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ABSTRACT

We study the modular structures underlyingN = 2 superconformal gauge theories in

four dimensions. Using constraints from a nonperturbative duality symmetry called

S-duality, we show that observables of interest may be resummed into quasimodular

forms of the S-duality group. We study these gauge theories coupled to different

kinds of matter.

Adjoint Matter : We study chiral observables in U(N) gauge theories and show that

they may be resummed into quasimodular forms of the nonperturbative S-duality

group. We do this using a number of complimentary approaches: explicitly evaluat-

ing the period integrals; invoking a correspondence between these gauge theories and

an integrable model called the elliptic Calogero-Moser system; and microscopically

evaluating nonperturbative contributions to chiral observables using the machinery

of equivariant localization.

Fundamental Matter : We study SQCD theories with gauge group SU(N) with

Nf = 2N fundamental hypermultiplets. When the flavours are massless, we fo-

cus on the period matrix of these theories in a ZN -symmetric locus on the Coulomb

moduli space: the special vacuum. We clarify the underlying modular structure,

in particular to understand the manner in which the S-duality group acts on the

renormalized couplings, and show that this action is consistent with more recent

studies of S-duality that focus on the bare couplings of the gauge theory. We also

study massive hypermultiplet configurations that respect the ZN symmetry of the

special vacuum. Here, we find that the modular structure of the massless theory

will is deformed; more specifically, we find that the renormalized couplings admit

semiclassical expansions with mass-dependent coefficients. We use constraints from

S-duality to derive modular anomaly equations, which are then used to solve for the

mass-dependent coefficients order-by-order in the mass expansion.
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0
Synopsis

The subject of our investigations in this thesis are N = 2 supersymmetric theories in

four dimensions. The study of these theories was pioneered by Seiberg and Witten

[1, 2], who identified the complexified gauge coupling with the modular parameter

of a torus, thus drawing upon results from the classical geometry of genus-1 sur-

faces to furnish a solution to the low-energy effective action. Later, Nekrasov and

Okounkov [3, 4] brought the techniques of equivariant localization to bear on the

problem of evaluating integrals over instanton moduli spaces, allowing for a micro-

scopic check of the Seiberg-Witten solution, in addition to paving the way for more

sophisticated developments. This thesis will focus on the modular structures un-

derlying these gauge theories, in particular the resummation of various observables

into quasimodular forms of the S-duality group.

0.1 Background

Here we discuss the background material relevant to our thesis: Seiberg-Witten

theory, its correspondence with integrable systems, and equivariant localization.
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0.1.1 Seiberg-Witten Theory

At low energies, a SU(N) gauge theory with eight supercharges on R4 is Higgsed

down to its maximal torus, and one ends up with a U(1)N−1 theory whose vacuum

is specified by a set {a1, · · · , aN−1}; these are vacuum expectation values of the

adjoint scalar in the N = 2 vector multiplet. The low-energy effective action for

these theories is completely specified by a single holomorphic function F called the

prepotential. The nonrenormalization theorems of Seiberg [5] may be invoked to

show that perturbative corrections to the classical prepotential truncate at 1-loop.

One solves an N = 2 theory by computing nonperturbative contributions to the

prepotential.

Seiberg-Witten theory offers a geometric approach to this problem. Broadly, to an

N = 2 theory one associates an algebraic curve and an associated 1-form called the

Seiberg-Witten differential, denoted λSW. To such a surface, one may associate a

canonical, symplectically paired basis of cycles (αk, βk); the insight of Seiberg and

Witten was to make the identifications

ak =

∮
αk

λSW and aD
k =

∮
βk

λSW . (1)

Here, aD
k are related to the prepotential as

aD
k =

∂F

∂ak
. (2)

These identifications have the happy consequence that the period matrix of the

algebraic curve

τij =
∂aD

i

∂aj
=

∂2F

∂ai ∂aj
, (3)

automatically satisfies Im τij > 0, as is required for the kinetic energy term for the

gauge fields in the action to be positive definite.
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When evaluated, the integrals (1) are functions of {u2, · · · , uN}, gauge invariant

coordinates on the Coulomb moduli space. The strategy of Seiberg-Witten (who

studied the case r = 1) was to evaluate a(u) and invert it, i.e. obtain u(a). Once this

inversion is plugged into aD, we use (2) and integrate to determine the prepotential.

The Seiberg-Witten solution has been generalized to accommodate other gauge al-

gebras, fundamental and adjoint matter, and even quiver gauge theories that have

multiple gauge groups and matters charged under them.

0.1.2 Integrable Systems and a Correspondence

The geometric nature of the Seiberg-Witten solution allows for a correspondence

between N = 2 gauge theories and integrable systems, as chronicled in [6]. In this

section, we briefly discuss this correspondence.

A mechanical system is said to be integrable if there exist as many integrals of

motion (i.e. conserved quantities) as there are degrees of freedom. More precisely, if

the mechanical system under investigation has n degrees of freedom, we require that

there exist n functionally independent conserved quantities Ik(x, p); this is embodied

in the conditions

{Ik, H} = 0 and {Ik, I`} = 0 . (4)

A more fruitful (and fully equivalent) formulation of the criterion of integrability

may be formulated as follows: an integrable system is said to have a Lax pair if one

can find a pair of N ×N matrix-valued functions on phase space (L,M) such that

the equation

L̇ = [L,M ] , (5)

xxxii



is equivalent to Hamilton’s equations of motion. It may be verified that once a Lax

pair is found, the integrals of motion are given by

Ik = TrLk . (6)

In many examples of integrable systems, it is possible to find a family of Lax pairs

labelled by a complex parameter called a spectral parameter. That is, the equation

L̇(z) = [L(z),M(z)] , (7)

is equivalent to Hamilton’s equations of motion for all values of z. To such a Lax

pair with a spectral parameter, we may naturally associate a spectral curve

Γ = {(k, z) ∈ C× C : det [kI − L(z)] = 0} , (8)

and a differential 1-form

dλ = k dz . (9)

The correspondence between N = 2 supersymmetric gauge theories and integrable

systems goes as follows:

• The N = 2 supersymmetric gauge theory data defines an integrable system.

We will be interested in SU(N) Yang-Mills theory with N = 2 supersymmetry

and a massive adjoint hypermultiplet, which maps to the elliptic Calogero-

Moser system, a system of N particles on a line interacting pairwise via a

potential given by the Weierstrass ℘-function.

• The Seiberg-Witten curve maps to the spectral curve of the integrable system,

• The Seiberg-Witten differential maps to the differential 1-form on the spectral

xxxiii



curve of the integrable system.

• The gauge invariant Coulomb moduli correspond to the conserved integrals of

motion in the integrable system.

In this dissertation, we will concern ourselves with the study of chiral observables

in these gauge theories, which correspond in turn to integrals of motion in the

integrable system.

0.1.3 Equivariant Localization

As we have discussed, the solution to an N = 2 gauge theory is given by computing

all non-perturbative contributions to the prepotential. This amounts, equivalently,

to computing the effective action. This is difficult to do via the usual instanton

calculus [7], and in order to make progress beyong low instanton numbers, we must

adopt the methods of Nekrasov [3, 4].

Nekrasov key insights may be broken down into a few key steps. We start with a

topological twist [8]. Here, we start with the global symmetry of the gauge theory

SU(2)l × SU(2)r × SU(2)R , (10)

where SU(2)l and SU(2)r correspond to a decomposition of the Euclidean rotation

group on R4. The group SU(2)R is the R-symmetry of the N = 2 supersymmetry

algebra. Topological twisting essentially redefines the (Euclidean) Lorentz group;

let SU(2)d = diag SU(2)r × SU(2)R, the diagonal subgroup, and let the (Euclidean)

Lorentz group be identified with

SU(2)l × SU(2)d . (11)
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which in turn yields a scalar supercharge Q. This scalar supercharge is then used to

write the action in a Q-exact form, which in turn (using techniques from topological

field theory) allows one to localize onto the space of self-dual solutions to the Yang-

Mills field equations. Since this space is finite-dimensional, in principle this results

in an enormous simplification.

Self-dual solutions to the Yang-Mills field equations are called instantons, described

by the ADHM construction [9]. The ADHM moduli space, however, is non-compact,

and consequently integrals over these moduli spaces are divergent. In order to

cure these divergences, one introduces the Ω-deformation [3] as a regulator. This

perspective allows us to take advantage of the techniques of equivariant localization

to compute integrals over the k-instanton moduli space exactly.

Finally, in order to make contact with the prepotential of the undeformed super

Yang-Mills theory, Nekrasov and Okounkov [4] proved that

F = lim
Ω→0

logZNekrasov , (12)

where ZNekrasov is called the Nekrasov partition function, which in turn may be ex-

pressed in terms of contour integrals. There exists a recipe for constructing Nekrasov

integrands for every k-instanton moduli space, that accounts for any matter present

in the theory as well.

We will use Nekrasov localization as a microscopic check of our results in both the

study of chiral rings in theories with adjoint matter, as well as observables in SQCD

theories.
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0.2 Chiral Rings

In this chapter we focus on N = 2? theories. Besides the gauge vector multiplet,

they contain an adjoint hypermultiplet of mass m that interpolates between the

N = 4 SYM theories (when m → 0) and the pure N = 2 SYM theories (when

m→∞). The N = 2? theories inherit from the N = 4 models an interesting action

of the S-duality group; in particular, their prepotentials satisfy modular anomaly

equations first discussed in [10] and developed further in [11, 12, 13]. This approach

has led to a very efficient way of determining the mass expansion of the prepotential

in terms of: i) quasi-modular functions of the gauge coupling and ii) the vacuum

expectation values au of the scalar field Φ of the gauge multiplet such that only

particular combinations, defined purely in terms of sums over the root lattice of the

corresponding Lie algebra, appear. These results have been checked against explicit

computations using equivariant localization.

In this work, we take the first steps towards showing that similar modular structures

also exist for other observables of N = 2? gauge theories. We choose to work with

U(N) gauge groups, and consider the quantum expectation values

〈Tr Φn〉 . (13)

A priori, it is not obvious that these chiral observables exhibit modular behaviour.

However, we show that it is always possible to find combinations that transform as

modular forms of definite weight under the non-perturbative duality group SL(2,Z).

These combinations have a natural interpretation as modular-covariant coordinates

on the Coulomb moduli space, and can be analysed using two different techniques:

i) the SW approach via curves and differentials, and ii) equivariant localization

combined with the constraints arising from S-duality.

xxxvi



0.2.1 Curves and Differentials

For N = 2? theories there are many distinct forms of the SW curve that capture

different properties of the chiral observables. In one approach, due to Donagi and

Witten [14, 15], the SW curve has coefficients An that have a natural interpretation

as modular-covariant coordinates on the Coulomb moduli space. Thus, this approach

provides us with a natural setting to study the elliptic and modular properties

of the observables (3.1). Another form of the SW curve was found by using the

relation with integrable systems [16]. For the N = 2? theory, the relevant curve was

proposed by D’Hoker and Phong [17, 6], who used the close relation between the

gauge theory and the elliptic Calogero-Moser system [18]. In this second formulation,

the coefficients of the spectral curve of the integrable system are interpreted as

symmetric polynomials built out of the quantum chiral ring elements:

Wn =
∑

u1<···<un
eu1 · · · eun . (14)

The eu are interpreted as the quantum-corrected vacuum expectation values of the

scalar field Φ and, at weak coupling, they have the following form

eu = au +O(q). (15)

We review and relate these two descriptions of the SW curve. This comparison will

lead to interesting relationships between the coefficients of the respective curves, of

the form

Wn =

[n/2]∑
`=0

(−1)`
(
N − n+ 2`

2`

)
(2`− 1)!!

(
m2E2

12

)`
An−2` . (16)

Along the way, we will find it necessary to modify the analysis of [14] in a subtle

but important way.
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It is clearly desirable to work with chiral observables that in the classical limit

coincide with the symmetric polynomials built out of the vacuum expectation values

au. As we discuss, this can be done in two ways. The first is to compute the period

integrals in the Donagi-Witten form of the curve as a series expansion in the mass

m of the adjoint hypermultiplet. Inverting this expansion order by order in m gives

us an expression for the An in terms of the au. The second way is to postulate

that the An have a definite modular weight under the S-duality group, and use

the well-understood action of S-duality to derive a modular anomaly equation that

recursively determines them up to modular pieces.

∂A
(`)
n

∂E2

+
1

12

∑̀
k=0

∂A
(k)
n

∂a
· ∂f`−k
∂a

= 0 . (17)

In this derivation, we see that it is crucial that the prepotential and hence the dual

periods of the N = 2? theory are known in terms of quasi-modular forms. In both

ways it turns out that the chiral observables can be expressed in terms of quasi-

modular forms and of particular functions of the au involving only sums over the

weight and root lattices of the Lie algebra u(N), generalizing those appearing in the

prepotential.

0.2.2 Localization

Next, we test our findings against explicit microscopic computations of the observ-

ables (3.1) using equivariant localization techniques. We find that the chiral observ-

ables computed using localization can be matched with those obtained from the SW

curves by a redefinition of the chiral ring elements. Such a redefinition contains only

a finite number of terms and is exact both in the mass of the hypermultiplet and

in the gauge coupling. It is well known that the localization results for the chiral

observables do not, in general, satisfy the classical chiral ring relations [19, 20, 21].
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Strikingly, we show that the redefinition of the chiral ring elements which allow the

matching of the two sets of results can be interpreted as a judicious choice of coor-

dinates on the Coulomb moduli space in which the classical chiral ring relations are

naturally satisfied.

Finally, we focus on the 1-instanton contributions and, just as it was done for the

prepotential in [11, 12], we manage to resum the mass expansion to obtain an exact

expression involving only sums over roots and weights of the corresponding Lie

algebra:

〈Tr Φn〉
∣∣
k=1

= −n(n− 1) q m2
∑
λ∈W

(λ · A)n−2

[
1−

∑
α∈Ψλ

m2

(α · A)2

∏
β∈Ψα

(
1 +

m

β · A

)]
.

(18)

0.3 Fundamental Matters

There has been much progress in understanding conformally invariant N = 2 super-

symmetric gauge theories in four dimensions, especially following the seminal work

of Gaiotto [22]. In that work, the four-dimensional N = 2 theories were realized

as compactifications of the six-dimensional (2, 0) theory on a punctured Riemann

surface Σ. One of the important results of this approach was to identify the complex

structure moduli space of Σ with the space of gauge couplings modulo the action of

the S-duality group. For linear quiver gauge theories in the weak coupling limit, the

Riemann surface degenerates into a collection of three-punctured spheres connected

by long thin tubes, and the sewing parameters are identified with the bare coupling

constants of the superconformal gauge theory.

This approach is fruitfully contrasted with the original solution of N = 2 gauge

theories due to Seiberg and Witten [1, 2], where the quantum effective action on the

Coulomb branch is obtained from an algebraic curve describing a Riemann surface,
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and an associated holomorphic differential. A natural question to ask in this context

is whether the non-perturbative S-duality group can be used to solve for the effective

action. For N = 2? theories (i.e. mass deformed N = 4 theories) with unitary

gauge groups it has been shown [10, 23, 24, 25] that the constraints coming from

S-duality take the form of a modular anomaly equation whose solution allows one

to reconstruct the prepotential on the Coulomb branch order by order in the mass

of the adjoint hypermultiplet to all orders in the gauge coupling. To achieve this

result one has to organize the low-energy effective prepotential as a semi-classical

expansion in inverse powers of the vacuum expectation values of the scalar fields in

the gauge vector multiplet and realize that the coefficients of this expansion satisfy

a recursion relation whose solution can be written in terms of quasi-modular forms

of PSL(2,Z) acting on the bare gauge coupling. These modular forms resum the

instanton series and therefore provide an exact result. It is of particular importance

that N = 2? theories are characterized by the absence of any renormalization of

the coupling constant, even non-perturbatively; thus, the bare coupling is the only

coupling that is present in the effective theory. This procedure has been applied

also to N = 2? theories with arbitrary gauge groups in [11, 12], where it has been

observed that for non-simply laced algebras the effective prepotential is expressed

in terms of quasi-modular forms of congruence subgroups of PSL(2,Z).

In this work we study N = 2 gauge theories with gauge group SU(N) and 2N

fundamental flavours, generalizing the analysis of the SU(3) gauge theory with six

flavours recently presented in [26]. When all flavours are massless, these SQCD

theories are superconformal. However, unlike the case of N = 2? theories, the bare

gauge coupling in N = 2 SQCD is renormalized by quantum corrections which arise

from a finite 1-loop contribution as well as from an infinite series of non-perturbative

contributions due to instantons. In general these corrections are different for the

various U(1) factors and thus one expects to find several effective couplings in the

low-energy theory. This chapter is divided into two parts.
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0.3.1 Massless SQCD and Duality Groups

In the first part, we work in the conformal limit with all flavour masses set to zero,

and calculate various observables of the effective theory such as the prepotential, the

period integrals and the period matrix, using equivariant localization. In particular,

we work in a special locus of the Coulomb branch which possesses a ZN symmetry

and which we call the special vacuum [27]. In this special vacuum, the period matrix

has fewer independent components than it does at a generic point of the moduli

space. More precisely, when all quantum corrections are taken into account there

are
[
N
2

]
distinct matrix structures which correspond to

[
N
2

]
renormalized coupling

constants in the effective theory.1

Ω = τ1 M1 + τ2 M2 + · · ·︸ ︷︷ ︸[
N
2

]
terms

(19)

Of course, one could in principle use any basis of matrices Mk to write Ω, but

a particularly insightful choice is the one that “diagonalizes” the action of the S-

duality group. In such a basis, under S-duality each Mk stays invariant and each

τk transforms as

τk → −
1

λk τk
(20)

for some positive λk. We conjecture that the spectrum of λk is given by

λk = 4 sin2

(
k π

N

)
, (21)

and find complete agreement with explicit localization computations. Note that for

N ∈ {2, 3, 4, 6} all the λk’s take integer values. We call these cases arithmetic. If in-

stead N 6∈ {2, 3, 4, 6}, then the λk’s are not necessarily integer. We refer to the latter

as the non-arithmetic cases. Of course, at leading order such renormalized couplings

1Here [ · ] denotes the floor function.
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are all equal to the bare coupling, but when 1-loop and instanton corrections are

taken into account, they begin to differ from one another. Given that the S-duality

group naturally acts on the bare coupling, an obvious question to ask is how S-

duality is realized on the various parameters of the quantum theory. The answer we

provide is that on each individual effective coupling S-duality acts as a generalized

triangle group (see for example [28]). Moreover, using this insight, we propose a

non-perturbatively exact relation between the bare coupling (2πi τ0 = log q0) and

the renormalized ones (τk) that takes a universal form in terms of the j-invariants

of the triangle groups.

q0 =

√
jλk(τk)− d−1

λk
−
√
jλk(τk)√

jλk(τk)− d−1
λk

+
√
jλk(τk)

(22)

We perform several successful checks of this proposal by comparing the instanton

contributions predicted by the exact relation with the explicit results obtained from

multi-instanton localization. As a further evidence in favour of our proposal, we

show that the action of S-duality on the renormalized couplings is fully consistent

with the action on the bare coupling as obtained from Gaiotto’s analysis [22]. We

believe that our results, and in particular the exact relation we propose, can play

an important role in the study of these SQCD theories at strong coupling [29]. This

is because the j-invariants have a well-understood behaviour near those cusp points

where the coupling constants become large and the usual weak-coupling expansion

cannot be used.

0.3.2 Massive Hypermultiplets and Modular Anomalies

In the second part of the chapter we move away from the conformal limit by giving

a mass to the fundamental flavour hypermultiplets. For generic masses the ZN

symmetry of the special vacuum is broken; to avoid this, we restrict our analysis to
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ZN -symmetric mass configurations so that the modular structure uncovered in the

massless limit gets deformed in a natural and smooth manner. In particular, with

these ZN -symmetric mass configurations we find that the
[
N
2

]
matrix structures of

the massless theories are preserved, while the
[
N
2

]
effective couplings simply receive

further contributions proportional to the hypermultiplet masses. Building on earlier

literature [30, 31], this analysis was already carried out for the SU(2) theory in

[23, 24], where it was shown that the prepotential can be written in terms of quasi-

modular forms of the modular group PSL(2,Z). Moreover, after expanding the

prepotential in powers of the flavour masses, it was realized that the coefficients

of this expansion satisfy a modular anomaly equation that takes the form of a

recursion relation, similar to that of the N = 2? case. These results have been

recently extended to the SU(3) theory with six massive flavours in [26], where it

has been shown that the prepotential, the dual periods and the period matrix are

constrained by S-duality to obey again a recursion relation that can be written as a

modular anomaly equation, which takes the form

∂gn

∂Ẽ2

=
(3n+ 1)

24

∑
`<n

g` gn−`−1 , (23)

where the gn are coefficients in the semi-classical (large-a) expansion of the dual pe-

riod integrals. In this case, the solutions of this equation are quasi-modular forms of

Γ1(3), which is a subgroup of the S-duality group that is also a congruence subgroup

of PSL(2,Z). Here we further extend these results to the general SU(N) theory with

2N massive flavours and show that the constraints arising from S-duality can al-

ways be written as a recursion relation for any N . However, beyond this step, the

analysis crucially depends on the arithmetic properties of the S-duality group. It

turns out that for N = 2, 3, 4 and 6, the S-duality group acting on each quantum

coupling always has a subgroup which is a congruence subgroup of PSL(2,Z). For

these theories, which we call arithmetic, the discussion proceeds along the same
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lines described in [26] for the SU(3) theory, with one important modification: in the

higher rank cases, the S-duality constraints are written as coupled modular anomaly

equations.

∂g
(k)
n

∂Ẽ
(λk)
2

=
1

12

n−1∑
m=0

(Nm+N − 1)(N(n−m)− 1)

Nn+N − 1
g(k)
m g

(k)
n−m−1 ,

∂g
(k)
n

∂Ẽ
(λ1)
2

=
1

12

n−1∑
m=0

(Nm+N)(Nm+N − 1)

Nn+N − 1
g(k)
m gn−m−1 .

(24)

These coupled equations are nevertheless integrable and their solutions turn out to

be polynomials in meromorphic quasi-modular forms of congruence subgroups of

PSL(2,Z).

0.4 Plan Of Thesis

The goal of this thesis is to discuss the modular structure of various observables in

gauge theories with N = 2 supersymmetry. It will consist of the following chapters.

• Chapter 1 will provide a general introduction to N = 2 supersymmetric gauge

theories and instantons.

• Chapter 2 will review Seiberg-Witten theory, the elliptic Calogero-Moser sys-

tem, and equivariant localization.

• Chapter 3 will study the modular properties of chiral observables in super-

symmetric gauge theories with adjoint matter.

• Chapter 4 will study the modular structure of various observables in SQCD

theories.

• Chapter 5 will conclude with a discussion of the results as well as open prob-

lems.
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1
Instantons and Supersymmetry

Consider an interacting quantum system with a coupling constant g2. At weak

coupling, an observable of interest may be computed perturbatively in g2. By this,

we mean that an observable E admits an expansion of the form

E(g) = c0 + c1 g
2 + c2 g

4 + · · · , (1.1)

and the machinery of quantum theory teaches us how to compute the quantities ck,

which may subsequently be compared against experiment. In the presence of mul-

tiple vacua, we must account for transitions between them via quantum mechanical

tunneling. At weak coupling g2 � 1, these effects may be ignored, but at strong

coupling they dominate and must be taken into account as well. In this chapter, we

will encounter an example of tunneling effects in gauge theories, called instantons.

For example, the 1-instanton contribution to the partition function of an SU(N)

gauge theory on R4 is proportional to

exp

{
−8π

g2

}
. (1.2)

As we see above, the instanton—which tunnels between gauge-inequivalent vacua—

contributes to the partition function in a manner that is non-perturbative in the

coupling constant; that is, in the limit g2 → 0, these effects cannot be represented
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as a Taylor series in powers of g2. Section 1.1 will discuss instantons solutions to

the Yang-Mills field equations, and the manner in which they may be constructed.

Since the bulk of this thesis is devoted to the study of N = 2 supersymmetric gauge

theories, in Section 1.2 we discuss the required background in supersymmetry.

1.1 Instantons

In gauge theories, instantons are defined as gauge field configurations that are finite-

action solutions to the classical equations of motion. They describe quantum me-

chanical tunneling between gauge-inequivalent vacua.

Consider Yang-Mills theory with gauge group SU(N) on four-dimensional Euclidean

flat space, with the action

SYM = − 1

2g2

∫
d4xTrF 2 , (1.3)

where F = Fµν = F a
µνTa, the generators Ta of the Lie algebra of SU(N) are traceless

anti-Hermitian matrices satisfying the algebra

[Ta, Tb] = fabcTc , (1.4)

and with the convention TrTaTb = −1
2
δab, the action is positive definite. The clas-

sical equations of motion read

∇µFµν = 0 , (1.5)

where ∇µ is the gauge covariant derivative, defined as ∇µ = ∂µ + Aµ, and the field
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strength in terms of the gauge covariant derivative is

Fµν = [∇µ,∇ν ] , (1.6)

= ∂µAν − ∂νAµ + [Aµ, Aν ] . (1.7)

We are interested in solutions to the above equation that have finite action, and in

order to achieve this we will require that the field strength vanishes at infinity; it is

easy to show that if the gauge fields are asymptotically pure gauge, i.e.

Aµ → U−1∂µU as |x|2 →∞ , (1.8)

for some U ∈ SU(N), then the field strength vanishes at infinity. Gauge fields with

these boundary conditions may be classified according to their instanton number,

defined as

k = − 1

16π2

∫
d4xTrFµνF̃µν , (1.9)

where F̃µν = 1
2
εµνρσFρσ. The integrand above can be written as the divergence of

a topological current, and consequently reduces to an integral over the 3-sphere at

infinity. The instanton number k counts the number of times the gauge group wraps

this 3-sphere, and is a gauge invariant quantity that breaks up the space of gauge

fields into different topological sectors. Within each of these sectors, we will now

show that the field configurations that minimize the action have either self-dual (+)

or anti-self-dual (−) field strengths:

Fµν = ±F̃µν . (1.10)
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We do this by writing the action as a square of a sum plus the instanton number:

S = − 1

2g2

∫
d4xTrF 2 , (1.11)

= − 1

4g2

∫
d4xTr (F ∓ F̃ )2 ∓ 1

2g2

∫
d4xTrFF̃ , (1.12)

≥ ∓ 1

2g2

∫
d4xTrFF̃ , (1.13)

≥ ±8π2

g2
|k| . (1.14)

It is easy to see that the bound is saturated by (anti-)self-dual field strengths.

Further, these (anti-)self-dual field strengths minimize the action, and thus auto-

matically satisfy the classical equations of motion.

A more detailed discussion of instantons can be found in [32]. We now turn to the

question of how to systematically construct all solutions to (1.10).

1.1.1 ADHM Construction

It is well-known that the group of Euclidean rotations SO(4) admits a decomposition

into SU(2)l × SU(2)r. We can intertwine the SO(4) and the SU(2)l × SU(2)r using

the Pauli matrices:

xαβ̇ = xµ (σµ)αβ̇ , (1.15)

where α, β, · · · and α̇, β̇, · · · are the SU(2)l and SU(2)r indices respectively, and run

over {1, 2}. Our conventions for the σµ matrices are

σµ = (1,−iτ1,−iτ2,−iτ3) , (1.16)

where the τi are the familiar Pauli matrices. It will be useful to keep in mind that

the σµ matrices form a representation of the algebra of quaternions. The goal in this

section is to construct self-dual field strengths, which we will do using the ADHM
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construction [9] (see also [33, 34]). For gauge group SU(N) and instanton number

k, start with a matrix

∆α̇ = Aα̇ + Bαxαα̇ , (1.17)

which is a (N + 2k) × 2k complex matrix with maximal rank. It is important for

what follows that the above matrix is linear in the spacetime coordinate x, that

we work with a quaternionic representation of x, and that the matrix ∆α̇ satisfy a

factorization constraint we will soon introduce. Next, consider the (2k + N) × N

matrix v(x) that satisfies the constraint

(
∆†
)α̇
v = 0 , (1.18)

and the normalization condition

v†v = 1N . (1.19)

With this data, the gauge field is given by

Aµ = v†∂µv . (1.20)

We will now show that the field strength associated to this connection is in fact self-

dual. For this construction to work, we need to impose the factorization condition

(
∆†
)α̇

∆β̇ = δα̇
β̇
f−1 , (1.21)

where f is an invertible k× k matrix that commutes with quaternions. We can now

construct a projection operator orthogonal to v

P = 12k+N − vv† , (1.22)
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which admits a more fruitful representation as

P = ∆α̇ f
(
∆†
)α̇

. (1.23)

One can check that with either of these representations, P 2 = P , and Pv = 0 due

(respectively) to the factorization condition (1.21) and the constraint (1.18). Given

this projection operator and the definition of the gauge field in (1.20), we can write

the connection in terms of this projection operator as

Fµν = ∂µv
† P ∂νv − (µ↔ ν) . (1.24)

The conceit now is to use the aforementioned linearity of ∆α̇, i.e. shifting all the

derivatives from v to ∆α̇ using the derivative of (1.18). Finally, since f is diagonal

in the spinor indices, we find that the corresponding field strength may be written

as

Fµν = 4i (σµν)
β
α v†Bα f B†βv , (1.25)

which is manifestly self-dual, due to the appearance of the self-dual tensor (σµν)
β
α ,

defined as

(σµν)
β
α =

1

4
(σµσ̄ν − σν σ̄µ) β

α , (1.26)

and σ̄µ = (σµ)†. A similar procedure may be used to construct anti-self-dual solu-

tions to the Yang-Mills field equations.

The factorization condition (1.21) in terms of the submatrices A and B takes the

form

2
(
A†
)α̇

Aβ̇ = δα̇
β̇

(
A†
)γ̇

Aγ̇ , (1.27)

2
(
B†
)
α
Bβ = δβα

(
B†
)
γ
Bγ , (1.28)(

B†
)
α
Aβ̇ =

(
A†
)
β̇
Bα . (1.29)
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There is a large amount of gauge freedom in the choice of matrix ∆, i.e. the above

conditions are left invariant under the transformations

∆α̇ 7→ U∆α̇M and v 7→ Uv , (1.30)

where U is an (N + 2k)× (N + 2k) unitary matrix and M is invertible. This gauge

freedom will allow us to send the matrices A and B into what are called their

“canonical” forms:

B =

 0

1k ⊗ 12

 , (1.31)

and the free data is contained in the matrices A and v which can be written as

A = (A1̇,A2̇) =

 S1̇ S2̇

Xµ ⊗ σµ

 and v =

 T

Qα

 . (1.32)

Here, each of the matrices have spacetime transformation properties:

• Sα̇ is a right-handed spinor,

• Xµ is a vector,

• T is a scalar, and

• Qα is a left-handed spinor.

The gauge transformations (1.30) have the following effects on the above data:

Sα̇ 7→ UNSα̇U
−1
k , (1.33)

Xµ 7→ UkX
µU−1

k , (1.34)

T 7→ UNT , (1.35)

Qα 7→ UkQα , (1.36)
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where Uk ∈ U(k) and UN ∈ U(N) respectively. We can summarize this gauge

freedom in the form of a quiver diagram, but let us try and understand the impact

of the factorization condition (1.21) on the canonical forms presented above. In

addition to the requirement of hermiticity for Xµ, the following ADHM equations

are implied

µi =
(
A†
)α̇

(τi)
β̇
α̇ Aβ̇ = 0 . (1.37)

These relations may be massaged into a more familiar form: identify

I = S†
2̇
, (1.38)

J = S1̇ , (1.39)

B1 = X0 − iX3 , (1.40)

B2 = −iX1 +X2 , (1.41)

in terms of which the ADHM equations may be written as

µR = −µ3 = II† − J†J +
[
B1, B

†
1

]
+
[
B2, B

†
2

]
= 0 , (1.42)

µC =
1

2
(µ1 − iµ2) = IJ + [B1, B2] = 0 . (1.43)

The general solution to the ADHM equations is not known except for some cases

with small values of the instanton number [7], and because of this it will be useful to

restate the ADHM construction as follows: consider the space of maps (I, J, B1, B2),

each a linear operator such that

I : CN → Ck , (1.44)

J : Ck → CN , (1.45)

B1,2 : Ck → Ck . (1.46)

The k-instanton moduli spaceMk may be thought of as the space of all such linear
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operators modulo identifications via the gauge transformations (1.33)–(1.36). This

characterization of the instanton moduli space will serve us well in Section 2.3.2,

where we discuss the manner in which integrals over Mk are computed. We now

turn to the discussion of supersymmetric gauge theories, and the manner in which

they may be constructed.

1.2 Supersymmetry

Quantum field theories on Minkowski space usually take as the spacetime symmetry

group the Poincaré group, composed of translations and Lorentz rotations generated

by momentum and angular momentum respectively. Supersymmetry expands this

list of spacetime symmetries to include spin-1
2

generators: the left- and right-handed

Weyl spinor supercharges QI
α and Q̄β̇,J . These supercharges commute with the

momentum and transform as spinors under the Lorentz group. The indices I, J ∈

{1, · · · ,N} and correspond to the N supersymmetries—this is at times referred to

as the N -extended supersymmetry algebra. In this thesis, we will focus on the case

N = 2, but for the purposes of this chapter we will also discuss the case N = 1.

The centrally extended N = 2 supersymmetry algebra is given by

{
QI
α, Q̄β̇,J

}
= 2 (σµ)αβ̇ Pµδ

I
J , (1.47){

QI
α, Q

J
β

}
= 2
√

2εαβε
IJZ , (1.48){

Q̄α̇,I , Q̄β̇,J

}
= 2
√

2εα̇β̇εIJZ . (1.49)

Here, the central charge of the supersymmetry algebra is Z. It is straightforward to

verify that the N = 1 supersymmetry algebra does not admit a central extension.
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1.2.1 Field Representations

It is natural to expect fields to sit in representations of the supersymmetry alge-

bra, just as in Poincaré invariant quantum field theory, fields sit in representations

of the Lorentz algebra. Since the generators of supersymmetry transformations

mix bosonic and fermionic fields—as exemplified in the commutator (1.47)—fields

in supersymmetric theories are grouped into supermultiplets. A convenient way to

package this information is to collect all the fields in a supermultiplet into a su-

perfield that lives on an enlarged spacetime that has both bosonic and fermionic

coordinates—this is called superspace. The action of the supersymmetry generators

has a natural interpretation in terms of superspace. We will begin our discussion

with the N = 1 superspace, where in addition to the usual spacetime coordinate xµ,

we have two anticommuting coordinates θα and θ̄β̇.

In general, a superfield will have more component fields than is required to obtain

an irreducible representation of the supersymmetry algebra, so we have to impose

supersymmetry-invariant constraints on these superfields. Different choices of con-

straints give rise to different supermultiplets, and we will now see a couple of relevant

examples.

Chiral Multiplet

The physical fields that constitute the N = 1 chiral multiplet are a complex scalar

and Weyl spinor. One can package these fields into the chiral superfield Φ which

admits an expansion in the anticommuting Grassmann coordinates as

Φ(y, θ) = φ(y) +
√

2 θψ(y) + θ2 F (y) , (1.50)
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where Φ depends on superspace coordinate θ and the chiral combination yµ = xµ +

iθσµθ̄.1 This special dependence on chiral combinations of superspace coordinates

may be encoded in the constraint

D̄α̇Φ = 0 , (1.51)

where D̄α̇ is a supercovariant derivative

D̄α̇ = − ∂

∂θ̄α̇
− i (σµ)αα̇ θ

α ∂

∂xµ
. (1.52)

The additional field F is an auxiliary field that is required in order to allow the

supersymmetry algebra to close off-shell. The anti-chiral multiplet may be defined

analogously, as

DαΦ̄ = 0 , (1.53)

and Dα is defined in much the same way as (1.52).

Any function of (anti-)chiral superfields is also an (anti-)chiral superfield. A superpo-

tential is any function of only chiral superfields, and admits the following expansion:

for a collection of chiral superfields {Φi}, we have

W (Φi) = W + 2
√

2
∂W

∂φi
θψ + θ2

(
∂W

∂φi
Fi −

1

2

∂2W

∂φi∂φj
ψiψj

)
. (1.54)

As we can see, superpotentials are responsible for coupling the various fields within

the chiral supermultiplet.

1We will be suppressing Weyl indices in most of this text. A summation convention is in effect:
when reading θψ, for example, it stands for θαψα. As another example involving both dotted and
undotted spinors, θσµθ̄ stands for θα(σµ)αα̇θ̄

α̇.
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Vector Multiplet

It is often of physical interest to study theories with gauge fields. Start with a

superfield V that is real, i.e.

V † = V . (1.55)

In the Wess-Zumino gauge, a vector superfield admits the following expansion into

its component fields:

V = −θσµθ̄ Aµ + iθ2 θ̄λ̄− iθ̄2 θλ+
1

2
θ2θ̄2D , (1.56)

where Aµ is a non-abelian gauge field, λ and λ̄ are Weyl fermions (typically called

gauginos) and D is an auxiliary field. Since these fields belong to the same multiplet,

it follows that all of them sit in the adjoint representation of the gauge group. One

can check that the gauge field strength may be defined as

Wα =
1

8
D̄2
(
e2VDαe−2V

)
, (1.57)

which when expanded in terms of its component fields has the form (we are sup-

pressing the index α for convenience)

W = −iλ+ θD − i

2
σµσ̄νθFµν + θ2σµ∇µλ̄ , (1.58)

where Fµν is a nonabelian field strength and ∇µ is a gauge covariant derivative.
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1.2.2 Actions

Consider the following Lagrangian with N = 1 supersymmetry:

L =
1

8π
Im Tr

[
τ

∫
d2θ WαWα

]
+

∫
d2θ d2θ̄ Φ†e−2V Φ (1.59)

+

∫
d2θ W (Φ) +

∫
d2θ̄ W̄ (Φ†) .

In the above equation, τ is the complexified Yang-Mills coupling

τ =
θ

2π
+ i

4π

g2
. (1.60)

It is instructive to expand the above Lagrangian out in terms of the component fields

to see the kinds of interactions between the gauge fields, fermions, and scalars. As we

will soon explain, the requirement ofN = 2 supersymmetry forces the superpotential

W to be zero. The final Lagrangian then reduces to one with just the first two lines

of (1.59), which when expanded in terms of the component fields gives

L =
1

g2
Tr

[
−1

4
FµνF

µν − iλσµ∇µλ̄+
1

2
D2

]
+

θ

32π2
FµνF̃

µν (1.61)

+ Tr
[
|∇µφ|2 − iψ̄σ̄µ∇µψ + F †F − g

(
φ†[D,φ]− i

√
2φ†{λ, ψ}+ i

√
2ψ̄[λ̄, φ]

) ]

We recognize among the terms in the above equation various familiar expressions:

kinetic energies for the gauge fields, gauginos, quarks, scalars, and the second Chern

class FµνF̃
µν which (after integration over spacetime) counts the instanton number

of the gauge field configuration, in addition to various interaction terms.
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N = 2 Vector Multiplet

An N = 2 vector multiplet is built up out of an N = 1 chiral multiplet and an

N = 1 vector multiplet, and has a gauge field, two Weyl fermions, and a scalar.

Now, the most general N = 1 action we have written down in (1.59) cannot be

N = 2 supersymmetric as the superpotential term only couples to the ψ field, and

not the λ field. In an N = 2 vector multiplet, the fermions ψ and λ form an R-

symmetry doublet; consequently, the requirement of N = 2 supersymmetry forces

the superpotential to be zero. For the same reasons, the kinetic terms of the gauginos

and quarks should have the same coefficients. Thus, the full N = 2 supersymmetric

Lagrangian in terms of the N = 1 superfields is

L =
1

8π
Im Tr

[
τ

(∫
d2θ WαWα + 2

∫
d2θ d2θ̄ Φ†e−2V Φ

)]
. (1.62)

In (1.61), we see that the auxiliary fields are still present. The equations of motion

for auxiliary fields is algebraic; consequently, they are not dynamical and may be

replaced by solutions to their equations of motion. Once this is done, we find that

this yields a bosonic potential

Laux. = − 1

2g2
Tr
[
φ†, φ

]2
, (1.63)

which tells us that in order for supersymmetry to remain unbroken at low energies,

it is both necessary and sufficient that φ and φ† commute, i.e. that φ sits in the

Cartan subalgebra of the gauge Lie algebra.

N = 2 Superspace

The 2-extended supersymmetry enjoyed by the action (1.62) is manifest when work-

ing in the N = 2 superspace. A discussion of the same will allow us to introduce
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the notion of a prepotential corresponding to an N = 2 gauge theory.

The N = 2 superspace requires a pair of coordinates (θ̃, ¯̃θ) over and above the

N = 1 superspace, thus coordinatized by (xµ, θ, θ̄, θ̃, ¯̃θ). A chiral superfield in this

superspace admits the expansion

Ψ = Φ(ỹ, θ) +
√

2 θ̃W (ỹ, θ) + θ̃2G(ỹ, θ) , (1.64)

where ỹµ = yµ + iθ̃σµ ¯̃θ, Φ is an N = 1 chiral superfield as given in (1.50), W is an

N = 1 vector multiplet field strength as given in (1.58), and G is

G(ỹ, θ) = −1

2

∫
d2θ̄

[
Φ(ỹ − iθσθ̄, θ, θ̄)

]†
exp−2gV (ỹ−iθσθ̄,θ,θ̄) , (1.65)

required to eliminate unphysical degrees of freedom [35]. In terms of this N = 2

superfield, the action (1.62) is

L = Im

[
τ

4π

∫
d2θ d2θ̃

1

2
Tr Ψ2

]
. (1.66)

It is of fundamental importance to note that the above action is holomorphic in Ψ.

In fact, one can show that any action of the form

L =
1

4π
Im

[∫
d2θ d2θ̃F(Ψ)

]
, (1.67)

is N = 2 supersymmetric, and the function F is referred to as the prepotential of

the theory. Considerations of renormalizability fix the prepotential of the classical

N = 2 super Yang-Mills as

Fclass. = Tr
τ

2
Ψ2 . (1.68)

When studying the low-energy effective action, the above prepotential receives cor-

rections at 1-loop, and there exists an infinite tower of instanton corrections as well.

In the following section, we will derive the form of 1-loop corrections in pure N = 2
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super Yang-Mills theory.

1.2.3 1-Loop Corrections

Nonrenormalization theorems [5] that use the holomorphy of the prepotential allow

us to conclude that it is perturbatively exact at 1-loop. In this section we will review

the computation of this 1-loop contribution to the pure N = 2 gauge theory with

gauge group SU(N) [36]. The low-energy effective theory consists of SU(N) broken

down to its maximal torus U(1)N−1, and has an effective action given in terms of a

prepotential F as

1

4π
Im

[∫
d4θ

∂F(A)

∂Ai
Āi +

1

2

∫
d2θ

∂2F(A)

∂Ai ∂Aj
(
W i
)
α

(
W j
)α]

, (1.69)

where as we have emphasized, F is a holomorphic function of the variables Ai, and

the index i runs over the Cartan directions. Here, Ai is the N = 1 chiral multiplet

in the N = 2 vector multiplet whose adjoint scalar takes the value ai.

Supersymmetric field theories have an R-symmetry that rotates the spinor super-

charges into each other; in (1.47)–(1.49) the R-symmetry rotates the supercharge

indices I, J, · · · . For N = 2 supersymmetry, this R-symmetry is SU(2)R × U(1)R.

The fields in an N = 2 vector multiplet organize themselves into representations of

the SU(2)R symmetry: the scalar and the gauge field each form a singlet, and the

fermions form a doublet. The U(1)R symmetry is inherited from the N = 1 super-

space, and is anomalous; the chiral current is no longer conserved in the quantum

theory, and instead we find

∂µj
µ
5 = − N

8π2
FµνF̃

µν . (1.70)

This in turn tells us that under an infinitesimal U(1)R transformation, the La-
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grangian changes as

δL = −αN
8π2

FF̃ . (1.71)

This change is proportional to the second Chern class, and is quantized, i.e.

1

32π2

∫
FF̃ ∈ Z , (1.72)

and consequently the U(1)R is broken down to Z4N . Given that the change in the

Lagrangian is as above, we obtain

1

16π
Im
[
F ′′(e2iαA)(−F 2 + iFF̃ )

]
=

1

16π
Im
[
F ′′(Φ)(−F 2 + iFF̃ )

]
− αN

8π2
FF̃ ,

(1.73)

which effectively constrains the prepotential to satisfy

F ′′(e2iαA) = F ′′(A)− 2αN

π
, (1.74)

and for infinitesimal α, we find

∂3F
∂A3

=
iN

π

1

A
. (1.75)

As an example, we may set N = 2 and solve the above equation for F1-loop

F1-loop =
i

2π
A2 log

(
A2

Λ2

)
, (1.76)

where Λ is the dynamically generated scale.

The nonrenormalization theorem does not preclude the possibility of the prepo-

tential receiving contributions from instantons. Indeed, as anticipated in [5], the

k-instanton contribution to the prepotential takes the form

Finst. =
∞∑
k=1

Fk
(

Λ

A

)4k

A2 . (1.77)
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To “count instantons” is to compute the functions Fk. The multi-instanton calculus

[7] is able to do this for small k, but it is difficult to extend these computations to

higher instanton number or more general gauge group. We discuss two more fruitful

methods to count instantons in the following chapter: Seiberg-Witten theory, and

equivariant localization.
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2
Seiberg-Witten, Calogero-Moser, and Nekrasov

This chapter will develop various techniques that serve as a substrate to later chap-

ters of this thesis: Seiberg-Witten theory, the elliptic Calogero-Moser system, and

the method of equivariant localization as applied to the ADHM moduli space.

2.1 Seiberg-Witten Theory

As we have emphasised in the previous chapter, to solve an N = 2 gauge theory

is to compute all its non-perturbative (instanton) corrections. In 1994, Seiberg and

Witten [1, 2] presented an essentially geometrical solution to this problem, that

was soon generalized to higher-rank gauge groups [37, 38, 39]. In this section, we

will review the Seiberg-Witten solution for pure N = 2 gauge theory (i.e. without

matter) with gauge group SU(2).

2.1.1 Moduli Space

As we have seen in (1.63), the Lagrangian of this theory has a scalar potential

V = − 1

2g2
Tr
[
φ, φ†

]2
, (2.1)
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On general grounds [40], we expect that supersymmetry-preserving vacua have V =

0, which requires (at least) that φ is valued in the Cartan subalgebra of SU(2); we

choose

φ =
1

2
a τ3 , (2.2)

where a ∈ C and τ3 is the familiar Pauli matrix. The space spanned by a serves

as a 1-complex dimensional parameter space of the low-energy effective theory: the

moduli space of vacua, where the gauge group is broken down to U(1). Thus, at low

energies one has a theory of electromagnetism. For this reason, this space of vacua

is called the Coulomb moduli space. Notice, however, that Weyl reflections send

a→ −a, and consequently this parametrization of the Coulomb moduli space is not

gauge invariant. It is helpful to use as coordinates the gauge invariant moduli

u = Tr φ2 , (2.3)

' 1

2
a2 , (2.4)

to leading order in the semiclassical expansion. Classically, it might seem reasonable

to expect that at u = 0, the full gauge symmetry is restored. We will soon see that

this does not happen, but for the moment we note that a fully quantum mechanical

characterization of the Coulomb moduli space requires that we consider vacuum

expectation values, i.e.

u =
〈
Tr φ2

〉
, (2.5)

Might this moduli space be characterized by a metric as well? The answer is yes.

From (1.67) we see that that the Lagrangian of this theory in terms of the N = 1

superspace may be arrived at by doing the θ̃ integrals, which yields

L =
1

4π

[∫
d4θ

∂F
∂Φ

Φ† +

∫
d2θ

1

2

∂2F
∂Φ2

WαWα

]
, (2.6)
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where Φ is the N = 1 chiral superfield, related to a as the vacuum expectation value

of its scalar component. When viewed as a σ-model on the space of fields, we can

read off the metric on the Coulomb moduli space:

ds2 = Im
∂2F
∂a2

da dā = Im τ(a) da dā . (2.7)

Physically, Im τ(a) must be positive because it is the coefficient of the gauge kinetic

term, and without positivity the action would be ill-defined. Further, the metric

Im τ(a) is a harmonic function as it is the second derivative of the holomorphic

prepotential, and consequently cannot have a local minimum. This in turn means

it is not bounded from below! We conclude from this that if the metric is globally

defined, it cannot be positive-definite, indicating in turn that such a description of

the metric can at best be locally valid.

2.1.2 Electric-Magnetic Duality

We will require a complimentary description of the theory in regions of the moduli

space where Im τ(a) < 0. Consider terms involving the gauge fields in (2.6), which

may be written as

1

32π
Im

∫
τ(a)

(
F + iF̃

)2

=
1

16π
Im

∫
τ(a)

(
F 2 + iF̃F

)
, (2.8)

We want to treat F as an independent field, and in order to do so we need to

implement the Bianchi identity dF = 0 as a constraint. We do this using a Lagrange

multiplier as follows: add to the action a term of the form

1

8π

∫
(VD)µε

µνρσ∂νFρσ =
1

8π

∫
F̃DF , (2.9)
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where FD = dVD. On adding the above term to the action (2.8) and integrating over

F , we get

1

32π
Im

∫ (
−1

τ

)(
FD + iF̃D

)2

=
1

16π
Im

∫ (
−1

τ

)(
F 2

D + iF̃DFD

)
, (2.10)

and we see that the effect of this duality transformation is to replace the gauge

field Aµ that couples to electric charges with a dual gauge field VD that couples to

magnetic monopoles. Simultaneously, the complex gauge coupling is transformed as

τ → τD = −1

τ
(2.11)

Our action has, in addition to this duality symmetry, another invariance. The Yang-

Mills action is invariant under the transformation τ → τ + b where b ∈ R, which

in turn sends θ → θ + 2πb. In order for the path integral over gauge fields to be

well-defined, it is necessary that b ∈ Z. Together, the invariances

τ → τ + 1 and τ → −1

τ
, (2.12)

generate the modular group SL(2,Z). A general element of the modular group acts

on τ as a Möbius transformation. It is natural, in light of this electric-magnetic

duality, to ask if the “electric” vevs a have “magnetic” duals.

Introduce

aD =
∂F
∂a

, (2.13)

and note that this relation implies

τ =
∂aD

∂a
. (2.14)

We can use this definition to write the metric on the moduli space (2.7) in a sym-
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metric form

ds2 = Im daD da . (2.15)

This metric may be written in an SL(2,R) invariant manner, by introducing the

vector aα = (aD, a) and the antisymmetric ε-tensor as

ds2 = − i

2
εαβ

daα

du

daβ

dū
du dū . (2.16)

SL(2,R) is generated by the matrices

 0 1

−1 0

 and

1 b

0 1

 , (2.17)

Once again, for the path integral to be well-defined we require that b ∈ Z, and we

see that the theory has a duality group that is the modular group.

2.1.3 Monodromies, Monopoles, and Dyons

At large |a|, the theory is asymptotically free, and the prepotential is well-approximated

by its 1-loop evaluation, which from (1.76) is

F(a) =
i

2π
a2 log

a2

Λ2
, (2.18)

and in terms of which we may compute the magnetic vev:

aD =
2ia

π
log

a

Λ
+

ia

π
. (2.19)

A closed loop in the u-plane around the point at infinity—where the above expres-

sions are valid—mixes the electric and magnetic vevs in the vector (aD, a)T via the
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monodromy matrix

M∞ =

−1 2

0 −1

 , (2.20)

thereby signaling that there must be a non-trivial monodromy about some finite-u

point in the moduli space. The simplest guess we alluded to earlier—that there is a

singularity in the moduli space at the origin, which is consistent with the u → −u

symmetry—cannot be true, because if it was then the two monodromies would

commute, rendering the coordinate a globally valid. As we have argued, this cannot

be true, so we require that there be at least two points on the Coulomb moduli space

with non-trivial monodromies about them. Let these points be at ±u0.

Singularities in the moduli space are points at which ordinarily massive particles

go massless, since at these points, the notion of a Wilsonian effective action is no

longer applicable. These singularities cannot be because of gauge bosons becoming

massless, as this would imply a conformally invariant theory in the infrared. How-

ever, conformal invariance implies either u = 0 or that Trφ2 is a dimension zero

operator i.e. the unit operator, neither of which is true. Since there are no other

elementary multiplets in the theory, we are forced to conclude that the singularities

in the moduli space are due to collective excitations — monopoles and dyons —

going massless.

The mass of particles in a centrally extended N = 2 supersymmetric theory is

bounded by its central charge — this is a straightforward consequence of the super-

symmetry algebra for massive irreducible representations — and we find

M ≥
√

2|Z| . (2.21)

There also exists a BPS bound on the mass, which in turn is determined in terms

of electric and magnetic charges [41]. For a low-energy effective theory determined
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by a prepotential, the central charge is given by

Z = nea+ nmaD , (2.22)

where ne and nm count the units of electric and magnetic charge. Let us suppose

that at the point +u0, a magnetic monopole goes massless. We may then conclude

that

aD(u0) = 0 . (2.23)

Monopoles are described by N = 2 hypermultiplets and do not couple to “electric”

fields in a local manner, although they do so locally with the dual “magnetic” fields,

in much the same way that electrons (also described by N = 2 hypermultiplets)

couple locally to “electric” fields. Schematically,

electrons←→ (Φ,W ) , (2.24)

monopoles←→ (ΦD,WD) , (2.25)

where (Φ,W ) are the N = 1 multiplets that constitute an N = 2 chiral multiplet

and (ΦD,WD) are their magnetic duals.

To summarize, near the u0 singularity we have a low-energy theory consisting of a

“magnetic” N = 2 vector multiplet coupled to light monopoles, which is precisely

N = 2 SQED. From the 1-loop β-function, the magnetic coupling is

τD ∼ −
i

π
log aD . (2.26)

Since aD is a good coordinate near u0, let us suppose

aD(u) ∼ c(u− u0) , (2.27)
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from which we can conclude that

a(u) ∼ a0 +
i

π
c(u− u0) log(u− u0) , (2.28)

and a monodromy about u0 is governed by the matrix

Mu0 =

 1 0

−2 1

 . (2.29)

The third monodromy matrix may be obtained from Mu0 above and M∞ from (2.20)

via the condition Mu0M−u0 = M∞, and is

M−u0 =

−1 2

−2 3

 . (2.30)

The particle that goes massless at this singularity has electric and magnetic charges

governed by the relation (nm, ne)M−u0 = (nm, ne), which imposes the condition

nm = −ne.

Let us take a moment to summarize: we determined that our theory has a moduli

space — the u-plane — of vacua equipped with a metric, whose expression in terms

of the electric coordinate a is not globally valid. We concluded on the basis of this

that the moduli space has singularities — three of them to be precise, at∞ and ±u0,

consistent with Weyl reflection symmetry — and determined the monodromies of

the electric and magnetic coordinates about each of them. These singularities were

interpreted as due to electrically and magnetically charged particles going massless.

With these three monodromies, we have elucidated the structure of the Coulomb

moduli space, and now move on to discuss the manner in which these insights may

be used to solve the theory. For what follows, it will be important to keep in mind

that for our theory to make sense physically, we require Im τ > 0.
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2.1.4 Solution

Here we briefly discuss the Seiberg-Witten solution. The monodromy matrices that

we have determined in the previous section all generate a subgroup Γ(2) ∈ SL(2,Z).

Further, the u-plane with the singularities at∞ and ±u0 is the same as the quotient

of the upper-half plane H/Γ(2), and without loss of generality, we set u0 = Λ2. At

this point, we draw on intuition from the theory of elliptic curves, where the space

H/Γ(2) is the moduli space of a family of the following family of elliptic curves

y2 = (x− Λ2)(x+ Λ2)(x− u) . (2.31)

Let us arrange our branch cuts such that we have one between ±Λ2 and the other

running between u and ∞. An elliptic curve has the topology of a torus, to which

one can associate two independent homology cycles: let us call the cycle running

once around the cut (−Λ2,Λ2) the A cycle, and the cut going from +Λ2 to u on the

first sheet, and then cycling back from u to +Λ2 on the second sheet the B cycle.

Then the electric and magnetic vevs are identified with the cycles in the following

manner:

a =

∮
A

λSW , (2.32)

aD =

∮
B

λSW , (2.33)

where λSW is a suitably chosen differential 1-form that is called the Seiberg-Witten

differential.

What do the monodromies do in this picture, and what properties must λSW sat-

isfy? When u executes a monodromy around one of the singular points, the cycles

on the elliptic curve change into linear combinations of themselves, which in turn

implies that the periods and dual periods are transformed into linear combinations
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of themselves, just as our u-plane analysis indicated. Further, as

τ =
∂aD

∂a
=

daD/du

da/du
, (2.34)

we find that the complex structure parameter of the torus is identified with the

complex gauge coupling. This quantity naturally satisfies Im τ > 0, and thus we

have self-consistently satisfied the requirement of positivity of the metric on the

moduli space. For our elliptic curve (2.31) the Seiberg-Witten differential [1, 2] is

λSW =
1√
2π

√
x− u√
x2 − Λ4

dx , (2.35)

and it is easy to check that this choice is consistent with — indeed, fixed by! — the

monodromy data we found for the electric and magnetic variables in the previous

section.

As the integrals in question are elliptic, the periods may be evaluated in terms

of hypergeometric functions. We can now invert a(u) and insert the result in the

expression for aD order-by-order in Λ. On integrating this, we recover the instanton

expansion as in (1.77). In conclusion, for the pure N = 2 super Yang-Mills theory

with gauge group SU(2), the Seiberg-Witten solution at the first few orders in the

instanton expansion [39] is

F1 =
1

2
, (2.36)

F2 =
5

64
, (2.37)

F3 =
3

64
. (2.38)

Some of these results were first checked against explicit multi-instanton calculus

results [7], in addition to later being verified at higher orders via Nekrasov’s equiv-

ariant localization [3, 4].
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2.2 Calogero-Moser System

In this section we recall some concepts from the theory of integrable systems. After

this, we introduce the Calogero-Moser integrable system and discuss its spectral

curve.

2.2.1 A Brief Interlude: Integrable Systems

A mechanical system is said to be integrable if there exist as many integrals of

motion (i.e. conserved quantities) as there are degrees of freedom. More precisely, if

the mechanical system under investigation has n degrees of freedom, we require that

there exist n functionally independent conserved quantities Ik(x, p); this is embodied

in the conditions

{Ik, H} = 0 and {Ik, I`} = 0 . (2.39)

Once these conditions are satisfied we can canonically transform to action (Ik) and

angle (ψk) variables that evolve linearly in time:

Ik(t) = Ik(0) and ψk(t) = ψk(0) + ckIk t . (2.40)

There exists a more fruitful (and fully equivalent) formulation of the criterion for

integrability: a system is said to be integrable if one can find a Lax pair of N ×N

matrix-valued functions on phase space (L,M) such that the equation

L̇ = [L,M ] , (2.41)

is equivalent to Hamilton’s equations of motion. There are two points to note here.
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The first is that the size N of the Lax matrices—for reasons that will become clear

shortly—is not related to the dimension 2n of phase space in a straightforward

manner, and the best we can do is bound n ≤ N . The second is that once found,

Lax pairs are not unique: for any matrix S of the same size, it is easy to verify that

the pair (L′,M ′) defined by

L′ = S−1LS , (2.42)

M ′ = S−1MS − S−1Ṡ . (2.43)

is also a Lax pair. Modulo this ambiguity, it may be verified that once a Lax pair

is found, the integrals of motion are given by

Ik = TrLk . (2.44)

From Cayley’s theorem it is clear that the Ik with k ≥ N are not independent and

can be expressed in terms of lower Ik.

It is often the case that one can find a family of Lax pairs labelled by a complex

parameter called a spectral parameter. That is, the equation (2.41) is lifted to a

one-parameter family of equations

L̇(z) = [L(z),M(z)] , (2.45)

which is equivalent to Hamilton’s equations of motion for all values of z. To such a

Lax pair with a spectral parameter, we may naturally associate a spectral curve

Γ = {(k, z) ∈ C× C : det [kI − L(z)] = 0} , (2.46)

and a differential 1-form

dλ = k dz . (2.47)
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2.2.2 Calogero-Moser Systems

The Calogero-Moser system is a family of integrable classical mechanical systems

that have (n+ 1) particles interacting pairwise

H =
1

2

n+1∑
i=1

p2
i −

m2

2

n+1∑
i 6=j

V (xi − xj) , (2.48)

the potential function is either

rational : V (x) =
1

x2
, (2.49)

trigonometric : V (x) =
1

sin2 x
, (2.50)

elliptic : V (x) = ℘(x;ω1, ω2) . (2.51)

The function ℘(x;ω1, ω2) is called the Weierstraß elliptic function, and is defined as

℘(x;ω1, ω2) =
1

x2
+

∑
(m,n) 6=(0,0)

(
1

(x+ 2mω1 + 2nω2)2
− 1

(2mω1 + 2nω2)2

)
, (2.52)

and is doubly periodic with periods 2ω1 and 2ω2. These three models are integrable

in the sense we have discussed in the previous section—the equations of motion

admit a representation in terms of a Lax pair with spectral parameter—and they are

related to each other: taking the limit ω2 → ∞ while holding ω1 fixed interpolates

between the elliptic and trigonometric Calogero-Moser systems; in addition to this,

taking the subsequent limit ω1 → ∞ yields the rational Calogero-Moser system.

Thus,

elliptic CM
ω2→∞−−−−→ trigonometric CM

ω1→∞−−−−→ rational CM . (2.53)
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It is easy to anticipate which of these will be of interest to supersymmetric gauge

theories. We know that N = 2 supersymmetric gauge theories have a complexified

Yang-Mills coupling constant τ , which courtesy of the Seiberg-Witten solution may

be interpreted as a modular parameter of an algebraic curve. If this object is pro-

tected from renormalization effects, it is reasonable to anticipate its importance at

low energies, i.e. in the Seiberg-Witten curve. An example of such a theory is N = 2

supersymmetric Yang-Mills theory coupled to a single adjoint hypermultiplet, since

its β-function vanishes; this is referred to as the N = 2? gauge theory. Further, it is

natural to expect the corresponding integrable system to make reference to a mod-

ular parameter as well, and this leads us to conclude that the integrable system of

interest is the elliptic Calogero-Moser system, whose two periods may be combined

to give a modular parameter.

2.2.3 Lax Pairs for Elliptic Calogero-Moser Systems

The elliptic Calogero-Moser system has the following Lax pair with spectral param-

eter [42]:

Lij(z) = piδij −m(1− δij)Φ(xi − xj; z) , (2.54)

Mij(z) = di(x)δij +m(1− δij)Φ′(xi − xj; z) , (2.55)

where

di(x) = m
∑
k 6=i

℘(xi − xk) , (2.56)

and the function Φ(x; z) is the Lamé function, defined as

Φ(x; z) =
σ(z − x)

σ(x)σ(z)
exζ(z) , (2.57)
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is a solution to the Lamé equation

(
d2

dz2
− ℘(x)

)
Φ(x; z) = 2℘(z)Φ(x; z) , (2.58)

and the functions ζ and σ are auxiliary Weierstrass functions, related to ℘ as

℘(z) = −ζ ′(z) and ζ(z) =
σ′(z)

σ(z)
. (2.59)

The spectral curve corresponding to the elliptic Calogero-Moser system is the same

as the Seiberg-Witten curve of the N = 2? gauge theory with gauge group U(N).

This correspondence will be expanded upon and developed further in Chapter 3.

2.3 Equivariant Localization

In this section we outline the manner in which k-instanton contributions to the

prepotential of a pure N = 2 gauge theory may be computed.

2.3.1 Topological Twisting

We start with the pure N = 2 super Yang-Mills action (1.61). The procedure we

are going to introduce is referred to as topological twisting [43], and begins with the

identification of the global symmetry group of the theory, which is

H = SU(2)l × SU(2)r︸ ︷︷ ︸
K

×SU(2)R , (2.60)

where the underbraced part K = SO(4) is the group of Euclidean rotations in R4,

i.e. the analogue of the Lorentz group. The question of how to embed K in H has

many possible answers, of which the above resolution is one; indeed, one can use
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non-standard embeddings as well. Let SU(2)d = diag SU(2)r×SU(2)R, the diagonal

subgroup, and let

K ′ = SU(2)l × SU(2)d . (2.61)

Topological twisting has the effect of turning the supercharge indices I, J, · · · into

spacetime indices. Since we have changed what we call the Lorentz group, our fields

have to be reconstituted into irreducible representations of this new Lorentz group.

This regrouping of degrees of freedom breaks up our spinor supercharges into tensor,

vector, and scalar components defined as

Q̄+
µν = σ̄α̇Iµν Q̄α̇I , (2.62)

Qµ = σ̄αIµ QαI , (2.63)

Q̄ = εα̇IQ̄α̇I , (2.64)

Topological twisting has the happy consequence that all fields will now transform

as integer spin fields under K ′; for example, the fermions become

ψ̄µν = σ̄α̇Iµν ψ̄α̇I , (2.65)

ψµ = σ̄αIµ ψαI , (2.66)

ψ̄ = εα̇Iψ̄α̇I . (2.67)

The Lagrangian (1.61) can now be written in Q̄-exact form [44]. That is, in terms

of the corresponding actions in component form, we find

SYM = Stop. + Q̄

[
τ

16π

∫
d4x′Tr

(
F−µνψ̄

µν − i
√

2ψµ∇µφ
† − iψ̄[φ†, φ]

)]
︸ ︷︷ ︸ , (2.68)

where Stop. is the topological term (1.9) which is Q̄-closed, and

F−µν =
1

2

(
Fµν − F̃µν

)
. (2.69)
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In (2.68), let us call the underbraced expression VYM. It is possible to show that

any correlation function of the form

〈O〉 =

∫
DX O e−SYM , (2.70)

where DX is the path integral measure over all fields, is insensitive to the addition

of Q̄-exact terms in the action. To see this, deform the action like so

〈O〉′ =
∫

DX O e−SYM+Q̄δV , (2.71)

= 〈O〉+

∫
DX O e−SYM Q̄δV , (2.72)

= 〈O〉+

∫
DX Q̄

(
O e−SYMδV

)
, (2.73)

= 〈O〉 . (2.74)

Here, we have used the fact that physical observables sit in the Q̄-cohomology, so

the correlator of Q̄-exact terms identically vanishes, as in the second last step above.

It is possible to use this freedom to add Q̄-exact terms to modify the action in such

a way [44] that we get

SYM = Stop. +

∫
d4x′Tr

(
−t2F−µνF−µν + · · ·

)
, (2.75)

where the · · · are terms of O(t). Since the path integral is insensitive to the value

of t, for convenience we may evaluate it in the limit t → ∞, which gives us the

equations of motion

F−µν = 0 . (2.76)

From (2.69), this is nothing but the self-dual Yang-Mills equations

Fµν = F̃µν . (2.77)
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Now, in Section 1.1.1 we studied the ADHM moduli space: the set of solutions to

the ADHM equations modulo gauge transformations. This method constructs all

self-dual solutions to the Yang-Mills equations. Notice that in the above discussion

we started with an infinite-dimensional path integral over the space of fields, and

localized it onto the finite-dimensional space of solutions to the self-dual equations,

i.e. precisely the ADHM moduli space!

Since the partition function of a gauge theory may be thought of as the expectation

value of the unit operator, we can conclude that the object of interest is the volume

of the k-instanton moduli space Mk for all k, and thus the partition function we

wish to compute may be written formally as

Z =
∞∑
k=0

qk
∮
Mk

1 . (2.78)

where the parameter q formally keeps track of the contributions from each k-

instanton sector. For an asymptotically free theory,

q = Λb , (2.79)

where Λ is the dynamically generated scale, and b is the coefficient of the β-function

for the Yang-Mills coupling constant. Of course, the conformally invariant theories

we are considering have b = 0, and in this case

q = e2πi τ , (2.80)

where τ is the bare coupling constant.
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2.3.2 The Ω Background

The computation of volumes of k-instanton moduli spaces is difficult because the

spaces Mk are non-compact, i.e. naively, they have a divergent volume. Thus, a

physically sensible result will require that we adopt a regularization scheme: the

Ω background. We will do these integrals using localization theorems, and will

introduce them in a series of examples, closely following [45].

Supersymmetric Quantum Mechanics and Localization

Consider a supersymmetric particle on C2 coordinatized by (z, w), such that the co-

ordinates z, w are supersymmetry invariant, and (z̄, ψz) and (w̄, ψw) are supersym-

metric partners. The angular momenta orthogonal to the two orthogonal complex

planes is such that J1 = 1 for z and J2 = 1 for w. The partition function of the

theory is given by

Z(β; ε1, ε2) = TrHsusyeiβε1J1eiβε2J2 , (2.81)

where Hsusy is the space of supersymmetric states, which (apart from a Gaussian

that isn’t holomorphic) can only be polynomials in z and w i.e.

Hsusy =
⊕
m,n≥0

C zmwn . (2.82)

The partition function is then given by

Z(β; ε1, ε2) =
1

1− eiβε1

1

1− eiβε2
. (2.83)

Next, let us consider a charged particle moving in a magnetic flux j that pierces a

CP1, in turn coordinatized by z. The supersymmetry-invariant Hilbert space this
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time is

Hsusy =

2j⊕
k=0

C zk(∂z)⊗j , (2.84)

If z has charge 1 under the generator J , then the partition function

Z(β; ε) = TrHsusyeiβεJ , (2.85)

=

+j∑
k=−j

eiβε k , (2.86)

which can be rewritten in a more enlightening form

Z(β; ε) =
eiβε j

1− e−iβε
+

e−iβε j

1− eiβε
. (2.87)

These examples hint at a localization theorem, which we will now state without

proof: for a supersymmetric particle moving on a complex manifold M of dimension

d with an isometry U(1)n generated by the set {Jk}nk=1 that has isolated fixed points,

and in the presence of a magnetic flux—corresponding to a line bundle L on M ,

and where the supersymmetric states are holomorphic sections of this bundle—the

partition function is

Z(β; ε1, · · · , εn) = TrH(−1)F eiβ
∑
k εkJk , (2.88)

=
∑
p

eiβ
∑
k j(p)kεk∏d

a=1

(
1− eiβ

∑
k `(p)k,aεk

) . (2.89)

The theorem gives a result that is “localized” onto fixed points p of the U(1)n

isometry on M . The quantities j(p) and `(p) are defined in terms of characters—

traces over the fiber and tangent space at p, as

Tr L|p eiβ
∑
k εkJk = eiβ

∑
k j(p)kεk , (2.90)

Tr TM |p eiβ
∑
k εkJk =

d∑
a=1

eiβ
∑
k `(p)k,aεk . (2.91)
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It is convenient to adopt the following convention: vector spaces, like people, shall

henceforth be recognized by their characters. Thus, we write

L|p = eiβ
∑
k j(p)kεk , (2.92)

TM |p =
d∑
a=1

eiβ
∑
k `(p)k,aεk . (2.93)

It is easy to check that the general expression (2.89) reproduces the partition func-

tions (2.83) and (2.87).

Lifts and Twists

We return in this section to the study of N = 2 gauge theories, characterized by

a gauge group G = SU(N) with rank r = N − 1, a flavour summetry group F

with hypermultiplets in the representation R ⊕ R̄. This data can also be used to

define a five-dimensional N = 1 gauge theory, which we will put on C2 × [0, β]

and coordinatized by (z, w) for the two complex planes, and ξ5 for the circle on

identifying

(z, w, 0) ∼ (eiβε1z, eiβε2w, β) . (2.94)

This is the Ω background. Observe in particular that the non-zero Ω background

parameters (ε1, ε2) introduce an off-set in the identifications of the coordinates as

we move once around the circle. The limit β → 0 will be the four-dimensional

limit, and the vacuum expectation values of the gauge field and the masses of the

hypermultiplets when integrated along the circle are

diag(eiβa1 , · · · , eiβar) ∈ U(1)r , (2.95)

diag(eiβm1 , · · · , eiβmf ) ∈ U(1)f . (2.96)
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We are interested in the supersymmetric partition function of this N = 1 gauge

theory on this background

Z(β,Ω; a1, · · · , ar;m1, · · · ,mf ) = TrH5d
(−1)F eiβ(ε1J1+ε2J2+

∑r
s=1 asQs+

∑f
s=1msFs) ,

(2.97)

where J1,2 generate spatial rotations in the two complex planes, Q1,··· ,r generate

global gauge rotations, and F1,··· ,f generate flavour rotations. The trace itself is over

the Hilbert space of the five-dimensional gauge theory.

Let us address the question of what gauge field configurations dominate the above

trace. At each time slice, from considerations of energetics it is easy to see that gauge

field configurations that are “close” to k-instanton configurations will contribute. In

the five-dimensional picture, one can think of the ξ5 direction as a time direction,

in which case the collective coordinates describing the k-instanton configuration can

be thought of as varying slowly along the circle. This can be approximated by a

quantum mechanical particle moving on the k-instanton moduli space, and is called

the moduli space approximation [46]. In supersymmetric theories this approximation

is exact, and we have

Z =
∞∑
k=0

e
−β 8π2

g2
k

TrHk(−1)F eiβ(ε1J1+ε2J2+
∑r
s=1 asQs+

∑f
s=1msFs) , (2.98)

where g is the five-dimensional gauge coupling constant, and Hk is the Hilbert

space of the supersymmetric particle moving on the k-instanton moduli space, whose

bosonic part is the same as the ADHM moduli spaceMk, which has real dimension

4Nk. There are fermionic directions V(R) which come from the zero modes of

hypermultiplets in the representation R, which have real dimension 2C(R)k. Here,

C(R) is the quadratic Casimir in the representation R that is normalized such that

it is equal to 2N for the adjoint representation.

Accounting for the spatial, gauge, and flavour rotations, if the fixed points p of the
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U(1)2 ×U(1)r action were isolated, we can use the localization theorem to evaluate

this integral.

Z =
∞∑
k=0

e
−β 8π2

g2
k
∑
p

∏Ck
t=1(1− eiβwt(p))∏2Nk
t=1 (1− eiβvt(p))

, (2.99)

in analogy with (2.89). As before, the functions vt(p) and wt(p) are the characters

V(R)|p =

C(R)k∑
t=1

eiβwt(p) , (2.100)

TMk|p =
2Nk∑
t=1

eiβvt(p) , (2.101)

that are functions of the Ω deformation parameters, the vacuum expectation values

of the adjoint scalar, and the masses of the hypermultiplets.

We wish to take the four-dimensional limit β → 0 while keeping the Ω-deformation

parameters and the as finite — this will yield a partition function for a deformed

N = 2 gauge theory, which will soon be related to the prepotential. Notice that in

the sum over instantons, at fixed k there are more factors in the denominator than

the numerator, so naively the limit β → 0 will diverge. In order to extract sensible

answers, we rescale our classical instanton contribution as

e
− 8π2k

g2
β

=
[
(−iβ)2N−C(R) q

]k
. (2.102)

The limit β → 0 is taken while keeping q (soon to be related to the instanton

counting parameter) fixed. Finally, the four-dimensional limit is determined to be

Z =
∞∑
k=0

qk
∑
p

∏Ck
t=1wt(p)∏2Nk
t=1 vt(p)

, (2.103)

and the four-dimensional coupling is related to the five-dimensional coupling by

1

g2
YM

=
β

g2
. (2.104)
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This identification is nice because we can now interpret β−1 as an ultraviolet scale,

and (2.102) may be understood as incorporating the logarithmic running of the four-

dimensional Yang-Mills coupling. Indeed, the expression 2N−C(R) is the coefficient

of the β-function, and the dynamical scale is related to q as

q = Λ2N−C(R) . (2.105)

In this thesis, we will consider conformal theories, i.e. theories where

C(R) = 2N . (2.106)

which can be achieved when one has (i) a massive hypermultiplet in the adjoint

representation, or (ii) 2N hypermultiplets in the fundamental representation. In

these cases, the instanton counting parameter is dimensionless, and simply given by

q = e2πi τ , (2.107)

where τ is, as before, the bare complexified Yang-Mills coupling.

The expression (2.103) is quite formal, and it would be desirable to have a more

explicit or constructive expression. We turn to this in the following section.

Deformations and Tableaux

Recall from Section 1.1.1 the ADHM construction of the k-instanton moduli space:

the space of operators (I, J, B1, B2) that satisfy the ADHM equations

~µ = (µR,ReµC, ImµC) = 0 , (2.108)
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modulo gauge transformations, and consider the following modification [47, 48]:

Mk,t = {µC(x) = t |x ∈ Xk} /GL(k) , (2.109)

where the vector space Xk is defined by the character

Xk =
(
e−iβε1 + e−iβε2

)
V V ∗ +W ∗V + e−iβ(ε1+ε2)V ∗W , (2.110)

where as before V = Ck and W = CN and it is straightforward to check that when

t = 0, we recover the usual ADHM construction. The proposed modification was

introduced [47] in order to resolve small-instanton singularities, and our strategy

will be to apply the localization theorem to Mk,t and then take the limit t → 0.

From [49], we learn that the fixed points of the U(1)2+r action on can be classified

in the following manner, with the use of Young tableaux.

Fixed points on Mk,t are labelled by N Young diagrams Y = (Y1, · · · , YN) subject

to the constraint that the total number of boxes in the collection Y is k. In each

of the Ys, let us use the pair of positive integers (i, j) to specify the position of a

particular box. Define

Wp =
N∑
s=1

eiβas , (2.111)

Vp =
N∑
s=1

∑
(i,j)∈Ys

eiβφ(a,s) , (2.112)

where

φ(a, s) = a+ (1− i)ε1 + (1− j)ε2 . (2.113)

We then determine the functions v(p)t from

TMk,t|p = W ∗
p Vp + eiβ(ε1+ε2)V ∗pWp −

(
1− eiβε1

) (
1− eiβε2

)
VpV

∗
p (2.114)
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and w(t)p for the case of hypermultiplets in the fundamental and adjoint represen-

tations

V(fund)|p = e−iβmVp , (2.115)

V(adj)|p = e−iβmTMk,t|p . (2.116)

For each tableau Y = (λ1 ≥ λ2 ≥ · · · ) where λi is the height of the i-th column,

and Y T = (λ′1 ≥ λ′2 ≥ · · · ) is the transposed tableau. A box s = (i, j) has arm- and

leg-lengths

AY (s) = λi − j , (2.117)

LY (s) = λ′j − i . (2.118)

In terms of the arm- and leg-lengths defined above, we define a function E by

E(a, Ya, Yb, s) = a− ε1LYb(s) + ε2 (AY1(s) + 1) . (2.119)

We now have all the ingredients to construct the Nekrasov partition function corre-

sponding to the field content of the N = 2 gauge theory under consideration. For

example, the contribution of the SU(N) vector multiplet to the Nekrasov integrand

is derived by plugging (2.111) and (2.112) into (2.114). The answer, in terms of the

E functions we have defined above, is

zvect.(a,Y) =

 N∏
i,j=1

∏
s∈Yi

E(ai − aj, Yi, Yj, s)
∏
t∈Yj

(ε1 + ε2 − E(aj − ai, Yj, Yi, t))

−1

.

(2.120)
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The contribution of the adjoint hypermultiplet is

zadj.(a,Y,m) =
N∏

i,j=1

∏
s∈Yi

(E(ai − aj, Yi, Yj, s) +m)× · · ·

· · · ×
∏
t∈Yj

(ε1 + ε2 − E(aj − ai, Yj, Yi, t)−m) . (2.121)

The contribution from each fundamental matter multiplet is

zfund.(a,Y,m) =
N∏
i=1

∏
s∈Yi

(φ(ai, s)−m+ ε1 + ε2) . (2.122)

These pieces may be put together in various combinations depending on the theory

under consideration. For example, when interested in the partition function of an

N = 2? theory—a theory with a vector multiplet and an adjoint hypermultiplet—the

partition function is constructed as

Z(a,m; ε1, ε2) =
∞∑
k=0

qk
∑
Y

zvec.(a,Y; ε1, ε2) zadj.(a,Y,m; ε1, ε2) . (2.123)

This is the Nekrasov partition function, denoted ZNek.

2.3.3 The Prepotential

The above procedure yields a partition function for a deformed N = 2 gauge theory,

i.e. one that depends on the Ω deformation parameters. Nekrasov and Okounkov

[3, 4] showed that the prepotential of the undeformed N = 2 gauge theory may be

recovered from the Nekrasov partition function as

F = − lim
ε1,ε2→0

ε1ε2 logZNek . (2.124)

45



Our strategy throughout this thesis will be to first compute quantities in the de-

formed gauge theory, and then take the limit in which the Ω deformation parameters

vanish. More details relevant to the specific theories we will turn our attention to

will be contained in the chapters that follow.
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3
Chiral Rings

In this chapter, we study N = 2? theories with gauge group U(N) and use equivari-

ant localization to calculate the quantum expectation values of the simplest chiral

ring elements. These are expressed as an expansion in the mass of the adjoint hy-

permultiplet, with coefficients given by quasi-modular forms of the S-duality group.

Under the action of this group, we construct combinations of chiral ring elements

that transform as modular forms of definite weight. As an independent check, we

confirm these results by comparing the spectral curves of the associated Hitchin sys-

tem and the elliptic Calogero-Moser system. We also propose an exact and compact

expression for the 1-instanton contribution to the expectation value of the chiral

ring elements.

3.1 Introduction

N = 2 super Yang-Mills (SYM) theories in four dimensions are an extraordinarily

fertile ground to search for exact results. Indeed, their non-perturbative behaviour

can be tackled both via the Seiberg-Witten (SW) description of their low-energy

effective theory [1, 2], and via the microscopic computation of instanton effects

by means of localization techniques [3, 50, 4, 51, 52, 20]. Understanding the far-
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reaching consequences of strong/weak coupling dualities in the effective theory has

always been a crucial ingredient in the SW approach. On the other hand, the same

dualities can also be exploited in the microscopic description through the associated

modular structure. The comparison of how these dualities may be used to constrain

physical observables in the two approaches is one of the main themes of this paper.

Among the N = 2 models, much effort has been devoted to gaining a deeper un-

derstanding of superconformal theories and their massive deformations (see for ex-

ample the collection of reviews [53] and references therein), where many different

approaches have been investigated. Among these we can mention the relation to

integrable models [54], the 2d/4d AGT correspondence [55, 56], the use of matrix

model techniques [57, 58] and the link to topological string amplitudes through ge-

ometric engineering [59, 30, 60]. Furthermore, the pioneering work of Gaiotto [22]

has taught us that the duality properties are of the utmost relevance.

In this chapter we focus on N = 2? theories, which we briefly review in Section 3.2.

Besides the gauge vector multiplet, they contain an adjoint hypermultiplet of mass

m that interpolates between the N = 4 SYM theories (when m → 0) and the

pure N = 2 SYM theories (when m → ∞). The N = 2? theories inherit from

the N = 4 models an interesting action of the S-duality group; in particular, their

prepotential satisfies a modular anomaly equation which greatly constrains its form.

Modular anomaly relations in gauge theories were first noticed in [10] and are related

to the holomorphic anomaly equations that occur in topological string theories on

local Calabi-Yau manifolds [61, 62, 63, 64]. These equations have been studied in a

variety of settings, for example in an Ω background [65, 66, 67, 68, 30, 69, 24, 23, 70,

25, 71, 72, 73], from the point of view of the AGT correspondence [74, 75, 76, 77], in

the large-N limit [25], and in SQCD models with fundamental matter [24, 23, 26, 78].

Recently, the modular anomaly equation for N = 2? theories with arbitrary gauge

groups has been linked in a direct way to S-duality [11, 12, 13]. This approach has
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led to a very efficient way of determining the mass expansion of the prepotential

in terms of: i) quasi-modular functions of the gauge coupling and ii) the vacuum

expectation values au of the scalar field Φ of the gauge multiplet such that only

particular combinations, defined purely in terms of sums over the root lattice of the

corresponding Lie algebra, appear. These results have been checked against explicit

computations using equivariant localization.

In this work, we take the first steps towards showing that similar modular structures

also exist for other observables of N = 2? gauge theories. We choose to work with

U(N) gauge groups, and consider the quantum expectation values

〈Tr Φn〉 . (3.1)

The supersymmetry algebra implies that correlators of chiral operators factorize and

can therefore be expressed in terms of the expectation values in (3.1).1

A priori, it is not obvious that these chiral observables exhibit modular behaviour.

However, we show that it is always possible to find combinations that transform as

modular forms of definite weight under the non-perturbative duality group SL(2,Z).

These combinations have a natural interpretation as modular-covariant coordinates

on the Coulomb moduli space, and can be analysed using two different techniques:

i) the SW approach via curves and differentials, and ii) equivariant localization

combined with the constraints arising from S-duality.

For N = 2? theories there are many distinct forms of the SW curve that capture

different properties of the chiral observables. In one approach, due to Donagi and

Witten [14, 15], the SW curve has coefficients An that have a natural interpretation

as modular-covariant coordinates on the Coulomb moduli space. Thus, this approach

provides us with a natural setting to study the elliptic and modular properties

1More general correlators involving also one anti-chiral operator have recently been considered
in [79].
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of the observables (3.1). Another form of the SW curve was found by using the

relation with integrable systems [16]. For the N = 2? theory, the relevant curve was

proposed by D’Hoker and Phong [17, 6], who used the close relation between the

gauge theory and the elliptic Calogero-Moser system [18]. In this second formulation,

the coefficients of the spectral curve of the integrable system are interpreted as

symmetric polynomials built out of the quantum chiral ring elements (3.1). A third

form of the SW curve for the N = 2? theories was proposed by Nekrasov and

Pestun [21] together with an extension to general quiver models. In Section 3.3 we

review and relate the first two descriptions of the SW curve which are suitable for

our purposes. This comparison will lead to interesting relationships between the

coefficients of the respective curves. Along the way, we will find it necessary to

modify the analysis of [14] in a subtle but important way.

It is clearly desirable to work with chiral observables that in the classical limit

coincide with the symmetric polynomials built out of the vacuum expectation values

au. As we discuss in Section 3.4, this can be done in two ways. The first is to compute

the period integrals in the Donagi-Witten form of the curve as a series expansion in

the mass m of the adjoint hypermultiplet. Inverting this expansion order by order

in m gives us an expression for the An in terms of the au. The second way is to

postulate that the An have a definite modular weight under the S-duality group, and

use the well-understood action of S-duality to derive a modular anomaly equation

that recursively determines them up to modular pieces. In this derivation, it is

crucial that the prepotential and hence the dual periods of the N = 2? theory are

known in terms of quasi-modular forms. In both ways it turns out that the chiral

observables can be expressed in terms of quasi-modular forms and of particular

functions of the au involving only sums over the weight and root lattices of the Lie

algebra u(N), generalizing those appearing in the prepotential.

In Section 3.5 we test our findings against explicit microscopic computations of the
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observables (3.1) using equivariant localization techniques [3, 50, 4, 51, 52, 20] (for

further technical details see also [80]). We find that the chiral observables computed

using localization can be matched with those obtained from the SW curves by a

redefinition of the chiral ring elements. Such a redefinition contains only a finite

number of terms and is exact both in the mass of the hypermultiplet and in the gauge

coupling. It is well known that the localization results for the chiral observables do

not, in general, satisfy the classical chiral ring relations [19, 20, 21]. Strikingly, we

show that the redefinition of the chiral ring elements which allow the matching of

the two sets of results can be interpreted as a judicious choice of coordinates on

the Coulomb moduli space in which the classical chiral ring relations are naturally

satisfied.

In Section 3.6, we focus on the 1-instanton contributions and, just as it was done

for the prepotential in [11, 12], we manage to resum the mass expansion to obtain

an exact expression involving only sums over roots and weights of the corresponding

Lie algebra.

3.2 Review: N = 2? U(N) SYM Theories

The N = 2? SYM theories are massive deformations of the N = 4 SYM theories

arising when the adjoint hypermultiplet is given a mass m. The classical vacua of

these theories on the Coulomb branch are parametrized by the expectation values

of the scalar field Φ in the vector multiplet, which in the U(N) case is

〈Φ〉 ≡ a = diag (a1, a2, . . . , aN) . (3.2)

When the complex numbers au are all different, the gauge group is broken to its

maximal torus U(1)N . The low-energy effective action of this abelian theory is com-
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pletely determined by a single holomorphic function F (a), called the prepotential.

It consists of a classical term

Fclass = iπτ a2 ≡ iπτ
N∑
u=1

a2
u , (3.3)

where τ is the complexified gauge coupling

τ =
θ

2π
+ i

4π

g2
, (3.4)

and a quantum part

f = F1-loop + Finst (3.5)

accounting for the 1-loop and instanton corrections.

The 1-loop term F1-loop is τ -independent and takes the simple form (see for instance

[6])

F1-loop = −1

4

∑
α∈Ψ

[
(α · a)2 log

(α · a
Λ

)2

− (α · a+m)2 log

(
α · a+m

Λ

)2
]
, (3.6)

where Λ is an arbitrary scale and α is an element of the root system Ψ of the gauge

algebra. The first and seconds terms in (4.8) are, respectively, contributions from

the vector multiplet and the massive hypermultiplet.

The instanton corrections to the prepotential are proportional to qk, where

q = e2πiτ (3.7)

is the instanton counting parameter and k is the instanton number. These non-

perturbative terms can be calculated either using the SW curve and corresponding

holomorphic differential λSW [1, 2], or by a microscopic evaluation of the prepotential

using localization [3, 50, 4, 51, 52, 20].

52



In the SW approach, besides the “electric” variables au, one introduces dual or

“magnetic” variables defined by

aD
u =

1

2πi

∂F

∂au
. (3.8)

The pairs (au, a
D
u ) describe the period integrals of the holomorphic differential λSW

over cycles of the Riemann surface defined by the SW curve. More precisely, one

has

au =

∮
Au

λSW and aD
u =

∮
Bu

λSW . (3.9)

Here, the A- and B-cycles form a canonically conjugate symplectic basis of cycles

with intersection matrix Au ∩Bv = δuv.

For the N = 2? U(N) theory, the non-perturbative S-duality group has a simple

embedding into the symplectic duality group Sp(4N,Z) of the Riemann surface. In

particular, the S-transformation acts by exchanging electric and magnetic variables,

while inverting the coupling constant, namely

S(au) = aD
u , S(aD

v ) = −av , S(τ) = −1

τ
. (3.10)

Along with the T -transformation, given by

T (au) = au , T (aD
v ) = aD

v + av , T (τ) = τ + 1 , (3.11)

one generates the modular group SL(2,Z).

To discuss the N = 2? prepotential and the action of the duality group on it, it

is convenient to organize its quantum part (3.5) as an expansion in powers of the

hypermultiplet mass, as

f =
∞∑
n=1

fnm
2n . (3.12)
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Notice that only even powers of m occur in this expansion as a consequence of the

Z2 symmetry that sends m→ −m. In order to write the coefficients fn in a compact

form, it is useful to introduce the following lattice sums

C p
n;m1···m` =

∑
λ∈W

∑
α∈Ψλ

∑
β1 6=···6=β`∈Ψα

(λ · a)p

(α · a)n(β1 · a)m1 · · · (β` · a)m` (3.13)

where W is the set of weights λ of the fundamental representation of U(N), while

Ψλ and Ψα are the subsets of the root system Ψ defined, respectively, by

Ψλ =
{
α ∈ Ψ

∣∣λ · α = 1
}
, (3.14)

for any λ ∈ W , and by

Ψα =
{
β ∈ Ψ

∣∣α · β = 1
}
, (3.15)

for any α ∈ Ψ. Notice that

C 0
n;m1···m` = Cn;m1···m` (3.16)

where Cn;m1···m` are the lattice sums introduced in [11, 12, 13]. Furthermore, we

have

C `
0;0··· 0 =

N∑
u=1

a `u ≡ C ` . (3.17)

Using this notation, the first few coefficients in the mass expansion of the U(N)

prepotential were shown to be given by [11] 2

f1 =
1

4

∑
α∈Ψ

log
(α · a

Λ

)2

,

f2 = − 1

24
E2C

0
2 ,

f3 = − 1

720

(
5E2

2 + E4

)
C 0

4 −
1

576

(
E2

2 − E4

)
C 0

2;11 ,

(3.18)

2We warn the reader that, for later convenience, we have changed notation with respect to [11]
and have explicitly factored out the mass-dependence. So, f theren = fheren m2n.
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where E2k are the Eisenstein series (see Appendix A). These formulas encode the

exact dependence on the coupling constant τ . Indeed, by expanding the Eisenstein

series in powers of q, one can recover the perturbative contributions, corresponding

to the terms proportional to q0, and the k-instanton contributions proportional to

qk. Analogous expressions can be obtained for the higher order mass terms in the

U(N) theory and for other gauge algebras as well [11, 12, 13].

As discussed in great detail in [24, 23, 25] the prepotential coefficients fn satisfy the

recursion relation

∂fn
∂E2

= − 1

24

n−1∑
m=1

∂fm
∂a
· ∂fn−m

∂a
, (3.19)

which in turn implies that the quantum prepotential f obeys the non-linear differ-

ential equation

∂f

∂E2

+
1

24

(
∂f

∂a

)2

= 0 . (3.20)

This equation, which is a direct consequence of the S-duality action (3.10) on the

prepotential, is referred to as the modular anomaly equation since E2 has an anoma-

lous modular behavior

E2

(
−1

τ

)
= τ 2

(
E2(τ) +

6

iπτ

)
. (3.21)

3.3 Seiberg-Witten Curves

In this section we review and compare two distinct algebraic approaches to describe

the low-energy effective quantum dynamics of the N = 2? U(N) SYM theory. The

first approach is due to Donagi and Witten [14] (see also [15]), while the second

approach is due to D’Hoker and Phong [17]. Even though some of the following

considerations already appeared in the literature [81, 82], we are going to revisit the

comparison between the two curves with the purpose of introducing the essential
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ingredients for the non-perturbative analysis presented in later sections.

3.3.1 The Donagi-Witten Curve

In this first approach, the algebraic curve of the N = 2? U(N) theory is given

as an N -fold cover of an elliptic genus-one curve. The latter takes the standard

Weierstraß form

y2 = (x− e1)(x− e2)(x− e3) , (3.22)

where the ei sum to zero and their differences are given in terms of the Jacobi

θ-constants [2] as 3

e2 − e3 =
1

4
θ2(τ)4 , e2 − e1 =

1

4
θ3(τ)4 , e3 − e1 =

1

4
θ4(τ)4 . (3.23)

Here τ is the complex structure parameter of the elliptic curve which is identified

with the gauge coupling (3.4) and the θ-constants have the following Fourier expan-

sions

θ2(τ) =
∑
n∈Z

q
1
2(n− 1

2)
2

, θ3(τ) =
∑
n∈Z

q
1
2
n2

, θ4(τ) =
∑
n∈Z

(−1)n q
1
2
n2

, (3.24)

where q is as in (3.7). Using the relations between the θ-constants and the Eisenstein

series (see A.15), the elliptic curve (3.22) can be rewritten as

y2 = x3 − E4

48
x+

E6

864
. (3.25)

Since E4 and E6 are modular forms of weight 4 and 6, for consistency x and y must

have modular weight 2 and 3 respectively. If we recall the uniformizing solution in

3We use a different notation and normalization as compared to [2]. In particular our normal-
izations are such that the α-period of the uniformizing coordinate of the torus is ω1 = 2πi.
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terms of the Weierstraß function ℘(z), which obeys

℘′(z)2 = 4℘3(z)− 4π4E4

3
℘(z)− 8π6E6

27
(3.26)

when z ∼ z + 1 and z ∼ z + τ , then by comparing with (3.25) we straightforwardly

obtain the following identifications:

2 y =
℘′(z)

(2πi)3
, x =

℘(z)

(2πi)2
. (3.27)

In this framework, the curve of the N = 2? U(N) theory is described by the equation

F (t, x, y) = 0 (3.28)

where F (t, x, y) is a polynomial of degree N . Modular covariance is extended to

this equation by assigning modular weight 1 to the variable t. Certain technical

conditions described in detail in [14, 15] allow one to fix the form of F to be

F (t, x, y) =
N∑
n=0

(−1)nAn PN−n(t, x, y) , (3.29)

where A0 = 1 and the remaining N quantities An parametrize the Coulomb branch

of the moduli space. The polynomials Pn(t, x, y) are of degree n and are almost

completely determined by the recursion relations [14]

dPn
dt

= nPn−1 , (3.30)

combined with physical requirements related to the behaviour of F in the limits

x, y →∞.

At the first two levels, n = 0 and n = 1, in view of the weights assigned to x and y,
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the polynomials are uniquely fixed to be

P0 = 1 , P1 = t . (3.31)

At the next order, n = 2, the solution to the recursion equation (3.30) is

P2 = t2 + cm2 (3.32)

where the second term is an integration constant depending on the hypermultiplet

mass that is allowed since P2 has mass dimension 2. In addition, since P2 has

modular weight 2, the coefficient c must be an elliptic or modular function of weight

2. There is a unique such function, namely x, and thus P2 must be of the form

P2 = t2 + αxm2 (3.33)

where α is a numerical coefficient which is fixed by requiring a specific behavior at

infinity [14].

If we choose coordinates such that u = 0 parametrizes the point at infinity, then

taking into account that x is an elliptic function of weight 2, we can write

x =
1

u2
. (3.34)

In terms of this variable, the required behavior at infinity is that under the shift

t → t+
m

u
, (3.35)

the function F , and therefore all polynomials Pn, must have at most a simple pole
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in u, namely for u→ 0 they must behave as

Pn

(
t+

m

u

)
∼ αn

u
+ regular . (3.36)

This follows from the requirement in [14] that the adjoint scalar field Φ has the

following behaviour near the point u = 0 on the torus:

Φ =
m

u
diag(1, 1, . . . ,−(N − 1)) + regular terms .

The residue m is identified with the mass of the adjoint hypermultiplet. The function

F (t, x, y), which defines the N -fold spectral cover of the torus, is identified with the

equation det(t1−Φ) = 0. The shift in t above ensures that N −1 of the eigenvalues

of Φ have no pole as u→ 0 and this is what constrains the growth of the polynomials

Pn near infinity (see [14] for more details).

The requirement that all higher order poles in u cancel constrains the integration

constants that are allowed to appear. For example, imposing this behavior, one can

easily fix the constant α in (3.33) and find that final form of P2 is

P2 = t2 − xm2 . (3.37)

To fix the higher order polynomials, it is necessary to know the behaviour of y near

u = 0. Using the algebraic equation (3.25), we easily find

y =
1

u3

√
1− E4

48
u4 +

E6

84
u6 =

1

u3
− E4

96
u− E6

1728
u3 + · · · . (3.38)

Using this and (3.34), we can completely determine the polynomial P3 and get

P3 = t3 − 3 t xm2 + 2 y m3 . (3.39)
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However, at the next level, we find that

P4 = t4 − 6 t2 xm2 + 8 t y m3 −
(
3x2 − αE4

)
m4 (3.40)

satisfies all requirements for any value of α. In [14, 15] the simplest choice α = 0

was made, but we will find that it is actually essential to keep the α-dependence

and fix it to a different value.

This procedure can be iterated without any difficulty and in Appendix B we list

a few of the higher degree polynomials Pn that we find in this way. They differ

from the ones listed in [14, 15] by elliptic and modular functions. At first glance,

these might seem trivial modifications since, for example in (3.40), the difference is

proportional to E4, which is a modular form of weight 4. However, for α 6= 0, this

new term feeds into the iterative procedure to calculate the higher Pn, which in turn

depend on these coefficients. These modified higher degree polynomials will play a

crucial role in the following.

Using the explicit form of the polynomials Pn given in Appendix B and collecting

the powers of t, we find that the curve equation (3.3.1) is

F (t, x, y) = tN − A1 t
N−1 + tN−2

[
A2 −

(
N

2

)
m2 x

]
− tN−3

[
A3 −

(
N − 1

2

)
m2A1 x−

(
N

3

)
2m3 y

]
+ tN−4

[
A4 −

(
N − 2

2

)
m2A2 x−

(
N − 1

3

)
2m3A1 y

−
(
N

4

)
m4 (3x2 − αE4)

]
+O

(
tN−5

)
= 0 .

(3.41)

Since F is a linear combination of the Pn, which are modular with weight n, it will

transform homogeneously (with weight N) if the coefficients An are modular with

weight n. To verify this fact and provide a precise identification between the An and

the the gauge invariant quantum observables 〈Tr Φn〉 which naturally parametrize
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the moduli space, we find that the modifications that we have made to the Pn as

compared to those of [14, 15] are essential.

3.3.2 The D’Hoker-Phong Curve

The second form of the curve for the N = 2∗ U(N) theory is due to D’Hoker and

Phong and was originally derived by using the relation between the SW curve and

the spectral curve of the elliptic Calogero-Moser system [17]. This spectral curve is

abstractly defined as

R(t, z) ≡ det
[
t 1l− L(z)

]
= 0 , (3.42)

where L(z) is the Lax matrix of the integrable system. We refer the reader to [17]

for details and here we merely present the curve in the form that is most convenient

for our purposes.

First, we define the degree N polynomial H(t):

H(t) =
N∏
u=1

(t− eu) =
N∑
n=0

(−1)nWn t
N−n (3.43)

where

Wn =
∑

u1<···<un
eu1 · · · eun . (3.44)

The eu are interpreted as the quantum-corrected vacuum expectation values of the

scalar field Φ and, at weak coupling, they have the following form

eu = au +O(q) (3.45)

in terms of the classical vacuum expectation values au (see (3.2)). Thus, the gauge in-

variant quantum expectation values, which parametrize the quantum moduli space,
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can be written as

〈Tr Φn〉 =
N∑
u=1

enu . (3.46)

Next, we define the function

f(t, z) =
N∑
n=0

(−1)n
mn

n!
hn(z)H(n)(t) (3.47)

where

H(n)(t) ≡ dnH(t)

dtn
=

N−n∑
`=0

(−1)`
(N − `)!

(N − `− n)!
W` t

N−n−` , (3.48)

and

hn(z) ≡ 1

θ1(z|τ)

(
1

2πi

d

dz

)n
θ1(z|τ) (3.49)

with θ1(z|τ) being the first Jacobi θ-function

θ1(z|τ) =
∑
n∈Z

eiπτ(n− 1
2

)2+2πi(z− 1
2

)(n− 1
2

) . (3.50)

Notice we have chosen normalizations so that the uniformizing coordinate z on the

torus obeys z ∼ z + 1 and z ∼ z + τ , and that, as before, the complex structure

parameter τ is identified with the gauge coupling (3.4).

Using this notation, the spectral curve of the Calogero-Moser system (3.42), and

hence the SW curve for the U(N) theory, takes the form [17]

R(t, z) = f
(
t+mh1, z

)
= 0 . (3.51)

To make the modular properties of the curve more manifest, we rewrite the function

f(t, z) in (3.47) in a slightly different way. We first observe that

hn(z) =

(
1

2πi

d

dz
+ h1(z)

)n
1 , (3.52)

as one can easily check recursively. Plugging this into the definition (3.47) of f and
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using (3.48) (and after a simple rearrangement of the sums), we get

f(t, z) =
N∑
n=0

N−n∑
`=0

(−1)`+n
(
N − `
n

)
W` t

N−`−nmn

(
1

2πi

d

dz
+ h1(z)

)n
1

=
N∑
`=0

(−1)`W`

[
t−m

(
1

2πi

d

dz
+ h1(z)

)]N−`
1 .

(3.53)

From this we see that the shift in t in (3.51) simply amounts to setting h1=0 after

taking the derivatives. Thus, the curve equation for the N = 2? U(N) theory in

this formulation becomes

R(t, z) =
N∑
`=0

(−1)`W`

[
t−m

(
1

2πi

d

dz
+ h1(z)

)]N−`
1

∣∣∣∣∣
h1=0

= tN − tN−1W1 + tN−2

[
W2 +

(
N

2

)
m2 h′1

]
− tN−3

[
W3 +

(
N − 1

2

)
m2 h′1W1 +

(
N

3

)
m3 h′′1

]
+ tN−4

[
W4 +

(
N − 2

2

)
m2 h′1W2 +

(
N − 1

3

)
m3 h′′1 W1

+

(
N

4

)
m4
(
h′′′1 + 3(h′1)2

)]
+O(tN−5) = 0

(3.54)

where the ′ stands for the derivative with respect to 2πiz.

3.3.3 Comparing Curves

By comparing the two forms of the SW curve presented in the previous subsections,

one can establish a relation between the Wn, which are related to the quantum

expectation values 〈Tr Φn〉, and the modular covariant combinations An on which S-

duality acts in a simple way. A different method to relate the An and the Wn, which

only involves the D’Hoker-Phong form of the curve, is presented in Appendix C.
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Equating the coefficients of the same power of t in (3.41) and (3.54), we easily get

A1 = W1 ,

A2 = W2 +

(
N

2

)
m2 (h′1 + x) ,

A3 = W3 +

(
N − 1

2

)
m2 (h′1 + x)W1 +

(
N

3

)
m3 (h′′1 + 2 y) ,

A4 = W4 +

(
N − 2

2

)
m2 (h′1 + x)W2 +

(
N − 1

3

)
m3 (h′′1 + 2 y)

+

(
N

4

)
m4
(
h′′′1 + 3(h′1)2 + 6h′1 x+ 9x2 − αE4

)
(3.55)

and so on. Recalling that x and y are related to the Weierstraß function as shown

in (3.27), and using the properties of θ1(z|τ) and its derivatives, one can show that

all z-dependence cancels in the right hand side of (3.55) as it should, since

h′1 + x =
E2

12
,

h′′1 + 2 y = 0 ,

h′′′1 + 3(h′1)2 + 6h′1 x+ 9x2 =
E2

2

48
+
E4

24
.

(3.56)

We have included proofs of these identities in Appendix A. Using these results, the

relations (3.55) simplify and reduce to

A1 = W1 ,

A2 = W2 +

(
N

2

)
m2E2

12
,

A3 = W3 +

(
N − 1

2

)
m2E2

12
W1 ,

A4 = W4 +

(
N − 2

2

)
m2E2

12
W2 +

(
N

4

)(m4E2
2

48
+
m4E4(1− 24α)

24

)
.

(3.57)

Notice that all terms proportional to m3 cancel and that the formula for A4 can

be further simplified by setting the free parameter to α = 1
24

. With this choice we

eliminate the modular form E4, leaving only the quasi-modular form E2.
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The same procedure may be carried out for the higher coefficients An without any

difficulty. Exploiting the freedom of fixing the parameters in front of the modular

forms to systematically eliminate them, we obtain the following rather compact

result:

An =

[n/2]∑
`=0

(
N − n+ 2`

2`

)
(2`− 1)!!

(
m2E2

12

)`
Wn−2` . (3.58)

This formula can be easily inverted and one gets

Wn =

[n/2]∑
`=0

(−1)`
(
N − n+ 2`

2`

)
(2`− 1)!!

(
m2E2

12

)`
An−2` . (3.59)

We have verified these relations by working to higher orders in both n and N .

It is interesting to observe that, although both the Donagi-Witten curve and the

D’Hoker-Phong curve separately have coefficients that are elliptic functions, the

maps between the two sets of coefficients can be written entirely in terms of quasi-

modular forms. For this to happen and, more importantly, in order that all depen-

dence on the uniformizing coordinate z disappears in the relations between the An

and the Wn, it is essential to use a set of polynomials Pn that are differ from those

originally defined in [14, 15].

Both Wn and An are good sets of coordinates for the Coulomb moduli space of

the N = 2? U(N) SYM theory. The former naturally incorporate the quantum

corrections that are calculable using either the curve analysis or by localization

calculations while the latter are distinguished by their simple behavior under S-

duality. In the following sections, we will independently calculate the An and the

Wn in a weak-coupling expansion and show that they satisfy the general relations

(3.58) and (3.59) provided some important caveats are taken into account.
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3.4 Period Integrals and Modular Anomalies

In this section, we present two methods to compute the modular covariant quantities

An and express them in terms of the classical vacuum expectation values au of the

adjoint scalar field Φ given in (3.2). The first method is based on a direct use of the

curve and the associated differential, while the second exploits an extension of the

modular anomaly equation (3.20).

3.4.1 Period Integrals

By solving the Donagi-Witten curve equation (3.28) one can express the variable t

as a function of x and y, and hence of the uniformizing coordinate of the torus z

through the identifications (3.27). Once this is done, the SW differential is given by

[17]:

λSW = t(z) dz , (3.60)

and its periods are identified with the pairs of dual variables au and aD
u according to

(3.9). Of course, in order to obtain explicit expressions, a canonical basis of 1-cycles

is needed. Since the curve is an N -fold cover of a torus, there is a natural choice for

such a basis, as we now demonstrate. In fact, F being a polynomial of degree N ,

we can factorize it as

F =
N∏
u=1

(
t− tu(x(z), y(z))

)
= 0 , (3.61)

and then define

au =

∮
Au

λSW :=

∮
α

tu
(
x(z), y(z)

)
dz ,

aD
u =

∮
Bu

λSW :=

∮
β

tu
(
x(z), y(z)

)
dz ,

(3.62)
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where α and β are, respectively, the A and B cycles of the torus. To see that this

identification is correct, let us (for a moment) consider switching off the mass of

the adjoint hypermultiplet. If we do so, the supersymmetry is enhanced to N = 4

and Donagi-Witten polynomials simply become Pn = tn, so that the curve takes the

form

F =
N∑
n=0

(−1)ntN−nAn = 0 . (3.63)

Since in the N = 4 SYM theory the classical moduli space does not receive quantum

corrections, it makes sense to identify the modular covariant coordinates An with the

symmetric polynomials constructed from the classical vacuum expectation values,

namely

An =
∑

u1<···<un
au1 · · · aun . (3.64)

Substituting this into (3.63), we see that F factorizes as

F =
N∏
u=1

(t− au) = 0 , (3.65)

so we may conclude that in the massless limit we have tu = au. This is clearly

consistent with our ansatz (3.62), since the integral over the α-cycle gives unity.

The integral over the β-cycle, instead, gives

aD
u =

∮
β

au = τ au , (3.66)

which is the expected answer in the N = 4 gauge theory.

Let us now revert to our original problem, and consider the scenario where the

adjoint hypermultiplet has a mass m. In general, it is not possible to compute the

period integrals (3.62) explicitly, as each of the tu(x, y) is a solution of a generic

polynomial equation of degree N . However, progress can be made by assuming that

each of these solutions has a expansion in powers of the hypermultiplet mass, of the
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form

tu(x, y) = au +
∑
`∈N/2

t(`)u (x, y)m2` , (3.67)

and by working perturbatively order by order in m. Notice that in (3.67) the sum is

over both integers and half-integers in order to have in principle both even and odd

powers of m, even though in the end only the even ones will survive. Of course, this

assumption implies that the modular covariant coordinates on moduli space have a

mass expansion of the form

An =
∑

u1<···<un
au1 · · · aun +

∑
`∈N/2

A(`)
n m2` . (3.68)

Using this ansatz in the curve equation (3.41) leads to constraints on the t
(`)
u , which

we solve in terms of the A
(`)
n . Finally, we substitute these into the expressions for

the A-periods in (3.62) and demand that all higher order terms in m vanish for

self-consistency as that equation is already solved by t
(0)
u . The integrals for these

higher order terms typically involve integrals of powers of the Weierstraß function

and its derivative, which are known in terms of quasi-modular forms. In this way

we can construct the various mass corrections A
(`)
n in terms of the classical au and

of quasi-modular forms.

Let us first illustrate this procedure in the simple case of the U(2) gauge theory. For

N = 2 the Donagi-Witten curve is

t2 − tA1 + (A2 −m2x) = 0 . (3.69)

Inserting the mass expansions (3.67) and (3.68) and collecting the powers of m, we
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obtain

a2
u − au(a1 + a2) + a1 a2 +m

(
A

(1/2)
2 + (2 au − a1 − a2) t(1/2)

u − auA(1/2)
1

)
(3.70)

+m2
(
A

(1)
2 +

(
t(1/2)
u

)2
+ (2 au − a1 − a2) t(1)

u − t(1/2)
u A

(1/2)
1 − auA(1)

1 − x
)

+O(m3) = 0

for u = 1, 2. It is easy to check that the zeroth order term in the mass vanishes, as

it should. Requiring the cancellation of the term at linear order in m amounts to

setting

t(1/2)
u =

A
(1/2)
2 − auA(1/2)

1

a1 + a2 − 2au
(3.71)

for u = 1, 2. Now, in order to maintain the relation (3.62), the integral of t
(`)
u over

the A-cycles has to vanish for all `. In particular, for ` = 1/2 and taking into account

that t
(1/2)
u in (3.71) is constant with respect to z, one has

∮
α

t(1/2)
u dz =

A
(1/2)
2 − auA(1/2)

1

a1 + a2 − 2au
= 0 (3.72)

for both u = 1 and u = 2. In turn this leads to

A
(1/2)
1 = A

(1/2)
2 = 0 . (3.73)

Substituting this into (3.70) and demanding the cancellation of the m2 terms, we

get

t(1)
u =

A
(1)
2 − auA

(1)
1 − x

a1 + a2 − 2au
. (3.74)

Imposing that ∮
α

t(1)
u dz = 0 (3.75)

for u = 1, 2, and using the fact that, in view of the identification (3.27),

∮
α

x dz =
1

(2πi)2

∮
α

℘(z) dz =
E2

12
, (3.76)
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we get

A
(1)
1 = 0 , A

(1)
2 =

E2

12
. (3.77)

Recapitulating, we have obtained

A1 = a1 + a2 ,

A2 = a1a2 +
m2

12
E2 +O(m3) .

(3.78)

This process can be repeated in similar fashion to obtain all mass corrections in a

systematic way. This procedure requires that we compute period integrals of polyno-

mials in the Weirstraß function and its derivative which can be done using standard

techniques (see for example [75] and references therein). We stress that although

this approach is perturbative in m, it is exact in the gauge coupling constant, since

the coefficients are fully resummed quasi-modular forms in τ .

The same procedure can of course be carried out for N = 2? theories with higher

rank gauge groups, even if the calculations quickly become more involved as N

increases. The results, however, can be organized in a rather compact way by using

the lattice sums C p
n;m1··· defined in (3.13). In fact, the expressions we find for the
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first few An at the first few non-trivial orders in m in the U(N) theory are

A1 =
∑
u

au , (3.79)

A2 =
∑
u1<u2

au1au2 +

(
N

2

)
m2

12
E2 +

m4

288

(
E2

2 − E4

)
C 0

2 +
m6

4320

(
5E3

2 − 3E2E4 − 2E6

)
C 0

4

+
m6

3456

(
E3

2 − 3E2E4 + 2E6

)
C 0

2;11 +O(m8) , (3.80)

A3 =
∑

u1<u2<u3

au1au2au3 +

(
N − 1

2

)
m2

12
E2

∑
u

au +
m4

288

(
E2

2 − E4

)(
C 0

2

∑
u

au − 2C 1
2

)
+

m6

4320

(
5E3

2 − 3E2E4 − 2E6

)(
C 0

4

∑
u

au − 2C 1
4

)
+

m6

3456

(
E3

2 − 3E2E4 + 2E6

)(
C 0

2;11

∑
u

au − 2C 1
2;11

)
+O(m8) , (3.81)

A4 =
∑

u1<···<u4
au1au2au3au4 +

(
N − 2

2

)
m2

12
E2

∑
u1<u2

au1au2 +

(
N

4

)
m4

48
E2

2

+
m4

288
(E2

2 − E4)
(
C 0

2

∑
u1<u2

au1au2 − 2C 1
2

∑
u

au + 3C 2
2 −

(
N

2

))
+

m6

4320

(
5E3

2 − 3E2E4 − 2E6

)(
C 0

4

∑
u1<u2

au1au2 − 2C 1
4

∑
u

au + 3C 2
4 −

1

2
C 0

2

)
+

m6

3456

(
E3

2 − 3E2E4 + 2E6

)(
C 0

2;11

∑
u1<u2

au1au2 − 2C 1
2;11

∑
u

au + 3C 2
2;11

)
+

(
N − 2

2

)
m6

3456
E2

(
E2

2 − E4

)
C 0

2 +O(m8) . (3.82)

Of course, only the An with n ≤ N are the independent coordinates that can be used

to parametrize the moduli space of the theory. Despite their appearance, it is not

difficult to recognize a regular pattern in these expressions, which contain the same

combinations of Eisenstein series appearing in the prepotential coefficients. Notice

also that only even powers of m are present, this being in full agreement with the

Z2 symmetry of the theory that sends m→ −m.

We have explicitly verified that under S-duality the above An transform with weight
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n, namely

S(An) = τnAn . (3.83)

To do so we used the properties of the Eisenstein series under inversion, and replaced

each au with the corresponding dual variable aD
u , which can be computed either by

evaluating the periods of the SW differential along the B-cycles according to (3.62)

or, more efficiently, by taking the derivative of the prepotential with respect to au

according to (4.16). The fact that (3.83) holds true despite the explicit presence of

the quasi-modular Eisenstein series E2 in the An is a highly non-trivial consistency

check. Finally, we observe that by inserting (3.79)–(3.82) in the map (3.59), one

can obtain the quantum expectation values Wn in terms of the classical variables

au. The result is

W1 =
∑
u

au , (3.84)

W2 =
∑
u1<u2

au1au2 +
m4

288

(
E2

2 − E4

)
C 0

2 +
m6

4320

(
5E3

2 − 3E2E4 − 2E6

)
C 0

4

+
m6

3456

(
E3

2 − 3E2E4 + 2E6

)
C 0

2;11 +O(m8) , (3.85)

W3 =
∑

u1<u2<u3

au1au2au3 +
m4

288

(
E2

2 − E4

)(
C 0

2

∑
u

au − 2C 1
2

)
+

m6

4320

(
5E3

2 − 3E2E4 − 2E6

)(
C 0

4

∑
u

au − 2C 1
4

)
+

m6

3456

(
E3

2 − 3E2E4 + 2E6

)(
C 0

2;11

∑
u

au − 2C 1
2;11

)
+O(m8) , (3.86)

W4 =
∑

u1<···<u4
au1au2au3au4

+
m4

288
(E2

2 − E4)
(
C 0

2

∑
u1<u2

au1au2 − 2C 1
2

∑
u

au + 3C 2
2 −

(
N

2

))
+

m6

4320

(
5E3

2 − 3E2E4 − 2E6

)(
C 0

4

∑
u1<u2

au1au2 − 2C 1
4

∑
u

au + 3C 2
4 −

1

2
C 0

2

)
+

m6

3456

(
E3

2 − 3E2E4 + 2E6

)(
C 0

2;11

∑
u1<u2

au1au2 − 2C 1
2;11

∑
u

au + 3C 2
2;11

)
+O(m8) . (3.87)
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It is interesting to notice that these expressions are a bit simpler than the ones

for the An; in particular, all m2 terms disappear and, up to a constant term in

W4, all other explicit dependence on N drops out. These formulas will be useful

in later sections, where we compare them with results from explicit localization

calculations. An important consistency check on our results is the fact that both

W3 and W4 vanish for U(2), and that W4 vanishes for U(3). This has to happen

since the Wn are symmetric polynomials in the quantum variables eu, see (3.44).

3.4.2 A Modular Anomaly Equation

We now explore an alternative route to express the An in terms of the classical

parameters au, which is based on the S-duality transformation properties. The

main idea is simple: if we assume the mass expansion (3.68), then the requirement

that An transforms with weight n under S-duality constrains the form of A
(`)
n once

the previous mass terms are known. So, starting from the classical part it is possible

to systematically reconstruct in this way all subleading terms.

Let us recall from Section 3.2 that 4

S(a) = aD =
1

2πi

∂F

∂a
= τ

(
a+

δ

12

∂f

∂a

)
(3.88)

where f is the quantum part of the prepotential and δ = 6
iπτ

. Furthermore, in order

for the An to have the correct mass dimension, the subleading terms A
(`)
n must be

homogeneous functions of a with weight n− 2`:

A(`)
n (τ, λ a) = λn−2`A(`)

n (τ, a) . (3.89)

The other basic requirement is that they are quasi modular forms of weight 2`. This

4For simplicity we suppress the subscripts and denote the pair (au, a
D
u ) as (a, aD).
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implies that the A
(`)
n depend on the coupling constant τ only through the Eisenstein

series E2, E4 and E6, namely

A(`)
n (τ, a) = A(`)

n

(
E2(τ), E4(τ), E6(τ), a

)
, (3.90)

so that

A(`)
n

(
− 1

τ
, a
)

= A(`)
n

(
E2

(
− 1

τ

)
, E4

(
− 1

τ

)
, E6

(
− 1

τ

)
, a
)

= τ 2`A(`)
n

(
E2 + δ, E4, E6, a

)
,

(3.91)

where in the last step we have used the anomalous modular transformation (3.21) of

the second Eisenstein series E2. From now on, for ease of notation, we only exhibit

the dependence on E2. Putting everything together, we find

S
(
A(`)
n

)
= A(`)

n

(
E2

(
− 1

τ

)
, aD
)

= τnA(`)
n

(
E2 + δ, a+ δ

12
∂f
∂a

)
= τn

[
A(`)
n +

(∂A(`)
n

∂E2

+
1

12

∂A
(`)
n

∂a
· ∂f
∂a

)
δ +O

(
δ2
)]

.
(3.92)

The requirement that under S-duality An be a modular form of weight n leads to a

modular anomaly equation:

∂An
∂E2

+
1

12

∂An
∂a
· ∂f
∂a

= 0 . (3.93)

Notice that if (3.93) is satisfied, then all terms in (3.92) which are of higher order

in δ, vanish. Expanding both the An and the quantum prepotential f in powers of

m, we can rewrite the above modular anomaly equation in the form of a recursion

relation for the A
(`)
n , namely

∂A
(`)
n

∂E2

+
1

12

∑̀
k=0

∂A
(k)
n

∂a
· ∂f`−k
∂a

= 0 . (3.94)
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This shows that starting from the classical symmetric polynomials

A(0)
n =

∑
u1<···un

au1 · · · aun (3.95)

and the prepotential coefficients (some of which have been listed in (3.18)), one can

systematically calculate the higher order terms and obtain the modular completion

iteratively by integrating the modular anomaly equation (3.94). For example, at the

first step (` = 1) we have

∂A
(1)
n

∂E2

= − 1

12

∂A
(0)
n

∂a
· ∂f1

∂a
= − 1

12

∑
u6=v

∂A
(0)
n

∂au

1

au − av
, (3.96)

which is solved by

A(1)
n =

(
N − n+ 2

2

)
E2

12
A

(0)
n−2 . (3.97)

The higher order corrections A
(`)
n can be similarly derived up to terms that are

purely composed of modular forms of weight 2`. These cannot be determined from

the recursion relation alone, which is a symmetry requirement, and some extra

dynamical input is needed. To illustrate this point let us consider the explicit

expressions of A1 and A2 for the U(N) theory that can be derived using the above

procedure. Up to order m8 we find

A1 =
∑
u

au , (3.98)

A2 =
∑
u1<u2

au1au2 +

(
N

2

)
m2

12
E2 +

m4

288

(
E2

2 − αE4

)
C 0

2

+
m6

4320

(
5E3

2 + (2− 5α)E2E4 − β E6

)
C 0

4

+
m6

3456

(
E3

2 − (2 + α)E2E4 + γ E6

)
C 0

2;11 +O(m8) , (3.99)

where α, β, γ are free parameters. As anticipated, the terms that only depend on

E2 are completely fixed by the modular anomaly equation, while those involving
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also the modular forms E4 and E6 depend on integration constants. One can fix

them by requiring that the perturbative limit of the above expressions, in which

all Eisenstein series effectively are set to 1, matches with the known perturbative

behavior that can be deduced from the relations between the modular An and the

quantum Wn discussed in Section 3.3.3. In particular, from (3.58) with n = 2 we

see that

A2

∣∣
cl

= W2

∣∣
cl

+

(
N

2

)
m2

12
=
∑
u1<u2

au1au2 +

(
N

2

)
m2

12
. (3.100)

This perturbative behavior is matched by (3.99) only if

α = 1 and β = γ = 2 . (3.101)

It is reassuring to see that with this choice of parameters one precisely recovers the

expression for A2 in (3.80) that was obtained from the calculation of the period

integrals. By extending this procedure to higher order we can also derive A3 and

A4 and verify that they exactly agree with (3.81) and (3.82). This match is a

very strong indication of the correctness of our calculations and the validity of the

approach based on the modular anomaly equation (3.93).

Finally, we would like to remark that up to order m10 the matching with the per-

turbative results is enough to completely fix all integration constants, since there

is a unique modular form of weight 2n up to n = 5. At n = 6, i.e. at order m12

there are two independent modular forms of weight 12, namely E3
4 and E2

6 . So the

knowledge of the perturbative behavior is not enough to fix all parameters and more

information, for example from the 1-instanton sector, is needed. At n = 7, again the

perturbative information is sufficient since only one modular form of weight 14 ex-

ists. However from that point on, some extra data from the non-perturbative sectors

is necessary. This is exactly the same situation occurring also for the prepotential

coefficients, as pointed out for instance in [11, 12, 13].
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3.5 Chiral Observables from Localization

The discussion of the previous section clearly shows that in order to confirm the

general relations among the chiral observables and their modular properties, and

also to have data to fix the coefficients left undetermined by the modular anomaly

equation, it is necessary to explicitly compute some instanton contributions. This

is possible using the equivariant localization techniques.

Following the discussion in [11], we first deform theN = 2? theory by introducing the

Ω-background [3, 4] and then calculate the partition function in a multi-instanton

sector. The Ω-deformation parameters will be denoted ε1 and ε2. The partition

function Zk for the U(N) theory in the presence of k-instantons is obtained by

doing the following multi-dimensional contour integral:

Zk =

∮ k∏
i=1

dχi
2πi

zgauge
k zmatter

k , (3.102)

where the integrand is given by

zgauge
k =

(−1)k

k!

(
ε1 + ε2
ε1ε2

)k
∆(0)∆(ε1 + ε2)

∆(ε1)∆(ε2)

k∏
i=1

1

P (χi + ε1+ε2
2

)P (χi − ε1+ε2
2

)

(3.103a)

zmatter
k =

(
(ε1 + ε3)(ε1 + ε4)

ε3ε4

)k
∆(ε1 + ε3)∆(ε1 + ε4)

∆(ε3)∆(ε4)

k∏
i=1

P (χi + ε3−ε4
2

)P (χi − ε3−ε4
2

)

(3.103b)

with

P (x) =
N∏
u=1

(x− au) ∆(x) =
k∏
i<j

(x2 − χ2
ij) , (3.104)

and χij = χi−χj. The parameters ε3 and ε4 are related the hypermultiplet mass m
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according to

ε3 = m− ε1 + ε2
2

, ε4 = −m− ε1 + ε2
2

. (3.105)

The contour integrals are computed by closing the contours in the upper half planes

of the χi variables, assigning imaginary parts to the ε’s, with the prescription [11]:

Im(ε4)� Im(ε3)� Im(ε2)� Im(ε1) > 0 . (3.106)

This prescription allows one to calculate the residues without ambiguity and obtain

the partition function

Zinst = 1 +
∑
k

qkZk , (3.107)

from which one can derive the instanton part of prepotential

Finst = lim
ε1,ε2→0

(
− ε1ε2 logZinst

)
=
∑
k=1

qk Fk . (3.108)

In this way one can compute the non-perturbative contributions to the coefficients

fn and verify the agreement with the resummed expressions like those given in (3.18)

(for details we refer to [11, 80] and references therein).

The same localization methods can be used to compute the chiral correlators, which

are known to receive quantum corrections from all instanton sectors. In this frame-

work the expectation value for the generating function of such chiral observables is

given by [51, 52, 20, 80]

〈Tr ezΦ〉
∣∣
loc

=
∑
n=0

zn

n!
〈Tr Φn〉

∣∣
loc

=
N∑
u=1

ezau − 1

Zinst

∞∑
k=1

qk

k!

∮ k∏
i=1

dχi
2πi
O(z, χi) z

gauge
k zmatter

k ,

(3.109)

where the operator insertion in the instanton partition function is explicitly given
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by

O(z, χi) =
k∑
i=1

ezχi(1− ezε1)(1− ezε2) , (3.110)

and the prescription to perform the contour integrals in (3.106) is the same as the one

used for the instanton partition function. By explicitly computing these integrals

order by order in k and then taking multiple derivatives with respect to z, one

obtains the various instanton contributions to the chiral observables 〈Tr Φn〉
∣∣
loc

. Up

to three instantons and for n ≤ 5, we have explicitly verified that these instanton

corrections can be compactly written using the lattice sums (3.13) as follows

〈Tr Φn〉
∣∣
loc

= C n −
(
n

2

)
2m2(q + 3q2 + 4q3 + · · · )C n−2

+

(
n

2

)
2m4(q + 6q2 + 12q3 + · · · )C n−2

2 +

(
n

4

)
2m4(3q2 + 20q3 + · · · )C n−4

−
(
n

2

)
24m6(q2 + 8q3 + · · · )C n−2

4 +

(
n

2

)
m6(q + 12q2 + 36q3 + · · · )C n−2

2;11

−
(
n

4

)
24m6(q3 + · · · )C n−4

2 +O(m8) . (3.111)

Recall that C n =
∑

u a
n
u and that one should set the Cs to zero when the superscript

of the C’s is negative. Based on our previous experience we expect that the coef-

ficients of the various structures in (3.111) are just the first terms of the instanton

expansion of (quasi)-modular forms built out of Eisenstein series. This is indeed

what happens. In fact, we find

〈Tr Φn〉
∣∣
loc

= C n +

(
n

2

)
m2

12
(E2 − 1)C n−2

−
(
n

2

)
m4

144

(
E2

2 − E4

)
C n−2

2 +

(
n

4

)
m4

720

(
21− 30E2 + 10E2

2 − E4

)
C n−4

−
(
n

2

)
m6

2160

(
5E3

2 − 3E2E4 − 2E6

)
C n−2

4 −
(
n

2

)
m6

1728

(
E3

2 − 3E2E4 + 2E6

)
C n−2

2;11

+

(
n

4

)
m6

4320

(
15E2

2 − 5E3
2 − 15E4 + 9E2E4 − 4E6

)
C n−4

2 +O(m8) .

(3.112)
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By expanding the Eisenstein series in powers of q we can obtain the contributions

at any instanton number. We have verified the correctness of our extrapolation

by computing the 4 and 5 instanton terms in the U(4) theory and the 4 instanton

terms in the U(5) theory, finding perfect match with the “predictions” coming from

the Fourier expansion of (3.112). We also note that using the Matone relation [83],

the result for n = 2 matches perfectly with the mass expansion of the prepotential

obtained in [11, 12]. Another noteworthy feature of the formula (3.112) is that the

same quasi-modular functions appear for all values of n. Our results can therefore

be thought of as a natural generalization of the result for the prepotential to other

observables of the gauge theory.

To compare with our findings of the previous sections, it is convenient to change

basis and make combinations of the above operators that describe the quantum

version of the symmetric polynomials in the classical vacuum expectation values.

At the first few levels the explicit map is

W loc
1 = 〈Tr Φ〉

∣∣
loc
,

W loc
2 =

1

2

(
〈Tr Φ〉

∣∣2
loc
− 〈Tr Φ2〉

∣∣
loc

)
,

W loc
3 =

1

6

(
〈Tr Φ〉

∣∣3
loc
− 3〈Tr Φ〉

∣∣
loc
〈Tr Φ2〉

∣∣
loc

+ 2〈Tr Φ3〉
∣∣
loc

)
,

W loc
4 =

1

24

(
〈Tr Φ〉

∣∣4
loc
− 6〈Tr Φ〉

∣∣2
loc
〈Tr Φ2〉

∣∣
loc

+ 3〈Tr Φ2〉
∣∣2
loc

+ 8〈Tr Φ〉
∣∣
loc
〈Tr Φ3〉

∣∣
loc
− 6〈Tr Φ4〉

∣∣
loc

)
,

(3.113)

and so on. Plugging the localization results (3.112), after some long but straight-
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forward algebra, we find

W loc
1 =

∑
u

au , (3.114)

W loc
2 =

∑
u1<u2

au1au2 −
N m2

24

(
E2 − 1

)
+
m4

288

(
E2

2 − E4

)
C 0

2 (3.115)

+
m6

4320

(
5E3

2 − 3E2E4 − 2E6

)
C 0

4 +
m6

3456

(
E3

2 − 3E2E4 + 2E6

)
C 0

2;11 +O(m8) ,

W loc
3 =

∑
u1<u2<u3

au1au2au3 −
(N − 2)m2

24

(
E2 − 1

)∑
u

au +
m4

288

(
E2

2 − E4

)(
C 0

2

∑
u

au − 2C 1
2

)
+

m6

4320

(
5E3

2 − 3E2E4 − 2E6

)(
C 0

4

∑
u

au − 2C 1
4

)
+

m6

3456

(
E3

2 − 3E2E4 + 2E6

)(
C 0

2;11

∑
u

au − 2C 1
2;11

)
+O(m8) , (3.116)

W loc
4 =

∑
u1<···<u4

au1au2au3au4 −
m2

24

(
E2 − 1

)((∑
u

au
)2

+ (N − 6)
∑
u1<u2

au1au2

)
+
m4

288
(E2

2 − E4)
(
C 0

2

∑
u1<u2

au1au2 − 2C 1
2

∑
u

au + 3C 2
2 −

(
N

2

))
+
N m4

5760

(
5N
(
3E2

2 − 2E4 − 2E2 + 1
)
− 30E2

2 + 12E4 + 60E2 − 42
)

+
m6

4320

(
5E3

2 − 3E2E4 − 2E6

)(
C 0

4

∑
u1<u2

au1au2 − 2C 1
4

∑
u

au + 3C 2
4 −

1

2
C 0

2

)
+

m6

3456

(
E3

2 − 3E2E4 + 2E6

)(
C 0

2;11

∑
u1<u2

au1au2 − 2C 1
2;11

∑
u

au + 3C 2
2;11

)
− (N − 6)m6

6912

(
E2 − 1

)(
E2

2 − E4

)
C 0

2 +O(m8) . (3.117)

It is remarkable to see in these expressions the same combinations of Eisenstein

series and of lattice sums appearing in the Wn presented in (3.84)–(3.87). However,

there are also some important differences which we are going to discuss.

The first observation is that, even though the classical part of the W loc
n is the degree

n symmetric polynomial in the vacuum expectation values, the full W loc
n do not

satisfy the corresponding chiral ring relations.5 Indeed, it is not difficult to verify

5This was already noted in [19, 20, 21] for pure N = 2 SYM theories.
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that 6

W loc
2,3,4

∣∣∣
U(1)
6= 0 , W loc

4

∣∣∣
U(2)
6= 0 , W loc

4

∣∣∣
U(3)
6= 0 , (3.118)

whereas in all these cases one should expect a vanishing result if the W loc
n were the

quantum version of the classical symmetric polynomials. We find that enforcing the

chiral ring relations allows us to make contact with the results for the Wn coming

from the Seiberg-Witten curves. This amounts a redefinition of W loc
n , and thereby

a different choice of the generators for the chiral ring.

The second observation is that our explicit localization results allow us to perform

this redefinition in a systematic way. Indeed, from

W loc
2

∣∣∣
U(1)

= −m
2

24

(
E2 − 1

)
, (3.119)

we immediately realize that the “good” operator at level 2 can be obtained from

W loc
2 by removing the constant m2 term proportional to (E2 − 1). We are thus led

to define 7

Ŵ2 = W loc
2 +

N m2

24

(
E2 − 1) . (3.120)

Similarly, at level 3 we find that the term responsible for the inequalities in (3.118)

is again the m2 part proportional to (E2 − 1), so that the desired operator is

Ŵ3 = W loc
3 +

(N − 2)m2

24

(
E2 − 1)

∑
u

au . (3.121)

At level 4 we see that the non-vanishing results in (3.118) are due again to the m2

terms proportional to (E2− 1) but also to the a-independent terms at order m4 and

6Recall that the localization formulas formally hold true also for N = 1.
7It is interesting to note that also the prepotential of N = 2? theories satisfies the duality

properties discussed in [11, 12] only if an a-independent term proportional to m2, which is not
quasi-modular, is discarded. Such a constant term in the prepotential does not, however, influence
the effective action.
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to the m6 terms in the last line of (3.117). This motivates us to introduce

Ŵ4 = W loc
4 +

m2

24

(
E2 − 1

)((∑
u

au
)2

+ (N − 6)
∑
u1<u2

au1au2

)
− N m4

5760

(
5N
(
3E2

2 − 2E4 − 2E2 + 1
)
− 30E2

2 + 12E4 + 60E2 − 42
)

+
(N − 6)m6

6912

(
E2 − 1

)(
E2

2 − E4

)
C 0

2 .

(3.122)

It is interesting to observe that the difference between Ŵn and W loc
n only consists of

terms whose coefficients are polynomials in the Eisenstein series that do not have a

definite modular weight, whereas the common terms at order m2` are quasi-modular

forms of weight 2`. Removing all such inhomogeneous terms from the W loc
n yields

the one-point functions that satisfy the classical chiral ring relations. Furthermore,

it is worth noticing that (3.122) can be rewritten as

Ŵ4 = W loc
4 +

(N − 6)m2

24

(
E2 − 1

)
W loc

2 +
m2

24

(
E2 − 1

)
W 2

1

− N m4

5760

(
5N
(
E2

2 − 2E4 + 2E2 − 1
)

+ 30E2
2 + 12E4 − 60E2 + 18

)
.

(3.123)

The fact that the m6 terms are exactly reabsorbed is a very strong indication that

the above formula is exact in m. Notice also that this redefinition, like the previous

ones (3.120) and (3.121), is exact in the gauge coupling.

The most important point, however, is that the resulting expressions for the Ŵn

derived from the localization formulas precisely match those for the Wn obtained

from the SW curves in the previous section. Indeed, comparing (3.120)–(3.122) with

(3.85)–(3.87), we have

Ŵn = Wn . (3.124)

Our calculations provide an explicit proof of this equivalence for n ≤ 4, but of course

they can be generalized to higher levels.
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Summarizing, we have found that the quantum coordinates of the moduli space

computed using the SW curves for the N = 2? U(N) theory agree with those

obtained from the localization formulas provided on the latter we enforce the classical

chiral ring relations obeyed by the symmetric polynomials. Enforcing these relations

is clearly a choice that amounts to selecting a particular basis for the generators

of the chiral ring. It would be interesting to explore the possibility of modifying

the localization prescription in order to obtain chiral observables that automatically

satisfy such relations without the need for subtracting the non-quasi-modular terms.

3.6 1-Instanton Results

In the previous sections we have presented a set of results that are exact in the

gauge coupling constant for quantities that have been evaluated order by order in the

hypermultiplet mass. Here instead, we exhibit a result that is exact in m but is valid

only at the 1-instanton level. To do so let us consider the localization results (3.111)

for the one-point functions 〈Tr Φn〉
∣∣
loc

, and focus on the terms proportional to q

corresponding to k = 1. Actually, the calculations at k = 1 can be easily performed

also for higher rank groups and pushed to higher order in the mass without any

problems. Collecting these results, it is does not take long to realize that they have

a very regular pattern and can be written compactly as

〈Tr Φn〉
∣∣
k=1

= −n(n− 1) q m2

(
C n−2 −m2 C n−2

2 − m4

2
C n−2

2;11 −
m6

24
C n−2

2;1111 + · · ·
)

= −n(n− 1) q m2

(
C n−2 −

∑
`=0

m2+`

`!
C n−2

2;1. . . 1︸︷︷︸
`

)
.

(3.125)

Notice that C p
2;1···1 with an odd number of 1’s is zero, and that for a U(N) theory

only N−1 terms are present in the sum over `. Using the explicit form of the lattice
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sums (3.13), one can resum the above expression and find

〈Tr Φn〉
∣∣
k=1

= −n(n− 1) q m2
∑
λ∈W

(λ · φ)n−2

[
1−

∑
α∈Ψλ

m2

(α · φ)2

∏
β∈Ψα

(
1 +

m

β · φ

)]
.

(3.126)

This is a generalization of an analogous formula for the prepotential found in [11, 12],

to the case of the chiral observables of the N = 2? theory. Being exact in m, we

can use (3.126) to decouple the hypermultiplet by sending its mass to infinity and

thus obtain the 1-instanton contribution to the one-point function of the single trace

operators in the pure N = 2 U(N) gauge theory. More precisely, this decoupling

limit is

m→∞ and q → 0 with q m2N ≡ Λ2N fixed . (3.127)

Recalling that the number of roots β in Ψα is 2N − 4, we see that the highest mass

power in (3.126) is precisely m2N , so that in the decoupling limit we get

〈Tr Φn〉
∣∣
k=1

= n(n− 1) Λ2N
∑
λ∈W

∑
α∈Ψλ

(λ · φ)n−2

(α · φ)2

∏
β∈Ψα

1

β · φ
. (3.128)

We remark that for n = 2 this formula agrees with the 1-instanton prepotential of

the pure N = 2 theory, which was derived in [84, 85] using completely different

methods. Indeed, through the Matone relation [83] 〈Tr Φ2〉 and the prepotential at

1 instanton are proportional to each other.

Moreover, if we restrict to SU(N), it is possible to verify that (3.128) is in full

agreement with the chiral ring relations of the pure N = 2 SYM theory that follow

by expanding in inverse powers of z the identity [19, 20, 21]

〈
Tr

1

z − Φ

〉
=

P ′N(z)√
P 2
N(z)− 4Λ2N

(3.129)
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where

PN(z) = zN +
N∑
`=2

u` z
N−` , (3.130)

is a degree N polynomial that encodes the Coulomb moduli u` appearing in the SW

curve of the pure SU(N) SYM theory.

It would be nice to see whether the formulas (3.126) and (3.128) for generic n are

valid also for other groups, as is the case for the n = 2 case [85, 11, 12].
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4
Fundamental Matters

In this chapter, we study N = 2 superconformal theories with gauge group SU(N)

and 2N fundamental flavours in a locus of the Coulomb branch with a ZN symmetry.

In this special vacuum, we calculate the prepotential, the dual periods and the

period matrix using equivariant localization. In the conformal limit, we find that

the period matrix is completely specified by
[
N
2

]
effective couplings. On each of

these, we show that the S-duality group acts as a generalized triangle group and that

its hauptmodul can be used to write a non-perturbatively exact relation between

each effective coupling and the bare one. For N = 2, 3, 4 and 6, the generalized

triangle group is an arithmetic Hecke group which contains a subgroup that is also a

congruence subgroup of the modular group PSL(2,Z). For these cases, we introduce

mass deformations that respect the symmetries of the special vacuum and show

that the constraints arising from S-duality make it possible to resum the instanton

contributions to the period matrix in terms of meromorphic modular forms which

solve modular anomaly equations.
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4.1 Introduction

One of the most interesting properties of supersymmetric gauge theories is the ex-

istence of non-perturbative S-dualities that relate their weak- and strong-coupling

behaviour.1 Recently, there has been much progress in understanding these duali-

ties in conformally invariant N = 2 supersymmetric gauge theories in four dimen-

sions, especially following the seminal work of Gaiotto [22]. In that work, the four-

dimensionalN = 2 theories were realized as compactifications of the six-dimensional

(2, 0) theory on a punctured Riemann surface Σ. One of the important results of

this approach was to identify the complex structure moduli space of Σ with the

space of gauge couplings modulo the action of the S-duality group. For linear quiver

gauge theories in the weak coupling limit, the Riemann surface degenerates into a

collection of three-punctured spheres connected by long thin tubes, and the sewing

parameters are identified with the bare coupling constants of the superconformal

gauge theory.

This approach is fruitfully contrasted with the original solution of N = 2 gauge

theories due to Seiberg and Witten [1, 2], where the quantum effective action on the

Coulomb branch is obtained from an algebraic curve describing a Riemann surface,

and an associated holomorphic differential. For generic vacuum expectation values of

the scalar fields in the adjoint gauge multiplet, the quantum effective action describes

a N = 2 supersymmetric theory with gauge group U(1)r, where r is the rank of the

original non-abelian gauge group. The matrix of effective couplings τij between the

various U(1)’s is identified with the period matrix of the Seiberg-Witten curve. For

gauge groups with large r, it becomes difficult to use the Seiberg-Witten curve and

the corresponding differential to do explicit calculations. In such cases, however,

it is possible to make progress using equivariant localization methods [3, 4, 51, 87]

1For a recent review we refer the reader to [86].
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which allow one to compute the prepotential, the dual periods and the period matrix

of the effective action order by order in an instanton expansion. Interestingly, the

instanton counting parameters in this expansion have a natural interpretation as

the bare coupling constants of the superconformal gauge theory [22, 88].

Whichever approach one uses to study the low-energy theory, a natural question to

ask is whether the non-perturbative S-duality group can be used to solve for the

effective action. For N = 2? theories (i.e. mass deformed N = 4 theories) with

unitary gauge groups it has been shown [10, 23, 24, 25] that the constraints coming

from S-duality take the form of a modular anomaly equation whose solution allows

one to reconstruct the prepotential on the Coulomb branch order by order in the

mass of the adjoint hypermultiplet to all orders in the gauge coupling. To achieve

this result one has to organize the low-energy effective prepotential as a semi-classical

expansion in inverse powers of the vacuum expectation values of the scalar fields in

the gauge vector multiplet and realize that the coefficients of this expansion satisfy

a recursion relation whose solution can be written in terms of quasi-modular forms

of PSL(2,Z) acting on the bare gauge coupling. These modular forms resum the

instanton series and therefore provide an exact result. It is of particular importance

that N = 2? theories are characterized by the absence of any renormalization of

the coupling constant, even non-perturbatively; thus, the bare coupling is the only

coupling that is present in the effective theory. This procedure has been applied

also to N = 2? theories with arbitrary gauge groups in [12, 11], where it has been

observed that for non-simply laced algebras the effective prepotential is expressed

in terms of quasi-modular forms of congruence subgroups of PSL(2,Z).

In this work we study N = 2 gauge theories with gauge group SU(N) and 2N

fundamental flavours, generalizing the analysis of the SU(3) gauge theory with six

flavours recently presented in [26]. When all flavours are massless, these SQCD

theories are superconformal. However, unlike the case of N = 2? theories, the bare
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gauge coupling in N = 2 SQCD is renormalized by quantum corrections which arise

from a finite 1-loop contribution as well as from an infinite series of non-perturbative

contributions due to instantons. In general these corrections are different for the

various U(1) factors and thus one expects to find several effective couplings in the

low-energy theory.

This chapter is divided into two parts. In the first part, we work in the conformal

limit with all flavour masses set to zero, and calculate various observables of the

effective theory such as the prepotential, the period integrals and the period ma-

trix, using equivariant localization. In particular, we work in a special locus of the

Coulomb branch which possesses a ZN symmetry and which we call the “special

vacuum” [27]. In this special vacuum, the period matrix has fewer independent

components than it does at a generic point of the moduli space. More precisely,

when all quantum corrections are taken into account there are
[
N
2

]
distinct matrix

structures which correspond to
[
N
2

]
renormalized coupling constants in the effective

theory.2 Of course, at leading order such renormalized couplings are all equal to the

bare coupling, but when 1-loop and instanton corrections are taken into account,

they begin to differ from one another. Given that the S-duality group naturally

acts on the bare coupling, an obvious question to ask is how S-duality is realized

on the various parameters of the quantum theory. The answer we provide in this

paper is that on each individual effective coupling S-duality acts as a generalized

triangle group (see for example [28]). Moreover, using this insight, we propose a

non-perturbatively exact relation between the bare coupling and the renormalized

ones that takes a universal form in terms of the j-invariants of the triangle groups.

We perform several successful checks of this proposal by comparing the instanton

contributions predicted by the exact relation with the explicit results obtained from

multi-instanton localization. As a further evidence in favour of our proposal, we

show that the action of S-duality on the renormalized couplings is fully consistent

2Here [ · ] denotes the floor function.
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with the action on the bare coupling as obtained from Gaiotto’s analysis [22]. We

believe that our results, and in particular the exact relation we propose, can play

an important role in the study of these SQCD theories at strong coupling [29]. This

is because the j-invariants have a well-understood behaviour near those cusp points

where the coupling constants become large and the usual weak-coupling expansion

cannot be used.

In the second part of the chapter we move away from the conformal limit by giving

a mass to the fundamental flavour hypermultiplets. For generic masses the ZN

symmetry of the special vacuum is broken; to avoid this, we restrict our analysis to

ZN -symmetric mass configurations so that the modular structure uncovered in the

massless limit gets deformed in a natural and smooth manner. In particular, with

these ZN -symmetric mass configurations we find that the
[
N
2

]
matrix structures of

the massless theories are preserved, while the
[
N
2

]
effective couplings simply receive

further contributions proportional to the hypermultiplet masses. Building on earlier

literature [30, 31], this analysis was already carried out for the SU(2) theory in

[23, 24], where it was shown that the prepotential can be written in terms of quasi-

modular forms of the modular group PSL(2,Z). Moreover, after expanding the

prepotential in powers of the flavour masses, it was realized that the coefficients of

this expansion satisfy a modular anomaly equation that takes the form of a recursion

relation, similar to that of the N = 2? case. These results have been recently

extended to the SU(3) theory with six massive flavours in [26], where it has been

shown that the prepotential, the dual periods and the period matrix are constrained

by S-duality to obey again a recursion relation that can be written as a modular

anomaly equation. In this case, the solutions of this equation are quasi-modular

forms of Γ1(3), which is a subgroup of the S-duality group that is also a congruence

subgroup of PSL(2,Z).3 Here we further extend these results to the general SU(N)

3The relevance of Γ1(3) and of its modular forms for the effective SU(3) theory with six flavours
was already observed long ago in [89, 90, 91].
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theory with 2N massive flavours and show that the constraints arising from S-duality

can always be written as a recursion relation for any N . However, beyond this step,

the analysis crucially depends on the arithmetic properties of the S-duality group.

It turns out that for N = 2, 3, 4 and 6, the S-duality group acting on each quantum

coupling always has a subgroup which is a congruence subgroup of PSL(2,Z). For

these theories, which we call arithmetic, the discussion proceeds along the same

lines described in [26] for the SU(3) theory, with one important modification: in the

higher rank cases, the S-duality constraints are written as coupled modular anomaly

equations. These coupled equations are nevertheless integrable and their solutions

turn out to be polynomials in meromorphic quasi-modular forms of congruence

subgroups of PSL(2,Z). For all non-arithmetic theories, instead, S-duality acts

as generalized triangle groups and one would need to use their automorphic forms

to solve for various observables. Here, we restrict our analysis only to the massive

arithmetic cases, leaving the study of the non-arithmetic cases for the future.
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Massless N = 2 SQCD and Duality Groups

In this part, we discuss N = 2 SQCD theories with massless fundamental hyper-

multiplets.

4.2 Massless SQCD and the Special Vacuum

We begin by reviewing the main features of N = 2 SQCD theories with unitary

gauge groups U(N). These theories are superconformal invariant if the number of

flavours is 2N .

As usual, we can combine the bare Yang-Mills coupling g and the θ-angle into the

complex variable

τ0 =
θ

2π
+ i

4π

g2
, (4.1)

so that the instanton counting parameter q0 is defined as

q0 = e2πiτ0 . (4.2)

The low-energy effective dynamics of these N = 2 theories is completely determined

by the prepotential, which we now describe.
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4.2.1 The Prepotential

The prepotential F admits a decomposition into classical (tree-level), perturbative

(1-loop), and non- perturbative (instanton) contributions:

F = Fclass + F1-loop + Finst . (4.3)

Classical Contribution

For the U(N) gauge theory the classical prepotential is given by

Fclass = iπτ0 tr 〈A〉2 = iπτ0

N∑
u=1

A2
u , (4.4)

where the vacuum expectation value of the adjoint scalar A is

〈A〉 = diag (A1, · · · , AN) . (4.5)

For unitary gauge groups the Au’s are unrestricted, while for special unitary groups

we have to impose the tracelessness condition

N∑
u=1

Au = 0 . (4.6)

Throughout this paper we satisfy this constraint by taking

Au =


au for u = 1, · · · , N − 1 ,

− (a1 + · · ·+ aN−1) for u = N .

(4.7)

When referring to the SU(N) theory we will use the indices i, j, · · · ∈ {1, · · · , N−1}

to label the Cartan directions.
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Perturbative Contribution

The perturbative (1-loop) contribution to the prepotential is independent of the

bare coupling τ0 and is given by

F1-loop =
N∑

u6=v=1

γ(Au − Av)− 2N
N∑
u=1

γ(Au) , (4.8)

where (see for example [6])

γ(x) = −x
2

4
log

(
x2

Λ2

)
. (4.9)

Here Λ is an arbitrary mass scale, which actually drops out from F1-loop due to

conformal invariance.

Instanton Contribution

The non-perturbative contributions to the prepotential can be explicitly calculated

using the methods of equivariant localization [3, 4, 51, 87] (see also [80] for technical

details) and are of the form

Finst. =
∞∑
k=1

Fk(ur) q
k
0 (4.10)

where

ur =
N∑
u=1

A r
u (4.11)

for r = 1, · · · , N are the Casimir invariants of the gauge group. The function

Fk represents the k-instanton contribution to the prepotential and, on dimensional

grounds, must have mass dimension 2.
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4.2.2 The Special Vacuum

In the following we will study the massless SQCD theories in the so-called special

vacuum [27] which is defined as the locus of points on the moduli space where

ur = 0 for r = 1, · · · , N − 1 . (4.12)

For SU(N) theories the condition u1 = 0 is nothing but (4.7), while the other

conditions select vacuum configurations with special properties.4

The special vacuum restriction (4.12) can be implemented by choosing the vacuum

expectation values of the adjoint SU(N) scalar as

ai = ωi−1a (4.13)

for i = 1, · · · , N − 1, where

ω = e
2πi
N . (4.14)

We thus see that the special vacuum can be parametrized by a single scale a and

that it possesses a ZN symmetry.

4.2.3 Observables

We now discuss the properties of some observables in the special vacuum, starting

with the prepotential.

4In the SU(2) theory there is clearly only one condition, namely u1 = 0 and the notion of special
vacuum does not apply in this case. Despite this fact, most of the subsequent formulas formally
hold also for SU(2).
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The Prepotential

In the special vacuum several simplifications occur when one evaluates the prepo-

tential. For instance, the classical prepotential (4.4) vanishes and the ZN -invariance

of the special vacuum implies that for large a the prepotential has a semi-classical

expansion of the form

F =
∞∑
n=1

fn
(
q0

)
anN

. (4.15)

The coefficients fn’s must have mass dimension equal to (nN + 2); however, since

the flavours are massless, the only available scale is a and it is not possible to give

fn the required mass dimensions. Thus the prepotential identically vanishes in the

special vacuum.5

Dual Periods

In the SU(N) theory the dual periods aD
i are defined by

aD
i =

1

2πi

∂F

∂ai
. (4.16)

As in the special vacuum all ai’s are proportional to each other, this is also true of

the dual periods. For example one can verify that

aD
i = −

(
ω + ω2 + · · ·+ ωi

)
aD
N−1 (4.17)

for any i = 1, · · · , N − 1. Therefore, in the special vacuum without any loss of

generality we can choose the following conjugate pair of variables: (aD
N−1, a1). To

simplify notation, we will omit the subscripts and denote these just by (aD, a).

5The case N = 2 is clearly an exception. Indeed, the prepotential of the massless SU(2) theory
is proportional to a2, which has the right mass dimension and is Z2-symmetric (see for instance
[24, 23]).
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The classical contribution to aD is given by

aD
class = τ0 (a1 + a2 + · · ·+ 2aN−1)

= cN τ0 a , (4.18)

where the second line follows upon using the special vacuum values (4.13) which

lead to

cN =
(1− ω)

ω2
. (4.19)

The classical dual period receives both 1-loop and instanton corrections, even in the

massless theory. Physically, this corresponds to a non-perturbative redefinition of

the bare coupling constant τ0 into a new renormalized coupling constant that we

denote τ . This renormalized coupling constant is defined in such a way that the

quantum corrected dual period takes the simple form

aD = cN τ a , (4.20)

namely the same classical expression (4.18) with τ0 replaced by τ . The latter admits

the following non-perturbative expansion

2πi τ = 2πi τ0 + iπ + log b0 +
∞∑
k=1

bk q
k
0 . (4.21)

In this expression, the logarithmic term represents a finite contribution at 1-loop,

while the term proportional to qk0 is the k-instanton contribution.

98



The Period Matrix

In the SU(N) theory the period matrix Ω is the (N − 1)× (N − 1) matrix defined

as

Ωij =
1

2πi

∂2F

∂ai∂aj
. (4.22)

The classical part of the period matrix is simply given by

Ωclass = τ0 C (4.23)

where

C =



2 1 · · · 1

1 2 · · · 1

...
...

. . .
...

1 1 . . . 2


(4.24)

is the Cartan matrix corresponding to our parametrization of SU(N).

For N > 3 this simple structure is lost [90, 92] when perturbative and instanton

contributions are taken into account, even in the special vacuum. For example, at

1-loop from (4.8) one finds

Ω1-loop =
i

π

(
log(2N) C + G

)
(4.25)

where the matrix elements of G are given by [90]

Gii = 2 log sin

(
iπ

N

)
,

Gij = log sin

(
iπ

N

)
+ log sin

(
jπ

N

)
− log sin

(
|i− j|π
N

)
for i 6= j .

(4.26)

For N = 3 it is easy to see that G is proportional to the Cartan matrix C, but this

relation does not hold for N > 3. Indeed, a closer inspection of (4.26) reveals that
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it is possible to identify
[
N
2

]
different matrix structures. A similar result is found

even after the instanton contributions are taken into account. Thus, in general the

complete period matrix Ω can be written as

Ω = τ1 M1 + τ2 M2 + · · ·︸ ︷︷ ︸[
N
2

]
terms

(4.27)

where the Mk’s are independent matrix structures and the τk are distinct complex

couplings that characterize the effective theory. Of course, one could in principle

use any basis of matrices Mk to write Ω, but a particularly insightful choice is the

one that “diagonalizes” the action of the S-duality group. In such a basis, under

S-duality each Mk stays invariant and each τk transforms individually as

τk → −
1

λk τk
(4.28)

for some positive λk. We will explicitly show in a series of examples that the spec-

trum of λk is given by

λk = 4 sin2

(
k π

N

)
. (4.29)

Note that for N ∈ {2, 3, 4, 6} all the λk’s take integer values. We call these cases

arithmetic. If instead N 6∈ {2, 3, 4, 6}, then the λk’s are not necessarily integer. We

refer to the latter as the non-arithmetic cases. Moreover, we will find that for any N

the coupling τ1 in (4.27) coincides with the coupling τ that appears in the expression

(4.20) for the dual period aD.

In order to show these facts, we now turn to a detailed discussion of the S-duality

group.

100



4.3 The S-duality Group

The S-duality group of N = 2 SQCD has been derived in [93]. Here, we focus on

the massless case in the special vacuum, for which the Seiberg-Witten curve takes

the following hyperelliptic form

y2 = (xN − uN)2 − hx2N . (4.30)

Here uN is the only non-zero Coulomb modulus labeling the special vacuum and h

is a function of the gauge coupling given by (see for example [80, 26])

h =
4q0

(1 + q0)2
. (4.31)

The Seiberg-Witten curve degenerates when its discriminant vanishes and from

(4.30) it is easy to see that this happens at h = 0, 1,∞. The monodromies around

these points generate the S-duality group [93]. We will take this to be our working

definition of the S-duality group in what follows. In Section 4.5 we will rederive this

result by a completely different method.

We begin by choosing a canonical homology basis of cycles for the U(N) theory

described by (4.30), which we denote by hatted variables. Specifically, we introduce

α̂ and β̂ cycles with the following intersections

α̂u ∩ α̂v = β̂u ∩ β̂v = 0 ,

(
α̂u ∩ β̂v

)
=



1 −1 0 · · · 0

0 1 −1 · · · 0

...
...

...
. . .

...

−1 0 0 · · · 1


,

(4.32)
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for u, v = 1, · · · , N . These cycles are not linearly independent since

N∑
u=1

α̂u = 0 and
N∑
v=1

β̂v = 0 . (4.33)

In the special vacuum there is a natural ZN symmetry that rotates this basis clock-

wise and is generated by

Φ :


α̂u −→ α̂u−1 ,

β̂v −→ β̂v−1 .

(4.34)

Physical observables are insensitive to this ZN rotation.

The action of S- and T -transformations on this basis of cycles has been determined

in [93] from the monodromy around the points h =∞ and h = 0, respectively, and

is given by

S :


α̂u → β̂u ,

β̂v → α̂v−1 ,

and T :


α̂u → α̂u ,

β̂v → β̂v + α̂v − α̂v−1 .

(4.35)

In the SU(N) theory we can choose the independent cycles as follows:

αi = α̂i and βj =

j∑
i=1

β̂i (4.36)

for i, j = 1, · · · , N−1. Using (4.32) one can easily check that this basis is symplectic,

in the sense that αi ∩ αj = βi ∩ βj = 0 and αi ∩ βj = δij.

The restriction of the S and T transformations to the SU(N) basis (4.36) follows

directly from (4.35). If we represent them as (2N − 2) × (2N − 2) matrices acting
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on the (2N − 2) vector

β
α

, we find

S =

 0 B

−(B t)−1 0

 and T =

 1l C

0 1l

 (4.37)

where

B =



−1 −1 −1 · · · −1

0 −1 −1 · · · −1

0 0 −1 · · · −1

...
...

...
. . .

...

0 0 0 · · · −1


, (4.38)

and C is the Cartan matrix (4.24). It is interesting to observe that

S2 = V , (4.39)

where V is an Sp(2N − 2,Z) matrix that implements the ZN transformation (4.34)

on the SU(N) basis of cycles (αi, βj), given by

V =

(V t)−1 0

0 V

 (4.40)

where

V =



−1 −1 −1 · · · −1

1 0 0 · · · 0

0 1 0 · · · 0

...
...

. . .
...

...

0 0 · · · 1 0


. (4.41)

Notice that VN = 1. Such a transformation leaves the period matrix invariant and

is a symmetry of the theory. This means that S effectively squares to the identity.
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4.3.1 S-Action on Period Integrals and Gauge Coupling

From the transformations (4.37) on the homology cycles we can straightforwardly

deduce how S and T act on the periods ai and their duals aD
j , which are the integrals

of the Seiberg-Witten differential associated to the curve (4.30) over the cycles αi

and βj respectively. Focusing in particular on the S-transformation, we find

S(aD
j ) =

(
B · a

)
j
,

S(ai) = −
(
(B t)−1 · aD

)
i

(4.42)

where B is the matrix in (4.38). Thus, for our conjugate pair of variables (aD
N−1, a1) ≡

(aD, a) we have

S(aD) = −aN−1 = − 1

ω2
a ,

S(a) = aD
1 = −ω aD ,

(4.43)

where in each line the second equality follows upon using the special vacuum re-

lations (4.13) and (4.17). As expected, the period and dual period integrals are

exchanged under S-duality.

This result is quite useful since it allows us to deduce how S-duality acts on the

gauge coupling τ . Indeed, if we take into account the link (4.20) between aD and a,

and apply to it the S-duality transformations, we find

S(aD) = −cN S(τ)ω aD = −c2
N S(τ) τ ω a . (4.44)

Consistency with (4.43) implies that

τ → − 1

λ τ
(4.45)
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with

λ = −c2
N ω

3 = −(1− ω)2

ω
= 4 sin2 π

N
. (4.46)

Here we have used (4.19) and (4.14). This is precisely the case k = 1 of the general

formula (4.29), and thus we conclude that the coupling τ that appears in the relation

between a and aD is actually τ1, according to our definition in (4.28). As we have

already noticed, in the arithmetic cases N ∈ {2, 3, 4, 6}, the constant λ in (4.46)

takes integer values.

4.4 The Arithmetic Theories

In this section, we collect the results obtained from localization calculations for

the lower rank SQCD models and accumulate evidence for our conjecture regarding

the form of the period matrix and the S-duality transformations of the quantum

couplings that we anticipated at the end of Section 4.2.3. While the SU(2) and

SU(3) theories have already been studied in the literature, for completeness we start

by briefly recalling the main results for these cases.

4.4.1 N = 2

In this case, the period matrix is just a complex constant given by

Ω = 2τ1 (4.47)

where τ1 is the only effective coupling of this theory. Using multi-instanton calcula-

tions (see for example [80, 88]), one can show that

2πi τ1 = log q0 + iπ − log 16 +
1

2
q0 +

13

64
q2

0 +
23

192
q3

0 · · · , (4.48)
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which can be inverted order by order to give

q0 = −16 q1 (1 + 8 q1 + 44 q2
1 + · · · ) = −16

(
η(4τ1)

η(τ1)

)8

, (4.49)

where q1 = e2πiτ1 and η is the Dedekind η-function.

The analysis of the previous section shows that under the S-transformation, the

period matrix transforms under a symplectic Sp(2,Z) transformation 6:

S : Ω→ − 1

Ω
. (4.50)

From this it follows that the effective coupling τ1 transforms as

S : τ1 → −
1

4τ1

, (4.51)

in agreement with (4.28) since λ1 = 4 for N = 2. Using this in (4.49), we get

S : q0 →
1

q0

. (4.52)

Furthermore, by computing the dual period we find

aD = 2τ1a (4.53)

in agreement with the general formula (4.20) for ω = −1.

6See section 4.5.1 for a more detailed discussion of S-duality for the SU(2) theory.
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4.4.2 N = 3

In this case the period matrix turns out to be proportional to the SU(3) Cartan

matrix

Ω = τ1

2 1

1 2

 (4.54)

where τ1 has the following instanton expansion (see for example [80, 26])

2πi τ1 = log q0 + iπ − log 27 +
4

9
q0 +

14

81
q2

0 +
1948

19683
q3

0 · · · . (4.55)

As for the SU(2) case, the SU(3) theory in the special vacuum has a single τ1-

parameter even after the quantum corrections are taken into account. On inverting

the above expansion, we get

q0 = −27 q1 (1 + 12 q1 + 90 q2
1 + · · · ) = −27

(
η(3τ1)

η(τ1)

)12

(4.56)

where, as before, q1 = e2πiτ1 . Again, we have provided a non-perturbatively exact ex-

pression in terms of η-quotients. Using the Sp(4,Z) matrices derived in Section 4.3,

one can check that S-duality leaves the SU(3) Cartan matrix invariant and acts on

τ1 as [26]:

S : τ1 → −
1

3τ1

. (4.57)

in agreement with (4.29) since λ1 = 3 for N = 3; using this in (4.56), we easily see

again that

S : q0 →
1

q0

. (4.58)

Finally, on computing the dual period in this case we find

aD = i
√

3τ1a (4.59)
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which confirms the general formula (4.20) since for SU(3) ω = e
2πi
3 .

4.4.3 N = 4

We now turn to the SU(4) theory. As always, the classical period matrix is pro-

portional to the Cartan matrix of the gauge Lie algebra but this time another

independent matrix structure appears when one takes into account the 1-loop and

the instanton corrections. We have explicitly checked up to three instantons that it

is possible to write the quantum period matrix as

Ω = τ1M1 + τ2M2 , (4.60)

where M1 and M2 are two 3× 3 matrices given by

M1 =


1 1 0

1 2 1

0 1 1

 and M2 =


1 0 1

0 0 0

1 0 1

 , (4.61)

and the two couplings τ1 and τ2 have the following instanton expansions

2πi τ1 = log q0 + iπ − log 64 +
3

8
q0 +

141

1024
q2

0 +
311

4096
q3

0 + · · · , (4.62a)

2πi τ2 = log q0 + iπ − log 16 +
1

2
q0 +

13

64
q2

0 +
23

192
q3

0 + · · · . (4.62b)

On inverting these expansions we find

q0 = −64 q1 (1 + 24 q1 + 300 q2
1 + · · · ) = −64

(
η(2τ1)

η(τ1)

)24

, (4.63a)

q0 = −16 q2 (1 + 8 q2 + 44 q2
2 + · · · ) = −16

(
η(4τ2)

η(τ2)

)8

, (4.63b)
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where we have introduced the notation

qk = e2πiτk (4.64)

for k = 1, 2. Once again, as for N = 2 and 3, the bare coupling can be expressed as a

quotient of η- functions of the renormalized couplings. Notice that the q0-expansion

of τ2 is the same as that of the effective coupling of the SU(2) theory (see (4.48)).

Although this coincidence may appear surprising at first glance, it is actually a

consequence of the fact that this pair of couplings transform in the same way under

S-duality. We will explicitly show this below, but this result can be anticipated by

noticing that the general formula (4.29) implies that λ2 for N = 4 and λ1 for N = 2

are both equal to 4.7

Let us now consider the action of S-duality on the period matrix (4.60). Using the

Sp(6,Z) transformations (4.37), we find that M1 and M2 are left invariant while

S : τk → −
1

λk τk
(4.65)

with λ1 = 2 and λ2 = 4, exactly as predicted by (4.28) and (4.29). Using these

transformations in (4.63), we can check also in this case that

S : q0 →
1

q0

. (4.66)

By computing the dual period aD ≡ aD
3 in terms of a ≡ a1, we find

aD = (i− 1)τ1a (4.67)

in agreement with (4.20) for ω = i.

7Indeed, for all even N , λN
2

= 4.
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4.4.4 N = 6

We now turn to the last arithmetic case, namely the SU(6) theory. We have verified

using localization techniques up to two instantons that in the special vacuum the

period matrix can be written as a sum of three independent structures as follows

Ω = τ1M1 + τ2M2 + τ3M3 , (4.68)

where

M1 =



+1
3

+1
2

+1
3

0 −1
6

+1
2

+1 +1 +1
2

0

+1
3

+1 +4
3

+1 +1
3

0 +1
2

+1 +1 +1
2

−1
6

0 +1
3

+1
2

+1
3


,

M2 =



+1 +1
2

0 +1 +1
2

+1
2

+1 0 +1
2

+1

0 0 0 0 0

+1 +1
2

0 +1 +1
2

+1
2

+1 0 +1
2

+1


, (4.69)

M3 =



+2
3

0 +2
3

0 +2
3

0 0 0 0 0

+2
3

0 +2
3

0 +2
3

0 0 0 0 0

+2
3

0 +2
3

0 +2
3


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and

2πi τ1 = log q0 + iπ − log 432 +
5

18
q0 +

485

5184
q2

0 + · · · , (4.70a)

2πi τ2 = log q0 + iπ − log 27 +
4

9
q0 +

14

81
q2

0 + · · · , (4.70b)

2πi τ3 = log q0 + iπ − log 16 +
1

2
q0 +

13

64
q2

0 + · · · . (4.70c)

We easily recognize that the q0-expansion of τ2 is the same as that of the effective

coupling of the SU(3) theory (see (4.55)), and that the q0-expansion of τ3 is the

same as that of the coupling τ2 appearing in the SU(4) theory which, as we already

remarked, is also the same as the coupling τ1 of the SU(2) theory. Again these facts

are a consequence of the symmetries of the formula (4.29) which imply that these

pairs of couplings have the same transformations under S-duality.

Inverting the expansions (4.70), we obtain

q0 = −432 q1 (1 + 120 q1 + 4140 q2
1 + · · · ) , (4.71a)

q0 = −27 q2 (1 + 12 q2 + 90 q2
2 + · · · ) = −27

(
η(3τ2)

η(τ2)

)12

, (4.71b)

q0 = −16 q3 (1 + 8 q2
3 + 44 q2

3 + · · · ) = −16

(
η(4τ3)

η(τ3)

)8

, (4.71c)

where we have used the notation (4.64). We observe that there appears to be no

simple way to express q0 in terms of η-quotients of τ1. However, we will revisit this

issue in Section 4.5 where we will provide for all SU(N) models a universal formula

for q0 in terms of modular functions of any renormalized couplings τk, thus including

also the τ1 of the SU(6) theory.

Let us now consider the S-duality action on the period matrix (4.68). Under the

Sp(10,Z) transformation given in (4.37), we find that the three matrices (4.69) re-
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main invariant while the couplings transform as

S : τk → −
1

λk τk
(4.72)

with λ1 = 1, λ2 = 3 and λ3 = 4 in full agreement with (4.29). Exploiting the

η-quotient expressions in (4.71), one can easily prove that the S-transformations of

τ2 and τ3 lead again to

S : q0 →
1

q0

. (4.73)

Finally, by computing the dual period aD ≡ aD
5 in terms of a ≡ a1 in the special

vacuum, we obtain

aD = −aτ1 (4.74)

which confirms once more (4.20), since for SU(6) we have ω = eπi/3.

Besides the S-duality action we should also consider the T-duality transformation

of the effective couplings which is simply 8

T : τk → τk + 1 . (4.75)

Thus the previous results can be summarized by saying that in the arithmetic cases

the duality transformations act as fractional linear transformations on each of the

τk and form a subgroup of PSL(2,R) generated by

S =

 0 1/
√
λk

−
√
λk 0

 and T =

 1 1

0 1

 (4.76)

with λk ∈ {1, 2, 3, 4} as given by (4.29). We call this subgroup Γ∗(λk). For λk = 1

this is the usual modular group PSL(2,Z).

8See Section 4.5.1 for the SU(2) case, which has a distinct T - transformation.
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4.5 S-Duality and j-Invariants for Arithmetic The-

ories

In this section we collect the results obtained so far and explain how our definition

of S-duality fits in the general discussion presented in [22]. If we describe the SU(N)

theory in the special vacuum by the Seiberg-Witten curve in the Gaiotto form

xN =
uN

tN−1(t− 1)(t− q0)
, (4.77)

then S-duality can be described as an action on the (x, t) variables given by [22]

S : (x , t)→
(
−t2x , 1

t

)
, (4.78)

which effectively amounts to an inversion of the bare coupling 9:

S : q0 →
1

q0

. (4.79)

We have already seen in various explicit examples that the rule (4.79) is implied

by the S-duality transformations of the renormalized couplings τk of the arithmetic

theories, namely

S : τk → −
1

λk τk
(4.80)

with λk ∈ {2, 3, 4}. Actually, all these cases can be combined together by observing

that the η-quotients in (4.49), (4.56), (4.63), (4.71) can be written as

q0 = −(λk)
6

λk−1

(
η(λk τk)

η(τk)

) 24
λk−1

, (4.81)

9The curve (4.77) retains its form if (4.79) is accompanied by uN → (−1)NuN/q0.
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from which the inversion rule (4.79) immediately follows upon using the transforma-

tion properties of the Dedekind η-function under (4.80). The only case that is not

covered by this formula is the relation between q0 and τ1 in the SU(6) theory, given

by the first line of (4.71), for which there seems to be no simple expression in terms

of η-quotients.10 However, the argument based on the transformation properties of

the curve (4.77) is completely general; thus, also in this case the S-duality transfor-

mation τ1 → −1/τ1 should imply, for consistency, an inversion of q0. We will solve

this problem in the following subsections, and in doing so we will actually find a

new way of writing a non-perturbatively exact relation between the bare coupling

and the effective ones. This will turn out to be valid not only in all arithmetic

cases, including the SU(6) theory mentioned above, but also in the non-arithmetic

theories, thus opening the way to make further progress. Before doing this, however,

we briefly revisit the SU(2) theory in order to clarify some issues that are specific

to the N = 2 case.

4.5.1 The S-duality Group of Conformal SU(2) Gauge Theory

In the SU(2) gauge theory with four fundamental flavours there is only one renor-

malized coupling constant τ1, which is related to the bare coupling constant by the

non-perturbative relation (4.81) with λ1 = 4. This might seem unfamiliar, given

that it was already proven in [2] that the S-duality group for this theory is the full

modular group PSL(2,Z). We now explain how this enhancement takes place within

the formalism of our paper.

Let us rewrite the non-perturbative relation between the bare coupling and the

renormalized coupling using the standard Jacobi θ-functions as follows:

q0 = −
(
θ2(2τ1)

θ4(2τ1)

)4

. (4.82)

10Note that in this case we have λ1 = 1 which cannot be used in (4.81).
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One can check that this coincides with the η-quotient expression in (4.49). We have

already seen that the S-transformation acts as follows on the renormalized coupling

τ1:

S : τ1 → −
1

4τ1

. (4.83)

The key point is that only for the conformal SU(2) theory, there is a shift symmetry

of the form

T : τ1 → τ1 +
1

2
. (4.84)

This is because, in the presence of massless hypermultiplets in the doublet pseudoreal

representation, the SU(2) theory enjoys a shift symmetry of the effective θ-angle:

θ → θ + π , (4.85)

which implies (4.84) (see for example appendix B.3 of [55]). Defining τ̃ = 2τ1, we

see that (4.83) and the above shift become, respectively, τ̃ → −1/τ̃ and τ̃ → τ̃ + 1,

which generate the modular group PSL(2,Z) in full agreement with the original

analysis of [2].

Using the non-perturbative relation (4.82), the T -transformation (4.84) leads to the

following action on the bare coupling constant:

T : q0 →
q0

q0 − 1
. (4.86)

Note that this symmetry transformation exists only for the conformal SU(2) gauge

theory because in all other cases the T -action leaves the bare coupling invariant,

since it shifts τ by an integer. Combined with the S-transformation, which inverts

q0, one can check that

TST : q0 → 1− q0 . (4.87)
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We now show that this is completely consistent with the Gaiotto formulation of the

S-duality group on the bare coupling constant. The Gaiotto curve for the SU(2)

case is [22]:

x2 =
u2

t(t− 1)(t− q0)
. (4.88)

In this expression there is a symmetry between the poles at t = 0 and t = 1.11 Thus,

besides (4.78), there is another transformation which leaves the curve invariant,

namely [22]

T̃ : (x , t)→ (x , 1− t) . (4.89)

It is easy to check that T̃ precisely generates the transformation (4.87). Therefore,

in the conformal SU(2) theory the S-duality group is enhanced to the full modular

group PSL(2,Z), on account of the half-integer shift of the τ -parameter.

4.5.2 Renormalized Couplings and j-Invariants

Let us now return to the issue of finding a non-perturbative relation between the

renormalized coupling τ1 of the conformal SU(6) theory and the bare coupling con-

stant. The new and key ingredient is the Klein j- invariant function j(τ1) for the

modular group PSL(2,Z) which is the S-duality group for the τ1 coupling of the

SU(6) theory. The j-invariant has the following weak-coupling expansion

j(τ1) =
1

q1

+ 744 + 196844 q1 + 21493760 q2
1 + · · · , (4.90)

with q1 = e2πiτ1 , and is such that

j(i) = 1728 , j
(
e

2πi
3

)
= 0 and j(i∞) =∞ . (4.91)

11For generic N , there is a higher order pole at t = 0.
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The j-invariant is also called hauptmodul (see for example [94]), and is such that all

rational functions of j are modular.

Using (4.90), it is possible to verify that

√
j(τ1)− 1728−

√
j(τ1)√

j(τ1)− 1728 +
√
j(τ1)

= −432 q1 (1 + 120q1 + 4140q2
1 + · · · ) (4.92)

which is precisely the same expansion appearing in the first line of (4.71) that was

obtained by inverting the instanton series. Based on this evidence, we propose that

the exact relation between the bare coupling q0 and the renormalized coupling τ1 is

q0 =

√
j(τ1)− 1728−

√
j(τ1)√

j(τ1)− 1728 +
√
j(τ1)

. (4.93)

Further evidence in support of this proposal is its behaviour under τ1 → −1/τ1.

This is derived from the monodromy of j around the fixed point of this action, i.e.

τ1 = i, namely (
j(τ1)− 1728

)
→ e2πi

(
j(τ1)− 1728

)
, (4.94)

which implies the inversion of q0 as it should be.

This approach is easily generalized, since hauptmoduln have been studied for the

duality groups Γ∗(λk) of the arithmetic theories.12 Indeed, following [95] for λk ∈
12Recall that the duality group is generated by S and T as defined in (4.76).
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{1, 2, 3, 4} we introduce the functions jλk given by

j1(τ) =

(
E4(τ)

η8(τ)

)3

, (4.95a)

j2(τ) =

[(
η(τ)

η(2τ)

)12

+ 64

(
η(2τ)

η(τ)

)12
]2

, (4.95b)

j3(τ) =

[(
η(τ)

η(3τ)

)6

+ 27

(
η(3τ)

η(τ)

)6
]2

, (4.95c)

j4(τ) =

[(
η(τ)

η(4τ)

)4

+ 16

(
η(4τ)

η(τ)

)4
]2

. (4.95d)

where in the first line E4 is the Eisenstein series of weight 4. It is possible to

check that j1 coincides with the j-invariant introduced above, while j2, j3 and j4

are generalizations thereof.13 Notice that in (4.95b)–(4.95d) we find precisely the

η-quotients appearing in the relations between the bare coupling q0 and the renor-

malized couplings τk. Solving for these quotients in terms of the jλk ’s and inserting

the result in (4.81), we obtain

q0 =

√
jλk(τk)− d−1

λk
−
√
jλk(τk)√

jλk(τk)− d−1
λk

+
√
jλk(τk)

(4.96)

where

d−1
2 = 256 , d−1

3 = 108 , d−1
4 = 64 . (4.97)

Eq. (4.96) has the same structure as (4.93); however, this is more than a formal

analogy. On consulting Fig. 1, one sees that the location of the corners of the

fundamental domain — which are the fixed points of the S, ST−1, and T transfor-

mations — are given by

τAk =
i√
λk

, τBk =
1

2
+

i

2

√
4− λk
λk

, τCk = i∞ , (4.98)

13Our definition of the j-invariants differ from those in [95] by a constant term, which does not
affect its invariance under the duality group.
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F′

τAk

τBk τBk

τCk

− 1√
λk

− 1
2

0

+ 1
2

+ 1√
λk

Figure 4.1: The fundamental domain F ′ of Γ∗(λk). The point τAk is the fixed point
of the S, τBk is the fixed point of ST−1, while τCk is the fixed point of T .

respectively. Furthermore, one can show that [95]

jλk(τ
A
k ) = d−1

λk
, jλk(τ

B
k ) = 0 , and jλk(τ

C
k ) =∞ , (4.99)

which is a direct generalization of (4.91), while from the monodromy of jλk around

the fixed points of S, namely

(
j(τλk)− d−1

λk

)
→ e2πi

(
j(τλk)− d−1

λk

)
, (4.100)

one easily deduces from (4.96) that q0 gets inverted under S-duality, as expected.

In Tab. 1 we collect the relevant properties of these j-invariants together with their

expansions around the cusp point at infinity. In particular we observe in the last

column that the weak-coupling expansions of the bare coupling q0 are in perfect

agreement with the results presented in Section 4.4.
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λk d−1
λk

q-expansion of jλk 4dλk q0

1 1728 q−1 + 744 + 196884 q + 21493760 q2 + · · · q(1 + 120 q + 4140 q2 + · · · )

2 256 q−1 + 104 + 4372 q + 96256 q2 + · · · q(1 + 24 q + 300 q2 + · · · )

3 108 q−1 + 42 + 783 q + 8672 q2 + · · · q(1 + 12 q + 90 q2 + · · · )

4 64 q−1 + 24 + 276 q + 2048 q2 + · · · q(1 + 8 q + 44 q2 + · · · )

Table 4.1: Relevant parameters for the jλk functions, their q-expansions, and the
weak-coupling expansion of the bare coupling q0 defined in (4.96).

4.6 SU(N) Theories and Triangle Groups

We now proceed to generalize the discussion of the previous sections to SU(N)

SQCD theories with arbitrary N . To this end, we note that for the arithmetic cases

— λk ∈ {1, 2, 3, 4} — the S-duality groups Γ∗(λk) are particular instances of Hecke

groups. A Hecke group H(p) is a discrete subgroup of PSL(2,R) whose generators

T and S satisfy

S2 = 1 ,
(
ST
)p

= 1 (4.101)

where p is an integer ≥ 3.14 When p = 3 the Hecke group is the modular group

PSL(2,Z).

Using the results of Section 4.4, it is not difficult to realize that Γ∗(λk) = H(pk)

where

λk = 4 cos2

(
π

pk

)
. (4.102)

For the four arithmetic cases the correspondence between λk and pk is summarized

14The constraints (4.101) are usually implemented by

S : τ̃ → − 1

τ̃
and T : τ̃ → τ̃ + 2 cos

(
π

p

)
.

By setting τ̃ = 2 cos
(
π
p

)
τ , we see that on τ the group H(p) coincides with Γ∗(λ) with λ =

4 cos2(πp ).
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in Tab. 2.

λk 1 2 3 4

pk 3 4 6 ∞

Table 4.2: The correspondence between λk and pk according to (4.102) in the arith-
metic cases.

Notice that these are the only cases in which both λk and pk are integers. By

combining (4.29) and (4.102), we find

1

pk
=

1

2
− k

N
(4.103)

for k = 1, . . . ,
[
N
2

]
. This formula can be formally extended beyond the arithmetic

cases where, in general, pk becomes a rational number.

The Hecke groups H(p) also exist when p 6∈ {3, 4, 6,∞}; moreover they admit a

generalization into the so-called triangle groups [28] which we conjecture can be

further extended for rational p. In the following we show that the action of the

S-duality group on the renormalized couplings of the SU(N) SQCD theories for

arbitrary N is precisely that of a generalized triangle group. Furthermore, we show

that the j-invariant or hauptmodul associated to these triangle groups appears in

the non-perturbative relation between the bare coupling and the renormalized ones,

exactly as in the arithmetic cases.

4.6.1 A Short Digression on Triangle Groups

We follow closely the presentation of [28], often considering special cases of their

formulas for our purposes.

Triangle groups are defined by a triple of integer numbers mi that form the so-called
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type t = (m1,m2,m3) and correspond to the orders of the stabilizers. These groups

are Fuchsian, i.e. they are discrete subgroups of PSL(2,R). The type t defines a

set of angular parameters vi = 1/mi, which are related to deficit angles πvi at the

cusps of the corresponding fundamental domain. In what follows, we will analyze in

particular types of the form t = (2, p,∞) corresponding to the Hecke groups H(p)

if p is an integer, and to their generalizations if p is a rational number. In the latter

case the associated triangle groups are not discrete.

Let us first consider a type t = (m1,m2,∞). Using Theorem 1 of [28], we define the

parameter dt according to

d−1
t = b′d′

b′−1∏
k=1

(
2− 2 cos

(
2π
k

b′

))− 1
2

cos
(

2πka′
b′

)
d′−1∏
`=1

(
2− 2 cos

(
2π`

d′

))− 1
2

cos
(

2π lc
′
d′
)

(4.104)

where the primed variables are given by

a′

b′
=

1 + v1 − v2

2
and

c′

d′
=

1 + v1 + v2

2
(4.105)

with vi = 1/mi. Introducing the rescaled variable

q̃ =
q

dt
(4.106)

with q = e2πiτ , the hauptmodul Jt for this triangle group has a weak-coupling

expansion in q̃ of the form

Jt (τ) =
1

q̃
+
∞∑
k=0

ck q̃
k . (4.107)

The coefficients ck are uniquely determined by the following Schwarzian equation

−2
...
Jt J̇t + 3J̈t

2
= J̇t

4
(

1− v2
2

J2
t

+
1− v2

1

(Jt − 1)2
+
v2

1 + v2
2 − 1

Jt(Jt − 1)

)
. (4.108)
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Here the dots denote the logarithmic τ -derivatives. The hauptmodul that will be

relevant for us is the one whose weak-coupling expansion begins with q−1. This is

simply obtained by rescaling Jt according to

jt(τ) =
Jt(τ)

dt
. (4.109)

Let us check these formulas for t = (2, 3,∞) which corresponds to H(3) = PSL(2,Z).

When p = 3 the corresponding λ is 1 as we see from Tab. 2, and thus instead of the

subscript t we can use the subscript 1 in all relevant quantities. In this case we have

v1 =
1

2
and v2 =

1

3
, (4.110)

and

a′

b′
=

7

12

c′

d′
=

11

12
. (4.111)

Substituting this into (4.104), we find

d−1
1 = 1728 , (4.112)

while the Schwarzian equation (4.108) becomes

−2
...
J1 J̇1 + 3J̈1

2
= J̇1

4
(

32− 41J1 + 36J 2
1

36J 2
1 (J 2

1 − 1)

)
. (4.113)

Solving for J1 and rescaling the solution with d1 according to (4.109), one gets

j1(τ) = 1728 J1(τ) =
1

q
+ 744 + 196884 q + · · · (4.114)

which exactly matches the expansion of the absolute j-invariant of the modular

group (see (4.90)).

In a similar way one can check that for t = (2, p,∞) with p ∈ {4, 6,∞}, the above
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formulas correctly lead to the expressions of the j-invariants and the d parameters

of the other arithmetic cases that are summarized in Tab. 1. However, as we have

already mentioned, these same formulas can be used also for other integer values

of p and formally extended to the case in which p is a rational number. As a first

example of this extension we consider the conformal SU(5) SQCD theory.

4.6.2 N = 5

Using localization techniques we have computed the prepotential and the period

matrix of the SU(5) theory with 10 massless flavours up to 2 instantons. In the

special vacuum we find that the period matrix Ω can be conveniently written as a

sum of two independent structures, in agreement with the general formula (4.27).

Defining

λ1 = 4 sin2 π

5
= 4 cos2 3π

10
=

√
5

2

(√
5− 1

)
,

λ2 = 4 sin2 2π

5
= 4 cos2 π

10
=

√
5

2

(√
5 + 1

)
,

(4.115)

the quantum corrected period matrix can be written as

Ω = τ1M1 + τ2M2 (4.116)

where

M1 =



2λ1
5

1
λ1

λ1
5
− λ21

5
√

5

1
λ1

2
λ1

√
5

λ21

λ1
5

λ1
5

√
5

λ21

2
λ1

1
λ1

− λ21
5
√

5
λ1
5

1
λ1

2λ1
5


, M2 =



2
λ1

λ1
5

1
λ1

√
5

λ21

λ1
5

2λ1
5

− λ21
5
√

5
1
λ1

1
λ1
− λ21

5
√

5
2λ1
5

λ1
5

√
5

λ21

1
λ1

λ1
5

2
λ1


, (4.117)
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and

2πi τ1 = log q0 + iπ − log

[
25
√

5

(
2√

5− 1

)√5
]

+
8q0

25
+

14q2
0

125
+ · · · , (4.118)

2πi τ2 = log q0 + iπ − log

[
25
√

5

(
2√

5 + 1

)√5
]

+
12q0

25
+

24q2
0

125
+ · · · . (4.119)

This structure is less cumbersome than it appears at first sight. Indeed, one can

check that the parameters λ1 and λ2 in (4.115) are another instance of the general

formula (4.29) and that

M1 +M2 = C (4.120)

where C is the Cartan matrix of SU(5). Moreover, the classical and the logarithmic

terms of τ1 and τ2 exactly coincide with the results already reported in [90]. But,

most importantly, using the S-duality transformations described in Section 4.3, one

finds that the matrices M1 and M2 remain invariant while the effective couplings

transform simply as

τ1 → −
1

λ1 τ1

and τ2 → −
1

λ2 τ2

. (4.121)

These observations show that the SU(5) theory has the same general features we

encountered in the arithmetic cases. Therefore it is natural to expect that also this

theory can be understood along the same lines, and in particular that it is possible

to write non-perturbatively exact expressions for the relations between the bare

coupling and the renormalized ones in terms of hauptmoduln. We now confirm that

these expectations are correct.

Let us first put k = 2. The form of λ2 in (4.115) indicates to us that the relevant

Hecke group is H(10). Indeed, for k = 2 and N = 5, equation (4.103) yields p2 = 10

so that the type of the triangle group is t2 = (2, 10,∞). Using this in (4.104), with
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a little bit of algebra we obtain

d−1
λ2

= 4

[
25
√

5

(
2√

5 + 1

)√5
]

= 76.2385 · · · , (4.122)

while from (4.108) we get the following rescaled hauptmodul

jλ2(τ2) =
1

q2

+
19

50

1

dλ2
+

673

10000

q2

d2
λ2

+
701

93750

q2
2

d3
λ2

+ · · · (4.123)

with q2 = e2πiτ2 . This function is such that

jλ2(τ
A
2 ) = d−1

λ2
, jλ2(τ

B
2 ) = 0 and jλ2(τ

C
2 ) =∞ (4.124)

where τA,B,C2 are the cusp locations in the τ2-plane given by (4.98) with the current

value of λ2. Notice also that the quantity in square brackets in (4.122) also appears

in the 1-loop logarithmic term of (4.119).

These facts and our experience with the arithmetic theories indicate that it is in

fact not too bold to propose that the relation between the bare coupling q0 and the

renormalized coupling τ2 be of the general form (4.96), namely

q0 =

√
jλ2(τ2)− d−1

λ2
−
√
jλ2(τ2)√

jλ2(τ2)− d−1
λ2

+
√
jλ2(τ2)

= − q2

4dλ2

(
1 +

3

25

q2

dλ2
+

6

625

q2
2

d2
λ2

+ · · ·
)
. (4.125)

Inverting this series and taking the logarithm, we obtain

2πi τ2 = log q0 + iπ + log
(
4dλ2

)
+

12

25
q0 +

25

125
q2

0 + · · · (4.126)

which precisely matches the instanton expansion for τ2 in (4.119) obtained using

equivariant localization! Furthermore, from the monodromy around τA2 which is the
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fixed point under S, namely

(
j(τλ2)− d−1

λ2

)
→ e2πi

(
j(τλ2)− d−1

λ2

)
, (4.127)

we see that q0 gets inverted, in agreement with the general expectations. This

analysis shows that the action of the S-duality group on the effective coupling τ2 of

the SU(5) theory is that of the Hecke group H(10).

We now turn to k = 1 and the quantum coupling τ1. The form of λ1 in (4.115)

indicates that we are dealing with a non-Hecke group. Indeed, setting k = 1 and

N = 5 in (4.103), we get p1 = 10
3

which leads to the type t1 = (2, 10
3
,∞). Despite the

non-integer entry of t1, we still proceed and apply the formulas we have described

in the previous subsection to obtain dλ1 and the hauptmodul jλ1(τ1). Specifically,

from (4.104) after some algebraic manipulations we get

d−1
λ1

= 4

[
25
√

5

(
2√

5− 1

)√5
]

= 655.8364 · · · , (4.128)

while from the Schwarzian equation (4.108) we find the following rescaled haupt-

modul

jλ1(τ1) =
1

q1

+
21

50

1

dλ1
+

663

10000

q1

d2
λ1

+
227

46875

q2
1

d3
λ1

+ · · · (4.129)

with q1 = e2πiτ1 . This function is such that

jλ1(τ
A
1 ) = d−1

λ1
, jλ1(τ

B
1 ) = 0 and jλ1(τ

C
1 ) =∞ (4.130)

where τA,B,C1 are the three cusps in the τ1-plane (see (4.98)). Plugging these results

into our universal formula (4.96), we get

q0 =

√
jλ1(τ1)− d−1

λ1
−
√
jλ1(τ1)√

jλ1(τ1)− d−1
λ1

+
√
jλ1(τ1)

= − q1

4dλ1

(
1 +

2

25

q1

dλ1
+

13

5000

q2
1

d2
λ1

+ · · ·
)
.

(4.131)
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Inverting this and taking the logarithm of q1, we obtain

2πi τ1 = log q0 + iπ + log
(
4dλ1

)
+

8

25
q0 +

14

125
q2

0 + · · · (4.132)

which is in perfect agreement with the explicit result (4.118) derived from local-

ization! Again, from the monodromy around τA1 , which is the fixed point of S, we

easily see that under S-duality q0 is correctly mapped into its inverse.

In conclusion, the SU(5) theory has two non-arithmetic couplings which are related

to the bare coupling by the same universal formula that holds in the arithmetic

theories.

4.6.3 Generalization to Higher N

The analysis of the previous subsection can be extended to arbitrary values of N .

Even if the algebraic manipulations become more and more involved as N increases,

it is possible to prove that the quantum period matrix can always be written as

Ω =

[
N
2

]∑
k=1

τkMk (4.133)

where each individual coefficient τk transforms under the duality group according

to

S : τk → −
1

λk τk
and T : τk → τk + 1 (4.134)

for some positive λk.

To show this, let us first consider N to be an odd number. In this case a careful

analysis [91] of the duality transformations on the homology cycles of the Seiberg-
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Witten curve shows that S and T have to satisfy the constraint

(
S T S−1 T

)N
= 1 . (4.135)

Given (4.134), it is not difficult to show that

S T S−1 T =

 1 1

−λk 1− λk

 . (4.136)

The N th power of this matrix projectively equals the identity, as required by (4.135),

if

λk = 4 sin2

(
k π

N

)
= 4 cos2

(
(N − 2k) π

2N

)
(4.137)

or

λk = 4 cos2

(
k π

N

)
. (4.138)

The latter solution, however, leads to an additional constraint of the form (S T )N =

−1, which is not found in the explicit realization of the S and T transformations

as Sp(2N − 2,Z) matrices [91]. This leaves us with the solution (4.137) which is

precisely the spectrum we conjectured and found to be true in all cases we have

considered so far.

The matrices Mk can be given an explicit expression too. The key ingredient for

this is the matrix G appearing at 1-loop (see (4.26)). Decomposing it into its
[
N
2

]
independent components according to

G =

[
N
2

]∑
k=1

log sin

(
k π

N

)
Gk , (4.139)
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it turns out that the matrices

Mk =

[
N
2

]∑
`=1

λk` G` = 4

[
N
2

]∑
`=1

sin2

(
k ` π

N

)
G` (4.140)

satisfy the required properties. Notice also that these matrices add up to the Cartan

matrix: [
N
2

]∑
k=1

Mk = C . (4.141)

We have explicitly checked and verified these statements up to N = 15.

Having the spectrum of the allowed λk’s, from the cosine expression in (4.137) we

see that the type of the generalized triangle group that we should consider is

tk =
(

2,
2N

N − 2k
,∞
)

(4.142)

whose second entry is in general a rational number. As we have seen in the SU(5)

theory, there are no obstructions in extending the formulas (4.104), (4.107) and

(4.109) to types with a rational entry. Thus, proceeding as we described in the

previous subsections, we can determine dtk and the hauptmoduln jtk corresponding

to (4.142) and use the resulting expressions into the universal formula (4.96) to find

the exact relation between the bare coupling q0 and the renormalized one τk. If

this procedure is correct, inverting this map order by order in q0 we should retrieve

the multi-instanton expansion produced by the localization method, exactly as we

showed for N = 5. In Appendix E we give some details for the case N = 7,

where again we finding perfect agreement. At this point, it should be clear that

our procedure works for arbitrary values of N . We regard the complete agreement

between these two approaches as a highly non-trivial and quite remarkable check on

the consistency of the procedure.

The above results are valid also when N is even. In this case, the spectrum of λk
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is still given by (4.137) while the matrices Gk and Mk are defined by (4.139) and

(4.140) with the caveat that for k = N
2

one should use

GN
2

= C −
N
2
−1∑

k=1

Gk and MN
2

= C −
N
2
−1∑

k=1

Mk . (4.143)

We have checked this is indeed the case up to N = 14.

4.6.4 Relation to Earlier Work

We now show that our analysis is consistent with earlier discussions of S-duality in

conformal SQCD theories and that it extends them in several aspects. Consider the

Seiberg-Witten curve (4.30) for the massless case and in the special vacuum:

y2 = (xN − uN)2 − hx2N . (4.144)

Using our results, we can write the function h in terms of the renormalized couplings

as follows:

h =
4q0

(1 + q0)2
=

1

1− dλk jλk(τk)
. (4.145)

This shows that for any N the Seiberg-Witten curve can be expressed in terms of

j-invariants. Of course, any of the renormalized couplings can be chosen as long as

the appropriate j-invariant is used.

Let us now consider the behaviour of h near the cusp points (4.98). Using (4.99), it

is easy to find that

h(τk)→∞ near τAk ,

h(τk)→ 1 near τBk ,

h(τk)→ 0 near τCk .

(4.146)

Given the meaning of the fixed points, we conclude that the monodromy of h around
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∞, 1 and 0 yields, respectively, the behaviour under S, ST−1 and T . This is

precisely what we began with in Section 4.3. There, we obtained the T and S

matrices by associating them with monodromies around the points h = 0 and h =∞,

respectively, and by following their effects on the α̂- and β̂-cycles of the Seiberg-

Witten curve. It is reassuring to rederive this very same result by studying the

action of the duality group on the quantum couplings τk. This provides additional

confirmation for our proposal (4.96).

There are a number of novel elements in our discussion compared with earlier works

[90, 93, 91]. To begin with, we note that (4.96) represents a non-perturbatively

exact relation between the bare and renormalized coupling constants. As we have

shown in a case-by-case study, this completely specifies the manner in which all
[
N
2

]
coupling constants are renormalized for all SU(N) theories in the special vacuum.

Furthermore, we observe that previous investigations have focused on a specific

renormalized coupling, which in our notation, is τ[N2 ]. For odd N , the type (4.142)

corresponding to k =
[
N
2

]
is (2, 2N,∞), which identifies the Hecke group H(2N),

while for even N , the type becomes (2,∞,∞) corresponding to the Hecke group

H(∞) which is isomorphic to Γ̃0(2). Thus, we have successfully reproduced the

observations of [96, 97, 91] that these Hecke groups are relevant when considering the

duality properties of SU(N) theories. However, as we have tried to emphasize, one

does not need to single out any specific quantum coupling τk in order to understand

the S-duality group. Indeed, one could choose to express q0 in terms of any of the

τk’s since the behaviour of the curve near the cusps is universal and independent of

this choice.

While this remains true away from the conformal limit (provided the mass deforma-

tions are turned on in a controlled manner), we find that expressing the observables

in terms of specific effective coupling constants τk instead of the bare coupling q0

expedites the identification of modular structures. In particular, the choice of which
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effective couplings to consider follows solely from S-duality constraints. This, in

turn, makes it possible to resum the non-perturbative data of the gauge theory into

modular forms associated to congruence subgroups of the full modular group. This

analysis is the subject of Part II.
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Massive N = 2 SQCD and Modular Anomaly

Equations

In this part, we discuss N = 2 SQCD theories with 2N massive fundamental hyper-

multiplets in the special vacuum. In order to retain the ZN symmetry of the special

vacuum, we will consider only mass configurations that preserve this symmetry. Fur-

thermore, we will restrict our attention to the arithmetic theories. The reason for

this is just a matter of simplicity. Indeed, as we will see, in the arithmetic theories

the S-duality groups Γ∗(λk) contain subgroups that are also congruence subgroups

of the modular group PSL(2,Z), so that the analysis of the modular properties of the

various observables can be done using standard modular forms, without the need

of introducing the more involved theory of automorphic forms. Since the SU(2)

and SU(3) SQCD theories have already been considered from this point of view in

[24, 23] and in [26] respectively, we will discuss in detail the other two arithmetic

cases, namely N = 4 and N = 6, even if many of the subsequent formulas are valid

for arbitrary N .
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4.7 Mass Deformations and Observables

While the classical prepotential (4.4) is unaffected by mass deformations, the 1-loop

prepotential (4.8) becomes

F1-loop =
N∑

u6=v=1

γ(Au − Av)−
N∑
u=1

2N∑
f=1

γ(Au +mf ) . (4.147)

Expanding for small masses, one obtains an expression in which the 2N fundamental

masses appear through the Casimir invariants of the flavour group, namely

T` =
2N∑
f=1

(
mf

)`
(4.148)

for ` = 1, . . . , 2N . As we mentioned above, in order not to spoil the ZN symmetry of

the special vacuum, we turn on only those flavour Casimirs that are ZN -symmetric.

This can be done by choosing the following mass configuration

mf =


ωf−1 m , f ∈ {1, · · · , N} ,

ωf−1 m̃ , f ∈ {N + 1, · · · , 2N} ,
(4.149)

where ω = e
2πi
N , which in turn implies

TN = N
(
mN + m̃N

)
and T2N = N

(
m2N + m̃2N

)
, (4.150)

with all other T` vanishing. In what follows, by special vacuum we will mean both

the restriction (4.12) on the scalar vacuum expectation values and the above choice

of masses.

As discussed in Section 4.2.3, the ZN -invariance of the special vacuum implies that

the prepotential has a semi-classical expansion of the form (4.15), but now the
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coefficients fn depend also on the mass invariants (4.150), namely

F =
∑
n

fn (q0;TN , T2N)

aNn
. (4.151)

The fn’s must have mass-dimension equal to (nN + 2), but since q0 is dimensionless

and TN and T2N have dimensions N and 2N respectively, it is not possible to satisfy

this requirement. As a result, in the massive case as well, the special vacuum

prepotential vanishes identically.

Let us now turn to the dual period aD. When the 1-loop and instanton corrections

are taken into account, we find

aD = cN a τ1 +
cN
2πi

∞∑
n=0

g
(1)
n (τ1;TN , T2N)

aNn+N−1
(4.152)

where cN is defined in (4.19). This form, which will be confirmed by the explicit

examples worked out in the later sections, can be argued simply using dimensional

analysis because g
(1)
n has mass dimension (Nn + N) and can be constructed out of

the ZN -invariant Casimirs TN and T2N .

Finally, we consider the period matrix Ω. Its decomposition in terms of the matrices

Mk that diagonalize the S-action remains valid

Ω = τ̃1M1 + τ̃2M2 + · · · , (4.153)

but now the coefficients acquire terms proportional to the flavour Casimirs. In

particular one finds

τ̃k = τk −
1

2πi

∞∑
n=0

(Nn+N − 1)
g

(k)
n (τk;TN , T2N)

aNn+N
(4.154)

for k = 1, · · · ,
[
N
2

]
. Detailed examples will be given in the following sections.
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4.8 S-Duality in Massive SQCD

To see the implications of S-duality in massive SQCD theories, we use the same

approach described in [26] for the SU(3) theory and introduce the following combi-

nation

X := aD − cN a τ1

=
cN
2πi

∑
n

gn
aNn+N−1

(4.155)

where gn ≡ g
(1)
n (τ1;TN , T2N). We now perform an S-duality transformation on the

first line of (4.155) and use (4.43), (4.45) and (4.46); after some simple algebra we

get

S(X) =
1

cN ω2 τ1

X . (4.156)

On the other hand, applying S-duality to the second line of (4.155) we get

S(X) =
cN
2πi

∑
n

S(gn)

(−ω aD)Nn+N−1
. (4.157)

If we now substitute the expression (4.152) for aD and equate the two different

expressions for S(X) order by order in the large-a expansion, we can deduce how

the coefficients gn transform under S. From the leading term, we simply find

S(g0) =
(

i
√
λ1τ1

)N−2

g0 , (4.158)

where λ1 is as in (4.46). For the higher order terms, however, we find non-linear

contributions that lead to a recursion relation

S(gn) = (−1)n
(

i
√
λ1τ1

)Nn+N−2
(
gn +

1

2πiτ1

∑
m

(Nm+N − 1)gmgn−m−1 + · · ·

)
.

(4.159)
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The summand on the right hand side is symmetric under m → (n − m − 1), and

thus S(gn) can be more conveniently written as

S(gn) = (−1)n
(

i
√
λ1τ1

)Nn+N−2
(
gn +

(Nn+N − 2)

4πiτ1

∑
m

gm gn−m−1 + · · ·

)
.

(4.160)

The presence of the (−1)n factor suggest to us that the notion of S-parity or charge

under S-duality will be a useful one. We define it to be (+1) when n is even and

(−1) when n is odd.

So far N has been generic, but to make further progress from now on we will restrict

our attention to the arithmetic cases for which λ1 is an integer. In fact, in these

cases the S- duality group Γ∗(λ1) contains a subgroup, denoted as Γ1(λ1), which is

also a congruence subgroup of PSL(2,Z). The modular forms of such a subgroup,

which are well-known and classified (see for instance [98, 99]), will play a crucial

role in our analysis and will appear in the exact expressions of the coefficients gn.

To see this, let us first recall that Γ1(λ1) is generated by T and S ′ = STS−1, the

latter acting on the effective coupling as

S ′ : τ1 →
τ1

1− λ1τ1

. (4.161)

When λ1 is an integer, this is indeed an element of PSL(2,Z). Combining the actions

of S and T , we can easily deduce how the conjugate periods a and aD transform

under S ′. The result is

S ′(aD) = aD and S ′(a) = a+ ω(1− ω)aD . (4.162)

Using these rules on X, from the first line of (4.155) we get

S ′(X) =
1

1− λ1τ1

X , (4.163)
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while from the second line of (4.155) we find

S ′(X) =
cN
2πi

∑
n

S ′(gn)

((1− λ1τ1)a)Nn+N−1

(
1 +

cN
2πi(1− λ1τ1)

∑
m

gm
aNm+N−2

)Nn+N−1

.

(4.164)

Equating these two expressions, to leading order we obtain

S ′(g0) = (1− λ1τ1)N−2 g0 , (4.165)

while at higher orders we get a recursion relation very similar to the one obtained

before for S, namely

S ′(gn) = (1− λ1τ1)Nn+N−2

(
gn +

(Nn+N − 2)

4πiτ1

∑
m

gm gn−m−1 + · · ·

)
. (4.166)

Eq. (4.165) shows that g0 is a modular form of Γ1(λ1) with weight (N − 2). As we

will see in the specific examples in the next section, such a modular form behaves

under S exactly as required by (4.158), thus proving the consistency of our analysis.

On the other hand, the presence of non-linear terms in the right hand side of (4.166)

implies that the coefficients gn for n > 0 are quasi -modular forms of Γ1(λ1) with

weight (Nn + N − 2) that satisfy a modular anomaly equation to which we now

turn.

4.8.1 The Modular Anomaly Equation

In [24, 23, 26] it has been shown that in the massive SU(2) and SU(3) theories the

quasi-modularity is due to the presence of the anomalous Eisenstein series E2. The

same conclusion has been reached for the N = 2? theories with arbitrary gauge

groups in [25, 11, 12]. Therefore it is very natural to expect that for the massive

higher rank SQCD theories too, the Eisenstein series E2 plays a fundamental role.
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Let us recall that E2 is a quasi-modular form of weight 2 such that

E2

(
− 1

τ1

)
= −

(
iτ1

)2
(
E2(τ1) +

6

iπτ1

)
. (4.167)

In the arithmetic cases under consideration, it is always possible to form a linear

combination of E2 and a modular form of Γ1(λ1), which under the S transformation

τ1 → − 1
λ1τ1

transforms in a way similar to (4.167). More precisely, if we denote such

a combination by Ẽ
(λ1)
2 , we will have

Ẽ
(λ1)
2

(
− 1

λ1τ1

)
= −

(
i
√
λ1τ1

)2
(
Ẽ

(λ1)
2 (τ1) +

6

iπτ1

)
. (4.168)

Notice that the existence of such a combination is a priori not obvious since the

S-transformation lies outside both the modular group and its congruence subgroup

Γ1(λ1). Nevertheless this combination exists and the explicit examples for the rele-

vant cases are given in Appendix D (see in particular (D.15), (D.24) and (D.30)).

Following [24, 23, 26] we propose that the coefficients gn depend on τ1 only through

Ẽ
(λ1)
2 and the modular forms of Γ1(λ1), in such a way that they are globally quasi-

modular forms of Γ1(λ1) with total weight (Nn + N − 2). For simplicity, in the

following we will only exhibit the dependence on Ẽ
(λ1)
2 and just write gn

[
Ẽ

(λ1)
2

]
.

Then, applying S-duality, we have

S
(
gn
[
Ẽ

(λ1)
2

])
= (−1)n(i

√
λ1τ1)Nn+N−2 gn

[
Ẽ

(λ1)
2 +

6

iπτ1

]
= (−1)n(i

√
λ1τ1)Nn+N−2

(
gn
[
Ẽ

(λ1)
2

]
+

6

iπτ1

∂gn

∂Ẽ
(λ1)
2

+ · · ·

) (4.169)

where the second line follows upon expanding for large τ1. Comparing with (4.160)

we obtain the modular anomaly equation

∂gn

∂Ẽ
(λ1)
2

=
Nn+N − 2

24

n−1∑
m=0

gm gn−m−1 (4.170)
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which has the form of a recursion relation. Indeed, given the initial condition that

specifies g0 as a modular form, the Ẽ2-dependent part of g1 can be unambiguously

obtained by integrating the modular anomaly equation. This leaves room for a

truly modular piece, which can be fixed by comparing with the explicit instanton

expansion obtained using localization. Once g1 is fully fixed, we can use it in (4.170)

to find g2, and recursively proceed in this way for the higher gn’s. This approach

has been successfully applied to the SU(3) theory in [26]. In the next sections we

complete the analysis for the SU(4) and SU(6) theories.

4.8.2 Coupled Modular Anomaly Equations

We now consider the period matrix Ω. As we mentioned in Section 4.7, after in-

cluding the quantum corrections it can be decomposed as in (4.153) where, under

S-duality, the flavour deformed couplings τ̃k transform as

S : τ̃k → −
1

λkτ̃k
. (4.171)

The fact that τ̃k behave like τk is a simple consequence of the algebraic properties

of the matrices Mk. Applying S-duality to both sides of (4.154), we get

− 1

λkτk

(
1− 1

2πiτk

∞∑
m=1

Nm+N − 1

aNm
g

(k)
m−1

)−1

= − 1

λkτk
− 1

2πi

∞∑
n=1

Nn+N − 1

(−ωaD)Nn
S
(
g

(k)
n−1

)
(4.172)

which, after inserting the semi-classical expansion (4.152) for the dual period, yields

the S-duality transformation rules for the coefficients g
(k)
n . In particular, at leading

order we find

S
(
g

(k)
0

)
=

(
i
√
λ1τ1

)N(
i
√
λkτk

)2 g
(k)
0 , (4.173)
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while at higher orders we get

S
(
g(k)
n

)
=

(−1)n
(
i
√
λ1τ1

)Nn+N(
i
√
λkτk

)2

[
g(k)
n

+
1

2πiτk

∑
m

(
(Nm+N − 1)(N(n−m)− 1)

Nn+N − 1
g(k)
m g

(k)
n−m−1

)

+
1

2πiτ1

∑
m

(
(Nm+N)(Nm+N − 1)

Nn+N − 1
g(k)
m gn−m−1

)
+ · · ·

]
.

(4.174)

When k = 1, both (4.173) and (4.174) reduce to (4.158) and (4.160), respectively.

This is a simple but important consistency check of our analysis.

We now perform a similar analysis for the S ′ transformation under which each

effective coupling τ̃k changes as

τ̃k →
τ̃k

1− λk τ̃k
. (4.175)

Since in the arithmetic theories the λk’s are integers, this is a PSL(2,Z) transfor-

mation. Using the general technique of comparing coefficients in the semi-classical

expansions, we obtain the following constraint for g
(k)
0 :

S ′
(
g

(k)
0

)
=

(1− λ1τ1)N

(1− λkτk)2 g
(k)
0 , (4.176)

while for the higher coefficients g
(k)
n we get

S ′
(
g(k)
n

)
=

(1− λ1τ1)Nn+N

(1− λkτk)2

[
g(k)
n

+
1

2πiτk

∑
m

(
(Nm+N − 1)(N(n−m)− 1)

Nn+N − 1
g(k)
m g

(k)
n−m−1

)

+
1

2πiτ1

∑
m

(
(Nm+N)(Nm+N − 1)

Nn+N − 1
g(k)
m gn−m−1

)
+ · · ·

]
.

(4.177)

Again it is not difficult to check that for k = 1 these two equations reduce respec-
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tively to (4.165) and (4.166), as it should be.

From (4.176) combined with (4.173), we can infer that g
(k)
0 is a ratio of a modular

form of Γ1(λ1) with weight N and a modular form of Γ1(λk) with weight 2. Likewise,

by combining (4.177) with (4.174) we deduce that for n > 0 the coefficients g
(k)
n are

quasi-modular meromorphic forms of Γ1(λ1) and Γ1(λk) which receive contributions

from both Ẽ
(λ1)
2 and Ẽ

(λk)
2 . Taking into account the factors multiplying the square

brackets in (4.174) and (4.177), we are led to the following ansatz:

g(k)
n =

n∑
`=0

GnN+N−2`;2+2n−2`
n (τ1, τk)

(
Ẽ

(λ1)
2 (τ1)

)` (
Ẽ

(λk)
2 (τk)

)n−`
(4.178)

where the coefficients Gr1;rk
n (τ1, τk) are made of modular forms of Γ1(λ1) and Γ1(λk)

with weights r1 and rk respectively. Using the anomalous transformation properties

of the second Eisenstein series, from (4.178) we get

S
(
g(k)
n

)
=

(−1)n
(
i
√
λ1τ1

)Nn+N(
i
√
λkτk

)2

(
g(k)
n +

6

πiτ1

∂g
(k)
n

∂Ẽ
(λ1)
2

+
6

πiτk

∂g
(k)
n

∂Ẽ
(λk)
2

+ · · ·

)
,

(4.179)

and, after comparison with (4.174), we arrive at the following coupled equations

∂g
(k)
n

∂Ẽ
(λk)
2

=
1

12

n−1∑
m=0

(Nm+N − 1)(N(n−m)− 1)

Nn+N − 1
g(k)
m g

(k)
n−m−1 ,

∂g
(k)
n

∂Ẽ
(λ1)
2

=
1

12

n−1∑
m=0

(Nm+N)(Nm+N − 1)

Nn+N − 1
g(k)
m gn−m−1 .

(4.180)

In order for these equations to be consistent and integrable, it is necessary that the

mixed second derivatives computed from either line of (4.180) match. We find that

this is indeed the case, since we have

∂

∂Ẽ
(λ1)
2

(
∂g

(k)
n

∂Ẽ
(λk)
2

)
− ∂

∂Ẽ
(λk)
2

(
∂g

(k)
n

∂Ẽ
(λ1)
2

)
= 0 . (4.181)

Given the structure of the modular anomaly equations (4.180), this is a non-trivial
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check which makes it possible to “integrate-in” the quasi-modular terms in a con-

sistent manner.

4.9 Resummation: N = 4 and N = 6

In this section we study in detail the SU(4) and SU(6) gauge theories along the

lines discussed before. Throughout this section, we use special cases of the formulas

derived in the previous section, i.e. setting N = 4 or N = 6 as the case may be.

4.9.1 N = 4

For the SU(4) theory the relevant parameters are:

ω = i , c4 = i− 1 , k = 1, 2 , λ1 = 2 , λ2 = 4 . (4.182)

The Dual Period

We have computed the SU(4) prepotential, the dual periods, and the period matrix

up to three instantons using localization methods. From these results, after using

the relation (4.63a) to rewrite the instanton counting parameter q0 in terms of the

renormalized coupling q1, we find that the dual period can be written as

aD = (i− 1) a τ1 +
(i− 1)

2πi

∞∑
n=0

gn(q1;T4, T8)

a4n+3
(4.183)

144



in agreement with the general form (4.152). The first coefficients gn are

g0 =
T4

12

(
1 + 24 q1 + 24 q2

1 + 96 q3
1 + · · ·

)
, (4.184a)

g1 =
T 2

4

4

(
q1 + 26 q2

1 + 84 q3
1 + · · ·

)
+
T8

56

(
1− 56 q1 − 2296 q2

1 − 13664 q3
1 + · · ·

)
,

(4.184b)

where, as usual, we have set q1 = e2πiτ1 .

Our goal is to show that these expressions arise from a weak-coupling expansion of

quasi-modular forms of Γ1(2). Indeed, according to the discussion of the previous

section, we should have

S(gn) = (−1)n
(
i
√

2τ1

)4n+2 [
gn + · · ·

]
,

S ′(gn) = (1− 2τ1)4n+2
[
gn + · · ·

]
.

(4.185)

In particular for n = 0 when there are no extra terms beyond leading order, these

equations tell us that g0 should be a modular form of Γ1(2) with weight 2 and S-

parity (+1). As shown in Appendix D there is only one such form, namely f
(2)
2,+

whose weak-coupling expansion is

f
(2)
2,+ = 1 + 24q1 + 24q2

1 + 96q3
1 + 24q4

1 + 144q5
1 · · · . (4.186)

Comparing with (4.184a), we are led to conclude

g0 =
T4

12
f

(2)
2,+ , (4.187)

which, to be consistent with (4.185), implies also that T4 is invariant under both

S and S ′ transformations, namely S(T4) = S ′(T4) = T4. We would like to stress

that once we assume that g0 is a modular form Γ1(2) of weight 2, the only freedom

we have is the overall coefficient which is fixed by matching with the perturbative
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contribution. After this is done, all non-perturbative terms are fixed by the Fourier

expansion of the modular form. The fact that these terms perfectly match the

explicit multi-instanton results coming from localization up to three instantons is a

very strong and highly non-trivial test of our general strategy.

To obtain the coefficients gn for n > 0 we can use the recursion relation (4.170),

which in the present case is

∂gn

∂Ẽ
(2)
2

=
2n+ 1

12

n−1∑
m=0

gm gn−m−1 (4.188)

where Ẽ
(2)
2 is the quasi-modular form introduced in Appendix D (see in particular

(D.15)). Let us now determine g1 which according to our general analysis should be

a quasi-modular form of of Γ1(2) with weight 6 and with S-parity (−1) that solves

the above modular anomaly equation for n = 1, namely

∂g1

∂Ẽ
(2)
2

=
1

4
g2

0 . (4.189)

Integrating with respect to Ẽ
(2)
2 and using the exact expression for g0 obtained above,

we find

g1 =
T 2

4

576

(
f

(2)
2,+

)2
Ẽ

(2)
2 + modular piece , (4.190)

where by ‘modular piece’ we mean a modular form of Γ1(2) with weight 6 and with

S-parity (−1). As shown in Appendix D there is only one such form, namely

f
(2)
2,+ f

(2)
4,− = 1− 56q1 − 2296q2

1 − 13664q3
1 + · · · . (4.191)

Comparing with the localization result (4.184b), obtain the following exact expres-

sion

g1 =
T 2

4

576

[(
f

(2)
2,+

)2
Ẽ

(2)
2 −

3

2
f

(2)
2,+ f

(2)
4,−

]
+
T8

56
f

(2)
2,+ f

(2)
4,− . (4.192)
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As before, all coefficients are fixed by matching with the perturbative terms and

following that, all non- perturbative contributions follow from the Fourier expansions

of the modular forms. The agreement with the explicit multi-instanton results in

(4.184b) is rather remarkable.

The above procedure can be iteratively used to determine the higher coefficients gn.

In this way we have determined up to g3, always finding perfect agreement with the

localization results.

The Period Matrix

In the special vacuum the period matrix Ω of the massive SU(4) theory can be

compactly written as

Ω = τ̃1M1 + τ̃2M2 (4.193)

where the two matrices Mk are given in (4.61) and

τ̃k = τk −
1

2πi

∞∑
n=0

4n+ 3

a4n+4
ĝ(k)
n (q0;T4, T8) . (4.194)

This has the same form as (4.154), except that the coefficients are expressed in terms

of the bare coupling q0 instead of the renormalized ones; this is the meaning of the

ĝ
(n)
k notation. From our explicit calculations, using the non-perturbative relation

(4.63a) we find

ĝ(1)
n (q0;T4, T8) = gn (q1;T4, T8) (4.195)

where the gn’s are the same coefficients appearing in the dual period, for which we

have already given exact expressions. On the other hand, we find that the first ĝ
(2)
n
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coefficients are

ĝ
(2)
0 =

T4

12

(
1− 1

4
q0 −

25

256
q2

0 −
29

512
q3

0 + · · ·
)
, (4.196a)

ĝ
(2)
1 = − T 2

4

224

(
q0 +

7

64
q2

0 +
7

512
q3

0 + · · ·
)

+
T8

56

(
1− q0 −

5

128
q2

0 −
39

512
q3

0 + · · ·
)
.

(4.196b)

The challenge is now to show that, once the bare coupling is mapped into the

renormalized ones, the resulting expressions g
(2)
n have good modular properties. In

particular for g
(2)
0 , according to the general analysis of the previous section (see

(4.173) and (4.176) for N = 4 and k = 2), we should have

S
(
g

(2)
0

)
=

(√
2 i τ1

)4(
2 i τ2

)2 g
(2)
0 and S ′

(
g

(2)
0

)
=

(
1− 2τ1

)4(
1− 4τ2

)2 g
(2)
0 . (4.197)

These equations tell us that g
(2)
0 is the ratio of a modular form of Γ1(2) in τ1 with

weight 4 and a modular form of Γ1(4) in τ2 with weight 2, with total S-parity (+1).

From the list of the modular forms presented in Appendices D for Γ1(2) and Γ1(4),

we see that the most general ansatz which satisfies these properties is

g
(2)
0 =

T4

12

[
x

(
f

(2)
2,+

)2

f
(4)
2,+

+
(
1− x

) f (2)
4,−

f
(4)
2,−

]
, (4.198)

where the overall coefficient has been fixed to match with the perturbative result in

(4.196a) and x is a free parameter. By Fourier expanding the modular forms and

expressing the result in terms of the bare coupling q0, one sees that both meromor-

phic forms within square brackets are identical and both match the q0 expansion in

(4.196a). In the following we choose for simplicity x = 1, so that 15

g
(2)
0 =

T4

12

(
f

(2)
2,+

)2

f
(4)
2,+

. (4.199)

15We could just as well have picked x = 0; the Fourier expansions do not distinguish between
these choices, and it is clear that the modular anomaly equations are not affected by this choice.

148



For the higher coefficients g
(2)
n , we have to use the coupled modular anomaly equa-

tions (4.180). For n = 1 they become

∂g
(2)
1

∂Ẽ
(4)
2

=
3

28

(
g

(2)
0

)2
and

∂g
(2)
1

∂Ẽ
(2)
2

=
1

7
g

(2)
0 g0 , (4.200)

where Ẽ
(2)
2 and Ẽ

(4)
2 are the quasi-modular forms of Γ1(2) and Γ1(4) defined in (D.15)

and (D.30) respectively. Integrating (4.200) we find

g
(2)
1 =

3

28

(
g

(2)
0

)2
Ẽ

(4)
2 +

1

7
g

(2)
0 g0 Ẽ

(2)
2 + modular piece . (4.201)

As before, the ‘modular piece’ is determined by considerations of weight and S-parity

and by demanding agreement with the perturbative terms in (4.196b). Explicitly,

we find

g
(2)
1 =

T 2
4

1344

((
f

(2)
2,+

)4
Ẽ

(4)
2(

f
(4)
2,+

)2 +
4

3

(
f

(2)
2,+

)3
Ẽ

(2)
2

f
(4)
2,+

− 9

2

(
f

(2)
2,+

)2
f

(2)
4,−

f
(4)
2,+

)
+
T8

56

(
f

(2)
2,+

)2
f

(2)
4,−

f
(4)
2,+

.

(4.202)

Once again, the perturbative terms are enough to fix all coefficients that are not

determined by the modular anomaly equations; then, the instanton contributions

follow by Fourier expanding the modular forms. The perfect agreement with the

explicit result (4.196b) obtained from localization confirms in a very non-trivial way

the validity of our procedure.

Using this approach iteratively, we have computed higher g
(2)
k coefficients, finding

complete agreement with the multi-instanton results.
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4.9.2 N = 6

We now repeat the above analysis for the massive SU(6) theory. In this case the

relevant parameters are:

ω = e
πi
3 , c6 = −1 , k = 1, 2, 3 , λ1 = 1 , λ2 = 3 , λ3 = 4 .

(4.203)

The Dual Period

The large-a expansion of dual period of the massive SU(6) theory takes the form

aD = −a τ1 −
1

2πi

∑
n

gn(q1;T6, T12)

a6n+5
. (4.204)

Using localization methods we have computed the coefficients gn up to two instantons

and rewritten them in terms of the effective parameter q1 by means the relation

(4.93). The explicit expressions of the first coefficients are

g0 =
T6

5

(
1 + 240q1 + 2160q2

1 + · · ·
)
, (4.205a)

g1 = 12T 2
6

(
q1 + 258q2

1 + · · ·
)

+
T12

22

(
1− 264q1 − 135432q2

1 + · · ·
)
. (4.205b)

Since λ1 = 1 we expect to resum these expansions into standard modular forms of

PSL(2,Z). In particular, from (4.158) and (4.165) we have

S(g0) =
(
i τ1

)4
g0 and S ′(g0) =

(
1− τ1

)4
g0 , (4.206)

which tell us that g0 is a modular form of weight 4 with positive S-parity. The

unique form of this kind is the Eisenstein series E4; thus, matching the perturbative
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contribution we find

g0 =
T6

5
E4 . (4.207)

Again, all instanton terms are dictated by the Fourier expansion of E4 and are in per-

fect agreement with the localization result (4.205a). We also verify that g0 satisfies

(4.206) provided that T6 is invariant under S-duality, namely S(T6) = S ′(T6) = T6.

To obtain the coefficients gn with n > 0, we use the modular anomaly equation

(4.170) which in this case becomes

∂gn
∂E2

=
3n+ 2

12

n−1∑
m=0

gm gn−m−1 . (4.208)

For example, integrating this equation for n = 1 and fixing the E2-independent part

by comparing with the perturbative contributions, we get

g1 =
T 2

6

60

(
E2

4 E2 − E4E6

)
+
T12

22
E4E6 . (4.209)

Using the Fourier expansion of the Eisenstein series it is easy to check that the

instanton terms precisely match those in (4.205b). Proceeding iteratively in this

manner one can derive the exact expressions of the higher coefficients gn. In partic-

ular we have explicitly computed a few higher gn, always finding perfect agreement

with the localization results.

The Period Matrix

In the special vacuum the period matrix Ω of the massive SU(6) theory can be

written compactly as

Ω = τ̃1M1 + τ̃2M2 + τ̃3M3 (4.210)
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where the three matrices Mk are given in (4.69) while, using a notation similar to

that of the SU(4) theory, the three effective couplings turn out to have the following

semi-classical expansion

τ̃k = τk −
1

2πi

∞∑
n=0

6n+ 5

a6n+6
ĝ(k)
n (q0;T6, T12) . (4.211)

The coefficients ĝ
(1)
n coincide with the gn’s already discussed, while the first coeffi-

cients for k = 2 are

ĝ
(2)
0 =

T6

5

(
1− 7

18
q0 −

319

2592
q2

0 + · · ·
)
, (4.212a)

ĝ
(2)
1 = −7T 2

6

198

(
q0 −

65

504
q2

0 + · · ·
)

+
T12

22

(
1 +

7

9
q0 −

443

1296
q2

0 + · · ·
)
, (4.212b)

and for k = 3 are

ĝ
(3)
0 =

T6

5

(
1− 1

3
q0 −

47

432
q2

0 + · · ·
)
, (4.213a)

ĝ
(3)
1 = −5T 2

6

132

(
q0 −

23

360
q2

0 + · · ·
)

+
T12

22

(
1 +

5

6
q0 −

227

864
q2

0 + · · ·
)
. (4.213b)

We now show that these are the first few terms in the semi-classical expansion of

rational functions of quasi-modular forms. Since the procedure is similar to that of

the SU(4) theory, we will be brief in our discussion.

Let us first consider g
(2)
0 and g

(3)
0 , whose S and S ′ transformations are

S
(
g

(2)
0

)
=

(i τ1)6(√
3 i τ2

)2 g
(2)
0 , S ′

(
g

(2)
0

)
=

(1− τ1)6(
1− 3τ2

)2 g
(2)
0 ,

S
(
g

(3)
0

)
=

(i τ1)6(
2 i τ3

)2 g
(3)
0 , S ′

(
g

(3)
0

)
=

(1− τ1)6(
1− 4τ3

)2 g
(3)
0 .

(4.214)

These formulas suggest that g
(2)
0 should be expressed as a ratio of a modular form

in τ1 with weight 6 and a modular form of Γ1(3) in τ2 with weight 2, with an overall

S-parity equal to (+1). Likewise, g
(3)
0 should be expressed as a ratio of a modular
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form in τ1 with weight 6 and a modular form of Γ1(4) in τ3 with weight 2, with an

overall S-parity equal to (+1). Using the results collected in Appendix D, matching

the weights and S-parities and fixing the overall normalization in agreement with

the perturbative contributions, we find that a solution is

g
(2)
0 =

T6

5

f
(1)
2,+E4(
f

(3)
1,−
)2 and g

(3)
0 =

T6

5

E6

f
(4)
2,−

. (4.215)

By Fourier expanding the modular forms and expressing the result with bare cou-

pling q0, we do not only recover the multi-instanton terms in (4.212a) and (4.213a)

but also predict all other higher instanton contributions.

As before, the coefficients g
(k)
n with n > 0 are obtained from the coupled modular

anomaly equations (4.180), which in this case become

∂g
(k)
1

∂E2

=
5

22
g

(k)
0 g0 and

∂g
(k)
1

∂Ẽ
(λk)
2

=
25

132

(
g

(k)
0

)2
(4.216)

where the quasi-modular forms Ẽ
(3)
2 for k = 2 and Ẽ

(4)
2 for k = 3 are given in

(D.24) and (D.30), respectively. These equations can be solved in a straightforward

manner and the undetermined modular terms can be fixed by comparing with the

perturbative contributions in (4.212b) and (4.213b). In this way one obtains

g
(2)
1 =

T 2
6

110

(
f

(1)
2,+E

2
4 E2(

f
(3)
1,−
)2 +

5

6

E3
4 Ẽ

(3)
2(

f
(3)
1,−
)4 −

8

3

f
(1)
2,+ E4E6(
f

(3)
1,−
)2

)
+
T12

22

f
(1)
2,+ E4E6(
f

(3)
1,−
)2 , (4.217a)

g
(3)
1 =

T 2
6

110

(
E4E6E2

f
(4)
2,−

+
5

6

E2
6 Ẽ

(4)
2(

f
(4)
2,−
)2 −

37

12

E2
6

f
(4)
2,−

)
+
T12

22

E2
6

f
(4)
2,−

. (4.217b)

Again, by Fourier expanding the right hand sides and expressing everything in terms

of the bare coupling q0, we retrieve the first instanton corrections in perfect agree-

ment with the localization results (4.212) and (4.213), and predict all successive

non-perturbative contributions. Similar analyses can be performed at higher orders;

we have checked that the coefficients g
(k)
n are successfully determined in this manner.
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5
Outlook

5.1 Chiral Rings

In this work we have performed a detailed analysis of the simplest chiral observables

constructed from the adjoint scalar Φ of the N = 2? U(N) SYM theory. The

expressions for 〈Tr Φn〉 that we obtained using localization methods are written

as mass expansions, with the dependence on the gauge coupling constant being

completely resummed into quasi-modular forms, and the dependence on the classical

vacuum expectation values expressed through lattice sums involving the roots and

weights of the gauge algebra. Therefore, these findings can be thought of as a

natural generalization of the results obtained in [11, 12, 13] for the prepotential to

other observables of the N = 2? theory.

We also found that the symmetric polynomials Wn constructed out of 〈Tr Φn〉 do not

satisfy the classical chiral ring relations [21], while some simple redefinitions allow

one to enforce them. The redefined chiral observables obtained in this way perfectly

match those we derived by completely independent means, namely from the SW

curves and the associated period integrals, or from modular anomaly equations. We

then identified particular combinations An of chiral observables that transform as

modular forms of weight n under the non-perturbative S-duality group, and derived
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a relation between the Wn and the An which is exact both in the hypermultiplet

mass and in the gauge coupling constant.

Given that our results are a generalization of what was found in [11, 12, 13], it

is natural to ask ourselves about the possibility of extending the above analysis

to N = 2? theories with other classical groups. In this respect we recall that the

integrable system that governs the quantum gauge theory for these cases and the

associated Lax pair have been obtained in [100, 101]. However, for the Dn series,

the explicit form of the spectral curves in terms of elliptic and modular forms is only

known for cases with low rank [17]. Thus, it would be very interesting to revisit

this problem in the present context, especially given the significant progress that

has been made relating gauge theories and integrable systems over the past decade

[102, 103, 54]. The localization results available for a generic group G would provide

additional checks on the correctness of the proposed solution. Another important

class of theories to consider would be the superconformal ADE quiver-type models

studied in [21, 104].

It would also be worthwhile to calculate these chiral observables for other theories,

such as SQCD-like theories. In these cases, the prepotential has been resummed in

terms of quasi-modular forms of generalized triangle groups in a special locus on

the moduli space [26, 78] and thus it would be interesting to see if one can obtain

similar results for the one point functions of chiral observables as well.

It would also be very interesting to investigate the modular properties of the chiral

observables in presence of the Ω-deformation. We expect that in the Nekrasov-

Shatashvili limit [103] the chiral observables An still satisfy the modular anomaly

equation (3.93) and hence have the same behaviour under S-duality. For a generic

Ω-background, instead, we expect a modification of the modular anomaly equation

with the addition of a term proportional to ε1ε2. This is in analogy with what

happens for the modular anomaly equation satisfied by the prepotential whose S-
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dual in the Ω-deformed theories is obtained via a Fourier transform which generalizes

the Legendre transform occurring at the classical level [23, 70].

Finally, we remark that the calculation of the one point functions 〈Tr Φn〉 has an

important role in the physics of surface operators [105, 106] (for a review see for

instance [107]). The infrared physics of surface operators in N = 2 gauge theories

is in fact captured by a twisted effective superpotential in a two dimensional theory.

As shown in [108], one of the ways in which this twisted superpotential can be

determined is from the generating function of the expectation values of chiral ring

elements in the bulk four dimensional theory. Our results can be interpreted as a

first step in this direction. Furthermore, it would be interesting to explore if the

existence of combinations of chiral ring elements that have simple modular behaviour

under S-duality can be useful to improve our understanding of the two dimensional

theory that captures the infrared physics of surface operators.

5.2 Fundamental Matters

In this work we have obtained two sets of largely independent, but complementary

results. In the first part, we calculated the period matrix for massless N = 2 SQCD

theories with gauge group SU(N) in the conformal limit in a locus of vacua possess-

ing a ZN symmetry. We uncovered an interesting modular structure that becomes

manifest only when the observables are written in terms of the
[
N
2

]
renormalized

couplings τk. In particular, we have shown that on each of these couplings, the

S-duality group acts as a (generalized) triangle group. We also proposed a non-

perturbatively exact relation between the bare coupling and the renormalized ones
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in terms of the hauptmodul of the corresponding triangle group, namely

q0 =

√
jλk(τk)− d−1

λk
−
√
jλk(τk)√

jλk(τk)− d−1
λk

+
√
jλk(τk)

. (5.1)

This relation correctly reproduces the instanton expansion and we showed that it

is consistent with expectations from S-duality. While previous investigations [91,

93] concentrated essentially on only one of these effective couplings, which in our

notation is τ[N
2

], our analysis shows that S-duality is more transparent if we consider

all individual couplings τk. Of course, we could select one of them and express all

the others in terms of it using the exact relation (5.1) via the bare coupling q0, but

then the modular structure we have described is hidden.

There are many questions that remain to be explored. For example, it would be

interesting to understand from “first principles” the spectrum of λk, for which our

case-by-case analysis provides the simple answer

λk = 4 sin2 kπ

N
. (5.2)

Using the universal formula (5.1), questions about the strong coupling properties of

the gauge theory could be addressed in an explicit way because the behaviour of the

hauptmodul jλk around the strong coupling cusps in the τk plane is well understood

[28].

As an interesting curiosity, we observe that if we define

j∗λk = − 1

4dλk q0

(5.3)

then, in the arithmetic cases (see Tab. 1) the pairs (jλk , j
∗
λk

) satisfy remarkable
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identities, called the Ramanujan-Sato identities, that take the form [109]:

∞∑
k=0

sAλk(k)
1

(jλk)
k+1/2

= ±
∞∑
k=0

sBλk(k)
1

(j∗λk)
k+1/2

, (5.4)

where the sA,Bλk
(k) are integers. It would be interesting to understand if these math-

ematical identities hold also in the non-arithmetic cases and if they have any inter-

pretation within the gauge theory.

In the second part, we considered massive SQCD theories with SU(N) gauge groups,

and restricted our analysis to mass configurations that respect the ZN symmetry of

the special vacuum. We then showed that in this case the modular structure of the

massless theory is deformed in an interesting manner. In particular we have proved

that the period matrix maintains the same structure as in the massless case, while

the renormalized couplings have a semiclassical expansion with mass dependent

coefficients. In the arithmetic theories, these coefficients are constrained by S-duality

to satisfy coupled modular anomaly equations whose solutions are meromorphic

functions of quasi-modular forms of the congruence subgroups of the modular group.

A natural question to pose is whether these results can be extended to all SU(N)

theories. Since in the non-arithmetic cases the S-duality group has no subset in com-

mon with the modular group, we expect that the automorphic forms and Eisenstein

series of the (generalized) triangle groups should play an important role. This sub-

ject seems to be of recent interest in the mathematical literature [28] and it might

be worthwhile to explore this possibility.

Another extension of our work would be to study the modular structure in the

special vacuum with generic masses or in the Ω-deformed theory [3, 4]. An incentive

to study this problem comes from the AGT correspondence [55, 110]. Indeed, in the

SU(2) theory with four flavours the non-perturbative relation between the bare and

renormalized coupling plays an important role in writing the prepotential as quasi-
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modular functions. The quantum-corrected coupling constant is used to rewrite the

null- vector decoupling equation as an elliptic equation [75, 76, 77]. This in turn

can be used to obtain the Ω-dependent corrections to the prepotential in terms of

modular functions in the Nekrasov-Shatashvili limit [54]. It would be nice to extend

this approach to higher rank gauge theories using the non-perturbative relation (5.1).

A more difficult but very interesting problem is to release the special vacuum con-

straints and analyse the theory at a generic point on the Coulomb moduli space,

to see how the modular structures we have obtained are generalized. We hope to

return to some of these issues in the near future.

159



A
Eisenstein Series and Elliptic Functions

Eisenstein Series

The Eisenstein series E2n are holomorphic functions of τ ∈ H+ defined as

E2n =
1

2ζ(2n)

∑
m,n∈Z2\{0,0}

1

(m+ nτ)2n
. (A.1)

For n > 1, they are modular forms of weight 2n, namely under an SL(2,Z) trans-

formation

τ → τ ′ =
aτ + b

cτ + d
with a, b, c, d ∈ Z and ad− bc = 1 , (A.2)

they transform as

E2n(τ ′) = (cτ + d)2nE2n(τ) . (A.3)

For n = 1, the E2 series is instead quasi-modular. Its modular transformation has

in fact an anomalous term:

E2(τ ′) = (cτ + d)2E2(τ) +
6

iπ
c(cτ + d) . (A.4)
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All modular forms of weight 2n > 6 can be expressed as polynomials of E4 and E6;

the quasi-modular forms instead can be expressed as polynomials in E2, E4 and E6.

The Eisenstein series admit a Fourier expansion in terms of q = e2πiτ of the form

E2n = 1 +
2

ζ(1− 2n)

∞∑
k=1

σ2n−1(k)qk , (A.5)

where σp(k) is the sum of the p-th powers of the divisors of k. In particular, this

amounts to

E2 = 1− 24
∞∑
k=1

σ1(k)qk = 1− 24q − 72q2 − 96q3 + · · · ,

E4 = 1 + 240
∞∑
k=1

σ3(k)qk = 1 + 240q + 2160q2 + 6720q3 + · · · ,

E6 = 1− 504
∞∑
k=1

σ5(k)qk = 1− 504q − 16632q2 − 122976q3 + · · · .

(A.6)

The quasi-modular and modular forms are connected to each other by logarithmic

q-derivatives as

q
dE2

dq
=

1

12

(
E2

2 − E4

)
, q

dE4

dq
=

1

3
(E2E4 − E6) , q

dE6

dq
=

1

2

(
E2E6 − E2

4

)
.

(A.7)

As an interesting aside, we mention in passing that these logarithmic q-derivative

relations between Eisenstein series of SL(2,Z) has recently been generalized to all

Hecke groups (introduced in Chapter 4) in [111, 112].

The Eisenstein series E2 is related to the derivative of the Dedekind η-function

η(q) = q1/24

∞∏
k=1

(1− qk) . (A.8)
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In fact, we have

q
d

dq
log

(
η

q1/24

)
= −

∞∑
k=1

σ1(k)qk =
E2 − 1

24
. (A.9)

Jacobi θ-Functions

The Jacobi θ-functions are defined as

θ [ab ] (z|τ) =
∑
n

eπiτ(n−a2 )
2
+2πi(z− b2)(n−a2 ) , (A.10)

for a, b = 0, 1. These functions are quasi-periodic, in a multiplicative fashion, for

shifts of the variable z by a lattice element λ = pτ + q, with p, q ∈ R; in fact one

has

θ [ab ] (z + λ|τ) = e(λ, z) θ [ab ] (z|τ) , (A.11)

where

e(λ, z) = e−πiτp2−2πip(z− b2)−πi a q . (A.12)

As customary, we use the notation

θ1(z|τ) = θ
[

1
1

]
(z|τ) , θ2(z|τ) = θ

[
1
0

]
(z|τ) ,

θ3(z|τ) = θ
[

0
0

]
(z|τ) , θ4(z|τ) = θ

[
0
1

]
(z|τ) .

(A.13)

By evaluating these functions at z = 0, one obtains the so-called θ-constants θa(τ),

which satisfy the abstruse identity:

θ3(τ)4 − θ2(τ)4 − θ4(τ)4 = 0 , (A.14)

while θ1(τ) = 0.

The Eisenstein series E4 and E6 can be written as polynomials in the θ-constants
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according to

E4 =
1

2

(
θ2(τ)8 + θ3(τ)8 + θ4(τ)8

)
,

E6 =
1

2

(
θ3(τ)4 + θ4(τ)4

)(
θ2(τ)4 + θ3(τ)4

)(
θ4(τ)4 − θ4(τ)4

)
.

(A.15)

Weierstraß Function

The Weierstraß function ℘(z|τ) defined by

℘(z|τ) =
1

z2
+

∑
m,n∈Z2\{0,0}

(
1

(z +mτ + n)2
− 1

(mτ + n)2

)
, (A.16)

is a meromorphic function in the complex z-plane with a double pole in z = 0, which

is doubly periodic with periods 1 and τ . We often leave the τ -dependence implicit,

and write simply ℘(z).

It is a Jacobi form of weight 2 and index 0, namely under a modular transforma-

tion (A.2) combined with z → z′ = z/(cτ + d), it transforms as

℘(z′|τ ′) = (cτ + d)2℘(z|τ) . (A.17)

It also satisfies the following differential equation

℘′(z|τ)2 = 4℘3(z|τ)− 4π4E4

3
℘(z|τ)− 8π6E6

27
. (A.18)

Using the quasi-periodicity properties of the θ-functions given in (A.11), it is easy

to show that second derivative of θ1 is a proper periodic function; indeed

d2

dz2
log θ1(z +m+ nτ |τ) =

d2

dz2
log θ1(z|τ) . (A.19)
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Furthermore, by studying its pole structure, it is possible to show that it coincides

with the Weierstraß function, up to a z-independent term:

℘(z|τ) = − d2

dz2
log θ1(z|τ) + c . (A.20)

The explicit evaluation of the constant shows that

c = −π
2

3

(
1− 24

∞∑
k=1

qk

(1− qk)2

)
= −π

2

3

(
1− 24

∞∑
k=1

σ1(k) qk

)
= −π

2

3
E2 ,

(A.21)

so that we have

℘(z|τ) = − d2

dz2
log θ1(z|τ)− π2

3
E2 . (A.22)

Using the notation of Section 3.3.2 (see in particular (3.49)), from (A.22) one can

easily show that

h′1 =
1

2πi

d

dz
h1(z) =

1

(2πi)2

d2

dz2
log θ1(z|τ) = −℘(z|τ)

(2πi)2
+
E2

12
(A.23)

which proves the first identity in (3.56). By taking further derivatives of this equa-

tion with respect to 2πiz and using the differential equation (A.18), one can straight-

forwardly prove the other identities in (3.56).

Using the periodicity property (A.19), it is possible to exploit the relation (A.22) to

deduce the values of the integral of the ℘ function along the α and β cycles of the

torus, that are parametrized respectively by z = γ and z = γτ , with γ ∈ [0, 1]; for

instance we have ∮
α

℘(z|τ) = −π
2

3
E2 . (A.24)

This result has been used in Section 3.4, see in particular (3.76).

By differentiating the differential equation (A.18) and using the previous result, one

can compute also the integral of higher powers of ℘. For instance, the first derivative
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of (A.18) yields the relation

℘(z|τ)′′ = 6℘(z|τ)2 − 2π4

3
E4 (A.25)

from which we find ∮
α

℘2(z|τ) =
π4

9
E4 . (A.26)

Proceeding in this way, one can easily compute the period integrals for higher powers

of ℘, (see for example [75] and references therein).
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B
Generalized Donagi-Witten Polynomials

In Section 3.3.1 we obtained the expression of the first polynomials Pn that appear

in the Donagi-Witten curve, by imposing the requirements that they satisfy the

recursion relation

dPn
dt

= nPn−1 , (B.1)

and that their behaviour at infinity is

Pn

(
t+

m

u

)
∼ αn

u
+ regular . (B.2)

This procedure can be iteratively carried out order by order in n. The general form

of the Pn required from (B.1) is

Pn = tn −
n∑
p=2

(−1)p (p− 1)xpm
p

(
n

p

)
tn−p , (B.3)

where the coefficients xp are elliptic and modular forms of weight p that can be

fixed recursively. As discussed in the main text, up to n = 3 the solution to the

constraints is unique, namely

P0 = 1 , P2 = t2 −m2 x ,

P1 = t , P3 = t3 − 3 tm2 x+ 2m3 y .

(B.4)
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From n = 4 on, several combinations of elliptic and modular forms start to appear

and their relative coefficients are not uniquely fixed by the requirement of the be-

haviour at infinity. For instance, for n = 4 and n = 5 one finds a one-parameter

family of solutions, and for n = 6 a two-parameter family of solutions, given by

P4 = t4 − 6 t2 xm2 + 8 t y m3 −
(
3x2 − αE4

)
m4 ,

P5 = t5 − 10 t3m2x+ 20 t2m3y − 5 t
(
3x2 − αE4

)
m4 + 4m5 x y ,

P6 = t6 − 15 t4m2x+ 40 t3m3y − 15 t2
(
3x2 − αE4

)
m4 + 24 tm5 x y

− m6
((

5 + β
)
x3 − β y2 − E4

48

(
32− 720α + β

)
x
)
.

(B.5)

These polynomials correspond to the expression in (B.3) where the first few xp are

x2 = x , x3 = y , x4 = x2 − α

3
E4 ,

x5 = xy , x6 =
1

5

((
5 + β

)
x3 − β y2 − E4

48

(
32− 720α + β

)
x
)
.

(B.6)
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C
Modular Covariance and the D’Hoker-Phong Curve

In this Appendix we explain how to obtain the relation (3.58) between the modular

covariant An and the Wn, directly from the D’Hoker-Phong form of the SW curve

instead of comparing it with the Donagi-Witten curve as we did in Section 3.3.3.

Recall that in the D’Hoker-Phong approach the SW curve is given by

R(t, z) =
N∑
`=0

(−1)`W`

[
t−m

(
1

2πi

d

dz
+ h1(z)

)]N−`
1

∣∣∣∣∣
h1=0

= 0 (C.1)

As discussed in the main text, the coefficients W` do not transform homogeneously

under S-duality. One can see this clearly by analyzing how the other objects appear-

ing in (C.1) transform. In fact, using (A.23), the modular property (A.17) of the

Weierstraß function implies that h′1 transforms as a quasi-modular form of weight 2.

Acting with additional derivatives on both sides of (A.23) kills the term proportional

to E2 so that the n-th derivative of h1 for n > 1 transforms homogeneously with

weight n + 1. On the other hand, from the analysis in section 3.3.1, we know that

one can rewrite the equation for the curve such that it becomes modular of weight

N . Hence there must exist some inhomogeneous transformation law of the Wn, com-

pensating the inhomogeneous transformation of h′1, such that the whole polynomial

is modular covariant. Indeed, if not for this inhomogeneous transformation of h′1,

the curve would be manifestly modular covariant.
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These observations suggest to introduce a new function Rmod(t, z) with coefficients

A`, by substituting the quasi-modular h′1 for the modular expression h′1 − E2/12,

namely

Rmod(t, z) =
N∑
`=0

(−1)`A`

[
t−m

(
1

2πi

d

dz
+ h1(z)

)]N−`
1

∣∣∣∣∣
h1=0 , h′1→h′1−E2/12

. (C.2)

By construction, this polynomial is modular of weight N if the coefficients A` are

modular of weight `. Equating Rmod = R then yields a relation between the modular

covariant A` and the expectation values of symmetric polynomials W`, which agrees

exactly with (3.58). In fact, the asymptotic expansion at large t of Rmod reads

Rmod(t, z) = tN − tN−1A1 + tN−2

[
A2 +

(
N

2

)
m2

(
h′1 −

E2

12

)]
− tN−3

[
A3 +

(
N − 1

2

)
m2

(
h′1 −

E2

12

)
A1 +m3

(
N

3

)
h′′1

]
+ tN−4

[
A4 +

(
N − 2

2

)
m2

(
h′1 −

E2

12

)
A2 +m3

(
N − 1

3

)
h′′1 A1

+

(
N

4

)
m4

(
h

(3)
1 + 3

(
h′1 −

E2

12

)2
)]

+O(tN−5) .

(C.3)

By comparing this with (3.54) and equating the coefficients of the various t powers

we can easily find the relation (3.58).
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D
Congruence Subgroups

In this appendix we collect a few results on the (quasi-)modular forms of the modular

group PSL(2,Z) and its congruence subgroups Γ1(2), Γ1(3) and Γ1(4) which occur

in the arithmetic theories. We refer to the literature for the proofs of the various

statements (see for example [98, 99]) and only quote the main results that are

relevant for the calculations described in the main text.

The Modular Group, Eisenstein Series, and S-Parity

The Eisenstein series E2n are holomorphic functions of τ (with Im(τ) ≥ 0), defined

as

E2n =
1

2ζ(2n)

∑
m,n∈Z2\{0,0}

1

(m+ nτ)2n
(D.1)

where ζ denotes the Riemann ζ-function. For n > 1, the E2n’s are modular forms

of degree 2n. In particular, under τ → −1/τ they transform as

E2n

(
− 1

τ

)
= τ 2nE2n(τ) = (−1)n

(
iτ
)2n

E2n(τ) . (D.2)
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This shows that the S-parity of E2n is (−1)n. The E2 series is instead quasi-modular:

E2

(
− 1

τ

)
= −

(
iτ
)2
(
E2(τ) +

6

iπτ

)
, (D.3)

and has odd S-parity.

All modular forms of degree 2n > 6 can be expressed in terms of E4 and E6; the

quasi-modular forms instead can be expressed as polynomials in E2, E4 and E6. The

Fourier expansions of the first Eisenstein series are

E2 = 1− 24q − 72q2 − 96q3 + · · · ,

E4 = 1 + 240q + 2160q2 + 6720q3 + · · · ,

E6 = 1− 504q − 16632q2 − 122976q3 + · · ·

(D.4)

where q = e2πiτ .

Let us now consider the subgroup Γ′ generated by T and S ′ = STS−1. As the

results on the SU(6) theory reported in Section 4.9 explicitly indicate, the following

expression

f
(1)
2,+ = 1 + 120q − 6120q2 + 737760q3 + · · · (D.5)

plays a crucial role in matching the modular structure of the period matrix with the

multi-instanton calculations. We notice that this expansion is accounted for if we

write

f
(1)
2,+ =

(
E4

) 1
2 . (D.6)

The presence of the square root seems to suggest that the modular group can be

viewed as a two-sheeted cover of Γ′. Moreover we observe that everything is consis-

tent by requiring that f
(1)
2,+ be a modular form of weight 2 under Γ′ and with positive

S-parity. This also explains the notation we have used.
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The Congruence Subgroup Γ1(2)

To construct the modular forms of Γ1(2) we first define the following functions

f
(2)
4,±(τ) =

(
η2(τ)

η(2τ)

)8

± 64

(
η2(2τ)

η(τ)

)8

(D.7)

where η(τ) is the Dedekind η-function. Their Fourier expansions are

f
(2)
4,+ = 1 + 48q + 624q2 + 1344q3 + · · · ,

f
(2)
4,− = 1− 80q − 400q2 − 2240q3 + · · · ,

(D.8)

where as usual q = e2πiτ . These functions are modular forms Γ1(2) of weight 4

[98, 99], as evinced by their behavior under the S ′-transformation:

f
(2)
4,±

(
τ

1− 2τ

)
= (1− 2τ)4f

(2)
4,±(τ) . (D.9)

In addition, using the modular transformation properties of the Dedekind η-function

and in particular

η
(
− 1

τ

)
=
√
−iτ η(τ) , (D.10)

one can easily check that

f
(2)
4,±

(
− 1

2τ

)
= ±

(
i
√

2τ
)4
f

(2)
4,±(τ) . (D.11)

Thus f
(2)
4,± have weight 4 and S-parity (+1) and (−1) respectively, as the notation

itself suggests.

Now consider the square-root of f
(2)
4,+, namely

f
(2)
2,+ :=

(
f

(2)
4,+

) 1
2 = 1 + 24q + 24q2 + 96q3 + · · · . (D.12)
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This is a modular form of Γ1(2) with weight 2 and positive S-parity. Indeed,

f
(2)
2,+

(
− 1

2τ

)
=
(
i
√

2τ
)2
f

(2)
2,+(τ) . (D.13)

The modular forms of Γ1(2) form a ring generated by f
(2)
2,+ and f

(2)
4,−.

In order to study quasi-modular forms of Γ1(2) let us consider the second Eisenstein

series E2 which satisfies

E2

(
− 1

2τ

)
=
(
4τ 2
)
E2(2τ) +

12τ

iπ
,

E2(2τ) =
1

2
E2(τ) +

1

2
f

(2)
2,+(τ) .

(D.14)

These equations naturally lead us to introduce the following combination

Ẽ
(2)
2 = E2 +

1

2
f

(2)
2,+ =

3

2
− 12q − 60q2 − 48q3 + · · · . (D.15)

Using (D.13), it is easy to check that

Ẽ
(2)
2

(
− 1

2τ

)
= −

(√
2iτ
)2
(
Ẽ

(2)
2 (τ) +

6

iπτ

)
, (D.16)

which shows that Ẽ
(2)
2 transforms under S-duality similarly to E2 and has negative

S-parity.

The Congruence Subgroup Γ1(3)

To construct the modular forms of Γ1(3) we first define the following functions

f
(3)
3,±(τ) =

(
η3(τ)

η(3τ)

)3

∓ 27

(
η3(3τ)

η(τ)

)3

(D.17)
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whose Fourier expansions are

f
(3)
3,+ = 1− 36q − 54q2 − 252q3 + · · · ,

f
(3)
3,− = 1 + 18q + 108q2 + 234q3 + · · · ,

(D.18)

where as usual q = e2πiτ . These functions are modular forms Γ1(3) of weight 3

[98, 99]. Under the S ′- transformation, they behave as

f
(3)
3,±

(
τ

1− 3τ

)
= (1− 3τ)3f

(3)
3,±(τ) , (D.19)

while under the S-transformation they change as

f
(3)
3,±

(
− 1

3τ

)
= ±

(
i
√

3τ
)3
f

(3)
3,±(τ) , (D.20)

as one can easily check using the modular properties of the Dedekind function. The

last equation shows that f
(3)
3,± have S-parity (+1) and (−1), respectively, as also the

notation suggests.

Now consider the cube-root of f
(3)
3,−, namely

f
(3)
1,− :=

(
f

(3)
3,−
) 1

3 = 1 + 6q + 6q3 + · · · . (D.21)

This is a modular form of Γ1(3) with weight 1 and negative S-parity. Indeed,

f
(3)
1,−

(
− 1

3τ

)
= −

(
i
√

3τ
)
f

(3)
1,−(τ) . (D.22)

The modular forms of Γ1(3) form a ring generated by f
(3)
1,− and f

(3)
3,+.

In order to study quasi-modular forms of Γ1(3) we have to consider the second
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Eisenstein series E2 which satisfies

E2

(
− 1

3τ

)
=
(
9τ 2
)
E2(3τ) +

18τ

iπ
,

E2(3τ) =
1

3
E2(τ) +

2

3

(
f

(3)
1,−(τ)

)2
.

(D.23)

These equations naturally lead us to introduce the following combination

Ẽ
(3)
2 = E2 +

(
f

(3)
1,−
)2

= 2− 12q − 36q2 − 84q3 + · · · . (D.24)

Using (D.22), it is easy to check that

Ẽ
(3)
2

(
− 1

3τ

)
= −

(√
3iτ
)2
(
Ẽ

(3)
2 (τ) +

6

iπτ

)
, (D.25)

which shows that Ẽ
(3)
2 transforms under S-duality similarly to E2 and has negative

S-parity.

The Congruence Subgroup Γ1(4)

The ring of modular forms of Γ1(4) is generated by the weight-2 modular forms

which we denote f
(4)
2,±. They are defined as

f
(4)
2,+(τ) := θ4

3(2τ) = 1 + 8q + 24q2 + 32q3 + · · · ,

f
(4)
2,−(τ) := θ4

4(2τ)− θ4
2(2τ) = 1− 24q + 24q2 − 96q3 + · · · ,

(D.26)

where the θa’s are the standard Jacobi θ-functions and as usual q = e2πiτ . Using the

modular properties of the θ-functions and in particular

θ2

(
− 1

τ

)
=
√
−iτ θ4(τ) , θ3

(
− 1

τ

)
=
√
−iτ θ3(τ) , θ4

(
− 1

τ

)
=
√
−iτ θ2(τ) , (D.27)
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it is easy to show that

f
(4)
2,±

(
− 1

4τ

)
= ±(2iτ)2 f

(4)
2,±(τ) . (D.28)

Thus f
(4)
2,± have S-parity (+1) and (−1) respectively.

In order to study quasi-modular forms of Γ1(4) we have to consider the second

Eisenstein series E2 which satisfies

E2

(
− 1

4τ

)
=
(
4τ
)2
E2(4τ) +

24τ

iπ
,

E2(4τ) =
1

4
E2(τ) +

3

4
f

(4)
2,+(τ) .

(D.29)

These equations suggest to introduce the following combination

Ẽ
(4)
2 = E2 +

3

2
f

(4)
2,+ =

5

2
− 12q − 36q2 − 48q3 + · · · , (D.30)

which under S-duality transforms in a way similar to E2, namely

Ẽ
(4)
2

(
− 1

4τ

)
= −

(
2iτ
)2
(
Ẽ

(4)
2 +

6

iπτ

)
. (D.31)

This equation shows that Ẽ
(4)
2 is a quasi-modular form with weight 2 and negative

S-parity.
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E
Massless SU(7) SQCD

In this appendix we briefly report the results for the massless SU(7) SQCD theory

in the special vacuum.

The quantum corrected period matrix takes the form

Ω = τ1M1 + τ2M2 + τ3M4 (E.1)

where

Mk =
3∑
`=1

λk` G` (E.2)

with

λk = 4 sin2 kπ

7
= 4 cos2 (7− 2k)π

14
(E.3)
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and

G1 =



2 0 1 1 1 2

0 0 −1 0 0 1

1 −1 0 −1 0 1

1 0 −1 0 −1 1

1 0 0 −1 0 0

2 1 1 1 0 2


,

G2 =



0 1 −1 0 1 −1

1 2 1 0 2 1

−1 1 0 0 0 0

0 0 0 0 1 −1

1 2 0 1 2 1

−1 1 0 −1 1 0


, (E.4)

G3 =



0 0 1 0 −1 0

0 0 1 1 −1 −1

1 1 2 2 1 0

0 1 2 2 1 1

−1 −1 1 1 0 0

0 −1 0 1 0 0


.

These are specific examples of the matrices defined through Eq. (4.139) of the main

text. Finally, up to two instantons we find that the three renormalized couplings

are given by

2πi τ1 = log q0 + iπ + log
(
4dλ1

)
+

12

49
q0 +

192

2401
q2

0 + · · · ,

2πi τ2 = log q0 + iπ + log
(
4dλ2

)
+

20

49
q0 +

370

2401
q2

0 + · · · ,

2πi τ3 = log q0 + iπ + log
(
4dλ3

)
+

24

49
q0 +

474

2401
q2

0 + · · · ,

(E.5)
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with

dλ1 = 4611.1803 · · · , dλ2 = 163.6225 · · · , dλ3 = 69.8572 · · · . (E.6)

It is worth noticing that all coefficients in the instanton expansion of the renormal-

ized couplings are rational. According to the general discussion of Section 4.6, these

formulas should follow upon using the hauptmoduln of certain (generalized) triangle

groups in the universal formula (4.96). We now show that this is indeed the case for

the SU(7) theory.

Let us start from k = 3. Here we have λ3 = 4 cos2 π
14

and thus the S-duality group is

simply the Hecke group H(14) whose type is t = (2, 14,∞). Applying the formulas

of Section 4.6.1, it is not difficult to find that the corresponding hauptmodul is

jλ3 =
1

q3

+
37

98

1

dλ3
+

2587

38416

q3

d2
λ3

+
899

117649

q2
3

d3
λ3

+ · · · (E.7)

where dλ3 is precisely the same number given in (E.6).

Now let us put k = 2. In this case we have λ2 = 4 cos2 3π
14

which implies that

the S-duality group is a generalized triangle group with type t =
(
2, 14

3
,∞
)
. As

we observed in the main text, the formulas for the hauptmoduln can be formally

extended also when the type has a rational entry. In this case we find

jλ2 =
1

q2

+
39

98

1

dλ2
+

2571

38416

q2

d2
λ2

+
4435

705894

q2
2

d3
λ2

+ · · · (E.8)

where dλ2 is exactly as in (E.6).

Finally for k = 1, we have λ1 = 4 cos2 5π
14

leading to a generalized triangle group

with type t =
(
2, 14

5
,∞
)
. In this case the corresponding hauptmodul is

jλ1 =
1

q1

+
43

98

1

dλ1
+

2521

38416

q1

d2
λ1

+
2573

705894

q2
1

d3
λ1

+ · · · (E.9)
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with dλ1 given in (E.6).

If we now plug these expansions in the universal formula (4.96) and invert the result-

ing series, we perfectly match the instanton results (E.5) obtained from localization,

thus confirming also in this case the consistency of our proposal.
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