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Synopsis

In the early 1960s Bondi, Van der Burg, Metzner, and Sachs [1,2] discovered that asymp-

totic symmetry group of four dimensional asymptotically flat spacetimes is not the finite

dimensional Poincare group but an infinite dimensional symmetry group which is known

as BMS group. In recent years there have been several interesting developments in the

studies of asymptotic symmetries in relation to soft theorems following the seminal works

by Strominger [3]. Strominger and his collaborators discovered that soft graviton theo-

rem can be realized from asymptotic symmetries associated with large diffeomorphisms

of asymptotically flat spacetimes at null infinity. Infrared properties of scattering am-

plitudes involving gravitons and photons were investigated by Weinberg [4, 5] in 1960s

which paved the way for important developments of soft theorems in Quantum Field The-

ory and String Theory. Since then soft theorems have been studied extensively in various

theories of scalars, gauge and also higher spin particles. Contemporary developments of

the sophisticated techniques like BCFW recursion relations [6] and CHY formalism [7]

for finding scattering amplitudes have led to the discoveries of new soft theorems and

have deepened the understanding of many important properties of them. On the other

hand understanding the relationships between the newly discovered soft theorems and the

associated symmetries is extremely interesting from the perspective of flatspace hologra-

phy .

In this thesis we probe further into the understanding of soft graviton theorems and asymp-

totic symmetries of asymptotically flat spacetimes in higher dimensions. In the first part of

xix
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the thesis we derive double soft limit to graviton scattering amplitude from the formalism

developed by Cachazo, He and Yuan. In the second part of the thesis we study the relation

between Weinberg’s soft graviton theorem and asymptotic symmetries for asymptotically

flat spacetimes of dimensions greater than four.

0.1 Soft graviton theorem

In a graviton scattering process if the energy of any external graviton becomes infinites-

imally small then the scattering amplitude can be expressed as a product of soft factor

and amplitude of remaining particles of finite energy. This is the statement of single soft

graviton theorem. In 2014 Cachazo and Strominger, using Britto-Cachazo-Feng-Witten

recursion relation, found that the soft factor can be perturbatively expanded in powers of

energy of the soft graviton. For pure gravity this soft factorization holds to the sub-sub-

leading order which can be expressed as

lim
τ→0
Mn+1 (k1, ε1; k2, ε2; . . . ; kn, εn; τq, ε)

=
(
S (0)(q) + S (1)(q) + S (2)(q)

)
Mn (k1, ε1; k2, ε2; . . . ; kn, εn) + O(τ2),

whereMn+1 is the (n + 1)-point scattering amplitude including the soft graviton with mo-

mentum τq and polarization ε andMn is the n-point amplitude for finite energy external

particles whose momenta and polarizations are denoted by ka and εa with a ∈ {1, 2, . . . , n}.

The soft factors are functions of kinematic variables like momenta and polarizations of

both soft particle and particles of finite energy and can be given by

S (0)(q) =
1
τ

n∑
a=1

εµνqµqν

q · ka
, S (1)(q) =

n∑
a=1

εµνk
µ
aqρ Ĵρνa

q · ka
, S (2)(q) =

τ

2

n∑
a=1

εµνqρqσ Ĵρµa Ĵσνa

q · ka
.

Ĵµνa denotes the angular momentum operator of the a-th hard particle and has two parts -

orbital angular momentum and a spin part. It should be noted that conservation of total
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momentum (i.e. sum of all the external hard momenta) of the scattering amplitude implies

gauge invariance of leading soft factor, gauge invariance of sub-leading soft factor follows

from the conservation of total angular momentum and sub-sub-leading soft factors are

gauge invariant in individual finite energy external state.

Sen used covariantization method [8] to prove universality of leading soft graviton theo-

rem with arbitrary number of soft gravitons and sub-leading soft graviton theorem with

single soft graviton and any number of finite energy external states with arbitrary masses

and spins to all orders in perturbation theory of S-matrix in any generic theory of quantum

gravity. Recent work by Laddha and Sen [9] have established that soft graviton theorem

is universal to sub-leading order for any generic theory of quantum gravity and the sub-

sub-leading factor has a universal part and a non-universal part that depends on details of

the specific theory.

0.2 Cachazo-He-Yuan formalism

In 2013 Cachazo, He and Yuan [7] developed an ingenious technique of calculating scat-

tering amplitude for a variety of theories in Quantum Field Theory that include gravity,

Yang-Mills, bi-adjoint cubic scalar, non-linear sigma model and many others using inte-

grals over moduli space of punctured Riemann spheres. The punctures on the Riemann

sphere correspond to the external scattering states. The underlying principle behind this

formalism is to map the singularity structures of the kinematic space to the singularities of

an auxiliary space where they can be better understood. This method of studying S-matrix

has many advantages over conventional techniques of computing Feynman diagrams and

helps to bring out several important features of scattering amplitude which otherwise are

not manifested in the Lagrangian descriptions.

In this formalism a tree level scattering amplitude for n massless particles in any arbitrary
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spacetime dimensions is given in the following way

Mn =

∫
dnσ

volSL(2,C)

∏′

a

δ

∑
b,a

ka.kb

σa − σb

 In({k, ε, σ}).

where the form of In, which is particular function of kinematic variables like momenta

and polarizations of external states and also the punctures, depends on the specific theory.

σis are the locations of punctures and the arguments of delta functions are polynomial

equations in σis, called scattering equations. Because of the SL (2,C) redundancies, only

n−3 out of n scattering equations are independent, and there are (n − 3)! solutions for the

σis.

The integrand In has SL (2,C) weight 4 and the measure transforms accordingly such that

the scattering amplitude is SL (2,C) invariant. There are several building blocks formed

out of the kinematic variables and the punctures which give rise to In.

Factorization properties of scattering amplitude arising from soft and collinear limits can

be studied very conveniently in the CHY formalism. Soft graviton theorem for one soft

graviton scattering has been derived using CHY formalism in earlier literatures. In this

thesis we derive soft graviton theorem for two soft graviton scattering process from the

CHY formalism. In this process we encounter some intricate technicalities that will be

explained in detail.

0.3 Double soft graviton theorem

In the soft limits the moduli space integrations in the CHY formalism become contour

integrals. For single soft particle the contour of integration is wrapped around the solu-

tions of the punctures corresponding to finite energy external particles. In case of double

soft limits, depending on the separation of the soft punctures contour integrals have to

be evaluated. In [10] we calculated the contribution coming from the so called degener-
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ate solutions, when the two soft punctures come infinitesimally close to each other. In

this case we can make a change of variables for the soft punctures, σn+1 = ρ − ξ

2 and

σn+2 = ρ +
ξ

2 . Using the scattering equations, solutions for ξ can be expressed in terms

of ρ. Now effectively we are left with a single contour integration corresponding to the

variable ρ. Applying Cauchy’s residue theorem one can compute the value of this contour

integration. The result thus obtained was compared with the Feynman diagram computa-

tion where it was noticed that the leading order term, which is the product of two single

soft factors, was missed in the obtained result. To account for the missing term, contri-

butions from the non-degenerate solutions were analyzed in [11]. In this case we have to

consider two contour integrals corresponding to σn+1 and σn+2 independently. Residues

of these contour integrals give the required result. Along with the leading term, we also

obtain two more terms at sub-leading order. However to do this analysis an explicit gauge

choice has been made in which polarization tensors (εp,µν, εq,µν) of the two soft particles

are orthogonal to momenta (τpµ, τqµ) of each other. This result matches with earlier one

obtained by Klose et al [12] using BCFW analysis in four dimensions. In later works by

Chakrabarti et al [13, 14] using covariantization method developed by Sen, it is shown

that the result is valid for any generic theory of quantum gravity.

The next part of the thesis focuses on the supertranslation symmetries for asymptotically

flat spacetime in dimensions greater than four.

0.4 Supertranslation symmetries and soft graviton the-

orem

The asymptotic symmetry group of asymptotically flat spacetimes in four dimension is

an infinite dimensional group, popularly known as BMS group which consists of an-

gle dependent translations along the null directions, called supertranslations acting semi-

directly on the Lorentz group. Supertranslations form an infinite dimensional Abelian nor-
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mal subgroup of BMS group. Recently Strominger and his collaborators have shown that

Weinberg’s soft graviton theorem is related to Ward identity derived from supertranslation

invariance of gravitational S-matrix. Subsequent works by Campiglia and Laddha [15]

have led to extension of BMS group, which is a semidirect product of supertranslation

and Diff(S2), to obtain Ward identities associated with sub-leading soft graviton theorem.

With the generalization of soft graviton theorems in higher dimensions a pertinent ques-

tion is - like in four dimension can the soft graviton theorems be related to asymptotic

symmetries of asymptotically flat spacetime in higher dimensions also?

The relation between soft graviton theorem and supertranslation symmetries have been

explored in higher even dimensions by Kapec et al in [16]. In this paper it was shown that

Weinberg’s soft graviton theorem can be recast as a Ward identity at null infinity in higher

even dimensions. In this thesis we try to compute the asymptotic conserved charge from

the covariant phase space methods [17] at null infinity and derive the supertranslation

Ward identity in higher dimensions.

We consider perturbative gravity with linearized metric fluctuations around Minkowski

spacetime, gµν = ηµν + κhµν, κ =
√

32πGN is the gravitational coupling constant. However

we show there are subtleties with the existence of infinite dimensional supertranslation

symmetries in higher spacetime dimensions (D ≥ 4), mainly because of the boundary

fall-off conditions of the metric perturbations. The null infinity of the asymptotically

flat spacetime is understood as the limit of radial coordinate, r going to infinity while

u and angular coordinates are held fixed, such that topologically the space is given by

R× SD−2. We can also expand the metric perturbations in orders of the radial components

off the null infinity. Solving linearized Einstein’s equation in vacuum we determine the

free radiative data of the gravitational radiation. In D dimension the free radiative data

has a fall-off behavior of r−
D−6

2 and supertranslation acts on the metric perturbation which

falls off linear in r in any arbitrary dimensions. Therefore only in four dimension these

two powers in r are equal and the radiative data is shifted under supertranslation. In four
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dimension, because of the presence of supertranslation, there is an enhancement of the

asymptotic symmetry group from Poincare to infinite dimensional BMS group. Since

the radiative component appears at different order in radial coordinate, the only allowed

symmetries are Poincare symmetries. Now we want to explore whether it is possible

to have supertranslation symmetries in D ≥ 4 if we relax the boundary conditions and

eventually derive Ward identities relating infrared behavior of graviton amplitude.

The asymptotic conserved charge at null infinity consists of two parts: soft charge which

is linear in gravitational radiation and the quadratic part, called hard charge which also

contains matter radiation. We consider scalar field minimally coupled to gravity as the

matter contribution. Trace-reversed metric perturbations satisfy the equation

�h̄µν = −16πGTµν.

Metric perturbations consist of two parts - h(C)
µν which corresponds to the gravitational

wave and satisfies homogeneous equation �h̄(C)
µν = 0 and h(φ)

µν which is determined by the

matter content. Thus we can write hµν = h(C)
µν + h(φ)

µν . The sourced metric perturbations,

h(φ)
µν typically has faster fall-off conditions than the free metric perturbations, h(C)

µν . For the

supertranslation charge only free metric perturbations contribute. Now we consider the

expansion of angular components of metric perturbations to be hAB = rh(−1)
AB +h(0)

AB + 1
r h(1)

AB +

. . . and A, B are the D − 2 angular coordinates. In four dimension h(−1)
AB constitute the free

data and the expression of soft charge at null infinity is given by

Qξ = −
1

16πG

∫
I +

dudΩ2 f (z) DADBḣ(−1)
AB ,

where dot represents derivative with respect to the retarded time u. f (z) is any uncon-

strained arbitrary function of angular coordinates. In higher dimensions we consider the

vector field

~ξ = f (z) ∂u +
1

D − 2
∆ f (z) ∂r −

1
r

DA f (z) ∂A + . . .
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and derive the asymptotic covariant phase charge. In D ≥ 4, h(−1)
AB is non-radiative and gets

shifted under ~ξ,

δξh
(−1)
AB =

2
D − 2

γAB∆ f (z) − (DADB + DBDA) f (z).

For this reason if we restrict h(−1)
AB to be zero then f (z) is constrained and there can not exist

supertranslation symmetries in higher dimension. So we have to allow for non-radiative

modes to be present and relax the boundary conditions.

Then the problem is the covariant phase space charge at null infinity diverges. The finite

part of the charge also does not reproduce the soft graviton theorem. The only resolution

seems to be to restrict the boundary conditions. In that case the divergent terms vanish

and also the only allowed symmetries are global translations. The asymptotic charge also

vanishes. This result is consistent with the analysis of [18].

In odd dimensions there are additional subtleties because of the fractional power fall-off

of the metric perturbations in radial coordinate. Mode expansion of gravitons contain

half-integer powers of frequency in odd spacetime dimensions. This is another difficulty

for understanding soft graviton theorem from asymptotic symmetry analysis for odd di-

mensions.

We have shown that there is no consistent way of relaxing the boundary conditions such

that supertranslation symmetries are allowed in higher spacetime dimensions and at the

same time Weinberg’s soft graviton theorem can be expressed as Ward identities of gravi-

tational S-matrix following from the supertranslation symmetries. Our results are consis-

tent with the analysis of [19].



1 Introduction

In Quantum Field Theory soft theorems play an important role in understanding deep

intricate structures about scattering amplitudes and various other aspects. Soft theorems,

as we understand them today, were first studied by Weinberg [4, 5] and by Gross and

Jackiw [20, 21] in the context of photon and graviton scattering processes . Since then

there have been incredibly huge amount of explorations to understand soft theorems for

variety of theories in Quantum Field Theory and String Theory.

What are soft theorems? In any scattering processes if one or more external particles

have infinitesimal small momenta as compared to other external states with finite mo-

menta, we call them soft particles and the particles carrying finite energies are known as

hard particles. In general this classification of hard and soft particles depend on some

energy scales but for our purpose we will refer to the soft particles as having almost van-

ishing energies and momenta. For many theories scattering amplitudes involving the soft

and hard particles can be expressed as product of soft factor, which include kinematics

of soft and hard particles, and scattering amplitude involving the hard particles only and

excluding the soft particles. These are known as soft theorems. Typically the factorization

of the amplitudes can be expanded in powers of soft momenta and soft theorems are valid

only to certain orders in the expansion.

Scattering amplitudes involving soft gravitons have been shown to factorize beyond lead-

ing order. Modern techniques in the scattering amplitudes have been particularly helpful

1



2 Introduction

in this context. Using Britto-Cachazo-Feng-Witten (BCFW) recursion relations [6] Cac-

hazo and Strominger [22] found out soft factorization of pure gravity amplitude with one

soft graviton to sub-sub-leading order. Soft graviton theorems in specific theories beyond

leading order have also been studied in [23–28] from Feynman diagrammatic as well as

using modern amplitude methods.

Sen used covariantization method [8, 29] to prove universality of leading soft graviton

theorem with arbitrary number of soft gravitons and sub-leading soft graviton theorem

with single soft graviton and any number of finite energy external states with arbitrary

masses and spins to all orders in perturbation theory of S-matrix in any generic theory of

quantum gravity. In [9] Laddha and Sen showed that in any theory of quantum gravity

scattering amplitude for single soft graviton and any number of finite energy external

states with arbitrary spins and masses to sub-sub-leading order in the momentum of the

soft graviton can be expressed as sum of two parts: a universal part that depends only

on the amplitude without the soft graviton and a non-universal part that depends on the

amplitude without the soft graviton as well as details of the theory, in particular the two

and three point functions of the theory.

In recent years there has been increasingly growing interest in the studies of various

aspects of soft theorems [30–55] following the remarkable observation by Strominger

[3] that Weinberg’s soft graviton theorem are related to asymptotic symmetry group of

asymptotically flat spacetimes. In [3, 56] it was shown that leading soft graviton theorem

can be expressed as Ward identities related to supertranslation symmetries and there are

infinitely many conserved charges corresponding to these symmetries.

What are supertranslations? In early sixties Bondi, Van der Burg, Metzner and Sachs

[1, 2] discovered that the asymptotic symmetry group of any four dimensional flat space-

times is not just the finite dimensional Poincare group but an infinite dimensional group

which is now known as BMS group. Using Penrose compactification the asymptotic null
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infinity of asymptotically flat geometries can be topologically given by R × S2 and there

are two such null infinities, one at future which is denoted by I + and one at past which

is denoted by I −. BMS group comprises of supertranslations which act semi-directly on

the Lorentz group. Supertranslations are angle dependent translations acting at the null

infinities and can be arbitrary functions of the coordinates on S2. Supertranslation vector

fields form the infinite dimensional abelian sub-group of the BMS group.

Using the covariant phase space formalism [17] one can calculate conserved charges for

the symmetries at asymptotic null infinity. The charges associated to supertranslation

symmetries come from the gravitational radiation and contain zero modes of gravitons.

These are called soft charges and act on the Fock states at future and past null infinities to

produce soft graviton insertions in the S-matrix elements. These soft mode insertions give

rise to Weinberg’s soft graviton theorem. There are also hard part of the charges which

come from the matter contents. Total asymptotic conserved charges can be given by Q =

Qsoft +Qhard. Classically these conserved charges commute with the gravitational S-matrix

such that [Q, S ] = 0. These charges generate supertranslations on the radiative phase

space at null infinities. Using the in and out scattering states at I − and I + respectively

we can obtain the Ward identities 〈out|Q+S − S Q−|in〉 = 0.

Asymptotic symmetries for soft graviton theorems when external finite energy states are

massive have been studied in [57]. In [15, 58–60] Campiglia and Laddha found out Ward

identities related to the asymptotic symmetries corresponding to sub-leading soft graviton

theorem by considering a particular extension of BMS group which is called generalized

BMS group. They considered this generalized BMS group as semi direct product of super-

translations with smooth diffeomorphisms of the conformal sphere
[
Diff

(
S2

)]
. Charges

associated with the
[
Diff

(
S2

)]
symmetries give rise to Ward identities which are in one to

one correspondence with sub-leading soft graviton theorem.



4 Introduction

1.1 Outline

Discovery of relations between soft graviton theorems and asymptotic symmetries of

asymptotically flat spacetimes have made the studies of soft graviton theorems partic-

ularly interesting from the perspective of both Field Theories and General Relativity.

Motivated by the contemporary developments we have explored a particular case of soft

graviton theorems when two of the scattered gravitons are taken to be soft simultaneously.

As mentioned earlier, inventions of new techniques for amplitudes have paved the way for

studying these soft theorems much more conveniently.

Here we have used Cachazo-He-Yuan formalism [7, 61–63] to find double soft limit to

graviton amplitude for pure gravity. Cachazo, He and Yuan (CHY) discovered an out-

standing formalism of calculating many Quantum Field Theory scattering amplitudes us-

ing integrations over moduli space of punctured complex spheres. In CHY formalism

various field theory amplitudes involving massless particles can be computed at tree level

in arbitrary spacetime dimensions without requiring Feynman diagrammatic. From this

method many underlying features and relations between different theories like Kawai-

Lewellen-Tye orthogonality, color-kinematic duality, double-copy relations etc. emerge

which are otherwise not very manifest in the conventional Lagrangian descriptions. Stud-

ies of soft theorems and factorization properties of scattering amplitudes become ex-

tremely simpler in CHY formalism. One primary objective of this thesis is to study simul-

taneous double soft limit of graviton scattering amplitude to sub-leading order in powers

of the momenta of soft gravitons [10, 11]. In the simulataneous soft limit scaling of both

the soft momenta are taken to be same (τp and τq with τ→ 0). We find that at leading or-

der double soft factor is given as product of two leading single soft factors (S (0)(p)S (0)(q)).

Sub-leading double soft factor has three terms - two of which are symmetric combination

of products of leading and sub-leading soft factors (S (0)(p)S (1)(q)+S (0)(q)S (1)(p)) and the

third term is a contact term which can not be expressed as product form of single soft
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factors. We have also verified the result obtained from CHY formalism with that from

Feynman diagrammatic.

In the second part of the thesis we study supertranslation symmetries and Weinberg’s soft

graviton theorem for asymptotically flat spacetimes in higher dimensions. In four dimen-

sion leading soft graviton theorem can be interpreted as Ward identities of gravitational

S-matrix related to supertranslation symmetries, our goal is to find out how much of such

correspondence between asymptotic symmetries and leading soft graviton theorem can

be achieved. Due to the fall-off conditions of the metric perturbations, in [19, 64, 65] it

is claimed that supertranslation symmetries can not exist in spacetime dimensions greater

than four. This is because of the fact that supertranslations always shift the components

of metric perturbations falling off with inverse power in radial coordinate in all spacetime

dimensions and radiative modes appear in higher powers of radial coordinate in higher

dimensions. Only in four dimension the two powers happen to be the same which leads

to the enhancement of the asymptotic symmetry group. Therefore in order to preserve

supertranslation symmetries in dimensions greater than four we have to relax the bound-

ary conditions. However there is no straightforward way to set the boundary conditions

compatible with the existence of supertranslations in higher dimensions, so we have to

find out the appropriate fall-off conditions of the metric perturbations by trial and error

and check their consistencies using linearized Einstein’s equations and gauge conditions.

Relaxing the boundary conditions lead to the presence of non-propagating modes in the

metric perturbations in addition to the propagating modes. The non-propagating compo-

nents do not have time dependence and therefore can not be expanded in terms of plane

waves. Because of these extra modes which have slower fall-off behavior than the graviton

modes, computation of the conserved charge at asymptotic null infinity from the covari-

ant phase space formalism [17] is complicated. The main problem is the appearance of

divergent terms in the charge calculation when the limit of radial coordinate is taken to

infinity. It remains a challenge to show that the divergent terms are canceled and the finite

contribution to the asymptotic charge produces Weinberg’s soft graviton theorem.
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This thesis is organized as follows: in chapter 2 we review soft graviton theorem for

single soft graviton scattering. We will mainly review the analysis of Cachazo and Stro-

minger to derive soft graviton theorem to sub-sub-leading order in the momentum of the

soft graviton. In chapter 3 we give an elementary introduction to Cachazo-He-Yuan for-

malism. We will see some basic examples of scalar, gluon and graviton amplitudes and

methods of taking soft limits for these scattering amplitudes. We present the main results

of this thesis in chapter 4. We study double soft limit of graviton scattering amplitude for

pure gravity using both Cachazo-He-Yuan formalism and Feynman diagrammatic. In this

chapter we also analyze double soft limit of pure Yang-Mills theory. In chapter 5 we study

asymptotic symmetries related to Weinberg’s soft graviton theorem in higher spacetime

dimensions. We first review the supertranslation Ward identities and leading soft graviton

theorem in four dimension and then comment on the difficulties involved in deriving such

Ward identities in higher dimensions.



2 Soft graviton theorem

Soft graviton theorems in Quantum Field Theory have been studied over several decades

since early sixties by Weinberg followed by many authors in recent years [4,5,8,9,20–29].

In this chapter we will review soft limit of graviton scattering amplitude when energy of

one of the external particles in the scattering process, which is a graviton, is taken to be

extremely small compared to the energies of other scattered particles. In Sec.(2.1) we

will present the result for leading soft graviton theorem. In Sec.(2.2) we will show soft

graviton theorems beyond leading order for pure graviton amplitude.

2.1 Weinberg’s soft graviton theorem

In a scattering process involving graviton, when energy of one external graviton state

goes to significantly small compared to that of other external states, then the scattering

amplitude can be expressed as a product of soft factor, which involves momenta and

polarizations of both soft and hard external particles and amplitude consisting of only

hard particles to leading order in the energy of the soft graviton. This is the statement of

Weinberg’s soft graviton theorem.

If there are n external hard particles of momenta denoted by ki, ∀ i ∈ {1, . . . n} and a

soft graviton of momentum τq with τ → 0 then Weinberg’s soft graviton theorem can be

written as

lim
τ→0
Mn+1 (τq, {ki}) =

1
τ

S (0)(q)Mn ({ki}) + O
(
τ0

)
. (2.1.1)

7
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Here S (0) (q) is the soft graviton factor. The finite energy external particles can be mass-

less or massive and of arbitrary spins. From the Feynman diagrams leading order factor-

ization can be understood when the soft graviton is attached to one of the finite energy

external legs through a three-point vertex. Leading soft factor contains a pole of the form

(τ q · ki)−1 which comes from the propagator of the external line to which the soft graviton

is attached.

We will give a pedagogical derivation of the leading soft graviton theorem for a simple

case of scattering amplitude when the external finite energy states are massless scalars

[56]. The action for Einstein gravity coupled to free massless scalar is given by

S = −

∫
d4x
√
−g

[
2
κ2 R +

1
2

gµν∂µφ∂νφ
]
, (2.1.2)

where the coupling constant κ is given by κ2 = 32πG. In the weak field approximation gµν

can be perturbatively expanded around flat metric as

gµν = ηµν + κhµν + . . . (2.1.3)

Feynman rules for pure gravity are given in Sec.(B.1.2). In the harmonic gauge the Feyn-

man rules are

p
−→

αβ γδ
= −

i
2

(
ηαγηβδ + ηαδηβγ − ηαβηγδ

)
p2 − iε

,

k
−→

= −
i

k2 − iε
,

↓ p

↗ k1 ↘ k2

µν

=
iκ
2

(
k1µk2ν + k1νk2µ − ηµνk1 · k2

)
. (2.1.4)
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We will consider the scattering amplitude involving m1 incoming scalars with momenta

k1, . . . km1 and m2 outgoing scalars with momenta k′1, . . . k
′
m2

such that m1 + m2 = n. The

soft graviton of momentum τq can be attached either to the incoming hard external line or

to an outgoing hard line. The polarization tensor of the soft graviton is denoted by εµν(q)

which satisfies the constraint qµεµν − 1
2qνε

µ
µ = 0. In the limit τ → 0 at leading order we

get the following Feynman diagrams

m2∑
i′=1

km1

k1

ki

k′1

k′m2

k′i

q

. . .

. .
.

. . .

. . .

. . .

. .
.

+

m1∑
i=1

km1

k1

ki

k′1

k′m2

k′i
q. . .

. .
.

. . .

. . .

. . .

. .
.

Feynman diagrams with external soft graviton attached to any internal lines contribute at

sub-leading order in τ. Hence evaluation of the above Feynman diagrams yield

Mµν

(
τq, k1, . . . km1; k′1, . . . , k

′
m2

)
=

m2∑
i=1

M
(
k′1, . . . , k

′
i + τq, . . . , k′m2

; k1, . . . , km1

) −i(
k′i + τq

)2
− iε

iκ
2

[
k′iµ

(
k′i + τq

)
ν + k′iν

(
k′i + τq

)
µ − ηµνk

′
i ·

(
k′i + τq

)]
+

m1∑
i=1

M
(
k′1, . . . , k

′
m2

; k1, . . . ki + τq, . . . , km1

) −i(
k′i − τq

)2
− iε

iκ
2

[
kiµ (ki − τq)ν + kiν (ki + τq)µ − ηµνki · (ki − τq)

]
τ→0
=

κ

2τ

 m2∑
i=1

k′iµk
′
iν

k′i · q
−

m1∑
i=1

kiµkiν

ki · q

M (
k1, . . . km1; k′1, . . . , k

′
m2

)
+ O

(
τ0

)
. (2.1.5)

Therefore contracting the above expression with polarization tensor of the soft graviton
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Weinberg’s soft graviton theorem (modulo the constant numerical factor) follows

M (τq, k1, . . . kn) =
1
τ

n∑
i=1

ηi
εµνk

µ
i kνi

q · ki
M (k1, . . . kn) + O

(
τ0

)
, (2.1.6)

where ηi = ±1 depending on whether the soft graviton is attached to outgoing state or

incoming state respectively.

Weinberg’s soft graviton theorem holds for any generic quantum theory of gravity. The

leading soft factor is universal and is valid for arbitrary spins and masses of the external

finite energy states. Equivalence principle says at low energies gravity couples to all

forms of momenta with the same strength, implying the fact that the gravitational coupling

constant is same for all particles.

Gauge invariance Under gauge transformation polarization tensor of graviton changes

as

εµν(q)→ εµν + qµΛν + qνΛµ (2.1.7)

where Λ is any vector field satisfying Λµqµ = 0.

Then from Eq.(2.1.6) we obtain

δεµνMµν = Λµ
 n∑

i=1

ηikiµ

M = 0. (2.1.8)

The last equality follows from the conservation of total momentum of the scattered parti-

cles.

2.2 Subleading soft graviton theorems

Almost fifty years after the discovery of Weinberg’s soft graviton theorem, Cachazo and

Strominger [22] found that factorization of the graviton amplitude in the soft limit can be
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extended beyond the leading order to sub-sub-leading order in the the energy of the soft

graviton. Cachazo and Strominger used spinor helicity variables to derive the factorization

of an (n + 1)-point graviton amplitude for pure gravity from Britto-Cachazo-Feng-Witten

recursion relations [6]. Factorization of the (n + 1)-point amplitude can be given by

Mn+1 (k1, . . . , kn, q) =
(
S (0) + S (1) + S (2)

)
Mn + O

(
q2

)
. (2.2.1)

In this section we review the analysis of Cachazo and Strominger [22] to derive the soft

factorization of pure graviton amplitude at tree level. In spinor helicity variables we

will use {λiα, λ̃iα̇} for hard particles’ momenta ki and
(
λsα, λ̃sα̇

)
for soft momentum q with

α, α̇ = 1, 2. Therefore we can write

ki αα̇ = λiαλ̃iα̇, i ∈ {1, 2, . . . , n}

qαα̇ = λsαλ̃sα̇. (2.2.2)

Momentum conservation implies

n∑
i=1

λiαλ̃iα̇ + λsαλ̃sα̇ = 0. (2.2.3)

Since we are considering gravitons only, helicity of i-th particle is given by hi = ±2. Then

(n + 1)-point full amplitude can be expressed as

Mn+1 = Mn+1

(
{λ1, λ̃i, hi}, . . . , {λn, λ̃n, hn}, {λs, λ̃s, hs}

)
δ4

 n∑
i=1

λiαλ̃iα̇ + λsαλ̃sα̇

 . (2.2.4)

Here Mn+1 is the momentum stripped amplitude and delta function imposes the momen-

tum conservation constraint.

To take the soft limit toMn+1 we will use a small parameter ε to rescale the soft momen-

tum as

λs →
√
ελs, λ̃s →

√
ελ̃s (2.2.5)
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so that

qαα̇ = ελsαλ̃sα̇. (2.2.6)

We can make an expansion of the (n + 1)-point amplitude in ε in the limit ε → 0.

Little group for massless particle is S O(2) which allows the spinor variables to scale as

λα → t−1λα and λ̃α̇ → tλ̃α̇. Under this scaling amplitude should transform with the little

group weights as

M
(
t−1λ, tλ̃

)
= t2hM

(
λ, λ̃

)
. (2.2.7)

Taking t = ε
1
2 for a positive helicity soft graviton we can writeMn+1 as

Mn+1

(√
ελs,
√
ελ̃s,+2

)
= ε2Mn+1

(
ελs, λ̃s,+2

)
. (2.2.8)

Eq.(2.2.8)implies that we can take λs(ε)→ 0 keeping the antiholomorphic one λ̃s remains

finite. We will derive the factorization ofMn+1 under this holomorphic soft limit.

Now let us consider the following complex deformations in the soft momenta and n-th

hard momentum

λs(z) = λs + zλn, λ̃n(z) = λ̃n − zλ̃s. (2.2.9)

Then the stripped (n + 1)-point is a rational function of the deformation parameter z given

by Mn+1(z). The original amplitude can be obtained by calculating the residue at z = 0 in

the following contour integration

Mn+1 =
1

2πi

∮
|z|→0

dz
Mn+1(z)

z
. (2.2.10)

We can evaluate the above integration by deforming the contour away from the original

one to infinity, then there will be other poles which have to be considered. In general

Mn+1(z)→ 1
z as z→ ∞, therefore there are no poles at infinity. Hence the only poles will
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come from the poles of the integrand arising when the propagators go on-shell

k2
I =

(
q(z) + ka1 + . . . + kam

)2
= 0, (2.2.11)

for any non-empty subset {a1, a2, . . . , am} ∈ {1, 2, . . . , n − 1}.

From Eq.(2.2.11) we can obtain location of the poles at z = z∗ and the amplitude factorizes

on these residues. Therefore we obtain

Mn+1 =
1

2πi

∮
|z|→0

dz
Mn+1(z)

z

= −
1

2πi

∑
{a1,...,am}

∮
z→z∗

dz
z

ML (s(z), a1, . . . , am, {kI , hI}) MR ({−kI ,−hI}, a1, . . . , am, an(z))
KI(z)2

= −
∑

{a1,...,am}

ML (s(z∗), a1, . . . , am, {kI , hI})
1(

q + ka1 + . . . + kam

)2

MR ({−kI ,−hI}, a1, . . . , am, an(z∗)) , (2.2.12)

where z∗ = −
(q+ka1 +...+kam)2

2(q+ka1 +...+kam)2
·r

and r is a null momentum orthogonal to both q and kn. Here

{a1, . . . , am} denotes the complementary set of {a1, . . . , am} but does not contain the n-th

particle. We have to consider opposite signs for the momentum of the internal propagator

because if it is incoming for left amplitude it will be outgoing for the right amplitude

and vice versa. Also we have to take sum over all the helicities, hI of the virtual particle

corresponding to the internal momentum.

We will have to consider the following two types of diagram:

kI

ŝ(z)

a

n̂(z)

(a) Diagram: 1

kI

ŝ(z)

am

n̂(z)

(b) Diagram: 2
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In the first type of diagram there is a single hard particle on the left amplitude which is

labeled by a ∈ {1, . . . , n − 1}. ML can have either MHV or anti-MHV configuration. We

will assume the soft graviton is of positive helicity, then the helicities of the virtual particle

will be opposite to that of the hard external particle. Contribution from this diagram can

be given by

An+1 =

n−1∑
a=1

∑
hI=±2

ML ({ŝ(z∗)}, a, {kI , hI})
1

(q + ka)2 MR ({−kI ,−hI}, ā, n̂(z∗)) . (2.2.13)

From Eq.(2.2.11) we obtain

z∗ = −
〈as〉
〈an〉

, λI = λa, λ̃I = λ̃a +
〈sn〉
〈an〉

λ̃s. (2.2.14)

If the helicity of the hard particle a is positive then

ML =

(
[ŝa]3

[aI][I ŝ]

)2

=
[sa]2〈an〉2

〈sn〉2
. (2.2.15)

It can be checked that above expression for ML holds for negative helicity of a-th particle

also. Therefore Eq.(2.2.13) becomes

An+1 =

n−1∑
a=1

[sa]〈na〉2

〈sa〉〈ns〉2
Mn

(
{λ1, λ̃1, h1}, . . . , {λa, λ̃a +

〈sn〉
〈an〉

λ̃s, ha}, . . . , {λn, λ̃n +
〈as〉
〈an〉

λ̃s, hn}

)
,

(2.2.16)

where we have used the expression of the propagator as 1
(q+ka)2 = 1

〈sa〉[sa] .

We can write the momentum conserving delta function as

δ4

 n∑
a=1

λaλ̃a + λsλ̃s

 = δ4


n−1∑
b=1
b,a

λbλ̃b + λa

(
λ̃a +

〈sn〉
〈an〉

λ̃s

)
+ λn

(
λ̃n +

〈as〉
〈an〉

λ̃s

) . (2.2.17)



2.2 Subleading soft graviton theorems 15

Then combining Eq.(2.2.16) and Eq.(2.2.17) we obtain

An+1 =

n−1∑
a=1

[sa]〈na〉2

〈sa〉〈ns〉2
Mn

(
{λ1, λ̃1, h1}, . . . , {λa, λ̃a +

〈sn〉
〈an〉

λ̃s, ha}, . . . , {λn, λ̃n +
〈as〉
〈an〉

λ̃s, hn}

)
.

(2.2.18)

Now we can take a holomorphic soft limit by employing the scaling λs → ελs for small

ε. From Taylor series expansion ofMn around ε = 0 we get

An+1 =

n−1∑
a=1

1
ε3

[sa]〈na〉2

〈sa〉〈ns〉2
Mn

(
{λ1, λ̃1, h1}, . . . , {λa, λ̃a + ε

〈sn〉
〈an〉

λ̃s, ha}, . . . , {λn, λ̃n + ε
〈as〉
〈an〉

λ̃s, hn}

)

=

n−1∑
a=1

1
ε3

[sa]〈na〉2

〈sa〉〈ns〉2

1 + ε

(
〈ns〉
〈na〉

λ̃α̇s
∂

∂λ̃α̇a
+
〈as〉
〈an〉

λ̃α̇s
∂

∂λ̃α̇n

)
+
ε2

2

(
〈ns〉
〈na〉

λ̃α̇s
∂

∂λ̃α̇a
+
〈as〉
〈an〉

λ̃α̇s
∂

∂λ̃α̇n

)2

+ . . .

]
Mn

(
{λ1, λ̃1, h1}, . . . , {λa, λ̃a, ha}, . . . , {λn, λ̃n, hn}

)
. (2.2.19)

Let us now calculate each of these terms in Eq.(2.2.19) separately.

First term We consider the expression
n−1∑
a=1

[sa]〈na〉2

〈sa〉〈ns〉2 . In spinor helicity notations polariza-

tion tensor of the soft graviton with positive helicity is given by εµνs = εs αα̇ββ̇
(
σαα̇)µ (σββ̇

)ν
,

where

εs αα̇ββ̇ =
1
2

[
λxαλ̃sα̇

〈xs〉〈ys〉
+ (x↔ y)

]
. (2.2.20)

Here x and y are the reference spinors such that εs αα̇ββ̇λ
α
x = 0 and εs αα̇ββ̇λ

α
y = 0. To make

our computation simpler we can choose these reference spinors to be

x = y = n. (2.2.21)

This means the momentum of the n-th particle is orthogonal to the polarization tensor of

the soft graviton. With this choice it can be seen

ε
µν
s kaµkaν

q · ka
=
〈na〉2[sa]
〈ns〉2〈sa〉

. (2.2.22)
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Then we can immediately recover leading soft graviton factor

S (0)(q) =

n∑
a=1

ε
µν
s kaµkaν

q · ka
=

n∑
a=1

〈na〉2[sa]
〈ns〉2〈sa〉

. (2.2.23)

The term with a = n in the sum vanishes because of the particular choice of the reference

spinors in Eq.(2.2.21).

Second term The angular momentum operator acting on the a-th hard particle is given

by

Ĵµνa = kµa
∂

∂kaν
− kνa

∂

∂kaµ
+ Jµνa , (2.2.24)

where Jµνa is the spin angular momentum part defined as

(Jµν) αβ
ρσ εαβ = δµρε

ν
σ − δ

ν
ρε

µ
σ + δµσε

ν
ρ − δ

ν
σε

µ
ρ . (2.2.25)

Using spinor helicity variables we can write

Ĵaµνσ
µ
αα̇σ

ν
ββ̇

= −2Jaαβεα̇β̇ − 2εαβ J̃aα̇β̇, (2.2.26)

where holomorphic and anti-holomorphic parts of the angular momentum operator can be

given by

Jaαβ =
i
2

(
λaα

∂

∂λ
β
a

+ λaβ
∂

∂λαa

)
, J̃aα̇β̇ =

i
2

λ̃aα̇
∂

∂λ̃
β̇
a

+ λ̃aβ̇
∂

∂λ̃α̇a

 . (2.2.27)

Here εαβ and εα̇β̇ are anti-symmetric 2 × 2 matrices

εαβ =

 0 1

−1 0

 = εα̇β̇. (2.2.28)
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From the second term inside parentheses in Eq.(2.2.19) we get

n−1∑
a=1

[sa]〈na〉2

〈sa〉〈ns〉2

(
〈ns〉
〈na〉

λ̃α̇s
∂

∂λ̃α̇a
+
〈as〉
〈an〉

λ̃α̇s
∂

∂λ̃α̇n

)

=

n−1∑
a=1

[sa]〈na〉
〈sa〉[ns]

λ̃α̇s
∂

∂λ̃α̇a
, (2.2.29)

where we have used the conservation of momentum
n−1∑
a=1

[sa]〈an〉 = 0. It can be checked

that Eq.(2.2.29) gives the sub-leading soft graviton factor

S (1) = −i
n∑

a=1

εsµνk
µ
aqρ Ĵρνa

q · ka
=

n−1∑
a=1

[sa]〈na〉
〈sa〉[ns]

λ̃α̇s
∂

∂λ̃α̇a
(2.2.30)

in the particular choice of reference spinor of Eq.(2.2.21).

Gauge invariance Using the gauge transformation εµν(q) → εµν + qµΛν + qνΛµ it is

easy to verify the sub-leading soft graviton factor is invariant due to conservation of total

angular momentum
n∑

a=1

Ĵµνa = 0. (2.2.31)

Third term Now we consider the third term in the parentheses which can be given by

1
2

n−1∑
a=1

[sa]〈na〉2

〈sa〉〈ns〉2

(
〈ns〉
〈na〉

λ̃α̇s
∂

∂λ̃α̇a
+
〈as〉
〈an〉

λ̃α̇s
∂

∂λ̃α̇n

)2

=
1
2

n−1∑
a=1

 [sa]
〈sa〉

λ̃α̇s λ̃
β̇
s

∂2

∂λ̃α̇a∂λ̃
β̇
a

+ 2
[sa]
〈ns〉

∂2

∂λ̃α̇a∂λ̃
β̇
n

+
[sa]〈sa〉
〈ns〉2

∂2

∂λ̃α̇n∂λ̃
β̇
n


=

1
2

n−1∑
a=1

[sa]
〈sa〉

λ̃α̇s λ̃
β̇
s

∂2

∂λ̃α̇a∂λ̃
β̇
a

, (2.2.32)

where the second term vanishes due to conservation of angular momentum and the third

term vanishes because of linear momentum conservation. Then the last expression gives
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the sub-sub-leading soft graviton factor

S (2) = −
1
2

n∑
a=1

εsµνqρqσ Ĵρµa Ĵσνa

q · ka
=

1
2

n−1∑
a=1

[sa]
〈sa〉

λ̃α̇s λ̃
β̇
s

∂2

∂λ̃α̇a∂λ̃
β̇
a

(2.2.33)

in the particular choice of reference spinor of Eq.(2.2.21).

From Eq.(2.2.33) it is immediately obvious that if εsµν is replaced by qµΛν + qνΛµ the

expression vanishes because indices are symmetric in q but anti-symmetric in Ja. Hence

gauge invariance of the sub-sub-leading soft graviton factor does not require any conser-

vation law.

It has been shown in [22] that second type of diagram does not contain any pole and re-

mains finite as ε → 0. Therefore using Eq.(2.2.8) and Eq.(2.2.19) we obtain factorization

of gravity amplitude in the holomorphic soft limit to sub-sub-leading order as

Mn+1 =

(
1
ε3 S (0) +

1
ε2 S (1) +

1
ε

S (2)
)
Mn + O

(
ε0

)
. (2.2.34)

2.2.1 Comments on gauge invariance

Although the soft factors for gravitational amplitudes given in Eq.(2.2.23), Eq.(2.2.29)

and Eq.(2.2.33) are written in a particular choice of gauge by fixing the reference spinors

of the polarization tensor of the soft graviton, they can be expressed in a gauge invariant

way in spinor helicity language in the following way

S (0) =

n∑
a=1

[sa]〈xa〉〈ya〉
〈sa〉〈xs〉〈ys〉

S (1) =
1
2

n∑
a=1

[sa]
〈sa〉

(
〈xa〉
〈xs〉

+
〈ya〉
〈ys〉

)
λ̃α̇s

∂

∂λ̃α̇a

S (2) =
1
2

n∑
a=1

[sa]
〈sa〉

λ̃α̇s λ̃
β̇
s

∂2

∂λ̃α̇a∂λ̃
β̇
a

. (2.2.35)

Here x and y are arbitrary reference spinors.
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To check for explicit gauge invariance we can vary the terms in Eq.(2.2.35) with respect

to x or y. Then we get

δxS (0) =
1
2

n∑
a=1

[sa]〈ya〉
〈sa〉〈ys〉

(
〈xs〉〈δx a〉 − 〈xa〉〈δx s〉

〈xs〉2

)
=

1
2

n∑
a=1

[sa]〈ya〉〈x δx〉
〈xs〉2〈ys〉

= 0. (2.2.36)

To obtain the second equality we have used Schouten identity and the last equality follows

from the conservation of momentum.

Similarly

δxS (1) =
1
2

n∑
a=1

〈x δx〉[sa]
〈xs〉2

λ̃α̇s
∂

∂λ̃α̇a

= 0 (2.2.37)

follows from conservation of angular momentum.

The expression of S (2) is independent of any reference spinor and hence S (2) is gauge

invariant term by term.

2.2.2 Remarks

Sen used covariantization method [8, 29] to derive soft graviton theorem to sub-leading

order for one soft graviton and arbitrary number of finite energy external states of any

masses and spins for any generic theory of quantum gravity for which perturbative anal-

ysis of S-matrix holds. In dimensions greater than or equal to five the graviton soft the-

orems are universal and do not receive any loop corrections. In lower dimensions there

are issues of IR divergences [9]. Laddha and Sen [9] showed that sub-sub-leading soft

graviton theorem is not universal. The amplitude with one soft graviton and other fi-



20 Soft graviton theorem

nite energy particles to sub-sub-leading order in soft momentum contains two parts: one

universal part that depends only on the amplitude without the soft graviton and another

non-universal part that depends on the details of the theory, particularly on the two and

three point functions of the theory.



3 Cachazo He Yuan formalism

In a series of seminal papers [7, 61, 62, 66, 67] Cachazo, He and Yuan came up with a

novel technique of calculating tree-level scattering amplitudes involving massless parti-

cles for a wide variety of theories in Quantum Field Theory. Inspired from String Theory,

in this formalism scattering amplitudes can be expressed as integrals over moduli space

of punctured complex Riemann spheres. In the conventional method of computing scat-

tering amplitudes we generally have to take into account inconveniently huge number of

Feynman diagrams, also Feynman rules are not unique because using field redefinitions

one can write different Lagrangians for same theories. CHY formalism is lot simpler

because we do not need Lagrangians and hence nor Feynman diagrams to calculate scat-

tering amplitudes. Scattering amplitudes calculated in this method are valid for any arbi-

trary number of spacetime dimensions. This elegant formulation is likely to have serious

ramifications for our understanding of Quantum Field Theory and their dependence on

spacetime structures.

Many underlying relations between various theories, for example double-copy relations,

Kawai-Lewellen-Tye orthogonality, color-kinematic dualities, etc which are difficult to

see in the Lagrangian descriptions, become manifest in this formulation. Kawai, Lewellen

and Tye [68] discovered that tree-level amplitudes of closed strings can be expressed as

square of open string amplitudes. In the field theory limit these relations reduce to pure

gravity amplitudes as "square" of Yang-Mills amplitudes [69,70]. Cachazo, He and Yuan

made this statement more precise by showing that the coefficient of the field-theory limit

21
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of KLT expansions are given by inverse of a matrix whose components are amplitudes of

a particular type of cubic scalar theory called bi-adjoint scalar [66,71]. Schematically this

can be expressed as Gravity =
Yang-Mills2

bi-adjoint scalar . These type of relations have also been found

among different other theories.

Soft theorems and factorization properties of scattering amplitudes can be studied very

easily using CHY formalism. Single soft theorems [7,23,24,27,28,61] as well as multiple

soft theorems [14,63,72] have been studied for different theories. KLT orthogonality and

double copy relations among soft factorizations of various theories have been explored

in [42].

Although CHY formulation is most well developed for tree-level amplitudes for massless

particles, loop-level extensions for scalars and gauge bosons have been done in [73, 74].

We organize this chapter as follows: in Sec.(3.1) we give a brief review, mainly the es-

sential construction of the Cachazo-He-Yuan formalism. In Sec.(3.2) we present some

important examples of scattering amplitudes for scalar, gauge and gravity theories. Soft

theorems and their derivations are given in Sec.(3.3). In Sec.(3.4) we describe the double

copy relations between amplitudes using CHY formulation.

3.1 Basic ingredients

The essential feature of the formalism is to map the singularities of the scattering ampli-

tude in the kinematic space of say, n massless particles to the singularity structure of an

auxiliary space which is better understood. In this case Cachazo et al consider the mod-

uli space of all n-punctured Riemann sphere, CP1. Let {kµ1 , k
µ
2 , . . . k

µ
n} are the momenta of

n massless particles in D dimension forming the kinematic space. The kinematic space
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configuration can be defined by

K :=
{(

kµ1 , k
µ
2 , . . . , k

µ
n

)
|

n∑
a=1

kµa = 0, k2
a = 0,∀a ∈ {1, . . . , n}

}
/SO (1,D − 1) . (3.1.1)

We consider {σ1, σ2, . . . σn} to be holomorphic variables which parametrize the moduli

space,M0,n. The holomorphic variables specify the locations of punctures on the Riemann

sphere. The mapping of the singularities is given by [75]

kµa =
1

2πi

∮
|z−σa |=ε

dz
f µ(z)

n∏
b=1

(z − σb)
, ∀a ∈ {1, 2, . . . n} (3.1.2)

where f µ(z) is a D degree n − 2 polynomials.

Clarification: Here f µ(z) is a D dimensional vector with µ = 1, 2, . . .D and each of

f µ(z) is a n − 2 degree polynomial in z. Eq.(3.1.2) can be written more suggestively as

kµa =
1

2πi

∮
|z−σa |=ε

dz

 n∑
b=1

kµb
z − σb

 (3.1.3)

Now the expression inside the square brackets can be expanded

kµ1
z − σ1

+
kµ2

z − σ2
+ . . . +

kµn
z − σn

=
zn−1

(
kµ1 + kµ2 + . . . + kµn

)
+ zn−2(. . .) + . . .

(z − σ1) (z − σ2) . . . (z − σn)

≡
f µ(z)

(z − σ1) (z − σ2) . . . (z − σn)
(3.1.4)

Due to momentum conservation coefficient of zn−1 vanishes. Hence f µ(z) is a polynomial

of degree n − 2 in z.

SL (2,C) invariance Moduli space of all n-punctured Riemann spheres,M0,n is a n − 3

dimensional complex space and is invariant under SL (2,C) transformations given by
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σa → ψ (σa) =
ασa + β

γσa + δ
, α, β, γ, δ ∈ C, αδ − βδ = 1. (3.1.5)

Because of this SL (2,C) redundancies we can fix any of the three punctures. Typically

we will set σ1 = 0, σ2 = 1 and σ3 = ∞.

3.1.1 Scattering equations

Imposing the conservation of momentum
n∑

a=1
ka = 0 and the fact that particles are massless,

k2
a = 0, ∀a ∈ {1, 2, . . . , n} one gets the following set of equations [7, 67]

n∑
b=1
b,a

ka · kb

σa − σb
= 0, ∀a ∈ {1, 2, . . . n}. (3.1.6)

These scattering equations can be checked to be invariant under SL (2,C) transformations

of Eq.(3.1.2)

n∑
b=1
b,a

ka · kb

ψ (σa) − ψ (σb)

=

n∑
b=1
b,a

ka · kb

σa − σb
(γσa + δ) (γσb + δ)

= (γσa + δ)2
n∑

b=1
b,a

ka · kb

σa − σb
− (γσa + δ) γ

n∑
b=1
b,a

ka · kb

= 0. (3.1.7)

Out of the n equations in Eq.(3.1.6) not all are independent. There are three constraints

satisfied by the following equations

n∑
a=1

σm
a

n∑
b=1
b,a

ka · kb

σa − σb
= 0, m = 0, 1, 2 (3.1.8)
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for any arbitrary values of σ.

For m = 0 it is easy to see that LHS of Eq.(3.1.8) is antisymmetric in a and b and hence

vanishes. For m = 1 we get

n∑
a=1

σa

n∑
b=1
b,a

ka · kb

σa − σb
=

n∑
a=1

n∑
b=1
b,a

ka · kb +

n∑
a=1

n∑
b=1
b,a

σb
ka · kb

σa − σb

⇒
1
2

n∑
a=1

σa

n∑
b=1
b,a

ka · kb

σa − σb
=

n∑
a=1

n∑
b=1
b,a

ka · kb

= 0 (3.1.9)

because of momentum conservation. For m = 2 we get

n∑
a=1

σ2
a

n∑
b=1
b,a

ka · kb

σa − σb

=

n∑
a=1

σa

n∑
b=1
b,a

ka · kb +

n∑
a=1

n∑
b=1
b,a

σaσbka · kb

σa − σb

= 0. (3.1.10)

Because of these constraints we have n − 3 number of independent scattering equations.

There are (n − 3)! set of solutions for {σ1, σ2, . . . , σn}.

3.1.2 Scattering amplitude

Taking into account that scattering amplitude in quantum field theory is translation in-

variant, we can write the full scattering amplitude for n-particle scattering process in D

spacetime dimension as

Mn ({k, ε}) = Mn ({k, ε}) δD

 n∑
a=1

kµa

 . (3.1.11)
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Conservation of total momentum is imposed through the D-dimensional delta function.

Here Mn is called the momentum-stripped amplitude and depends on the kinematic data -

momenta and polarizations. Cachazo-He-Yuan formalism provides an integral represen-

tation of this stripped amplitude Mn on the moduli space of n-punctured Riemann spheres.

For scattering of n particles Mn is given by

Mn =

∫
dnσ

volSL(2,C)

∏′

a

δ

∑
b,a

ka.kb

σa − σb

 In({k, ε, σ}). (3.1.12)

The measure of n σ variables are written as wedge products

dnσ = dσ1 ∧ dσ2 ∧ . . . ∧ dσn. (3.1.13)

Because of the SL (2,C) redundancies we have to mod out volSL(2,C) which is given by

dσadσbdσc
(σa−σb)(σb−σc)(σc−σa) for any a, b, c from the integration measure.

The delta functions are holomorphic delta functions whose arguments are the scattering

equations. Due to the presence of these delta functions integrals are localized on the

solutions of the scattering equations. Again because of the SL (2,C) redundancies we

need n−3 delta functions to localize the integrals. Therefore the primed product is defined

as

∏′

a

δ

∑
b,a

ka.kb

σa − σb

 := (σi − σ j)(σ j − σk)(σk − σi)
∏

a,i, j,k

δ

∑
b,a

ka.kb

σa − σb

 (3.1.14)

for any i, j, k.

The integrand In contains information about particular theories to be considered. Cac-

hazo, He and Yuan have constructed a wide class of integrands for large varieties of the-

ories including scalars, photons, gluons and gravitons. Before giving examples of In for

some theories we can find some elementary properties of In in general from the SL(2,C)

invariance of Mn in Eq.(3.1.12).
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We will use convenient notation to express scattering amplitude as Mn =
∫

dµnIn. From

the transformations given in Eq.(3.1.5) we find

dσa →
dσa

(γσa + δ)2

δ

∑
b,a

ka.kb

σa − σb

 → 1
(γσa + δ)2 δ

∑
b,a

ka.kb

σa − σb

 . (3.1.15)

Therefore under SL (2,C) transformations measure changes as

dµn →

n∏
a=1

(γσa + δ)−4 dµn. (3.1.16)

This implies that integrand must transforms as

In →

n∏
a=1

(γσa + δ)4 In (3.1.17)

to keep the scattering amplitude Mn invariant under SL (2,C) transformations.

In principle Mn can be expressed as sum over the (n − 3)! solutions of scattering equations

as

Mn =

(n−3)!∑
I=1

in ({k, ε, σ})
Jn ({k, ε})

∣∣∣
i−th solution

(3.1.18)

where Jn is the Jacobian factor. To calculate the Jacobian we define the following matrix

(Φn)ab =


ka·kb

(σa−σb)2 , a , b

−
n∑

c=1
c,a

(Φn)ac , a = b.
(3.1.19)

Then the Jacobian can be given by

Jn ({k, ε}) = det′Φn =
det [Φn]â′b̂′ĉ′

â′′b̂′′ĉ′′

σa′b′σb′c′σc′a′σa′′b′′σb′′c′′σc′′a′′
, (3.1.20)

where we have used the notation σab = σa−σb and [Φn]â′b̂′ĉ′

â′′b̂′′ĉ′′
denotes the minor ofΦn ob-
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tained by removing the rows labeled by {a′, b′, c′} and the columns labeled by {a′′, b′′, c′′}.

3.2 Examples

We will give some simpler examples of scattering amplitudes which can be expressed by

Cachazo-He-Yuan formalism. There are several building blocks from which one can con-

struct the integrand In. Various combinations of these building blocks make up different

In which then correspond to specific theories of interest [61, 62].

3.2.1 Scalar

Let us consider the following quantity [61]

Cn (α) =
1

σα(1)α(2)σα(2)α(3) . . . σα(n)α(1)
. (3.2.1)

Here α denotes the ordering of the punctures. Cn (α) is referred to as Parke-Taylor factor

with α ordering. It can be checked that under SL (2,C) transformations

Cn (α)→
n∏

a=1

(γσa + δ)2 Cn (α) . (3.2.2)

Therefore if we consider product of two such Parke-Taylor factors then it will have the

desired transformation weight as In. Indeed this integrand corresponds to cubic scalar

interaction theory given by

Iφ
3

n (α|β) = Cn (α) Cn (β) . (3.2.3)

These amplitudes have two copies of orderings and summing over all the orderings pro-

duce the full amplitude. We can refer to

mn (α|β) =

∫
dµµIφ

3

n (α|β) (3.2.4)
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as partial amplitudes.

More generalized cubic scalar interactions can be considered called bi-adjoint cubic scalar

theory whose Lagrangian is given by

Lφ
3

= −
1
2
∂µφaa′∂

µφaa′ −
λ

3!
fabc f̃a′b′c′φ

aa′φbb′φcc′ (3.2.5)

where the scalar fields live in the adjoint representation of two unitary groups, U (N) ×

U
(
Ñ
)
. fabc and f̃a′b′c′ are structure constants of U (N) and U

(
Ñ
)

respectively. Tree level

scattering amplitude for this theory can be given by

Mn =
∑

α∈S n/Zn

∑
β∈S n/Zn

Tr
(
T̃ bα1 T̃ bα2 . . . T̃ bαn

)
Tr (T aβ1 T aβ2 . . . T aβn ) mn (α|β) . (3.2.6)

Here cyclic permutations given by Zn have been excluded. T a and T̃ a are the generators

of U (N) and U
(
Ñ
)

respectively.

Furthermore an alternative color basis can be used to replace the traces by [76]

cα =
∑

c1,c2,...,cn−3

fa1aα2c1
. . . fcn−3aα(n−1)an , (3.2.7)

where α ∈ S n−2. In this basis one can fix any two elements in the color ordering and

permute the rest of them. Then using the Jacobian factor of Eq.(3.1.20) the scattering

amplitude can be expressed as

Mn =
∑
{σ}∈sol

1
det′Φn

∑
α,β∈S n−2

cαc̃β(
σα1α2 . . . σαnα1

) (
σβ1β2 . . . σβnβ1

) . (3.2.8)

3.2.2 Gluon

To describe scattering amplitudes for particles with polarizations new building block has

to be introduced. We have to consider the reduced pfaffian of the following 2n × 2n



30 Cachazo He Yuan formalism

anti-symmetric matrix

Ψn =

 A −CT

CT B

 (3.2.9)

where each of A, B and C is n × n matrix and the components are:

Aab =


ka.kb
σa−σb

, a , b

0, a = b
Bab =


εa.εb
σa−σb

, a , b

0, a = b
Cab =


εa.kb
σa−σb

, a , b

−
∑
c,a

εa.kc
σa−σc

, a = b.

(3.2.10)

Pfaffian of an anti-symmetric matrix is defined as

Pf(En) :=
∑
α∈P.M.

sgn(α)(En)α(1),α(2)(En)α(3),α(4) . . . (En)α(n−1),α(n), (3.2.11)

where P.M. denotes perfect matchings for all possible decompositions into pairs. Here

sgn (α) =


+1, α ∈ even permutations

−1, α ∈ odd permutations.
(3.2.12)

For anti-symmetric matrix Pfaffian is square root of its determinant

Pf (En) =
√

detEn. (3.2.13)

The n × n matrix An has a nontrivial kernel of dimension two spanned by the vectors

(
σm

1 , σ
m
2 , . . . , σ

m
n
)T , m = 0, 1. (3.2.14)

For m = 0 the kernel satisfies scattering equations. For m = 1 it can be verified

n∑
b=1
b,a

ka · kbσb

σa − σb
= σa

∑
b=1
b,a

ka · kb

σa − σb
−

∑
b=1
b,a

ka · kb = 0. (3.2.15)
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Hence Ψn also has the nontrivial kernel spanned by
(
σm

a , σ
m
2 , . . . , σ

m
n , 0, 0, . . . 0

)
for m =

0, 1. Therefore determinant and hence pfaffian of Ψn vanishes on the support of the scat-

tering equations. So we can define an invariant quantity called reduced Pfaffian as

Pf′Ψn := −
(−1)a+b

σa − σb
Pf [Ψn]â,b̂ , (3.2.16)

where [Ψn]â,b̂ is the minor of Ψn obtained after removing a-th row and b-th column with

the condition that 1 ≤ a, b ≤ n.

It can be checked that the matrix elements transform under SL (2,C) as

(Ψn)ab → (γσa + δ) (γσb + δ) (Ψn)ab except the diagonal components of C which trans-

form as Caa → (γσa + δ)2 Caa. Therefore it can be checked, under SL (2,C) transforma-

tions

Pf′Ψn →

n∏
a=1

(γσa + δ)2 Pf′Ψn. (3.2.17)

The integrand for color ordered n-point amplitude, An (α1, α2, αn) for Yang-Mills theory

is given by

IY M
n (α) =

1
σα(1)α(2)σα(2)α(3) . . . σα(n)α(1)

Pf′Ψn = Cn (α) Pf′Ψn. (3.2.18)

Therefore

An (α1, α2, . . . , αn) =

∫
dµnCn (α) Pf′Ψn (3.2.19)

and the full tree level n gluon amplitude for pure Yang-Mills theory

LYM = −
1
4

tr
(
FµνaFµνa

)
(3.2.20)

is given by sum of the color ordered amplitudes as

An (1, 2, . . . , n) = gn−2
∑
S n/Zn

tr (Tσ1Tσ2 . . . Tσn) An (α1, α2, . . . , αn) , (3.2.21)
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where g is the coupling constant.

3.2.3 Graviton

Gravitons are spin-2 particles whose polarizations can be given as direct product of two

spin-1 polarization vectors. In general we can write

εµν = εµε̃ν. (3.2.22)

In CHY formalism tree level S-matrix for gravity is proposed to be

Mn =

∫
dµn Pf′Ψn ({k, ε, σ}) Pf′Ψ̃n ({k, ε̃.σ}) (3.2.23)

In the simplest case we can take εµν = εµεν with the constraints

εµν (k) kµ = 0, ε µ
µ = 0. (3.2.24)

Then the integrand corresponding to tree level n-point graviton amplitude for pure gravity

LGR = −
1
2
√
−gR (3.2.25)

is given by

IGR
n =

(
Pf′Ψn ({k, ε, σ})

)2
= det′Ψ, (3.2.26)

where det′Ψn = 4
(
σi − σ j

)−2
det [Ψn]i j

i j.
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3.3 Soft limits

A remarkable aspect of CHY formalism is that soft limits of various scattering amplitudes

can be studied very efficiently [7, 23, 24, 27, 28, 42, 61]. Many new soft theorems have

been found out using this new technique of finding amplitudes. Also soft limits help us to

verify the consistencies of several proposed formulas of scattering amplitudes for various

theories in this formalism which otherwise are difficult to prove directly. In this section

we will study behavior of scalar, gluon and graviton amplitudes under single soft limit, i.e.

when one of the scattered particles in the scattering process is taken to be of infinitesimal

energy compared to other particles.

Let us assume in n-point amplitude n-th particle is taken to be soft, its momentum scales

as τp in the limit τ→ 0. In this limit the scattering equations (3.1.6) can be expressed as

fa =

n−1∑
b=1
b,a

ka · kb

σa − σb
+ τ

ka · p
σa − σn

, a ∈ {1, 2, . . . , n − 1}

fn = τ

n−1∑
b=1

p · kb

σn − σb
. (3.3.1)

As τ goes to zero there n − 4 independent scattering equations for n − 1 variables σa

and out of which three can be fixed due to SL (2,C) redundancies. Therefore there are

(n − 4)! number of solutions for the set {σ1, σ2, . . . , σn−1}. We have not yet specified σn.

As τ tends to zero but as long as it does not exactly vanish the last equation of (3.3.1)

becomes
n−1∑
b=1

p · kb

n−1∏
c=1
c,b

(σn − σc) = 0. (3.3.2)

So this is an equation in σn of order n − 2. But due to momentum conservation the

coefficient of leading order in σn is zero

σn−2
n

n−1∑
b=1

p · kb = 0. (3.3.3)
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Therefore Eq.(3.3.2) is actually of order n − 3 in σn. Hence for every solution out of

(n − 4)! solutions of {σ1, σ2, . . . , σn−1} there are n − 3 number of solution to σn. This

counting also implies that total number of solutions is (n − 3) (n − 4)! = (n − 3)!.

The delta functions for the hard scattering equations can be expanded as

δ ( fa) = δ
(

f n−1
a

)
+ τ

ka · p
σa − σn

δ′
(

f n−1
a

)
+ O

(
τ2

)
, (3.3.4)

where we denote f n−1
a =

n−1∑
b=1
b,a

ka·kb
σa

. Then the product of delta functions can be expanded as

n−1∏′

a=1

δ ( fa) =

n−1∏′

a=1

δ
(

f n−1
a

)
+ τ

n−1∑′

a=1


n−1∏′

b=1
b,a

δ
(

f n−1
b

) ka.p
σa − σn−1

δ′
(

f n−1
a

)
+ O(τ2)

≡ δ(0) + τδ(1) + O(τ2). (3.3.5)

Now we can write Eq.(3.1.12) as

Mn =

∫
dn−1σ

volSL(2,C)

∫
dσn

n−1∏′

a=1

δ


n−1∑
b=1
b,a

ka · kb

σa − σb
+ τ

ka · p
σa − σn

 δ
τ n−1∑

b=1

p · kb

σn − σb

 In ({k, ε, σ})

=
1
τ

∫
dn−1σ

volSL(2,C)

∮
{Ai}

dσn

n−1∑
b=1

p.kb
σn−σb

(
δ(0) + τδ(1) + O(τ2)

)
In. (3.3.6)

Here delta function supported at the n-th scattering equation deforms the σn integral to a

closed contour integral which encloses the zeros of
n−1∑
b=1

p.kb
σn−σb

denoted by {Ai}.

In the soft limit if the integrand factorizes as a soft part and the integrand of n − 1 hard

particles then soft factorization of scattering amplitude follows. We will show soft factor-

ization for some particular theories.
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3.3.1 Scalar

We will consider soft limit of the bi-adjoint cubic scalar amplitude studied in Sec.(3.2.1).

The n-point amplitude with one soft scalar can be expressed as

Mn =
1
τ

∫
dn−1σ

volSL(2,C)
δ(0)

∮
{Ai}

dσn

n−1∑
b=1

p.kb
σn−σb

∑
α,β∈S n−2

cαc̃βCn (α) Cn (β) . (3.3.7)

Here we will calculate the soft factorization to leading order in τ only. For the α and β

ordering we can fix α1 = β1 = 1 and αn = βn = n and permute rest for S n−2. Then we can

write

Cn (α) =
σαn−1 − σ1(

σαn−1 − σn
) (
σn − σα1

)Cn−1 (α) . (3.3.8)

Let us denote αn−1 := i and similarly βn−1 := j. (n − 2)! permutations of the integrand in

Eq.(3.3.7) can be expressed as

∑
α,β∈S n−2

cαc̃βCn (α) Cn (β) =

n−1∑
i, j=2

(σi − σ1)
(
σ j − σ1

)
(σi − σn)

(
σ j − σn

)
(σn − σ1)2

∑
αi,β j∈S n−3

cαi c̃β jCn

(
αi

)
Cn

(
β j

)
=

n−1∑
i, j=2

(σi − σ1)
(
σ j − σ1

)
(σi − σn)

(
σ j − σn

)
(σn − σ1)2

∑
αi,β j∈S n−3

cαi c̃β j Iφ
3

n−1

(
αi, i; β j, j

)
.

(3.3.9)

Now we can get the (n − 1)-point amplitude

∫
dn−1σ

volSL(2,C)
δ(0)Iφ

3

n−1

(
αi, i; β j, j

)
= Mn−1

(
α̂i, β̂ j

)
. (3.3.10)

Then from Eq.(3.3.7) we obtain

Mn =
1
τ

∮
{Ai}

dσn

n−1∑
b=1

p.kb
σn−σb

n−1∑
i, j=2

(σi − σ1)
(
σ j − σ1

)
(σi − σn)

(
σ j − σn

)
(σn − σ1)2

∑
αi,β j∈S n−3

cαi c̃β j Mn−1

(
α̂i, β̂ j

)
.

(3.3.11)
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To evaluate the integral of σn we will deform the contour of integration to infinity and

apply Cauchy’s residue theorem. From Eq.(3.3.11) we can see that there are simple poles

at σn = σ1 and σn = σi only when i = j. There are no poles at infinity. Therefore, to

leading order in τ, we get

Mn = −
1
τ

∑
c,d

 1
p · k1

n−1∑
i, j=2

fcaian f̃db jbn Mn−1

(
icai , jb jd

)
+

n−1∑
i=2

1
p · ki

fcaian f̃dbibn Mn−1

(
icd

)
(3.3.12)

It can be shown that the first term in the parentheses is exactly equal i-th term in the

second summation with i = 1 (this calculation is similar to that involved in Eq.(3.3.24)).

Hence these terms combine to give

Mn = −
1
τ

∑
c,d

n−1∑
i=1

1
p · ki

fcaian f̃dbibn Mn−1

(
icd

)
. (3.3.13)

This is the soft theorem for bi-adjoint cubic scalar theory.

3.3.2 Yang-Mills

Color ordered partial amplitudes for pure gluon scattering is given by Eq.(3.2.19). In

terms of the partial amplitudes full amplitude for n-point gluon scattering can be given by

An = gn−2
∑

α∈Sn/Zn

Tr (T aα(1)T aα(2) . . . T aα(n)) An [α (1) . . . α (n)] . (3.3.14)

We will assume (n + 1)-th gluon to be soft and its momentum will be denoted τkn+1. We

can write (n + 1)-point gluon amplitude as

An+1 = gn−1
n∑

i=1

∑
α∈Sn−1�i

Tr
(
T an+1T aiT aα(1) . . . T aα(n−1)

)
An+1 [n + 1, i, α (1) . . . α (n − 1)] .

(3.3.15)

In the sum over n − 1 permutations i-th label has been excluded.
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Let us first find out soft limit of An+1. Parke-Taylor factor can be written as

Cn+1 (n + 1, i, α) =
σαn−1 − σi

(σn+1 − σi)
(
σαn−1 − σn+1

)Cn (i, α) . (3.3.16)

We can use the Pfaffian expansion given in (4.4.22) for any even dimensional matrix to

write

Pf′(Ψn+1) = Pf′(Ψn)
n∑

b=1

εn+1.kb

σn+1 − σb
+ O(τ). (3.3.17)

Therefore to leading order in τ we obtain

An+1 [n + 1, i, α1 . . . αn−1] =
1
τ

∮
{Ai}

dσn+1
n∑

b=1

kn+1·kb
σn+1−σb

 σαn−1 − σi

(σn+1 − σi)
(
σαn−1 − σn+1

) n∑
b=1

εn+1.kb

σn+1 − σb


An [i, α1 . . . αn−1] . (3.3.18)

Deforming the contour of integration to infinity we find that there are poles at σn+1 = σi

and σn+1 = σαn−1 and there are no poles at infinity. Evaluating residues at these poles we

get

An+1 [n + 1, i, α1 . . . αn−1] = −
1
τ

(
εn+1 · ki

kn+1 · ki
−
εn+1 · kα(n−1)

kn+1 · kα(n−1)

)
An [i, α1 . . . αn−1] (3.3.19)

Full amplitude Using the color basis given in [76, 77] (n + 1)-point gluon amplitude

can be expressed as

An = (ig)n−2
∑
α∈S n−2

∑
x1...xn−3

f a1aα2 x1 f x1aα3 x2 . . . f xn−3aαn−1 an An [1, α2 . . . αn−1, an] . (3.3.20)

In the single soft limit we can write

An+1 = (ig)n−1
n−1∑
i=1

∑
α∈S n−2\i

f an+1ai x1 f x1aα1 x2 . . . f xn−1aαn−2 an An+1 [n + 1, i, α1 . . . αn−2, n] ,

(3.3.21)
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where An+1 [n + 1, i, α1 . . . αn−2, n] is given in Eq.(3.3.19). Then we obtain

−τAn+1 = ig
∑

b

n−1∑
i=1

f an+1aib εn+1 · ki

kn+1 · ki
An

(
ib
)

− (ig)n−1 εn+1 · kn

kn+1 · kn

n−1∑
i=1

∑
α∈S n−2\i

f an+1ai x1 f x1aα1 x2 . . . f xn−1aαn−2 an An [i, α1 . . . αn−2, n] .

(3.3.22)

Now we use the fact i f an+1ai x1 = Tr ([T an+1 ,T ai] T x1) and

∑
x1

Tr ([T an+1 ,T ai] T x1) Tr (T x1T aα1 . . . T an) = Tr (T an+1T aiT aα1 . . . T an)−Tr (T an+1T aα1 . . . T anT ai) .

(3.3.23)

Let us consider

i
n∑

i=1

∑
α∈S n−1\i

∑
b

f an+1aibTr
(
[T an+1 ,T ai] T b

)
Tr

(
T bT aα1 . . . T aαn−1

)
An [i, α1 . . . αn−2, αn−1]

=

n∑
i=1

∑
α∈S n−1\i

{
Tr (T an+1T aiT aα1 . . . T aαn−1 ) − Tr (T an+1T aα1 . . . T aαn−1 T ai)

}
An [i, α1 . . . αn−2, αn−1]

= 0 (3.3.24)

Summing over S n−1 permutations along with i = 1 . . . n produce summation over S n per-

mutations. Both the terms in the braces give same expression and hence the sum vanishes.

Therefore second term in Eq.(3.3.22) is equal to

ig
∑

b

f an+1anb εn+1 · kn

kn+1 · kn
An

(
nb

)
, (3.3.25)

which together with the first term in Eq.(3.3.22) gives the factorization

An+1 = −
1
τ

ig
∑

b

n∑
i=1

f an+1aib εn+1 · ki

kn+1 · ki
An

(
ib
)
. (3.3.26)

This is the leading order soft theorem for pure gluon amplitude. In Sec.(A.1) Feynman

diagram analysis for soft factorization of Yang-Mills amplitude is given in Eq.(A.1.3)
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which matches with this result.

3.3.3 Gravity

For pure gravity amplitude for (n + 1) graviton scattering in CHY formalism is expressed

by

Mn+1 =

∫
dµn+1det′ (Ψn+1)2 . (3.3.27)

In the soft limit given by kn+1 = τq with τ → 0 reduced Pfaffian can be expanded to

leading order

Pf′(Ψn+1) = Pf′(Ψn)
n∑

b=1

εn+1.kb

σn+1 − σb
+ O(τ) (3.3.28)

which implies

det′ (Ψn+1) =

 n∑
b=1

εn+1.kb

σn+1 − σb

2

det′ (Ψn) + O (τ) . (3.3.29)

Then leading order soft factorization can be given by

Mn+1 =
1
τ

∮
{Ai}

dσn+1
n∑

a=1

q·ka
σn+1−σa

 n∑
b=1

εn+1.kb

σn+1 − σb

2 ∫
dµndet′ (Ψn) + O

(
τ0

)
. (3.3.30)

We can deform the contour of the integration for σn+1 away from the original contour to

infinity, then we get poles at σn+1 = σb,∀b ∈ {1, 2, . . . , n}. It can be checked that there are

no poles at infinity. Evaluating the residues at the poles we get

Mn+1 = −
1
τ

n∑
a=1

(εn+1 · ka)2

q · ka
Mn + O

(
τ0

)
. (3.3.31)

This is Weinberg’s soft theorem for gravity amplitude.

Sub-leading soft graviton theorem using CHY formulation has been derived in [23, 24]

and sub-sub-leading soft graviton theorem has been derived in [27, 28].
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3.4 Double copy relations

In 1986 Kawai, Lewellen and Tye (KLT) [68] discovered that tree-level amplitudes of

closed strings can be expressed as square of the open string amplitudes. Later these double

copy relations have been shown to hold in Quantum Field Theories also such as pure

gravity amplitudes can be constructed from two copies of pure Yang Mills theory [69,70]

at tree level. Cachazo, He and Yuan [7, 61, 62, 66] made these relations mathematically

more precise by interpreting the coefficients of the field theory limit of KLT expansion as

inverse of a matrix whose elements are scattering amplitudes of bi-adjoint scalar theory

described in Sec.(3.2.1).

In terms of CHY representations relation between gravity and Yang-Mills amplitudes can

be given by

MGR
n = AYM

n

KLT
⊗ AYM

n

= AYM
n (β) m−1

(
β|β̃

)
AYM

n

(
β̃
)
. (3.4.1)

Here AYM
n (β) is a Yang-Mills partial amplitude with the color ordering β explained in

Sec.(3.2.2) and m
(
β|β̃

)
is the n-point bi-adjoint scalar partial amplitude explained in

Sec.(3.2.1). m−1
(
β|β̃

)
denotes the inverse of the matrix whose rows and columns are

labeled by bi-adjoint scalar amplitudes with the permutations β and β̃ respectively. Each

of β and β̃ span over (n− 3)! permutations forming a BCJ basis [69] and hence the matrix

m
(
β|β̃

)
has dimension (n − 3)! × (n − 3)!.

Let us consider an example of five point amplitudes to illustrate the KLT relations de-

scribed above. We choose the orderings to be β ∈ {(12345), (12435)} and β̃ ∈ {(13254), (14253)}.

It can be checked the non-zero elements of the KLT matrix are m(12345|13254) = 1
s23 s45
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and m(12435|14253) = 1
s24 s35

. Then we obtain the five-point gravity amplitude

MGR
5 =

[
AYM(12345) AYM(12435)

] 
1

s23 s45
0

0 1
s24 s35


−1 A

YM(13254)

AYM(14253)


= s23s45AYM(12345)AYM(13254) + s24s35AYM(12435)AYM(14253). (3.4.2)

3.4.1 Soft limit

KLT orthogonality relation between gravity and Yang-Mills scattering amplitudes can be

extended in the soft limits of the amplitudes also. Calculations become simpler if we

choose the bases for n-point partial Yang-Mills amplitudes [42] as

β = (1, ω, n−1, n), β̃ = (1, ω̃, n−1, n, b), with ω, ω̃ ∈ S n−4, a, b ∈ {2, 3, . . . , n−3}.

(3.4.3)

S n−4 is the (n − 4) permutations which exclude a and b for ω and ω̃ respectively. We will

take the n-th particle to be soft and denotes its momentum by τk̂n. In this choice of basis

KLT matrix becomes orthogonal to leading order:

mn (1, ω, n − 1, a, n|1, ω̃, n − 1, n, b) =
1
τ

δab

ŝan
mn−1 (1, ω, n − 1, a|1, ω̃, n − 1, a) + O

(
τ0

)
.

(3.4.4)

An n-point graviton amplitude can be given by

MGR
n =

n−2∑
a,b=2

∑
ω,ω̃∈S n−4

AYM
n (1, ω, n − 1, a, n) m−1

n AYM
n (1, ω̃, n − 1, n, b)

=

n−2∑
a,b=2

∑
ω,ω̃∈S n−4

1
τ

(
εn · ka

k̂n · ka
−
εn · k1

k̂n · k1

)
AYM

n−1 (1, ω, n − 1, a)

× τŝanδabmn−1 (1, ω, n − 1, a|1, ω̃, n − 1, a)−1

×
1
τ

(
εn · kn−1

k̂n · kn−1
−
εn · kb

k̂n · kb

)
AYM

n−1 (1, ω̃, n − 1, b) + O
(
τ0

)
.(3.4.5)
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Summing over ω and ω̃ permutations give (n − 1)-point graviton amplitude. Then we use

momentum conservation to get

MGR
n =

1
τ

n−2∑
a=2

ŝan

(
εn · ka

k̂n · ka
−
εn · k1

k̂n · k1

) (
εn · kn−1

k̂n · kn−1
−
εn · kb

k̂n · kb

)
MGR

n−1 + O
(
τ0

)
= −

1
τ

n−1∑
a=1

εµνk
µ
akνa

k̂n · ka
MGR

n−1 + O
(
τ0

)
(3.4.6)

which produces the soft graviton theorem to leading order.

KLT relations for various theories like NLSM, DBI and special Galilean theories in single

soft limit have been studied in [42]. Double copy relations between gravity and Yang-

Mills soft theorems at sub-leading order have been explored in [35].
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Recently double soft limits of scattering amplitudes have been explored for large variety

of theories. In [72] double soft theorems for Yang Mills, supersymmetric gauge theories

and open superstring theory have been studied. simultaneous and consecutive double soft

limits of gluon and graviton amplitudes have been analyzed in [12]. Double soft theorems

have also been studied in supergravity theories in [78, 79]. In [80] it has been shown that

double soft theorems in nonlinear sigma model follow from a shift symmetry. Current-

current algebra for double soft gluon amplitude at null infinity has been studied in [81,82]

where it was shown to produce a level zero Kac-Moody current.

In [10, 11] we have studied double soft graviton theorem for simultaneous soft graviton

scattering to sub-leading order using CHY formalism. Multiple soft graviton theorem for

any generic theories of quantum gravity have been derived using Sen’s covariantization

method in [13] and using CHY formulation in [14]. Ward identities from BMS sym-

metries related to consecutive double soft graviton theorem have been derived in [83].

Classical limits of multiple soft graviton theorem have been studied in [84–86].

In this chapter we will use CHY formulation to study simultaneous double soft limits of

some amplitudes in field theories. In Sec.(4.1) we review the analysis of taking double

soft limits of amplitudes in CHY formalism. In [63] degenerate solutions of the scattering

equations are considered in the double soft limit, here we analyze both non-degenerate

solutions [11] and degenerate solutions of the scattering equations for taking double soft

limit. In Sec.(4.2) we consider double soft theorem for Einstein-Maxwell theory. We de-

43
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rive double soft theorem to leading order for Yang-Mills theory in Sec.(4.3). In Sec.(4.4)

we calculate double soft theorem for pure gravity to sub-leading order [10, 11].

4.1 Double soft limit from CHY formalism

In this section we will explain the method of taking soft limit to a scattering amplitude

when the momenta of two of the scattered particles become infinitesimally small using

the Cachazo-He-Yuan formalism. Our starting point is n + 2 point amplitude which can

be written as

Mn+2 =

∫
dnσdσn+1dσn+2

volSL(2,C)

n∏′

a=1

δ ( fa) δ ( fn+1) δ ( fn+2) In+2({k, ε, σ}). (4.1.1)

Here we have separated out (n + 1)th and (n + 2)th integrals for reasons that will be clear

shortly. In the soft limits where two of the particles’ momenta tend to zero at the same

rate (let us denote the soft momenta by kn+1 = τp and kn+2 = τq with τ→ 0) the scattering

equations fα can be written as

fα =



n∑
b=1
b,a

ka.kb
σa−σb

+
τka.p

σa−σn+1
+

τka.q
σa−σn+2

, α ∈ {1, 2, · · · n}

n∑
b=1

τkb.p
σn+1−σb

+
τ2 p.q

σn+1−σn+2
, α = n + 1

n∑
b=1

τkb.p
σn+2−σb

−
τ2 p.q

σn+1−σn+2
, α = n + 2.

(4.1.2)

Thus effectively in the vanishing limit of τ there are n scattering equations for n hard

particles. Solving these n equations one obtains solutions for σ1, σ2, · · · , σn and there

are (n − 3)! such solution sets. The last two scattering equations do not provide any so-

lution, rather they are used to transform the σn+1 and σn+2 integrals to contour integrals.

As we will see there are subtleties in performing these contour integrals depending on the

behavior of |σn+1 − σn+2|. In the seminal paper [63] the authors classified the behavior
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in two categories: 1) non-degenerate solutions - when |σn+1 − σn+2| ∼ O(τ0) and 2) de-

generate solutions - when |σn+1 − σn+2| ∼ O(τ). It was shown that for theories like sGal,

DBI, EMS, NLSM and YMS the leading order contribution come from the degenerate

one. However in case of pure gravity (which is given by Einstein-Hilbert action) we find

the opposite feature, non-degenerate contribution dominates over the degenerate one. We

will elaborate on this issue in more details as we proceed.

4.1.1 Non-degenerate solutions

Here we consider the situation when |σn+1 − σn+2| ∼ O
(
τ0

)
. This implies that the two

soft punctures never overlap each other. The delta functions corresponding to the last two

scattering equations, fn+1 and fn+2 now transform the integrations of σn+1 and σn+2 vari-

ables to independent contour integrals where σn+1 and σn+2 enclose around the solutions

of the scattering equations fn+1 and fn+2 respectively.

In this case the scattering amplitude (4.1.1) takes the form

Mn+2 →

∫
dnσ

volSL(2,C)


n∑

i=1

∮
{Ai}

dσn+1

fn+1




n∑
j=1

∮
Bi

dσn+2

fn+2


n∏′

a=1

δ ( fa) In+2({k, ε, σ}).

(4.1.3)

Here {Ai} and {Bi} are the zeros of fn+1 and fn+2 respectively. From here onwards we will

drop the summation signs and assume sum over the contour integrals is implied.

Both the measure and the integrand can be expanded in orders of τ parameter as follows.

1
fn+1

1
fn+2

=
1
τ2

1∑
a

p·ka
σn+1−σa

1 − τ
p·q

σn+1−σn+2∑
a′

p·ka′

σn+1−σa′

+ · · ·

 1∑
b

q·kb
σn+2−σb

1 + τ

p·q
σn+1−σn+2∑

b′

q·kb′

σn+2−σb′

· · ·


≡

1
τ2

1
C1C2

−
1
τ

1
C1C2

[
1
C1
−

1
C2

]
p · q

σn+1 − σn+2
+ O(τ0) (4.1.4)
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where we define C1 :=
n∑

a=1

p·ka
σn+1−σa

and C2 :=
n∑

b=1

q·kb
σn+2−σb

.

Product of the delta functions can be expanded as

n∏′

a=1

δ ( fa) =

n∏′

a=1

δ
(
f n
a
)

+ τ

n∑′

a=1


n∏′

b=1
b,a

δ
(
f n
b
)

(
ka.p

σa − σn+1
+

ka.q
σa − σn+2

)
δ′

(
f n
a
)

+ O(τ2)

≡ δ(0) + τδ(1) + O(τ2) (4.1.5)

where f n
a =

n∑
b=1
b,a

ka.kb
σa−σb

. Prime denotes exclusion of any three delta functions due to SL(2,C)

redundancy.

Similarly we can write the integrand as a Taylor series expansion

In+2 = I(0)
n+2 + τI(1)

n+2 + · · · (4.1.6)

Therefore using Eq.(4.1.4), Eq.(4.1.5) and Eq.(4.1.6) expansion of Mn+2 in Eq.(4.1.3) is

given by

Mn+2 →
1
τ2

∫
dnσ

volSL(2,C)

∮
{Ai}

dσn+1

C1

∮
{Bi}

dσn+2

C2
δ(0) I0

n+2({k, ε, σ})

+
1
τ

∫
dnσ

volSL(2,C)

∮
{Ai}

dσn+1

C1

∮
{Bi}

dσn+2

C2

[
δ(1)I(0)

n+2 + δ(0)I(1)
n+2

−

(
1
C1
−

1
C2

)
p · q

σn+1 − σn+2
δ(0) I(0)

n+2({k, ε, σ})
]

+ O(τ0) (4.1.7)

In this approximation {Ai} and {Bi} are the zeros of C1 and C2 respectively.
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4.1.2 Degenerate solutions

The case when |σn+1 − σn+2| ∼ O(τ) has been studied in great detail in [63, 87]. A new

pair of variables is defined

σn+1 = ρ −
ξ

2
, σn+2 = ρ +

ξ

2
(4.1.8)

In terms of the new variables the scattering equations (4.1.2) now become

fa =



n∑
b=1
b,a

(
ka.kb
σa−σb

+
τka.p

σa−ρ+
ξ
2

+
τka.q

σa−ρ−
ξ
2

)
, a , n + 1, n + 2

n∑
b=1

(
τkb.p

ρ−
ξ
2−σb
−

τ2 p.q
ξ

)
, a = n + 1

n∑
b=1

(
τkb.p

ρ+
ξ
2−σb

+
τ2 p.q
ξ

)
, a = n + 2.

(4.1.9)

We can expand ξ perturbatively in τ as

ξ = τξ1 + τ2ξ2 + O(τ3) (4.1.10)

and using the last two scattering equations we get

1
ξ1

=
1

p.q

n∑
b=1

kb.p
ρ − σb

= −
1

p.q

n∑
b=1

kb.q
ρ − σb

. (4.1.11)

With the change of variables in (4.1.8) the σn+1 and σn+2 integrals can be transformed as

follows:

∫
dσn+1dσn+2δ( fn+1)δ( fn+2)

→ −2
∫

dρdξδ( fn+1 + fn+2)δ( fn+1 − fn+2)
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→ −2
∮

dρ
2πi

∑
ξ solutions

∫
dξ

1
( fn+1 + fn+2)

1
∂
∂ξ

( fn+1 − fn+2)

→ −2
∮

dρ
2πi

∑
ξ solutions

∫
dξ

1
n∑

a=1
τ
(

ka.p
ρ−

ξ
2−σa

+
ka.q

ρ+
ξ
2−σa

) 2 δ (ξ − ξsol)
n∑

b=1
τ
(

kb.p
(ρ− ξ2−σb)2 +

kb.q
(ρ+

ξ
2−σb)2

)
+

4 τ2 p.q
ξ2

(4.1.12)

where the first delta constraint is expressed as a contour integral for ρ wrapping around

the solutions to the scattering equations and the second delta constraint localizes the ξ

variable.

For finite ρ contour the CHY expression for the scattering amplitude at tree level in the

double soft limit as an expansion in the order of τ is given by [87]

MN = −
1
τ

∮
{Ci}

dρ
2πi

∫
dµn

ξ2
1

p.q
n∑

b=1

kb.(p+q)
ρ−σb

1 − τξ1

2

n∑
b=1

kb.(p+q)
(ρ−σb)2

n∑
b=1

kb.(p+q)
ρ−σb

+ 3τ
ξ2

ξ1
+ O(τ2)

 IN , (4.1.13)

whereCi are the zeros of
n∑

b=1

kb.(p+q)
ρ−σb

. Here we have use the notation dµn ≡
dnσ

volSL(2C)

∏′

a

δ

(∑
b,a

ka.kb
σa−σb

)
.

If the integrand can be written as a product like

IN(k, σ, ρ, ξ) = F(k, σ, ρ, ξ)In(k, σ) + (sub-leading order) (4.1.14)

then the previous expression at leading order simplifies to

MN =

−1
τ

∮
{Ci}

dρ
2πi

ξ2
1

p.q
n∑

b=1

kb.(p+q)
ρ−σb

F(k, σ, ρ, τξ1)

 Mn. (4.1.15)

The term in the square bracket gives the leading order double soft factor S ∗(0).

We will now compute examples of the double soft limit to scattering amplitudes for some

specific theories before deriving the result for graviton scattering.
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4.2 Double Soft Limit for Einstein Maxwell Theory

Now we will like to show how the double soft theorem follows from Feynman diagrams.

As an example we consider Einstein Maxwell theory. In [87] the authors have investigated

scattering amplitudes in Born Infeld and Einstein Maxwell theories in the double soft limit

with two soft photons. The integrand for this class of theories is given by

IN = (PfXN)−m(Pf′AN)2+mPf′ΨN (4.2.1)

where m = 0,−1 denote BI and EM respectively. The result for EM theory with two soft

photon emission is

S ∗(0) =
1
τ

n∑
b=1

1
kb.(p + q)

[
p.q εn+1.εn+2 − εn+2.p εn+1.q

4(p.q)2

{
kb.(p − q)

}2
− εn+1.p⊥b εn+2.q⊥b

]
(4.2.2)

which can be further simplified to1

S ∗(0) =
1
τ

n∑
b=1

1
kb.(p + q)

[
εn+1.q εn+2.kb p.kb + εn+1.kb εn+2.p q.kb − εn+1.εn+2 p.kb q.kb

p.q
− εn+1.kb εn+2.kb

]
.

(4.2.3)

In the following subsection we show that from Feynman diagrams we can reproduce the

above expression modulo an overall constant factor.

4.2.1 Feynman Diagrams

The Einstein Maxwell action in four dimension is given by

1Here we have used
n∑

b=1

{kb.(p−q)}2

kb.(p+q) = −4
n∑

b=1

kb.p kb.q
kb.(p+q) + O(τ).
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S EM =

∫
d4x

(
−

1
4
√
−ggµρgνσFµνFρσ +

2
κ2

√
−gR

)
(4.2.4)

where Fµν = ∂µAν−∂νAµ and R is the Ricci scalar given by R = gµν
(
Γλµλ ,ν − Γ

λ
µν ,λ + ΓσµλΓ

λ
σν − Γ

σ
µνΓ

λ
σλ

)
.

In the linearized perturbative theory of gravity a small deviation hµν around flat Minkowski

spacetime is considered such as

gµν = ηµν + κhµν. (4.2.5)

The Feynman rules for EM are given in sec(B.1.1). At leading order two soft photons can

be emitted from either an external graviton leg through an internal graviton propagator or

from an external photon leg through a graviton propagator. Both the processes involve

two three-point AAg vertices. These give terms of O
(
κ2

τ

)
. There also exists a four-point

AAgg vertex through which two soft photons can come from an external graviton leg.

This vertex comes from a term in Lagrangian of the form ∼ hh∂A∂A and thus lead to the

order of O(τ) in the scattering amplitude. Therefore for our purpose of interest it suffices

to compute the following Feynman diagrams:

• photons emitted from an external graviton

n∑
a=1 ρσ

ka+τ p+τ q
−−−−−−−→

ka
−→

δγ

↓ τp + τq

τp↙ ↘ τq

µ ν

. .
.

. . .

...

...

. . .

. .
.



4.3 Double soft limit in Yang Mills theory 51

• photons emitted from an external photon

n∑
a=1 ρσ

ka+τ p+τ q
−−−−−−−→

ka
−→

δ

↓ τp + τq

τp↙ ↘ τq

µ ν

. .
.

. . .

...

...

. . .

. .
.

Both of these diagrams give exactly the same soft factor as in Eq.(4.2.3). The above

analysis demonstrates the correspondence between the CHY integrand (4.2.1) with m =

−1 and the Lagrangian description of EM theory (4.2.4) in the double soft limit.

4.3 Double soft limit in Yang Mills theory

Let us now find the double soft limit to Yang Mills amplitude. Scattering amplitude for

Yang Mills theory can be expressed in terms of sum over colored ordered amplitudes,

called partial amplitudes. In CHY representation the partial amplitude of a particular

color ordering (1, 2, . . .N) can be given by

AY M (1, 2, . . . ,N) =

∫
dµN CN (1, 2, . . . ,N) Pf′ΨN ({σi, pi, εi}) (4.3.1)

where

CN (1, 2, . . . ,N) =
1

σ12σ23 . . . σN1
, with σi j ≡ σi − σ j (4.3.2)

is the color ordered Parke-Taylor factor.

Because of the color ordering there are two ways of taking double soft limit to gluon
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amplitudes - 1) the soft gluons can be adjacent to each other in the color ordering, and

2) soft limits can be taken in non-adjacent external states. Soft limits in the non-adjacent

legs are straightforward to calculate while soft limits in the adjacent legs are more non

trivial. In this section we will deal with each of the two cases separately.

4.3.1 Double soft limit in adjacent legs

First let us consider the case when two soft gluons are adjacent in the color ordering. We

will denote the momenta and polarizations of soft gluons by

{τkn+1, εn+1}; {τkn+2, εn+2} (4.3.3)

where the parameter τ→ ∞.

As we will see in detail, both the contributions of non-degenerate and degenerate solutions

to double soft limit are at same order in τ in this case.

4.3.1.1 Non-degenerate solutions

Factorization of integrand at leading order can be given by

Cn+2 (1, 2, . . . , n, n + 1, n + 2) =
σn − σ1

(σn − σn+1) (σn+1 − σn+2) (σn+2 − σ1)
Cn (1, 2, . . . , n)

Pf′Ψn+2 = −

 n∑
a=1

εn+1 · pa

σn+1 − σa

  n∑
b=1

εn+2 · pb

σn+2 − σb

 Pf′Ψn (4.3.4)

Therefore using Eq.(4.1.7) at leading order we obtain

B0 = −
1
τ2

∫
Dσδ(0)In

∮
{Ai}

dσn+1

 n∑
a=1

kn+1 · pa

σn+1 − σa

−1 ∮
{Bi}

dσn+2

 n∑
b=1

kn+2 · pb

σn+2 − σb

−1

 (σn − σ1)
(σn − σn+1) (σn+1 − σn+2) (σn+2 − σ1)

 n∑
a=1

εn+1 · pa

σn+1 − σa

  n∑
b=1

εn+2 · pb

σn+2 − σb


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(4.3.5)

First we will deform the contour of σn+2 away from the zeros contained in {Bi} to infinity.

In doing so we will encounter poles at σn+2 = σ1, σn+1. Contour of σn+2 encloses these

poles in clockwise direction and hence give negative residues. It can be checked that there

is no pole at infinity. Then we get

B0 =
1
τ2

∫
Dσδ(0)In

∮
{Ai}

dσn+1

 n∑
a=1

kn+1 · pa

σn+1 − σa

−1  n∑
a=1

εn+1 · pa

σn+1 − σa


×

(σn − σ1)
(σn − σn+1) (σn+1 − σ1)

εn+2 · p1

kn+2 · p1

−
1
τ2

∫
Dσδ(0)In

∮
{Ai}

dσn+1

 n∑
a=1

kn+1 · pa

σn+1 − σa

−1  n∑
b=1

kn+2 · pb

σn+1 − σb

−1  n∑
c=1

εn+2 · pc

σn+1 − σc


×

 n∑
d=1

εn+1 · pd

σn+1 − σd

 (σn − σ1)
(σn − σn+1) (σn+1 − σ1)

. (4.3.6)

To evaluate the first contour integration we deform the contour of σn+1 away from the

zeros of {Ai} to infinity. Then the poles will be at σn+1 = σn, σ1 and it can be checked that

there is no pole at infinity. For the second contour integration we can similarly deform

the contour, but along with the poles at σn+1 = σn, σ1 there will be poles at the zeros of(
n∑

b=1

kn+2·pb
σn+1−σb

)
.The last residues are hard to calculate and we will leave the expression as it

is. Then we get

B0 =
1
τ2

[
εn+1 · pn

kn+1 · pn
−
εn+1 · p1

kn+1 · p1

]
εn+2 · p1

kn+2 · p1
Mn

−
1
τ2

∮
{Ai}

dσn+1

 n∑
a=1

kn+1 · pa

σn+1 − σa

−1  n∑
b=1

kn+2 · pb

σn+1 − σb

−1  n∑
c=1

εn+2 · pc

σn+1 − σc

  n∑
d=1

εn+1 · pd

σn+1 − σd


(σn − σ1)

(σn − σn+1) (σn+1 − σ1)
Mn

(4.3.7)

This is the only term at O
(
τ−2

)
coming from the non-degenerate solutions.
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4.3.1.2 Degenerate solutions

Factorization of the building blocks in the integrand in this case can be given by

Cn+2 (1, 2, . . . , n, n + 1, n + 2) =
− (σn − σ1)

τξ1 (σn − ρ) (ρ − σ1)
Cn (1, 2, . . . , n) ,

Pf′Ψn+2 =

−  n∑
a=1

εn+1 · pa

ρ − σa

  n∑
b=1

εn+2 · pb

ρ − σb

 +
1
ξ1

{
εn+1 · kn+2

 n∑
a=1

εn+2 · pa

ρ − σa


−εn+2 · kn+1

 n∑
b=1

εn+1 · pb

ρ − σb

} +
εn+1 · εn+2 kn+1 · kn+2

ξ2
1

 Pf′Ψn.

(4.3.8)

Calculation of leading soft factorization:

−
2
τ

∫
Dσδ(0)In

∫
dρ δ

 n∑
b=1

(kn+1 + kn+2) · pb

ρ − σb

 ξ2
1

2 kn+1 · kn+2

[
− (σn − σ1)

τξ1 (σn − ρ) (ρ − σ1)

]
−  n∑

a=1

εn+1 · pa

ρ − σa

  n∑
b=1

εn+2 · pb

ρ − σb

 +
1
ξ1

{
εn+1 · kn+2

 n∑
a=1

εn+2 · pa

ρ − σa


−εn+2 · kn+1

 n∑
b=1

εn+1 · pb

ρ − σb

} +
εn+1 · εn+2 kn+1 · kn+2

ξ2
1

 (4.3.9)

where

ξ1 = kn+1·kn+2

 n∑
a=1

kn+1 · pa

ρ − σa

−1

= −kn+1·kn+2

 n∑
a=1

kn+2 · pa

ρ − σa

−1

= 2 kn+1·kn+2

 n∑
a=1

(kn+1 − kn+2) · pa

ρ − σa

−1

.

(4.3.10)

Using the delta function integration over ρ is converted to a contour integration

∫
dρ δ

 n∑
b=1

(kn+1 + kn+2) · pb

ρ − σb

→ ∮
{Ci}

dρ

 n∑
b=1

(kn+1 + kn+2) · pb

ρ − σb

−1

(4.3.11)

where {Ci} contain the zeros of the argument of the delta function.

Let us expand the expression in the second square bracket and evaluate each term sepa-

rately.
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First term

−
1
τ2

∮
{Ci}

dρ

 n∑
b=1

(kn+1 + kn+2) · pb

ρ − σb

−1  n∑
a=1

kn+1 · pa

ρ − σa

−1
(σn − σ1)

(σn − ρ) (ρ − σ1)

 n∑
a=1

εn+1 · pa

ρ − σa

  n∑
b=1

εn+2 · pb

ρ − σb

 Mn

(4.3.12)

Deforming the contour of ρ away from {Ci} to infinity we encounter poles as ρ = σn, σ1

and at the zeros of
(

n∑
a=1

kn+1·pa
ρ−σa

)
which are same as {Ai}. Therefore residues on these poles

are

1
τ2

∮
{Ai}

dρ

 n∑
b=1

kn+2 · pb

ρ − σb

−1  n∑
a=1

kn+1 · pa

ρ − σa

−1
(σn − σ1)

(σn − ρ) (ρ − σ1)

 n∑
a=1

εn+1 · pa

ρ − σa

  n∑
b=1

εn+2 · pb

ρ − σb

 Mn

+
1
τ2

[
εn+1 · p1 εn+2 · p1

(kn+1 + kn+2) · p1 kn+1 · p1
−

εn+1 · pn εn+2 · pn

(kn+1 + kn+2) · pn kn+1 · pn

]
Mn (4.3.13)

Second term

1
τ2

1
kn+1 · kn+2

∮
{Ci}

dρ

 n∑
b=1

(kn+1 + kn+2) · pb

ρ − σb

−1
(σn − σ1)

(σn − ρ) (ρ − σ1)

{
εn+1 · kn+2

 n∑
a=1

εn+2 · pa

ρ − σa


−εn+2 · kn+1

 n∑
b=1

εn+1 · pb

ρ − σb

}Mn (4.3.14)

Deforming the contour and evaluating residues at the poles ρ = σn, σ1 we get

1
τ2

1
kn+1 · kn+2

[
εn+1 · kn+2 εn+2 · pn − εn+2 · kn+1 εn+1 · pn

(kn+1 + kn+2) · pn
−
εn+1 · kn+2 εn+2 · p1 − εn+2 · kn+1 εn+1 · p1

(kn+1 + kn+2) · p1

]
Mn

(4.3.15)

Third term

1
2 τ2

∮
{Ci}

dρ

 n∑
b=1

(kn+1 + kn+2) · pb

ρ − σb

−1
(σn − σ1)

(σn − ρ) (ρ − σ1)

 n∑
a=1

(kn+1 − kn+2) · pa

ρ − σa

 Mn

(4.3.16)
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Deforming the contour and evaluating residues at the poles ρ = σn, σ1 we get

1
2 τ2

εn+1 · εn+2

kn+1 · kn+2

[
(kn+1 − kn+2) · pn

(kn+1 + kn+2) · pn
−

(kn+1 − kn+2) · p1

(kn+1 + kn+2) · p1

]
Mn (4.3.17)

Pole at infinity If we use the same ξ1 of Eq.(4.3.10) and take the contour of ρ to infinity

it can be checked that there cannot be any pole at infinity. This can be seen from the

following argument: in the limit ρ→ ∞, we can make a change of variable

ρ =
1
ζ
. (4.3.18)

Then
1
ρ2 dρ = −dζ. (4.3.19)

It can be seen that taking ρ→ ∞ the expressions (4.3.12), (4.3.14) and (4.3.16) behave as

dρ
ρ2 ∼ dζ, hence there is no pole at ζ = 0 or ρ = ∞.

4.3.1.3 Result

Adding all the contributions coming from equations (4.3.7), (4.3.13), (4.3.15) and (4.3.17)

we obtain the double Soft YM amplitude at leading order for adjacent soft legs can be

expressed as

AY M (p1, ε1; p2, ε2; . . . ; pn, εn; τkn+1, εn+1; τkn+2, εn+2)

=
1
τ2

[(
εn+1 · pn

kn+1 · pn
−
εn+1 · p1

kn+1 · p1

)
εn+2 · p1

kn+2 · p1

+
εn+1 · p1 εn+2 · p1

(kn+1 + kn+2) · p1 kn+1 · p1
−

εn+1 · pn εn+2 · pn

(kn+1 + kn+2) · pn kn+1 · pn

+
1

kn+1 · kn+2

{
εn+1 · kn+2 εn+2 · pn − εn+2 · kn+1 εn+1 · pn

(kn+1 + kn+2) · pn

−
εn+1 · kn+2 εn+2 · p1 − εn+2 · kn+1 εn+1 · p1

(kn+1 + kn+2) · p1

}
+

1
2
εn+1 · εn+2

kn+1 · kn+2

{ (kn+1 − kn+2) · pn

(kn+1 + kn+2) · pn
−

(kn+1 − kn+2) · p1

(kn+1 + kn+2) · p1

}]
AY M (p1, ε1; p2, ε2; . . . , pn, εn) .
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(4.3.20)

4.3.1.4 Comments

In the analysis of double soft limit to YM amplitude [72] , gauge choices have been made

which in our notation translate to

εn+1 · pn = 0, εn+2 · p1 = 0. (4.3.21)

With this choice first line in Eq.(4.3.7), which is a part of the contribution from non-

degenerate solutions, vanishes. Also some contributions from degenerate solutions be-

come zero in this gauge. But the term

1
τ2

∮
{Ai}

dρ

 n∑
b=1

kn+2 · pb

ρ − σb

−1  n∑
a=1

kn+1 · pa

ρ − σa

−1
(σn − σ1)

(σn − ρ) (ρ − σ1)

 n∑
a=1

εn+1 · pa

ρ − σa

  n∑
b=1

εn+2 · pb

ρ − σb

 Mn

(4.3.22)

can not vanish in this gauge. This term is missed in the result presented in this paper.

This term actually plays a crucial role in maintaining gauge invariance of the contribu-

tions from non-degenerate and degenerate solutions separately. To illustrate this point,

let us consider the contribution from non-degenerate solutions, given in Eq.(4.3.7). Sub-

stituting εn+1 → kn+1 we see the first line vanishes. The second line becomes

−
1
τ2

∮
{Ai}

dσn+1

 n∑
b=1

kn+2 · pb

σn+1 − σb

−1  n∑
c=1

εn+2 · pc

σn+1 − σc

 (σn − σ1)
(σn − σn+1) (σn+1 − σ1)

Mn. (4.3.23)

This contour integration vanishes because the poles which were contained in {Ai} as zeros

of
(

n∑
a=1

kn+1·pa
σn+1−σa

)
have canceled with the numerator. Again substituting εn+2 → kn+2 we get

1
τ2

[
εn+1 · pn

kn+1 · pn
−
εn+1 · p1

kn+1 · p1

]
Mn
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−
1
τ2

∮
{Ai}

dσn+1

 n∑
a=1

kn+1 · pa

σn+1 − σa

−1  n∑
d=1

εn+1 · pd

σn+1 − σd

 (σn − σ1)
(σn − σn+1) (σn+1 − σ1)

Mn.

(4.3.24)

Deforming the contour of integration away from {Ai} to infinity, poles come at σn+1 =

σn, σ1. Evaluating the residues gives same expression as in the first line but with negative

sign. Hence the term vanishes. Similar check for gauge invariance can be shown for

contribution from degenerate solutions also.

This gauge invariance at each stage (individually for the contributions from non-degenerate

and degenerate solutions) is expected as well as important. At the level of integral expres-

sions it can be checked that CHY representations of the amplitudes are gauge invariant

on both non-degenerate and degenerate solutions of ξ separately. So even after evaluating

the integrals gauge invariance should be preserved at every step.

4.3.2 Double soft limit in non-adjacent legs

In case of the soft gluons are in the non-adjacent legs of the color ordered partial ampli-

tude the analysis becomes much easier. At leading order of the factorization we have to

consider the contributions of non-degenerate solutions only.

We will denote the soft particles by i and j, where i, j < {1, 2, . . . , n}.

Factorization of the building blocks in the double soft limit have been given in Sec.(B.2)

Then the leading order soft factorization for non-adjacent soft legs can be expressed as

lim
τ→0

AY M

(
p1, ε1; . . . τki, εi; . . . ; τk j, ε j; . . . ; pn, εn

)
=

1
τ2

(
εi · pi+1

ki · pi+1
−
εi · pi−1

ki · pi−1

) (
ε j · p j−1

k j · p j−1
−
ε j · p j+1

k j · p j+1

)
×AY M (p1, ε1; . . . ; pn, εn) . (4.3.25)

Here we find that the double soft factor is the product of two single soft factor.
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4.4 Double soft graviton theorem

The integrand for pure gravity theory is given in terms of reduced Pfaffian of an antisym-

metric matrix in the following way

In =
(
Pf′Ψn({k, ε, σ})

)2 . (4.4.1)

In this section we will derive soft limit to the pure graviton scattering amplitude when

two external gravitons are taken to be infinitesimally small energy. We will compute the

double soft factor of this amplitude to sub-leading order in the energy of the soft particles.

In the calculation of double soft factorization of Yang Mills amplitude given in Sec.(4.3),

particularly when adjacent legs are taken to be soft, we have seen how there are can-

cellation of terms coming from non-degenerate and degenerate solutions. We will see

that similar type of analysis happen for double soft factorization of graviton from CHY

prescription.

First we will compute the contribution from non-degenerate solutions followed by degen-

erate ones. Let us label the soft momenta as kn+1 = τp and kn+2 = τq.

4.4.1 Non-degenerate solutions

The building block Ψn+2 in the gravity integrand can be expressed as
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Ψn+2 =



(An)ab
τ ka.p

σa−σn+1

τ ka.q
σa−σn+2

(−CT
n )ab

−εn+1.ka
σn+1−σa

−εn+2.ka
σn+2−σa

τ p.kb
σn+1−σb

0 τ2 p.q
σn+1−σn+2

−τ εb.p
σb−σn+1

−Cn+1,n+1
−τ εn+2.p
σn+2−σn+1

τ q.kb
σn+2−σb

τ2 p.q
σn+2−σn+1

0 −τ εb.q
σb−σn+2

τ εn+1.q
σn+1−σn+2

−Cn+2,n+2

(Cn)ab
τ εa.p

σa−σn+1

τ εa.q
σa−σn+2

(Bn)ab
εa.εn+1
σa−σn+1

εa.εn+2
σa−σn+2

εn+1.kb
σn+1−σb

Cn+1,n+1
τ εn+1.q

σn+1−σn+2

εn+1.εb
σn+1−σb

0 εn+1.εn+2
σn+1−σn+2

εn+2.kb
σn+2−σb

τ εn+2.p
σn+2−σn+1

Cn+2,n+2
εn+2.εb
σn+2−σb

εn+2.εn+1
σn+2−σn+1

0



. (4.4.2)

At leading order the gravity integrand, Pf′ (Ψn+2)2 becomes

I(0)
n+2 =

∑
a

εn+1 · ka

σn+1 − σa

2 ∑
b

εn+2 · kb

σn+2 − σb

2

In. (4.4.3)

Therefore the leading order double soft factor is

S (0)(p, q) =
1
τ2

∮
|σn+1−σi |→0

dσn+1

(∑
a

εn+1·ka
σn+1−σa

)2

∑
a′

p·ka′

σn+1−σa′

∮
|σn+2−σ j |→0

dσn+2

(∑
b

εn+2·kb
σn+2−σb

)2

∑
b′

q·kb′

σn+2−σb′

=

 n∑
a=1

εn+1, µνk
µ
akνa

ka · p

 ×  n∑
b=1

εn+2, µνk
µ
bkνb

ka · q


= S (0)(p)S (0)(q) (4.4.4)

which is product of two leading order single soft factors [5] as expected. Here σi are the

solutions of scattering equations corresponding to the n number of finite energy external

particles.
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To compute Eq.(4.4.4) we have to deform the contour of integrations for the variables

σn+1 and σn+2 independently away from their original contours (which enclose the zeros

of Ai and Bi respectively) to infinity. In doing this there will be residues from the poles

at infinity. Therefore in addition to the answer given in Eq.(4.4.4) the contour integration

will give the following term

−
1
τ2

S
(0)(p)

(
n∑

a=1
εn+2 · ka

)2

n∑
a=1

q · ka

+ S (0)(q)

(
n∑

a=1
εn+1 · ka

)2

n∑
a=1

p · ka


=

1
τ p · q

[
S (0)(p) (εn+2 · p)2 + S (0)(q) (εn+1 · q)2

]
, (4.4.5)

where the last equality follows from conservation of total momentum of the scattered

particles.

Let us now consider the terms in Eq.(4.1.7) which are combinations δ(1)I(0)
n+2 and δ(0)I(1)

n+2.

We can compute these terms in the following way.

Sub-leading soft factor for gravity is given by [22]

S (1)(p) =

n∑
a=1

εn+1,µνk
µ
a pρ Ĵρ,νa

p · ka
, S (1)(q) =

n∑
a=1

εn+2,µνk
µ
aqρ Ĵρ,νa

q · ka
(4.4.6)

where Ĵ is a first order differential operator which acts on both momenta and polarizations.

In the subsequent steps we will closely follow the analysis of [24]. Acting S (1)(p) on Mn

we get

S (1)(p)Mn =

∫
dnσ

volSL(2,C)

∑′

l

∏′

a
a,l

δ
(
f n
a
) δ′ ( f n

l
) n∑

b=1
b,l

1
σl − σb

[2εn+1 · kb εn+1 · kl

−
(εn+1 · kb)2 p · kl

p · kb
−

(εn+1 · kl)2 p · kb

p · kl

]
In

+

∫
dnσ

volSL(2,C)

∏′

a

δ
(
f n
a
)

S (1)(p)In. (4.4.7)
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Let us now focus on the δ(1)I(0)
n+2 term of Eq.(4.1.7) and compare with the first term of

Eq.(4.4.7).

∫
dnσ

volSL(2,C)

∮
|σn+1−σl |→0

dσn+1
n∑

a=1

τka.p
σn+1−σa

∮
|σn+2−σm |→0

dσn+2
n∑

b=1

τkb.q
σn+2−σb

δ(1)I(0)
n+2

=

∫
dnσ

volSL(2,C)

∮
|σn+1−σl |→0

dσn+1
n∑

i=1

τki.p
σn+1−σi

∮
|σn+2−σm |→0

dσn+2
n∑

j=1

τk j.q
σn+2−σ j

∑
a′

εn+1 · ka′

σn+1 − σa′

2

×

∑
b′

εn+2 · kb′

σn+2 − σb′

2

τ
∑′

a


∏′

b
b,a

δ
(
f n
b
)

(
ka.p

σa − σn+1
+

ka.q
σa − σn+2

)
δ′

(
f n
a
)

In

(4.4.8)

Now using

∮
|σn+1−σl |→0

dσn+1
ka.p

σa − σn+1

(∑
a′

εn+1·ka′

σn+1−σa′

)2

n∑
i=1

τki.p
σn+1−σi

=
1
τ

n∑
b=1
b,a

[
−

ka · p
σa − σb

(εn+1 · kb)2

kb · p
+ 2

εn+1 · ka εn+1 · kb

σa − σb
−

(εn+1 · ka)2 kb · p
(σa − σb) ka · p

]
(4.4.9)

and comparing with Eq.(4.4.7) it is evident that Eq.(4.4.8) becomes

S (0)(q)
∫

dnσ

volSL(2,C)

S (1)(p)

∏′

a

δ
(
f n
a
) In + (p↔ q). (4.4.10)

In the rest of the analysis to make our calculations easier we will choose the following

gauge fixing conditions

εn+1 · q = 0

εn+2 · p = 0

εa · q = 0, ∀a ∈ {1, 2, · · · , n}. (4.4.11)
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Now our task is to find I(1)
n+2 and calculate the remaining term in Eq.(4.1.7). Taking deriva-

tive of the determinant and using Eq.(4.4.11) we get

∂In+2

∂τ
|τ=0 =

n∑
a=1

[
(−1)n+a+1 ka · p

σa − σn+1
Ψ̃ a

n+1 + (−1)n+a ka · q
σa − σn+2

Ψ̃ a
n+2 + (−1)n εa · p

σa − σn+1
Ψ̃ a

n+a

+(−1)n+1 εa · p
σa − σn+1

Ψ̃ n+2+a
a + (−1)a+1 εa · p

σa − σn+1
Ψ̃ n+2+a

n+1

]
+(−1)n

[
Cn+1,n+1Ψ̃

2n+3
n+1 + Cn+2,n+2Ψ̃

2n+4
n+2

]
(4.4.12)

where Ψ̃ a
b denotes determinant of the reduced matrix with ath row and bth column re-

moved. After expanding the reduced determinants the above equation can be written as

I(1)
n+2 =(
Cn+2,n+2

)2 Cn+1,n+1

n∑
a=1

n∑
b=1

[
ka · p

σa − σn+1

(
(−1)a+b+1 εn+1 · kb

σn+1 − σb
Ψ a

b + (−1)n+a+b+1 εn+1 · εb

σn+1 − σb
Ψ a

n+b

)
+

p · kb

σn+1 − σb

(
(−1)a+b+1 εn+1 · ka

σn+1 − σa
Ψ a

b + (−1)n+a+b εa · εn+1

σa − σn+1
Ψ n+a

b

)
+

εb · p
σb − σn+1

(
(−1)n+a+b εn+1 · ka

σn+1 − σa
Ψ a

n+b + (−1)a+b+1 εa · εn+1

σa − σn+1
Ψ n+a

n+b

)
+

εa · p
σa − σn+1

(
(−1)n+a+b+1 εn+1 · kb

σn+1 − σb
Ψ n+a

b + (−1)a+b+1 εn+1 · εb

σn+1 − σb
Ψ n+a

n+b

)]
+(−1)n (

Cn+1,n+1
)2 (

Cn+2,n+2
)2

n∑
a=1

εa · p
σa − σn+1

(
Ψ a

n+a − Ψ
n+a
a

)
+

(
Cn+1,n+1

)2 Cn+2,n+2

n∑
a=1

n∑
b=1

[
ka · q

σa − σn+2

(
(−1)a+b+1 εn+2 · kb

σn+2 − σb
Ψ a

b + (−1)n+a+b+1 εn+2 · εb

σn+2 − σb
Ψ a

n+b

)
+

q · kb

σn+2 − σb

(
(−1)a+b+1 εn+2 · ka

σn+2 − σa
Ψ a

b + (−1)n+a+b εa · εn+2

σa − σn+2
Ψ n+a

b

)]
.

(4.4.13)

Substituting I(1)
n+2 into the relevant term in Eq.(4.1.7) and doing the contour integrals over

σn+1 and σn+2 we get

S (0)(q)
n∑

a=1

n∑
b=1
b,a

2
σa − σb

×

[(
εn+1 · ka

p · ka
−
εn+1 · kb

p · kb

)
(p · ka) (εn+1 · kb) (−1)a+bΨ a

b
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−

(
εn+1 · ka

p · ka
−
εn+1 · kb

p · kb

)
(εn+1 · εa) (εb · p) (−1)a+bΨ n+a

n+b

+

(
εn+1 · ka

p · ka
−
εn+1 · kb

p · kb

) {
(p · ka) (εn+1 · εb) − (εb · p) (εn+1 · ka)

}
×(−1)n+a+bΨ a

n+b

+

{(
εn+1 · ka

p · ka
−
εn+1 · kb

p · kb

)
(εa · p) (εn+1 · kb)

+

(
εn+1 · kb

p · ka
−

(p · kb) (εn+1 · ka)
(p · ka)2

)
(p · ka) (εn+1 · εa)

}
(−1)nΨ a

n+a

]
+ S (0)(p)

n∑
a=1

n∑
b=1
b,a

2
σa − σb

×

[(
εn+2 · ka

q · ka
−
εn+2 · kb

q · kb

)
(q · ka) (εn+2 · kb) (−1)a+bΨ a

b

+

(
εn+2 · ka

q · ka
−
εn+2 · kb

q · kb

)
(q · ka) (εn+2 · εb) (−1)n+a+bΨ a

n+b

+

(
εn+2 · kb

q · ka
−

(q · kb) (εn+2 · ka)
(q · ka)2

)
(q · ka) (εn+2 · εa) (−1)nΨ a

n+a

]
.

(4.4.14)

Details of the above calculations are provided in Sec.(B.3.1). Finally it can be shown that

Eq.(4.4.14) is equal to

S (0)(q)
∫

dnσ

volSL(2,C)

∏′

a

δ
(
f n
a
) [

S (1)(p)In

]
+ (p↔ q) (4.4.15)

Adding together Eq.(4.4.10) and Eq.(4.4.15) we obtain

S (0)(p)S (1)(q) + S (0)(q)S (1)(p). (4.4.16)

Now we will consider the first term in the last line of Eq.(4.1.7) which is of the form

−
1
τ

∫
dnσ

volSL(2,C)
δ(0)I(0)

n

∮
{Ai}

dσn+1

∮
{Bi}

dσn+2

∑
a

p · ka

σn+1 − σa

−2 ∑
a

q · ka

σn+2 − σa

−1

p · q
σn+1 − σn+2

∑
a

εn+1 · ka

σn+1 − σa

2 ∑
a

εn+2 · ka

σn+2 − σa

2

. (4.4.17)
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We can first do the contour integral for σn+1 by deforming the contour away from the

zeros contained in {Ai} to infinity. Then there are poles at σn+1 = σn+2, ∞. Therefore

from Eq.(4.4.17) we obtain

1
τ

∫
dnσ

volSL(2,C)
δ(0)I(0)

n

∮
{Bi}

dσn+2


∑

a

p · ka

σn+2 − σa

−2 ∑
a

q · ka

σn+2 − σa

−1

× p · q

∑
a

εn+1 · ka

σn+2 − σa

2 ∑
a

εn+2 · ka

σn+2 − σa

2

−

∑
a

q · ka

σn+2 − σa

−1 ∑
a

εn+2 · ka

σn+2 − σa

2

×p · q

∑
a

p · ka

−2 ∑
a

εn+1 · ka

2
=

1
τ

∫
dnσ

volSL(2,C)
δ(0)I(0)

n

∮
{Bi}

dσn+2

∑
a

p · ka

σn+2 − σa

−2 ∑
a

q · ka

σn+2 − σa

−1

×p · q

∑
a

εn+1 · ka

σn+2 − σa

2 ∑
a

εn+2 · ka

σn+2 − σa

2

+
1
τ

S (0)(q)
(εn+1 · q)2

p · q
Mn, (4.4.18)

where in the last line we have calculated residues at σn+2 = σa and used total momentum

conservation.

Similarly from the last term in Eq.(4.1.7) we get

1
τ

∫
dnσ

volSL(2,C)
δ(0)I(0)

n

∮
{Ai}

dσn+1

∑
a

q · ka

σn+1 − σa

−2 ∑
a

p · ka

σn+1 − σa

−1

×p · q

∑
a

εn+2 · ka

σn+1 − σa

2 ∑
a

εn+1 · ka

σn+1 − σa

2

+
1
τ

S (0)(p)
(εn+2 · p)2

p · q
Mn (4.4.19)

It is to be noted that the last terms of Eq.(4.4.18) and Eq.(4.4.19) and also the the term

in Eq.(4.4.5) vanish because of the gauge conditions chosen in Eq.(4.4.11). Therefore

adding together the results obtained in Eq.(4.4.4), Eq.(4.4.16), Eq.(4.4.18) and Eq.(4.4.19)

total contribution coming from the non-degenerate solutions in the particular gauge con-
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ditions used can be given by

[
1
τ2 S (0)(p)S (0)(q) +

1
τ

{
S (0)(p)S (1)(q) + S (0)(q)S (1)(p)

}]
Mn

+
1
τ

∫
dµnIn

∮
{Bi}

dσn+2

∑
a

p · ka

σn+2 − σa

−2 ∑
a

q · ka

σn+2 − σa

−1

p · q

×

∑
a

εn+1 · ka

σn+2 − σa

2 ∑
a

εn+2 · ka

σn+2 − σa

2

+
1
τ

∫
dµnIn

∮
{Ai}

dσn+1

∑
a

q · ka

σn+1 − σa

−2 ∑
a

p · ka

σn+1 − σa

−1

p · q

∑
a

εn+2 · ka

σn+1 − σa

2 ∑
a

εn+1 · ka

σn+1 − σa

2

. (4.4.20)

4.4.2 Degenerate solutions

In this subsection we will derive the contribution coming from the degenerate solutions.

At leading order in τ the structure of matrix Ψn+2 is [87]

Ψn+2 ≈



(An)ab
τ ka.p
σa−ρ

τ ka.q
σa−ρ

(−CT
n )ab

−εn+1.kb
ρ−σb

−εn+2.kb
ρ−σb

τ p.kb
ρ−σb

0 −τ p.q
ξ1

−τ εa.p
σa−ρ

−Cn+1,n+1
−εn+2.p
ξ1

τ q.kb
ρ−σb

τ p.q
ξ1

0 −τ εa.q
σa−ρ

εn+1.q
ξ1

−Cn+2,n+2

(Cn)ab
τ εa.p
σa−ρ

τ εa.q
σa−ρ

(Bn)ab
εa.εn+1
σa−ρ

εa.εn+2
σa−ρ

εn+1.kb
ρ−σb

Cn+1,n+1
−εn+1.q
ξ1

εn+1.εb
ρ−σb

0 εn+1.εn+2
−τ ξ1

εn+2.kb
ρ−σb

εn+2.p
ξ1

Cn+2,n+2
εn+2.εb
ρ−σb

εn+1.εn+2
τ ξ1

0



(4.4.21)
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Pfaffian of any 2km × 2m matrix can be expanded as follows

Pf(E) =

2m∑
q=1

(−1)qepqPf(Epq
pq), (4.4.22)

where epq is the element of the matrix E at the pth row and qth column.

First we make an expansion of the Pfaffian of Ψn+2 along the (n+2)th row to leading order

in τ

Pf′Ψn+2 =
τ p.q
ξ1

Pf′(Ψn+2)n+2,n+1
n+2,n+1 −

εn+1.q
ξ1

Pf′(Ψn+2)n+2,n+3
n+2,n+3 −Cn+2,n+2Pf′(Ψn+2)n+2,2n+4

n+2,2n+4.

(4.4.23)

Again each of the reduced Pfaffians can be further expanded as

Pf′(Ψn+2)n+2,n+1
n+2,n+1 = −

εn+1.εn+2

τ ξ1
Pf′Ψn + O(1)

Pf′(Ψn+2)n+2,2n+3
n+2,2n+3 = −

εn+2.p
ξ1

Pf′Ψn + O(τ)

Pf′(Ψn+2)n+2,2n+4
n+2,2n+4 = −Cn+1,n+1Pf′Ψn + O(τ). (4.4.24)

The two diagonal terms of the matrix Cn+2 can be approximated as

Cn+1,n+1 = −

n∑
i=1

εn+1.p⊥i
ρ − σb

Cn+2,n+2 = −

n∑
i=1

εn+2.q⊥i
ρ − σb

(4.4.25)

where p⊥i = ki −
p.ki
p.q q and q⊥i = ki −

q.ki
p.q p.

In this case the integrand takes the form

In+2 =

εn+1.q εn+2.p − εn+1.εn+2 p.q
ξ2

1

+

n∑
i, j=1

εn+1.p⊥i εn+2.q⊥j
(ρ − σi)(ρ − σ j)


2

(Pf′Ψn)2 + O(τ). (4.4.26)
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Using Eq.(4.1.15) and Eq.(4.4.26) we get

Mn+2 = −
1
τ

∫
dµnIn

∮
{Ci}

dρ
ξ2

1

p.q
n∑

a=1

ka.(p+q)
ρ−σa

εn+1.q εn+2.p − εn+1.εn+2 p.q
ξ2

1

+

n∑
i, j=1

εn+1.p⊥i εn+2.q⊥j
(ρ − σi)(ρ − σ j)


2

(4.4.27)

To perform the integration over ρ we have to deform the contour away from the original

contour of integration to infinity. Then we will get simple poles at ρ = σa,∀ a ∈ {1, . . . n}

along with other poles. Residues at the simple poles at ρ = σa give the following result

1
τ

n∑
a=1

1
ka.(p + q)

[
−

(εn+1.q εn+2.p − εn+1.εn+2 p.q)2 ka.p ka.q
(p.q)3

+ 2
(εn+1.q εn+2.p − εn+1.εn+2 p.q) εn+1.p⊥a εn+2.q⊥a

p.q

−

(
εn+1.p⊥a εn+2.q⊥a

)2 p.q
ka.p ka.q

 Mn

=
1
τ

n∑
a=1

[
1

ka.(p + q) p.q

{
−(εn+1.εn+2)2 ka.p ka.q

+ 2 εn+1.εn+2 (εn+1.q εn+2.ka ka.p + εn+1.ka εn+2.p ka.q)

− 2 εn+1.q εn+2.p εn+1.ka εn+2.ka + (εn+1.q)2 (εn+2.ka)2 + (εn+1.ka)2 (εn+2.p)2
}

+
1

ka.(p + q)

{
−2 εn+1.εn+2 εn+1.ka εn+2.ka

+ 2 εn+1.ka εn+2.ka

(
εn+1.q εn+2.ka

ka.q
+
εn+1.ka εn+2.p

ka.p

)
−

(εn+1.ka)2 (εn+2.ka)2 p.q
ka.p ka.q

} Mn. (4.4.28)

Here we have used the solutions of ξ1 of Eq.(4.1.11) and used their product to substitute

for ξ2
1.

In Sec.(B.3.2) that there is also a pole at infinity but the contribution coming from that

pole is at sub-sub-leading order in τ and hence is not relevant for our analysis.
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There are other terms coming from the degenerate solutions which can be given by

−
1
τ

∫
dµnIn

∮
{Ai}

dρ

∑
a

p · ka

ρ − σa

−1 ∑
a

q · ka

ρ − σa

−2

p · q

∑
a

εn+1 · ka

ρ − σa

2 ∑
a

εn+2 · ka

ρ − σa

2

+
2
τ

∫
dµnIn

∮
{Ai}

dρ

∑
a

p · ka

ρ − σa

−1 ∑
a

q · ka

ρ − σa

−1

εn+2 · p

∑
a

εn+1 · ka

ρ − σa

2 ∑
a

εn+2 · ka

ρ − σa


−

1
τ

∫
dµnIn

∮
{Bi}

dρ

∑
a

p · ka

ρ − σa

−2 ∑
a

q · ka

ρ − σa

−1

p · q

∑
a

εn+1 · ka

ρ − σa

2 ∑
a

εn+2 · ka

ρ − σa

2

+
2
τ

∫
dµnIn

∮
{Bi}

dρ

∑
a

p · ka

ρ − σa

−1 ∑
a

q · ka

ρ − σa

−1

εn+1 · q

∑
a

εn+1 · ka

ρ − σa

 ∑
a

εn+2 · ka

ρ − σa

2

.

(4.4.29)

The first and third line of the expression (4.4.29) cancel with the extra terms (given

in the last two lines of (4.4.20)) in the contribution from non-degenerate solutions. In

Sec.(4.4.1) we have calculated the contribution from the non-degenerate solutions using

a specific gauge choice. On further analysis it can be seen that in general without fixing

any gauge condition there are more terms in the contribution from the non-degenerate

solutions which precisely cancel all the terms of the above expression (4.4.29) [14].

4.4.3 Total contribution

Adding together the total contributions from non-degenerate and degenerate solutions we

obtain the final expression for the double soft limit limit of graviton scattering amplitude

to sub-leading order in the energy of the soft particles which can be given by

Mn+2 =

[
1
τ2 S (0)(p)S (0)(q)

+
1
τ

{
S (0)(p)S (1)(q) + S (0)(q)S (1)(p)

}]
Mn

+
1
τ

n∑
a=1

[
1

ka.(p + q) p.q

{
−(εn+1.εn+2)2 ka.p ka.q
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+ 2 εn+1.εn+2 (εn+1.q εn+2.ka ka.p + εn+1.ka εn+2.p ka.q)

− 2 εn+1.q εn+2.p εn+1.ka εn+2.ka + (εn+1.q)2 (εn+2.ka)2 + (εn+1.ka)2 (εn+2.p)2
}

+
1

ka.(p + q)

{
−2 εn+1.εn+2 εn+1.ka εn+2.ka

+ 2 εn+1.ka εn+2.ka

(
εn+1.q εn+2.ka

ka.q
+
εn+1.ka εn+2.p

ka.p

)
−

(εn+1.ka)2 (εn+2.ka)2 p.q
ka.p ka.q

} Mn (4.4.30)

4.4.4 Feynman diagrams

Here we will present some analysis for double soft limit of gravity amplitude from Feyn-

man diagrams and compare with the result obtained in the previous subsection.

The action for Einstein Hilbert gravity in four dimension is

S EH =
2
κ2

∫
d4x
√
−gR. (4.4.31)

The Feynman rules for linearized gravity (4.2.5) are given in [88] where the conventions

of [89] are used. Every three-point vertex is of O(κ) and four-point vertex is of O(κ2).

When looking for scattering amplitude in the double soft limit it is sufficient for our pur-

pose to consider only three and four point vertices because they are the ones to contribute

at the leading order. Given n external legs there can not be any higher than four-point ver-

tex in each leg from where two soft gravitons can be emitted because in that case number

of hard particles will exceed n. In the perturbative linearized gravity in the double soft

limit there are two parameters, coupling constant, κ and energy scale of soft gravitons, τ

and the dominating term, as we will see below, is of O
(
κ2

τ

)
.

Following are the relevant Feynman diagrams (we will use the convention that momenta
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at all external legs are outgoing):

• The leading order term in the double soft factorization which is the product of two

single soft factors comes from this diagram

n∑
a,b=1

δγ

ka + τp↗

ka ↗

ρσ

kb + τq↘

kb ↘

τp
−→

τq
−→. .

.

. . .

...

...

. . .

=
κ2

τ2

n∑
a,b=1
a,b

(εn+1.ka)2(εn+2.kb)2

ka.p kb.q
Mn + O

(
1
τ

)
. (4.4.32)

Therefore we find that leading order term coming from this diagram gives the factor

1
τ2 S (0)(p)S (0)(q). Taylor series expansion of this digram also produce the subleading

terms of the form 1
τ

(
S (0)(p)S (1)(q) + S (0)(q)S (1)(p)

)
Mn.

• 4 point vertex

n∑
a=1 ρσ

ka+τp+τq
−−−−−−→

ka
−→

δγ

↗ τp

↘ τq

µα

νβ

. .
.

. . .

...

...

. . .

. .
.
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≈ −4
κ2

τ

n∑
a=1

εn+1.εn+2 εn+1.ka εn+2.ka

ka.(p + q)
(Mn)ρσερσa + κ2O(1) (4.4.33)

• 3 point vertex (I)

n∑
a=1 ρσ

ka+τp+τq
−−−−−−→

ka
−→

δγ

↓ τ(p + q)

τp↙ ↘ τq

µα νβ

. .
.

. . .

...

...

. . .

. .
.

≈
κ2

τ

n∑
a=1

1
p.q ka.(p + q)

[
−(εn+1.εn+2)2ka.p ka.q + (εn+1.q)2(εn+2.ka)2 + (εn+1.ka)2(εn+2.p)2

− 2εn+1.εn+2

{
εn+1.ka εn+2.p ka.p + εn+1.q εn+2.ka ka.q

}
− 2 εn+1.q εn+2.p εn+1.ka εn+2.ka

 (Mn)ρσερσa

+ 2
κ2

τ

n∑
a=1

εn+1.εn+2 εn+1.ka εn+2.ka

ka.(p + q)
(Mn)ρσερσa + κ2O(1) (4.4.34)

• 3 point vertex (II)

We consider the subleading order term from this diagram because the leading term

has already been accounted in (4.4.32). Therefore we obtain
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n∑
a=1 ρσ

ka+τp+τq
−−−−−−→

ka+τq
−−−−→

ka
−→

δγ

µα

νβ

↗ τp

↘ τq

+ (sym p↔ q)

. .
.

. . .

...

...

. . .

. .
.

≈
κ2

τ

n∑
a=1

1
ka.(p + q)

[
2 εn+1.q εn+1.ka(εn+2.ka)2

ka.q
+

2 (εn+1.ka)2 εn+2.p εn+2.ka

ka.p

−
(εn+1.ka)2(εn+2.ka)2 p.q

ka.p ka.q

 (Mn)ρσερσa + κ2O(1) (4.4.35)

The last term comes from the expansion of the propagator in the denominator

1
(ka + τp + τq)2 ≈

1
τ ka.(p + q)

[
1 −

τ p.q
ka.(p + q)

+ O(τ2)
]
. (4.4.36)

Adding together the expressions (4.4.32), (4.4.33), (4.4.34) and (4.4.35) we recover the

CHY expression for the double soft factor (4.4.30).

4.4.5 Gauge invariance

Gauge invariance of the double soft graviton factor can be checked by making suitable

transformations of the polarization tensors of the soft gravitons. We can make following

shifts

εn+1,µν → ξ1,µpν + ξ1,νpµ or εn+2,µν → ξ2,µqν + ξ2,νqµ, (4.4.37)
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with ξ1 · p = 0 and ξ2 · q = 0. Because of the diffeomorphism invariance under the above

transformations the result in Eq.(4.4.30) should not change.

To check for the gauge invariance we have to consider the full amplitude including the

momentum conserving delta function. We can multiply both sides of Eq.(4.4.30) by

δ(D) (k1 + k2 + . . . kn + τp + τq) and then expand the delta function around any of the hard

momenta ka to obtain scattering amplitudeMn on the right hand side of Eq.(4.4.30). How-

ever it is easier to start with the full n-point amplitudeMn instead on Mn on the RHS of

Eq.(4.4.30) and show gauge invariance.

Let us consider the transformation of ε1,µν. Then S (0)(p) will become 2
n∑

a=1
ξ1 · ka. Due to

the momentum conserving delta function δ(D) (k1 + k2 + . . . kn), first term in Eq.(4.4.30)

vanishes. Also second term in the second line vanishes by angular momentum conserva-

tion:
n∑

a=1
Jρνa Mn = 0. There is subtlety involved with the first term in the second line of

Eq.(4.4.30). S (2)(q) contains angular momentum operator Ja which acts on the full mo-

mentumMn which includes the delta function. Therefore S (0)(p) can not gauge invariant

by itself as the momentum conserving delta function has to pass through the angular mo-

mentum operators contained in S (1)(q). After substituting ε1,µν → ξµpν + ξνpµ, first term

in the second line of Eq.(4.4.30) becomes

2
n∑

a=1

(ξ1 · ka)
n∑

b=1

εn+2,µνk
µ
bqρ

kb · q

(
kνb

∂

∂kbρ
− kρb

∂

∂kbν

)
{Mnδ

(D) (k1 + k2 + . . . + kn)}. (4.4.38)

We consider only the orbital angular momentum part here because it contains the deriva-

tive operators, spin angular momentum part does not have any derivative operator acting

on the delta function and is thus trivial to handle. Second term in the parentheses in

expression (4.4.38) vanishes because of

n∑
a=1

εn+2,µνk
µ
aqρ

ka · q
kρa

∂

∂ka,ν
δ(D) (k1 + k2 + . . . + kn) = 0 (4.4.39)

which is a consequence of tracelessness of polarization tensor, ε µ
n+2,µ = 0. Using the
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result δ
δka,µ

kνb = δabδ
ν
µ we then obtain from the expression (4.4.38)

− 2
n∑

a=1

ξ1 · q
εn+2,µνk

µ
akνa

ka · q
Mnδ

(D) (k1 + k2 + . . . + kn) . (4.4.40)

It can be checked that under the transformation εn+1,µν → ξ1,µpν+ξ1,νpµ the contact term in

Eq.(4.4.30) changes as exactly with the opposite sign of the expression given in (4.4.40).

Hence the full amplitude in Eq.(4.4.30) is invariant under εn+1,µν → ξ1,µpν + ξ1,νpµ. In

the same way one can show invariance of Eq.(4.4.30) under the transformation ε2,µν →

ξ2,µqν + ξ2,νqµ. Thus we have shown the gauge invariance of gravity amplitude in the

double soft limit.

4.5 Discussion

In [63] double soft limits of scattering amplitudes involving soft scalars have been stud-

ied. It was found that leading order contributions for scalar double soft theorems come

from degenerate solutions of the scattering equations. From our analysis of double soft

limits of Yang-Mills and gravity amplitudes we can see that non-degenerate solutions

also contribute to leading order. Moreover our calculations show that to obtain physically

meaningful results (refer to Eq.(4.3.20) and Eq.(4.4.30)) there have to be cancellations

among some terms coming from non-degenerate and degenerate solutions separately.

As we see from Eq.(4.4.30) double soft factor of gravity amplitude has three terms at

the sub-leading order - two of the terms can be expressed as products of leading and

sub-leading soft factors, S (0) and S (1) respectively and a third term, called contact term,

whose expression is given in Eq.(4.4.28). Presence of the contact term is due to the fact

that leading and sub-leading soft factors do not commute. Also the term
{
S (0)(p)S (1)(q) +

S (0)(q)S (1)(p)
}
Mn in Eq.(4.4.30) is not gauge invariant, the contact term is needed to main-

tain gauge invariance of the amplitude to sub-leading order in the double soft limit.





5 Supertranslation symmetries and

soft graviton theorem

In early sixties Bondi, Metzner, Sachs and Van der Burg [1,2] discovered that the asymp-

totic symmetry group of asymptotically flat spacetimes in four dimension is not just the

Poincaré group but an infinite dimensional group, popularly known as BMS group which

consists of angle dependent translations along the null directions, called supertranslations

acting semi-directly on the Lorentz group. Supertranslations form an infinite dimensional

normal subgroup of BMS group. Recently Strominger and his collaborators [3, 56] have

established that Weinberg’s soft graviton theorem [4, 5] can be expressed as Ward identi-

ties derived from supertranslation invariance of gravitational S-matrix. Since then there

have been progressively growing interests in the studies of asymptotic symmetries for

asymptotically flat spacetimes mainly in four dimension in the context of soft graviton

theorems. Asymptotic symmetries related to sub-leading and sub-sub-leading soft gravi-

ton theorems [22–28] have been explored in [15, 58–60]. Asymptotic symmetries for

massive scalars coupled to gravity have been considered in [57]. Connection between

soft graviton theorem, Ward identity and gravitational memory effect [90] can be beauti-

fully depicted in the form of a "infra-red triangle" in four dimension.

Since soft graviton theorems [8–11,13,14,23,24,27–29] are valid in any spacetime dimen-

sions it is an obvious question to ask whether the relations between soft graviton theorems

and asymptotic symmetries exist for asymptotically flat spacetimes beyond four dimen-

77
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sion. To answer this question one should in principle first study the asymptotic symmetry

group for asymptotically flat spacetime in higher dimensions [91] in full generality, how-

ever such analysis is highly nontrivial. Due to our lack of understanding of full symmetry

group in higher dimensions (analogous to BMS group in four dimension), we will address

a much smaller subset of the question: can we relate Weinberg’s soft graviton theorem to

supertranslation symmetries in arbitrary dimensions?

There have been some studies in this context. In [16] Weinberg’s soft graviton theorem

has been recast as supertranslation Ward identity in higher even dimensions. Gravita-

tional memory effects in higher dimensions have been studied in [19, 92, 93]. Asymp-

totic charges from scalar soft theorems in higher even dimensions have been constructed

in [94]. In odd spacetime dimensions the analysis is subtle; the main problem is the

non-existence of conformal null infinity for spacetime with radiation in odd dimensions

[64, 95–97]. Due to the fractional power fall-off of metric perturbations in radial coordi-

nates one can not show smoothness of Einstein’s equations at null infinity. Our analysis

will be in linearized perturbative gravity and hence we will not have to worry about such

non-smoothness issues of conformal null infinity.

In this chapter our goal is to understand the subtleties associated with supertranslation

symmetries and soft graviton theorem for asymptotically flat spacetimes in higher dimen-

sions. Here we follow the approach of [60] to study large diffeomorphisms related to

supertranslation symmetries in higher spacetime dimensions. Using the covariant phase

space methods [17, 98, 99] (a concise review of covariant phase space formalism can be

found in [100]) we calculate the conserved charges for large gauge transformations at

asymptotic null infinity. In Bondi coordinates we consider the null infinity in the limit

radial coordinate is taken to infinity while keeping retarded time coordinate and angular

coordinates held fixed. Topologically in D dimension null infinity is described as R×SD−2.

The conserved charges have two parts: the gravitational radiation part - which contains

radiative data for free metric perturbations and the matter part - which contains radiative
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data for matter fields. In four dimensions radiative modes of graviton have fall-off be-

havior at null infinity such that shift due to supertranslation vector fields occur at same

order in the radial coordinate. In higher dimensions radiative modes and shift of metric

perturbations due to supertranslations occur at different orders in the radial coordinate.

This is a main reason of inconsistencies in the description of supertranslation symmetries

in higher dimensions. Most of the analyses in the literature [18,19,64,65,90,93,95,101]

have ruled out the existence of supertranslation symmetries and BMS in higher dimen-

sional asymptotically flat spacetimes based on the fall-off behavior of metric components

at null infinity. Here we try to explore the possibility of recovering supertranslation Ward

identities for soft graviton theorem by considering different boundary conditions on met-

ric perturbations. Fall-off behavior of radiative modes of the metric perturbations can be

obtained from saddle-point analysis at null infinity. These fall-off behavior are too re-

strictive and one needs to relax the boundary conditions in order to have supertranslations

in higher dimensions. However we find that relaxing these fall-off conditions leads to

the appearance of divergent terms in the asymptotic conserved charge at null infinity. At

this stage it is not clear to us how to show that divergent terms in the charge vanish and

the finite part of the asymptotic charge gives rise to Weinberg’s soft graviton theorem.

Another possibility is to impose the restrictive boundary conditions and this leads to van-

ishing of the gravitational part of the charge. This result is in agreement with the analysis

of [18]. The only possible gauge transformations at null infinity in this case are that of

spacetime translations which give rise to finite matter part of the charge implying global

energy-momentum conservation.

This chapter is organized as follows: in Sec.(5.1) we present basic details of perturba-

tive gravity coupled to massless scalar field for flat spacetime in Bondi coordinates. We

use de Dender gauge choice to obtain the linearized gravity equations. In Sec.(5.2) we

derive the conserved charges at asymptotic null infinity from covariant phase space meth-

ods. In Sec.(5.3) we review the analysis of Ward identities from supertranslation sym-

metries related to Weinberg’s soft graviton theorem in four dimension. In Sec.(5.4) we
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present some basic calculations involving supertranslation symmetries in higher dimen-

sional spacetimes. We show the subtleties with restricted boundary conditions following

from saddle point analysis and try to find appropriate fall-off behavior of the metric per-

turbations compatible with supertranslations.

5.1 Linearized gravity

Let us consider metric perturbations given by hµν around flat spacetime metric ηµν such

that

gµν = ηµν + hµν. (5.1.1)

At this stage we will consider the flat metric of the form ηµν = diag (−1, 1, . . . , 1). But as

we will see later flat spacetime can be given in different coordinate systems. For any arbi-

trary metric representation of Minkowski spacetime we have to replace partial derivatives

with covariant derivatives.

Christoffel symbols to linear order in the metric fluctuations can be expressed as

Γαµν [h] =
1
2
ηαβ

(
∂µhβν + ∂νhβµ − ∂βhµν

)
. (5.1.2)

Ricci tensors are given by

Rµν = ∂αΓ
α
µν − ∂νΓ

α
µα + ΓαµνΓ

β
αβ − Γ

α
µβΓ

β
να. (5.1.3)

The last two terms are quadratic in h and so can be neglected at linearized order. Therefore

Eq.(5.1.3) takes the form

Rµν [h] =
1
2
∂α

(
∂µhαν + ∂νhαµ

)
−

1
2
∂α∂αhµν −

1
2
∂µ∂νh. (5.1.4)

Here h is the trace of hµν.
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We now define trace-reversed metric perturbations as

h̄µν := hµν −
1
2
ηµνh (5.1.5)

which implies in D dimensions

hµν = h̄µν −
1

D − 2
ηµνh̄. (5.1.6)

We can choose harmonic gauge which is an off-shell gauge condition and is given by

∂µh̄µν = 0. (5.1.7)

There are D number of such gauge conditions.

In this gauge choice Einstein’s equations

Rµν −
1
2

Rgµν = 8πGTµν (5.1.8)

at linearized order can be expressed as

∂α∂αh̄µν = −16πGTµν. (5.1.9)

5.1.1 Residual gauge symmetries

Under diffeomorphism induced by a vector field ~ξ metric perturbations transform as fol-

lows

hµν → hµν + ∂µξν + ∂νξµ (5.1.10)

which implies

h̄µν → h̄µν + ∂µξν + ∂νξµ − ∂αξ
αηµν. (5.1.11)
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Since Einstein’s equation is diffeomorphism invariant, harmonic gauge condition of Eq.(5.1.7)

then imposes the following constraints

∂α∂αξ
µ = 0. (5.1.12)

These provide us with additional D gauge fixing choices for the metric perturbations hµν

which we call residual gauge conditions.

It is to be noted that total number of components of a rank 2 symmetric tensor in D

dimensions is D(D+1)
2 and total number of gauge fixing conditions are 2D. Hence there are

D(D−3)
2 number of independent components which are correspond to the polarizations of

the metric perturbations.

5.1.2 Bondi coordinates

For the rest of our analysis we will work in a particular coordinate system, called Bondi

coordinates. The studies of asymptotically flat spacetimes become much simpler in these

coordinates. Here u = t − r is the retarded time, r is the radial coordinate and γAB are the

metric components on the (D − 2) dimensional sphere.

In terms of the Bondi coordinates Minkowski metric written can be expressed as

ds2 = −du2 − 2dudr + r2γABdzAdzB. (5.1.13)

It is easy to compute the inverse metric components are

ηrr = 1, ηur = ηru = −1, ηAB =
1
r2γ

AB (5.1.14)

and the non-zero Christoffel symbols are

ΓA
rB =

1
r
δA

B, Γr
AB = −rγAB, Γu

AB = rγAB and ΓA
BC. (5.1.15)
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Trace of metric perturbations in these coordinates is

h = hrr − 2hur +
1
r2γ

ABhAB. (5.1.16)

A similar analysis can be done using the advanced time coordinate v = t + r. In this case

the flat metric is given by

ds2 = −dv2 + 2dvdr + r2γABdzAdzB. (5.1.17)

For any asymptotically flat spacetimes one can take the limit r → ∞, t → ∞ such that u

is constant to reach the future asymptotic null infinity denoted by I +. The null infinity is

topologically R× SD−2 and is parametrized by (u, zA) coordinates. Similarly by taking the

limit t → −∞, r → ∞ with constant v one will reach past null infinity, I −. Geodesics

of any massless particles will begin at I − and end at I +. We can expand the fields in

inverse powers of the radial coordinate with suitable boundary conditions of the fields

specified at null infinity.

5.1.3 Equations of motion

We can write the harmonic gauge condition of Eq.(5.1.7) in a covariant way as Oµh̄µν = 0.

Therefore we obtain the following set of equations [92]:

Oµh̄µν = −∂uh̄ur − ∂rh̄uu + ∂rh̄ur −
(D − 2)

r

(
h̄uu − h̄ur

)
+

1
r2 DAh̄uA,

Oµh̄µr = −∂uh̄rr − ∂rh̄ur + ∂rh̄rr −
(D − 2)

r

(
h̄ur − h̄rr

)
+

1
r2 DAh̄rA −

1
r3γ

ABh̄AB,

Oµh̄µA = −∂uh̄rA − ∂rh̄uA + ∂rh̄rA −
(D − 2)

r

(
h̄uA − h̄rA

)
+

1
r2 DBh̄BA. (5.1.18)

Here DA denotes the covariant derivative with respect to the sphere metric γAB. Harmonic

gauge condition imposes the following constraint on the residual diffeomorphisms ~ξ given
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by �ξµ = 0. Thus we get

r�ξu = ∂2
r (rξu) − 2∂u∂r(rξu) + (D − 4)(∂r − ∂u)ξu + 2DAξ

A +
1
r
[
∆ξu + (D − 2)ξr] = 0,

r�ξr = ∂2
r (rξr) − 2∂u∂r(rξr) + (D − 4)(∂r − ∂u)ξr − 2DAξ

A +
1
r

[∆ − (D − 2)] ξr = 0,

r2�ξA = ∂2
r (r2ξA) − 2∂u∂r(r2ξA) + (D − 4)r(∂r − ∂u)ξA +

2
r

DAξr + [∆ + (D − 5)] ξA = 0.

(5.1.19)

Here ∆ is the Laplacian on the (D − 2) sphere.

In any coordinate systems the linearized gravity equation can be expressed

�h̄µν = −16πGTµν (5.1.20)

In the presence of gravity, metric perturbations consist of two parts - h(C)
µν which corre-

sponds to the gravitational wave and satisfies homogeneous equation

�h̄(C)
µν = 0 (5.1.21)

and h(φ)
µν which is determined by the matter content. Thus we can write hµν = h(C)

µν + h(φ)
µν .

The matter part typically has faster fall-off conditions than the gravitational wave part.

In later part of our analysis we will consider massless scalar field minimally coupled to

gravity and calculate stress energy tensor from it.

The linearized gravity equation in vacuum satisfied by the homogeneous part of metric

perturbations can be written as (we omit the superscript C for convenience)

�h̄uu =

(
∂2

r − 2∂r∂u −
(D − 2)

r
(∂u − ∂r) +

1
r2∆

)
h̄uu,

�h̄ur =

(
∂2

r − 2∂r∂u +
1
r2∆

)
h̄ur +

(D − 2)
r2

(
h̄uu − h̄ur

)
+

(D − 2)
r

(∂u − ∂r) h̄ur −
2
r3 DAh̄uA,

�h̄rr =

(
∂2

r − 2∂r∂u +
1
r2∆

)
h̄rr −

4
r3 DAh̄Ar −

(D − 2)
r

(
∂uh̄rr − ∂rh̄rr

)
+

2 (D − 2)
r2

(
h̄ur − h̄rr

)
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+
2
r4γ

CBh̄CB,

�h̄uA =

(
∂2

r − 2∂r∂u +
1
r2∆

)
h̄uA −

(D − 4)
r

(∂u − ∂r) h̄uA −
2
r

DA

(
h̄uu − h̄ur

)
+

(3 − D)
r2 h̄uA,

�h̄rA =

(
∂2

r − 2∂r∂u +
1
r2∆

)
h̄rA −

(D − 4)
r

(∂u − ∂r) h̄rA −
2
r3 DCh̄CA −

2
r

DA

(
h̄ru − h̄rr

)
+

D
r2

(
h̄Au − h̄Ar

)
+

1
r2 h̄rA −

(D − 2)
r2 h̄rA,

�h̄AB =

(
∂2

r − 2∂r∂u +
1
r2∆

)
h̄AB −

2
r

DA

(
h̄uB − h̄rB

)
−

2
r

DB

(
h̄uA − h̄rA

)
−

2 (D − 4)
r2 h̄AB +

(D − 6)
r

∂rh̄AB −
(D − 6)

r
∂uh̄AB + 2γAB

(
h̄uu − 2h̄ur + h̄rr

)
. (5.1.22)

From the above equations it can be concluded that not all the components of the metric

perturbations can be solved independently. We can perturbatively expand the metric fluc-

tuations in terms of radial coordinate off the null infinity. Then some components will

specify the free data and other components can be determined in terms of these free data.

We will see some examples later.

5.1.4 Massless scalar field

For the matter contribution we will consider massless scalar field minimally coupled to

gravity whose action is given by

S matter = −
1
2

∫
dDx
√
−ggµνOµΦOνΦ. (5.1.23)

The scalar field will satisfy Klein Gordon equation given by �Φ = 0 which can be ex-

pressed as [
∂2

r − 2∂u∂r +
(D − 2)

r
(∂r − ∂u) +

1
r2∆

]
Φ = 0. (5.1.24)

From this action (5.1.23) we can calculate the stress energy tensor to be

Tµν = −
2
√
−g

δS matter

δgµν
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= OµΦOνΦ −
1
2

gµνgαβOαΦOβΦ. (5.1.25)

Components of Tµν for the scalar field Φ are then given by

Tuu = (∂uΦ)2 +
1
2

[
−2∂uΦ∂rΦ + (∂rΦ)2 +

1
r2 qAB∂AΦ∂BΦ

]
,

Tur =
1
2

[
(∂rΦ)2 +

1
r2 qAB∂AΦ∂BΦ

]
,

TuA = ∂uΦ∂AΦ,

Trr = (∂rΦ)2 ,

TrA = ∂rΦ∂AΦ,

TAB = ∂AΦ∂BΦ −
1
2

r2qAB

[
−2∂uΦ∂rΦ + (∂rΦ)2 +

1
r2 qAB∂AΦ∂BΦ

]
. (5.1.26)

It can be checked that in D dimension free data has a fall off behavior of r−
(D−2)

2 at asymp-

totic null infinity. Therefore we can make an expansion of the scalar field as

Φ =
φ

r
(D−2)

2

+ . . . (5.1.27)

where φ specifies the free data. Therefore the fall off conditions of the components of

stress energy tenor can be given by

Tuu ∼ r−2m, Tur ∼ r−(2m+2), Trr ∼ r−(2m+2),

TuA ∼ r−2m, TrA ∼ r−(2m+1), TAB ∼ r−(2m−1). (5.1.28)

Here we have denoted the dimension of spacetime as D = 2 + 2m for convenience. This

convention will be helpful for later sections where we will mainly focus on even spacetime

dimensions.
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5.2 Asymptotic conserved charges

Given a vector field ξµ we can derive a conserved charge Qξ at asymptotic null infinity us-

ing the covariant phase space formalism. We will consider massless scalar field minimally

coupled to gravity in D = 2 + 2m dimension. The radiative phase space at null infinity is

of the form Γ = Γgrav + ΓΦ. The covariant charge will consist of two parts - 1) soft charge

which is due to the gravitational radiation and corresponds to the metric fluctuations that

satisfy homogeneous linearized gravity equation, and 2) hard charge which comes from

the matter contribution, massless scalar in this case.

5.2.1 Gravitational charge

We will follow the approach of [60] to derive the gravitational contribution to the asymp-

totic conserved charge. In [60] soft charge for large gauge transformations corresponding

to supertranslation and superroation vector fields in four dimensional have been derived.

Here we will consider only supertranslation vector fields and generalize the analysis to

arbitrary dimensions.

Einstein-Hilbert action in D dimension is given by

S EH =
1

16πG

∫
dDx
√
−gR, (5.2.1)

where R is the Ricci scalar.

Variation of this action (5.2.1) is given by

δS EH =
1

16πG

∫
dDx
√
−g

[(
Rµν −

1
2

gµνR
)
δgµν + gµνδRµν

]
. (5.2.2)

The first term of Eq.(5.2.2) inside the parentheses yields Einstein’s field equation. Varia-
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tion of Ricci tensor is given by

δRµν = OλδΓ
λ
µν − OνδΓ

λ
µλ. (5.2.3)

Therefore the remaining term in Eq.(5.2.2) produces a boundary term which can be ex-

pressed as

[δS EH]b’dy =
1

16πG

∫
dDx
√
−ggµν

(
OλδΓ

λ
µν − OνδΓ

λ
µλ

)
=

1
16πG

∫
dDx
√
−gOλ

(
gµνδΓλµν − gµλδΓνµν

)
=

1
16πG

∫
Σ

dD−1x
√
|ĝ|nµ

(
ĝνλδΓµνλ − ĝµλδΓννλ

)
, (5.2.4)

where ĝµν is the induced metric on the Σ hypersurface and nµ is normal to the hypersur-

face.

From the boundary term we can define a symplectic potential density as follows

θµ (δ) :=
1

16πG

√
|ĝ|

(
ĝνλδΓµνλ − ĝµλδΓννλ

)
. (5.2.5)

We can then define a covariant phase space charge for the vector field ξµ on the Σ hyper-

surface as

δQξ =

∫
Σ

dS µ

[
δθµ

(
δξ

)
− δξθ

µ (δ)
]
. (5.2.6)

Here δ is any arbitrary variation while δξ is the variation induced by the vector field ξµ.

We will choose Σ to be a constant time hypersurface and then take the limit t → ∞ while

keeping u to be constant. In this way we can define the phase space structure at future

null infinity I +.

Keeping terms to linear order in metric perturbations, variation of Christoffel symbols can

be expressed as

δΓ
µ
νλ =

1
2
ηµσ (Oνδhσλ + Oλδhσν − Oσδhνλ) . (5.2.7)
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Using Eq.(5.2.7) we can show

δθµ
(
δξ

)
=

1
16πG

[
−δh̄νλδξΓ

µ
νλ + δh̄µλ∂λ (Oαξα)

]
,

δξθ
µ (δ) = −

1
16πG

[
1

2m
δξh̄µλ∂λδh̄ + δξh̄νλδΓ

µ
νλ

]
. (5.2.8)

To obtain these equations we have used δΓννλ = 1
2∂λδh and h̄ = −mh.

Now if we substitute Eq.(5.2.8) in Eq.(5.2.6) and neglect terms beyond linear order in

variations then we obtain an expression which is a total variation in δ. We can eventually

derive the covariant charge at null infinity which is given by

Qgrav
ξ = lim

t→∞

1
16πG

∫
I +

dudΩ2m r2m

[
Γt
νλδξh̄

νλ − h̄νλδξΓt
νλ +

1
2m

δξh̄tλ∂λh̄ + h̄tλ∂λ (Oαξα)
]
.

(5.2.9)

With appropriate fall off conditions imposed on the metric perturbations there will be a

finite contribution to Qgrav
ξ which will then give the desired gravitational charge at asymp-

totic null infinity.

Large gauge transformation The diffeomorphisms which induce non-trivial transfor-

mations at null infinity are called large gauge transformations. The covariant phase space

charges at null infinity vanishes for residual diffeomorphisms implying the fact these

gauge transformations are pure and physically irrelevant. On the contrary large gauge

transformations, if exist, will contribute to non trivial conserved charges at asymptotic

null infinity. Such transformations are physical because they relate one space time to

another which are physically distinct.

5.2.2 Matter charge

We will calculate the conserved Noether’s charge for the matter content. Let us denote

the matter action by S matter, then the stress energy tensor is given by
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Tµν = −
2
√
−g

δS matter

δgµν
. (5.2.10)

Under diffeomorphism metric transforms as

δξgµν = Oµξν + Oνξµ. (5.2.11)

Therefore variation of the action gives a boundary term of the form

δS matter = −
1
2

∫
dDx
√
−gδξgµνTµν

= −
1
2

∫
dDx
√
−g (Oµξν + Oνξµ) Tµν

= −

∫
dDx
√
−gOµ

(
ξνTµν

)
= −

∫
Σ

dD−1xnµ
√
|ĝ|T µ

νξ
ν. (5.2.12)

In the third step we have used conservation of stress energy tensor, OµT µν = 0. Choosing

a constant time hypersurface and taking the limit t → ∞ we can derive conserved charge

at asymptotic null infinity as

Qmatter
ξ = − lim

t→∞

∫
I +

dudΩ2mr2mT t
νξ
ν. (5.2.13)

It can be checked easily

T t
µ = T u

µ + T r
µ = −Tuµ. (5.2.14)

Given the form of the vector field ξµ and using the expressions of stress energy tensors

for massless scalar field in Eq.(5.1.26) we can then calculate matter contribution to the

asymptotic charge.
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5.3 Supertranslation symmetries in four dimension

In addition to the space time translations there are also infinite number of supertranslation

symmetries present in four dimensional asymptotically flat spacetimes. These supertrans-

lation vector fields are arbitrary functions of S2 coordinates and produce angle dependent

translations at null infinity.

A two dimensional sphere is parametrized by angular coordinates (θ, φ). Using stereo-

graphic projections one can map any point on S2 to a corresponding point on complex

plane parametrized by (z, z̄) coordinates. The mapping can be given by

z = tan
θ

2
eiφ and z̄ = tan

θ

2
e−iφ. (5.3.1)

The mapping between the Euclidean coordinates (x1, x2, x3) and (z, z̄) can be expressed as

x1 + ix2 =
2rz

1 + zz̄
, x3 =

r (1 − zz̄)
1 + zz̄

, (5.3.2)

such that ~x · ~x = r2.

Having set this parametrization we will use (u, z, z̄) coordinates for I +.

5.3.1 Gravitational radiation

We can use the residual gauge conditions to fix some components of the metric pertur-

bations. Since our goal is to derive the covariant phase space charge which is gauge

independent so residual gauge fixing does not affect our result and eventually simplifies

the computations. In particular we will choose radiation gauge for the free metric pertur-

bations h(C)
µν (we will drop the superscript C for convenience). Radiation gauge choice can
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be expressed by the following conditions

hµu = 0, µ ∈ {r, z, z̄} and ηµνhµν = 0. (5.3.3)

It can be checked that from the equation1 �huu = 0 it also follows that huu = 0.

We can consistently solve the linearized gravity equations (5.1.22) in vacuum by imposing

the following fall off conditions

hAB = rh(−1)
AB + h(0)

AB + . . . A, B ∈ (z, z̄)

hAr =
1
r

h(1)
Ar +

1
r2 h(2)

Ar + . . .

hrr =
1
r3 h(3)

rr +
1
r4 h(4)

rr + . . . (5.3.4)

Then we obtain

∂uh(0)
AB =

(
−

1
2
∆ + 1

)
h(−1)

AB ,

∂uh(1)
AB = −

1
4
∆h(0)

AB −
1
2

(
DAh(1)

Br + DBh(1)
Ar

)
,

∂uh(1)
Ar = DBh(−1)

AB ,

∂uh(2)
Ar =

1
4

(3 − ∆)h(1)
Ar +

1
2

DCh(0),
AC

∂uh(3)
rr = DAh(1)

Ar . (5.3.5)

From the above equations it can be inferred that free data can be specified by the compo-

nents h(−1)
AB and all other components of metric fluctuations can be determined in terms of

h(−1)
AB . Therefore h(−1)

AB correspond to the graviton modes at I + which we will denote by

Czz and Cz̄z̄.

1�huu =
[
∂2

r − 2∂u∂r −
2
r (∂u − ∂r) + 1

r2∆
]

huu = 0. So huu can not be expressed in terms of radiative data

h(−1)
AB .
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Saddle point analysis We can also determine the radiative data from the gravitational

radiative phase space defined at null infinity. Let us consider the mode expansions of

graviton in terms of creation and annihilation operators given by

hµν (x) =
∑
α=±

∫
d3~q

(2π)3 2ωq

[
εα ∗µν

(
~q
)

aout
α

(
~q
)

eiq·x + εαµν
(
~q
)

aout †
α

(
~q
)

e−iq·x
]
, (5.3.6)

where α denotes the helicity of the graviton and ωq is the energy. Since we are interested

in the phase space at null infinity we have to do a stationary phase approximation of this

mode expansion as r → ∞. In the retarded time coordinate q · x = −ωqu−ωqr (1 − cos θ),

therefore saddle points are at θ = 0 and π. But at θ = π the integrand is oscillating and

therefore vanishes at large r. Dominant contribution to the saddle point approximation

comes from θ = 0 and is given by

lim
r→∞

hµν (x) = −
i

8π2r

∑
α=±

∞∫
0

dωq

[
εα ∗µν (q̂) aout

α

(
ωqq̂

)
e−iωu − εαµν (q̂) aout †

α

(
ωqq̂

)
eiωu

]
.

(5.3.7)

Therefore it is immediately obvious that radiative data falls off as r−1 in four dimension

and should be identified with h(−1)
AB .

Now taking the projections of hµν on the S2 at null infinity we can write

Czz (u, z, z̄) = κ lim
r→∞

1
r
∂zxµ∂zxνhout

µν (x) . (5.3.8)

Here κ is the gravitational coupling constant and is given by κ =
√

32πG.

We can parametrize the null vectors in terms of the S2 coordinates as

xµ (z, z̄) = r
(
1,

z + z̄
1 + zz̄

,
−i (z − z̄)

1 + zz̄
,

1 − zz̄
1 + zz̄

)
,

qµ (ω, ω̄) = ωq

(
1,

ω + ω̄

1 + ωω̄
,
−i (ω − ω̄)

1 + ωω̄
,

1 − ωω̄
1 + ωω̄

)
,

ε+µ (~q) =
1
√

2
(ω̄, 1,−i,−ω̄) , ε+ (

~q
)∗

= ε−
(
~q
)
. (5.3.9)
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Here the graviton polarizations are given by εαµν = εαµε
α
ν . Then we get εαz = ∂zxµεαµ .

Therefore

ε+
z
(
~q
)

=

√
2rz̄ (ω̄ − z̄)
(1 + zz̄)2 , ε−z

(
~q
)

=

√
2r (1 + ωz̄)
(1 + zz̄)2 . (5.3.10)

In the large r limit ω→ z, hence ε+
z vanishes. Therefore we can express Czz as

Czz (u, z, z̄) = −
iκ

4π2 (1 + zz̄)2

∞∫
0

dωq

[
aout

+

(
ωq x̂

)
e−iωqu − aout †

−

(
ωq x̂

)
eiωqu

]
. (5.3.11)

Similarly we can find out the mode expansions of Cz̄z̄ at I +. At past null infinity I − the

graviton modes will be denoted by Dzz and Dz̄z̄.

Next we will study how these radiative data transform under large diffeomorphisms, par-

ticularly under supertranslations. It is to be noted that the global Poincare transformations

which include space time translations and Lorentz transformations do not shift the radia-

tive data.

5.3.2 Supertranslations

Here we will derive the solution for ξµ which induces large diffeomorphisms at I +. Like

the components of metric perturbations we can expand ξµ in orders of radial components

as follows

ξu = ξu (0) +
1
r
ξu (1) + . . . ,

ξr = ξr (0) +
1
r
ξr (1) + . . . ,

ξA =
1
r
ξA (1) +

1
r2 ξ

A (2) + . . . , A ∈ (z, z̄). (5.3.12)

With this ansatz we will solve for Eq.(5.1.19) under the gauge fixing conditions chosen in

Eq.(5.3.3).
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Since the trace of the metric perturbations, h is set to zero therefore we have

Oµξ
µ = 0 ⇒ ∂uξ

u + ∂rξ
r +

2
r
ξr + DAξ

A = 0. (5.3.13)

This implies ∂uξ
u (0) = 0. Therefore we see ξu (0) is an arbitrary function of S2 coordinates

and can be expressed as

ξu (0) = f (z, z̄) . (5.3.14)

Now from the fall off condition hAr ∼ O
(
r−1

)
we can determine that

LξgAr = r2γAC∂rξ
C − DAξ

u ⇒ ξA (1) = −DA f (z, z̄) . (5.3.15)

Again from the equation �ξu = 0 we can obtain

ξr (0) =
1
2
∆ f (z, z̄) . (5.3.16)

Therefore the vector field producing large gauge transformations can be given by

~ξ = f (z, z̄) ∂u +
1
2
∆ f (z, z̄) ∂r −

1
r

DA f (z, z̄) ∂A + . . . (5.3.17)

The ellipses denote the subleading components which can be determined by the residual

gauge conditions, but will not be required for our analysis.

It can be checked that the vector field obtained in Eq.(5.3.17) acts at I + and transforms

the null coordinates as follows

u→ u + f (z, z̄) , z→ z, z̄→ z̄. (5.3.18)

So these are angle dependent translations along retarded time coordinates keeping the

angular coordinates fixed and are called supertranslations.
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Global Poincare translations of the form xµ → xµ + lµ can be realized at I + by the

following functional form of f (z, z̄)

f (z, z̄) =

(
l0 − l3

)
−

(
l1 − il2

)
z −

(
l1 + il2

)
z̄ +

(
l0 + l3

)
zz̄

1 + zz̄
. (5.3.19)

Now let us find out how the free data Czz and Cz̄z̄ shift under supertranslations given in

Eq.(5.3.17). From the relation

LξgAB = r2 (γACDB + γBCDA) ξC + 2rγABξ
r, A, B ∈ (z, z̄) (5.3.20)

it is easy to see that

δ f Czz = −2D2
z f (z, z̄) ,

δ f Cz̄z̄ = −2D2
z̄ f (z, z̄) . (5.3.21)

Therefore under supertranslations vacuum of one asymptotically flat spacetime which is

characterized by the radiative data is mapped to the vacuum of another asymptotically

flat spacetime. This is the reason of enhanced infinite dimensional asymptotic symmetry

group for asymptotically flat spacetimes in four dimensions. It can be easily checked that

for Poincare translations there is no shift in the radiative data of the gravitational radiation.

5.3.3 Weinberg’s soft graviton theorem from supertranslations

We will now study how Weinberg’s soft graviton theorem is related to supertranslation

symmetries in four dimension. Here we review the analysis of [3, 56]. In Sec.(5.2.1) we

have derived the covariant phase space charge at asymptotic null infinity in D = 2 + 2m

dimensions. Here we will use the expression of the asymptotic charge given in Eq.(5.2.9)

to calculate the charges corresponding to supertranslation symmetries in four dimension.

This charge acts on the Fock states of gravitational radiative phase space at null infinity
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and creates a soft graviton. However it is to be remembered that there are infinite number

of asymptotic charges giving rise to infinite number of soft gravitons at null infinity.

Soft charge We will use the radiation gauge condition given in Eq.(5.3.3). Then last

two terms in Eq.(5.2.9) vanish and we get

Qgrav +

ξ = lim
t→∞

1
16πG

∫
I +

dudΩ2 r2
[
Γt
νλδξh

νλ − hνλδξΓt
νλ

]
. (5.3.22)

Let us now calculate each of these terms separately.

• First term:

Γt
µν = Γu

µν + Γr
µν

=
1
2

(ηuσ + ηrσ)
(
Oµhσν + Oνhσµ − Oσhµν

)
=

1
2
Ouhµν

=
1
2
∂uhµν. (5.3.23)

So the non zero components are

Γt
rr =

1
2
∂uhrr ∼ O

(
r−3

)
,

Γt
rA =

1
2
∂uhrA ∼ O

(
r−1

)
,

Γt
AB =

1
2
∂uhAB ∼ O (r) . (5.3.24)

Again we have

δξhrr = 2 (∂r − ∂u) ξr,

δξhAr = (∂r − ∂u) ξA +
1
r2 DAξr,

δξhAB =
1
r2

(
DAξB + DBξA

)
+

2
r3γ

ABξr. (5.3.25)
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Therefore combining Eq.(5.3.24) and Eq.(5.3.25) we can obtain

r2Γt
νλδξh

νλ = −∂uh(−1)
AB DADB f + O

(
r−1

)
(5.3.26)

• Second term:

hrr = huu = −hru = hrr ∼ O
(
r−3

)
,

hrA = −huA =
1
r2γ

ABhrB ∼ O
(
r−1

)
,

hAB =
1
r4γ

AMγBNhMN ∼ O
(
r−3

)
. (5.3.27)

Variation of Christoffel symbols are given by

δξΓ
t
ur = ∂r∂u (ξu + ξr) ,

δξΓ
t
uu = ∂2

u (ξu + ξr) ,

δξΓ
t
uA = DA∂u (ξu + ξr) ,

δξΓ
t
rr = ∂2

r (ξu + ξr) ,

δξΓ
t
Ar = r∂r

(
1
r

DA (ξu + ξr)
)
,

δξΓ
t
AB = DADB (ξu + ξr) + rγAB (∂r − ∂u) (ξu + ξr) . (5.3.28)

Combining Eq.(5.3.27) and Eq.(5.3.28) we find there is no finite contribution to the

term r2hνλδξΓt
νλ in the limit r → ∞.

Finally we find the soft part of the asymptotic conserved charge at I + to be given by

Qgrav +

ξ = −
1

16πG

∫
I +

dud2z
√
γ
[
DzDz f (z, z̄) ∂uCzz + Dz̄Dz̄ f (z, z̄) ∂uCz̄z̄

]
. (5.3.29)

Here γ is the determinant of the metric on S2 whose components are given by

γzz̄ =
2

(1 + zz̄)2 , γzz̄ =
(1 + zz̄)2

2
. (5.3.30)
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Similarly we can derive the asymptotic conserved gravitational charge at past null infinity

I −.

Soft graviton theorem We now consider S -matrix with the soft charge inserted in it.

Qgrav +

ξ acts on the asymptotic scattering out-states at I + and Qgrav −
ξ acts on the in-states

at I −. We will now calculate the quantity 〈out|
[
Qgrav
ξ , S

]
|in〉.

Let us recall that at I + graviton mode expansion can be given by

Czz (u, z, z̄) = −
iκ

4π2 (1 + zz̄)2

∞∫
0

dωq

[
aout

+

(
ωq x̂

)
e−iωqu − aout †

−

(
ωq x̂

)
eiωqu

]
. (5.3.31)

which implies

∞∫
−∞

du ∂uCzz = −
κ

2π (1 + zz̄)2 lim
ω→0

∞∫
0

dωq

[
ωqaout

+

(
ωq x̂

)
δ
(
ωq − ω

)
+ ωqaout †

−

(
ωq x̂

)
δ
(
ωq + ω

)]
.

(5.3.32)

We now define News tensor as

Nω
zz (z, z̄) :=

∞∫
−∞

dueiωu∂uCzz. (5.3.33)

In the limit ω→ 0 the News tensor can be defined in a hermitian way as

N0
zz (z, z̄) := lim

ω→0

1
2

(
Nω

zz + N−ωzz

)
, with ω > 0. (5.3.34)

So the zero mode of the News tensor can be expressed as

N0
zz (z, z̄) = −

κ

4π (1 + zz̄)2 lim
ω→0

ω
[
aout

+ (ωx̂) + aout †
− (ωx̂)

]
. (5.3.35)

Annihilation operator a acting on the radiative phase space annihilates the vacuum, a|0〉 =
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0. Therefore we get the soft mode insertion from

lim
ω→0

ω〈zout
1 . . . |aout

+ S |zin
1 . . .〉 = lim

ω→0

κω

2

∑
k∈out

pµk pνkε
+
µν

(
~q
)

pk · q
−

∑
k′∈in

pµk′ p
ν
k′ε

+
µν

(
~q
)

pk′ · q

 〈zout
1 . . . |S |zin

1 . . .〉

= −
κ

2

∑
k∈out

Ek
(1 + zz̄) (z̄ − z̄k)

(1 + zkz̄k) (z − zk)
−

∑
k′∈in

Ek′
(1 + zz̄) (z̄ − z̄k′)

(1 + zk′ z̄k′) (z − zk′)


〈zout

1 . . . |S |zin
1 . . .〉.

(5.3.36)

To get the last equality we have used the parametrization of finite-energy momentum

vector as

pk (zk, z̄k) = Ek

(
1,

zk + z̄k

1 + zkz̄k
,
−i (zk − z̄k)

1 + zkz̄k
,

1 − zkz̄k

1 + zkz̄k

)
. (5.3.37)

Eq.(5.3.36) is the statement of Weinberg’s soft graviton theorem for a single soft outgoing

graviton with positive helicity. Negative helicity soft graviton theorem will follow from

considering Cz̄z̄. Because of Christodolou-Klainerman constraints [102] S-matrix with a

soft graviton of positive helicity insertion is same as that with a soft graviton of negative

helicity insertion. As we will see later this condition ensures that same Ward identities

hold for both positive and negative helicities of soft graviton.

Therefore we get

〈zout
1 . . . |Qgrav +

ξ S |zin
1 . . .〉

= −
1

16πG
〈zout

1 . . . |

∫
I +

dud2z
√
γ
[
DzDz f (z, z̄) ∂uCzz + Dz̄Dz̄ f (z, z̄) ∂uCz̄z̄

]
S |zin

1 . . .〉

= −
1

8πG
〈zout

1 . . . |


∫
S2

d2z
√
γDzDz f (z, z̄) N0

zz

 S |zin
1 . . .〉

=
1

8πG
〈zout

1 . . . |


∫
S2

d2z
√
γDzDz f (z, z̄)

κ

4π (1 + zz̄)2 lim
ω→0

ω
[
aout

+ (ωx̂) + aout †
− (ωx̂)

] S |zin
1 . . .〉

= −
κ2

64πG

∫
d2z f (z, z̄) D2

z̄

∑
k∈out

Ek
(1 + zz̄) (z̄ − z̄k)

(1 + zkz̄k) (z − zk)
−

∑
k′∈in

Ek′
(1 + zz̄) (z̄ − z̄k′)

(1 + zk′ z̄k′) (z − zk′)


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×〈zout
1 . . . |S |zin

1 . . .〉

= −
1
2

 ∑
k=∈out

Ek f (zk, z̄k) −
∑
k′∈in

Ek′ f (zk′ , z̄k′)

 〈zout
1 . . . |S |zin

1 . . .〉, (5.3.38)

where we have used the identity [57] (see Sec.(C.1) for details)

D2
z̄

[
(1 + zz̄) (z̄ − z̄k)

(1 + zkz̄k) (z − zk)

]
= 2πδ(2) (z − zk) . (5.3.39)

A similar construction for the asymptotic charge Qgrav−

ξ acting on the ingoing scattering

states, using metric component Dzz in the advanced coordinate (v = t + r) can be done on

past null infinity I −. Taking the time ordered product of the soft charge with S -matrix we

can show that gravitational part of the asymptotic charge satisfies the following identity

〈out|Qgrav +

ξ S −S Qgrav −
ξ |in〉 = −

∑
k∈out

Ek f (zk, z̄k) −
∑

k′∈out

Ek′ f (zk′ , z̄k′)

 〈out|S |in〉. (5.3.40)

Therefore we see that the soft charge acts of the asymptotic scattering states at null infinity

to insert a soft graviton in the S -matrix. Soft factor appearing due to insertion of the soft

graviton is related to the supertranslation symmetries.

5.3.4 Supertranslation Ward identity

We will consider the matter part of the asymptotic charge at null infinity and calculate the

its effect on the Fock states at null infinity. As stated earlier we will consider massless

scalar field minimally coupled to gravity. For massless scalar the action is

S matter = −
1
2

∫
d4x
√
−ggµνOµΦOνΦ (5.3.41)

Then the symplectic potential for matter field can be expressed as

θ
µ
matter (δ) = −

√
−ĝĝµν∂νΦδΦ (5.3.42)
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where ĝ is the induced metric on the three dimensional hypersurface of four dimensional

space. We will choose constant time slice, Σt and then take r → ∞ keeping u constant to

reach null infinity.

We consider the scalar field Φ to be a function of u and r. Φ has a fall off behavior of the

form φ(u)
r . The free data at I + can be calculated from saddle point approximation as

φ (u, z, z̄) = −
i

8π2

∞∫
0

dEp

[
aout

(
Ep x̂

)
e−iEpu − aout†

(
Ep x̂

)
eiEpu

]
(5.3.43)

Then symplectic structure of the matter phase space at null infinity is given by

Ωmatter
(
δ, δ′

)
= lim

r→∞

∫
r2dud2z

√
γ
[
δΦδ′Φ̇ − δ′ΦδΦ̇

]
(5.3.44)

where dot means derivative with respect to u. Then φ and φ̇ satisfy the following classical

Poisson bracket

{
φ (u, z, z̄) , φ̇

(
u′, z′, z̄′

)}
P.B =

1
√
γ
δ
(
u − u′

)
δ(2) (z − z′

)
(5.3.45)

Creation and annihilation operators corresponding to the scalar field can be expressed in

terms of these conjugate variables as

aE (z, z̄) = 4πi

∞∫
∞

du φ (u, z, z̄) eiEu,

a†E (z, z̄) = −
4π
E

∞∫
∞

du φ̇ (u, z, z̄) e−iEu, (5.3.46)

and they satisfy the classical Poisson bracket relation compatible with Eq.(5.3.45)

{
aE (z, z̄) , a†E′

(
z′, z̄′

)}
P.B = −i

4 (2π)3

√
γE

δ
(
E − E′

)
δ(2) (z − z′

)
. (5.3.47)

The normal ordered number operator, constructed from these creation and annihilation
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operators, acting on the Fock states is given by

∞∫
−∞

duφ̇2 (u, z, z̄) =
2π(

8π2)2

∞∫
0

dE E2a†E (z, z̄) aE (z, z̄) . (5.3.48)

On I + hard charge acts on the asymptotic outgoing scattering states. From Eq.(5.2.13)

we can derive the expression of matter charge at null infinity corresponding to the super-

translation vector field. The matter part of the charge at I + is then given by

Qmatter +
ξ =

∫
I +

dudΩ2 f (z, z̄) φ̇2, (5.3.49)

where dot represents derivative with respect to u.

Therefore we get

〈zout
1 . . . |

∫
I +

dud2z
√
γ f (u, z, z̄) φ̇2 (u, z, z̄) S |zin

1 . . .〉

=
2π(

8π2)2

∫
S2

d2z
√
γ f (z, z̄)

∞∫
0

dE E2
∏
k∈in

〈0|aEk (zk, z̄k) a†E (z, z̄) aE (z, z̄) S |zin
1 . . .〉

=
∑
k∈out

Ek f (zk, z̄k) 〈zout
1 . . . |S |zin

1 . . .〉, (5.3.50)

where we have used the commutation relation

[
aEk (zk, z̄k) , a

†

E (z, z̄)
]

=
4 (2π)3

√
γE

δ (E − Ek) δ(2) (z − zk) . (5.3.51)

Similarly we can find the hard charge Qmatter −
ξ acting on the ingoing scattering states at

I −. Then matter part of the asymptotic charge satisfies the following relation with S -

matrix

〈zout
1 . . . |Qmatter +

ξ S−S Qmatter −
ξ |zin

1 . . .〉 =

 ∑
k=∈out

Ek f (zk, z̄k) −
∑
k′∈in

Ek′ f (zk′ , z̄k′)

 〈zout
1 . . . |S |zin

1 . . .〉.

(5.3.52)



104 Supertranslation symmetries and soft graviton theorem

Therefore we find the same factorization of the S -matrix without soft graviton from the

matter part of the asymptotic charge.

The total covariant phase space charge at null infinity for the radiative phase space of

Γgrav × ΓΦ can be given by Qξ = Qgrav
ξ + Qmatter

ξ . From Eq.(5.3.40) and Eq.(5.3.52) we

obtain the following Ward identity at null infinity

〈out|Q+
ξ S − S Q−ξ |in〉 = 0. (5.3.53)

This is the supertranslation Ward identity relating S -matrix with and without insertion of

a soft graviton. There are infinite number of asymptotic charges related to the supertrans-

lation symmetries at null infinity of asymptotically flat spacetimes and hence there are

infinite such Ward identities associated to such symmetries. This establishes the fact that

gravitational S -matrix is invariant under supertranslation symmetries (more generally un-

der BMS transformations). The gravitational part of the charge generates supertranslation

on the radiative phase space Γgrav and inserts a soft graviton with polarization D2
z f (z, z̄).

This soft graviton can be interpreted as the Goldstone mode which arises when one vac-

uum is shifted to another vacuum under supertranslation. It should be noted that the four

spacetime translations do not generate any nontrivial gauge transformations on the radia-

tive phase space at null infinity and eventually leads to vanishing of the gravitational part

of asymptotic conserved charge, however there will be finite matter charge which corre-

sponds to the conservation of energy and momenta. Therefore we see supertranslation

symmetries are related to the infrared divergence properties of gravitational scattering.

5.4 Comments on higher dimensions

In dimensions greater than four the existence of infinite dimensional supertranslation sym-

metries for asymptotically flat spacetimes is debatable. In a number of contemporary lit-

eratures [64,65,93,95,97,101] it has been claimed that supertranslation symmetries exist
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only in four dimensional asymptotically flat spacetimes and that the asymptotic symmetry

group in higher dimensions is the Poincare group. In this section we will try to understand

the subtleties that are involved with the infinite dimensional asymptotic symmetry group

in higher dimensions.

Motivation We have seen in Sec.(5.3.3) that infrared properties of gravitational scat-

tering are related to the infinite dimensional asymptotic symmetries in four dimensional

asymptotically Minkowskian spacetimes. On the other hand we have also learnt that soft

graviton theorems exist in all spacetime dimensions (D ≥ 4). So obviously it is a natural

question to ask if the infrared properties in higher dimensions also have any relations to

spacetime symmetries. This is the main motivation behind our exploration presented in

the remaining part of this chapter.

5.4.1 Radiative data at null infinity

Let us find out the fall-off behavior of the free radiative modes of graviton at asymptotic

null infinity. In D = 2 + 2m dimension mode expansion of graviton can be given by

hµν(x) =
∑
α

∫
d1+2m~q

(2π)1+2m

1
2ωq

[
εα ∗µν

(
~q
)

aα
(
~q
)

eiq·x + εαµν
(
~q
)

a†α
(
~q
)

e−iq·x
]

=
∑
α

∞∫
0

ω2m
q dωq

(2π)1+2m2ωq

∫
S2m

dΩ2m

[
ε∗ αµν (~q)aα(~q)e−iωqu−iωqr(1−q̂·r̂)

+εαµν
(
~q
)

a†α
(
~q
)

eiωqu+iωqr(1−q̂·r̂)
]
.

(5.4.1)

Here the index α runs over the D(D−3)
2 number of polarization degrees of freedom. In the

limit r → ∞ we need to do the integration over S2m using saddle point approximation.

Around the saddle point q̂ = r̂ one can expand q̂ · r̂ in terms of the angular coordinates
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as [103]

q̂ · r̂ = 1 −
1
2

2m∑
i=1

θ2
i , (5.4.2)

where θi parametrizes the 2m angular coordinates of S2m. There is another saddle at

q̂ = −r̂, but in the limit r → ∞ this gives oscillatory value and hence is neglected. To

evaluate the first saddle we can use the integration

∫
dθe−

iωr
2 θ2

=

(
2π
iωr

) 1
2

(5.4.3)

to obtain

lim
r→∞hµν(x) =

1
rm

∑
α

∞∫
0

(−iω)m

(2π)1+2m

dωq

2ωq

[
ε∗ αµν (ωqr̂)aα(ωqr̂)e−iωqu + εαµν

(
ωqr̂

)
a†α

(
ωqr̂

)
eiωqu

]
.

(5.4.4)

Using the embedding coordinates we can find the projection of hµν(x) on S2m at null infin-

ity will give the components of free radiative data

h(m−2)
AB (z) = lim

r→∞r2∂A x̂µ∂B x̂νhµν(x)

=
1

rm−2∂A x̂µ∂B x̂ν
∑
α

∞∫
0

(−iω)m

(2π)1+2m

dωq

2ωq

[
ε∗ αµν (ωqr̂)aα(ωqr̂)e−iωqu

+εαµν
(
ωqr̂

)
a†α

(
ωqr̂

)
eiωqu

]
.

(5.4.5)

Here zA represents the embedding coordinates on S2m.

Therefore we find that in D = 2 + 2m dimensions the radiative modes are determined by

the h(m−2)
AB components which have fall-off condition of r−(m−2) at null infinity.
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5.4.2 Boundary conditions from saddle

We can adopt the following fall off conditions for the metric perturbations in the large

radial coordinate limit

huu ∼ O
(
r−2m+1

)
, hur ∼ O

(
r−2m

)
, huA ∼ O

(
r−2m+1

)
,

hrr ∼ O
(
r−m−2

)
, hrA ∼ O

(
r−m)

, hAB ∼ O
(
r−m+2

)
. (5.4.6)

These fall-off conditions are compatible with the saddle point analysis at large r. Using

these boundary conditions we can consistently solve for the components of the metric

perturbations from the linearized gravity equations (5.1.22) in terms of the free radiative

data h(m−2)
AB . To see this let us expand the components in terms of radial coordinate as

follows

huu =

∞∑
n=2m−1

h(n)
uu

rn , hur =

∞∑
n=2m

h(n)
ur

rn , huA =

∞∑
n=m+2

h(n)
uA

rn ,

hrr =

∞∑
n=m+2

h(n)
rr

rn , hrA =

∞∑
n=m

h(n)
rA

rn , hAB =

∞∑
n=m−2

h(n)
AB

rn . (5.4.7)

From linearized Einstein’s equations and using the de Donder gauge condition given by

Oµh̄µν = 0 we can obtain the following equations

h(n)
rr + γABh(n−2)

AB = 0, (5.4.8)(
∆ − (n − 2m)2

− n
)

h(n)
rr + 2 (m − n) γABh(n−2)

AB

−2 (m − n + 1) DAh(n−1)
rA = 0, (5.4.9)

(∆ − (2m − n − 1) (2m − n) + 2 (n − 1)) DAh(n−1)
rA

+2 (n − m) DADBh(n−2)
AB + 2∆h(n)

rr = 0, (5.4.10)

where m ≤ n ≤ 2m − 1.
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From the above set of equations it is evident the radiative modes h(m−2)
AB are the free radia-

tive data and all other metric components can be specified in terms of h(m−2)
AB .

Residual gauge It can be checked that if we choose radiation gauge condition given in

Eq.(5.3.3) to fix residual gauge degrees of freedom the above set of equations are still

satisfied. The traceless condition of metric perturbations, i.e. ηµνhµν = 0 together with

huµ = 0 immediately implies Eq.(5.4.8). The other two equations (5.4.9) and (5.4.10) also

follow from this gauge choice.

5.4.3 Large gauge transformations

In this subsection we will explore the possibility of having large diffeomorphisms for the

asymptotically flat spacetimes in higher dimensions under the boundary conditions chosen

in Eq.(5.4.6). In particular we are interested in finding out if supertranslation symmetries

exist in higher dimensions then what will be the corresponding transformations of the

metric perturbations at null infinity.

We can generalize the expression of the vector field given in Eq.(5.3.17) for higher di-

mensions (D = 2 + 2m) as

~ξ = f (z) ∂u +
1

2m
∆ f (z) ∂r −

1
r

DA f (z) ∂A + . . . (5.4.11)

Here z are the 2m angular coordinates on S2m. It can be checked that this vector field

satisfies the residual gauge condition, �ξµ = 0.

We can calculate shift in hAB components under ~ξ (variations of metric perturbations under

any arbitrary vector fields are given in Sec.(C.2)) and we find

δξh
(−1)
AB =

1
m
γAB∆ f (z) − (DADB + DBDA) f (z) . (5.4.12)
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Therefore we notice that the components h(−1)
AB which are not radiative data in higher di-

mensions are shifted under the diffeomorphisms induced by the vector field in Eq.(5.4.11).

In fact in higher dimensions (m > 1) the boundary conditions of Eq.(5.4.6) imply that

components of hAB at O (r) should vanish, hence right hand side of Eq.(5.4.12) should be

zero. This imposes a constraint on the functional form of f , which now can not be any

arbitrary function of 2m-sphere coordinates. The only allowed solutions of the vector field

~ξ are those of D number of Poincare translations.

So we find that supertranslation symmetries are not compatible because of the bound-

ary conditions specified in Eq.(5.4.6) for higher dimensions. In four dimension the order

of the radial coordinate at which radiative modes occur and supertranslation vector field

acts on the radiative phase space at null infinity are exactly same. This is the reason for

the existence of enhanced asymptotic symmetry group in four dimensional asymptoti-

cally flat spacetimes. Clearly in higher dimensions existence of supertranslation symme-

tries depend on the boundary conditions specified - usual fall-off conditions that follow

from saddle point analysis rule out supertranslation symmetries but there may be other

boundary conditions that can allow supertranslation symmetries to exist. We explore such

possibilities in the next sub-section.

5.4.4 Relaxed boundary conditions

For supertranslations to exist in higher dimensions we have to relax the boundary condi-

tions specified in Eq.(5.4.6) and choose less restrictive fall off conditions of metric per-

turbations. Here we show how to obtain the appropriate boundary conditions to meet the

purpose.

From the analysis in the previous sub-section it is understood that we can not set the

components h(−1)
AB to zero. Therefore our first try will be to keep the O (r) components of

hAB non-zero in higher dimensions while keeping the fall-off conditions of the other metric
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perturbations same as in Eq.(5.4.6). We present the calculations of linearized gravity

equations in six dimension in Sec.(C.3). In six dimensions we find h(−1)
AB components are

independent of u and h(0)
AB contain the free propagating modes of graviton as expected from

the saddle point analysis. But there are problems coming from the equations satisfied by

h(−1)
AB which are

h(−1)
AB =

1
4
∆h(−1)

AB , DBh(−1)
AB = 0. (5.4.13)

These equation imply that h(−1)
AB can have only particular solutions of sphere coordinates

and hence the functional form of f in Eq.(5.4.11) can not be arbitrary. Therefore super-

translations can again be ruled out in this case2.

Hence we find that in any dimesnions keeping only h(−1)
AB non vanishing without relaxing

the fall off conditions of other metric perturbations is not helpful because we get the

following constraint on f (z)

DA

(
1

2m
∆ f (z) + f (z)

)
= 0 (5.4.14)

which follows from the divergence-free condition, DAh(−1)
AB = 0. Therefore we need to

look for the boundary conditions that will remove the constraint given in Eq.(5.4.14) on

f (z).

Supertranslations in higher dimensions

The above constraint can be avoided by modifying the fall off behavior of hAr as hAr ∼

O
(
r−1

)
in higher dimensions. This removes the divergence-free condition of DAh(−1)

AB = 0

and we get

DBh(−1)
AB − ∂uh(1)

Ar = 0. (5.4.15)

2One may think of modifying the equations (5.4.13) by allowingO
(
r0

)
term h(0)

uA but because of covariant
gauge condition, Oµh̄µA = 0 we get back equations (5.4.13).
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In this way we can continue to find the suitable fall off conditions of the metric perturba-

tions, mostly by trial and error method, without spoiling the supertranslation symmetries

in higher dimensions. In general we can adopt the fall-off conditions as

hAr ∼ O
(
r−1

)
, hrr ∼ O

(
r−1

)
, hAB ∼ O (r) . (5.4.16)

Some details of this calculation have been presented in Sec.(C.4.1). It is evident that to

have supertranslation symmetries in higher dimensions boundary conditions should be

such that along with the propagating modes of graviton (which are u dependent) many

non-propagating metric fluctuations also need to be present.

Covariant phase space charge Let us calculate the covariant phase space charge from

the vector field described in Eq.(5.4.11) at the asymptotic null infinity. We can still choose

radiation gauge given in Eq.(5.3.3) to fix the residual gauge degrees of freedom, but there

is a subtlety involved here. We have to keep h(0)
uA non-zero because otherwise we will get

�ξA = 0 ⇒ (1 − m)
[
DA

(
1

2m
∆ f + f

)
+ ∂uξ

A (2)
]

= 0, (5.4.17)

LξguA = 0 at O (1) ⇒ DA

(
1

2m
∆ f + f

)
− γAC∂uξ

C (2) = 0. (5.4.18)

Eq.(5.4.17) and Eq.(5.4.18) combined together give back Eq.(5.4.14), DA

(
1

2m∆ f (z) + f (z)
)

=

0 for m , 1. It can be checked that the components h(0)
uA can not be expressed in terms of

the radiative modes h(m−2)
AB and hence are also non-propagating like h(−1)

AB .

Details of calculation of the gravitational part of the covariant phase space charge at null

infinity for higher dimensions have been given in Sec.(C.4.2). Because of the presence of

non-propagating modes of metric perturbations calculation of gravitational contribution to

the asymptotic charge at null infinity is more complicated in higher dimensions than that

in four dimension. One major problem is many divergent terms appear in the computation

of the charge. It is expected that divergent terms vanish to give finite asymptotic charge
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and the finite charge should then give rise to soft graviton theorem. In Sec.(C.4.3) we

have made an attempt to compute the asymptotic soft charge in six dimension. At this

stage we are unable to derive the expected expression of the charge corresponding to the

soft graviton theorem and leave it for further investigation.

Hard charge Calculation of matter contribution to the asymptotic covariant charge is

straightforward. For massless scalar coupled to gravity described in Sec.(5.2.2) the hard

charge at I + can be given by

Qmatter +
ξ =

∫
I +

dudΩ2m f (z) φ̇2. (5.4.19)

Similar expression can be obtained at past null infinity, I − also.

Note If we choose the stringent boundary conditions (5.4.6) following from saddle point

analysis then we obtain the trivial result that gravitational part of the asymptotic charge

vanishes [18]. This is expected because the allowed translations at null infinity are only

rigid Poincare translations which satisfy the following equations

DB

[
1
m
γAB∆ f (z) − (DADB + DBDA) f (z)

]
= DA

[
1

2m
∆ f (z) + f (z)

]
= 0. (5.4.20)

Under the rigid spacetime translations radiative data remain unaffected in higher dimen-

sions, hence there is no physical gauge transformations happening in the radiative phase

space at null infinity.

However we will still get hard part of the asymptotic charge coming from the matter

contribution. These conserved charges satisfy the trivial Ward identities at asymptotic

null infinity

〈out|Qmatter +
ξ S − S Qmatter −

ξ |in〉 = 0 (5.4.21)

which imply the conservation of total energy and momenta.
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5.4.5 Discussion

In this section we have explored the possibilities of having supertranslation symmetries

for asymptotically flat spacetimes in dimensions greater than four. From the analysis in

Sec.(5.4.2) it is clear that with the boundary conditions adopted from the saddle point

approximation near null infinity supertranslation symmetries can be shown to be incon-

sistent in higher dimensions. To allow for the existence of supertranslations we have

to specify alternative boundary conditions. In higher dimensions free radiative compo-

nents of metric fluctuations are given by the spherical components, h(m−2)
AB which fall off

as r−(m−2) as r → ∞ but supertranslations act on h(−1)
AB which are linear in r. Therefore the

boundary conditions be such that h(−1)
AB should be present although these components do

not depend on the retarded time u and hence are not dynamical. Then we see in Sec.(5.4.4)

that for consistencies we also need to relax fall-off behavior of other components of met-

ric perturbations. Relaxed boundary conditions lead to appearance of divergent terms in

the asymptotic conserved charges at null infinity. It is expected that divergent part of the

charges vanishes and the finite contribution in the limit r → ∞ matches with the soft

charges [16].

In our analysis we have considered Laurent series expansions of metric perturbations in

radial coordinates. However the fall-off conditions may also involve transcendental func-

tions. We leave it for future study to show if it is possible to obtain the correct expression

of the soft charges using any transcendental functional form of metric perturbations.

In principle our analysis is valid for odd dimensions also. Although the are subtleties

with the conformal null infinity in odd dimensions [64, 95–97] but in perturbative gravity

we can consider asymptotic null infinity as the limit r → ∞. In odd dimensions met-

ric perturbations will have half-integer fall-off in radial coordinate. In the large r limit

there is a (D − 2)-dimensional sphere integral which contains r(D−2), because of this it

is hard to obtain any finite expression for soft charge as r → ∞. If we consider only
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spacetime translations then there are finite asymptotic hard charges which correspond to

conservation of energy and momenta.



6 Conclusion

In this thesis we have studied some aspects of soft graviton theorems in arbitrary dimen-

sions. Modern techniques of calculating scattering amplitudes in Quantum Field Theory

have played significant roles in the development and better understanding of soft theorems

in general. We have focused on one such remarkable formalism pioneered by Cachazo,

He and Yuan to compute scattering amplitudes for several massless theories containing

scalars, gluons and gravitons using mathematics of moduli spaces and complex analysis.

Cachazo-He-Yuan (CHY) formalism provides a sophisticated tool for studying scattering

amplitudes without going through the cumbersome computations of Feynman diagrams.

On the other hand several important aspects of scattering amplitudes have become mani-

fest from this formalism. Dualities and double-copy relations among theories like gravity

and Yang-Mills can be made more precise, Kawai-Lewellen-Tye (KLT) orthogonality re-

lations which were originally discovered in the context of open and closed string ampli-

tudes can be shown to hold in the field theory limit in CHY representations. In the field

theory limit elements of KLT matrix is related to S-matrix elements of a particular type

of scalar theory with cubic interactions known as bi-adjoint φ3 where the scalar fields,

φaa′ live in the adjoint representations of two unitary groups U(N) × U(Ñ). Scattering

equations and building blocks are the essential ingredients of CHY formulation. Punc-

tures on the Riemann sphere correspond to external massless states, using the scattering

equations one can solve for the location of the punctures in terms of kinematic variables

of the external states. Building blocks are expressed in terms of the punctures and kine-

matic variables of the external particles. These building blocks are different for different

115



116 Conclusion

theories.

Another remarkable outcome of CHY formalism is that soft factorization properties of

scattering amplitudes can be studied with great convenience. In the soft limits integrations

on the moduli space become contour integrals in the complex plane. In chapter 4 we

have studied double soft limits of scattering amplitudes for Yang-Mills and pure gravity.

Punctures on the complex spheres are denoted by σa, for n external particles carrying

finite energies a ∈ {1, 2, . . . , n} and for soft particles a ∈ {n + 1, n + 2}. Here we consider

simultaneous soft limits where both the soft momenta kn+1 and kn+2 scale as τ and we take

the limit τ→ 0. Then we have to consider two situations:

• non-degenerate case - when |σn+1 − σn+2| ∼ O
(
τ0

)
, then contour integrals for σn+1

and σn+2 can be calculated independently of each other,

• degenerate case - when |σn+1 − σn+2| ∼ O (τ), then the two punctures coalesce.

There is now effectively one contour integration.

In case of double soft scalar theorems contributions from degenerate solutions of scat-

tering equations dominate over that from non-degenerate solutions. But for Yang-Mills

and gravity we find contributions from non-degenerate solutions appear at leading order.

In fact many terms coming from non-degenerate and degenerate contributions mutually

cancel each other.

We obtain the double soft factorization of gravity amplitude to sub-leading order as

lim
τ→0

Mn+2 ({ka}, τp, τq) =

[
1
τ2 S (0) (p) S (0) (q)

+
1
τ

{
S (0) (p) S (1) (q) + S (0) (q) S (1) (p) + S contact

}]
Mn ({ka})

. (6.0.1)

S (0) and S (1) are the leading and sub-leading single soft factors respectively. At sub-

leading order of double soft factor there is a contact term whose expression is given in
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Eq.(4.4.28). This third term appears because S (0) and S (1) factors do not commute, S contact

is required to maintain gauge invariance of the sub-leading double soft factor. We have

also given interpretations of the terms in the double soft factor for gravity from Feynman

diagrammatic. It will be interesting to derive Ward identities of gravitational S-matrix for

the double soft theorem in the simultaneous soft limit from asymptotic symmetries at null

infinity of asymptotically flat spacetimes.

In the next part of the thesis we have explored some issues related to asymptotic sym-

metries, particularly supertranslations, for asymptotically flat spacetimes in dimensions

greater than four. In four dimension due to the existence of supertranslations there is an

enhancement of asymptotic symmetry group acting at null infinity. Under supertransla-

tions h(−1)
AB components of metric perturbations are shifted as

δ f h
(−1)
AB =

2
D − 2

γAB∆ f − (DADB + DBDA) f , (6.0.2)

where D is the dimension of spacetime, γAB is the metric on (D − 2)-dimensional sphere,

∆ and DA are laplacian and covariant derivative compatible with γAB and f is any arbitrary

function of sphere coordinates corresponding to supertranslations. In four dimension h(−1)
AB

are the free unconstrained data representing graviton modes. One can construct conserved

charges at asymptotic null infinity from the supertranslation symmetries using covariant

phase space formalism. These charges act on the incoming and outgoing scattering states

at I − and I + respectively and insert soft graviton mode in the S-matrix elements. In

this way Weinberg’s soft graviton theorem and supertranslation symmetries are related to

each other in four dimension.

In chapter 5 we have tried to obtain asymptotic charges from supertranslation symmetries

in higher dimensions. In dimensions greater than four h(−1)
AB are not the radiative com-

ponents, they do not depend on retarded time u; free radiative data are given by h(m−2)
AB

which have asymptotic fall-off behavior of r−(m−2) with m > 1. It is evident that if we

adopt boundary conditions compatible with fall-off behavior following from saddle point
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analysis at large r then supertranslation symmetries can be ruled out. To allow for su-

pertranslations in higher dimensions h(−1)
AB components have to unconstrained. However

we find boundary conditions of other components of metric perturbations also have to be

relaxed, otherwise we get a constraint on h(−1)
AB given by

DAh(−1)
AB = 0, (6.0.3)

which will again rule out existence of supertranslations.

With the restricted boundary conditions following from saddle point analysis, Poincare

symmetries are the only allowed asymptotic symmetries. Then it can be checked δ f h
(−1)
AB =

0 follow from rigid translations. Since there is non-trivial diffeomorphisms therefore grav-

itational charges vanish at null infinity. If we relax the boundary conditions consistently

then we recover supertranslation symmetries but then there are many non-propagating

components of metric perturbations which are u independent. The problem with relaxing

the fall-off conditions is that while calculating asymptotic charges there appear divergent

terms. It is expected that divergent part of the charges will vanish and finite contribution

will produce the correct expression of the gravitational charges at null infinity which will

match with leading soft graviton theorem in higher dimensions. It will be an interesting

future study to obtain such finite gravitational asymptotic charges from supertranslation

symmetries.



A Appendix of chapter 2

A.1 Soft gluon theorem from Feynman diagram

We will need following Feynman rules

p
−→

a, µ b, ν = −iδab ηµν
p2−iε

↓ k

p↗ ↖ q

a, µ

b, ν c, ρ

= g f abc [ηµν (k − p)ρ + ηνρ (p − q)µ

+ηρµ (q − k)ν
]

a, µ b, ν

c, ρ d, σ

= − ig2
[
f abe f cde (ηµρηνσ − ηµσηνρ)

+ f ace f bde (ηµνηρσ − ηµσηνρ)

+ f ade f bce (ηµνηρσ − ηµρηνσ)
]

In the single soft limit the relevant Feynman diagram is
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A.1.1 Feynman diagram

b′, ν′

−(pi+kn+1)
−−−−−−−→

b, ν V3

pi
←−

ai, ρ

↓ kn+1

an+1, µ

lim kn+1 → 0 :

Vµνρ
3 = g f an+1bai

[
ηµν (2kn+1 + pi)ρ + ηνρ (−2pi − kn+1)µ + ηρµ (pi − kn+1)ν

]
= g f an+1bai

[
ηµνpρi − 2ηνρpµi + ηρµpνi

]
+ O (kn+1) . (A.1.1)

The above diagram can be evaluated as

An

(
ib′

)
ν

(−i) δb′bην′ν
2kn+1 · pi

g f an+1bai
[
ηµνpρi − 2ηνρpµi + ηρµpνi

]
εn+1,µεi,ρ

= ig f baian+1
εn+1 · pi

kn+1 · pi
ενiAn

(
ib
)
ν

= ig f baian+1
εn+1 · pi

kn+1 · pi
An

(
ib
)
. (A.1.2)

The last term in the square bracket vanishes due to Ward identity. Therefore soft factor-

ization is given by

An+1 =
∑

b

n∑
i=1

ig f baian+1
εn+1 · pi

kn+1 · pi
An

(
ib
)
. (A.1.3)
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B.1 Feynman rules

B.1.1 Feynman Rules for EM

The Feynman rules for Yang-Mills theory coupled to gravity have been derived in [104].

In the same way Feynman rules for Einstein Maxwell theory coupled to gravity can be

derived.

k
−→

µ ν −
i ηµν
k2+iε

↖ k1 ↗ k2

↓ k3

µ ν

αβ

−i κ
[
(ηµαηνβ + ηµβηνα − ηµνηαβ)k1.k2 + ηµν(k1αk2β + k1βk2α)

− k1νk2µηαβ − k1ν(ηµαk2β + ηµβk2α) − k2µ(ηναk1β + ηνβk1α)
]

B.1.2 Feynman Rules for Gravity

The Feynman rules for three and four point vertices are given in [88]. Using Eq.(4.2.5)

we can write
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gµν = ηµν − κ hµν + κ2hµαh ν
α + O(κ3) (B.1.1)

and

√
−g = 1 +

κ

2
h +

κ2

8

(
h2 − 2 hαβhαβ

)
+ O(κ3) (B.1.2)

where h = hαα. The Ricci scalar can be expanded as

R = κ
(
�h − ∂µ∂νhµν

)
+ κ2

(
1
4
∂µh∂µh − ∂µhµν∂νh + ∂µhµν∂ρhνρ −

3
4
∂µhνρ∂µhνρ

+
1
2
∂µhνρ∂νhµρ + 2 hµν∂µ∂ρhρν − hµν�hµν

)
+ O(κ3). (B.1.3)

We work in harmonic (de Donder) gauge, where

hαµ,α −
1
2

h,µ = 0. (B.1.4)

Then the resulting graviton propagator, three and four point vertices are:

k
−→

αβ γδ
= −

i
2
ηαγηβδ + ηαδηβγ − ηαβηγδ

k2 − iε

↖ k1 ↗ k2

↓ k3

µα νβ

σγ
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= sym
[
−

1
2

P3(k1.k2 ηµαηνβησγ) −
1
2

P6(k1νk1βηµαησγ) +
1
2

P3(k1.k2 ηµνηαβησγ)

+ P6(k1.k2 ηµαηνσηβγ) + 2P3(k1νk1γηµαηβσ) − P3(k1βk2µηανησγ)

+ P3(k1σk2γηµνηαβ) + P6(k1σk1γηµνηαβ) + 2P6(k1νk2γηβµηασ)

+ 2P3(k1νk2µηβσηγα) − 2P3(k1.k2ηανηβσηγµ)
]

↖ k1 ↗ k2

↙ k3 ↘ k4

µα νβ

σγ ρλ

= sym
[
−

1
4

P6(k1.k2 ηµαηνβησγηρλ) −
1
4

P12(k1νk1βηµαησγηρλ) −
1
2

P6(k1νk2µηαβησγηρλ)

+
1
4

P6(k1.k2 ηµνηαβησγηρλ) +
1
2

P6(k1.k2 ηµαηνβησρηγλ) +
1
2

P12(k1νk2βηµαησρηγλ)

+ P6(k1νk2µηαβησρηγλ) −
1
2

P6(k1.k2 ηµνηαβησρηγλ) +
1
2

P24(k1.k2 ηµαηνσηβγηρλ)

+
1
2

P24(k1νk1βηµσηαγηρλ) +
1
2

P12(k1σk2γηµνηαβηρλ) + P24(k1νk2σηβµηαγηρλ)

− P12(k1.k2 ηανηβσηγµηρλ) + P12(k1νk2µηβσηγαηρλ) + P12(k1νk1σηβγηµαηρλ)

− P24(k1.k2 ηµαηβσηγρηλν) − 2P12(k1νk1βηασηγρηλµ) − 2P12(k1σk2γηαρηλνηβµ)

− 2P24(k1νk2σηβρηλµηαγ) − 2P12(k1σk2ρηγνηβµηαλ) + 2P6(k1.k2 ηασηγνηβρηλµ)

− 2P12(k1νk1σηµαηβρηλγ) − P12(k1.k2 ηµσηαγηνρηβλ) − 2P12(k1νk1σηβγηµρηαλ)

− P12(k1σk2ρηγληµνηαβ) − 2P24(k1νk2σηβµηαρηλγ) − 2P12(k1νk2µηβσηγρηλα)

+ 4P6(k1.k2 ηανηβσηγρηλµ)
]



124 Appendix of chapter 3

where “sym” stands for symmetrization between (µ, α); (ν, β); (σ, γ); (ρ, λ) and the symbol

Pm denotes m number of distinct permutations between the indices (k1, µ, α); (k2, ν, β); (k3, σ, γ); (k4, ρ, λ).

B.2 Yang Mills

Ψn+2 (1, 2, . . . , i, . . . , j . . . , n) =
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(B.2.1)

In the double soft limit Pfaffian can be expressed as

Pf’Ψn+2 = −CiiC j jPf’Ψn
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= −

 n∑
a=1

εi · ka

σi − σa

  n∑
b=1

ε j · kb

σ j − σb

 Pf’Ψn. (B.2.2)

The Park-Taylor factor can be factorized as

Cn+2 =
(σi−1 − σi+1)

(
σ j−1 − σ j+1

)
(σi−1 − σi) (σi − σi+1)

(
σ j−1 − σ j

) (
σ j − σ j+1

)Cn. (B.2.3)

B.3 Details of double soft factorization for gravity

B.3.1 Non-degenerate solutions

The reduced determinants in Eq.(4.4.12) are given by

Ψ̃ a
n+1 = (−1)n (

Cn+2,n+2
)2 Cn+1,n+1

n∑
b=1

[
(−1)b εn+1 · kb

σn+1 − σb
Ψ a

b + (−1)n+b εn+1 · εb

σn+1 − σb
Ψ a

n+b

]
Ψ̃ a

n+2 = (−1)n+1 (
Cn+1,n+1

)2 Cn+2,n+2

n∑
b=1

[
(−1)b εn+2 · kb

σn+2 − σb
Ψ a

b + (−1)n+b εn+2 · εb

σn+2 − σb
Ψ a

n+b

]
Ψ̃ 2n+3

n+1 =
(
Cn+2,n+2

)2
n∑

a=1

n∑
b=1

[
p · kb

σn+1 − σb

(
(−1)n+a+b+1 εn+1 · ka

σn+1 − σa
Ψ a

b + (−1)a+b εa · εn+1

σa − σn+1
Ψ n+a

b

)
+

εb · p
σb − σn+1

(
(−1)a+b εn+1 · ka

σn+1 − σa
Ψ a

n+b + (−1)n+a+b+1 εa · εn+1

σa − σn+1
Ψ n+a

n+b

)]
Ψ̃ 2n+4

n+2 =
(
Cn+1,n+1

)2
n∑

a=1

n∑
b=1

q · kb

σn+2 − σb

[
(−1)n+a+b+1 εn+2 · ka
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Ψ a

b + (−1)a+b εa · εn+2

σa − σn+2
Ψ n+a

b

]
Ψ̃ n+2+a

n+1 = (−1)nCn+1,n+1
(
Cn+2,n+2

)2
n∑

b=1

[
(−1)b εn+1 · kb
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Ψ n+a

b + (−1)n+b εn+1 · εb

σn+1 − σb
Ψ n+a
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]
Ψ̃ a

n+a =
(
Cn+1,n+1

)2 (
Cn+2,n+2

)2 Ψ a
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Ψ̃ n+2+a
a =

(
Cn+1,n+1

)2 (
Cn+2,n+2

)2 Ψ n+a
a (B.3.1)
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Plugging back these expressions we obtain Eq.(4.4.13).Now using the relation Ψ a
b = −Ψ b

a

which holds because of the antisymmetric property and the following result

Iab =

∮
dσn+1

n∑
c=1

εn+1·kc
σn+1−σc

n∑
d=1

p·kd
σn+1−σd

1
(σn+1 − σa) (σn+1 − σb)

=


εn+1·ka

p·ka

1
σa−σb

+ εn+1·kb
p·kb

1
σb−σa

, a , b

n∑
d=1
d,a

1
σa−σd

[
εn+1·kd

p·ka
−

(p·kd)(εn+1·ka)
(p·ka)2

]
, a = b

(B.3.2)

we get the first part in Eq.(4.4.14) multiplying S (0)(q) factor. Similarly one can obtain the

other part.

Now we consider the action of S (1) factor on the determinant In.

S (1)(p)In = 2
n∑

a=1
a,b

n∑
b=1

1
σa − σb

(
S (1)

b (kb · ka) (−1)a+bΨ a
b + S (1)

b (εb · εa) (−1)a+bΨ n+a
n+b

+
[
S (1)

b (εb · ka) + S (1)
a (ka · εb)

]
(−1)n+a+bΨ a

n+b

+
[
S (1)

b (kb · εa) + S (1)
a (εa · kb)

]
(−1)nΨ a

n+a

 (B.3.3)

The action of S (1)
b on the momentum part and polarization part are given by

S (1)
b (p)kβb =

εn+1, ανkαb pµ
p · kb

k[µ
b

∂kβb
∂kb,ν]

S (1)
b (p)εβb =

εn+1, ανkαb pµ
p · kb

(
ηνβδµσ − η

µβδνσ
)
εσb (B.3.4)
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The gauge fixing conditions reduce Eq.(B.3.3) to the first term of Eq.(4.4.14). The other

term can be calculated in analogous way.

B.3.2 Soft Factor from Pole at Infinity

Deforming the contour around the pole at infinity, the leading order expression can be

derived to be

(MN)∞ =

∮
dρ
2πi

∫
dµn

−2ρ−3

3τ4(p.q)2

(
IN |ξ=2iρ + IN |ξ=−2iρ

)
. (B.3.5)

In case of gravity there exists a simple pole at ρ = ∞. The equation fn+1 − fn+2 = 0 leads

to ξ = ±2iρ + O(1). Then the Pfaffian of Ψn+2 can be expanded as

Pf′(Ψn+2) =
τ2 p.q εn+1.εn+2

4ρ2 Pf′(Ψn) + O

(
1
ρ4

)
. (B.3.6)

Then from Eq.(B.3.5) we get

(Mn+2)∞ = −
1
3

(εn+1.εn+2)2Mn (B.3.7)

which is clearly sub-leading in order τ as compared to Eq.(4.4.28).
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C.1 Derivation of delta function in Eq.(5.3.39)

u integration over the charge gives a tensor structure of the form

szz (z, z̄; zk, z̄k) =
1

(1 + zkz̄k)
(z̄ − z̄k)

(1 + zz̄) (z − zk)
. (C.1.1)

Covariant derivatives act on this tensor as

DzDzszz = γzz̄γzz̄D2
z̄ szz = γzz̄∂z̄

(
γzz̄∂z̄szz

)
. (C.1.2)

The only non-zero Christoffel is Γz̄
z̄z̄ = γzz̄∂z̄γzz̄. Now using ∂z̄

1
(z−zk) = 2πδ(2) (z − zk) we

obtain

∂z̄

(
γzz̄∂z̄szz

)
=

1
2

(
1 + zz̄

1 + zkz̄k

)
2πδ(2) (z − zk) . (C.1.3)

C.2 Metric variations

For any general vector fields, ~ξ = ξu∂u + ξr∂r + ξA∂A variations of metric perturbations

under ~ξ can be given by the following equations:

LξgAB = r2 (γACDB + γBCDA) ξC + 2rγABξ
r

129
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LξgAr = r2γAC∂rξ
C − DAξ

u

Lξgrr = −2∂rξ
u

Lξguu = −2∂u (ξu + ξr)

Lξgur = −∂u (ξu + ξr) − ∂rξ
r

LξguA = r2γAC∂uξ
C − DA (ξu + ξr) . (C.2.1)

Here A denotes the spherical coordinates.

C.3 Calculations of linearized gravity equations

In six dimension we can expand the metric perturbations as

hrr =
1
r4 h(4)

rr + . . .

hAr =
1
r2 h(2)

Ar +
1
r3 h(3)

Ar + . . .

hAB = rh(−1)
AB + h(0)

AB +
1
r

h(1)
AB + . . . (C.3.1)

Then from the linearized gravity equations (5.1.22) we get the following relations

• �hAB = 0

O(1) : ∂uh(−1)
AB = 0

O(r−1) : h(−1)
AB =

1
4
4h(−1)

AB

O(r−2) : ∂uh(1)
AB = (−

1
2
4 + 2)h(0)

AB

O(r−3) : ∂uh(2)
AB = −

1
4
4h(1)

AB +
1
2

h(1)
AB −

1
2

(
DAh(2)

Br + DBh(2)
Ar

)
(C.3.2)
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• �hAr = 0

O(r−2) : DBh(−1)
AB = 0

O(r−3) : ∂uh(2)
Ar = DBh(0)

AB

O(r−4) : ∂uh(3)
Ar =

1
4

(7 − 4)h(2)
Ar +

1
2

DBh(1)
AB (C.3.3)

• �hrr = 0

O(r−5) : ∂uh(4)
rr = DAh(2)

Ar −
1
2

qABh(1)
AB (C.3.4)

From the above equations it is evident that h(−1)
AB is independent of u and no other compo-

nents of metric perturbations depend on h(−1)
AB .

C.4 Perturbative gravity in higher dimensions

We assume the fall off conditions are

huu =

∞∑
n=1

r−nh(n)
uu , hur =

∞∑
n=1

r−nh(n)
ur , huA =

∞∑
n=1

r−nh(n)
uA,

hrr =

∞∑
n=1

r−nh(n)
rr , hrA =

∞∑
n=1

r−nh(n)
rA , hAB =

∞∑
n=−1

r−nh(n)
AB. (C.4.1)

C.4.1 Leading order computation

Matter part of stress energy tensor has faster fall-off in r. Therefore from linearized gravity

equations (5.1.22) we obtain

(1 − m) ∂uh̄(1)
uu = 0

(1 − m) ∂uh̄(1)
ur = 0
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2 (2 − m) ∂uh̄(2)
rr + (2 − 6m + ∆) h̄(1)

rr + 4mh̄(1)
ur + 2γCBh̄(−1)

CB = 0

(2 − m) ∂uh̄(1)
uA − ∂A

(
h̄(1)

uu − h̄(1)
rr

)
= 0

(2 − m) ∂uh̄(1)
rA − ∂A

(
h̄(1)

ur − h̄(1)
rr

)
− DCh̄(−1)

CA = 0

(1 − m) ∂uh̄(−1)
AB = 0. (C.4.2)

Harmonic gauge condition yields

∂uh̄(1)
ur = 0

∂uh̄(1)
rr = 0

∂uh̄(1)
rA − DBh̄(−1)

BA = 0. (C.4.3)

Since h̄ = ηµνh̄µν = h̄rr − 2h̄ur + r−2γABh̄AB, so combining above equations we can show

for m , 1

∂uh̄(1) = 0 ⇒ ∂uh(1) = 0. (C.4.4)

This in turn implies h(1)
uu , h

(1)
ur , h

(1)
rr and h(−1)

AB are independent of u.

C.4.2 Charge in higher dimensions (m > 2)

We will use the radiation gauge fixing condition, however in higher dimensions h(0)
uA can

not be set to zero which otherwise rules out the existence of supertranslation symmetry.

Equation of motion implies ∂uh(0)
uA = 0 for m , 1.

Expression of asymptotic conserved charge in D = 2 + 2m dimension is

Qξ = lim
t→∞

1
16πG

∫
I +

dud2mz r2m
[
Γt
νλδξh

νλ − hνλδξΓt
νλ

]
.
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Non-zero components of Γt
ab [h] are

Γt
rr =

1
2
∂uhrr

Γt
Ar =

1
2
∂uhAr +

1
r

h(0)
uA

Γt
AB =

1
2
∂uhAB −

1
2

(
DAh(0)

uB + DBh(0)
uA

)
. (C.4.5)

and

δξhrr = 2 (∂r − ∂u) ξr = −

∞∑
n=1

2n
rn+1 ξ

r (n) −

∞∑
n=1

2
rn∂uξ

r (n),

δξhAr = (∂r − ∂u) ξA +
1
r2 DAξr =

2
r2 DA

(
1

2m
∆ f + f

)
−

∞∑
n=2

1
rn+1

[
nξA (n) + ∂uξ

A (n+1)
]

+

∞∑
n=1

1
rn DAξr (n),

δξhAB =
1
r2

(
DAξB + DBξA

)
+

2
r3γ

ABξr = −
1
r3

[(
DADB + DBDA

)
f −

1
m
γAB∆ f

]
+

∞∑
n=2

1
rn+2

[
DAξB (n) + DBξA (n)

]
+

∞∑
n=1

2
rn+3γ

ABξr (n). (C.4.6)

Variation of Christoffel symbols in the second term of the charge can be calculated to be

δξΓ
t
ur = ∂r∂u (ξu + ξr) =

∞∑
n=1

1
rn∂r∂u

(
ξu (n) + ξr (n)

)
,

δξΓ
t
uu = ∂2

u (ξu + ξr) =

∞∑
n=1

1
rn∂

2
u

(
ξu (n) + ξr (n)

)
,

δξΓ
t
uA = DA∂u (ξu + ξr) =

∞∑
n=1

1
rn DA∂u

(
ξu (n) + ξr (n)

)
,

δξΓ
t
rr = ∂2

r (ξu + ξr) =

∞∑
n=1

n (n + 1)
rn+2

[
ξu (n) + ξr (n)

]
,

δξΓ
t
Ar = r∂r

(
1
r

DA (ξu + ξr)
)

= −
1
r

DA

(
f +

1
2m

∆ f
)
− (n + 1)

∞∑
n=1

1
rn+1 DA

(
ξu (n) + ξr (n)

)
,

δξΓ
t
AB = DADB (ξu + ξr) + rγAB (∂r − ∂u) (ξu + ξr) = DADB

(
f +

1
2m

∆ f
)

+

∞∑
n=1

1
rn

(DADB − nγAB)
(
ξu (n) + ξr (n)

)
−

∞∑
n=1

1
rn−1∂u

(
ξu (n) + ξr (n)

)
.
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(C.4.7)

Again we know

hrr = huu = −hru = hrr,

hrA = −huA =
1
r2γ

ABhrB,

hAB =
1
r4γ

AMγBNhMN . (C.4.8)

C.4.3 Charge in 6 dimension

The finite contribution is

Qξ, finite =
1

16πG

∫
I +

dud4z
[
−∂uh(2)

rr

(
ξr (1) + ∂uξ

r (2)
)
− ∂uh(3)

rr ∂uξ
r (1)

+∂uh(2)
Ar DA

(
1
4
∆ f + f

)
− ∂uh(1)

Ar

(
ξA (2) +

1
2
∂uξ

A (3)
)

+
1
2
∂uh(1)

Ar DAξr (3) +
1
2
∂uh(2)

Ar DAξr (2)

+
1
2
∂uh(3)

Ar DAξr (1) − h(0)
uA

(
2ξA (2) + ∂uξ

A (3) − DAξr (3)
)

−
1
2
∂uh(1)

AB

(
DADB f + DBDA f −

1
2
γAB∆ f

)
+

1
2
∂uh(0)

AB

(
DAξB (2) + DBξA (2)

)
−

1
2

(
DAh(0)

uB + DBh(0)
uA

) (
DAξB (2) + DBξA (2) − 2γABξr (1)

)
+h(1)

rr ∂r∂u

(
ξu (3) + ξr (3)

)
+ h(2)

rr ∂r∂u

(
ξu (2) + ξr (2)

)
+ h(3)

rr ∂r∂u

(
ξu (1) + ξr (1)

)
−h(1)

rr ∂
2
u

(
ξu (3) + ξr (3)

)
− h(2)

rr ∂
2
u

(
ξu (2) + ξr (2)

)
− h(3)

rr ∂
2
u

(
ξu (1) + ξr (1)

)
+γABh(1)

rB

{
DA∂u

(
ξu (1) + ξr (1)

)
+ DA

(
1
4
∆ f + f

)}
− 2h(1)

rr

(
ξu (1) + ξr (1)

)
−γAmγBNh(0)

MN

{
DA

(
1
4
∆ f + f

)
− ∂u

(
ξu (1) + ξr (1)

)}]
(C.4.9)

There are other divergent terms also.

If we restrict the fall-off conditions on the metric perturbations such that hrr ∼ O
(
r−4

)
and hAr ∼ O

(
r−2

)
we find the terms containing subleading vector fields vanish and this

also forces supetranslation symmetries to be killed. The other finite terms which contain
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f become zero because of the condition

DA

(
1
4
∆ f + f

)
= 0. (C.4.10)
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