzing linear systems are rarely of much efficacy

in these cases [39]. However, understanding how the nonlinearity of dynamical systems

affects their behavior is of fundamental importance and is also crucial for many appli-

cations, such as, understanding climate change [40, 41], biological systems [42], optical

systems, electromagnetic systems, solid state devices, etc. [43].

A particular class of nonlinear systems are the discrete dynamical systems, also known

as nonlinear maps [44], that can exhibit extremely complicated dynamics [45] ranging

between steady state, periodic oscillations and chaos, depending on the value of system

parameters [46–48]. Although of interest in their own right, individual maps are of lim-

ited usefulness when describing complex systems. This problem can, however, be over-

come by considering a system of coupled nonlinear maps, e.g., coupled map lattices [49].

Such models have been used to describe spatiotemporal intermittency [50, 51], spatially
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extended chaos [52], synchronization [53, 54], cascading failures [55], etc., in dynam-

ical systems with multiple degrees of freedom. However, complex systems composed

of many interacting units are not always embedded on regular lattices in finite spatial

dimensions and may acquire arbitrary connection topologies which are described using

their statistical properties, viz., average number of neighbors of a given element, distri-

bution of interaction strengths, etc. These structures, which deviate from regular lattice

based arrangements, are termed networks [56] and have become a cornerstone of contem-

porary research in complex systems [57–59]. We shall now briefly discuss the concepts

and techniques of such systems that are relevant for the work reported in the thesis.

1.2 Networks

A network is a set of nodes connected by links, which may by directed or undirected,

thus classifying the network as directed or undirected. All information about the network

topology is contained in its adjacency matrix

g = {gi j}N×N , (1.1)

which is a matrix with elements 0 and 1, N being the number of nodes. If two nodes i and

j of the network are connected by a link, then gi j = 1, else gi j = 0. A directed network

is characterized by an asymmetric adjacency matrix, whereas for an undirected network

g is symmetric. In addition, the links of a network can also have weights assigned, which

we denote by

J = {Ji j}N×N , (1.2)

where the weights Ji j are drawn according to some rule, or some statistical distribution

depending on the problem. For example, Ji j = gi j ∀ i, j = 1, ...,N.
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In order to characterize the neighborhood of a node i, we define its degree

ki =
∑

j

gi j. (1.3)

It is to be noted that for an undirected network, for which gi j = g ji, it does not matter in

(1.3) whether the summation is with respect to the first index or the second. However, for

directed networks the asymmetry of the adjacency matrix g implies that the in-degree of

node, kin
i =

∑
j gi j, defined as the number of neighbors of i, is in general different from

its out-degree, kout
i =

∑
j gi j, which is a measure of the number of nodes to which i is

connected. An important quantity characterizing networks is its degree distribution p(ki)

and has been used to classify different types of networks. For example, random networks

have Poisson degree distributions [60] whereas scale-free networks possess power-law

degree distributions [61].

Another concept closely related to the average degree of a node 〈k〉 =
∑

i ki p(ki) is the

connection density of the network

C =
〈k〉
N
, (1.4)

where N is the number of nodes in the network. Here it is assumed that the network

under consideration is undirected. An analogous definition can be written for the case

of directed networks. These and other related concepts about networks are described in

Refs. [56, 62].

Most of the networks encountered in natural or artificial settings, e.g., biological net-

works [63–66], food webs [67], world wide web [68–70], collaboration networks [71,72],

etc. to mention a few, are not frozen in time but continue to grow through addition or dele-

tion of nodes. Such structural evolution of complex networks has been connected to well-

known phenomena in statistical physics, such as, self-organized criticality [73–75], perco-

lation [76], etc., making the dynamics of networks (i.e., the process by which the topology
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of the network evolves) an important problem in nonequilibrium statistical physics [77].

However, the dynamics of networks by no means exhausts the possibilities of complex

dynamical phenomena arising in a network context. For example, even though the class

of networks mentioned above are evolving in time, the nodes themselves are essentially

static in nature and serve only as structural components of the network. In many cases

of interest, however, nodes themselves have intrinsic dynamics (or at least, are associ-

ated with a dynamically evolving state), such as in the case of epidemics [78–81]. Other

examples include contact processes [82,83] and reaction-diffusion dynamics [84–86] gov-

erning the interactions between the nodes in a network. Consideration of such dynamics

on networks allow us to address the extremely important problem of stability of a complex

system. The question of whether increasing complexity of a system makes it more or less

stable was theoretically addressed by Robert May [87]. This early analytical approach

involved studying the linear stability in the neighborhood of an equilibrium state of the

dynamical system. However, most complex systems exist far from equilibrium. It is thus

of interest to ask whether the role of complexity on the stability of a system can be inves-

tigated in such scenarios. It also often happens that the failure of a single node can result

in a sequence (or chain) of other nodes failing in a cascade. This frequently arises in real

world systems such as communication networks [88], electrical power grids [89–93], so-

cial and economic systems [94] and complex infrastructural systems [95], which could be

subjected to random or targeted attacks [96–101]. These observations have motivated the

recent surge of interest in understanding the problem of cascading failures in networks.

1.3 Interdependent Networks

Networks rarely exist in isolation in reality and are generally part of larger systems com-

prising several other networks. These networks may also have non-trivial dependencies

amongst each other [102]. A classic example of such interdependence are found in in-

frastructure networks, such as that seen between power and communication networks,
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that is crucial for their overall functioning [103]. Power grids also depend on the effi-

ciency of transportation networks for their smooth operation, the latter themselves being

dependent on the functioning of communication networks [104,105]. Using a percolation

phase transition approach, Buldyrev et al. [102] have shown that, unlike in the case of

isolated networks, the transition in interdependent networks is discontinuous. This makes

the latter more vulnerable to cascading failures in comparison to their isolated counter-

parts [106]. The percolation based approach has been further extended to the case of

more than two interdependent networks [107, 108] and interacting regular lattices [109].

Approaches other than the percolation-based one have been used recently to understand

the collective dynamics of interdependent networks [110, 111].

One of the ways to address interdependence amongst two networks is to have qualita-

tively different types of links connecting members of the different networks, compared to

the nature of the intra-network links. Such inter-network links can be either weighted or

unweighted. For example, if two ecosystems are connected by migration then the depen-

dency links connecting the two networks can be assigned weights that quantify the rate of

migration of different species between their habitats in the two ecosystems. Similar to the

weight matrix representing intra-network interactions J, the weights of the dependency

links connecting the two networks are given by the matrix

D = {Di j}N×N , (1.5)

where the first index i represents the i-th node of one network while the second index

j denotes the node j in the other network. For the case of dependency links existing

only between the corresponding nodes in the two interdependent networks, the weight

matrix D is diagonal. Note that this has been assumed to be the case in most studies of

interdependent networks reported in literature.
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1.4 Financial Markets

Financial markets are one of the paradigmatic examples of complex systems [112–114]

whose complexity arise due to a large number of interacting elements. From the 1990s,

physicists have been actively involved in studying empirical properties of financial mar-

kets [115] that are amenable to tools developed in statistical physics. The contributions

made by physicists towards understanding the behavior of finance markets have some-

times been referred to collectively by the term Econophysics that was introduced in 1995.

The primary aim of this field has been to uncover universal empirical properties that are

valid across different markets. Notable amongst such “stylized facts” reported by physi-

cists are power laws describing the nature of the tails in the distribution of fluctuations

and that of temporal correlations of volatility [116, 117]. This type of universal behavior

has been observed for price & index fluctuations, trading volumes and number of trades.

Similar values have been reported for these exponents for different types and sizes of

markets [118].

Given the price pt of some stock at time t, price fluctuations are characterized in terms of

log returns, viz.,

rt = ln pt − ln pt−∆t, (1.6)

where ∆t is the time-interval separating the two price values. If qi denotes the the number

of stocks traded in the i-th transaction, also known as trade size of the transaction, then

the volume of stocks traded V∆t over an interval [t, t + ∆t] is defined as

Vt,∆t =

Nt,∆t∑
i=1

qi, (1.7)

where Nt,∆t is the number of trades that have occurred during the interval [t, t + ∆t]. The

above relation implies that quantities characterizing a trading event, viz., trade sizes, trad-

ing volumes and number of trades are not independent of each other.
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Although a number of studies have uncovered many of the empirical properties of many

different finance markets, most of these observations have been made using daily closing

prices that ignores the bulk of information concerning intra-day trading [119]. Empir-

ical analysis using high-frequency data have revealed features which are generally not

possible to observe using end of the day trade data. For example, the transactions in-

volved in a stock market never occur at regular intervals implying that the events defining

transactions of a stock could themselves be a stochastic process with a given waiting

time distribution. This has been demonstrated in a number of studies employing high

frequency data of finance markets [120–126]. Motivated by these observations, several

studies have employed continuous time random walks [127] to understand financial time

series [128–130, 133]. Note that several of the studies show that log returns and waiting

times cannot be considered to be independent of each other. This theme has been further

explored in the work reported in this thesis.

1.5 Overview of the thesis

The aim of the present thesis is to contribute towards understanding the nonequilibrium

dynamics of complex systems composed of a large number of interacting dynamical com-

ponents which arise in domains varying from natural to artificial settings. Networks pro-

vide a common framework to address problems related to complex systems and we use

networks of dynamical entities to describe the nonequilibrium dynamics of the systems

considered. In this thesis, we look at the properties emerging from an interplay of topol-

ogy and dynamics by focusing on robustness of the complex system. We use techniques

from statistical physics to address the problems considered in the thesis, e.g., random

walks, first passage times, persistence probability, waiting times, etc. These concepts are

used to understand the diverse problems ranging from the behavior of price fluctuations

to the extinction of species in ecosystems.
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In Chapter 2 we consider the problem of two diffusively coupled dynamical networks

of nonlinear maps. This problem is directly relevant to the occurrence of interdependent

systems in domains ranging from biology to engineering to the society and the economy.

Recent studies have shown that interdependence amongst systems makes the overall sys-

tem of systems more fragile as compared to their individual counterparts. However, these

studies focus only on the structural aspects of the system. A dynamical systems per-

spective is necessary to assess the stability of interdependent systems, which can provide

insights into why interdependent systems are ubiquitous despite their structural fragility.

Motivated by these observations, we investigate dynamics of coupled networks in this

chapter. Our principal finding is that an optimally strong interdependence between net-

works can increase the robustness of the system in terms of its dynamical stability. The

dynamical perspective taken in this chapter produces a view of the role of interdepen-

dence that is in stark contrast to percolation based approaches. We show that the system

has a very high probability of survival for an optimal range of interdependence, with both

networks facing almost certain catastrophic collapse in isolation. This implies that inter-

dependence may be essential in several natural systems for maintaining stability in the

presence of fluctuations.

In Chapter 3 we consider the stability-diversity debate, viz., the question of whether in-

creased complexity makes a system more vulnerable to disturbances arising from small

perturbations in its state variables. While empirical observations appear to suggest that

more diverse systems tend to be more resistant to external interventions theoretical in-

vestigations suggest otherwise. We consider this as a problem of long-term persistence

of a system of dynamically interacting elements, whose individual units may cease ac-

tivity (“go extinct”) as a result of interactions with neighboring elements. We ask under

what conditions a small perturbation in the dynamical variables can result in a cascade

of extinction events propagating through the network. Choosing the interaction weights

amongst elements to vary inversely with their number of neighbors, we find that the long-

term dynamics is similar to the case when interaction strengths are independent of the
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degree. However, the scaling of interactions by node degree makes the transient behavior

(during which most nodes are active) long-lived. Importantly, the duration of the tran-

sient activity increases with the connection density of the network. Hence, when one

observes the networks over shorter time scales one will conclude that dense networks are

more stable in comparison to their sparse counterparts. These results appear to explain

the dominant view in the empirical literature that more complex systems are also more

stable. On the other hand, at very long time scales, more densely connected systems will

have a much lower number of surviving nodes, which is consistent with earlier theoretical

studies suggesting that complexity reduces system stability. Thus our results reported in

this thesis provide a novel resolution to the long-standing debate over the relation between

complexity and stability. We show that the answer essentially depends on the time-scale

at which one is observing the system.

In Chapter 4 we consider the non-equilibrium behavior of financial markets. As already

mentioned earlier these are prototypical examples of complex systems because of the large

number of constituent components exhibiting unpredictable dynamics. Despite such un-

predictability in their detailed behavior, overall statistically regular properties have been

reported for many different markets. Notable amongst them are the inverse cubic law of

distribution for price fluctuation (measured in terms of logarithmic returns). Most earlier

studies have used daily trade data which neglects the intra-day fluctuations. In contrast,

we study the high-frequency(HF) data of price fluctuation for equities listed in the Na-

tional Stock Exchange(NSE) of India in order to uncover robust statistical features. As

the HF data provides information about market movements at the highest possible resolu-

tion it should allow one to make inferences about the nature of the underlying dynamics

of the system.

Using HF data obtained from different periods in which the market operated we show

that the gross statistical properties of the market as a whole are in general stationary

even though those of its constituents, i.e., individual stocks, are not. In particular we
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see that the distribution of transaction sizes (i.e., number of units of stock exchanged in

a single transaction) does not change its nature over time when we are considering the

entire market. However, for individual stocks, this distribution can differ significantly

from one period to the next. We also find that waiting times between transactions of

individual stocks exhibit non-exponential character, and are related to the corresponding

log-returns. Specifically, transactions involving larger returns occur closer to each other.

This implies that the distribution of waiting times and the step lengths of the random

walk executed by a financial asset are not independent of each other, as assumed in many

studies. We also report that the cumulative volatility of returns increases linearly with

time within a day.

We conclude in Chapter 5 with a brief summary and discussions of the implications of

our results.
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Chapter 2

Optimal interdependence enhances the

dynamical robustness of complex

systems

2.1 Introduction

Many complex systems that occur in biological [134], technological [103] and socio-

economic [135] contexts are strongly influenced by the behavior of other systems [136].

Such interdependence can result in perturbations in one system propagating to others, po-

tentially resulting in a cascading avalanche through the network of networks [106, 107].

Recent studies of percolation of failure processes in a system of two [102, 104, 137] or

more [138,139] connected networks have suggested that interdependence makes the entire

system fragile. However, a proper appraisal of the role of interdependence on the stability

of complex systems necessarily needs to take into account the dynamical processes occur-

ring on them [140, 141]. Compared to a purely structural approach (such as percolation,

that considers the effect of removing nodes or links), a dynamical systems perspective

provides a richer framework for assessing the robustness of systems [142, 143]. Indeed,
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investigating how fluctuations from equilibrium in a local region of a complex system

can propagate to other regions forms the basis for addressing the dynamical stability of

systems [87]. Extending this framework to the context of interdependent networks can

potentially offer us insights on why such systems are ubiquitous in the real world in spite

of their structural fragility.

In this chapter we show that strong interdependence between networks can increase the

robustness of the system in terms of its dynamical stability. In particular, we show for

a pair of networks that there exists an optimal range of interdependence which substan-

tially enhances the persistence probability of active nodes. By contrast, decreasing the

inter-network coupling strength so that the networks are effectively independent results in

a catastrophic collapse with extinction of activity in the system almost in its entirety. The

increased persistence at optimal coupling is seen to be related to the appearance of attrac-

tors of the global dynamics comprising disjoint sets of stable activity. Our results also

suggest that the nature of inter-network interactions is a crucial determinant of the role

of interdependence on the dynamical robustness of complex systems. For example, in-

creasing the intensity of nonlinear interactions between nodes leads to loss of stability and

subsequent transition to a quiescent state, while stronger diffusive coupling between the

networks can make a global state corresponding to persistent activity extremely robust.

2.2 Model

Let us consider a model system comprising G interdependent networks. Each network

has N dynamical elements connected to each other through a sparse random topology of

nonlinear interactions. Interdependence is introduced by diffusively coupling an element

i in a network to the corresponding i-th element of other network(s). This framework

can be used to represent, for instance, dispersal across G neighboring habitat patches

of N interacting species in an ecological system. A continuous dynamical variable zµi
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(i = 1, . . . ,N; µ = 1, . . . ,G) is associated with each node of the coupled networks. In the

above-mentioned example, it can be interpreted as the relative mass density of the i-th

species in the µ-th patch. We consider generalized Lotka-Volterra interactions between

the nodes within a network as this is one of the simplest and ubiquitous types of nonlinear

coupling [144, 145]. The dynamical evolution of the system can then be described in

terms of the GN coupled equations:

zµi (n + 1) = (1 − Dqi)F(zµi (n))[1 +

N∑
j=1

Jµi jz
µ
j (n)]

+
Dqi

(G − 1)

G∑
ν,µ

F(zνi (n))[1 +

N∑
j=1

Jνi jz
ν
j(n)]. (2.1)

Here Jµ is the interaction matrix for the µ-th network, D is a measure of the strength of

interdependence via diffusive coupling between networks, and qi = 1 if the i-th species is

diffusively coupled across the different networks, while it is zero otherwise (i = 1, . . . ,N).

The range of the variable zµi is decided by the function F() governing the dynamics of

individual elements in the system. Here we consider F to be a smooth unimodal nonlinear

map defined over a finite support and having an absorbing state. This class of dynamical

systems is quite general and are capable of exhibiting a wide range of behavior including

equilibria, periodic oscillations and chaos [146]. For the results shown here we have used

the logistic form [147]: F(z) = rz(1 − z) if 0 < z < 1, and = 0 otherwise, such that z = 0

is the absorbing state, and r is a nonlinearity parameter that determines the nature of the

dynamics.

Unlike most studies with logistic map where r ∈ [0, 4], we specifically choose r > 4 such

that F() maps a finite subinterval within [0, 1] directly to the absorbing state. Iterative

application of F() implies that only a a set of measure zero will remain in the unit inter-

val [44], resulting in a leaky dynamical system [148]. Thus, an isolated node will almost

always converge to the absorbing state, corresponding to its extinction. Interaction with

other nodes can, however, maintain a node in the active state [z ∈ (0, 1)] indefinitely. We
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define a measure for the global stability of the system as the asymptotic fraction of nodes

in each network that have not reached the absorbing state, viz., factive = Ltn→∞ factive(n),

where factive(n) =
∑N

i=1 Θ[F(zµi (n))]/N (with Θ[x] = 1 for x > 0, and 0 otherwise). Thus,

we explicitly investigate conditions under which interdependence between networks can

result in persistent activity in at least a subset of the nodes comprising the system. Using

an ecological analogy, our focus is on the long-term survival of a finite fraction of the

ecosystem as a function of the degree of dispersal between neighboring patches rather

than the intrinsic stability of individual species populations.

2.3 Results and Discussion

The degree of interdependence between the networks can be varied by changing the num-

ber of pairs of corresponding nodes M (0 ≤ M ≤ N) that are linked via dispersion. The

interaction matrix Jµ in each network is considered to be sparse, such that only a fraction

C of the matrix elements are non-zero with their interaction strengths chosen randomly

from a Normal(0, σ2) distribution. For simplicity, we shall focus on a pair of interde-

pendent networks (i.e., G = 2) schematically shown in Fig. 2.1 (a), both networks being

chosen from the same ensemble so as to have identical parameters r, C and σ. We dis-

tinguish between the variables z of the N nodes in the two networks by denoting them as

xi and yi (i = 1, . . . ,N) respectively, their initial values being chosen at random from the

uniform distribution [0,1].

Fig. 2.1 (b-c) show the time-evolution of the state of the dynamical variables xi and the

global stability measure factive(n) for one of the networks (N = 256, C = 0.1, σ = 0.01)

where the nonlinearity parameters ri are distributed uniformly in [4.0,4.1]. As mentioned

above, this distribution of ri implies that the individual node dynamics would almost cer-

tainly converge to the absorbing state, and this is indeed what is observed when the net-

works are isolated, i.e., D = 0. However, when the interdependence is increased, e.g., to
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Figure 2.1: (a) Schematic diagram representing two interdependent networks, each com-
prising N nodes, that have intra-network directed nonlinear interactions (indicated by
arrows) and inter-network diffusive coupling between M (≤ N) pairs of corresponding
nodes (broken lines). (b) Pseudocolor representation of the spatio-temporal evolution of
dynamical state xi for each node i in one of the networks at two different values of the
inter-network diffusive coupling strength, viz., (top) D = 0.1 and (bottom) D = 0.15, with
black representing the absorbing state xi = 0, i.e., extinction of activity. Increased inter-
dependence between the networks allows more nodes to maintain persistent activity, i.e.,
x , 0. Increasing D further can result in a decrease in the fraction of active nodes factive

with time as seen in (c), indicating that long-term persistent activity occurs only within
an optimal range of interdependence. (d) Increasing intra-network interactions either in
terms of the connection density (C) or their strength (σ) for a given inter-network diffu-
sive coupling strength (e.g., D = 0.15), results in a decrease in the fraction factive of nodes
with persistent activity. Similar decrease is also observed on increasing the range of the
nonlinearity parameter r. However, increasing the number of corresponding node pairs
M in the two networks that are coupled diffusively is seen to increase factive, pointing to
a fundamental distinction between intra- and inter-network interactions in their contribu-
tion to the overall dynamical robustness of the system. Results shown here are obtained
for N = 256, C = 0.1,C′ = 0.3, σ = 0.01, σ′ = 0.05, r ∈ [4.0, 4.1], r′ ∈ [4.1, 4.2] and
averaged over 100 realizations.
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D = 0.15, we observe that a finite fraction of nodes persist in the active state, although

for much lower (e.g., D = 0.1) and higher (e.g., D = 0.2) interdependence the system ex-

hibits complete extinction of activity [Fig. 2.1(b-c)]. Thus an optimal diffusive coupling

between corresponding nodes in the two networks enhances the global stability of the sys-

tem. This suggests, for instance, that ecological niches which in isolation are vulnerable

to systemic collapse resulting in mass extinction, can retain species diversity if connected

to neighboring habitats through species dispersal. Indeed, for this to happen, it is not even

required that all species in the network be capable of moving between the different habi-

tats. As seen from Fig. 2.1 (d), if only a subset of M nodes (out of N) are coupled between

the two networks through diffusion, the system exhibits enhanced persistence with factive

increasing with M. However, enhancing the intensity of nonlinear interactions within

each network by increasing either their connectivity C or range of interaction strengths

(measured by the dispersion σ), as well as, amplifying the intrinsic nonlinear dynamics of

the nodes by increasing the range of r, decreases the survival probability of active nodes.

This is also evident from the variation with C and σ of the probability that a node persists

in the active state asymptotically [Fig. 2.2 (a-b)] and is in agreement with earlier studies

of global stability of independent networks [145, 149].

Fig. 2.2 (c) shows in detail the contrasting contribution of intra- and inter-network inter-

actions to the robustness of the network in terms of maintaining persistent activity. The

probability that a node persists in the active state asymptotically is seen to vary non-

monotonically with increasing interdependence D between the networks at different val-

ues of the parameters C, σ and r that determine intra-network dynamics. For reference

let us focus on the curve for C = 0.1, σ = 0.01 and r ∈ [4.0, 4.1] [shown using circles in

(c)]. We observe that when diffusion is either too low (D < 0.09) or high (D > 0.2) all

activity in the network ceases within the duration of simulation. However, for the inter-

mediate range of values of D, activity continues in at least a part of the network with the

persistence probability reaching a peak around D ' 0.16. Varying the other parameters,

such as network connectivity C, intra-network interaction strength σ or the nonlinearity
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Figure 2.2: (a-c) Probability that nodal activity persists for longer than the duration of
simulation P(τ > T ) for an interdependent system of two networks decreases monoton-
ically with increasing connection density C (a) and dispersion of interaction strengths σ
(b) as shown for three different values of inter-network coupling strength D [indicated by
same symbols in (a) and (b)]. (c) shows that the probability of persistent nodal activity
has a non-monotonic dependence on D but decreases with increasing C, σ and r. Each
of the networks comprise N = 256 nodes. Parameter values used are C = 0.1, σ = 0.01,
r ∈ [4.0, 4.1], C′ = 0.3, σ′ = 0.05, and r′ ∈ [4.1, 4.2]. (d) Probability of persistent activity
in a system of two diffusively coupled elements (N = 1) whose nonlinearity parameters
fluctuate about r0 due to a noise of strength ε. Non-monotonic dependence on coupling
strength D is seen, similar to that for the large networks shown in (a). Parameter values
are r0 = 4.05, ε = 0.005, r0

′ = 4.2 and ε′ = 0.01. For all panels, simulation duration is
T = 5 × 104 itrns and results shown are averaged over 100 realizations.
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parameter r, has a simpler outcome, viz., a decrease in the probability that activity will

persist in the network at long times. This is shown by the other curves where we increase

in turn C (triangles), σ (squares) and r (diamonds). Thus, our results indicate that there

exists an attractor corresponding to persistent activity in the network for an optimal range

of interdependence (in the neighborhood of D = 0.15) which coexists with the attrac-

tor corresponding to the extinction of network activity, relatively independent of other

parameters.

To understand this in detail, we first note that even when N = 1, this much simpler system

of two diffusively coupled elements exhibits qualitatively similar features when subjected

to noise [Fig. 2.2 (d)]. The multiplicative noise of strength ε in the nonlinearity parameter,

viz., r = r0(1 + εη), where η is a Gaussian random process with zero mean and unit

variance, is introduced in lieu of the perturbations that each map will feel when connected

to a much larger network through nonlinear interactions (Eq. 2.1). The choice of Gaussian

noise is motivated by the strength of intra-network interactions, Ji j, being drawn from

a normal distribution of zero mean and a finite variance. Moreover, if we focus on a

single time-evolution step, the perturbations arising from intra-network interactions can

be approximated by Gaussian distributed random variables for large networks by using the

Central Limit Theorem. Subsequent evolution of the network may introduce correlations

among the perturbations arising from the interactions which will not be accounted for in

this Gaussian noise approximation. As in the case of the network, we choose r0 > 4 so

that an isolated node will almost always converge to the absorbing state, resulting in its

extinction. Upon coupling two nodes, however, we observe that the probability of long-

term survival of activity in the system becomes finite at an intermediate range of diffusive

coupling strength (around D = 0.15), similar to that observed for a N = 256 network in

Fig. 2.2 (c). Thus, understanding the genesis of diffusion-induced persistence for a pair

of coupled logistic maps subject to noise [150], may provide an explanation for the same

phenomenon observed in the system of interdependent networks described earlier.
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The evolution equation for each node in the coupled system comprises two terms, the

first representing the intrinsic dynamics of the node with the nonlinearity parameter r

effectively reduced by a factor of (1 − D) and the second being the contribution from

the other node diffusively coupled to it. Note that the system converges to the absorbing

state if the sum of the two terms exceeds 1. A lower bound for the range of D where

persistence can occur is obtained by observing that in a persistent system the effective

parameter governing the intrinsic dynamics has to necessarily be lower than 4, implying

that Dc1 = 1− (4/r). The upper bound for persistence is obtained by noting that when D >

Dc2 = (1− (1/r))/2, the dynamics of the two nodes become synchronized asymptotically,

effectively making them identical to the uncoupled node that almost surely converges to

the absorbing state. In the regime Dc1 < D < Dc2, persistence results from out-of-phase

oscillations of the two nodes, each alternately visiting disjoint intervals in (0, 1) such

that the sum of the terms in their evolution equations never exceeds 1. Thus, regions

in the (0, 1) × (0, 1) domain giving rise to in-phase oscillation converge to the absorbing

state (extinction), while the ones mapping to out-of-phase solution persist, resulting in

a complex basin of attraction for the persistent activity state of the system as shown in

Fig. 2.3. It shows the regions in the phase space I2 : (0, 1) × (0, 1) of the system of two

diffusively coupled nodes, that correspond to initial states which move out of I2 and into

the absorbing state as a result of the dynamics. When the nodes are isolated (D = 0),

successive iterations result in these regions increasing in size and eventually taking over

the entire domain so that extinction will always happen. Similar behavior is seen for

weak coupling (e.g., D = 0.02) although the shape of the regions are now modulated as

a result of the interaction between the two maps. For high values of coupling also (e.g.,

D = 0.3) we observe the total extinction of activity in the asymptotic limit. However,

for an intermediate value of coupling (D = 0.16), the complement region defined by

trajectories starting from anywhere inside it remaining within I2, retains a finite measure

even at long times, thereby ensuring persistence of activity. Introducing multiplicative

noise in the dynamics does not significantly change the structure of the basins shown in
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Figure 2.3: Time-evolution of a system of two diffusively coupled logistic maps having
r > 4, showing (in black) the regions of phase space I2 : (0, 1) × (0, 1) that correspond to
initial states which lead to trajectories moving out of the I2 domain resulting in extinction
of activity after n = 1 (1st column), = 2 (2nd column), = 3 (3rd column) and = 2000
iterations (4th column) in both the maps. As each map has a segment projecting out of
I2, repeated iteration of the system when the maps are isolated (D = 0) would eventually
drive almost all initial states to extinction (a-d). The same behavior is also observed
for a low degree of diffusive coupling (D = 0.005, e-h), although the regions are now
modulated because of the coupling with the dynamics of the other map. For a stronger
diffusive coupling (D = 0.16) there is a finite region of phase space that remains within
I2 even after a large number of iterations which corresponds to the basin for the attractor
exhibiting persistent activity (i-j). Further increase in the coupling strength (e.g., D = 0.3)
again results in extinction of activity for almost the entire phase space (m-p).
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Fig. 2.3 for low values of the noise strength ε.

To understand the above results we represent the dynamics of the system as xn+1 = (1 −

D)F(xn) + DF(yn), yn+1 = (1 − D)F(yn) + DF(xn), where x, y are dynamical variables

and F(x) = rx(1 − x). The first term of each evolution equation can be interpreted as a

logistic map with growth rate (1 − D)r while the second term represents a contribution

from the other map that is diffusively coupled to it. If the sum of the two terms exceed

1 for any of x, y, the corresponding variable goes to the absorbing state. In the weak

coupling limit of low D where the first term dominates, it follows that if the effective

growth rate (1 − D)r exceeds 4, the system will exit the unit interval almost surely. Thus

a lower bound for the range of D in which persistence can be observed is obtained by

ensuring that D > Dc1 = 1 − (4/r). For example, for r = 4.1, Dc1 ' 0.024. The

upper bound of D for persistence is obtained by observing that when the two coupled

maps synchronize their activity upon strong coupling, the dynamics reduces to that of

an effective 1-dimensional map with r > 4 whose trajectories will eventually exit the

unit interval with probability 1. Whether synchronization occurs can be investigated by

looking at the dynamics of the difference of the two variables, δ = y − x, viz., δn+1 =

r(1 − 2D)δn[1 − (xn + yn)]. If D > Dc2 = (1/2)(1 − (1/r)), e.g., Dc2 ' 0.37 for r = 4.1,

the difference goes to zero asymptotically resulting in synchronization of the two maps

and convergence to the absorbing state. Thus, the system has a possibility of persistence

only in the intermediate range Dc1 < D < Dc2. In this region, where the individual

maps exhibit periodic attractors, persistence can arise through out-of-phase oscillations

in the two maps, each alternately visiting two disjoint intervals in (0,1) such that the

sum of terms never exceed 1. Thus, regions of (0, 1) × (0, 1) domain which yield the

in-phase solution lead to the absorbing state (extinction), while those giving rise to the

out-of-phase solution lead to persistence, resulting in a complex basin of attraction for the

persistent activity state [shown in Fig. 2.3 (i-l)]. To show that such stable out-of-phase

period-2 solutions exist for an optimal range of D, we can solve the coupled equations

x∗1,2 = (1 − D)F(x∗2,1) + DF(x∗1,2), and check for stability, thereby obtaining an implicit
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equation involving the parameters r and D for which 0 < x∗1, x
∗
2 < 1. For specific choices

of r and D, we can numerically verify that these solutions are stable, thereby providing

confirmatory evidence of the proposed mechanism by which an optimal coupling induces

persistence.

The bifurcation diagrams shown in Fig. 2.4 (a-c) indicate how the range of diffusive cou-

pling strengths over which persistent activity is observed changes as we move from the

simple case of two coupled maps (N = 1) to interdependent networks (N � 1). As al-

ready discussed, diffusively coupling two logistic maps having r > 4 allow their states to

remain in the unit interval (corresponding to the nodes being active) provided the strength

of coupling D remains within an optimal range [Fig. 2.4(a)]. Note that within this range

there exists a region, approximately between (0.11,0.18), in which the attractor of the

dynamical state of the node occupies a much smaller region of the available phase space

I : (0, 1). It is intuitively clear that for such values of D, introducing noise is much less

likely to result in the system dynamics going outside the unit interval (thereby making

the node inactive). If we now introduce multiplicative noise of low intensity (i.e., small

ε), the range of D over which persistent activity occurs shrinks [Fig. 2.4(b)]. However,

noise does not completely alter the nature of the system dynamics even though the the

bifurcation structure is now less crisp. The system appears to be particularly robust in the

region referred to earlier where the attractor covers only a small volume of the unit inter-

val. We can compare this case with that of two interdependent networks, each comprising

a large number of nodes [Fig. 2.4(c)] where the intra-network interactions are considered

effectively to be ‘noise’. We observe a reasonable similarity between their bifurcation

structures, with the region of persistent activity spanning approximately the same range

of D. As in the case of coupled maps with noise, in the case of networks also the system is

most robust in the region where the attractor for the unperturbed system of two diffusively

coupled maps is confined within a small subinterval inside I × I. The validity of consid-

ering the dynamics of coupled nodes embedded within a network as equivalent to the pair

being perturbed by an effective noise is further established by the strong resemblance be-
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Figure 2.4: Bifurcation diagrams showing the attractor of the dynamical state x of a rep-
resentative element as a function of the diffusive coupling strength between (a-b) two
maps and (c) two networks each comprising N = 256 nodes. (a-b) The range of D over
which there is long-term persistence of activity in two coupled maps for r = 4.0025
(a) is reduced when multiplicative noise of strength ε = 0.0125 is introduced (b). The
bifurcation structure resembles that of coupled networks shown in (c) for M = 24,
C = 0.1, σ = 0.01, r ∈ [4.0, 4.1]. The contribution of intra-network interactions is
qualitatively similar to multiplicative noise, resulting in a similar range of D for which
persistence is observed in (b) and (c). (d-e) This similarity is reinforced by comparing the
return maps (upper panels) and time-series (lower panels) of the asymptotic dynamical
states for (d) two coupled maps with noise [as in (b)] and (e) two networks [as in (c)]
for D = 0.15. The broken curve in panel (d) represents the return map of an uncoupled
logistic map for r = 4.0025 shown for comparison.
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tween the return maps and time-series for the two cases [Fig. 2.4(d-e)]. As mentioned

earlier, to survive indefinitely the dynamical state of each map switches alternately be-

tween two disjoint intervals of the unit interval in an out-of-phase arrangement [see the

time-series in the lower panels of Fig. 2.4(d-e)], corresponding to a trajectory that jumps

between two “islands” of the basin for the attractor corresponding to persistent activity in

the coupled system.

The above analysis, apart from explaining why populations that go extinct rapidly in iso-

lation will survive for long times upon being coupled optimally, also helps us understand

how the persistence behavior in the system will be affected by increasing the number

of interacting components. As can be observed from Eq. (2.1), increasing N keeping

C, σ unchanged corresponds to the summation in the interaction term being performed

over more components. This suggests that there will be stronger fluctuations, that can

be interpreted as a larger effective noise applied to the individual elements resulting in a

higher probability of reaching the absorbing state and thereby lowering the survival frac-

tion factive. We have confirmed this through explicit numerical calculations in which N

is systematically increased. To ensure that the results reported here are not sensitively

dependent on the specific details of the model that we have considered here, we have

also carried out simulations with (i) different forms of unimodal nonlinear maps, e.g.,

F(x) = (x − l)er(1−x) for x > l; 0 otherwise [151], and (ii) different types of connec-

tion topologies for the initial network, e.g., those with small-world properties [71,152] or

having scale-free degree distribution [153]. We find in all such cases that the qualitative

features reported here are unchanged, with the network connecting the surviving nodes

becoming homogeneous asymptotically irrespective of the nature of the initial topology,

suggesting that the enhanced persistence of activity in optimally interdependent networks

is a generic property.

Finally, Fig. 2.5 shows that when a non-zero mean µ for the distribution of intra-network

interaction strengths Ji j is used, the optimal range of inter-network coupling D in which
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Figure 2.5: The optimal range of inter-network coupling strengths D where the asymptotic
fraction of active nodes factive is finite remains almost same when the interaction strengths
Ji j are chosen from a Normal(µ, σ2) distribution with different values of the mean µ.
Curves representing µ = −0.001, = 0 and 0.001 are shown here, which correspond to
the number of positive interactions in the network are relatively fewer, equal to and more
than the number of negative interactions in the network, respectively. Results shown here
are obtained for N = 128, C = 0.1, σ = 0.01, r ∈ [4.0, 4.1] and averaged over 100
realizations.
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nodal activity is persistent remains qualitatively unchanged. Note that the absolute value

of the mean µ cannot be chosen to be arbitrarily high as that will result in most dynamical

trajectories being rapidly ejected outside the unit interval on which the map F() is defined,

resulting in extinction of activity in the entire network. We note that as µ is increased from

negative to positive values the peak of factive is seen to shift to a relatively higher value of

inter-network coupling D.

2.4 Conclusions

To conclude, we have investigated the role of interdependence between constituent net-

works on the stability of the entire system in a dynamical framework. Unlike percolation-

based approaches where failure is often identified exclusively with breakdown of connec-

tivity so that increasing interdependence necessarily enhances fragility [106], our dynam-

ical perspective leads to a strikingly different conclusion. In particular, we show that the

system has a much higher likelihood of survival for an optimal interdependence, with both

networks facing almost certain catastrophic collapse in isolation. Such enhancement of

persistence of activity in a critical range of coupling is analogous to the promotion of syn-

chronization among self-propelled agents for an optimal interaction strength [154]. Our

results suggest that interdependence may be essential in several natural systems for main-

taining diversity in the presence of fluctuations that are potentially destabilizing. Thus,

interdependence need not always have negative repercussions. Instead its impact may de-

pend strongly on the context, e.g., the nature of coupling and the type of dynamics being

considered.
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Chapter 3

Resolving the complexity-stability

debate: A matter of time-scales

3.1 Introduction

Empirical studies of ecological networks suggest that the network has many more weak

links corresponding to low-intensity interactions compared to stronger ones [155, 157].

Indeed, theoretical arguments suggest that the preponderance of weak links stabilize the

system to perturbations [158]. It has also been argued that systems having many con-

nections can be stable if most of these links are weak [87]. This suggests that a node

with many connections would tend to have weaker interactions on average with each of

its network neighbors compared to one having fewer links [see schematic in Fig. 3.1 (a)].

Empirical evidence for this is harder to obtain as interaction strengths are often difficult

to measure [160]. However, using trophic flow1 as a measure of the strength of a link, it

is possible to see a reciprocal relation between the number of incoming links of a node

and the average value of its interaction strengths [Fig. 3.1 (b)]. It suggests that a plausible

1Trophic flow is the transfer of energy between successive levels of a food web as a result of members
of a predator species consuming members of its prey species.
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mechanism for systems to retain stability while being densely connected is to scale their

interaction strength by their degree.

In this chapter we present the striking dynamical consequences when the interaction

strengths of nodes in a network are scaled by the number of their connections. For sim-

plicity we have considered the situation where the link weights Ji j of a node i are simply

reduced proportional to the total number of incoming links ki, i.e., Ji j → Ji j/ki, although

more complex functions can be envisaged. First we show that in the asymptotic limit,

the scaling by degree does not result in a situation different from that seen in the absence

of such scaling, unlike what one may expect from a linear stability argument. This is be-

cause as a result of the dynamical evolution, the conditions required for the linear stability

argument to be valid are quickly deviated from. Thus, even with degree scaling densely

connected networks would tend to have a lower global stability than sparsely connected

ones. However, surprisingly, we find that scaling significantly delays the convergence to

this asymptotic state for densely connected systems. This transient regime is marked by

a much higher number of surviving nodes and thus, when observed at short time scales,

one will observe that systems with higher connection density will have more surviving

nodes than those having lower connection density (which would have already converged

to their asymptotic state). If the system is retained in a non-equilibrium state by being

driven through a steady rate of addition of new nodes, one can further extend the transient

regime. As in nature, evolving systems are likely to be constantly augmented with newly

arriving constituents, we propose this scenario as a plausible mechanism by which the

stability-diversity debate for complex systems can be resolved.

3.2 Model

Let us consider a model system comprising N dynamical elements connected to each other

through nonlinear interactions having a sparse random topology. The state of the system
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at any time n is described by x(n)={x1(n), x2(n), . . . , xN(n)} where xi is a continuous

dynamical variable associated with node i (i = 1, ...,N). In an ecological context it can

be interpreted as the relative mass density of the i-th species in a food-web comprising

N interacting species. We consider generalized Lotka-Volterra interactions between the

nodes as, apart from its interpretation in terms of predator-prey relations, this is one of

the simplest and ubiquitous nonlinear coupling forms between dynamical elements. The

time-evolution of the states of the nodes are described in terms of N coupled equations:

xi(n + 1) = f [xi(n)(1 +
∑

j

(Ji j/kαi (n))x j(n))], (3.1)

where the sign of the coupling strength Ji j determines the nature of, and its magnitude de-

cides the intensity of the effect of interaction with node j on i (in general, Ji j , J ji). Note

that the link weights Ji j are reduced proportional to the “active” in-degree of a node, i.e.,

the number of incoming links from neighbors which are active at time n. We have chosen

non-zero elements of J from a Normal(0, σ2) distribution where the standard deviation σ

of the interaction strengths is a system parameter that is varied in different simulations. If

the topology of the network is sparse, the connection density of the system is specified by

the fraction C of non-zero elements of J (for simplicity we assume that the corresponding

adjacency matrix is symmetric, i.e., Ji j = 0 =⇒ J ji = 0). The range of values over which

x varies depends on the function f () that governs the dynamics of individual nodes. We

have chosen the nonlinear map f (x) = x exp[r(1 − x)], x > 0 and 0 otherwise, such that

x = 0 is the absorbing state and r is the nonlinearity parameter by varying which the map

is capable of exhibiting a wide range of behavior including equilibria, periodic oscilla-

tions and chaos [151]. In the work reported here the range of r used is such that nodes do

not reach the absorbing state in the absence of coupling as we are primarily interested in

the instability generated by interactions over the network.

The global stability of the system can be characterized by the asymptotic fraction f∞active of

nodes in the network that have not reached the absorbing state, viz., f∞active = Ltn→∞ factive(n),
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where factive(n) =
∑

i Θ[xi(n)]/N (with Θ[x] = 1 for x > 0 and 0 otherwise). The depen-

dence of the strength of interactions Ji j ( j = 1, . . . ,N) of a node i on its degree ki (i.e.,

the number of other nodes it is connected to at time n) is quantified by the parameter

α ≥ 0, as kαi is the factor by which each of the interaction strengths of node i are scaled

in our model. Note that the global stability of networks of nonlinear maps have been in-

vestigated earlier (e.g., Ref. [149]) for the special case of α = 0 which correspond to the

connection strengths of the nodes being independent of their degree. As we show below,

if the effective interaction strength of nodes reduces with their degree (i.e., α > 0), the

convergence time required to reach the steady state may become extremely long and the

system properties show novel features in this extended transient period.

3.3 Results and Discussion

Initial values of the dynamical variables x of all N nodes are chosen randomly from a

uniform distribution over [0, 1]. On beginning the time-evolution of the system, some of

the nodes will reach the absorbing state because of interactions with other nodes. As a

result the fraction of active nodes factive decreases with time eventually attaining a steady

state f∞active whose value depends on the parameters N, C, σ and r. As nodes reach the

absorbing state, they no longer take part in the collective dynamics, effectively removing

them from the network. This results in a reduction in the number of interactions of the

remaining nodes which are now therefore more likely to persist in the active state. The

simulations are carried out for upto 104 iterations beyond which the probability of any

more nodes reaching the absorbing state becomes extremely small.

Fig. 3.1 (b-e) shows the dependence of the asymptotic fraction of persistent nodes f∞active

on the different system parameters. The steady-state results broadly agree with the im-

plications of the May-Wigner stability theorem 2, as has been shown earlier for the case

2The May-Wigner Theorem is a statement about the linear stability of a dynamical system on a random
network, expressed as a function of the number of network nodes (N), the connection density (C) and the
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Figure 3.1: (a) Schematic diagram (left) indicating that high in-degree node (i) tends to
have weaker interactions (link strength represented by edge thickness) compared to one
with low in-degree ( j) as suggested by empirical data, e.g., from trophic exchange net-
work reconstructed for South Florida ecosystems during dry season (right) [159]. The
interaction strengths of species having k prey species as measured by their mean trophic
flow gets progressively weaker with number of interactions (k). Results of incorporating
degree-dependent scaling of interaction strengths in a dynamical model of N interacting
nodes are shown in (b-e). The variation of the fraction of nodes factive in the network
which have persistent activity in the steady state is compared between when the interac-
tions are scaled by their in-degree with scaling index α = 1 (circles) and in the absence
of such scaling, i.e., α = 0 (squares). The global stability of the networks as measured by
factive is seen to decrease with increasing number of nodes N (b) and connection density C
(c), independent of the scaling index. Increasing the dispersion of interaction strengths σ
(d) and the nonlinearity parameter r (e) also result in a similar decreasing trend in factive,
even though scaling the interaction strength by degree allows the decline in global stabil-
ity to occur at larger values of σ and r. (f) The asymptotic distribution of the interaction
strengths Ji j of a node conditioned on its degree k shows that as it becomes more con-
nected, a node has a higher probability of having negative interaction strengths which
makes it more likely to reach the absorbing state (extinction of activity). (g) explicitly
shows that scaling the interaction strengths by the degree of each node (α = 1) allows
nodes with strong negative interactions to continue to be active in contrast to the situation
where such scaling is absent (α = 0). Results shown here are obtained for N = 500,
C = 0.1, σ = 2,r = 4 and α = 1.
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where the interaction strengths are independent of degree, i.e., α = 0 [149]. Although

introducing degree dependence in the interaction strengths, viz., by using α = 1, does

not seem to produce a noticeable difference in the number of active nodes persisting in

the long term, we observe that the steady-state network structure in this case is altered.

In particular, the distribution of connection weights Ji j for nodes having specific degree

ki for the two cases are clearly distinct, with strongly negative weights being more likely

to be retained in nodes having many interactions when α = 1 (Fig. 3.1, f). By contrast,

for α = 0, having negative coupling to other nodes is more likely to drive a node to the

absorbing states so that the active nodes have a low probability of possessing such links

irrespective of degree (Fig. 3.1, g).

Note that the qualitatively similar global stability properties of the system for α = 0 and

α = 1 indicate that the effect of degree dependence of connection strengths cannot be

simply approximated as the scaling of the dispersion σ of Ji j by the mean degree of the

system raised to the power α. A naive application of the Wigner-May stability theorem

would then have suggested that for α > 1/2, networks having higher average degree

will have more nodes persisting in the active state asymptotically than networks having

lower average degree. Indeed such a trivial resolution of the complexity-stability debate

has been proposed earlier [156]. However, such a simplistic argument does not take into

account the time-evolution of the degrees of each of the nodes that radically alters the

tenor of the argument. The crucial point to note here is that for α > 0, P(
∑N

j=1 Ji jx j <

−1) which determines the probability that a node will evolve to the absorbing state will

increase faster for nodes having low degree compared to those having higher degree,

which will result in a lower number of extinctions before the asymptotic state is reached

(as explained below for α = 1).

The most significant effect of introducing degree dependence is seen not in the asymptotic

variance of the interaction strengths distribution (σ). Describing the population dynamics of the species
comprising an ecosystem in terms of a coupled system of differential equations, if we assume that the
network of interactions between the species is unstructured, then the theorem says that an equilibrium of
the system will be almost certainly stable if the condition NCσ2 < 1 holds.
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Figure 3.2: (a) Scaling of the interaction strengths of a node i by its degree ki (α = 1)
results in a significantly longer transient period during which the fraction of active nodes
factive remains much higher than in the asymptotic state. For weaker scaling (e.g.,

√
ki,

i.e., α = 0.5) or in the absence of any scaling (α = 0), factive converges rapidly to its
asymptotic value. Results shown for N = 500, C = 0.1, σ = 1.5 and r = 4. (b-c)
The mean duration 〈τh〉 for which the system is in the transient regime characterized by
high factive increases with the connection density C and decreases with the dispersion of
the interaction strengths σ (α = 1, averaging done over 1000 realizations). (d-e) The
distribution of the interaction terms governing the dynamics of individual nodes i, viz.,
Σ jJi jx j/ki, is shown for the initial period (d, n = 1-10 itrns) and in the asymptotic state
(e) for different values of C and σ [color code same as in (f)]. The broken vertical line at
−1 represents the critical value below which activity in a node cannot survive. Systems
having larger C or a smaller σ exhibit lower dispersion initially with a resulting reduced
probability of extinction of activity in a node. In the asymptotic state where there are no
further extinction events the distributions for all systems will converge. (f) The probability
that a node will survive for a specific duration n, Psurv(n) decreases at different rates with
time depending on C and σ. The reduced extinction probability for higher C or lower
σ [shown in (d)] results in a slower rate of decline in Psurv as shown. Results shown for
N = 500, C = 0.1 < C′ = 0.2, σ = 2 < σ′ = 2.25 and r = 4.
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behavior of the system 3.1 (which as seen from Fig. 3.1 is qualitatively similar to α = 0)

but in the properties exhibited by it in the transient period before the steady state is reached

(Fig. 3.2). The most striking feature we observe is that systems characterized by α > 0

will continue in states corresponding to high values of factive for longer periods and with

increased α this effect is more pronounced. Thus, when observed at times longer than

the scales at which systems with no degree-dependence have reached the asymptotic state

corresponding to low values of factive but shorter than the time required for the degree-

dependent system to reach its steady state, one may conclude that systems with higher

connection density have higher global stability. The dependence of the transient period

of factive vs n is clearly evident from Fig. 3.1(a). The duration of the period the system

(3.1) is in the transient regime characterized by high factive is measured by the half-life

τh, i.e., the time upto which factive > 0.5. Its mean value for α = 1 is seen to increase

with higher connection density C and lower dispersion σ2 of the interaction strengths

(Fig. 3.2, b-c). To understand the results, we compare the initial and final distributions

of the interaction term P(
∑

j Ji j/ki) in parts (d-e) of Fig. 3.2. A given node i goes extinct

when the interaction term
∑

j Ji j/ki, executing a random walk depending on the dynamics

of neighboring nodes j crosses the boundary at −1. Now, for higher connection density

C, the distribution of step lengths of the random walk (which is equal to Ji jx j/ki) has less

spread as compared to for a lower value of C((d) of Fig. 3.2). As a result, depending

on the connection density, the probability of the random walk of the interaction term to

survive on the right of the boundary at −1 is higher for higher C (and a lower σ), thus

explaining the observed difference in the length of the transients (Fig. 3.2 (f)). For the

same number of surviving nodes, the network for α = 1 is more connected on average

than for α = 0. As a result the number of surviving nodes is the same – the more densely

connected network feels the same magnitude of perturbation at higher degree as felt by

the relatively sparser network at α = 0 which has lower average degree.

Let us consider how the interaction term
∑

j Ji jx j/ki is affected by the connection density

C by considering two different values of the latter, viz., C1 and C2 (< C1). Note that the
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numerator contains a sum of terms that are equally likely to be positive and negative, and

therefore is close to zero with a very high probability. Thus the term
∑

j Ji jx j/ki is effec-

tively smaller for C1 compared to C2 in the transient period. This makes the transients

long lived as the interaction term approaches the absorbing boundary slower for C1 com-

pared to C2. In the long-time limit, the number of surviving nodes is much less than N

because of extinctions that occur when the state variable x of any of the nodes reaches the

corresponding absorbing state x = 0. The number of surviving nodes in the asymptotic

limit is lower for C1 than C2 because for same value of interaction strength dispersion

σ, a node in the sparser network will feel less perturbation effectively than a node in the

denser network, even when nominally they have the same distribution of interactions, cf.,

numerical calculations shown in Fig. 3.2 (d and e).

Before we proceed on to the effect of addition of new nodes to the dynamical properties

of the system following (3.1), let us discuss the role played by the parameter α on the

transient and steady state properties. We have seen from Fig. 3.1 and 3.2 that α plays

a decisive role in governing the transient properties, but becomes almost irrelevant in

the long-time limit. This is because in the initial periods of evolution, α = 1 scales the

weights Ji j by a factor ki, significantly reducing the effective perturbation felt by the node

i, when compared with α = 0. Thus, making the transients long lived for α = 1. However,

due to the removal of nodes with time, the reducing degree ki tends to diminish the effect

of division by the degree, resulting in the dynamical properties of the system becoming

independent of α in the long-time limit.

The transient properties are particularly interesting in the context of ecosystems, which we

know never reach a steady state due to constant removal and addition of new species. Such

long-lived transients have always been a source of discrepancy between the predictions

made by theoretical models and field experiments. Motivated by these observations, we

next study the effect of addition of new nodes at constant rates, with particular attention

on the transient properties of the system.
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Figure 3.3: (a) Schematic diagram representing network evolution. The initial network
of active nodes (t = t1) reduces through extinction of activity in nodes (black node, at
t = t2) but also increase through occasional arrival of new nodes that connect to a subset
of existing active nodes (blue node, at t = t3). (b-c) Increasing the rate of arrival of new
nodes, λ, can increase the duration for which the network remains in the transient regime
characterized by high factive (b) as indicated by the distributions of τh for different values
of λ (c). (d-e) Compared to the deterministic situation (ε = 0), the system can converge
to the asymptotic state characterized by low factive more quickly when the node dynamics
are subject to noise (ε > 0) resulting from the nonlinearity parameter fluctuating about
a mean value r. Increasing the noise strength ε results in reduction of the duration of
the transient regime, but as in the deterministic case (b-c), arrival of new nodes at a rate
λ [= 0.02, (e)] allows the system to retain a higher fraction of active nodes for longer.
Results shown for N = 500, C = 0.2, σ = 1.5, r = 4 and α = 1.
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Finally, in Fig. 3.3 we discuss the effect of addition of new nodes to the dynamical system

following Eqn. (3.1). Panel (a) of the figure shows the schematic diagram depicting the

extinction of a given node followed by the addition of a node connecting to two surviving

nodes. We see from the variation of factive with n [Fig. 3.3 (b)] that the transients increase

with increasing rate of addition λ, which is the parameter of the exponentially distributed

intervals of inter-addition times. This is also confirmed by the distribution of transient

times τh [see panel (c)], where we see that with increasing λ the distribution shifts towards

the right. In Fig. 3.3 (d-e) we study the effect of randomness in the growth parameter, i.e.,

r → r(1 + εη), with η ∼ N(0, 1) and ε the noise strength. Such a randomness arises due to

environmental fluctuations in an ecosystem. We see that for a given value of r, increasing

magnitude of fluctuations ε results in a rapid decay of factive with n. In addition, similar

to the case of a deterministic r, we see from (e) that adding new nodes to the system at

a rate λ results in an increase in the transient periods, even in the presence of random

fluctuations in the nonlinearity parameter r.

The primary implication is about the transient properties of the system. How does the

length of the transient depend on structural parameters of the network, viz., connection

density and interaction strengths, and the nature of the dynamics of the elements. Empir-

ical investigation of ecosystems suggest that species with many connections tend to have

weaker interactions than those having fewer connections [161]. Our model takes this into

account by assuming a scaling of interaction strength with the node degree. This appar-

ently simple relation leads to strikingly different behavior in terms of global stability of

the system in the short-term. In particular, when observed in the transient state (which

can persist for significantly long durations, depending on network parameters) more con-

nected systems would have a much higher fraction of surviving nodes and thus presum-

ably have higher global stability. This appears to run counter to the May-Wigner result

that more connected systems would be less stable. It is only in the asymptotic limit, when

the system has reached an equilibrium that the results are consistent with that of May.

Thus, it appears that the apparent conflict between empirical observations and theoretical
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results in the stability vs diversity debate can be simply reconciled as either viewpoint can

be validated depending on the time-scale at which the complex system is being observed.

When observed over short durations, systems that are far from equilibrium would appear

to exhibit a positive relation between connectivity and stability (agreeing with the empiri-

cal literature). On the very long-term however as the systems converge to their asymptotic

states, more connected systems would collapse to a much smaller set of surviving nodes

compared to less connected ones (consistent with the theoretical position). Furthermore,

as any real system would be continually perturbed and kept far from equilibrium, it may

persist indefinitely in the transient state corresponding to high connectivity being posi-

tively related to high stability.

While our model is deterministic, real ecosystems are of course buffeted by noise at all

times. The effect of environmental changes has been accounted for to an extent in our

model by introducing stochastic fluctuations in the dynamical parameter governing the

growth rates of individual nodes. However, even in the presence of such random pertur-

bations, the qualitative aspects of the deterministic model are preserved underlining their

robustness.

In the non-equilibrium situation the network is subject to a steady rate of newly arriv-

ing nodes, with the intervals between successive arrivals being distributed exponentially.

Note that, there is an underlying assumption that new nodes are added to the system in-

dependent of the existing ones. However, the assembly of ecological communities do

show that which species joins a ecosystem successfully depends on the species that were

already existing prior to its joining. Thus, history matters. Taking account of memory in

the node addition process may lead to different distribution of inter-arrival time durations

whose effect on the stability of the system may be investigated in future studies. One

could potentially also make the arrival rate time-varying, e.g., depending on the number

of surviving nodes at any given time.
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3.4 Conclusions

To conclude, we show that the stability-diversity debate for complex systems can be re-

solved simply by considering the time-scale in which such systems are being observed

if the strengths of interaction scale according to the number of connections of the nodes.

While in the asymptotic state the more connected systems will have lower global sta-

bility (in terms of fewer number of nodes with surviving activity), consistent with the

May-Wigner result for local stability, in the short term dense connectivity will result in

extremely long-lived transients compared to sparsely connected systems. Thus, when

observed at this time-scale the more connected systems would appear to have a higher

number of active nodes and thus possessing higher global stability than systems with

lower degree of connectivity. The reason for densely connected systems requiring longer

time required to reach the asymptotic state can be explained by considering how the dy-

namics of nodes is governed by a term representing interactions with other nodes. This

term executes a random walk about zero until it strikes the boundary of the absorbing

region corresponding to extinction of activity in the node. For nodes having higher num-

ber of connections, the steps of the random walk tend to be shorter and correspondingly

it takes longer to strike the absorbing boundary, leading to an extended period preceding

extinction of activity in nodes. The mechanism is robust, being observable in the presence

of random fluctuations in the local dynamics of nodes and moreover is enhanced in the

non-equilibrium scenario where networks are subjected to a steady rate of arrival of new

nodes balancing the loss of existing nodes through extinction. As in nature complex sys-

tems are almost always far-from-equilibrium this may be a possible mechanism by which

higher connectivity appears to lead to increased stability even though theoretical results

have suggested otherwise.
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3.A Appendix: Empirical data analysis

To investigate whether interaction strengths of nodes depend on their degree we have

considered empirical data for ecosystems of Southern Florida compiled by investigators

of ATLSS (Network Analysis of Trophic Dynamics in South Florida Ecosystems) from

existing data and field-work [159]. The trophic flow data between different components of

the ecosystem are available separately for wet (June-November) and dry (December-May)

seasons in .paj format from an online database [162]. In the reconstructed network the

vertices represent major components of the ecosystem such as trophic species or detritus

and the edges represent the exchange of carbon between the components. For our analysis

we have considered the predator-prey interactions between all the living compartments,

i.e., N = 122 trophic species. The panels at the left of Fig. 3.4 show the matrices of

estimated trophic flows (in logarithmic scale) between the different species in the dry

(top) and wet (bottom) seasons. Note that the flow T Fi j is from a prey species j to a

predator species i. The number of incoming links kl for each species l is given by the the

number of prey species from which there is a trophic flow into node l. The right panels

of Fig. 3.4 shows that the magnitude of flows from prey species of a generalist predator

that has many prey tends to be generally smaller than that for more specialist predators

(i.e., having fewer prey). The mean interaction strength for a node of degree k (shown in

main text) is computed by averaging over the magnitudes of all trophic flows into predator

species having k incoming links (i.e., k different prey species).
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Figure 3.4: Variation of connection weights(on a logarithmic scale) with in-degree of the
nodes. Top left shows the empirical data for the dry season and bottom left for the wet
season respectively. Corresponding weight matrix is shown on the right, with the color
code representing the trophic flow on a logarithmic scale.
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Chapter 4

Non-equilibrium dynamics in a

financial market

4.1 Introduction

Financial markets are one of the best known examples of complex systems which are

characterized by a large number of interacting components and exhibiting nonlinear dy-

namics that is inherently unpredictable. Instead of a deterministic description of the time

evolution of the components however, the presence of a large number of constituents

makes it possible to analyze the statistical properties of the system as a whole, i.e., the

market. Indeed, robust statistical features have been reported for many different markets,

notable amongst them being the "inverse cubic law" describing the nature of stock price

fluctuations in markets of developed [163] and developing economies [164, 165]. Many

earlier studies of statistical properties of markets have used daily (or end of day) trade

data which does not take into consideration the dynamical behavior of intra-day trading.

In recent times, the availability of high-frequency(HF) data containing information about

every transaction taking place in the market has made it possible to uncover the properties

of stocks markets at the highest possible resolution [166]. Motivated by these studies,
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Figure 4.1: Representative time-series of RELIANCE stock for 30 minutes beginning at
0950 hrs on December 1, 2012 showing (a) price p(t) of the stock, (b) log-returns r(t),
and (c) trade size q(t) as a function of time. Time is measured in seconds, with the origin
(0) set at 0950 hrs.

we have used the HF data of the National Stock Exchange(NSE) [167, 168] of India to

uncover its principal statistical features. We focus on properties of the market as a whole,

as well as, that of individual stocks, e.g., the distribution of trade sizes, the distribution

of waiting times between two successive trades, relation between price fluctuations and

waiting times, etc. Such a study has implications for our current understanding of the

empirical properties of the dynamics of an emerging market, in particular the intra-day

behavior of trades and price movements, as well as in modeling such behavior in terms of

statistical physics.
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4.2 Description of the data

In order to study the statistical properties of NSE, we use HF data for the months of

December for each year from 1999 to 2012. Note that HF data comes with its own set of

challenges, e.g., overwhelming data sizes, unevenly spaced time series, etc. This is easily

seen from a sample of the data set for December 2003 as shown below:

20031201|MTNL|09:56:29|122.20|10

20031201|MTNL|09:56:29|122.25|50

20031201|MTNL|09:56:29|122.30|40

20031201|SATYAMCOMP|09:56:30|335.25|1000

20031201|SAIL|09:56:30|42.70|700

20031201|M&M|09:56:30|355.95|100

20031201|SATYAMCOMP|09:56:30|335.25|500

20031201|SATYAMCOMP|09:56:30|335.25|100

20031201|RAINCALCIN|09:56:30|25.40|500

20031201|VDOCONINTL|09:56:30|78.85|70

where the columns separated by ”|” represent respectively the date, name of the stock, time

of transaction, price per stock of the stock traded, and the number of stocks traded during

the transaction (also termed as the trade size q of the stock). It can be observed from

the above data set that many transactions share the same time-stamp. This is because the

temporal resolution of recording the transactions is 1 second, so that if two transactions

occur within a duration of less than a second of each other, they will have the same

time-stamp. However, the ordering of transactions is reported in the correct time-sorted

order [169]. For the purpose of the present analysis, we assume that the transactions

sharing the same time-stamp take place at the same instant. In addition, the market timings

for the trading of common stocks are from 0950 hours to 1530 hours [170–172], so the

results reported here are obtained using only trades that occur between 0950 hours and
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the month of December for the years 1999 to 2012. Note the doubly logarithmic axis of
the graphs, which means that a linearly decaying tail implies the existence of power-law
decay of the distribution (the line represents a power-law fit with exponent 1.6).

1530 hours. Also, in order to study the properties of individual stocks we choose four

representative stocks, viz., HDFCBANK (Finance sector), INFOS YS (Infotech sector),

RELIANCE (Energy sector) and S UNPHARMA (Pharmaceutical sector) as these are

some of the most important industrial sectors in NSE in terms of market capitalization.

We show in Fig. 4.1 the variation of price p(t), returns r(t) and trade size q(t) as a function

of time for RELIANCE for the first 30 minutes of trading on December 1, 2005 as a

typical example of the financial time series.

4.3 Results and Discussion

4.3.1 Distribution of trade sizes

We report the cumulative probability distribution P(Q ≥ q) of the trade sizes q for the

entire market for the month of December for years from 1999 to 2012 in Fig. 4.2. We

see that the distribution for all the months has a linear portion on a log-log graph, thus
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Figure 4.3: Cumulative probability distribution of trade sizes q for the stocks of (a)
HDFCBANK, (b) INFOS YS , (c) RELIANCE, and (d) S UNPHARMA. The distribu-
tions are shown for the December months for the years 2003 (black squares), 2007 (red
circles) and 2010 (blue triangles). Similar to the case of the markets, the distribution of
trade sizes for individual stocks also exhibits a power law form.

suggesting a power law nature of the tails for the distribution of trade sizes for the mar-

ket. Fig. 4.3 shows the distribution of trade sizes q for the four individual stocks for the

December months of years 2003, 2007 and 2010 respectively. It is evident from the fig-

ure that the tails of the distributions of each of the stocks also exhibit power law decay.

Hence, the tails of the distribution of the trade sizes q are of the form:

P(Q ≥ q) ∼ q1−α, (4.1)

where α is the exponent characterizing the power law distribution. The maximum likeli-

hood estimates of the exponents [173] are shown in Fig. 4.4. It is seen from Fig. 4.4(a)

that α ≤ 3 for almost all periods for the entire market (except 2003). This implies that

the trade size distributions for the market belong to the class for which higher than sec-

ond moments onwards do not exist. As this property holds true for almost the entire

duration of December 1999-December 2012, we say that the distribution of trade sizes

for the market are stationary, in the sense that it is Lévy stable with second and higher
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Figure 4.5: A magnified view of the time series of Fig. 4.1 showing that multiple trans-
actions share the same time stamp because the temporal resolution of the recording is
limited to 1 second. Also shown is the waiting time τw between two successive trades,
specifying an interval during which no transaction takes place.

moments diverging. However, this is not true for the case of individual stocks, as seen

from Fig. 4.4(b), where we see that the values taken by α for different stocks vary from 2

to 4. In addition, values taken by α for a particular stock exhibit widely different values

depending on the period which is being observed, thus suggesting that the dynamics of

individual stocks is non-stationary.

4.3.2 Distribution of waiting times and log-returns

An important quantity associated with a given stock is its price p(t) at some time t, that

fluctuates from one value to the other. A generic time-series representing price variations

of a given stock is shown in Fig. 4.5. We see in (a) that the price p(t) at time t and at t +τw

can be the same or different, where τw is the waiting time between the two transactions.
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Figure 4.6: Cumulative probability distribution of waiting times for successive trades in
RELIANCE stock for the month of December in 2005. The empirically obtained distri-
bution (circles) has been fitted with an exponential distribution (solid curve) having the
same mean waiting time 〈τw〉 ≈ 0.453. The inset shows a fit with a theoretical distribution
that is a sum of three exponentially decaying curves

∑
i ai exp(−(τw/bi)) having different

characteristic times τw/bi (i = 1, 2, 3) [see text for details].

The logarithmic return (log-return) associated with price change is

r(t) = ln p(t) − ln p(t − τw) (4.2)

and is shown in Fig. 4.5(b). The random walk nature of price changes is easily seen

from the above figure, and the presence of irregular waiting times τw makes it an ef-

fectively continuous time process. Characterizing the distribution of waiting times is of

fundamental importance in order to understand the price dynamics of a given stock. For

that purpose, we show the distribution of waiting times for RELIANCE for the month

of December 2005 in Fig. 4.6. We observe from the figure that the distribution of wait-

ing times P(τ > τw) cannot be fit by an exponential distribution having the same 〈τw〉.

This implies that the system has inherent long-range memory and that the occurrence of

successive transactions are not independent events. This becomes clear upon fitting the

empirical distribution of waiting times with a theoretical curve having the form of a sum
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of exponentials, viz.,

P(τ ≥ τw) =
∑

i

ai exp(−(τw/bi)). (4.3)

Such theoretical distributions have been used earlier to describe systems having mem-

ory [174]. The values of the coefficients used to fit the data shown in Fig. 4.6 are:

a1 = 0.897, a2 = 0.1, a3 = 0.003; b1 = 1, b2 = 0.4, b3 = 0.2 (we computed the error

estimates to be less than 10% in all cases). We also see from Fig. 4.7 that the distribu-

tion of returns Pr(X ≥ x) has power law decaying tails with exponent close to 3. This

is in accordance with the well-known inverse cubic law of price fluctuations reported for

financial markets [163, 164, 178].

4.3.3 Properties of log-returns and waiting times

We see in Fig. 4.8 the scatter plot of log-returns r measured for successive transac-

tions against the corresponding time-interval (waiting time τw) between them involving

RELIANCE stock in a particular month. It is observed from the diagram that transactions
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Figure 4.8: Scatter plot of waiting times τw between successive trades and the corre-
sponding log-return r of RELIANCE for all transactions that took place in the month of
December 2005.

resulting in large price changes generally occur closer to each other. To further quantify

the observed behavior we look at the distribution of returns conditioned on waiting times,

i.e., P(r|τw) in Fig. 4.9. It is evident from the distribution P(r|τw) that larger returns gen-

erally occur close to each other in time [130], thus suggesting that the waiting-times and

returns may not be independent of each other. This property is also observed for different

stocks and for different years. This has implications towards the modeling of price dy-

namics by continuous time random walks, as market transactions may be better modeled

by walks whose step lengths are not chosen independently of the waiting time between

successive steps, contrary to what is generally assumed [131, 132].

In order to characterize the dynamics of intra-day trading we define the variance of log-

returns over an interval ∆t as:

σ2(t) =
1

N∆t(t) − 1

N∆t(t)∑
i=1

(ri − 〈ri〉)2 (4.4)

where N∆t(t) is the number of trades occurring in the interval of length ∆t and 〈ri〉 is the

average return over the interval. We observe from Fig. 4.10 that the variance over the
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Figure 4.9: Conditional distribution P(r|τw) of log-returns r(t) conditioned on the waiting
times τw for successive trades involving RELIANCE stock in the month of December
2005.
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Figure 4.11: Scaled cumulative variance of the log-returns for intra-day trading σ2
c(t)∆t

as a function of time of day t for RELIANCE on December 1, 2005. It is observed that
scaling by interval ∆t over which the variance is calculated, the curves for cumulative
variance σ2

c(t) for different choices of ∆t overlap.

intervals is nearly independent of the length of the interval ∆t, and find that the scaled

cumulative variance σ2
c(t)∆t is independent of ∆t, as shown in Fig. 4.11. In addition, we

also find that the cumulative variance grows linearly with time, thus implying that for the

major part of the day price fluctuations of individual stocks are inherently Gaussian.

4.4 Conclusions

To conclude, in this chapter we have looked at the empirical properties of the national

stock exchange (NSE) of India, by looking at the high-frequency trade data for the De-

cember months from 1999 to 2012. We find that the distributions of the trade sizes ex-

hibit power law decaying tails for the entire market as well as individual stocks. The

decay exponent α generally takes values in the interval (2, 3) for the market, for almost

all the months from 1999 to 2012, a property which is not satisfied for individual stocks.
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We also look at the distribution of waiting times between successive transactions for the

stocks and find that the distributions deviates from exponential, implying the existence of

long-range memory in the trading process. We also find that transactions involving large

returns generally occur close to each other. In order to characterize the nature of price

fluctuations during a day, we focus on the variance of the returns for intra-day trading,

and find that the variance grows linearly with time. This implies that for a major part of

the day, price fluctuations are Gaussian in nature.
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Chapter 5

Conclusions

The research questions addressed in this thesis belong to the broad area of nonequilibrium

dynamics of complex systems, and in particular, that of complex networks. A complex

system can be defined as one whose systems-level properties are “emergent” [177] –

which cannot always be explained in terms of simple linear superposition of the properties

of its constituent elements. This typically arises because of the nonlinearities inherent to

a complex system. The investigation of nonlinear properties of systems have played a

critical role in understanding a wide variety of natural phenomena, e.g., mass extinctions

in ecosystems, fluid turbulence, etc. In many complex systems, even the dynamics of its

individual constituents are not known with any degree of certainty. For instance, this is

the case for most socio-economic systems, where the behavior of the individual members

cannot be described using precise models. Notwithstanding such a limitation, many of

the overall properties of such a system can be described in terms of statistically regular

features. In the work presented in the thesis, we have used such a framework to analyze

different complex systems. In the following subsections we summarize the important

results and conclusions reported in the thesis. We conclude with a brief discussion of

possible future extensions of the present work.
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5.1 Summary of main results

Cascading failures in interdependent networks

Interdependent networks are ubiquitous in nature from natural to artificial settings. In the

work presented in the thesis it has been shown that an optimal level of interdependence

is necessary for the continued functioning of the network of networks. This is demon-

strated using two coupled networks of dynamical elements which, in isolation, are certain

to cease activity (become extinct) at some point of time. The approach taken is different

from one based on percolation theory, which has generally shown that interdependence

amongst systems makes them more vulnerable in comparison to their isolated counter-

parts. The results have implications for understanding the importance of interdependence

of networks of networks that occur in reality, such as a collection of ecological habitats

that are connected by migration of species residing in them.

The critical role of observation time-scale in resolving the stability-

diversity debate in complex systems

Cascading failures are seen in networks as varied as the power grid and the internet. As

many of the networks have non-trivial dynamics associated with their nodes, one can ask

what is the influence of connection topology on the overall dynamical stability of such

systems. By considering networks of dynamical entities that are capable of exhibiting

fixed-point, oscillatory or chaotic dynamics, we have investigated the dependence of the

stability of the system to small perturbations on the density of connections between ele-

ments. Note that, instability will imply that cessation of activity (extinction) in one node

may trigger a cascading process by which a sequence of other nodes will also cease ac-

tivity – resulting in a significant fraction of the system going extinct. We have shown that

when the interaction strengths amongst the nodes are scaled by their degree (number of
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connections to other nodes), the transient activity regime becomes extremely long-lived

as compared to the situation where the interaction strengths are independent of degree.

In particular, when the systems are observed at relatively short time-scales, it will appear

that the more complex systems have more active elements – suggesting that complexity

promotes stability. However, if they are observed at longer time-scales, more complex

systems would have much fewer surviving modes – indicating that complexity results in

less stable systems. These results have implications for the complexity vs stability debate

in ecosystems, wherein the two opposing camps base their arguments on observations that

are made at very different time scales.

Empirical properties of NSE stock market

Financial markets represent a prototypical example of complex systems in which many

agents are involved in trading with a common goal, viz., to make a profit. Using high-

frequency(HF) trade data from the National Stock Exchange of India, we study the statis-

tical properties of the market as well as that of individual stocks traded in the market. We

find that the distribution of trade sizes exhibit power law decaying tails. In addition, the

waiting times for arrival of orders of individual stocks exhibit tails decaying slower than

exponential. We also find that for most of the time during the day, the variance of returns

increases linearly with time. The present study reveals some of the statistical properties

of a developing market using HF data which would be need to be taken into account when

creating models for such systems.

5.2 Outlook

The problems addressed in the thesis contribute towards a general understanding of the

nonequilibrium dynamics of complex systems which arise ubiquitously in natural and ar-

tificial settings. Large networks with many interacting components constitute a typical
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example of a complex system, examples of which include foodwebs comprising many

species and the internet. These systems often change continuously through the addition

of new components and/or removal of existing ones, Simple models of such evolving sys-

tems may provide significant insights towards understanding how such networks function,

as is demonstrated in this thesis. However, one of the assumptions made in the models

presented here is that perturbations at any node in the network is felt immediately by the

other nodes interacting with it. In other words, they propagate instantaneously across the

network. In real systems, the effect of a localized perturbation is often felt elsewhere after

a delay because of finite propagation speed of the disturbance. Thus, a natural extension

of the work on complex networks presented here will be the inclusion of delay in the

interactions between elements within individual networks, as well as, between different

networks in the system of coupled networks. It is well known that delay introduces ad-

ditional time-scales in the system in addition to existing ones and their interplay can lead

to non-trivial behavior [175, 176]. In addition, we have looked primarily at discrete-time

dynamical systems in this thesis. Considering the collective dynamics of networks of

continuous-time dynamical systems could provide another obvious extension of the work

reported here.

Not all complex systems are composed of components having predictable dynamical be-

havior. A classic example is a financial market in which many agents are involved in

trading with the common goal of making profit. Lack of knowledge of the dynamics of

individual elements implies that the overall properties of a complex system like financial

markets can be known only statistically. We have taken this approach to uncover some of

the empirical properties of the largest financial market in India. The behavior reported in

this thesis will provide crucial pointers towards creating accurate models describing the

dynamics of financial markets. In addition, the present study also provides motivation to

look at other markets by employing high frequency data of intra-day trades. Such a study

will be important in establishing the universality of the observed features at the highest

possible temporal resolution.
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