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Synopsis

Synopsis

Introduction and Motivation

In last few decades, experiments involving precision measurements at LEP, consistency

of the top quark, discovery of Higgs boson etc., established the acceptability of standard

model (SM) as the theory of elementary particles. However, there are several reasons

to believe that the SM is not a complete theory, rather just an effective one. Among

the reasons are the theoretical argument of naturalness protecting the Higgs mass from

radiative corrections and the nature of Higgs vacuum. Experimentally, the observed matter-

antimatter asymmetry arising with SM is inconsistent with the observed baryon over photon

density. Neutrino oscillations are also regarded as the first evidence beyond SM. One also

envisages that extensions beyond the SM will also eventually explain the nature of dark

matter and dark energy. To understand the actual underlying theory, direct evidences for

various beyond standard model (BSM) particles have been searched in collider experiments;

but unfortunately, no success in this direction has been achieved to date. In this situation,
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precise measurement of various theoretical parameters that are uniquely predicted in SM is

indispensable. Any deviation observed from their predictions in SM will act as indirect

evidence for the existence of BSM physics. Along with increase in the luminosity of

beams and advancements in experimental techniques, new measurement methods are also

required in this regard. In this thesis, we have studied new measurement procedures for

two different types of theoretical parameters: a) T and CPT violation in B0 − B̄0 mixing, b)

C and P conserving dimension four WWγ vertex.

CPT invariance is one of the pillars of quantum field theory (QFT) as its violation necessi-

tates breaking of Lorentz symmetry [1] and hence, it must be tested in experiments with

high precision. Direct searches for CPT violation through difference in masses or life-times

of particle and antiparticle have been performed in several experiments; nevertheless, they

are observed to be extremely insignificant in every case since they are mostly dominated

by strong or electromagnetic interactions. Neutral pseudoscalar meson mixing, which is

a second order weak process governed by box diagrams, seems to be a very promising

candidate in this regard [2]. Though all experimental results to date are consistent with

CPT conservation, an important improvement in statistics is expected in near future. In this

thesis, we investigate the possibilities for indirect measurement of T and CPT violating

parameters in B0 − B̄0 mixing using the time-dependent indirect CP asymmetry in decays

of B0 or B̄0 to a CP eigenstate.

On the other hand, triple gauge boson interaction is a key feature of non-Abelian gauge

theories which have been used in SM to describe weak and strong interactions. Nonetheless,

triple gauge boson couplings in electroweak sector are yet to be measured with a sufficient

accuracy for scrutinizing at least one loop correction to it within the SM framework.

Radiative muon decay (µ→ eνµν̄eγ), which are expected to be produced in a large number

as the background of experiments to probe lepton-flavour-violating process µ → eγ

(like COMET, MEG, Mu2e [3]), appears to be a promising mode for probing C- and

P-conserving dimension-four WWγ vertex. In this decay mode, we have studied a new
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type of zero (other than the zeros of radiation amplitude [4]) which has not been studied so

far and it enables us a sensitive probe for WWγ vertex beyond the SM.

Measuring T and CPT violation in B0 − B̄0 mixing

The most general hamiltonian (H) describing the mixing between two flavour states B0

and B̄0 is given in terms of two 2 × 2 hermitian matrices M and Γ, respectively the mass

and decay matrices, as:

H = M −
i
2

Γ . (1)

The light (L) and heavy (H) physical states, which are actually the eigenstates of the mixing

hamiltonianH , can be expressed as linear combinations of flavour states in the following

way:

|BL〉 = cos
θ

2
|B0〉 + eiφ sin

θ

2
|B̄0〉 , |BH〉 = sin

θ

2
|B0〉 − eiφ cos

θ

2
|B̄0〉 , (2)

where θ and φ are mixing parameters and they are complex numbers in general.

Defining g± as following:

g+ = e−i t
(

M−i Γ
2

)
cos

[ (
∆M − i

∆Γ

2

)
t
2

]
, g− = e−i t

(
M−i Γ

2

)
i sin

[ (
∆M − i

∆Γ

2

)
t
2

]
, (3)

one can find the time-dependent decay amplitudes for uncorrelated or tagged neutral

mesons (both B0 and B̄0) decaying to a final state f to be:

A(B0(t)→ f ) = (g+ + g− cos θ)A f + eiφg− sin θĀ f ,

A(B̄0(t)→ f ) = e−iφg− sin θA f + (g+ − g− cos θ)Ā f ,

(4)

where M ≡ (MH + ML)/2, ∆M ≡ MH − ML, Γ ≡ (ΓH + ΓL)/2 and ∆Γ ≡ ΓH − ΓL,

A f ≡ 〈 f | H∆F=1 |B0〉 and Ā f ≡ 〈 f | H∆F=1 |B̄0〉 withH∆F=1 being the decaying hamiltonian.
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The time-dependent indirect CP asymmetry A f
CP(t) involving B-meson decays to a CP

eigenstate f is defined as:

A
f
CP(t) =

dΓ
dt (B̄0

d(t)→ f ) − dΓ
dt (B0

d(t)→ f )
dΓ
dt (B̄0

d(t)→ f ) + dΓ
dt (B0

d(t)→ f )
=

∣∣∣A (B̄0
d(t)→ f )

∣∣∣2 − ∣∣∣A (B0
d(t)→ f )

∣∣∣2∣∣∣A (B̄0
d(t)→ f )

∣∣∣2 +
∣∣∣A (B0

d(t)→ f )
∣∣∣2 .

(5)

Using the T and CPT properties of M and Γ, discussed in Ref. [5], we find that

• if CPT invariance holds, then, independently of T symmetry, θ = π/2 .

• if T invariance holds, then, independently of CPT symmetry, Imφ = 0 .

This shows that though | eiφ | = 1 is usually taken to be the condition for absence of CP

violation, it actually signifies the absence of T violation. Now, incorporating T and CPT

violation in mixing. we express the mixing parameters as:

θ =
π

2
+ ε1 + iε2 and φ = −2 βmix + iε3 , (6)

where βmix is the weak phase describing B0 − B̄0 mixing. Thus ε1 and ε2 are CPT violating

parameters whereas non-zero value of ε3 indicates T violation. Though the values for ε1, ε2

and ε3 have already been reported by the BaBar and Belle Collaborations [6], the errors

are too large to infer their existence.

For B0
d system (taking ∆Γd = 0), the indirect CP asymmetry takes the familiar expression

in the absence of T and CPT violation:

A
f
CP(t) = S sin (∆Mdt) −C cos (∆Mdt), (7)

where, S ≡
√

1 −C2 sinϕ , C ≡
|A f |

2 − |Ā f |
2

|A f |
2 + |Ā f |

2
, ϕ ≡ −2βmix − arg[A f ] + arg[Ā f ] . (8)

Here, C is called direct CP asymmetry and ϕ is the measured weak phase.

However, if T and CPT violations are present in mixing, the time dependent CP asymmetry
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takes a very complicated form. Nevertheless, since ε1,2,3 and yd (≡ ∆Γd/2Γd) are expected

as well as measured to be very small [6, 7], the CP asymmetry can be expanded in a

relatively easier expression by keeping only terms at most linear in those parameters as

follows:

A
f
CP/CPT (t) ' c0 + c1 cos(∆Mdt) + c2 cos(2∆Mdt) + s1 sin(∆Mdt)

+ s2 sin(2∆Mdt) + c′1 Γd t cos(∆Mdt) + s′1 Γd t sin(∆Mdt)
(9)

The coefficients of various time dependent terms in the CP asymmetry act as observables.

Using the five observables c0, c1, c2, s1 and s2 one can analytically solve for five unknown

parameters C, sinϕ and ε1,2,3 from the following equations:

C = −(c0 + c1 + c2) , (10)

sin4 ϕ − 2
( s1 + 2s2

2 −C2

)
sin3 ϕ + 4C

(
C +

c2

2 −C2

)
sin2 ϕ

− 4
(2C2(s1 + s2) − s2

2 −C2

)
sinϕ −

( 8C c2

2 −C2

)
= 0 , (11)

ε1 = c0 secϕ −
(2 − sin2 ϕ)(c2 sinϕ + 2C s2)

(4C2 + sin2 ϕ) sinϕ cosϕ
, (12)

ε2 =
2 (2C c2 − s2 sinϕ)
(4C2 + sin2 ϕ) sinϕ

, (13)

ε3 =
2 (c2 sinϕ + 2C s2)
(4C2 + sin2 ϕ) sinϕ

. (14)

The observables c′1 or s′1 can be used for alternative measurement of yd .

In the absence of CPT violation (ε1 = ε2 = 0), the coefficients c0, c2 and s2 can be expressed

in terms of the measured quantities c1, s1 and ε3 by eliminating C and sinϕ as follows:

c0 = ε3

[
1 −

2s2
1

(2 − c2
1 + ε2

3 )2

]
, c2 =

2s2
1 ε3

(2 − c2
1 + ε2

3 )2
, s2 = −

2s1 (c1 + ε3) ε3

(2 − c2
1 + ε2

3 )
. (15)

As an example, using the measured values of c1, s1 and ε3 [6] for final state J/ψKS , we

find: c0 = (−15.18± 15.50)× 10−4 , c2 = (−4.31± 4.41)× 10−4 , s2 = (0.29± 0.43)× 10−4 .

Should the measurements of c0, c2 and s2 deviate significantly from the above values, this
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would indicate the presence of CPT violation in B0
d − B̄0

d mixing.

For B0
s − B̄0

s oscillation, one should not repeat same procedure exactly since ∆Γs is not so

small as ∆Γd; however, it can be treated in a similar fashion with some slight modifications

in the procedure.

Measuring C & P conserving dimension four WWγ vertex

The most general effective Lagrangian which describes WWγ vertex [8] contains several

dimension four and dimension six operators; among them, the coupling strengths of

CP violating interactions are constrained to be less than (10−4) [9] from measurements

of neutron electric dipole moment. On the other hand, dimension six operators cannot

be probed in low energy experiments like radiative muon decay due to an additional

suppression proportional to inverse mass square of W (i.e. 1/m2
W) . Thus the effective

WWγ vertex, sensitive to radiative muon decay, contains only the C- and P- conserving

dimension four interaction and in momentum space it can be expressed as:

Γρσδ(q2, q1, p) = gρσ(q2 + q1)δ + gσδ(p − q1)ρ − gδρ(p + q2)σ + ηγ(pρgσδ − pσgρδ), (16)

where ηγ ≡ κγ − 1 with κγ being the coupling constant for the mentioned operator in the

unit of electron’s charge and q2, q1, p are the four momenta of incoming W−, outgoing

W− and outgoing photon respectively. In SM, κγ = 1 at tree level and the absolute value

of one-loop corrections to it is restricted to be less than 1.5 × 10−2 [10]; however, the

current global average κγ = 0.982 ± 0.042 [7] has too large an uncertainty to probe the SM

up to one-loop accuracy. Radiative muon decay which proceeds through three Feynman

diagrams, shown in Fig. 1, can be used to measure this coupling with higher precision

through construction of suitable observable.

For this purpose, we define effective Mandelstam-like variables t and u where t = (pe + q)2
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Figure 1: Feynman diagrams for radiative muon decay.

and u = (pγ + q)2 with pµe and pµγ being four momenta of electron and photon respectively

whereas qµ being the invariant four momentum of νµν̄e system . However, it is more

convenient to work with three normalized parameters defined as:

xp =
t + u

2(q2 + m2
µ)
, yp =

t − u
2(q2 + m2

µ)
, q2

p =
q2

(q2 + m2
µ)
, (17)

where mµ is the mass of muon. These parameters can easily be inverted in terms of the

observables like energy of electron (Ee), energy of photon (Eγ) and the angle between

them (θ) as:

Ee =
mµ

2

(1 − q2
p − xp + yp

1 − q2
p

)
, Eγ =

mµ

2

(1 − q2
p − xp − yp

1 − q2
p

)
,

cos θ =
(q2

p − xp)2 + 2xp − y2
p − 1

(1 − q2
p − xp)2 − y2

p
.

(18)

In terms of these new normalized variables, the phase space for this process is bounded by

three surfaces: q2
p = 0, xp = 1/2 and (q4

p−q2
p + x2

p−y2
p) = 0. It is easily seen from Eq. (5.16)

that the plane xp = 1/2 corresponds to θ = 0◦ and the curved surface (q4
p−q2

p + x2
p−y2

p) = 0,

which we denote as C, signifies θ = 180◦. It should also be noticed that replacement of yp

with −yp while keeping q2
p and xp unchanged actually results in interchange between the

energies of photon and electron keeping the angle between them unaltered.

After integrating the momenta of νµ and ν̄e, we consider the normalized differential decay

rate Γ(xp, yp, q2
p), defined as follows:

Γ(xp, yp, q2
p) =

1
Γµ
·

d3Γ

dq2
p dxp dyp

, (19)
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where Γµ is the total decay width of muon. The ‘odd’ and ‘even’ part of the normalized

differential decay rate with respect to yp are defined in the following way respectively:

Γo (xp, yp, q2
p) =

1
2

[
Γ(xp, yp, q2

p) − Γ(xp,−yp, q2
p)
]
≈ Fo(xp, yp, q2

p) + ηγ Go(xp, yp, q2
p), (20)

Γe (xp, yp, q2
p) =

1
2

[
Γ(xp, yp, q2

p) + Γ(xp,−yp, q2
p)
]
≈ Fe(xp, yp, q2

p) + ηγ Ge(xp, yp, q2
p), (21)

where the small η2
γ terms are ignored. We define an observable, Rη, and the corresponding

asymmetry ,Aη(xp, yp, q2
p), as:

Rη(xp, yp, q2
p) =

Γo

Γe

≈
Fo

Fe

[
1 + ηγ

(Go

Fo
−

Ge

Fe

)]
, (22)

Aη(xp, yp, q2
p) =

( Rη
RSM

− 1
)
≈ ηγ

(Go

Fo
−

Ge

Fe

)
, (23)

where, RSM = (Γo/Γe)
∣∣∣
ηγ=0

= (Fo/Fe) .

f(xp,yp,qp
2)

- +

0.0 0.1 0.2 0.3 0.4 0.5

-0.4

-0.2

0.0

0.2

0.4

xp→

y p
→

Fo(xp,yp,qp
2)

-

-

+

+

0.0 0.1 0.2 0.3 0.4 0.5

-0.4

-0.2

0.0

0.2

0.4

xp→

y p
→

Figure 2: The variations of f (xp, yp, q2
p) and Fo(xp, yp, q2

p) are shown in xp− yp plane in left
and right panel, respectively, with q2

p = 0.01. The blue line in both the panels indicates the
curve C. In the left panel, the bluish region signifies f < 0, the brown region symbolizes
f > 0 and the black curve indicates f = 0. In the right panel, the yellow regions signify
Fo < 0, the green regions symbolize Fo > 0 and the red curve indicates Fo = 0.

Now, Fo(xp, yp, q2
p), the odd part of normalized differential decay rate in SM scenario, can

be expressed as:

Fo ∝ yp h(xp, yp, q2
p) f (xp, yp, q2

p) (24)

where, h(xp, yp, q2
p) is a positive valued function inside the physical region. Hence, the
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deciding factor on the sign of Fo(xp, yp, q2
p) is f (xp, yp, q2

p). Retaining only relevant terms

up to O(1/m4
W), it can be easily shown that (as depicted in Fig. 5.4)

• on xp = 1/2 surface, we have f
(

1
2 , yp, q2

p

)
≥ 0,

• on the curved surface C, we have f (xp, yp, q2
p)
∣∣∣∣
C
≤ 0.

It is obvious therefore that there must be at least one surface within the allowed phase space

region where f (xp, yp, q2
p) = 0; we refer to this surface corresponding to the ‘new type of

zero’ as “null-surface”. Hence,Aη(xp, yp, q2
p) diverges on this null-surface for any non-zero

value of ηγ and becomes zero everywhere in the phase space for ηγ being zero. However,

this divergence has nothing to do with the usual divergences arising from soft photon or

neglect of electron mass or collinearity of photon and electron since these events lie at top

right corner, at bottom right corner and on xp = 1/2 line in Fig. 5.4 respectively. The sign

of ηγ can be determined from the change in sign ofAη while crossing the null-surface.

To study the sensitivity, error analysis has been done taking the resolutions for energy

of photon, energy of electron and the angle between them to be 2%, 0.5% and 10 Milli-

radian, respectively [11]. For this purpose, we divide the phase space region 0 ≤ q2
p ≤

1/2,

0 ≤ xp ≤ 1/2, −1/2 ≤ yp ≤ 1/2 into 62, 500 number of equisized bins. To determine the

error in measurement of ηγ = 0.01, we consider only those bins which satisfy the cut(
δ|Aη|i

/
|Aη|i

)
≤ 10 and it turns out that only the bins close to null-surface obey the above

cut. Taking a total of 1019 muons, which is aimed in long term future, we estimate an error

of δηγ = 2.6 × 10−3 implying a 3.9σ significance for the measurement ηγ. However, the

next-round of experiments are aiming at 1018 muons /year which reduces the sensitivity to

1.4σ; still this approach gives better significance than that of current global average. This

whole analysis can be repeated keeping electron mass to be non-zero, but it gives only a

correction O(10−4) to ηγ.
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Conclusions

In this thesis we have investigated techniques to measure parameters arising in two different

classes of possible extensions beyond the SM. Firstly, we have focused on measuring

T and CPT violating parameters in B0 − B̄0 mixing through time dependent indirect CP

asymmetry. There is no need to neglect penguin pollution in the decay, and the method

can be applied to both B0
d or B0

s meson decays.

Next, we have proposed a new method to probe C and P conserving dimension four WWγ

vertex with higher accuracy using radiative muon decay. We establish the appearance of a

‘new type of zero’ (other than zeros of radiation amplitude) in the odd part of normalised

differential decay rate under the exchange of electron and photon energies within the

framework of SM. A suitably constructed asymmetry based on this fact enables us a

sensitive probe for WWγ vertex beyond SM.
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Chapter 1
Introduction

” The task is not so much to see what no one has yet

seen; but to think what nobody has yet thought, about

that which everybody sees.

— Erwin Schrödinger

Human minds have been questing through ages for the ultimate reality about the existence

and functioning of everything in this entire universe. In this regard, one of the biggest

concerns was discerning the elementary building blocks of our cosmos. Historically, this

inquisition originated in the minds of philosophers from ancient India and Greece during

first millennium BC, which begot atomism. In modern era, the journey recommenced with

Avogadro’s molecular theory and Dalton’s atomic theory during early nineteenth century.

The first experimental discovery of any subatomic particle was done by J. J. Thomson

when he detected electron in 1897. After that science has travelled a long way. Thanks to

numerous experimental and theoretical endeavours in last century, we are now living in era

when even the length of 10−18 metre can be probed in experiments.

In the beginning of twentieth century, there emerged two beautiful theories: Planck’s

1
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quantum theory and Einstein’s special theory of relativity. Attempts taken by Dirac to

mingle these two theories in the late 1920s engendered quantum field theory (QFT) or

more specifically quantum electrodynamics (QED) that describes quantized version of

electromagnetic interactions. However, it took two decades involving many eminent

scientists like Pauli, Wigner, Jordon, Heisenberg, Fermi, Bethe, Tomonaga, Schwinger,

Feynman, Dyson and others to convey QED as a renormalizable Abelian gauge theory

with extremely accurate theoretical predictions. The theory of another fundamental force

named weak interaction was first given by Fermi [12] in 1934 in the context of nuclear

β-decay. But major developments on this topic started only in late 1950s. Finally Glashow,

Weinber and Salam [13–15] unified it with the electromagnetic force by showing them

to be two aspects of a single gauge theory named electroweak gauge symmetry. The

renormalizability of this theory was proved by ’t Hooft [16] in 1971. To talk about

the third fundamental force called strong interaction, we must acknowledge that until

1970s physicists were in absolute quandary about how protons are bound together while

comprising the atomic nuclei despite their mutual electromagnetic repulsion. A brilliant

step was taken forward by Gell-Mann and Zweig [17, 18] in 1964 when they proposed that

hadrons are made up of quarks. To unravel the conundrum about formation of baryons

out of three fermionic quarks, which seemed impossible according to Pauli’s exclusion

principle [19], Greenberg, Han and Nambu [20,21] propounded an additional S U(3) gauge

degree of freedom for quarks. It paved the way for Fritzsch, Leutwyler and Gell-Mann [22]

to establish quantum chromodynamics (QCD), a special version of Yang Mills theory [23],

as the doctrine of strong interaction. Along with theoretical developments, numerous

experimental discoveries were also going on in parallel to shape the dogmas of elementary

particles. Thus emerges the most accepted theory of elementary particles: the Standard

Model (SM).

According to SM, total number of elementary particles to date is sixty one; among them

there are twenty four particles in each of the groups containing fermions and anti-fermions,

twelve of them are gauge bosons, and the last one discovered was a scalar. The dynamics
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of these particles are governed by the gauge group S U(3)C ⊗ S U(2)L ⊗ U(1)Y ; the group

S U(3)C describes strong interaction and the remaining group S U(2)L ⊗ U(1)Y represents

electroweak interaction. The strong interaction is mediated by eight gluons which are

massless as well as neutral in electric charge, the weak interaction is governed by one

neutral and two charged massive gauge bosons whereas the electromagnetic interaction

is carried by massless neutral photon. Depending on whether the fermions (as well

as the anti-fermions) take part in strong interaction or not, they can be divided into two

subcategories further named quarks and leptons, each consisting of six flavours of them. On

the other hand, weak interaction differentiates between left and right handed components

of fermionic fields by interacting only with the former one. The scalar particle gives

masses to others (not all of them) by breaking the S U(2)L⊗U(1)Y symmetry of its vacuum

spontaneously through Higgs mechanism. These essential concepts summarize the key

features of SM.

Though experiments in last few decades involving precision measurements at LEP [24,25],

consistency of the top quark [26,27], detection of τ-neutrino [28], discovery of Higgs boson

[29, 30], etc., established the acceptability of SM as the universal theory of elementary

particles, there are several reasons to believe that it is not a complete theory. Neutrino

oscillation is regarded as the first unarguable evidence for beyond SM scenario since it

ensures non-vanishing masses for neutrinos. Second, due to absence of any notion about

dark matter or dark energy, the SM is incapable of explaining the large amount of observed

cold dark matter (CDM) and its contributions to dark energy, which in turn makes it

inconsistent with the ΛCDM model (i.e. the standard model of Big Bang cosmology). The

matter-antimatter asymmetry arising within SM is also not compatible with the observed

baryon over photon density. Third, there are theoretical complications regarding the

nature of Higgs vacuum and the naturalness protecting the Higgs mass from radiative

corrections. Fourth, despite lots of attempts, physicists are still struggling with assimilation

of the last fundamental force gravitation into the SM in a consistent way. There are also

other theoretical issues concerning the number of generations for fermions, the number
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of unrelated numerical constants, Yang–Mills existence and mass gap, etc., which are

unanswered yet. All of these facts suggest that SM is just an effective theory, a subset of

another bigger model.

To understand the actual underlying theory, the best way would be investigating direct

evidences for beyond standard model (BSM) particles in collider experiments. But, after

a thorough and prolonged search over last ten years, no sign for this kind of particle has

been detected. In this situation, precise measurement of various theoretical parameters that

are uniquely predicted in SM can play a major role. Presence of new heavy particles in the

loops can alter the measurement of these parameters significantly. Hence, any deviation

observed from their predicted values in SM will act as indirect evidence for the existence

of BSM physics. However, to capture these loop induced effects, one must choose the

modes very cleverly. Moreover, new measurement techniques are also required along

with increase in the luminosity of beams and advancements in experimental methods. In

this thesis, we have studied new measurement procedures for two different types of such

theoretical parameters: a) T and CPT violation in B0 − B̄0 mixing, b) C and P conserving

dimension four WWγ vertex.

Before 1950s, physicists presumed charge conjugation (C), parity (P) and time reversal

(T) to be independent symmetries of nature. However, during mid-50s, parity and charge

conjugation [31–33] were found to be violated in weak interactions. To handle the

situation, CP was proposed to be a good symmetry [34, 35], but it was also discovered to

be broken [36]. Presently, we believe that CPT is an imperishable symmetry since its has a

deep connection with Lorentz invariance [1]. Nonetheless, pondering over past experiences,

it is a good idea to test its validity in experiments with high precision. Direct searches for

CPT violation through difference in masses or life-times of particle and antiparticle have

been performed in several experiments; nevertheless, they are observed to be extremely

insignificant in every case since they are mostly dominated by strong or electromagnetic

interactions. Neutral pseudoscalar meson mixing, which is a second order weak process
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governed by box diagrams, seems to be a very promising candidate in this regard [2].

Though all experimental results to date are consistent with CPT conservation, an important

improvement in statistics is expected in near future. After discussing the general properties

of C, P and T symmetries in chapter 2, we have investigated the possibilities for indirect

measurement of T and CPT violation in B0 − B̄0 mixing using the time-dependent indirect

CP asymmetry for decays of B0 or B̄0 to a CP eigenstate, in chapter 4.

On the other hand, triple gauge boson interaction is a unique attribute of non-Abelian

gauge theories which have been used in SM to describe weak and strong interactions.

Nonetheless, triple gauge boson couplings in electroweak sector are yet to be measured

with a sufficient accuracy for scrutinizing at least one loop correction to it within the SM

framework. Among these multi-boson vertices, WWγ vertex is of special interest since it

dictates the electromagnetic properties of W-boson. Radiative muon decay (µ→ eνµν̄eγ),

which are expected to be produced in a large number as the background of experiments to

probe lepton-flavour-violating process µ→ eγ (like COMET, MEG, Mu2e [3]), appears to

be a promising mode for probing C and P conserving dimension-four WWγ vertex. After

summarizing all SM interactions in chapter 3, we scrutinize a new type of zero (other than

the zeros of radiation amplitude [4]) in chapter 5 for this decay mode. We also establish

that a suitably constructed asymmetry using this fact can enable us a sensitive probe for

WWγ vertex beyond the SM.

44444444
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Chapter 2
C, P & T Symmetries

” Maybe the nature is fundamentally ugly, chaotic and

complicated. But if it’s like that, then I want out.

— Steven Weinberg

If all the governing laws and equations of a theory (more specifically action or Lagrangian

or Hamiltonian) remain invariant under any transformation, then the mentioned transforma-

tion is often said to be a “symmetry” of that theory. There are two types of transformations:

(a) Continuous transformation: Starting from any specific initial state, if it is possible

to reach any particular final state by applying the laws of transformation infinitely

many times with infinitesimal transformation parameters, then the transformation is

called a continuous transformation. Some examples for this type of transformation

are translation, rotation, S U(N) gauge transformation, etc. According to Noether’s

theorem, if this type of transformation becomes “symmetry” of a system, there

must be an associated conserved quantity. For example, translational invariances

of Lagrangian in spatial and temporal directions result in conservations of linear

momentum and energy respectively, rotational invariance of Lagrangian gives rise to

7
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conservation of angular momentum, etc.

(b) Discrete transformation: Starting from any specific initial state, if it is not possible

to reach any particular final state in a continuous process through the laws of

transformation, then the mentioned transformation is said to be discrete. Charge

conjugation (C), parity (P) and time reversal (T) are some examples for this type of

transformation. In condensed matter physics, crystallography, chemistry and other

fields discrete symmetry plays important role. In case of quantum theory, discrete

symmetry was first realized through the symmetry under permutation of identical

particles, namely Bose-Einstein and Fermi-Dirac statistics.

Let us first discuss the basic properties of C, P and T transformations.

• Charge conjugation: This discrete transformation, usually symbolized by C, changes

a particle into its antiparticle with same mass, momentum and spin but opposite

quantum numbers like electric charge, lepton number, baryon number etc.

• Parity transformation: This discrete transformation, usually denoted as P, alters

all the space coordinates ~x to −~x. It is equivalent to a reflection about an axis

followed by a rotation around origin.

Any polar vector, like three momentum ~p, changes its sign under parity (
#»

V
P
−→ −

#»

V)

whereas any axial vector, like angular momentum ~J, does not (
#»

A
P
−→

#»

A). Similarly,

scalars remain invariant under parity transformation (S
P
−→ S), but pseudoscalars

change sign (P
P
−→ P).

The notion of handedness is also related to parity. By applying parity, any right

handed coordinate system can be transformed into a left handed one or vice versa.

• Time reversal: This discrete transformation, usually indicated by T, changes the

direction of time, i.e. reflects t to −t leaving all the spatial coordinates unaltered.

Under its action, both linear and angular momenta change their sign.
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2.1 Classical Physics

Microscopically, all the laws and equations of classical physics (like classical mechanics,

classical electrodynamics, etc.) are invariant under C, P and T separately.

For example, let us test it on Maxwell’s equations. At first, we need to know the transfor-

mation properties of electric and megnetic fields under C, P and T. For this purpose, it is

sufficient to use Coulomb’s law and Biot Savart law from electrostatics and magnetostatics

respectively:

#»
E( #»r ) =

1
4πε0

∫
( #»r − #»r ′)
| #»r − #»r ′|3

ρ( #»r ′) dV ′ and
#»
B( #»r ) =

µ0

4π

∫ #»
J ( #»r ′′) × ( #»r − #»r ′′)
| #»r − #»r ′′|3

dV ′′ (2.1)

where, electric field
#»
E and magnetic field

#»
B at a point #»r are given for static charge density

ρ( #»r ′) inside the volume V ′ and steady current density
#»
J ( #»r ′′) through the volume V ′′

respectively. Hence, the action of C, P and T can be visualised in the following way:

• { #»r , #»r ′, #»r ′′}
C
−−−→ { #»r , #»r ′, #»r ′′} , ρ

C
−−−→ − ρ ,

#»
J

C
−−−→ −

#»
J

=⇒
#»
E

C
−−−→ −

#»
E and

#»
B

C
−−−→ −

#»
B

• { #»r , #»r ′, #»r ′′}
P
−−→ {− #»r ,− #»r ′,− #»r ′′} , ρ

P
−−−→ ρ ,

#»
J

P
−−→ −

#»
J

=⇒
#»
E

P
−−→ −

#»
E and

#»
B

P
−−→

#»
B

• { #»r , #»r ′, #»r ′′}
T
−−→ { #»r , #»r ′, #»r ′′} , ρ

T
−−−→ ρ ,

#»
J

T
−−−→ −

#»
J

=⇒
#»
E

T
−−−→

#»
E and

#»
B

T
−−−→ −

#»
B

Now, let us look at Maxwell’s equations in free space with sources being present:

#»

∇ ·
#»
E =

ρ

ε0
,

#»

∇ ×
#»
E = −

∂
#»
B
∂t

,

#»

∇ ·
#»
B = 0 ,

#»

∇ ×
#»
B = µ0

(
#»
J + ε0

∂
#»
E
∂t

)
.

(2.2)

In this case, the charge density and current density varies with time making the electric

and magnetic field time-dependent. Using the transformation properties of
#»
E,

#»
B, ρ and
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#»
J , as discussed above, along with

#»

∇
P
−−−→ −

#»

∇ and t
T
−−−→ − t, it can be shown easily that

Maxwell’s equations remain invariant under the actions of C, P and T individually.

Since the potential energy appears to be even under C and P transformations, they become

symmetries of the Lagrangian in classical physics. However, if it is somehow possible to

generate any potential energy that is odd under C and P then only these two symmetries

can be violated. On the other hand, time reversal transformation sometimes shows apparent

macroscopic asymmetry depending on the likelihood for the occurrences of initial and

final state. For example, let us consider a scenario where some billiard balls have been

accumulated at a particular position on a table and someone hits them with the white

cue-ball; as a result, all the balls will move in different directions. Now, contemplate the

time-reversed situation: some balls, coming from different directions, collide with each

other and get piled up around a particular position and after all the collisions, only the white

cue ball keeps moving. Though the dynamics involved in the motion for individual ball

obeys T symmetry, we know from our experience that the time-reversed scenario is very

less likely to happen in reality. Actually, the movement of each ball is governed not only

by the equation of motion, but also by the initial condition. So, the time-reversed situation

will occur only when the initial conditions for that process is prepared very precisely.

This lowers the likelihood of the time-reversed version of a complex process to happen

in classical physics. Moreover, in the presence of any dissipative force, the time reversed

process looks impossible. For instance, let us consider a ball moving on a rough horizontal

plane. After sometime, it will loose all its energy and come to rest because of friction.

In this case, the time-reversed situation, where the ball starts from rest and accelerates

just by gaining energy from the ground, is literally impractical. In the context of classical

thermodynamics, we usually connect this less likelihood of time-reversed processes to the

concept of entropy and second law of thermodynamics.



11 2.2. Quantum mechanics

2.2 Quantum mechanics

In quantum mechanics, each operation is associated with some operator which can act on

the Hamiltonian, the physical states or another operator. Here, an operation is declared to

be a symmetry of the system if the corresponding operator commutes with the Hamiltonian.

Parity and charge conjugation are represented by two Hermitian as well as unitary opera-

tors:

P = P
−1

= P† and C = C
−1

= C† (2.3)

It readily follows from the above equation that squares of these two operators are identity;

this means that acting on a state twice, these operators bring back the initial state. It also

stipulates their eigen values to be ±1.

If
#»X ,

#»P and
#»J be the position, linear momentum and angular momentum operators

respectively, then

{
P,

#»X
}

= 0 ,
{

P,
#»P

}
= 0 ,

[
P,

#»J
]

= 0 . (2.4)

The action of parity on a state |ψ〉 is given by:

〈x|P |ψ〉 = ψ (−x) (2.5)

However, the action of C operator is very limited in non-relativistic quantum mechanics; it

only changes the signs of electric charge and electromagnetic four-potential and commutes

with all other operators. A better understanding for this operator is provided in relativistic

quantum mechanics and QFT.

Let us find the effects of these two transformations on Schrödinger equation. If C and

P become symmetries of a quantum mechanical system, then the Hamiltonian H must

commute with them, i.e., [C,H] = 0 and [P,H] = 0. It can only happen if the potential
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energy V is symmetric under C and P.

On the other hand, time reversal is delineated by an anti-unitary operator, i.e. for any two

states |ψA〉 and |ψB〉

〈ψA| T†T |ψB〉 = 〈ψB |ψA〉 (2.6)

Actually, all the observables in quantum mechanics can be expressed in terms of transition

probabilities which are modulus squared transition amplitudes. All the transformations

that preserve transition probabilities become symmetry of the system. Thus any “symmetry

transformation” must be represented by a unitary or anti-unitary operator in Hilbert space1.

The relations of time reversal with other operators are given by:

[
T,

#»X
]

= 0 ,
{

T,
#»P

}
= 0 ,

{
T,

#»J
}

= 0 . (2.7)

The time reversal operator is generally described by:

T = exp
(
− i

π

~
Sy

)
K (2.8)

where Sy is the y-component of spin operator and K is the complex conjugate operator

satisfying the following relations:

K
(
α |ψA〉 + β |ψB〉

)
= α∗

(
K |ψA〉

)
+ β∗

(
K |ψB〉

)
and K2 = 1 (2.9)

Here the asterisk sign denotes complex conjugate. Due to presence of complex conjugate

operator, it must satisfy: T−1
i T = − i. If the potential energy of a system is a function of

position only, i.e. it does not contain linear or angular momentum or time explicitly, then

[T,H] = 0. In that case, the Schrödinger equation transforms under time reversal operation

as:

− i~
∂

∂t
ψ∗(~x, t) = Hψ∗(~x, t) (2.10)

1Wigner’s theorem of automorphism
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An interesting fact about time reversal operator is that it can distinguish between bosons

and fermions. It can be shown from Eq. (2.8) that

T2 =


+1 for bosons

−1 for fermions
(2.11)

It can also be proven that every energy state of a system with half-integer total spin is at

least doubly degenerate if time reversal is a symmetry2.

An important observable to search for P and T violations is electric dipole moment

(EDM). As the corresponding operator is odd under parity, EDM must vanish for a parity

conserved system. On the other hand, for a system with non-degenerate ground state, EDM

must vanish for a T conservation. Several experimental searches have been done in this

direction, however, no success has been achieved. An upper bound on neutron’s electric

dipole moment is measured as dn < 3.0 × 10−26 with 90% confidence level [37].

2.3 Quantum field theory

For any symmetry in QFT, three quantities must be invariant under the transformation: i)

the vacuum state, ii) the Lagrangian density and iii) the quantization conditions. If the

vacuum is found to violate the symmetry, it is called spontaneous breaking. On the other

hand, if the Lagrangian itself breaks the symmetry, it is called explicit breaking.

As electromagnetic interactions preserveC, P and T individually, it can be used to determine

the transformation properties of scalars, spinors and vectors. From the analogy with

classical theories, we postulate the transformation properties for current density (four

vactor) under C, P and T as:

C
−1

Jµ(~x, t) C = −Jµ(~x, t), P
−1

Jµ(~x, t) P = Jµ(−~x, t), T
−1

Jµ(~x, t) T = Jµ(~x,−t) (2.12)

2 Kramer’s degeneracy theorem
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where, the lowering of Lorentz index must be noticed in case of parity and time reversal

transformations since they change the sign of three vector only. Using these transforma-

tions, we find the operations of C, P and T on the annihilation and creation operators for

different fields.

2.3.1 Charged scalar field

In terms of Fourier transform, the charged scalar field can be expressed3 as:

ϕ(~x, t) =

∫
d3 p√

(2π)3 2Ep

[
b(~p) e−ip ·x + d†(~p) eip ·x

]
(2.13)

where b(~p) and d(~p) are the annihilation operators for particle and anti-particle with the

dot product p ·x ≡ pµxµ.

The quantization conditions are:

[
ϕ(~x, t) , ϕ(~y, t)

]
=

[
ϕ†(~x, t) , ϕ†(~y, t)

]
= 0 , (2.14)[

ϕ(~x, t) , ∂tϕ
†(~y, t)

]
=

[
ϕ†(~x, t) , ∂tϕ(~y, t)

]
= iδ3(~x − ~y) . (2.15)

Excluding the coupling, the current for electromagnetic interaction in this case is:

Jµ(~x, t) = i
[
ϕ†(~x, t) ∂µϕ(~x, t) −ϕ(~x, t) ∂µϕ†(~x, t)

]
. (2.16)

Let us postulate the following transformations of the charged scalar field:

ϕC (~x, t) = C
−1
ϕ(~x, t) C = ϕ†(~x, t) , (2.17)

ϕP (~x, t) = P
−1
ϕ(~x, t) P = ϕ(−~x, t) , (2.18)

ϕT (~x, t) = T
−1
ϕ(~x, t) T = ϕ†(~x,−t) . (2.19)

3Different authors use different normalizations according to their convenience. This changes the commu-
tation relations between b(~p1) and b†(~p2) (or d(~p1) and d†(~p2)) by some factor in different conventions.
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It can be shown easily that our ansatz about transformations of the charged scalar field

provides correct transformation properties, as given by Eq.(2.12), for the electromag-

netic current density in Eq. (2.16) under C, P and T. The transformed fields obey the

quantization conditions in Eq. (2.14) too. Hence, our ansatz is correct and it forces the

transformations for the annihilation operators of particle and antiparticle as:

C
−1

b(~p) C = d(~p) , (2.20)

P
−1

b(~p) P = b(−~p) , P
−1

d(~p) P = d(−~p) , (2.21)

T
−1

b(~p) T = b(−~p) , T
−1

d(~p) T = d(−~p) . (2.22)

2.3.2 Spinor field

Spinor field can be expressed through its Fourier components as:

ψa (~x, t) =

∫
d3 p

(2π)
3
2

√
m
Ep

∑
s=±

[
b (~p, s) ua (~p, s) e−ip ·x + d†(~p, s) va (~p, s) eip ·x

]
(2.23)

where, a specifies the spinor index; m and s are the mass and spin of the fermion re-

spectively; b(~p, s) and d(~p, s) are the annihilation operators for fermion and anti-fermion

respectively; u(~p, s) and v(~p, s) are the four component Dirac spinors satisfying the follow-

ing equations: (
/p − m

)
u(~p, s) = 0 and

(
/p + m

)
v(~p, s) = 0 . (2.24)

The canonical quantization relations are:

{
ψa(~x, t), ψ†

b (~y, t)
}

= δ3(~x − ~y) δab , (2.25){
ψa(~x, t), ψb(~y, t)

}
=

{
ψ†

a (~x, t), ψ†
b (~y, t)

}
= 0 (2.26)

The electromagnetic current density in this case is: Jµ(~x, t) = ψ(~x, t) γµ ψ(~x, t) . (2.27)
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We make the following ansatz:

ψC (~x, t) = C
−1
ψ (~x, t) C = C [ψ (~x, t)]Tr , (2.28)

ψP (~x, t) = P
−1
ψ (~x, t) P = γ0 ψ (−~x, t), (2.29)

ψT (~x, t) = T
−1
ψ (~x, t) T = U ψ (~x,−t) . (2.30)

where the subscript “Tr” indicates transposition. It should be noted that the operators C,

P and T act on Dirac fields or more specifically on creation and annihilation operators4

whereas C and U are two matrices acting on Dirac spinors (u and v). This choice of trans-

formations for Dirac field impart correct transformation properties to the electromagnetic

current density as well as the transformed fields respect the quantization conditions too if:

γ0 C† γ0 γµ C = γTr
µ and U−1

γ∗µ U = γ µ (2.31)

It is easy to show that the above two conditions hold for following two matrices:

C = i γ2 γ0 and U = γ1 γ3 (2.32)

Hence, C = − C−1
= − C† = − CTr with C2 = −1

The matrix U also have similar properties like C.

The transformation properties of Dirac field translet into the transformation of annihilation

operators as:

C
−1

b(~p, s) C = s d(~p,−s) , (2.33)

P
−1

b(~p, s) P = b(−~p, s) , P
−1

d(~p, s) P = −d(−~p, s) , (2.34)

T
−1

b(~p, s) T = s b(−~p,−s) , T
−1

d(~p, s) T = s d(−~p,−s) . (2.35)

4Though T changes other terms of Fourier transform into their complex conjugates since it is an anti-
unitary operator.
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This shows that fermions and antifermions carry opposite intrinsic parity.

2.3.3 Photon field

The photon field can be expanded in terms of creation and annihilation operators as:

Aµ(~x, t) =

∫
d3 p√

(2π)3 2Ep

∑
s=±

[
a(~p, s) εµs e−ip ·x + a†(~p, s) εµ∗s eip ·x

]
(2.36)

where a(~p, s) and εµs are the annihilation operator and polarization vector for photon with

momentum pν and spin s. Photon has only two polarizations, as it is massless spin-1

particle. Since Aµ(~x, t) is also a four vector like current density, it should transform the

same way as Jµ(~x, t). Hence, the annihilation operator should transform as:

C
−1

a(~p, s) C = − a(~p, s) , (2.37)

P
−1

a(~p, s) P = − a(−~p, s) , (2.38)

T
−1

a(~p, s) T = − a(−~p,−s) . (2.39)

Thus one-photon state carries odd intrinsic parity and C-parity:

P |γ, ~p 〉 = − |γ,−~p 〉 and C |γ, ~p 〉 = − |γ, ~p 〉 (2.40)

However, other spin-1 fields (like gluons, W±, some vector mesons, etc.) which carry

internal quantum numbers (like colour, electric charge, strangeness, etc.) are not eigenstates

of C. Hence, C-parity is not defined for them. Still, they carry intrinsic parity ±1 depending

on whether the particle is axial vector or polar vector. For any composite system the parity

is given by
[
(−1)L

∏
j

P j

]
and the C-parity is given by

[
(−1)L+S

∏
j

C j

]
; here P j and C j

are intrinsic parity and C-parity for individual particles, L is orbital angular momentum

and S is spin.
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2.4 Weak interaction and violation of symmetries

After the discovery of strange-particles, it had been found that one pseudoscalar charged

strange meson has two different decay channels with opposite parity; one involves two

pion, whereas the other includes three pions. Since parity violation had not been so far, it

was assumed that the parent particles for those two decays must be different. The initial

particle for the even-parity final state was given the name θ+ whereas the other one was

named as τ+. However, no experiment could find significant difference in their masses

or life-times which denies their existence as two separate particles5. This problem was

termed as τ − θ puzzle. In 1956, Lee and Yang [31] pointed out that parity violation could

be the answer to τ − θ puzzle and suggested a list of relevant tests. During the same time,

Salam [32] showed that vanishing mass of neutrino can lead to violation of parity. In the

following year, Wu and collaborators [33] discovered the experimental evidence for the

breaking of parity and charge conjugation invariance by weak interactions in nuclear β

decay of 60
27Co. Similar results were confirmed by other groups too. This identified both

the particles τ+ and θ+ as K+ meson. To incorporate parity violation into theory, (V −A)

Lagrangian for weak interaction was proposed by Sudarshan, Marshak, Feynman and

Gell-Mann [38, 39] and later it had been included into SM too. After the violation of

parity, it was thought that CP must be the symmetry of nature [34, 35]. However, Fitch

and Cronin [36] found that:

Γ (KL → π+π−)
Γ (KL → all charged modes)

= (2 ± 0.4) × 10−3

which suggests CP violation in weak interactions. Theoretically, CP violation has great

importance in explaining matter-antimatter asymmetry6 . In SM, it occurs through the

weak phase in CKM matrix only, however, it is not sufficient to explain the observed

5Particles with same mass and life-time can have separate existences only if one is the antiparticle of
other. However, τ and θ cannot be considered as particle-antiparticle states, since they have same electric
charges.

6Sakharov conditions
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matter-antimatter asymmetry in our universe.

2.5 CPT symmetry

After the discovery of CP violation, it is now believed that the combined transformation

CPT, which is given by an anti-unitary operator, is an exact symmetry of nature:

(CPT)
−1

L(~x, t) (CPT) = L(−~x,−t) (2.41)

It is called CPT-theorem. The first proof of this theorem was given by Lüders and

Pauli [40, 41] based on the Hamiltonian formulation of quantum field theory, which

involves locality of the interaction, Lorentz invariance and Hermiticity of the Hamiltonian.

Later on the theorem was proven rigorously by Jost and others [42–44] in the axiomatic

formulation of quantum field theory based on the assumptions of: 1) Lorentz invariance, 2)

existence of unique vacuum state and 3) weak local commutativity obeying ‘right’ statistics.

There are some important consequences of this theorem:

1. Any particle and its antiparticle have same masses.

Proof: If H be the Hamiltonian that contains every interaction involving a particle

|P〉 and its antiparticle |P〉, masses of them in their rest frame are given by:

M(P) = 〈 P |H | P 〉 and M(P) = 〈P |H |P 〉 (2.42)

Now, the proof goes as follows:

〈 P |H | P 〉

= 〈 P |H (CPT)
−1

(CPT) | P 〉

=
(
〈 P | (CPT)†(CPT) H (CPT)

−1
(CPT) | P 〉

)∗
[since CPT is antiunitary]

=
(
〈P | (CPT) H (CPT)

−1
|P 〉

)∗
[∵ CPT |P〉 = eiΘ |P〉 , Θ is a real number.]
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=
(
〈P | H |P 〉

)∗
[If CPT becomes a symmetry, (CPT) H (CPT)

−1
= H]

= 〈P | H† |P 〉

= 〈P | H |P 〉 [∵ H is Hermitian.]

=⇒ M(P) = M(P) (2.43)

2. Life times of any particle and its antiparticle are equal.

Proof: The decay rates of particle and antiparticle in their rest frame are given by:

Γ(P) = 2π
∑

f

δ
(
M(P) − Ef

) ∣∣∣ 〈 f ; out | H | P 〉
∣∣∣ 2
,

Γ(P) = 2π
∑

f

δ
(
M(P) − Ef

) ∣∣∣ 〈 f ; out | H |P 〉
∣∣∣ 2
, (2.44)

where f and f indicate the final states for the decays of P and P respectively. Now,

using the same logics like the above proof we obtain:

∑
f

δ
(
M(P) − Ef

) ∣∣∣ 〈 f ; out | H | P 〉
∣∣∣ 2

=
∑

f

δ
(
M(P) − Ef

) ∣∣∣∣∣ ( 〈 f ; out | (CPT)†(CPT) H (CPT)
−1

(CPT) | P 〉
)∗ ∣∣∣∣∣ 2

=
∑

f

δ
(
M(P) − Ef

) ∣∣∣∣∣ ( 〈 f ; in | (CPT) H (CPT)
−1
|P 〉

)∗ ∣∣∣∣∣ 2

=
∑

f

δ
(
M(P) − Ef

) ∣∣∣∣∣ ( 〈 f ; in | H |P 〉
)∗ ∣∣∣∣∣ 2

=
∑

f

δ
(
M(P) − Ef

) ∣∣∣ 〈 f ; in | H |P 〉
∣∣∣ 2

=⇒ Γ(P) = Γ(P) (2.45)

In the above proof we have used the fact that both ‘in’ and ‘out’ states form complete

sets, i.e., ∑
f

∣∣∣ f ; out
〉 〈

f ; out
∣∣∣ =

∑
f

∣∣∣∣ f ; in
〉 〈

f ; in
∣∣∣∣ = 1 (2.46)
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3. The magnetic moments for particle and its antiparticle are equal in magnitude, but

opposite in sign.

The magnetic moments for any particle and its antiparticle in their respective rest

frame are given by:

#»µ (P) = c1 〈P, ~s |
#»S | P, ~s 〉 and ~µ (P) = c1 〈P, ~s |

#»S |P, ~s 〉 (2.47)

where
#»S is the spin operator, ~s is the spin vector of particle or antiparticle and c1 is

a constant. The Hamiltonian is given by H =
#»S · #»

B where
#»
B is the magnetic field.

Now, using the same logic as in Eq. (2.43), we obtain:

#»µ (P) ·
#»
B = c1

(
〈P, ~s |

#»S | P, ~s 〉
)
·

#»
B

= c1 〈P, ~s | H | P, ~s 〉

= c1

(
〈P, ~s | (CPT)†(CPT) H (CPT)

−1
(CPT) | P, ~s 〉

)∗
= c1

(
〈P,−~s | (CPT) H (CPT)

−1
|P,−~s 〉

)∗
= c1

(
〈P,−~s | H |P,−~s 〉

)∗
= c1 〈P,−~s | H

† |P,−~s 〉

= c1 〈P,−~s | H |P,−~s 〉

= c1

(
〈P,−~s |

#»S |P,−~s 〉
)
·

#»
B

= − #»µ (P) ·
#»
B (2.48)

Since, the above relation is true for any arbitrary magnetic field, we must have:

#»µ (P) = − #»µ (P) (2.49)

About the source of CPT violation, Greenberg [1] argued that it arises from breaking

of Lorentz invariance. However, this conclusion is debatable [45–52]. It is shown in

Ref. [46–49] that QFT on non-commutative space-time can lead to breaking of Lorentz
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invariance without CPT violation. On the other hand, a certain class of models has been

proposed in Ref. [50–52] that breaks CPT symmetry through non-local interactions while

preserving Lorentz invariance. Moreover, it has been shown in Ref. [52] that some Lorentz

invariant but CPT violating models can provide equality of masses and decay widths for

particles and anti-particles. Nevertheless, in the context of this thesis, we are not concerned

about the theoretical formalism regarding the breaking of CPT symmetry, rather we are

interested in measuring it experimentally if it exists at all in nature. The challenge here is

that one cannot construct any CPT-violating observable relying on the corollaries of usual

QFT, since our QFT is CPT invariant by construction.

pqpqpqpqpqpqpqpq



Chapter 3
A brief description of SM

” God used beautiful mathematics in creating the world.

— Paul Dirac

In the early 1970s, enormous efforts of hundreds of physicists that spanned over four

decades resulted in a beautiful mathematical interpretation for the fundamental structure

of all matters in this universe: the Standard Model. It encapsulates our best understanding

about the basic building blocks of this universe and there interplay with three fundamental

forces of nature. Since its formulation, SM has to undergo copious experimental tests.

However, it has successfully explained most of the experimental results and precisely

predicted a wide variety of phenomena.

3.1 Elementary particles

The SM contains sixty one fundamental particles in total; twenty four of them are fermions,

twenty four are anti-fermions and rest are bosons. However, according to flavour, there are

twelve fermions and twelve anti-fermions. These spin-1
2 fermions and anti-fermions are the

23
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elementary units for all the matters (excluding dark matter) in the universe, whereas twelve

spin-1 gauge bosons are the mediators for strong and electroweak interactions among them.

The last one is a spin-0 boson, responsible for masses of different elementary particles.

Depending on the interest in strong interaction, the fundamental fermions (anti-fermions)

can be divided into two mutually exclusive categories: six flavours of them taking part in

this interaction are termed as quarks (anti-quarks) and the rest six flavours, reluctant in it,

are called leptons (anti-leptons). In terms of strong interaction, each flavour of quark or

anti-quark can possess three different colours: red, blue, green, and hence they transform

as triplets. The exchange particles for this interaction are eight gluons, each of which

have two colour indices but no mass and electric charge, and together they form colour

octet. Colour confinement ensures that any stable strongly interacting particle observed

in nature must be a colour singlet state. Thus quarks and anti-quarks interact with each

other through colour fields and produce bosonic mesons or fermionic baryons which are

collectively called hadrons.

In the context of electroweak interaction, each of the sets accommodating six flavours

of quarks or six leptons can be classified into three pairs, which are called generations.

The lightest and most stable particles make up the first generation, whereas the heavier

and less-stable particles belong to the second and third generations. Under weak isospin,

the left-handed components of fermions transform as doublets whereas the right-handed

components transform as singlets1. There are four gauge bosons for this interaction; among

them two are massive and charged named W-boson, one is massive and neutral called Z-

boson, and last one is massless and neutral photon. The massive spin-0 boson, commonly

termed as Higgs boson, gives masses to different particles through Higgs mechanism.

Properties of fundamental particles with respect to this interaction have been presented in

Table 3.1.

1It should be noted that left-handed fermions and right-handed anti-fermions take part in weak interaction.
That’s why we observe left-handed neutrinos and right-handed anti-neutrinos, but not the reversed scenario.

On the other hand, as
(
νe

e−

)
is an isospin doublet, the same with antiparticles will be

(
−e+

νe

)
[53].
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Particles & Electric Weak Weak hyp-
Type of particles generations charge, isospin, T 3 ercharge, Y

1st 2nd 3rd Q L R L R

Fermions

Leptons
νe νµ ντ 0 +1/2 − −1 −

e− µ− τ− −1 −1/2 0 −1 −2

Quarks
u c t +2/3 +1/2 0 +1/3 +4/3

d s b −1/3 −1/2 0 +1/3 −2/3

Anti-
Anti- e+ µ+ τ+ +1 0 +1/2 +2 +1

leptons νe νµ ντ 0 − −1/2 − +1

Fermions Anti- d s b +1/3 0 +1/2 +2/3 −1/3

quarks u c t −2/3 0 −1/2 −4/3 −1/3

Bosons
Spin-1

W ±1 ±1 0

Z, photon, gluons 0 0 0

Spin-0 H 0 −1/2 +1

Table 3.1: Quantum numbers of elementary particles in light of electroweak interaction.

3.2 Strong interaction

Strong interactions in SM are described by a local, non-Abelian S U(3)C gauge symmetry

involving quarks and gluons only. The conserved quantity arising form this continuous

symmetry is colour. Eight generators of this gauge group, denoted by Ta (a = 1, 2, 3, ...., 8),

can be identified with Gell-Mann matrices in three dimensional representation. Three

coloured quarks of each quark flavour form a triplet in the fundamental representation of

the mentioned gauge group whereas eight gluons associated with this interaction form an

octate in the adjoint representation.
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The QCD Lagrangian density is given by:

LQCD = −
1
4

Ga
µνG

µν a +
∑

f

ψ
f
i (i γµDij

µ − mf δij)ψ f
j (3.1)

where Ga
µν = ∂µA

a
ν − ∂νA

a
µ + gs f abcAb

µA
c
ν and D

ij
µ = δij ∂µ − i gs A

a
µ T

a
ij with the following

elucidation for different entities:

• i, j : colour indices in fundamental representation,

• a, b, c : colour indices in adjoint representation,

• µ, ν : Lorentz indices,

• f : different flavour of quarks,

• Aa
µ : gluon field,

• ψ f : quark field,

• gs : strong coupling constant,

• f abc : structure constant of the gauge group.

The generators and the structure constants of S U(3) group obey the following relations:

[Ta,Tb] = i f abcTc , Tr(TaTb) =
1
2
δab ,

∑
a

(TaTa)ij =
4
3
δij∑

a

Ta
ijT

a
kl =

1
2

(δilδjk −
1
3
δijδkl) , f acd f bcd = 3δab . (3.2)

It can be easily shown that the QCD Lagrangian density, given by Eq. (3.1), is invariant

under the following infinitesimal local gauge transformations:

ψf
i →

[
1 − i gs α

a(x)Ta
ij

]
ψf

j ,

Aa
µ(x)→ Aa

µ(x) + ∂µα
a(x) + gs f abcαb(x)Ac

µ(x). (3.3)
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3.3 Electroweak interaction

The electroweak interactions in SM are described by a local S U(2)L ⊗ U(1)Y gauge

symmetry. Under the non-Abelian S U(2)L gauge group, the left handed fermion fields,

defined by: ψL ≡
1
2 (1 − γ5)ψ, transform as doublets, whereas the right handed fermion

fields, described by: ψR ≡
1
2 (1 + γ5)ψ, transform as singlets; the corresponding conserved

quantum number is weak isospin (T ). The three generators of this gauge group are denoted

as T j ( j = 1, 2, 3) where T j = 1
2 σ j in two dimensional representation with σ j being the

Pauli matrices. In addition to S U(2)L symmetry, an independent U(1)Y gauge symmetry has

been introduced to encompass electromagnetic interaction into a common gauge structure.

The conserved quantum number Y for this symmetry is called weak hypercharge. In

analogy with Gell-Mann-Nishijima relation from strong interaction, the weak hypercharge

for different particles are specified by the formula: Q = T3 +
Y
2

, where Q is the electric

charge for the particle of interest in the unit of positron’s charge. Unlike S U(2)L symmetry,

both of the left and right handed components for fermion fields transform under U(1)Y

symmetry (in general); but they transform differently since the weak hypercharges for

those two components are different. An important point to mention here is that if left and

right handed fermions possess different couplings to gauge bosons, usually there arises an

awkward kind of divergence for the interaction of three gauge bosons via fermion loops

which cannot be abolished by renormalization. This situation is entitled as chiral anomaly

problem. However, with three colours of quarks and specific choices of quantum numbers

for different particles, as described in Table 3.1, the chiral anomaly cancels for SM in a

dramatic way.

The electroweak Lagrangian density for SM can be expressed as:

LEW = Lkin + LHiggs + LYuk (3.4)

The first part, Lkin, contains the kinetic terms for gauge bosons and fermions as well as all
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the interactions among them. The second term, LHiggs comprises interplay between Higgs

and gauge bosons, and the self interaction of Higgs. The third portion LYuk indicates the

interactions of fermions with Higgs. Let me discuss each term in more detail.

3.3.1 Kinetic part:

In terms of fermion fields and gauge boson fields the kinetic part of electroweak Lagrangian

can be expressed as:

Lkin = −
1
4

Wµν
j W jµν −

1
4

Bµν Bµν +
∑

n

[
Ψ
Q

n (i γµDµ) ΨQn + Ψ
L

n (i γµDµ) ΨLn

]
(3.5)

where the definitions of different mathematical entities, involved in this expression, are as

follows:

Wµν
j = ∂µ Wν

j − ∂
ν Wµ

j − g ε jkl Wµ
k Wν

l , Bµν
j = ∂µ Bν

j − ∂
ν Bµ

j ,

Dµ = ∂µ + i g W jµ T j +
i
2

g′ Y Bµ . (3.6)

Here, Wµ
1,2,3 and Bµ are the massless gauge bosons associated to S U(2)L and U(1)Y gauge

groups respectively; g and g′ are corresponding coupling constants. While Bµ remains

singlet under S U(2)L ⊗ U(1)Y gauge transformation, Wµ
1,2,3 form a triplet. On the other

hand, Ψ is a column matrix consisting of two fermions from same generation; i.e., if ψu

and ψd are up and down type quarks or leptons, respectively, belonging to same generation,

then Ψ can be represented as: Ψ =

ψ
u

ψ d

 . The superscripts Q and L on Ψ in Eq. (3.5)

indicate quarks and leptons respectively, whereas the index n signifies the generations of

fermions. The generators of S U(2)L group transforming only the left-handed components

of fermions, as discussed earlier, results in the condition:

T j Ψn,R = 0 . (3.7)
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It can be shown easily that the Lagrangian Lkin is independently invariant under infinitesi-

mal local gauge transformations S U(2)L and U(1)Y , described by the following transfor-

mation rules:

S U(2)L

Ψn,L →
[
1 − i g T j α j(x)

]
Ψn,L

Ψn,R → Ψn,R

Wµ
j → Wµ

j + ∂µα j(x) + g ε jkl αk(x) Wµ
l

Bµ → Bµ

U(1)Y

Ψn →
[
1 −

i
2

g′ Y β(x)
]
Ψn

Bµ → Bµ + ∂µβ(x)

Wµ
j → Wµ

j

However, Wµ
j and Bµ fields are not generally used to describe electroweak interactions,

rather their linear combinations are taken as the mediator of the gauge fields. Thus two

charged fields (W±µ) and two neutral fields (Zµ and photon Aµ) are defined as:

W
+µ

W−µ

 =
1
√

2

1 − i

1 i


W

µ
1

Wµ
2

 and

Zµ

Aµ

 =

cos θW − sin θW

sin θW cos θW


W

µ
3

Bµ

 (3.8)

with g′ cos θW = g sin θW = e where e is the electric charge of positron and the angle θW

is the Weinberg angle, a parameter of the SM. The interaction of fermion anti-fermion

pairs with W±µ bosons are called charged current interactions, likewise the interactions

involving photon or Z0 and fermion anti-fermion pairs are labelled as neutral current

interactions.

3.3.2 Spontaneous symmetry breaking

Though Lkin describes the self-interactions of gauge bosons as well as their interplay

with fermions, it undergoes two serious problems. Firstly, non-zero masses of fermions

break the S U(2)L symmetry of Lkin explicitly, which can be noticed from Eq. (3.5). On

the other hand, the massive gauge bosons of weak interactions coerce the model into

becoming non-renormalizable. To preserve the S U(2)L symmetry of Lagrangian as well



Chapter 3. A brief description of SM 30

as the renormalizability of the model, an S U(2) doublet scalar field Φ is introduced in

the Lagrangian through LYuk and LHiggs terms respectively. By preferring a particular

direction in weak isospin plus hypercharge space through Higgs mechanism, the S U(2)L ×

U(1)Y symmetry for Lagrangian with massless particles remains intact whereas the same

symmetry for the vacuum of the scalar field is spontaneously broken generating the masses

to the elementary particles.

The Lagrangian density for scalar field is given by:

LHiggs =
(
DµΦ

)† (
DµΦ

)
− λ

( ∣∣∣Φ ∣∣∣ 2
−

1
2

v2
)2

(3.9)

where λ, v are two positive quantities. The scalar potential V(Φ) = λ
( ∣∣∣Φ ∣∣∣ 2

− 1
2 v2

)2

has minima at
∣∣∣Φ ∣∣∣ =

v
√

2
and electroweak symmetry breaking occurs by preferring only

one state with norm
v
√

2
as the vacuum state. In this process three massless, spin-zero

Goldstone bosons appear. However, in unitary gauge they seem to disappear as separate

degrees of freedom and essentially reappear as the longitudinal components of massless

W± and Z bosons of unbroken theory making the gauge mediators massive. In this gauge,

scalar field takes the form: Φ =
1
√

2

 0

v + H(x)

, where H is called the Higgs field, with

the masses for W, Z and Higgs boson to be:

MW = MZ cos θW =
1
2

gv, mH =
√

2vλ (3.10)

3.3.3 Yukawa interaction

To generate the masses of fermions, their interactions with the scalar field, which will

be renormalizable as well as invariant under S U(2)L × U(1)Y gauge transformation, are

introduced into the Lagrangian through the term:
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LYuk = −
∑

n

ξn

(
Ψ
L

n, L Φ ψL, dn

)
−
∑
n1, n2

{
ξ d

n1n2

(
Ψ
Q

n1, L
Φ ψQ, dn2

)
+ ξ u

n1n2

(
Ψ
Q

n1, L
Φ̃ ψQ, un2

)}
+ h. c

(3.11)

where the indices (n, n1, n2) indicate different generations of doublets, the indices L and Q

signify leptons and quarks respectively, the indices u and d indicate up-type and down-type

fermions of a doublet respectively and Φ̃ = iσ2Φ .

After spontaneous symmetry breaking, all the neutrinos remain massless whereas the down-

type lepton (e, µ, τ) of nth generation acquire mass mn =
v ξn
√

2
under unitary gauge. On

the other hand, two mass matrices of dimension (3 × 3) with elementsM u
n1n2

=
v
√

2
ξ u

n1n2

and M d
n1n2

=
v
√

2
ξ d

n1n2
emerge for up-type and down-type quarks respectively. Upon

diagonalization2 of these two mass matrices, quarks get their masses. However, there

emerges generation mixing of mass eigenstates for the charged current interaction since

the diagonalizing matrices forM u andM d are different, whereas no mixing occurs for

the neutral current interaction. Conventionally, we associate this mixing to the unitary

transformation of down-type quarks only through (3 × 3) CKM matrix VCKM, that contains

four independent parameters including one CP-violating phase.

There are some important remarks to be made about both the strong and electroweak

interactions [54]. The Lagrangian densities given by Eq. (3.1) and (3.4) do not depict

the full picture. To eliminate the unphysical degrees of freedom for the respective gauge

bosons, one must introduce proper gauge fixing terms along with Faddeev-Popov ghosts3

for both of the interactions separately. Secondly, the attempt to renormalize these theories

introduces several new mathematical entities and their relationships. For example, in

perturbative approach of QFT, counter terms have to be inserted in the Lagrangian density

in order to take care of the ultraviolet divergences arising from loops. Third, the coupling

in both the interactions are not constants, rather they vary with energy scale respecting the

renormalization group equations.

2According to singular value decomposition (SVD) theorem in linear algebra, any matrix can be diago-
nalized by multiplying two suitable unitary matrices on both sides of that matrix.

3hypothetical particles with spin-0 but obeying fermionic statistics.
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Chapter 4
B0 − B̄0 mixing and CPT violation

” There is no symmetry in nature. One eye is never

exactly the same as the other.

— Edouard Manet

4.1 Prologue

CPT invariance is extensively believed to be one of the sacred principles of nature since

according to CPT theorem, as described in section 2.5, any interaction described by

Lorentz invariant local gauge theory must be CPT invariant. So, all physical processes are

expected to respect this symmetry. Indeed, CPT violation would have a profound impact

on physics in general, as it would might lead to a violation of Lorentz symmetry [1, 55].

Given its importance to the theoretical framework underlying all of particle physics, much

attention has been devoted to experimentally testing the validity of CPT invariance.

One of the consequences of CPT invariance in quantum field theory is that a particle and

its antiparticle should have the same mass and lifetime, as shown in section 2.5. The

observed equality between masses and life times of particle and antiparticle with striking

33
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precisions [56] obligates us to believe that CPT is a good symmetry of nature. But one

can argue that there could be very small weak effects which are hard to measure in the

differences between masses and lifetimes of particle and antiparticle since these quantities

are mostly dominated by strong or electromagnetic interactions. Nevertheless, one must

agree that if some CPT violating effects are there in nature at all, they must be very small,

otherwise they would have been detected elsewhere. In this regard, neutral pseudoscalar

meson mixing appears to be a promising area for testing CPT violation [2]. Since it is a

second-order electroweak process governed by box diagrams, as shown in Fig. 4.1, small

CPT violating effects may be easier to detect here. Moreover, as the most general mixing

matrix involves T and CP violation too, it is impossible to study CPT alone without

discriminating it from the effects of CP and T violations. That is, the effects of T, CP and

CPT violation must be considered together.

The common method of measuring CPT violation has been developed in Refs. [57–64]

where entangled B0B̄0 states are produced from the decay of Υ(4S ), with one meson

decaying to a CP eigenstate (J/ψKS or J/ψKL) and the other one being used to tag the

flavour. Using this routine, true T and CPT violating asymmetries can be measured. The

BaBar Collaboration implemented this strategy [65, 66], culminating in the measurement

of T violation [67]. Though all the experimental results for CPT violating parameters are

consistent with zero, an important improvement in statistics is expected in near future so

that it will be possible to measure the CP, T and CPT violating parameters with greater

precision.

In this chapter, we re-examine the possibilities for measuring T and CPT violation in

B0 − B̄0 mixing using the decays of B0 or B̄0 to a CP eigenstate. As we will show, the

time-dependent indirect CP asymmetry contains sufficient information to measure the

conventional CP violating effects and extract the T and CPT violating parameters. Since

no true T and CPT violating asymmetries are measured, this is an indirect determination

of the T and CPT violating parameters. In this sense, this method is complementary to
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that using entangled states. We also investigate the prospect to measure these parameters

by fitting the individual decay rates of mode and conjugate mode separately.

We focus on B0
d − B̄0

d mixing but the same approach can be modified and applied to the B0
s

system. Note that we restrict the analysis to T and CPT violation arising from the B0 − B̄0

mixing matrix alone. If there are new-physics contributions to B decays, we assume they

are CPT conserving.

4.2 General formalism for mixing

Particles and antiparticles are distinguished by different internal quantum numbers like

charge, lepton number, baryon number, strangeness, beauty, charm, etc. Though strong

and electromagnetic interactions conserve all of these internal quantum numbers, some of

them are not conserved in different weak interactions. This drives a particle-antiparticle

transition through changing some of these internal quantum numbers by two units. Since

violation of electric charge conservation has not been seen yet, we restrict our analysis

within the mixing of neutral particles P0 − P̄0 only1. Suppose, non-conservation of internal

quantum number F induces this mixing. Then the Hamiltonian H can be divided into two

parts as:

H = HS E +HW (4.1)

where,HS E contains strong and electromagnetic interactions preserving F;HW denotes

the weak force mediated Hamiltonian that changes F.

In SM, dominant contribution in the mixing of neutral pseudoscalar mesons comes from

box diagrams, as shown in Fig. 4.1 for B0
d − B̄0

d mixing. However, we cannot use SM to

construct CPT violating observable as QFT itself preserves CPT symmetry. On the other

hand, to address the full dynamics of P0 − P̄0 system, one has to consider the infinite-

1Here P0 could be B0, D0, K0, neutron. This analysis can be applied to neutrinos too, but there we have
to study oscillations among three neutrinos rather than between neutrino and antineutrino.
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d̄b̄

bd

W

W

B0

d̄b̄

bd

W W B̄0

Figure 4.1: Box diagram for B0
d − B̄0

d mixing in SM.

dimensional Hilbert space containing all the reactions that involve P0 and P̄0. In that case

H will be an infinite-dimensional Hermitian matrix. But, working with this Hamiltonian is

immensely problematic since we have not achieved enough theoretical subjugation over

strong dynamics and bound states. Nonetheless, we can circumvent these issues in the

following way:

• A quantum mechanical approach will be implemented.

• The time scale involved in this context should be much longer than the typical strong

interaction scale2.

• The mixing phenomenon and decay of P0 or P̄0 will be treated separately.

• For the mixing, we will consider a two dimensional vector-space comprising P0 and

P̄0 as two orthonormal basis vectors. However, the price to pay is that the mixing

Hamiltonian H is no longer Hermitian. This occurs because the particles P0 and

P̄0 will decay eventually resulting in a decreasing probability for any state in the

vector-space.

Taking the flavour eigenstates as basis-vectors, we write them as:

|P0〉 =

10
 and |P̄0〉 =

01
 . (4.2)

Then any state in the two dimensional vector-space can be expressed as:

2Weisskopf-Wigner approximation.
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|ψ(t)〉 = a(t) |P0〉 + b(t) |P̄0〉 =

a(t)

b(t)

 . (4.3)

The time evolution of this state is given by Schrödinger equation:

i~
∂

∂t
|ψ(t)〉 = H |ψ(t)〉 . (4.4)

Now, every matrix can be written as a sum of one Hermitian matrix and one anti-Hermitian

matrix. Hence, we can decompose the mixing matrixH as:

H = M − (i/2) Γ (4.5)

where the Hermitian matrices M and Γ, defined in the (P0, P̄0) basis, are called the mass

and decay matrices respectively. Again, together with identity matrix 1, the Pauli matrices

form a basis for a vector-space of 2 × 2 matrices. This allows us to write:

M −
i
2

Γ = E1σ1 + E2σ2 + E3σ3 − iD1 . (4.6)

It should be noted that the coefficients E1, E2, E3 and D are complex quantities in general

as the mixing Hamiltonian is non-Hermitian. Comparing both sides of the above equation,

we obtain the following relations:

E1 = Re M12 −
i
2

Re Γ12 , E3 =
1
2

(M11 −M22) −
i
4

(Γ11 − Γ22) ,

E2 = −Im M12 +
i
2

Im Γ12 , D =
i
2

(M11 + M22) +
1
4

(Γ11 + Γ22) . (4.7)

For convenience, we use spherical polar coordinate system and define three complex

numbers E, θ and φ as follows:

E =

√
E2

1 + E2
2 + E2

3, E1 = E sin θ cos φ, E2 = E sin θ sin φ, E3 = E cos θ. (4.8)
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The flavour states are not the physical states since the mixing matrix H is not diagonal.

Rather the physical states are the eigenvectors of the mixing matrix H and they can be

written in terms of the flavour states as follows:

|PL〉 = p1 |P
0〉 + q1 |P̄

0〉 , |PH〉 = p2 |P
0〉 − q2 |P̄

0〉 . (4.9)

where, p1 = N1 cos θ
2 , q1 = N1 eiφ sin θ

2 , p2 = N2 sin θ
2 and q2 = N2 eiφ cos θ

2 . Here N1 and

N2 are two normalization factors, given by: N1 = 1√
| cos θ

2 |
2+|eiφ sin θ

2 |
2
, N2 = 1√

| sin θ
2 |

2+|eiφ cos θ
2 |

2
.

Hence, following Eq. (4.4), the time evolutions for the flavour eigenstates
(
|B0〉 ≡ |B0〉 (t =

0) and |B̄0〉 ≡ |B̄0〉 (t = 0)
)

are given by:

|P0(t)〉 = (g+ + g− cos θ) |P0〉 + eiφg− sin θ |P̄0〉 , (4.10)

|P̄0(t)〉 = e−iφg− sin θ |P0〉 + (g+ − g− cos θ) |P̄0〉 ,

with g+ = e−i t
(

M−i Γ
2

)
cos

[(
∆M − i ∆Γ

2

)
t
2

]
and g− = e−i t

(
M−i Γ

2

)
i sin

[(
∆M − i ∆Γ

2

)
t
2

]
. Here,

M ≡ (MH + ML)/2, ∆M ≡ MH − ML, Γ ≡ (ΓH + ΓL)/2 and ∆Γ ≡ ΓH − ΓL .

It should be noticed that:

〈PH |PL〉 = N1N2

[
cos

θ

2
sin

θ∗

2
− ei(φ−φ∗) sin

θ

2
cos

θ∗

2

]
, 0 , (4.11)

i.e., the inner product of the physical states does not vanish in general. This means, the

physical states are not orthogonal. It happens because the Hamiltonian is non-Hermitian.

4.3 T and CPT violation

To obtain the conditions for CPT and T violations, we need to use the whole Hilbert space.

Using perturbation theory, the elements of mass and decay matrices are given by [5, 68]:
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Mαβ = 〈α|H | β〉 +
∑

n

P
[
〈α| HW | n; out〉 〈 n; out| HW | β〉

MP − Mn

]
, (4.12)

Γαβ = 2π
∑

n

δ(MP − Mn) P
[
〈α| HW | n; out〉 〈 n; out| HW | β〉

]
, (4.13)

with the constraints: Mαβ = M∗βα and Γαβ = Γ∗αβ (since M and Γ are Hermitian), where P

indicates the principal part.

The properties of M and Γ in light of CPT and T symmetries are given below [5]:

1. If CPT invariance holds, independent of T symmetry, then

M11 = M22 and Γ11 = Γ22 (4.14)

The above relations can be proved easily by using the definition of Mαβ and Γαβ

from Eq. (4.12), followed by same flow of logic as in Eq. (2.43) and Eq. (2.45).

Applying this condition to Eq. (4.7) will result in:

E3 = 0 =⇒ θ =
π

2
. (4.15)

2. If T invariance holds, then, independently of CPT symmetry,

Γ∗12

Γ12
=

M∗12

M12
. (4.16)

Starting from Eq. (4.12), the above relation can be proved in the following way:

Γ∗12 = 2π
∑

n

δ(MP − Mn) P
[(
〈P0 | HW | n; out〉

)∗ (
〈 n; out| HW | P̄0〉

)∗]
= 2π

∑
n

δ(MP − Mn) P
[
〈P0 |T†THW T

−1
T | n; out〉 〈 n; out|T†THW T

−1
T | P̄0〉

]
(4.17)

If T be a symmetry of the system, then: THW T−1
= HW . (4.18)
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Moreover, strong and electromagnetic interactions already obey T symmetry:

THS E T
−1

= HS E , T |P0〉 = eiω |P0〉 , T |P̄0〉 = eiω |P̄0〉 , T |n〉 = eiωn |n〉 , (4.19)

where, ω,ω and ωn are real phases. Thus, from Eq. (4.17), T symmetry implies:

Γ∗12 = e i(ω−ω) Γ12 (4.20)

Likewise, it can be shown that T symmetry enforces: M∗12 = e i(ω−ω) M12 . (4.21)

Using last two equations, we arrive at the T invariance condition in Eq. (4.16). In

our formalism, this condition will translate as:

Im (E1E∗2 ) = 0 =⇒ Im φ = 0, (4.22)

which can be derived from Eq. (4.7) .

3. Inner product of the physical states becomes real if CPT invariance holds and it

turns into an imaginary entity if T symmetry is there.

Using the condition for CPT symmetry from Eq. (4.15), the inner product of

physical states, given by Eq. (4.11), becomes:

〈PH |PL〉

∣∣∣∣
θ=π/2

= tanh
[
Im(φ)

]
, (4.23)

which is obviously real.. Now, if we use the T invariance condition from Eq. (4.22),

the inner product in Eq. (4.11) turns into:

〈PH |PL〉

∣∣∣∣
Im(φ)=0

=
− i sinh

[
Im(θ)

]
| cos θ

2 |
2 + | sin θ

2 |
2

(4.24)

which is imaginary. It is obvious that 〈PH |PL〉 vanishes, i.e. physical states become

orthogonal, if both CPT and T are good symmetries.
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The above theorems signify that [Re(θ) − π/2] and Im(θ) are CPT violating parameters

whereas Im(φ) is T violating parameter. Note that it is usually said that the absence of CP

violation implies |eiφ| =

√ ∣∣∣∣M∗12−i Γ∗12/2
M12−i Γ12/2

∣∣∣∣ = 1 (i.e. Im(φ) = 0). However, strictly speaking,

this is due to the absence of T violation. The two statements are equivalent only if CPT is

conserved.

In the absence of both T and CPT violation in B0-B̄0 mixing, the parameters θ and φ

take the values θ = π
2 and φ = −2βmix where βmix is the weak phase describing B0 − B̄0

mixing. In SM, βmix = β for the B0
d meson and it is βs for B0

s meson. But in the presence

of T and CPT violation, the parameters θ and φ will deviate from these values. Now, we

introduce CPT violating parameters ε1,2 and T violating parameter ε3 to express the mixing

parameters θ and φ in terms of them as:

θ =
π

2
+ ε1 + i ε2 , φ = −2βmix + i ε3 . (4.25)

But one must be careful about the given names of ε1,2,3 . The parameters ε1 and ε2 do not

contribute only to observables measuring CPT violation, rather they also lead to CP and T

violating effects. Similarly, the T violating parameter ε3 also contributes to CP violating

observables. And the reverse is true: recall that, in Ref. [67], the BaBar Collaboration

measured a large true T violating asymmetry. This does not suggest that ε3 is large, as there

are also large contributions to the asymmetry coming from CP violating effects (assuming

CPT invariance). The point is that ε1, ε2 and ε3 are also sources of CP violation, and it is

this fact that allows their measurement in the time-dependent indirect CP asymmetry, as

we will see below.

The values for ε1, ε2 and ε3 have been reported by the BaBar and Belle Collaborations [6].

Their notation is related to ours as follows:

cos θ ↔ −z , sin θ ↔
√

1 − z2 , eiφ ↔
q
p
, (4.26)
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=⇒ ε1 = Re(z) , ε2 = Im(z) , ε3 = 1 −
∣∣∣∣qp ∣∣∣∣ . (4.27)

Since ε1 and ε2 are CPT violating parameters, they are expected to be very small. As for

ε3, note that |q/p| has been measured at the Υ(4S ) using the same-sign dilepton asymmetry,

assuming CPT conservation [6]:

∣∣∣∣qp ∣∣∣∣ = 1.0010 ± 0.0008 =⇒ ε3 = −(1.0 ± 0.8) × 10−3 . (4.28)

Thus, ε3 is also very small. The value of yd = ∆Γd/2Γd has been measured to be small:

yd = −0.003 ± 0.015 with the B0
d lifetime of 1.520 ± 0.004 ps [7]. This means that we can

approximate sinh(∆Γt/2) ' ∆Γt/2 = ydΓdt and cosh(∆Γt/2) ' 1. In principle, for large

enough times, this approximation will break down. However, even at time scales of O(10)

ps, the approximation holds to ∼ 10−4, and by this time most of the B0
ds will have decayed.

4.4 Time-dependent indirect CP asymmetry

Now, we consider a final state f to which both B0 and B̄0 can decay. Denoting the

decay Hamiltonian byH∆F=1 , we can express the time-dependent decay amplitudes for

uncorrelated or tagged neutral mesons following Eq. (4.10) as:

A(B0(t)→ f ) = 〈 f | H∆F=1 |B0(t)〉 = (g+ + g− cos θ)A f + eiφg− sin θ Ā f , (4.29)

A(B̄0(t)→ f ) = 〈 f | H∆F=1 |B̄0(t)〉 = e−iφg− sin θA f + (g+ − g− cos θ) Ā f ,

where, A f ≡ 〈 f | H∆F=1 |B0〉 and Ā f ≡ 〈 f | H∆F=1 |B̄0〉 . The differential decay rates for any

mode dΓ/dt(B0(t)→ f ) and its conjugate mode dΓ/dt(B̄0(t)→ f ) are given by3:

dΓ

dt
(B0(t)→ f ) =

1
2

e−Γt
[
sinh (∆Γt/2)

{
2 Re

(
cos θ |A f |

2 + eiφ sin θA∗f Ā f

)}
3In Ref. [64] it was pointed out that the coefficient of cos(∆Mt) includes a CPT-violating piece.
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+ cosh (∆Γt/2)
{
|A f |

2 + | cos θ|2 |A f |
2 + |eiφ sin θ|2 |Ā f |

2

+2 Re
(
eiφ cos θ∗ sin θA∗f Ā f

) }
+ cos(∆Mt)

{
|A f |

2 − | cos θ|2 |A f |
2

−|eiφ sin θ|2 |Ā f |
2 − 2 Re

(
eiφ cos θ∗ sin θA∗f Ā f

) }
− sin(∆Mt)

{
2 Im

(
cos θ |A f |

2 + eiφ sin θA∗f Ā f

)}]
, (4.30)

dΓ

dt
(B̄0(t)→ f ) =

1
2

e−Γt
[
sinh (∆Γt/2)

{
2 Re

(
− cos θ∗ |Ā f |

2 + eiφ∗ sin θ∗A∗f Ā f

)}
+ cosh (∆Γt/2)

{
|Ā f |

2 + | cos θ|2 |Ā f |
2 + |e−iφ sin θ|2 |A f |

2

−2 Re
(
eiφ∗ cos θ sin θ∗A∗f Ā f

) }
+ cos(∆Mt)

{
|Ā f |

2 − | cos θ|2 |Ā f |
2

−|e−iφ sin θ|2 |A f |
2 + 2 Re

(
eiφ∗ cos θ sin θ∗A∗f Ā f

) }
+ sin(∆Mt)

{
2 Im

(
− cos θ∗ |Ā f |

2 + eiφ∗ sin θ∗A∗f Ā f

)}]
. (4.31)

If we set θ = π/2 and Im φ = 0 in the above expressions, we recover expressions for the

differential decay rates that are commonly found elsewhere in the literature.

The observable we will use to extract the T and CPT violating parameters ε1,2,3 is the time-

dependent indirect CP asymmetryA f
CP(t) involving B-meson decays to a CP eigenstate.

It is defined as:

A
f
CP(t) =

dΓ/dt
(
B̄0

d(t)→ fCP
)
− dΓ/dt

(
B0

d(t)→ fCP
)

dΓ/dt
(
B̄0

d(t)→ fCP
)

+ dΓ/dt
(
B0

d(t)→ fCP
) . (4.32)

In the limit of CPT and T conservation in the mixing, and ∆Γ = 0, one has the familiar

expression:

A
f
CP(t) = S sin(∆Mdt) −C cos(∆Mdt), (4.33)

where, ϕ ≡ −2βmix − arg[A f ] + arg[Ā f ], C ≡ |A f |
2−|Ā f |

2

|A f |2+|Ā f |2
, S ≡

√
1 −C2 sinϕ . (4.34)

Here, C is called direct CP asymmetry and ϕ is the measured weak phase, which differs

from the mixing phase −2βmix if arg[A f ] , arg[Ā f ]. If there is no penguin pollution, then

ϕ cleanly measures a weak phase and C = 0. But if there is penguin pollution or any other
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kind of new physics contribution that preserves CPT, then neither of these holds.

In the presence of T and CPT violation in the mixing, Eq. (4.33) does not hold. To obtain

a more accurate form of A f
CP(t), we proceed in the following way. First, we insert the

expressions for differential decay rates of mode and conjugate mode from Eq. (4.30) and

(4.31) into Eq. (4.32). Then, keeping only terms at most linear in the small quantities ε1,2,3

and ∆Γd, we obtain4:

A
f
CP(t) ' c0 + c1 cos(∆Mdt) + c2 cos(2∆Mdt) + s1 sin(∆Mdt) + s2 sin(2∆Mdt)

+ c′1 Γd t cos(∆Mdt) + s′1 Γd t sin(∆Mdt) , (4.35)

where the coefficients are given by:

c0 = ε1 cosϕ + ε3 −
1
2
ε3 sin2 ϕ , s1 =

√
1 −C2 sinϕ − ε2 cos2 ϕ − ε3C sinϕ ,

c1 = −C − ε3 − ε1 cosϕ − ε2C sinϕ , s2 = −
1
2
ε2 sin2 ϕ + ε3C sinϕ ,

c2 =
1
2
ε3 sin2 ϕ + ε2C sinϕ , c′1 = C yd cosϕ , s′1 = −

1
2

yd sin 2ϕ . (4.36)

The seven pieces have different time dependences so that, by fittingA f
CP(t) to the seven

time-dependent functions, all coefficients can be extracted. It should be noted for Eq.

(4.36) that non-vanishing c0, c2 and s2 indicate breaking of T or CPT symmetry in mixing.

It is obvious that setting ε1,2,3 to zero in Eq. (4.35) and (4.36) brings back the usual form

of CP asymmetry, as expressed in Eq. (4.33).

The five observables c0, c1, c2, s1 and s2 can be used to solve for the five unknown

parameters C, ϕ and ε1,2,3. In practice, a fit will probably be used, but there is a way to

solve analytically. The parameter C is simply given by:

C = −(c0 + c1 + c2) . (4.37)

4A time-dependent CP asymmetry having a complicated form with higher harmonics in (∆Mdt), similar
to that in Eq. (4.35), was noted in Ref. [62].
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The solution for sinϕ is obtained by solving the following quartic equation:

sin4 ϕ − 2
[ s1 + 2s2

2 −C2

]
sin3 ϕ + 4C

[
C +

c2

2 −C2

]
sin2 ϕ

− 4
[2C2(s1 + s2) − s2

2 −C2

]
sinϕ −

[ 8C c2

2 −C2

]
= 0 . (4.38)

Of course, there are four solutions, but, since the ε j are small, the correct solution is the

one that is roughly s1/
√

1 −C2. Finally, ε1, ε2, ε3 are given by:

ε1 = c0 secϕ −
(2 − sin2 ϕ)(c2 sinϕ + 2C s2)

(4C2 + sin2 ϕ) sinϕ cosϕ
,

ε2 =
2 (2C c2 − s2 sinϕ)
(4C2 + sin2 ϕ) sinϕ

, ε3 =
2 (c2 sinϕ + 2C s2)
(4C2 + sin2 ϕ) sinϕ

. (4.39)

Hence, it is possible to measure the parameters describing T and CPT violation in B0
d − B̄0

d

mixing using the time-dependent indirect CP asymmetry. Knowing ϕ, the value of yd can

be found from measurements of c′1 and s′1. Note that, even if the width difference ∆Γd

between the two B-meson eigenstates vanishes, the T violating parameter ε3 can still be

extracted, which is contrary to the claim of Refs. [59] and [62].

We have described the above method for B0
d mesons, as ∆Γd is vanishingly small. In the case

of B0
s mesons, ∆Γs is not that small; so the functions sinh (∆Γs t/2) and cosh (∆Γs t/2) must

be kept throughout or one should truncate the series of sinh (∆Γs t/2) and cosh (∆Γs t/2)

accordingly. This modifies the forms of Eq. (4.35), but the idea does not change.

4.5 CPT conserving scenario

We have another handle for probing CPT violation in B0
d − B̄0

d mixing. Currently, we know

that ε3 = −(1.0 ± 0.8) × 10−3 [Eq. (4.28)]. Now, suppose that there is no CPT violation

(i.e., ε1 = ε2 = 0). Then, the coefficients c0, c2 and s2 can be expressed in terms of the
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measured quantities c1, s1 and ε3 as follows:

c0 = ε3

[
1 −

2s2
1

(2 − c2
1 + ε2

3 )2

]
, c2 =

2s2
1 ε3

(2 − c2
1 + ε2

3 )2
, s2 = −

2s1 (c1 + ε3) ε3

(2 − c2
1 + ε2

3 )
. (4.40)

The values of c1 and s1 have been measured for several B0
d decays to CP eigenstates [6],

and the value of ε3 is independent of the decay mode. Using these values, we can estimate

c0, c2 and s2 from Eq. (4.40), which assumes that CPT is conserved. We present the

expected values for c0, c2 and s2 in the absence of CPT violation for different modes in the

Table 4.1. Should the measurements of c0, c2 and s2 deviate significantly from the above

values, this would indicate the presence of CPT violation in B0
d − B̄0

d mixing.

Modes c0 × 10−4 c2 × 10−4 s2 × 10−4

J/ψKS −15.18 ± 15.50 −4.31 ± 4.41 0.29 ± 0.43

J/ψKL −15.21 ± 15.53 −4.29 ± 4.41 −0.32 ± 0.52

ψ(2S)KS −13.15 ± 13.46 −6.35 ± 6.56 −0.17 ± 0.89

φKS −14.16 ± 14.57 −5.34 ± 5.76 −0.12 ± 2.0

KSKSKS −14.14 ± 14.71 −5.36 ± 6.17 3.49 ± 4.29

ρ0KS −16.65 ± 17.23 −2.85 ± 4.08 −0.65 ± 2.25

ωKS −14.58 ± 15.16 −4.92 ± 5.81 −0.58 ± 2.05

Table 4.1: Expected values with errors for c0, c2 and s2 in the absence of CPT violation
for different modes.

4.6 Fitting individual decay rates

Instead of going through time dependent indirect CP asymmetry, one can obtain T and

CPT violating parameters by fitting the individual decay rates for mode and conjugate

mode. Assuming ε1,2,3 and ∆Γ to be small, the differential decay rates for mode and
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conjugate mode can be written as:

dΓ f

dt
(
B0

d(t)→ f
)

=
1
2

e−Γt
(
|A f |

2 + |Ā f |
2
) [

cosh (∆Γt/2)
{

1 − (1 −C) ε3 −
√

1 −C2 (ε1 cosϕ

+ ε2 sinϕ)
}

+ sinh (∆Γt/2)
{
− (1 + C) ε1 +

√
1 −C2 (1 − ε3) cosϕ

}
+ cos (∆Mt)

{
C + (1 −C) ε3 +

√
1 −C2 (ε1 cosϕ + ε2 sinϕ)

}
+ sin (∆Mt)

{
(1 + C) ε2 +

√
1 −C2 (−1 + ε3) sinϕ

}]
= e−Γt

[
Ch

1 cosh(∆Γt/2) + S h
1 sinh (∆Γt/2) + C1 cos (∆Mt) + S 1 sin (∆Mt)

]
, (4.41)

dΓ f

dt
(
B̄0

d(t)→ f
)

=
1
2

e−Γt
(
|A f |

2 + |Ā f |
2
) [

cosh (∆Γt/2)
{

1 + (1 + C) ε3 +
√

1 −C2 (ε1 cosϕ

− ε2 sinϕ)
}

+ sinh (∆Γt/2)
{

(1 −C) ε1 +
√

1 −C2 (1 + ε3) cosϕ
}

+ cos (∆Mt)
{
−C − (1 + C) ε3 −

√
1 −C2 (ε1 cosϕ − ε2 sinϕ)

}
+ sin (∆Mt)

{
(−1 + C) ε2 +

√
1 −C2 (1 + ε3) sinϕ

}]
= e−Γt

[
Ch

2 cosh(∆Γt/2) + S h
2 sinh (∆Γt/2) + C2 cos (∆Mt) + S 2 sin (∆Mt)

]
. (4.42)

Here, the coefficients Ch
1,2, S h

1,2, C1,2 and S 1,2 can be considered as observables. They can

be determined directly from experiments by fitting the differential decay rates for mode

and conjugate mode individually.

Now, we have eight observables to solve for six unknown quantities (ϕ, |A f |, |Ā f | and

ε1,2,3). The solutions for |A f | and |Ā f | are given by:

|A f | =

√
Ch

1 + C1 and |Ā f | =

√
Ch

2 + C2 . (4.43)

=⇒ C =
Ch

1 −Ch
2 + C1 −C2

Ch
1 + Ch

2 + C1 + C2
and |A f |

2 + |Ā f |
2 = Ch

1 + Ch
2 + C1 + C2 . (4.44)
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We define: C′j =
C j

|A f |
2 + |Ā f |

2
and S ′j =

S j

|A f |
2 + |Ā f |

2
, j ∈ {1, 2} . (4.45)

Then the value for sinϕ can be obtained from the following cubic equation:

sin3 ϕ+
S ′1 − S ′2
√

1 −C2
sin2 ϕ+

(
C2 −C′1 −C′2

1 −C2

)
sinϕ−

C
√

1 −C2

[
S ′1

1 + C
+

S ′2
1 −C

]
= 0 . (4.46)

The solutions for ε1,2,3 now become:

ε1 = −

(
2

sin 2ϕ

) [
S ′1

1 + C
+

S ′2
1 −C

−

(
C′1 −C′2
√

1 −C2

)
sinϕ

]
, (4.47)

ε2 = S ′1 − S ′2 +
√

1 −C2 sinϕ , (4.48)

ε3 = −C + cscϕ
(
S ′1

√
1 −C
1 + C

+ S ′2

√
1 + C
1 −C

)
. (4.49)

4.7 Summary

To sum up, we have shown that the time-dependent indirect CP asymmetries involving

B0 or B̄0 decaying to a CP eigenstate contain enough information to extract not only the

CP violating weak phases, but also the parameters describing T and CPT violation in

B0-B̄0 mixing. It is also possible to extract these parameters by fitting the individual

decay rates for modes and conjugate modes separately. Penguin pollutions and the width

difference between light and heavy states need not be neglected. This procedure can be

applied to both B0
d and B0

s meson decays.

o

n

o

n

o

n

o

n
o

n

o

n

o

n

o

n



Chapter 5
Testing WWγ vertex

” One accurate measurement is worth a thousand ex-

pert opinions.

— Grace Hopper

5.1 Prologue

The S U(2)L ⊗ U(1)Y theory of electroweak interactions has been tested extensively in last

few decades and there is no doubt that it is the correct theory at least up to a TeVscale.

This conviction is largely based on the precision measurements at LEP and the consistency

of top and Higgs boson masses which could be predicted taking radiative corrections into

account. The gauge boson and Higgs boson self interactions are, however, not as well

probed either by direct measurement or by radiative corrections and it is possible that

some deviations from the standard Model (SM) loop level values might still be seen. To

ascertain the validity of SM it is critical that the WWγ vertex, which is predicted uniquely

in SM, be probed to an accuracy consistent with loop level corrections to it. Several

experiments [69–76] have measured parameters that probe the WWγ and WWZ vertex, but

the accuracy achieved is still insufficient to probe one loop corrections to it within the SM.

49
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In this chapter, we have investigated how the C and P conserving dimension four WWγ

operator can be probed experimentally using radiative muon decays. The vertex factor for

this operator is usually denoted by κγ and is uniquely predicted in the SM. At tree level

κγ = 1 in the SM and the absolute value of the one loop corrections to the tree level values

of κγ is restricted to be less than 1.5 × 10−2 [10]. However, the current global average

κγ = 0.982±0.042 [7] has too large an uncertainty to probe the SM up to one loop accuracy.

Of the experimentally measured values of κγ, only ATLAS and CMS collaborations use

the data for real on-shell photon emission in hadron colliders [69, 70], probing the true

magnetic moment of the W-boson.

One can expect κγ to deviate from its SM value by only a few percent, hence, we must

choose the mode to be studied very carefully. Radiative muon decay µ → eγνµν̄e is a

promising mode to measure the true magnetic moment (due to real photon in the final state)

of the W-boson in this regard. At first sight the measurement of W-boson gauge coupling

using low energy decay process may seem impossible, since the effect is suppressed by

two powers of the W-boson mass. The process has two missing neutrinos in the final state

and on integrating their momenta the partial differential decay rate shows no radiation-

amplitude zero [77]. Moreover, the differential decay rate does not show enough sensitivity

to a deviation of the WWγ vertex from that of the SM. We show, however, that an easily

separable part the normalized differential decay rate (odd under the exchange of photon

and electron energies) does have a zero in the case of SM. The vanishing of the odd

contribution under the exchange of final state electron and photon energies in the decay

rate is a new type of zero, hitherto not been studied in literature. A suitably constructed

asymmetry using this fact enables adequate sensitivity to probe the WWγ vertex beyond

the SM. We consider a very restricted part of the phase space where the asymmetry is larger

than statistical errors for our study. Large number of muons are expected to be produced

for COMET, MEG and Mu2e collaborations [3] to probe lepton flavour violating processes

like µ→ eγ. The radiative muon decay µ→ eγνµν̄e, which has been discussed in Ref. [78]

in a great detail, is the dominant background process for this case. The large sample of
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µ → eγνµν̄e produced at such facilities make them an ideal environment to probe WWγ

vertex, with reduced statistical uncertainty, as discussed in this chapter. In a simulation

using ηγ ≡ κγ − 1 = 0.01, we find that the asymmetry constructed by us, can probe this ηγ

value with a 3.9σ significance.

The rest of the chapter is organized as follows. In Sec. 5.2 we briefly discuss the decay

kinematics and relevant expressions for decay rate. These results are used to construct the

observables in Sec. 5.3, where we also explain why a zero in odd amplitude is expected. In

sec. 5.4, we have discussed the effects of electron mass. Sec. 5.5 deals with the numerical

analysis to probe the WWγ vertex and finally we conclude in Sec. 5.6.

5.2 Theoretical Framework

5.2.1 Dynamics

The most general couplings of W to the neutral gauge bosons γ and Z can be described by

the following effective Lagrangian [8]:

LV
e f f = −igV

[
gV

1
(
W†
µνW

µ −W†µWµν
)
Vν + κV W†

µ WνVµν +

( λV

m2
W

)
W†
λµWµ

νVνλ + i f V
4 W†

µ Wν
(
∂µVν

+ ∂νVµ) − i f V
5 ε µνρσ(W†

µ

↔

∂ρWν)Vσ + κ̃V W†
µ WνṼ

µν
+

(
λ̃V

m2
W

)
W†
λµWµ

ν Ṽ
νλ

]
. (5.1)

Here, V corresponds to γ or Z, gγ = e and gZ = e cot θW where θW is the weak mixing

angle and e is electric charge of positron. The other definitions are: Wµν = ∂µWν − ∂νWµ,

Vµν = ∂µVν−∂νVµ ,Ṽµν = 1
2ε µνρσVρσ, (A

↔

∂ µB) = A(∂µB)− (∂µA)B and Bjorken-Drell metric

is taken as ε0123 = − ε0123 = +1. In the SM, at tree level, gV
1 = κV = 1 and all other coupling

parameters are zero.

In the case of radiative muon decay, V stands for photon. According to charge conjugation

and parity the seven coupling constants associated with most general WWγ effective
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Lagrangian can divided into four categories:

• Coupling of C & P conserving operator: gγ1, κγ, λγ .

• Coupling of C conserving but P violating operator: κ̃γ, λ̃γ .

• Coupling of C violating but P conserving operator: f γ4 .

• Coupling of C & P violating but CP conserving operator: f γ5 .

These coupling parameters are directly involved in the electromagnetic properties of W

boson in the following way [79–81]1:

• Magnetic moment: µW =
e

2mW
(1 + κγ + λγ)

• Electric dipole moment: dW =
e

2mW
(̃κγ + λ̃γ)

• Electric quadrupole moment: QW = −
e

m2
W

(κγ − λγ)

• Magnetic quadrupole moment: Q̃W = −
e

m2
W

(̃κγ − λ̃γ)

where mW is the mass of W boson.

W−
ρ (q2) W−

σ(q1)

Aδ(p)

= −ieΓρσδ(q2, q1, p)

Figure 5.1: Feynman rule for effective WWγ vertex.

Among the seven coupling parameters, the ones with CP violating interactions, i.e. f γ4 , κ̃γ

and λ̃γ , are constrained to be less than ∼ (10−4) [9] due to the measurements of neutron

electric dipole moment in case of direct CP violation. Due to the CP violating nature of

1As pointed out by Kim and Tsai [81], the expression for QW given by Aronson [80] contains an error.
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these couplings, deviations from the SM contributions are proportional to square of these

couplings and thus are highly suppressed, as compared to CP conserving contributions.

Hence, we neglect the CP violating parameters for the rest of the discussion of the chapter.

Moreover, we can expect the interaction of photon with W boson to preserve C and P

symmetry separately, since it can be thought of as an electromagnetic interaction. The

demand of C and P to be conserved separately in the Lagrangian allows us to choose

vanishing f γ5 . On the other hand, it is obvious that the radiative muon decay will not be

sensitive to the dimension six-operator involving λγ, due to an additional m2
W suppression.

The measurement of λγ is possible only at high energy colliders. Hence, we can safely

neglect the deviation of λγ from its SM value of zero. Furthermore, the value of the coupling

gγ1 is fixed to be unity due to electromagnetic gauge invariance. Thus, in momentum space

the WWγ vertex can be expressed as (in the unit of electron’s charge):

Γρσδ(q2, q1, p) = gρσ(q2 + q1)δ + gσδ(p − q1)ρ − gδρ(p + q2)σ + ηγ (pρgσδ − pσgρδ), (5.2)

where ηγ ≡ κγ − 1 and q2, q1, p are the four momenta of incoming W−, outgoing W− and

outgoing photon respectively, as depicted in Fig. 5.1.

The radiative muon decay proceeds through three Feynman diagrams, shown in Fig. 5.2,

where the photon in the final state can either arise from any of the initial and final state

leptons (excluding neutrinos) or the W boson in the propagator. The later process is of our

particular interest.

µ−

νµ e−

ν̄eγ

W

(a)

µ−

νµ e−

ν̄e

γ
W

(b)

µ−

νµ e−

ν̄eγ

W
W

(c)

Figure 5.2: Feynman diagrams for radiative muon decay.

We define the four momenta of incoming µ−, outgoing e−, γ, νµ, ν̄e as pm, pe, p, k and k′,
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respectively, and the masses of muon and electron are denoted by mµ and me, respectively.

Defining the W-propagator of momentum q j as −iWµν(q j), the amplitudes corresponding

to these three diagrams (from top to bottom), labelled with subscript 1 to 3, can be

expressed as:

iM1 =

(
−ieg2

8

) [
u(pe) γβ(1 − γ5) v(k′)

]
Wαβ(q1)

[
u(k) γα(1 − γ5)

( 1
/pm − /p − mµ

)
γδ u(pm)

]
ε∗δ , (5.3)

iM2 =

(
−ieg2

8

) [
u(k) γα(1 − γ5) u(pm)

]
Wαβ(q2)

[
u(pe) γδ

( 1
/pe + /p − me

)
γβ(1 − γ5) v(k′)

]
ε∗δ , (5.4)

iM3 =

(
−ieg2

8

) [
u(k) γα(1 − γ5) u(pm)

]
Wαρ(q2)Wσβ(q1)

[
u(pe) γβ(1 − γ5 )v(k′)

]
Γρσδ(q2, q1, p) ε∗δ, (5.5)

where g is the weak coupling constant; qµ1 = pµe + k′µ and qµ2 = pµm − kµ.

It is apparent from Fig. 5.2 as well as Eqs. (5.3)-(5.5), that amplitude (M3) containing

effective vertex Γρσδ is 1/m2
W suppressed compared to the other two contributions M1 and

M2. Hence, within the SM, the first two Feynman-diagrams in Fig. 5.2 are sufficient to

study the process. On the other hand, the third diagram only is sensitive to ηγ. Thus, in

order to retain sensitivity to ηγ in Γρσδ, it is necessary and sufficient to keep contributions

up to O(1/m4
W), in the amplitudes. To achieve this we expand the W boson propagator in

the power series of (q2
j/m

2
W) as:

− iWαβ(q j) = −i
[gαβ −

(
qαj q

β
j
/
m2

W

)
q2

j − m2
W

]
≈

i
m2

W

[
gαβ +

q2
j

m2
W

(
gαβ −

qαj q
β
j

q2
j

)]
. (5.6)

The total amplitude can be expressed as M = M1 +M2 +M3 and we calculate differential

cross section keeping all the amplitudes up to O(1/m4
W).

5.2.2 Kinematics

Since the neutrinos νµ and ν̄e cannot be observed we integrate the νµ and ν̄e momenta using

the following formulae for phase space integration2:

2First three relations are given in the Ref. [82]. The remaining two can easily derived by writing the
general structure of the result and multiplying both sides by qµ or gµν.
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∫

d2Φ(k, k′) =
π

2
, (5.7)∫

kµ d2Φ(k, k′) =
π

4
qµ , (5.8)∫

kµkν d2Φ(k, k′) =
π

6

[
qµqν −

q2

4
gµν

]
, (5.9)∫

kµkνkρ d2Φ(k, k′) =
π

6

[
qµqνqρ −

q2

8
(
gµνqρ + gρνqµ + gµρqν

)]
, (5.10)∫

kµkνkρkσ d2Φ(k, k′) =
π

10

[
qµqνqρqσ +

q4

48
(
gµνgρσ + gµρgνσ + gµσgνρ

)
−

q2

8
(
gµνqρqσ + gµρqνqσ + gµσqρqν + gνρqµqσ + gνσqρqµ + gρσqµqν

)]
, (5.11)

where Φ(k, k′) and q indicate the two dimensional phase space and invariant momentum

for the νµν̄e system respectively. Since the decay now looks like a 3-body decay it is

meaningful to define effective Mandelstam like variable constructed from the invariant

momentum square of e−νµν̄e system as t and that of γνµν̄e system as u. Hence, (pe + q)2 = t

and (pγ + q)2 = u. Notice that, q2 is not a constant for our decay. It is, however, much

more convenient to define normalized parameters:

xp =
t + u

2(q2 + m2
µ)
, yp =

t − u
2(q2 + m2

µ)
, q2

p =
q2

(q2 + m2
µ)
, (5.12)

which can be written in terms of the observable quantities, the photon energy Eγ, the

electron energy Ee and the angle between the electron and photon θ as follows:

xp =
mµ(mµ − Ee − Eγ)

2[m2
µ − Eγmµ − Eemµ + EeEγ(1 − cos θ)]

, (5.13)

yp =
mµ(Ee − Eγ)

2[m2
µ − Eγmµ − Eemµ + EeEγ(1 − cos θ)]

, (5.14)

q2
p =

m2
µ − 2Eγmµ − 2Eemµ + 2EeEγ(1 − cos θ)

2[m2
µ − Eγmµ − Eemµ + EeEγ(1 − cos θ)]

. (5.15)

The parameters of interest for the derivation, xp, yp and q2
p can easily be inverted in terms

of the observables Ee, Eγ and cos θ as:
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Ee =
mµ

2

(1 − q2
p − xp + yp

1 − q2
p

)
, (5.16)

Eγ =
mµ

2

(1 − q2
p − xp − yp

1 − q2
p

)
, (5.17)

cos θ =
(q2

p − xp)2 + 2xp − y2
p − 1

(1 − q2
p − xp)2 − y2

p
. (5.18)

We notice that replacing yp by −yp while keeping q2
p and xp unchanged actually results in

swapping the energies of photon and electron keeping the angle between them unaltered.

This feature will play a very crucial role in defining the observable asymmetry in Sec. 5.3.

We have ignored the electron mass, me, starting from Eq. (5.12) as it results in significant

simplification of analytic expressions. It is of course well-known that neglecting the

electron mass results in the persistence of wrong helicity right-handed electron [83, 84] in

this decay as a result of inner bremsstrahlung from the electron (see second diagram of

Fig. 5.2). The results are in obvious disagreement depending on whether me is retained

or not. We will therefore very carefully consider the issue of electron mass to justify the

neglect of me for our limited purpose of extracting ηγ, while acknowledging that me should

not be ignored in general. In order to retain maximum sensitivity to ηγ the kinematic

domain is chosen to minimize the soft photon and collinear singularity contributions;

the effect of me is found to be insignificant in the kinematic domain sensitive to ηγ. Our

calculations have been verified retaining me throughout. Critical expressions including

me contributions are presented in the section 5.4 for clarity. Expressions for xp and yp are

modified to accommodate effects of me, while retaining an apparent exchange symmetry

between Eγ and Ee under the newly defined variables xn and yn in Eq. (5.34).

In terms of these new normalized variables, the phase space for this process is bounded by

three surfaces: q2
p = 0, xp = 1/2 and (q4

p−q2
p + x2

p−y2
p) = 0. It is easily seen from Eq. (5.18),

the plane xp = 1/2 corresponds to θ = 0◦ and the curved surface (q4
p − q2

p + x2
p − y2

p) = 0

signifies θ = 180◦. The physical region in q2
p, xp and yp parameter space is given by:
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qp

√
1 − q2

p ≤ xp ≤
1
2

; |yp| ≤ (
1
2
− q2

p) ; 0 ≤ q2
p ≤

1
2

; (q4
p − q2

p + x2
p − y2

p) ≥ 0. (5.19)

The whole phase space region is depicted in the Fig. 5.3 . The red triangle at right side

signifies xp = 1/2 plane, the red triangle at base indicates q2
p = 0 and the intersection curve

of xp−q2
p plane with the curved surface C (that indicates cos θ = −1 or (q4

p−q2
p+x2

p−y2
p) = 0)

is shown as the black curve.

xp

-yp

xp

qp
2

Figure 5.3: A pictorial view for the allowed phase space region.

5.3 Observable and asymmetry

We consider only the normalized differential decay rate Γ(xp, yp, q2
p) obtained after inte-

grating the νµ and ν̄e momenta which is defined as:

Γ(xp, yp, q2
p) =

1
Γµ
·

d3Γ

dq2
p dxp dyp

, (5.20)

where, Γµ is the total decay width of muon.

Form Eq. (5.12) and Eq. (5.19), it is clear that both q2
p and xp are positive valued functions

whereas yp can have a positive value or a negative value and the physical region allows

yp to have a range symmetric about yp = 0. So, if (xp, yp, q2
p) be a point inside physical
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region, (xp,−yp, q2
p) will also lie inside the allowed region. This motivates us to investigate

the properties of odd and even part of Γ(xp, yp, q2
p) under the variable yp.

The ‘odd’ and ‘even’ part Γo (xp, yp, q2
p) and Γe (xp, yp, q2

p), respectively, of the normalized

differential decay rate (Eq. (5.20)) with respect to yp are defined as:

Γo (xp, yp, q2
p) =

1
2

[
Γ(xp, yp, q2

p) − Γ(xp,−yp, q2
p)
]
≈ Fo(xp, yp, q2

p) + ηγ Go(xp, yp, q2
p), (5.21)

Γe (xp, yp, q2
p) =

1
2

[
Γ(xp, yp, q2

p) + Γ(xp,−yp, q2
p)
]
≈ Fe(xp, yp, q2

p) + ηγ Ge(xp, yp, q2
p), (5.22)

where the small η2
γ terms are ignored.

As we have obtained Γ(xp, yp, q2
p) by integrating a positive valued function |M|2, it is

obvious that both Γ(xp, yp, q2
p) and Γ(xp,−yp, q2

p) will be positive. Hence, Γe (xp, yp, q2
p),

which is proportional to the sum of Γ(xp, yp, q2
p) and Γ(xp,−yp, q2

p), as well as Fe(xp, yp, q2
p),

which is ηγ → 0 limit of Γe (xp, yp, q2
p), will always be greater than or equal to zero inside

the physical region. On the other hand, Γo (xp, yp, q2
p), which is proportional to subtraction

of two positive quantities, as well as Fo(xp, yp, q2
p), which is ηγ → 0 limit of Γo (xp, yp, q2

p),

could be positive, zero or negative inside the allowed region.

We now define an observable as: Rη(xp, yp, q2
p) =

Γo

Γe

≈
Fo

Fe

[
1 + ηγ

(Go

Fo
−

Ge

Fe

)]
, (5.23)

and the asymmetry in Rη as: Aη(xp, yp, q2
p) =

( Rη
RSM

− 1
)
≈ ηγ

(Go

Fo
−

Ge

Fe

)
, (5.24)

where, RSM =
Γo

Γe

∣∣∣∣∣
ηγ=0

=
Fo

Fe
.

Since, Fo and Go are the zeroth order and first order terms respectively in the expansion of

the odd part of Γ(xp, yp, q2
p) with respect to ηγ (see Eq. (5.21)), both of them are expected

to be proportional to odd powers of yp, rendering the ratio (Go/Fo) to be finite at yp = 0.

We will now show that Fo i.e. the odd part of SM, has a zero for this mode for all q2
p.

For simplicity, to describe the situation mathematically, we consider only the dominant

contributions arising from the first and second Feynman diagrams in Fig. 5.2. Retaining
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only relevant terms upto O(1/m4
W), we can write:

Fo ∝ yp h(xp, yp, q2
p) f (xp, yp, q2

p) (5.25)

where, h =

[ 1 + q2
p

(1 − q2
p)5(1 − 2xp){(1 − q2

p − xp)2 − y2
p}

2

]
, (5.26)

f =

[
7 q8

p − 4(4 − xp) q6
p + (11 − 4xp + 6x2

p − 6y2
p) q4

p − 2 (1 − xp + 8x2
p − 6x3

p

− 4y2
p + 2xpy2

p) q2
p + 3x4

p − 12x3
p + x2

p(11 − 2y2
p) − xp(2 − 4y2

p) − y2
p(3 + y2

p)
]
.

(5.27)

As can be seen from the inequalities in Eq. (5.19), h(xp, yp, q2
p) is always positive inside

the physical region and it contains all the divergent terms in Fo. Hence, the deciding factor

on the sign of Fo is only f (xp, yp, q2
p). Now, on xp = 1/2 surface, we have:

f
(1
2
, yp, q2

p

)
=

7
16

(1 − 2q2
p)4 −

3
2

(1 − 2q2
p)2 y2

p − y4
p, (5.28)

which after using the upper limit of |yp| from Eq. (5.19), implies that:

f
(1
2
, yp, q2

p

)
≥ 0 =⇒ Fo

(1
2
, |yp|, q2

p

)
≥ 0 and Fo

(1
2
,−|yp|, q2

p

)
≤ 0. (5.29)

Likewise, for any point on the curved surface (q4
p − q2

p + x2
p − y2

p) = 0, denoted as C, we

have y2
p = (q4

p − q2
p + x2

p) and hence,

f (xp, yp, q2
p)

∣∣∣∣
C

= (1 − q2
p) (1 − 2xp)2 (q2

p − 2xp) . (5.30)

On using the limits of xp and q2
p from Eq. (5.19), it can easily be shown that:

f (xp, yp, q2
p)

∣∣∣∣
C
≤ 0 =⇒ Fo(xp, |yp|, q2

p)
∣∣∣∣
C
≤ 0 and Fo(xp,−|yp|, q2

p)
∣∣∣∣
C
≥ 0. (5.31)

We have concluded that f (xp, yp, q2
p) < 0 along the curved surface C and f (xp, yp, q2

p) > 0

at the other boundary surface xp = 1/2. It is obvious therefore that there must be at least

one surface within the allowed phase space region where f (xp, yp, q2
p) = 0. In the first plot
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of Fig. 5.4, the blue region signifies f (xp, yp, q2
p) < 0 and the brown region symbolizes

f (xp, yp, q2
p) > 0 whereas the black curve indicates f (xp, yp, q2

p) = 0. In the second plot of

Fig. 5.4, the yellow region signifies Fo(xp, yp, q2
p) < 0 and the green region symbolizes

Fo(xp, yp, q2
p) > 0 while the red curve indicates Fo(xp, yp, q2

p) = 0.

f(xp,yp,qp
2)

- +

0.0 0.1 0.2 0.3 0.4 0.5

-0.4

-0.2

0.0

0.2

0.4

xp→

y p
→

Fo(xp,yp,qp
2)

-

-

+

+

0.0 0.1 0.2 0.3 0.4 0.5

-0.4

-0.2

0.0

0.2

0.4

xp→

y p
→

Figure 5.4: The variations of functions f (xp, yp, q2
p) and Fo(xp, yp, q2

p) are shown in xp − yp

plane in left and right panel, respectively, where q2
p = 0.01. The blue line in both the

panels indicates one boundary of phase space with cos θ = −1 or (q4
p − q2

p + x2
p − y2

p) = 0.
In the left panel, the blue region signifies negative valued f (xp, yp, q2

p), the brown region
symbolizes positive valued f (xp, yp, q2

p) and the black curve indicates f (xp, yp, q2
p) = 0. In

the right panel, the yellow region signifies negative valued Fo(xp, yp, q2
p), the green region

symbolizes positive valued Fo(xp, yp, q2
p) and the red curve indicates Fo(xp, yp, q2

p) = 0.

The odd (Γo) and even (Γe) parts of differential rate as well as the four functions Fo, Fe, Go,

Ge contain soft collinear divergences arising due to Eγ = 0 or cos θ = 1 and divergence due

to vanishing Ee if me is ignored. It is obvious form Eq. (5.17) that soft photon dominate

in the region corresponding to (xp + yp) ≈ (1 − q2
p) , which implies (xp + yp) is close

to its maximum value. Hence, events with small photon energy lie at the top corner in

Fig. 5.4 where the blue curve meets xp = 1/2 line. Similarly, one can see from Eq. (5.16)

that small electron energy implies (xp − yp) ≈ (1 − q2
p) and these events lie at the bottom

corner in Fig. 5.4 where the blue curve meets xp = 1/2 line. For any value of q2
p, the

collinear divergence occurs along xp = 1/2 line as can easily be seen from Eq. (5.18). These

singularities are evident from Eq. (5.26) and occur in each of Γ, Γo, Γe as well as the four

functions Fo, Fe, Go, Ge. It is only in these regions that an expansion in powers of me/mµ
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is not valid; the electron mass needs to be retained and ignoring it alters the differential

decay rates. To deal with the xp = 1/2 collinear singularity, we choose an appropriate cut

on xp which is also necessitated by experimental resolution. It can be seen from Eq. (5.24),

however, that with in SM,Aη is finite and zero, even in the regions plagued by collinear

soft photon singularities and the ones that arise due to neglect of me. Note, that inAη the

h-function in Eq. (5.26) carrying the singular denominator cancels. The zero observed

in Fo and the consequent singularity in the asymmetry Aη has nothing to do with the

well know collinear soft photon and me → 0 singularities. The zero observed in Fo is

genuine and looks like an apparent exchange symmetry between Ee and Eγ only for the

appropriately chosen parameters, xp and yp (or xn and yn defined in Eq. (5.34)) with me

retained.

We have explicitly demonstrated that there exists a surface (besides yp = 0 plane) where

Fo(xp, yp, q2
p) = 0; we refer to this surface corresponding to the ‘new type of zero’ as

“null-surface”. This means that at each point on this surface the differential decay rate

Γ(xp, yp, q2
p) remains unaltered if we interchange the energies of photon and electron.

Hence,Aη(xp, yp, q2
p) diverges on null-surface for any non-zero value of ηγ and becomes

zero everywhere in the phase space for ηγ being zero. The null-surface divides the phase

space into two regions, one whereAη is positive and the other whereAη is negative. For

ηγ > 0,Aη < 0 for xp values smaller than the values indicated by the null-surface, whereas,

Aη > 0 for xp values larger than the values indicated by the null-surface. However, if

ηγ < 0, an opposite behaviour in the signs ofAη is indicated. This feature can be used to

determine the sign of ηγ. To measure the value of ηγ experimentally, one must averageAη

over specified regions of phase space where it could be positive or negative. Such averages

are necessitated by the experimental resolutions for q2
p, xp and yp and will in general reduce

the asymmetry. Hence, it is convenient to use |Aη| as the asymmetry.
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5.4 Retaining mass of electron

In presence of electron mass me, we have s + t + u = q2 + m2
µ + m2

e where the Mandelstam

variables are defined as: (pe + pγ)2 = s, (pe + q)2 = t and (pγ + q)2 = u. The physical

region is determined by the following inequalities [85]:

m2
e ≤ s ≤ (mµ −

√
q2)2, q2 ≤ u ≤ (mµ − me)2, (me +

√
q2)2 ≤ t ≤ m2

µ,

G[s, u,m2
µ, 0,m

2
e , q

2] ≤ 0, (5.32)

where, G[x, y, z, u, v,w] = −
1
2

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

0 1 1 1 1

1 0 v x z

1 v 0 u y

1 x u 0 w

1 z y w 0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
. (5.33)

We define variables xn, yn and q2
n, which reduce to xp, yp and q2

p at me → 0 limit, in the

following way:

xn =
t + u

2(q2 + m2
µ + m2

e)
, yn =

t − u + m2
e

2(q2 + m2
µ + m2

e)
, q2

n =
q2

(q2 + m2
µ + m2

e)
. (5.34)

The energy of electron and photon are obtained from the above definitions as:

Ee =
(2m2

µ + m2
e)(1 − q2

n − xn + yn) − m2
e(xn − yn)

4mµ(1 − q2
n)

, (5.35)

Eγ =
(2m2

µ + m2
e)(1 − q2

n − xn − yn) − m2
e(xn + yn)

4mµ(1 − q2
n)

. (5.36)

Under the replacement yn → −yn electron and photon energies get exchanged and one

separate the odd and even parts differential decay rate as follows:

Γo (xn, yn, q2
n) =

1
2

[
Γ(xn, yn, q2

n) − Γ(xn,−yn, q2
n)
]
, (5.37)
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Γe (xn, yn, q2
n) =

1
2

[
Γ(xn, yn, q2

n) + Γ(xn,−yn, q2
n)
]
. (5.38)

The h-function in Eq. (5.26) containing singular denominator, now, becomes:

h ∝
1

E2
e E2

γ (m2
µ(1 − 2xn) + m2

e(q2
n − 2xn))

. (5.39)

In the region around Fo = 0, which are denoted by red dots in Fig. 5.5, a legitimate

expansion in powers of (me/mµ) for the expressions of Γo and Γe can be carried out in the

following way:

Γo ≈
(
Fo + (me/mµ)2 δFo

)
+ ηγ

(
Go + (me/mµ)2 δGo

)
, (5.40)

Γe ≈
(
Fe + (me/mµ)2 δFe

)
+ ηγ

(
Ge + (me/mµ)2 δGe

)
, (5.41)

where the small η2
γ terms are ignored. Here, δFo, δGo, δFe and δGe are the leading order

correction terms due to non zero electron mass. The observable Rη gets modified as:

Rη(xn, yn, q2
n) =

Γo(xn, yn, q2
n)

Γe(xn, yn, q2
n)

≈

(
Fo + (me/mµ)2 δFo

Fe + (me/mµ)2 δFe

)
·

[
1 + ηγ

(
Go + (me/mµ)2 δGo

Fo + (me/mµ)2 δFo
−

Ge + (me/mµ)2 δGe

Fe + (me/mµ)2 δFe

)]
. (5.42)

Hence, the asymmetry,Aη(xp, yp, q2
p), in Rη becomes,

Aη(xn, yn, q2
n) =

( Rη
RSM

− 1
)
≈ ηγ

(Go + (me/mµ)2 δGo

Fo + (me/mµ)2 δFo
−

Ge + (me/mµ)2 δGe

Fe + (me/mµ)2 δFe

)

≈ ηγ

[(
Go

Fo
−

Ge

Fe

)
+

(
me

mµ

)2 (
Ge δFe

F2
e
−

Go δFo

F2
o

+
δGo

Fo
−
δGe

Fe

)]
(5.43)

where, RSM =
Γo

Γe

∣∣∣∣∣
ηγ=0

=

(Fo + (me/mµ)2 δFo

Fe + (me/mµ)2 δFe

)
.

Note that the above expansion in O(me/mµ) fails in the region where collinear or soft

photon divergences occurs.
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5.5 Simulation and analysis

In order to study the sensitivity of muon radiative decay mode we need to include the

resolutions for energy of photon, energy of electron and the angle between them. We

take them to be 2%, 0.5% and 10 Milli-radian, respectively [11]. As can be seen from

Eq. (5.16)-(5.18), the resolutions for xp, yp and q2
p will also vary at different point in

phase space due to the functional form of these parameters. We begin by evaluating the

resolutions for xp, yp and q2
p for the entire allowed phase space. We find that the resolutions

for xp yp and q2
p are always less than 0.01, 0.02 and 0.02 respectively. For simplicity, in our

simulation, we take the worst possible scenario and assume constant resolutions for each

of xp, yp and q2
p, corresponding to their largest value of 0.01, 0.02 and 0.02 respectively

throughout the entire allowed phase space, which allows us to choose equal size bins.

Hence, the phase space region 0 ≤ q2
p ≤

1/2, 0 ≤ xp ≤ 1/2, −1/2 ≤ yp ≤ 1/2 is divided into 24

bins in q2
p and 50 bins in both xp and yp – all equal in size. Among these bins, only 6378

number of bins lie inside the physical phase space region. Now, assuming ηγ = 0.01, we

estimate the systematic and statistical error for |Aη| in each of these bins.

To find the systematic error in |Aη| for a particular i-th bin, we evaluate it at 62, 500 equally

spaced points in that bin to estimate |Aη|
j
i where j is the index of a point inside the i-th bin.

However, for the bins near to the boundary of phase space, all of these points will not be

inside the physical region and hence, we denote the number of physical points inside i-th

bin as ni. We now, calculate the average of |Aη|
j
i inside a bin

〈|Aη|i〉 =
1
ni

∑
j

|Aη|
j
i ,

and take this as the asymmetry of that bin. Then we take the systematic error as the average

deviation of |Aη|
j
i , i.e.

σ
sys
i =

1
ni

∑
j

∣∣∣ 〈|Aη|i〉 − |Aη|
j
i

∣∣∣.
Ideally the errors can and should have been calculated using a standard Monte-Carlo
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technique with more number of sample points. However, The approach followed in this

chapter is to express the integral as a Riemann sum3 only for simplicity.

The statistical error for |Aη| in each bin is also estimated by averaging it at the same 62, 500

equally spaced points. Note that, while Aη is divergent on the null-surface the average

value of |Aη| for the i-th bin, i.e. 〈|Aη|i〉, estimated from Monte Carlo studies is never

larger than 10−6 for any bin. Hence,

σsta
i =

√
1 − 〈|Aη|i〉

2

Ni
≈

1
√

(NS M)i
,

where i is the index of the bins and Ni represents the number of events inside i-th bin

which is almost the same as (NS M)i the number of SM events for the i-th bin. We have also

assumed that bothAη and the effects of ηγ on Ni are small and can be ignored. If this were

not the case Ni would itself be sensitive to ηγ, contrary to our simulation results. Hence,

we simply take the statistical error for all practical purposes to be that in the case of SM

events. The number of events in each bin is calculated by taking total number of muons to

be 1019. To avoid the singularities in the number of SM events for the bins near xp = 1/2

plane, we ignore the bins with 0.49 ≤ xp ≤ 0.5.

The total error in |Aη| for any particular bin is then given by δ|Aη|i =

√
(σsta

i )2 + (σsys
i )2.

This error in |Aη| will affect the measurement of ηγ. Using Eq. (5.24), we observe that the

error in the measurement of ηγ in each bin as

∣∣∣∣δηγ
ηγ

∣∣∣∣
i
=
δ|Aη|i

|Aη|i
(5.44)

where, |Aη|i ≡ 〈|Aη|i〉 and we take the theoretical function
(
Go/Fo−Ge/Fe

)
to be free from

experimental uncertainties. It is obvious from Eq. (5.44), that the highest sensitivity is

achieved in bins close to the null-surface where |Aη|i is the largest. Hence, to determine ηγ,

3Definite integral as Riemann sum:
∫ b

a
f (x)dx = lim

∆x→0

(b−a)/∆x∑
j=1

∆x f (a + j∆x)
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we consider the region around the null-surface only by applying a cut
(
δ|Aη|i

/
|Aη|i

)
≤ 10.
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Figure 5.5: The variation of Fo(xp, yp, q2
p) for different q2

p in the xp-yp plane. Each green
dot represents a bin according to experimental resolution of photon energy, electron energy
and angle between them. The red dots stand for the bins having

(
δ|Aη|i

/
|Aη|i

)
≤ 10 in

that bin. The purple curve signifies Fo(xp, yp, q2
p) = 0 in different q2

p plane. Our numerical
analysis includes the bins corresponding to the red dots only. This results in an optimal
sensitivity to ηγ.

In Fig. 5.5, we depict the bins, which satisfy the above cut, with red dots for different

q2
p values, whereas, the green dots signify all the other bins inside the physical region;

the purple curve indicates the null-surface where Fo = 0 for the corresponding q2
p value.

Including only the bins, which satisfy the above cut, for a simulated value of ηγ = 0.01

(at one loop in SM, |ηγ| . 0.015), we estimate an error of δηγ = 2.6 × 10−3, implying a

3.9σ significance for the measurement. A total of 1019 muons are aimed for in the long

term future. The next-round of experiments are aiming at 1018 muons /year. This reduces
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the sensitivity from 3.9σ to 1.4σ. To appreciate the advantage of radiative muon decays

in measuring WWγ vertex one needs to note that the current global average of κγ differs

from unity only by 0.4σ. We note that the significance of the measured value of ηγ may in

principle be improved by optimizing the chosen cut and binning procedure. However, we

refrain from such intricacies as our approach is merely to present a proof of principle.

We have shown that the sensitivity to ηγ arises due to the vanishing of the odd differential

decay rate in the standard model denoted by Fo. The observed singularity inAη is unrelated

to soft photon and collinear singularities or the singularity arising due to neglect of me in

calculations. The most sensitive region to measure ηγ is whereAη is large and obviously

lies along the zero of Fo as indicated by Eq. (5.24). The region around Fo = 0 for which(
δ|Aη|i

/
|Aη|i

)
≤ 10, is where a legitimate expansion in powers of me/mµ can be carried

out and is distinct from the singular regions in the differential decay rates where such

an expansion cannot be done. However, in order to verify the accuracy of sensitivity

achievable in ηγ measurement the calculations have been redone by numerically retaining

me. We find that for the bins represented by red dots in Fig. 5.5 the maximum correction in

ηγ is O(10−4), which is an order of magnitude smaller than the error in it, δηγ = 2.6 × 10−3.

Finally, we discuss possible sources of inaccuracies in our estimation of uncertainty. Higher

order electroweak corrections to the process considered will modify the decay rate and alter

Fo. While higher order electroweak corrections have not been included in our analysis they

have been worked out in detail [86–89]. However, this is unlikely to affect our analysis

technique as we have selected bins to be included in estimating ηγ purely based on the

criterion
(
δ|Aη|i

/
|Aη|i

)
≤ 10 and not on the location and validity of the null-surface. A

possible source of uncertainty that we have ignored in our analysis is the assumption that

the muon decays at rest or with known four-momenta. While facilities that produce large

numbers of muons are designed to bring the muon to rest, a fraction of them may decay

with a finite but unknown 4-momenta, rendering the exact measurement of q2
p inaccurate.

This effect can in-principle be considered by including additional systematic errors in q2
p.
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5.6 Summary

In order to probe lepton flavour violating process µ → eγ, facilities that produce large

numbers of muons are being designed. We show that radiative muon decay µ → eγνµν̄e

is a promising mode to probe loop level corrections in the SM to the C and P conserving

dimension four WWγ vertex with good accuracy. The process has two missing neutrinos

in the final state and on integrating their momenta the partial differential decay rate

removes the well known radiation-amplitude-zero. We show, however, that the normalized

differential decay rate, odd under the exchange of photon and electron energies, does have

a zero in the case of standard model (SM). This new type of zero had hitherto not been

studied in literature. A suitably constructed asymmetry using this fact enables a sensitive

probe for the WWγ vertex beyond the SM. The large number of muons produced keeps

the statistical error in control for a tiny part of the physical phase space, enabling us to

measure ηγ = 0.01 with 3.9σ significance.

adcb adcb adcb adcb
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” To understand the actual world as it is, not as we

should wish it to be, is the beginning of wisdom.

— Bertrand Russell

In spite of various meticulous aspects and multiple precise predictions, there are enough

compelling evidences projecting the incompleteness of SM. This obligates us to extend

our theory beyond the realm of SM such that all natural phenomena lie under the same

roof. However, the absence of any conspicuous hint from collider experiments about the

existence of new physics particles has perplexed the situation by providing no transparent

direction for the augmentation of the theory. In this scenario, precise measurement of

various theoretical parameters that are uniquely predicted in SM is indispensable. Any

deviation observed from their predictions in SM will act as indirect evidence for the

existence of BSM physics. New measurement techniques along with advancements in

experimental methods are required in this regard. In this thesis we have investigated new

techniques to measure two different classes of BSM parameters.

First, we focus on measuring T and CPT violating parameters in B0 − B̄0 mixing through
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time dependent indirect CP asymmetry. CPT invariance is a very important notion of

QFT due to its affinity to Lorentz symmetry. Though all the experimental data to date are

compatible with CPT conservation, improvement in statistics is expected in forthcoming

years and hence we should explore this possibility too. In this context, we establish that

departure of mixing parameter θ from value π/2 indicates CPT whereas non-vanishing

imaginary part of other mixing parameter φ signifies braking of T symmetry. We expand the

time dependent indirect CP asymmetry assuming that breaking of T and CPT symmetry

in B0 − B̄0 mixing, if it exists at all, must be very small. Higher harmonics in (∆Mt) and

a constant piece emanate from the expansion of time dependent CP asymmetry along

with usual cos(∆Mt) and sin(∆Mt) pieces. All the theoretical parameters like direct CP

asymmetry (C), effective CP violating phase (ϕ), and T and CPT violating parameters

(ε1,2,3) can be measured using the coefficients of these harmonics. We notice that the

presence of those unconventional terms in the expansion confirms the existence of T or

CPT violation in mixing. We show that it is also possible to measure all the theoretical

parameters by fitting the differential decay rates for mode and conjugate mode separately

instead of constructing time dependent CP asymmetry. In our analysis, penguin pollution

and the width difference between the light and heavy states are not neglected; it also does

not require B0B̄0 entangled states. Though we have performed this analysis for B0
d only, it

is equally applicable to B0
s too with some minor modifications.

Next, we have proposed a new method to probe C and P conserving dimension four WWγ

vertex with higher accuracy using radiative muon decay. The associated coupling constant

is very important in determining the electromagnetic properties of W boson. However, it

has not been measured so far with a good accuracy to probe at least one loop correction

to it within the framework of SM. Though our proposal in this regard looks non-viable at

first glimpse due to 1/m2
W suppression of our desired amplitude than the leading one, large

number of muons produced at experiments to probe lepton flavour violating processes

like µ→ eγ can materialize this possibility. Differential decay rate neither shows enough

sensitivity to probe the vertex, nor it involves any zeros of radiation amplitude inside the
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allowed phase space. Nevertheless, we establish the appearance of a new type of zero

inside the physical region in the odd part of normalised differential decay rate under the

exchange of electron and photon energies within the framework of SM. We also show

that a suitably constructed asymmetry based on this fact can enable us a sensitive probe

for WWγ vertex beyond SM. The null-surface divides the phase space into two separate

regions depending on the sign of function fo . On this surface our proposed asymmetry

diverges, however, this divergence has nothing to do with the usual infinities coming from

soft photon or vanishing electron mass or collinearity of photon and electron since all of

those events occur on xp = 1/2 plane. On the other hand, the error in the asymmetry for

the region surrounding null-surface remains in control. We have shown that by using a

suitable cut on the relative error in the asymmetry, one can measure ηγ = 0.01 with 3.9σ

significance which is far better than the current global average of κγ differing from unity

with only 0.4σ significance. Repeating the whole analysis keeping non-vanishing electron

mass does not alter this result significantly.

Let me now discuss the prospect of these techniques. The method used in our first project

can be applied to other neutral meson mixing to find the signals of T and CPT violations

there. It is also a good idea to check with the modes where neutral mesons decay to two

vectors.Large number of observables, involved in those modes, can help in finding other

kinds of new physics effects along with contribution from T and CPT violations. Talking

about the method of our second project, it would be very interesting to investigate the

null-surface in other radiative decay modes. Similar strategy can also be taken for e+e−

colliders involving two particles in the final state associated with a photon. It is also

intriguing to inspect the scope of this procedure for the modes involving more number of

particles or different massive particles in the final states.
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system”, M. C. Bañuls and J. Bernabéu, Phys. Lett. B 464, 117 (1999).

[58] “Studying indirect violation of CP, T and CPT in a B factory”, M. C. Bañuls and J.
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