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Chapter 1

Introduction

“If the brain were so simple we could understand it, we would be so simple we couldn’t.”

–George Edgin Pugh in The Biological Origin of Human Values (1977)

Complexity as a fundamental paradigm to understand a system is not new. For in-

stance, it was popularized by Philip Anderson in 1972 when he stated “More is Different”

in his seminal paper [1]. Anderson had argued that in a complex aggregate of elementary

components, understanding the properties of the components alone were not sufficient to

understand or predict the behavior of the aggregate. Instead, at each successive level of

complexity within a system, new features and phenomena emerge. Such emergent behav-

ior is as fundamental as the properties of elementary components themselves. Thus, at

every successive level we require a fresh set of ideas and paradigms to understand the

system. Statistical mechanics and condensed matter physics were among the early fields

that focused on understanding emergent phenomena in complex systems that arise due

to interactions between the constituent elements. Properties like temperature, entropy,

abrupt phase transitions, critical phenomena, ferromagnetism, superconductivity, etc., can

be only understood through paradigms of statistical mechanics and many-body physics [2],

rather than through the physics of elementary particles. This idea of multiple hierarchical

levels of complexity has been later extended to biological systems as well. The hierarchy of
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complexity in biological systems range from the molecular level (e.g., proteins, DNA), to

the cellular level (e.g., organelles, unicellular organisms), to cell assemblies (e.g., neuronal

circuits, cell signaling), extending upto the level of single organisms (e.g., nervous sys-

tem, immune system) and populations of organisms (which form the domain of population

ecology and social sciences).

Brain, which is a specific type of biological system and has neurons as its elementary

components, is arguably one of the most complex of systems encountered so far by humans.

The mammalian brain comprises extremely large aggregate of neurons interacting with each

other via synapses and gap-junctions, allowing rapid and precise transfer of information

from one part to another. It has specifically evolved to enable the organism to process

sensory stimuli efficiently and respond fast to the changing environment in order to survive.

In the scheme of hierarchical levels of complexity in the brain, starting from the level of

neurons and their dynamical interactions, we observe the emergence of large scale spatio-

temporal activity patterns in neural populations, which ultimately give rise to behavior

and cognition. While there are multiple levels of complexity occurring inside an individual

brain, there is a large variability in brain complexity across the species as well. In this, the

nematode Caenorhabditis elegans with a small nervous system of ∼ 300 neurons, lies at

one end of the complexity spectrum, while the mammalian brain with billions of neurons

is placed at the other extreme. Such high degree of complexity and variability does not

simply arise from the size of the system alone, viz., the number of constituent neurons,

but can also be attributed to the specific pattern in which the neurons interact with

one another. Unlike many physical systems studied in many-body physics which also

have equally large number of components, the interactions between neurons in a brain

are neither regular (as in a lattice) nor completely random (as in disordered systems).

Furthermore, the interactions are highly non-linear. Therefore, in order to understand

the complexity of the brain, we have to first understand the organization of interactions

between its components. To this end, the theory of complex networks comes across as

a natural framework to describe the brain and over the recent past, has proven to be

one of the most potent and useful paradigms in neuroscience [3, 4]. We now have a
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established field of Network Neuroscience [5] that is dedicated to the study of brains though

extensive network analysis over multiple spatio-temporal scales and across several species.

Before proceeding further to discuss the central theme of this thesis, viz., how studying

different brain networks of varying complexities might provide fundamental insights about

the development, organization and functioning of the brain, the following section provides

a brief overview of a few basic concepts in network science that are relevant for this thesis.

Fundamental concepts of network analysis: a primer

Representation of networks

A network or a graph is essentially a set of nodes (or vertices) connected to each other

through links (or edges). In principle, a network representation can be formulated for any

system that comprises sub-components (nodes) having a specific type of inter-relation to

one another (links). The specification of nodes and corresponding links depends entirely

on the context. For instance, for the world wide web, the web pages are the nodes and

hyperlinks connecting the pages are the links whereas, for a neuronal network, the neurons

are the nodes and the synapses and gap-junctions are the links. In its simplest form, a

link between two nodes i and j is represented as (i, j), which only informs us about the

existence of a link between i and j. One can also ascribe a direction to the link such

that (i, j) refers to link from node j to node i where as (j, i) denotes a link from i to

j. A compact way of representing a network is through the adjacency matrix Aij whose

components are described as:

Aij =




1 if there exists link between nodes i and j,

0 otherwise.

(1.1)

For a directed network, Aij = 1 only if there exists a directed link from j to i. The

information about existence or non-existence of links between all the node-pairs for a given
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network is often called its connection topology. Furthermore, in many cases the links can

also be ascribed a strength value which is also known as weight. In a weighted network,

the adjacency matrix elements Aij denoting an existing link between i and j can take any

non-zero value. In the context of neuronal networks, the weight can describe the synaptic

weights. In macro-connectomes where the brain regions form the nodes, the thickness of

axonal pathways between them can be described by link weights. Thus, based on the

types of links, a network can be classified as directed or undirected and also as weighted

or unweighted. All these networks can be represented by their corresponding adjacency or

weight matrices.

Structural and functional brain networks

The connectivity within brain is largely described using two fundamentally distinct types

of networks, viz., structural and functional. A structural network comprises the anatomical

connectivity between the constituent nodes such as synapses and gap-junctions between

neurons, or, white matter tracts between the brain regions. They are obtained via in vivo

imaging of physical connections between neurons or brain regions using techniques such as

electron microscopy (for synapses and gap-junctions), tract tracing (for axonal pathways

between brain regions in non-human animals such as macaque, rat etc.) and diffusion tensor

imaging (DTI, for axonal pathways between brain regions in humans). Structural network

forms the fundamental basis of interaction between the network components. Depending on

the system and the method of recording, structural networks can be directed, undirected,

weighted or unweighted.

A functional network describes the correspondence between the neurophysiological ac-

tivities of constituent nodes. For brain regions, the electrophysiological activities are mea-

sured via electro-encephalograph (EEG), magneto-encephalograph (MEG) and functional

magnetic resonance imaging (fMRI). The cross correlation (in time domain) or spectral

coherence (in frequency domain) between the temporal evolution of these activities give

the connection weight between the nodes. By construction the functional networks are
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weighted undirected networks.

Properties of networks

Basic properties required to characterize any given network can be broadly grouped into

three levels, viz., microscopic, macroscopic and mesoscopic, depending upon the scale of

analysis. The scale in this context is meant in the topological sense, as opposed to the

physical sense of length and time scales.

Microscopic Properties

Microscopic properties (or local properties) pertain to single nodes and their connected

neighbors. Sometimes they are also used to describe the features associated with a small

sub-network of a large network.

Node degree refers to the total number of connections that the node has with other nodes

in the network. For directed networks, in-degree refers to total number of connections

received by a node while out-degree refers to the number of connections sent out by a node.

Clustering coefficient quantifies how densely the neighbors of a node (i.e., those which are

linked to it) are connected to each other, in terms of the ratio of the number of connections

between the nearest neighbors to the total number of possible connections between them.

Motifs represent recurring patterns of connections between a few nodes (2− 5) that occur

with significantly higher frequency within a given network as compared to chance [6].

Path length measures the minimum number of links required to be traversed to go from

one node to another.

Centrality of a node measures the proportion of shortest paths between all other node pairs
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that pass through it.

In general, nodes with high values of degree and centrality are considered to be of im-

portance and are referred to as hubs.

Macroscopic Properties

Macroscopic properties (or global properties) pertain to various statistical properties that

describe the network as a whole. The following are a few examples of such properties.

Degree distribution: The probability distribution of nodal degrees across the network pro-

vides one of the primary large scale descriptions for a given network. In some cases, the

type of degree distribution seen in a network might indicate a certain type of generative

mechanism. For instance, nodal degrees in randomly generated networks with homoge-

neous connection probabilities show Poisson distributions. Among the other frequently

occurring types of degree distributions that are seen in naturally occurring networks are

the exponential and power-law distributions. Networks with power-law distributions are

often called scale-free networks [7].

Average path length & average clustering coefficient: Averaging the values for path lengths

between all pairs of nodes and clustering coefficients over all nodes, provides us another set

of important macroscopic descriptors for a network. Networks with high average clustering

coefficient and high average path length indicate a regular lattice-like connectivity, where

connections occur only between the nearest neighbors in physical space. On the other

hand, networks with entirely random connectivity show low values of average path length

and average clustering coefficient. However, in most naturally occurring networks, we see

low average path-length but high average clustering coefficient, and such networks are also

known as small-world networks [8].

Assortativity describes a tendency of high degree nodes to connect with other high degree
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nodes and of low degree nodes to connect with other low degree nodes. It is measured as

correlation between the degrees of connected nodes.

Mesoscopic Properties

Naturally occurring networks, such as the networks of the brain, are non-homogeneous and

highly complex, often comprising multiple levels of organizational structures within them.

These structures are revealed by analyzing the network at an intermediate topological scale

between the microscopic and macroscopic descriptions given above. Thus, the properties

describing these underlying structures within a network are known as mesoscopic proper-

ties. The following are few examples of mesoscopic properties commonly seen in networks.

Community structure: Networks exhibiting community structure or modularity, have their

nodes grouped into separate communities of nodes, also called modules, such that the

connection density between nodes inside the same module is significantly higher than the

connection density across nodes of different modules [9]. In many cases, the network

can have hierarchical modularity, i.e., multiple levels of nested modules such that larger

modules are divided into smaller modules which are further divided into even smaller

modules and so on [10]. Modular structure has been observed in a many brain net-

works [11, 12, 13, 14, 15, 16, 17, 18, 19]

Core-periphery structure: The core periphery organization in a network comprises of a

central core, whose members are connected to each other, as well as, to the remainder of

the network, and a periphery, whose members are connected to the core but not to one

another [20]. Such a structure can comprise multiple layers of peripheral nodes or shells

around the core, where each successive outer shell is peripheral with respect to all its inner

shells and the core. Core-periphery organization has been observed in several neuronal and

brain networks such as C. elegans nervous system [21], macaque brain network [22] and

human brain network [23, 24].
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Rich-club is a type of mesoscopic organization in which a set of high degree nodes (“rich”

nodes) form a densely inter-connected subnetwork as opposed to low degree nodes which

are sparsely inter-connected. The density of connection between rich club nodes is signifi-

cantly higher than that expected from a random homogeneous network with similar degree

sequence [25]. A rich club ordering has been observed in a variety of brain networks such as

C. elegans nervous system [26], macaque brain network [16] and human brain network [27].

Hierarchical organization: A highly relevant type of mesoscopic organization which has

not got as much attention as the above described mesoscopic structures in brain networks

is hierarchical organization. In a hierarchical network, the nodes are grouped into sequen-

tially arranged hierarchical layers such that only consecutive layers have dense connections

between them, whereas nodes of non-consecutive layers, as well as, nodes belonging to the

same layer, are sparsely connected. In Chapter 5 of this thesis, we delve into this type of

mesoscopic organization in detail.

Structural brain networks across species : a short overview

Quest for the connectome

Connectome, a term that was coined fairly recently [28], refers to a complete map of inter-

neuronal connections within the brain, also called the “wiring diagram”. Often it has

been flexibly used to represent the mapping of structural connectivity at higher resolu-

tions such as brain regions as well [29]. Lately, there is a rapid growth in the community

of neuroscientists who believe that the connectome might hold the key to understanding

the repertoire of complex cognitive behavior, somewhat in the same spirit as the genome,

i.e., the complete sequence of nucleotides in the DNA, was considered to hold the key for

understanding how an organism develops and functions. This idea of structural connec-

tome providing the basis for understanding brain function has been discussed in depth

by Sebastian Seung in a popular book [30]. Put another way, the wiring diagram of the
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brain indicating its structural connectivity is considered to be the “obligatory founda-

tional model for understanding functional localization at molecular, cellular, systems and

behavioral organizational levels.” [31]. Thus, the significant role played by the anatomical

architecture of brain connectivity at multiple scales in cognitive processes and behavior has

been repeatedly stressed in the literature [32, 33]. With an increasing number of studies

on model neural circuits, as well as, large scale connectivities in different species, the deep

relation between the structural connectivity and various cognitive functions like learning

and memory [34, 35, 36], motor control [37] and vision [38] is being gradually explicated.

One of the primary roadblocks on the path towards “solving” the brain is obtaining an

accurate and complete structural connectome. Mapping the connectivity of the entire brain

of an organism is an extremely difficult technological and computational challenge. Till

date the only organism whose entire connectome has been mapped at cellular resolution

is the nematode Caenorhabditis elegans [39]. For other species, ranging from insects to

mammals including humans, attempts to completely map the connectome are yet to reach

this goal. Towards this end, there have been huge investments on long term projects such as

the Blue Brain Project [40], the Human Connectome Project [41], Japan’s Brain/MINDS

project [42] and the China Brain Project [43]. This is a testament to the promise of

potential breakthroughs in our understanding of brain functions that a complete knowledge

of the structural connectivity holds.

Universality in structural organization across species

In this thesis, we look at three different connectomes, viz., the somatic nervous system

of the nematode C. elegans, the macaque brain and the human brain, that vary both

in scale as well as complexity. However, there is a central unifying theme that ties the

analyses of these varied systems that are presented in this thesis. This perceived unity

is not simply because all of them are investigated using the paradigm of network theory.

Rather, it emerges from a more fundamental universality which is intrinsic to neuronal

systems in general. Here, universality is meant in the following sense. It is widely known
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that as we look at progressively larger organisms in the animal kingdom, they do not

simply grow in size and number of cells but also grow rapidly in terms of organizational

and behavioral complexity as well [44, 45, 46]. However, in spite of the large degree of

variation in scale and complexity across species, the underlying brain networks exhibit

certain recurring organizational principles. This universality is particularly evident in the

mesoscopic organization of the brain networks. In the preceding section, we have already

pointed out a few of the common types of mesoscopic organization that have been observed

in many brain networks, viz., modularity [14, 18, 19], core-periphery structure [21, 22, 23]

and rich-club organization [26, 16, 27]. This has led to the emergence of the sub-field

of comparative connectomics [47] which aims to uncover the general principles of network

organization by carrying out cross-species quantitative studies.

The universality in network architecture could be primarily due to two possible reasons:

1. Fundamental constraints governing the wiring of neuronal networks, such as those

arising from the trade-off between wiring length cost and communication efficiency,

are conserved across all species.

2. The problem that a nervous system is trying to solve, viz., to efficiently process

sensory stimuli and respond through appropriate action, is common for all species.

For the first of these, viz., developmental constraints in neuronal wiring arising from

competition between metabolic cost and functional benefits, several mechanistic principles

[48, 49, 13] and generative models have been examined [50]. However, the second, viz., the

common problem which all neuronal networks are designed to solve, is not very straight-

forward to formulate. In this direction, Karl Friston has recently proposed a theoretical

framework called the Free-energy Principle [51]. It formulates all neuronal systems as in-

ference engines trying to optimize their free energy function through action and perception.

It attempts to provide a “unified theory of brain” which would explain several fundamental

aspects of brain structure and function [52].

From the above viewpoint, an in-depth analysis of structural organization in different

brains is imperative not only for understanding the functioning of individual brains, but
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also for uncovering the fundamental generative principles that might be common across

all species. This was the primary motivation for the work reported in this thesis. Over

the next few chapters, in addition to exploring the structure-function relationship within

brain networks of varying complexities, we also draw concrete inferences about the gener-

ative mechanisms underlying their structural organization. The contents of this thesis are

outlined in the following section.

Overview of the thesis

In this thesis, we have analyzed the network underlying the brain (or nervous system) of

different organisms and asked the following questions:

i. What constraints ensure that a relatively invariant topological organization of the

connections between neurons emerge over the course of development (i.e., the “wiring

problem”) ?

ii. What are the key mesoscopic features other than modularity that characterize the

connection topology across the entire brain ?

iii. Can such structural features of the network be related to the functional goals of the

nervous system (i.e., the “structure-function” relationship) ?

iv. What can we know from the intra-species variability of structural brain networks about

the generative mechanisms and the functional interpretations of the links ?

The different systems that we have considered in this thesis range between the somatic

nervous system of the hermaphrodite nematode Caenorhabditis elegans, the network of

cortical and sub-cortical areas in the brain of the rhesus macaque monkey and an ensem-

ble of networks of the whole brain reconstructed from diffusion tensor imaging of human

subjects.

In Chapter 2 we address the fundamental question of how does the characteristic

wiring diagram of a neuronal network emerge during the development of an organism. For
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this purpose, we focus on the nervous system of the hermaphrodite nematode Caenorhab-

ditis elgans. While the organism does not possess a centralized ‘brain’, it has a somatic

nervous system comprising 279 neurons. The fact that the connectome, as well as, the

developmental chronology and lineage of all the cells, are invariant across different indi-

viduals, suggests that the emergent network structure is somehow generated by the devel-

opmental process itself. Using all available data about the connectivity and development,

in conjunction with information about the spatial organization of every neuron belonging

to the somatic nervous system of the adult hermaphrodite C. elegans, we show that the

developmental trajectory itself might be providing the key constraints that shape the ob-

served structure of the nervous system. These constraints may be thought of as strategies

contributing to the eventual wiring of the nervous system, which is extremely precise and

invariant from individual to individual. Insights obtained from studying how the structural

and functional organization of the C. elegans nervous system is shaped by the developmen-

tal process might be helpful in understanding the mechanism of neuronal wiring in other

organisms as many of the robust strategies seen here might be conserved across different

species at multiple scales.

In Chapter 3, we probe the structure-function relationship in the macaque brain. The

network is defined at the resolution of brain areas, with the vertices being anatomically

defined regions of the brain and the links being the axonal tracts connecting these regions.

While previously there have been studies on the community structures of different brain

networks including that of the macaque, most of these considered only subsets of the

entire network. As the brain is considered to be a system where information is processed

in a highly distributed manner (rather than being localized in various compartments as

previously thought), it is necessary to consider the entire brain in order to understand

how the structural organization affects its function. In our study, we have focused on

understanding how the mesoscopic organization of the network, specifically its modular

arrangement, is reflected in the functioning of the brain. In accordance with previous

studies, we find several network modules that are spatially localized. Different sensory

modalities and motor functions can be associated with the modules, although we do find
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intriguing exceptions. More importantly, we discover that the specific pattern of intra- and

inter-modular connectivity between the brain areas allows extremely rapid diffusion across

the network, that is fast compared to even homogeneous networks. Finally, we explore the

possible relationship between the observed modular structure and the spatial configuration

of the network which might point towards a generative mechanism for the emergence of

the modules. Specifically, we ask whether the observed modules are simply an outcome of

the spatial constraints in brain wiring. We show that even after taking into account the

connection bias introduced by physical distance constraints to redefine the modules in a

space-independent manner, an almost identical modular organization of the network is still

obtained. This implies that the modular structure that is seen in the brain network is not

a result of spatial constraint of connectivity but is possibly an outcome of the functional

advantage of rapid communication.

In Chapter 4, we explore the intra-species variability of structural connectomes in

humans. The human brain is apt for studying the variability of the underlying network

structure as not only do studies on human cognition provide a much broader functional

and behavioral repertoire compared to other species, but with the advent of state of the

art non-invasive imaging techniques like diffusion tensor imaging (DTI) and functional

magnetic resonance imaging (fMRI), we can complement functional studies with accurate,

highly resolved maps of brain connectivity. The variability in brain networks across the

population can occur not only in terms of their connection topology, but also in terms of

the connection weights. Using a cohort of structural brain networks obtained from 196

human subjects, we show that a significant fraction of the connections have their weights

follow a Poisson distribution. This suggests independent, discrete random processes as the

generative mechanism. It also indicates that a single mechanism determines the wiring,

as well as, the weights. This result provides a basis for rescaling the connection weights

of each network, such that the structural connectome matches the functional connectome

better - allowing a functional interpretation of the structural links. Our analysis also

yields a generic representative network for the human brain which can be resolved into

a “basal” network and a “superstructure” network, the former being relatively invariant

15



across individuals while the latter shows much more variability.

In Chapter 5, we examine a specific type of mesoscopic organization that is extremely

relevant for brain networks but has received relatively less attention, namely, hierarchical

organization. In hierarchical network topology, the nodes of the network are segregated

into distinct levels that are sequentially positioned such that the density of connections is

high only between consecutive levels. By contrast, the connections between other levels or

among the nodes of the same layer are sparse. Such type of organization is found com-

monly in brain networks, e.g., the cortical columns in the cortex consist of hierarchically

organized layers of neurons. While, modular organization in a network implies a form of

compartmentalization at the mesoscopic level, a hierarchical organization gives the sense

of directional and sequential flow across the network. We have developed a novel method

to determine the hierarchical structure of a given network and detect the underlying levels.

The benchmark tests show that the method is able to detect the embedded hierarchical

levels with great accuracy. We also use the method to identify robust hierarchical orga-

nization in the somatic nervous system of C. elegans and the brain networks of macaque

and human.

In Chapter 6, we conclude with a discussion about how studying brain networks at

different scales allow us to appreciate the structural and functional commonalities across

several orders of size and complexity. We also indicate possible future directions and further

scope of the studies presented in this thesis.
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Chapter 2

Developmental trajectory of

Caenorhabditis elegans nervous

system governs its structural

organization

2.1 Introduction

The presence of an efficient machinery for responding immediately to changes in the envi-

ronment with appropriate actions is essential for the survival of any organism. In almost

all multicellular animals, this role is played by the nervous system comprising networks of

neurons, specialized cells that rapidly exchange signals with a high degree of accuracy. It

allows information about the environment obtained via sensory receptors to be processed

and translated into output signals conveyed to effectors such as muscle cells. In even the

simplest of such organisms, the structural description of the interconnections between neu-

rons provided by the connectome presents an extremely complicated picture [53]. How the

complex organization of the nervous system is generated in the course of development of

an organism, occasionally referred to as the “brain wiring problem” [54], is one of the most
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challenging questions in biology [55, 56]. Only over the past few decades is the intricate

interplay of different developmental phenomena, including cellular differentiation, migra-

tion, axon guidance and synapse formation, responsible for the formation of the network,

being gradually revealed [57, 58, 59, 60, 48].

The free-living nematode Caenorhabditis elegans, the only organism whose entire con-

nectome has been reconstructed so far [39, 61], is the natural choice for a system in which

to look for principles governing the development of complexity in the nervous system [62].

The nervous system of the mature hermaphrodite individuals of the species comprises 302

neurons, which is about a third of the total complement of 959 somatic cells in the animal.

Their lineage, spatial position and connections to each other appear to be almost invariant

across individuals [39, 63]. The small number of cells constituting the worm has made it

a relatively tractable system for understanding the genetic basis of metazoan development

and behavior. This, however, belies the sophistication of the organism which exhibits al-

most all the important specialized tissue types that occur in larger, more complex animals,

prompting it to be dubbed as a “microchip animal” [64]. The availability of its com-

plete genome sequence [65] along with detailed information about the cell lineage [66, 67]

means that, in principle, the developmental program can be understood as a consequence

of genetically-encoded instructions and self-organized emergence arising from interactions

between diverse molecules and cells [68].

The “wiring problem” for the C. elegans nervous system had been posed early on

with Brenner essentially raising the following questions: how are the neurons spatially

localized in their specific positions, how they connect to each other through synapses and

gap junctions forming a network with a precisely delineated connection topology, and

what governs the temporal sequence in which different neurons appear over the course

of development [69]. Subsequent work has identified several mechanisms underlying the

guidance of specific axons and formation of synapses between particular neurons [70, 71, 72].

However, the minutiae of the diverse molecular processes at work may be too overwhelming

for us to arrive at a comprehensive understanding of how the complexity manifest in the

nervous system of the worm arises. Indeed, it is not even clear that all the guidance
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cues that are involved in organizing the wiring are known [73]. An analogous situation

had prevailed five decades earlier when C. elegans had been first pressed into service to

understand how genetic mutations lead to changes in behavior of an organism. Brenner

had responded to this challenge by analyzing the system at a level intermediate between

genes and behavior [69]. Thus, the problem was decomposed into trying to understand (a)

the means by which genes specify the nervous system (how is it built ?) and (b) the way

behavior is produced by the activity of the nervous system (how does it work ?) [69, 68]. In

a similar spirit, for a resolution of the “wiring problem”, we may need to view it at a level

intermediate between the detailed molecular machinery involving diffusible factors, contact

mediated interactions, growth cone guidance, etc., and the organization of the neuronal

network in the mature worm. Specifically, in this chapter, we have focused on uncovering a

set of guiding principles that appear to govern the neuronal wiring and spatial localization

of cell bodies, and which are implemented by the molecular mechanisms mentioned earlier

(and thus genetically encoded). From the perspective of the three-level framework proposed

by Marr [74, 75] for understanding the brain [56], viz., comprising (i) goals (and the logic

of strategies for achieving them), (ii) algorithmic and (iii) implementation levels, such

principles can be viewed as strategies for achieving specific network designs realized over

the course of development [54].

For this purpose, we have used the analytical framework of graph theory, which has

been successfully applied to understand various aspects of brain structure and function,

in both healthy and pathological conditions [76, 3, 77, 78, 79, 80]. For the specific case of

the C. elegans nematode, application of such tools has revealed the existence of network

motifs [81], hierarchical structure [21], community (or modular) organization [82] and a

rich club of highly connected neurons [26]. Comparatively fewer studies have focused on

the evolution of the network during development of the nematode nervous system that we

consider here [83, 84]. We have integrated information about spatial location of cells, their

lineage, time of appearance, neurite lengths and network connectivity to understand how

its developmental history constrains the design of the somatic nervous system of C. elegans,

specifically the 279 connected neurons which control all activity of the worm except the
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pharyngeal movements. Thus, our study complements existing work that has focused more

on understanding the structural organization of the network using efficiency and optimality

criteria such as minimization of the wiring cost, delineated by the physical distance between

neurons [85, 86, 87, 88, 89, 90, 91].

The key questions related to development that we address here involve the spatial

location of the cell bodies (why is the neuron where it is, relative to other neurons ?), the

temporal sequence in which the cells appear (why is it that certain neurons are born much

earlier than others ?) and the topological arrangement of their inter-connections (why does

a neuron have the links it does ?). As reported in detail below, we find that these questions

are related to the existence of general principles that can be expressed in terms of different

types of homophily, the tendency of entities sharing a certain feature to preferentially

connect to each other. We discern four different types of homophily, involving respectively,

process or neurite length of neurons, the time of their appearance, their lineage history and

bilateral symmetry. We also estimate the relative contributions of each of these four factors

(which we show are linearly independent of each other) in determining the connectivity.

Although it had been reported earlier that the probability of connection between two

neurons decreases with increasing difference in their birth times [83], we show this result to

be much more nuanced in that birth cohort homophily is predominant only for connections

between neurons whose cell bodies are physically proximate. Our results also help reveal

that the ganglia, anatomically distinct bundles into which the neurons are clustered in the

nematode, are formed of several groups (or families) of cells, neurons within each group

being closely related. Furthermore, as lineage relation between neurons is an important

factor that influences the structure of the neuronal network, we have presented a stochastic

generative model for the lineage tree of cells. By invoking a simple asymmetric branching

process, such a model captures several features of the empirically observed lineage tree.

At a higher level of network organization, we show that neurons which play a vital role in

coordinating activity spanning large distances across the network by connecting together

distinct neuronal communities (or modules) also appear quite early in the sequence of

development. This observation (along with others, such as linking the functional type
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of neurons, viz., sensory, motor and inter, to their time of appearance) helps link the

situation of a specific cell in the temporal hierarchy to which all neurons belong, with its

function. We also provide an analysis of the inter-relation between functional, structural

and developmental aspects, focusing on neurons identified to belong to different functional

circuits, such as those associated with mechanosensation [92, 93, 94], chemosensation [95],

etc. This provides us with a more nuanced understanding of the relation between the

time of appearance of a neuron and the number of its connections. Our results suggest

that developmental history plays a critical role in regulating the connectivity and spatial

localization of neurons in the C. elegans nervous system. In other words, development

itself provides key constraints on the system design. In addition, the tools we employ

here for revealing patterns hidden in the lineage and connectivity information, including

novel visual representations of developmental history, such as chrono-dendrograms, provide

insights into principles governing the wiring of nervous systems that may be common across

several organisms.

2.2 Materials and Methods

Data

Connectivity. Information about the connections between different neurons obtained using

serial section electron micrography were first reported in Ref. [39]. Subsequent analysis

of the images has led to discovery of many more connections which have been published

in Refs. [61] and [96] (which differ marginally in the connections they report). A more

recent re-analysis has added further connections to the connectome [97]. We have used the

information about connectivity between 279 connected neurons of the C. elegans nervous

system from the latest dataset which is published in Ref. [97]. We have explicitly verified

that our results remain substantially unchanged on using the earlier connectome dataset

from Ref. [61]. The differences between the connectivity reported in the above-mentioned

databases are visually represented in Appendix A, Figure A15 and Figure A16.
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Lineage. We have used information about the lineage distance between 279 connected

neurons of the C. elegans somatic nervous system from the database published in Ref. [61],

accessible from an online resource for behavioral and structural anatomy of the worm [98].

Time of birth for neurons. We have transcribed the time of appearance of each neuron

over the course of development of the organism from lineage charts provided in Refs. [66,

67]. This is provided in Table A5.

Time of cell-division for progenitor cells The information about the time of each cell-

division, starting from the zygote, that occurs over the course of development of the

C. elegans somatic nervous system, and which has been used for generating the chrono-

dendrograms shown here, are provided in Refs. [66, 67], accessible from an online interactive

visualization application [99].

Physical distance. We have used information on the positions of the neurons from the

database reported in Ref. [100], accessible online from https://www.dynamic-connectome.

org/. The location information provides coordinates of each neuronal cell body projected

on a two-dimensional plane defined by the anterior-posterior axis and the dorsal-ventral

axis.

Neuronal process length. Process or neurite refers to any projection from the neuronal

cell body, which can be either an axon or a dendrite. Lengths of the processes extending

from each cell body has been estimated from the diagrams of the neurons provided in

Appendix 2, Part A of Ref. [101] and from an online resource for the anatomy of the

worm [98].

Ganglia and functional types. The information about the ganglion to which a neuron

belongs and the functional type of each neuron (viz., sensory, motor or interneuron) has

been obtained from the database provided in Ref. [102].

Functional circuits. The identities of the neurons belonging to each of the functional

circuits have been obtained from the original references for each circuit. The functional

circuits analyzed in this chapter and their respective original references are as follows : (F1)

mechanosensation [92, 93, 94], (F2) egg laying [103, 104, 105], (F3) thermotaxis [106, 107,

108], (F4) chemosensation [95], (F5) feeding [39, 92, 109], (F6) exploration [39, 92, 109]

22



(F7) tap withdrawal [93, 110], (F8) oxygen sensation [111, 112] and (F9) carbon dioxide

(CO2) sensation [113, 114] The neuronal composition of each of these functional circuits is

given in Table A7.

Modularity

A network can be partitioned into several communities or topological modules, defined

such that neurons in a given module have a much higher probability of being connected to

other neurons in the module compared to neurons that do not belong to it, by maximizing

the modularity value Q [115] associated with a given partitioning, viz.,

Q =
1

L

�

i,j

�
Aij −

kin
i kout

j

L

�
δcicj . (2.1)

Here, A is the adjacency matrix describing the connections of the network (Aij = 1, if

neuron i receives a connection from neuron j, and = 0 otherwise). The in-degree and

out-degree of a node i are given by kini =
�

j Aij and kout
j =

�
i Aij, respectively. The

total number of links in the network is given by L =
�

i,j Aij. The Kronecker delta

function δij = 1, if i = j, and 0, otherwise. The indices ci, cj refer to the modules to

which the neurons i and j, respectively, belong. For an undirected network, such as that

defined by the set of connections between neurons via gap-junctions, the adjacency matrix

is symmetric (i.e., Aij = Aji) and kin
i = kout

i = ki. The value of Q expresses the bias that a

neuron has to connect to members of its own community (which could be defined in terms

of any distinguishing characteristic of the cells, e.g., process length), relative to the null

model. The latter corresponds to an unbiased, homogeneous network where the probability

of connection between two nodes is proportional to the product of their respective degrees.

A positive value of Q that is significantly higher than that obtained from an ensemble of

randomized surrogate networks would indicate the existence of homophily.

To further establish homophily, we also show that the bias for connecting to neurons

belonging to a particular class (e.g., short process length) can be observed only among
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neurons in that class, and not between neurons belonging to different classes (e.g., between

short and long process neurons). For this, we define Q values for each pair of classes (X

and Y , say) as follows:

QXY =
1

L

�

i,j

�
Aij −

kin
i kout

j

L

�
δciY · δcjX , (2.2)

where the symbols have the same meanings as in Eq. 2.1. Note that, the Q for the entire

network calculated in terms of Eq. 2.1 is related to these class-specific modularity values

as Q =
�

X∈all classes QXX . Homophily is established upon demonstrating that the values

of QXX , QY Y , etc. are significantly higher than that of QXY , QY X , etc.

Bimodality coefficient

The bimodal nature of a probability distribution can be characterized by calculating its

bimodality coefficient [116]:

BC =
m2

3 + 1

m4 + 3 · (n−1)2

(n−2)(n−3)

, (2.3)

where m3 is the skewness, m4 is the excess kurtosis and n represents the sample size. A

distribution is considered to be bimodal if BC > BC∗ where BC∗ = 5/9. This bench-

mark value corresponds to a uniform distribution, and if BC < BC∗, the distribution is

considered unimodal.

Process length randomization

To establish statistically significant evidence for process length homophily, the empirical

network is compared with an ensemble of networks obtained from the empirical one by

randomly assigning process lengths (short, medium and long) to the neurons while en-

suring that the total number of neurons in each process length category, viz., NS, NM

and NL, respectively, (as well as, all other properties of the network, such as connec-

24



tivity) remains unchanged. In practice, this is done by first partitioning the neurons

into three communities according to process length and ordering the neurons in sequence

according to the module they belong. Thus, neurons i = 1, . . . , NS have short pro-

cesses, neurons i = NS + 1, . . . , NS + NM have medium length processes, and neurons

i = NS +NM + 1, . . . NS +NM +NL have long processes. Then, to create each member of

the surrogate ensemble, this sequence is randomly permuted and the first NS neurons are

assigned short process length, the next NM neurons are assigned medium process length

and the remaining NL neurons are assigned long process length. The modularity Q cal-

culated for networks with such randomized module membership (corresponding to a null

model where process length homophily is non-existent by design) is expected to be small.

Network randomization constrained by neuronal process lengths

An ensemble of surrogate networks is constructed by randomizing the connections of the

empirical network, subject to different constraints. Each member of the ensemble is con-

structed by repeatedly selecting a pair of directed connections, e.g., p → q and u → v, and

rewiring them such that the in-degree and out-degree of each neuron remains invariant, i.e.,

p → v and u → q. If these new connections already exist, this rewiring is disallowed and

a new random selection for a pair of directed connections done. In addition, information

about the spatial location of the cell bodies and that of the process lengths of neurons

are used to further constrain the connections. This ensures that un-physical connections,

such as between two short process neurons (i.e., each has a process length that is less than

a third of the body length of the nematode) whose cell bodies are placed apart by more

than 2L/3 (L: total body length of the worm), do not appear through the randomization.

In practice, this constraint is imposed as follows. In absence of precise knowledge of the

length of each process, depending on the length process category to which each neuron be-

longs, an uniformly distributed value (lying between [0, L/3] for short, between [L/3, 2L/3]

for medium and [2L/3, L] for long process neurons) is assigned as the process length for a

neuron. The distance between the cell bodies of a pair of neurons that have been selected
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randomly for connection is then compared against the sum of their process lengths. If the

latter is greater than the former, the connection is allowed, else not. The rewiring steps

are repeated 5× 105 times to construct each of the randomized networks belonging to the

surrogate ensemble. The entire ensemble consists of 100 realizations of such randomized

networks.

Lineage randomization

To establish that neurons belonging to the same ganglion are closely related in terms of

their lineage, we compare the properties of the lineage distance distribution within and

between ganglia obtained for the empirical network with those obtained upon randomizing

the lineage relations. This is done by repeatedly selecting a pair of neurons at random

on the lineage tree and exchanging their positions on the tree. This procedure is carried

out 104 times for a single realization. This ensures that, in the randomized networks, the

lineage relation between neurons is completely independent of whether they belong to the

same ganglion or not. In order to compare the properties of the empirical network with

its randomized version, an ensemble of 103 realizations is considered. To quantify the

deviation of the empirical intra- and inter-ganglionic lineage distance distributions from

their randomized counterparts, we measure the z-score of the corresponding means and

coefficients of variation (CV). The z-score is a measure for the extent of deviation of an

empirical property xemp from the mean of the randomized counterparts, �xrand�, scaled by

the standard deviation of the randomized counterparts, viz.,

z =
xemp − �xrand��
�x2

rand� − �xrand�2
. (2.4)

Surrogate ensemble for comparison with average cell body dis-

tance between connected neuronal pairs

To see whether the distance d between cell bodies of connected pairs of neurons [where the

members of the pair could belong to either the same or different process length categories,
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viz., short (S), medium (M) and long (L)] is distributed in a significantly different manner

from that between all pairs of neurons, we have constructed surrogate ensembles. For each

realization belonging to such an ensemble, a number of cell body distances is sampled

from the set of all distances D between each neuronal pair, such that the sample size is

same as the number of connected neural pairs. The entire ensemble consists of 103 such

sampled sets. To see whether the observed difference between �dXY � and �D�X,Y , where

X, Y ∈ {S,M,L}, can be explained simply as finite size fluctuation, we have evaluated the

corresponding z-scores, viz.,

zXY =
demp
XY − �drandXY ��

�(drandXY )2� − �drandXY �2
. (2.5)

Lineage tree rung determination

The order of the rung in the lineage tree that a cell belongs to is obtained from the lineage

information of the cell (available from Ref. [98]). This indicates the series of cell divisions,

starting from AB (which results from the division of the single cell zygote) that leads to

a particular neuron, e.g., ABprpapaap. The letters a (anterior), p (posterior), l (left) and

r (right) which follow AB, indicate the identity of the progenitor cells that result from

subsequent cell divisions eventually terminating in a differentiated neuron. As the rung

that a neuron belongs to is given by the number of cell divisions (starting from the zygote)

that leads to the differentiated cell, we simply count the total number of letters (AB is

counted as a single letter) specifying the lineage of a cell to determines its rung.

Stochastic branching model for lineage tree

To theoretically describe the generative process leading to the observed lineage tree for

the cells belonging to the C. elegans somatic nervous system, we have used a stochastic

asymmetric branching model. Starting from the single cell zygote, each cell division leads

to at most two daughter cells, with independent probabilities P1 and P2 (P1 ≥ P2) for

the occurrence of each of the two branches. Thus, based on the probabilities P1 and P2,
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at each step of the generative process any one of the following three events can happen: (i)

proliferation occurs along both branches, (ii) only one branch appears (the other branch

leading to either apoptosis or a non-neural cell fate), and, (iii) there is no branching so that

a terminal node of the tree is obtained (i.e., the cell differentiates into a neuron). Estimation

of P1 and P2 from the empirical lineage tree suggests that proliferation markedly reduces

after rung 10. Incorporating this in the model by decreasing the probabilities P1, P2

after rung 10 results in successive reduction of the branching, eventually coming to a stop.

The ensemble of 103 simulated lineage trees produced by the process matches fairly well

with the empirical lineage tree in terms of the number of terminal nodes, the distribution

of the rungs occupied by each cell and the distribution of lineage distances between the

differentiated neurons (see Fig. A6).

Classifying neurons according to their role in the mesoscopic struc-

tural organization of the network

The functional importance of a neuron vis-a-vis its own topological module (defined above

in Sec. 2.2), as well as, the entire nervous system, can be quantified in terms of its intra-

and inter-modular connectivity [82]. For this purpose we use the two metrics [117]: (i) the

within module degree z-score (z) and (ii) the participation coefficient (P ).

In order to identify neurons that have a significantly large number of connections to the

other neurons belonging to their module, we calculate the within module degree z-score

defined as

zi =
κi
ci
− �κj

ci
�j∈ci�

�(κj
ci)2�j∈ci − �κj

ci�2j∈ci
, (2.6)

where κi
c is the number of connections that a neuron i has to other neurons in its community

(labeled c) and the average �. . .�j∈c is taken over all nodes in the community. Following

Ref. [82], we identify neurons having z ≥ 0.7 as hubs, while the remaining are designated

as non-hubs.

The neurons are also distinguished in terms of how many well connected they are to
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neurons belonging to other communities. For this purpose we measure the participation

coefficient P of a neuron, which is defined as

Pi = 1−
m�

c=1

(
κi
c

ki
)2, (2.7)

where κi
c, as above, is the number of connections that the neuron has to other neurons in

its own module (labeled c) and ki =
�

c κ
i
c is the total degree of node i. Neurons that have

their connections homogeneously distributed among all modules will have a P close to 1,

while P = 0 if all of their connections are confined within their module. Based on the value

of P , following Ref. [82] we have classified the non-hub neurons as ultra-peripheral (R1:

P ≤ 0.05), peripheral (R2: 0.05 < P ≤ 0.62), satellite connectors (R3: 0.62 < P ≤ 0.8)

and kin-less nodes (R4: P > 0.8), while hub neurons are segregated into provincial hubs

(R5: P ≤ 0.3), connector hubs (R6: 0.3 < P ≤ 0.75) and global hubs (R7: P > 0.75).

Logistic Regression

We have employed logistic regression [118] to assess the relative contributions of different

factors in determining the probability of connection between a pair of neurons. Here,

the probability of occurrence of an event is expressed as a function of one or several

independent predictor variables. In our case, the event Y denotes the presence (Y = 1) or

absence (Y = 0) of a connection between two neurons. The independent predictor variables

correspond to the attributes: (i) process length (Xp = 1 if the process lengths of the two

neurons are in the same class [short, medium or long], = 0 otherwise), (ii) birth cohort Xb

(= 1 if both neurons are born early or both are born late, = 0 otherwise), (iii) symmetric

pairing Xs (= 1 if the two neurons correspond to a symmetric pair, = 0 otherwise) and (iv)

lineage relation Xl (= lineage distance l ∈ {1, 2, ....25}). Thus, logistic regression models

the probability of connection in terms of the above-mentioned variables as

P (Y = 1) =
1

1 + e−(β0+βp·Xp+βb·Xb+βs·Xs+βl·Xl)
, (2.8)
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where the regression coefficients {βp, βb, βs, βl} are estimated from the empirical data.

These can be interpreted as change in the logarithm of odds (i.e., log( P
1−P

)) that results

from a change in the corresponding predictor variable by a single unit, with other vari-

ables kept unchanged. Therefore, the magnitude of the regression coefficients (determined

by us using the mnrfit function in MATLAB Release 2010b) provides a measure of the

relative contribution of each of the factors in determining the probability of connection.

We have also explicitly ensured the absence of multicollinearity (i.e., correlations) among

the predictor variables, as this would otherwise result in an inaccurate estimation of the

regression coefficients. For this purpose, we have used Belsley collinearity diagnostics [119]

as implemented in the collintest function in MATLAB Release 2016b.

Statistics

Two-sample Kolmogorov-Smirnov (KS) test [120] has been used to compare between pairs

of samples (e.g., the degrees of neurons belonging to different categories) to determine

whether both of them are drawn from the same continuous distribution (null hypothesis)

or if they belong to different distributions. For this purpose we have used the kstest2

function in MATLAB Release 2010b, with the value of the parameter α which determines

threshold significance level set to 0.05.

Kernel smoothened density function [121] has been used to estimate the probability

distribution functions of different quantities (e.g., distances between cell bodies of neurons).

For this purpose we have used the ksdensity function in MATLAB Release 2010b with a

Gaussian kernel.

Code Availability

The codes used in this analysis can be publicly accessed from the following link : https:

//github.com/anandpathak31/C_elegans_development.
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2.3 Results

2.3.1 Homophily based on multiple cellular properties governs

neuronal inter-connectivity

Direct contact between neurons whose cell bodies are located relatively far apart, through

synapses or gap junctions located on their extended processes, plays a crucial role in

reducing communication delay of signals across the entire nervous system [122]. This

is particularly relevant for C. elegans where the majority of synapses occur en passant

(forming at axonal swellings) between parallel nerve process shafts that can remain close

to each other over long distances [63]. Therefore, in order to understand the principles

governing the wiring organization of the nematode nervous system, it is appropriate to

first focus on understanding how the connectivity of neurons is influenced by the length of

their neurites.

It has also been observed that connected pairs of neurons very often differentiate close

to each other in time [83]. This may suggest that preferential connectivity among neurons

according to the time of their birth (i.e., birth cohort homophily) is a possible basis for

guiding the network architecture. However, we need to explore the possibility that it could

be a consequence of the restrictions on connections between neurons imposed by their

respective process lengths. For instance, a large majority of the neurons that are born early,

i.e., prior to hatching, are localized in the head region and have short processes extending to

less than a third of the body length of the nematode. This could, in principle, be sufficient

to explain the temporal closeness of connected neurons. We have accordingly investigated

the joint dependence of the occurrence of connections (synapses and gap-junctions) between

neurons on the lengths � of their respective processes, as well as, their birth times tb in

Fig. 2.1 (A-B). The distance d between the cell bodies for each pair of connected neurons

is also indicated, which makes apparent the restriction on connectivity imposed by the

process lengths. This information adds a temporal dimension to our understanding of the

organization of long-range connections (corresponding to high values of d) in the nematode
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Figure 2.1: Birth time cohort membership and neurite lengths of neurons govern
their connectivity. (A-B) Matrices representing synaptic (A) and gap-junctional (B) connec-
tions that exist between neurons, grouped into three classes [indicated by blue broken lines]
according to their process lengths � measured relative to the worm body length L, viz., short
(� ≤ L/3), medium (L/3 < � ≤ 2L/3) and long (� > 2L/3), and ordered within each class
according to birth time. Increasing birth time is indicated by arrows, with red lines marked th
(time of hatching) separating neurons which differentiate in the embryonic stage from those born
later. Matrix entries correspond to the existence of a connection, with its color representing the
distance (measured in mm) between cell bodies of the corresponding neurons (see legend). We
observe that there is evidence of birth time assortative mixing, with neurons born early(later)
having a higher probability of connecting with other early(late) born neurons, which is partic-
ularly marked in the case of neurons having short processes. The gap junction matrix shows a
large number of entries adjacent to the diagonal which correspond to connections between paired
neurons [see Fig. 2.5 (A)]. (C) Distribution of distances d between cell bodies of pairs of neurons
distinguished in terms of their respective process lengths (S: short, M: medium, L: long), which
are connected by synapses (top) and gap junctions (bottom).
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Figure 2.1 (previous page): As synaptic connections are directed, there are nine possible
combinations of pairs of the classes (S/M/L) to which the pre- and post-synaptic neurons belong
(e.g., SL refers to a synapse from a neuron with a short process to a long process length neuron).
On the other hand, as gap junctions are undirected, only six possible combinations need be
considered. We note the bimodal distributions of d when at least one of the two neurons connected
by synapse or gap junction has a long (or medium) process. (D) The mean distance �d� between
cell bodies of neurons connected by synapses (left) and gap junctions (right), grouped according to
their process lengths (L/M/S) [indicated by blue broken lines] and further subdivided into those
born early (i.e., embryonic stage) and those born late (i.e., L1, L2 or L3 stages) [separated by red
lines]. Distances are expressed in mm (see legend for the color code). We note that pre-synaptic
neurons with long processes tend to connect with post-synaptic neurons having short processes
which are located far from them, corresponding to the higher peak in the bimodal distribution for
LS in top panel of (C). Note that we have considered in this analysis the subset of 225 neurons
for which information about process length is available.

nervous system. The neurons are grouped according to their process lengths �. These are

categorized as short (� ≤ L/3), medium (L/3 < � ≤ 2L/3) and long (� > 2L/3) relative

to the total body length of the worm L. Moreover, within each category, the neurons are

arranged by their time of birth in increasing order.

Process length homophily

Even a perfunctory perusal of the two matrices in Fig. 2.1 (A-B) makes it apparent that

the diagonal blocks in the two matrices have relatively higher density of points. This

observation indicates that there is a preponderance of connections between neurons having

similar process lengths. However, to establish that there is indeed process length homophily

which would imply an explicit preference for neurons to connect to other neurons whose

neurites extend to similar distances as them, we will have to compare the empirically

observed number of such connected pairs with that expected to arise by chance given the

degree (i.e., the total number of connections) of each neuron. For this, we cluster the cells

into three communities or modules which are characterized by all their members having

short, medium or long processes, respectively. This allows us to calculate the modularity

Q, a measure of the extent to which like prefers connecting to like in a network [115, 123]

(see Methods for details). A positive value of Q for a particular module would suggest that
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there is a bias for its members to preferentially connect to each other, while Q ∼ 0 indicates

the absence of any evidence for homophily. For the entire synaptic network, we measure

Q to be 0.125, while for the network of neurons connected by gap junctions, it is 0.18. We

find these empirical Q values to be significantly higher than the corresponding values, viz.,

−0.003± 0.008 and −0.003± 0.013, calculated for ensembles of randomized surrogates for

the synaptic and gap-junctional networks, respectively, obtained by randomly permuting

the process length category membership of each neuron (see Methods). This suggests that

neurons having similar process lengths do indeed have many more of their connections with

each other than would be expected simply on the basis of the number of synapses and gap

junctions possessed by each of them. We have additionally considered another surrogate

ensemble obtained by randomly permuting the connections of the network keeping the

degree of each neuron unchanged, subject to constraints imposed by the neuronal process

lengths given the spatial positions of the cell bodies (see Methods). With respect to this

ensemble also the empirical Q values are seen to be significantly higher (see Appendix A,

Table A1). Thus, although the empirical values of the modularity appear to be small, they

cannot be attributed simply to noise and suggests the existence of specific mechanisms that

make connections between two neurons, both of which have short (or long) processes, more

likely. Moreover, individually considering the three communities comprising neurons having

short, medium and long processes, respectively, yields class-specific Q values (see Methods)

which are also significantly higher than the Q values obtained from the corresponding

randomized surrogates. In contrast, the class-specific Q values obtained for connections

between neurons belonging to different categories of process lengths are either lower or

about the same as the Q values obtained from the corresponding randomized surrogates,

as indicated by the respective z-scores (see Appendix A, Table A1). This further underlines

the existence of a significant bias for connections to occur between neurons having similar

process lengths.
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Birth cohort homophily

We observe a relatively high density of points in Fig. 2.1 (A and B) in the blocks corre-

sponding to connections between cells having short processes (i.e., SS) that are born at the

same epoch, i.e., either pre- or post-hatching. This is also seen for connections between

neurons having medium length processes (MM), as well as, those between neurons having

short and other neurons having medium process lengths (MS or SM). This suggests that,

apart from process length, the time of birth of the cells also determine neuronal inter-

connectivity. Indeed, earlier studies [83] have shown that most of the neurons that are

connected to each other happen to be born close in time, with the probability of connec-

tion between contemporaneous neurons being much more than what is expected by chance.

However, we find that the actual temporal separation between the time of birth of different

neurons does not have any significant correlation (viz., p � 0.05) with the probability of

there being a connection between them, either synaptic or gap-junctional. This appar-

ent contradiction is resolved on noting the following. While, within the group of neurons

born in the embryonic stage and those born post-embryonic there may be a great diversity

in terms of birth times (thereby significantly weakening any correlation with connection

probability), these differences are minor when viewed from the perspective of membership

in the cohorts of those born pre- and post-hatching, respectively. As reported earlier [83],

these correspond to two distinct, temporally separated bursts of neuronal differentiation,

which provides a natural demarcation of the neurons into early and late-born categories.

We observe that neurons prefer to connect to other members of their cohort (viz.,

early or later-born). This is indicative of birth cohort homophily, which is quantitatively

established by segregating the neurons born pre- and post-hatching into two communities

and then calculating Q values. As shown in Appendix A, Table A2, the Q for synapses is

0.09 and that for gap junctions is 0.07, which are significantly higher than the corresponding

values obtained from the randomized surrogate ensemble (obtained by keeping the degree

sequence unchanged, subject to constraints imposed by process lengths given the spatial

position of cell bodies), viz., 0.02± 0.005 for synaptic and 0.03± 0.01, respectively.
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We note that this homophily is restricted to neurons whose cell bodies are located in

close physical proximity (see Appendix A, Figure A1). By comparing with randomized

surrogates, we observe that connections between neurons are not significantly enhanced if

they are born in the same epoch except for the case when the distance d between their cell

bodies is short (d < L/3).

Process lengths affect the spatial arrangement of neurons

So far, in our consideration of how connections between neurons is affected by their pro-

cess lengths, we have not considered the information concerning the spatial position of the

cell bodies of the connected neurons. Consideration of this information is important if we

want to understand how activity of spatially distant parts of the organism are coordinated

through long-range connections that allow signals to be rapidly transmitted across rela-

tively large physical distances. Figs. 2.1 (C) and (D) show how the distance d between cell

bodies of connected pairs of neurons are distributed differently according to their respective

process lengths.

The top panel in Fig. 2.1 (C) corresponds to the probability distribution function

of distance between cell bodies d for neurons connected by synapses, while the bottom

panel considers gap junctions. When both the pre- and post-synaptic neurons have short

processes (indicated by SS in the figure), it is expected that the cell bodies will be located

close to each other. This is indeed what is observed, with a prominent peak of P (d)

occurring at extremely low values of d. On the other hand, when at least one of the

neurons has a long or medium length process, we observe that the distributions for neurons

connected through synapse are much more extended towards higher values. For SL, LS

and LL connections, we in fact observed a distinct bimodal character in the corresponding

distribution of d. This can be linked to the observation that neurons having short as well

as long processes tend to predominantly have their cell bodies located at the head or in

the tail of the worm. In contrast, neurons whose processes are intermediate in length have

cell bodies distributed relatively more homogeneously across the body of the organism (see
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Appendix A, Figure A2). This can be quantified by measuring the extent to which the

cell bodies themselves are distributed along the longitudinal axis of the nematode body

in a bimodal manner using the Bimodality Coefficient (BC) metric [116] (see Methods).

A distribution is said to be prominently bimodal if its BC � BC∗ (= 5/9), the value

of the metric for an uniform distribution. We find that while the spatial positions of the

cell bodies of neurons having short, as well as, long process are distributed in a bimodal

manner (BCS = 0.93 and BCL = 0.83, respectively), that of neurons with intermediate

length process (BCM = 0.67) are relatively more uniformly distributed. Accordingly, we

observe that synaptically connected pairs, in which at least one neuron has process of

medium length, exhibit distributions of d where bimodality is either muted (as in SM, MM

and MS) or absent (ML and LM), even though all of these distributions span a much larger

range of d than SS. This indicates that process length is an important determinative factor

for the occurrence of long-range connections in the nematode nervous system.

When we consider the distribution of distances between cell bodies of neurons connected

by gap junctions [lower panel of Fig. 2.1 (C)], we observe that connections are more likely

to occur between spatially adjacent cell bodies. This is manifest in the distributions of d

being much less extended than those seen in the case of synapses, with the exception of SL

and LL which exhibit bimodality. The distinction between the situations seen in the upper

and lower panels may arise from the fact that while synapses between two neurons can in

principle be located anywhere on their processes, gap junctions predominantly occur close

to the cell body of at least one of the participating neurons.

The detailed nature of the information about the number of neuronal pairs with given

process lengths whose cell bodies are placed a specific distance d apart that is provided

by the distributions shown in Fig. 2.1 (C) tends to obscure certain gross features. The

latter can impart important insights into how process length facilitates connections be-

tween spatially distal neurons. Therefore, in Fig. 2.1 (D) we display the average physical

distance between cell bodies of connected neurons which are distinguished in terms of their

process lengths (short/medium/long), and further subdivided into those appearing in the

embryonic stage, i.e., prior to hatching (referred to as early), and those which appear at
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the post-embryonic stage (referred to as late). For synaptic connections (shown at left),

the average d for neurons with long processes (pre-synaptic) connected to neurons having

short processes (post-synaptic) is the highest (�dLS� = 0.57 mm) of all the categories con-

sidered, higher even than that when both neurons in a connected pair have long processes

(�dLL� = 0.50 mm). Intriguingly, both of these values are larger than the average dis-

tance between cell bodies for connected neurons when the pre-synaptic neurons have short

processes while the post-synaptic ones have long processes, viz, (�dSL� = 0.33 mm). This

is consistent with the two peaks of the bimodal distribution of d corresponding to these

connections differing substantially in amplitude - the peak at lower d being higher for SL,

while the one at higher d being larger for LS. To a lesser extent, a similar asymmetry is

seen for the average distance between connected cell bodies when one has short process

while the process of the other is of medium length (viz., �dMS� = 0.22 mm as compared to

�dSM� = 0.09 mm).

We can compare these values with the average distance between cell bodies of all

neurons, whether connected or not. For instance, the mean separation D between cell

bodies of all neurons with long process lengths is �D�L,L = 0.55 mm which is almost the

same as the average distance between every pair of neurons in which one has a short process

and the other has a long one (�D�L,S = 0.54 mm). To ensure that the difference between

�dXY � and �D�X,Y (where X, Y ∈ {S, L,M}) is statistically significant, we show that it is

extremely unlikely that the observed values of d will arise by chance if random surrogates

are constructed having the same number of connected neurons as is observed empirically

(by sampling the set of all neuronal pairs without replacement). For instance, the z-

score (see Methods) for the distance between cell bodies of pre-synaptic neurons with long

processes connected to post-synaptic neurons with short processes is zLS = 1. By contrast,

considering the reverse, i.e., synapses from neurons with short processes to those having

long processes, we obtain zSL = −7.8. Thus, neurons with long processes appear to form

a synapse with neurons having short processes whose cell bodies are located far away from

their own much more often than that expected by chance given the spatial positions of the

cell bodies. On the other hand, neurons with short processes prefer to connect to neurons
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with long processes whose cell bodies are much closer to their own. Indeed, excepting the

class of LS and ML synaptically connected neuron pairs (i.e., pre-synaptic neurons with

long process with post-synaptic neuron with short process and pre-synaptic neurons with

medium process with post-synaptic neuron with long process), all other connected neural

pair classes, distinguished in terms of the process lengths of the two neurons, have negative

values for z-score (see Appendix A, Table A3, and Figures A3,A4). The results indicate that

the process length of the pre-synaptic neuron is a dominant influence deciding the average

distance between cell bodies connected by synapses. It is also consistent with the possibility

that a high proportion of synaptic contacts are occurring close to the cell body of the post-

synaptic neuron (which is closer to the classical concept of the pre-synaptic axon connecting

to a dendrite close to cell body of the post-synaptic neuron and not just making a synaptic

contact anywhere on the process). Such asymmetry between LS and SL may also have

the advantage of functional efficiency in that the resulting connection architecture allows

signals to rapidly travel large distances across the nematode body through long processes -

thereby spreading globally using L to S connections - and then being disseminated locally

using neurons with short processes.

If we now consider the case of neurons connected by gap-junctions [Fig. 2.1 (D, right)],

we note that the average value of d is highest for the case of cells with long processes

connecting to each other. In particular, unlike the situation seen above for synaptically

connected neurons, �dLS�(= 0.44 mm) is lower than �dLL�(= 0.5 mm). The z-score for the

distance between cell bodies of neuron pairs whose members belong to any of the classes S,M

and L are seen to be strongly negative, ranging between zLL = −1.6 and zSS = −12.7. The

high statistical significance of �d� when compared against the average separation between

neurons �D� suggests that gap junctions occur between neurons whose cell bodies lie close

to each other far more often than expected by chance (given their positions). This is

consistent with the belief that gap junctions predominantly act to coordinate activity

locally between neurons [124]. We also note in passing another feature of gap junctional

connections between neurons which is manifest in Fig. 2.1 (B) as a large number of entries

in the adjacency matrix immediately neighboring the diagonal. These correspond to a very
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high proportion of connections between bilaterally symmetric pair of neurons, e.g., AVAL

and AVAR, that is discussed later (see under bilateral symmetric pairing homophily). These

connections may have the possible functional goal of coordinating response of the nematode

nervous system to sensory inputs between the left and right sides of the body [125].

The process length homophily between neurons that we demonstrated above can be

attributed to multiple possible factors. For instance, the preference of neurons having

long process for connecting to other neurons with long processes could be an outcome

of the geometry resulting from parallel fibers extending over relatively large distances,

which have a proportionately higher probability of forming en passant synapses with each

other. On the other hand, the preference of neurons having short processes to connect

to each other could be tied to the fact that many of their cell bodies are located in close

physical proximity. This suggests an important role for the physical distance d between

cell bodies in deciding connectivity between neurons. When we look at the correlations

between d and the probability that the cells are connected, we do not find any statistically

significant correlation for either synapse or gap junctions. Focusing only on neuron pairs

whose cell bodies are located close to each other (i.e., d ≤ L/3 where L is the total body

length of the worm), however, we observe a very strong correlation of −0.92 (p = 0.003)

between d and the probability of a synaptic connection between the two (for gap junctions,

the correlation is −0.89 with p = 0.007). This high value indicates that synapse formation

between neurons whose cell bodies are located near each other is indeed strongly dependent

on the distance between them. Moreover, it cannot be explained in terms of simple physical

limits imposed by the process lengths of neurons on the farthest distance allowed between

cell bodies of connected neurons. This is because if we consider the correlation between

d and probability of connection only between neurons having short processes, we obtain

a value of −0.87 (p = 0.012) for synapses and −0.89 (p = 0.008) for gap junctions (see

Appendix A, Figure A5).

A possible explanation for the weakening of the relation between connection probability

and the physical distance separating the cell bodies when all neurons are considered could

be because, even though neurons born in close physical proximity have a higher probability
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of getting connected, it is masked by the cells moving apart subsequently over the course of

development. In the absence of information about the location of the cell bodies at the time

synaptogenesis happens, we can probe this indirectly by considering how the probability

of connection between two cells depends on how closely they are related in terms of lineage

- as cells having common ancestry also tend to be born adjacent to each other.

Lineage homophily

Cell lineage provides knowledge of the developmental trajectory in all metazoa, being

defined by successive divisions starting from the zygote to the final differentiated cell. In

most animals, the identity of any terminal node of the lineage tree, known as cell fate,

is determined by intrinsic and extrinsic factors, as well as, interactions with neighboring

cells. This introduces sufficient variability in the developmental path so as to make lineage

relationships discernible only at the level of cell groups rather than individual cells [101].

However, some organisms such as nematodes exhibit an almost invariant pattern of somatic

cell divisions that is identical across individuals, and in the case of Caenorhabditis elegans,

is known in its entirety [66, 67]. Thus, the lineage tree of the organism provides us with a

complete fate map at single-cell resolution [126]. The schematic representation of such a

tree shown in Fig. 2.2 (A) depicts successive mitotic cell divisions starting from a zygote

that, through intermediate progenitor cells, eventually differentiate into mature neuronal

cells. Each successive cell division (beginning from the zygote) corresponds to different

rungs in the tree used to label the resulting daughter cells. The difference between any two

cells in terms of their lineage can thus be quantified by their lineage distance, i.e., their

separation on the tree measured as the total number of cell divisions that leads to each of

them from their last common progenitor.
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Figure 2.2: Lineage of neurons affects their synaptic connectivity and spatial lo-
calization. (A) Schematic diagram of a lineage tree of cells resulting from consecutive mitotic
divisions of the zygote. The terminal nodes of the tree correspond to terminally differentiated
mature cells (shown in red) while other nodes represent progenitors (shown in blue) that appear
at different rounds of cell division. Cells born at each round of cell division are indicated by the
corresponding rung of the tree they belong to, the numerical value for the rung (shown at the
left) being the number of divisions starting from the zygote. The lineage distance l between a
pair of mature cells is measured as the total number of cell divisions leading to each from their
common progenitor. An example of lineage distance measurement is shown in the figure for the
pair of cells a and b which are separated by four cell divisions (the distance of a from each of the
intermediate dividing progenitors is indicated in the figure). (B-C) Frequency distributions of
the birth time of different neurons (B, separated into the different developmental stages) and the
lineage distances for each pair of neurons (C). (D) The probability of a pair of neurons to be con-
nected through a synapse decreases with increasing lineage distance between them, as indicated
by a statistically significant linear correlation between the two (r = −0.87, p < 10−7). For gap
junctional connections, the correlation is marginally weaker (r = −0.79, p < 10−5). (E-F) Joint
probability distributions of lineage distance l along with distance between cell bodies D (E) and
birth time difference Δtb (F) between all pairs of neurons.
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Figure 2.2 (previous page): The marginal distributions for the corresponding quantities are
indicated in the bounding surfaces. Contours for the distributions are indicated at the base
of each figure. We notice that the distribution of physical distances in (E) exhibit a bimodal
nature. However, cells which are closely related in terms of lineage (l < 5) also has a high
probability of being physically located nearby (indicated by a prominent peak at the lower end of
the distribution of D) which suggests that lineage influences spatial localization of cells. In panel
(F), the distribution shows peaks at odd values of the lineage distance (particularly for low Δtb)
suggesting that neurons born close in time are located at the same rung on the lineage tree.

Apart from the lineage tree, crucial information on the relationships between different

cells that stem from their developmental history is provided by the knowledge of birth times

of the individual mature neurons, i.e., the specific instant in developmental chronology of

the nervous system at which each neuron differentiates. Fig. 2.2 (B) shows the distribution

of birth times for all cells belonging to the somatic nervous system of C. elegans, indicating

that development of the system occurs in two bursts clearly separated in time [83]. The

‘early burst’, during which the bulk, viz., 72%, of the neurons are born, occurs at the

embryonic stage of development, while the more temporally extended ‘late burst’ spans

across the L1 and L2 stages. This information, in conjunction with a simple generative

model for reconstructing the lineage tree through successive cell divisions, can be used to

explain the distribution of lineage distance shown in Fig. 2.2 (C). As at each node of the

lineage tree a cell divides into at most two daughter cells, we can view it - at least in the first

few rungs belonging to the early proliferative phase - as a balanced binary tree, with the

number of cells that appear in each rung R increasing exponentially with R (upto R = 10

in C. elegans, see Appendix A, Figure A6. Within the AB sub-lineage of cells to which

almost all the neurons belong, the maximum lineage distance that can occur between two

cells which are placed in rungs R1 and R2, respectively, is given by lmax(R1, R2) = (R1 −
1)+(R2−1)−1. Thus, the distribution of lineage distances has an exponential profile upto

l = 17. Beyond rung 10, the subsequent branching of the nodes in the binary tree reduce

markedly as many of the divisions terminate in differentiated neurons (and occasionally

programmed cell death) or lead to non-neuronal fates (so that their further divisions are

not considered for the purpose of this study). This can be seen to result in the lineage
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distance distribution decreasing exponentially for l > 17, with a maximum lineage distance

of 25. A more detailed theoretical model of the lineage relationships between neurons

resulting from their developmental history can be constructed as an asymmetric stochastic

branching process (see Methods). Here, beginning with a single node that corresponds to

the zygote, at each iteration every node that appeared during the preceding iteration is

considered in turn for giving rise to each of two possible branches with probabilities P1

and P2 (P1 ≥ P2) that result in further nodes. By considering the actual lineage tree,

these asymmetric branching probabilities in the model were fixed as P1 = 1 and P2 = 0.85

until rung 9 and for later rungs they were set to P1 = 0.25 and P2 = 0.2. For these values

of P1 and P2, the trees generated by the model exhibited properties that were statistically

similar to the empirical lineage tree (see Appendix A, Figure A6).

Going back to the question we had posed earlier, viz., how does the lineage distance

l between cells affect the probability that they are connected by synapses, we observe

from Fig. 2.2 (D) that there is indeed a strong correlation of −0.87 (p < 10−7) between

the two. For gap-junctions, we again observe a correlation between lineage distance and

connection probability that is only marginally weaker, viz., −0.79 (p < 10−5), than that

seen for synapses. This observation provides evidence of lineage homophily being one of

the key principles governing connectivity of the nematode nervous system. The linear fits

for the dependence of the connection probabilities on lineage distance (shown using broken

lines) imply that synaptic connection probability has a slightly stronger dependence on

the lineage distance compared to gap junctions, as indicated by the higher slope of the

regression line for the former. These observations suggest that changes in the locations of

cell bodies from that they occupied initially (i.e., at the time the corresponding neurons

differentiated) which are brought about by the appearance of cells born later through

subsequent cell-divisions, result in a weak correlation between connection probability and

physical distance separating the cell bodies, as alluded to earlier.
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Lineage relation between neurons constrains distance between their cell bodies

The connection between lineage distance l and physical distance D between cell bodies of

neurons (whether connected or not), which has been mentioned earlier, is illustrated by the

joint probability distribution P (D, l) shown in Fig. 2.2 (E). In particular, cells having short

lineage distance, viz., l ≤ 5, tend to have their cell bodies located close to each other, as

indicated by the function being peaked towards lower values of D. However, cells that are

farther apart in terms of lineage can occur at different distances from each other, resulting

in the overall bimodal form for the marginal distribution of D. A similar nuanced relation

between lineage distance for two neurons and the difference of the times Δtb in which they

are born is indicated by the joint probability distribution P (l,Δtb) shown in Fig. 2.2 (F).

We note that for small l (l ≤ 5), the distribution peaks at low values of Δtb indicating that

closely related neurons tend to be born within a short time interval of each other. We also

observe that the distribution of l between neurons that differentiate at around the same

time (i.e., for low Δtb) tends to alternate between peaks and troughs for odd and even

values, respectively. This is easy to explain if neurons that are contemporaneous occur at

the same rung (as, by definition, neurons at the same rung will have odd values of lineage

distance between themselves).

The different ganglia comprise clusters of closely related neurons

The compelling association between lineage and physical proximity of neurons alluded to

above is manifest in the spatial organization of the cell body locations. It is particularly

conspicuous in the clustering of neurons into anatomically distinct bundles that are referred

to as ganglia. These structures, characteristic of nematode nervous systems, contain only

cell bodies of the neurons with their axonal and dendritic processes located outside of the

bundles [127]. The somatic nervous system comprises nine such spatially localized clusters,

viz., anterior, dorsal, lateral, ventral, retrovesicular, posterolateral, preanal, dorsorectal

and lumbar ganglia, with the remainder belonging to the ventral cord. Comparison of the

distributions of intra-ganglionic lineage distances (i.e., between pairs of neurons located in
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the same ganglion) with that of inter-ganglionic lineage distances (i.e., between neurons

in different ganglia) provides an insight into how these bundles can be interpreted from a

developmental perspective.

We first note that the mean of the lineage distances �l� within a given ganglia are

typically much smaller than those between different ganglia. Moreover, as seen from

Fig. 2.3 (A), the mean of the intra-ganglionic lineage distances for most ganglia are signifi-

cantly small, which we determine by comparing with values of �l� obtained from ensembles

of 103 surrogate lineage trees where the identity of each of the leaf nodes (i.e., the differenti-

ated neurons) has been randomly permuted. This randomization decouples the ganglionic

membership of the neurons from their position on the lineage tree while keeping the lineage

distances between cells invariant, consistent with our null hypothesis that the ganglion to

which a neuron belongs is independent of its developmental history. The observed mean

intra-ganglionic lineage distances deviate markedly from those obtained from the surro-

gate trees (as measured by z-score, see Methods), indicating that neurons in a ganglion

are much more closely related to each other than expected by chance. We note however

that, the Posterolateral (G6) and Lumbar (G9) ganglia are exceptions to the rule, in that

they do not exhibit a significantly negative z-score like the other ganglia.

However, when we consider the coefficient of variation (CV ), a relative measure of the

dispersion in the lineage distances within a ganglion or between two ganglia, we note that

this is almost always greater for intra-ganglionic, compared to the inter-ganglionic, lineage

distances [Fig. 2.3 (B)]. We can again establish the statistical significance by measuring the

same quantities for the ensemble of surrogate lineage trees mentioned above and quantifying

the difference between the actual tree and the randomized ensemble using z-scores. The

large values of z for CV in most of the diagonal blocks (corresponding to intra-ganglion

dispersion) shown in Fig. 2.3 (B), suggests that the relatedness between neurons in a

ganglion shows a much larger variability than expected by chance.
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Figure 2.3: Lineage distance reveals developmental patterns of ganglia. (A-B) Sta-
tistically significant features of the distribution of intra and inter-ganglionic lineage distances,
quantified by deviations of the mean �l� (A) and coefficient of variation CV (B), from a surrogate
ensemble of randomized lineage trees of neurons in the C. elegans somatic nervous system. These
deviations (measured by z-score) show that the mean intra-ganglionic lineage distances (repre-
sented by diagonal blocks of the matrix) are significantly lower than that of the inter-ganglionic
lineage distances (off-diagonal blocks), with the exception of G6 and G9. By contrast, CV for the
intra-ganglionic lineage distances are significantly higher than that of the inter-ganglionic lineage
distances. (C-E) Developmental chrono-dendrograms for three representative ganglia (viz., G1,
G4 and G5) show that each comprises multiple localized clusters of neurons occurring at different
locations on the developmental lineage tree, explaining the statistically significant deviations
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Figure 2.3 (previous page): of the mean and CV for intra-ganglionic lineage distances. Colored
nodes represent neurons belonging to the specified ganglion while gray nodes show the other
neurons. Branching lines trace all cell divisions starting from the single cell zygote (located at
the origin) and terminating at each differentiated neuron. The time and rung of each cell division
is indicated by its position along the vertical and radial axis respectively. The entire time period is
divided into four stages, viz., Embryo (indicated as E), L1, L2 and L3. A planar projection at the
base of each cylinder shows the rung (concentric circles) of each progenitor cell and differentiated
neuron. (F-H) The probability distribution functions for the intra-ganglionic lineage distances
show bimodality (unlike that of the inter-ganglionic distances), which is consistent with the
segregation of a ganglion into multiple clusters along the chrono-dendrogram. The different
ganglia are indicated by symbols G1-G9 (1: Anterior, 2: Dorsal, 3: Lateral, 4: Ventral, 5:
Retrovesicular, 6: Posterolateral, 7: Preanal, 8: Dorsorectal and 9: Lumbar) and the Ventral
cord as G10.

The apparent contradiction between the results mentioned above, viz., that a majority

of the neurons in a ganglion have a shared lineage while, at the same time, exhibit a high

degree of diversity in their lineage relations, is easily resolved on inspecting the chrono-

dendrograms that visually represent the complete developmental trajectory for each of

the ganglia [shown in Fig. 2.3 (C-E), for the anterior, ventral and retrovesicular ganglia;

see Appendix A, Figures A7-A9 for the others]. While the lineage tree shown in each of

these figures is, of course, identical, the neurons that belong to a particular ganglion are

distinguished (by color) in the corresponding chrono-dendrogram, allowing us to note at

a glance how all the members of the given ganglion relate to each other. We note that

the differentiated neurons that constitute a ganglion are typically organized into multiple

clusters, each of which are highly localized on the lineage tree. In other words, a ganglion

comprises several ‘families’ of neurons emanating from different branches of the tree, with

each family composed of closely related cells sharing a last common ancestor separated

from them by only a few cell divisions.

The grouping of the cells belonging to a particular ganglion into distinct clusters, which

are widely separated on the lineage tree, is reflected in the bimodal nature of the distri-

bution of intra-ganglionic lineage distances [Fig. 2.3 (F-H)]. In contrast to the unimodal

distribution seen for inter-ganglionic lineage distances, the neurons within a ganglion could

either have (i) extremely low distances to cells which belong to their own ‘family’ or (ii)
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large distances to cells belonging to the other ‘families’ that constitute the ganglion. These

manifest, respectively, as a smaller peak at lower values and a larger peak at higher values

of l seen in Fig. 2.3 (F-H). The bimodality gives rise to a large dispersion and hence a value

for the CV of lineage distances that is higher than expected. Note that the peak at higher

l for this distribution almost coincides with the peak of the inter-ganglionic l distribution,

which is expected as the latter is dominated by cells that are not closely related. Thus, the

presence of the second peak at lower values of l in the intra-ganglionic distribution reduces

the mean lineage distance for cells within a ganglion, compared to that for cells belonging

to different ganglia. Conversely, the absence of multiple peaks in the inter-ganglionic distri-

bution provides for a smaller value of the CV compared to the case for the intra-ganglionic

distribution. Thus, these results explain the apparently contradictory coexistence of low

mean value and high CV for lineage distances of neurons within a ganglion, which is related

to the localization of the developmental trajectories of cells belonging to it into distinct

groups visible in the lineage tree. This clearly demonstrates that the spatial segregation

of neurons into ganglia is shaped by the relations between the constituent cells which arise

from their shared developmental history.

Birth time and lineage relation together constrain the physical distance be-

tween cell bodies of connected neurons

Having considered the distribution of physical distance, lineage distance and birth-time

differences between all neuronal pairs in the somatic nervous system, we now focus on

the subset of connected pairs to see how the above factors may constrain the probability

that a neuron has a direct interaction with another. Fig. 2.4 shows the inter-relations

between similarity of ancestry, spatial separation and birth times for each pair of neurons

that are linked either by synapses (top row) or gap junctions (bottom row). The clustering

of mean birth times of the connected pairs into three distinct groups (seen in panels A-B

and E-F) is a consequence of the two bursts of neuronal differentiation widely separated

in time [seen in Fig. 2.2 (B)]. Thus, the lower and upper clusters correspond to connected
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neurons both of which appear in the course of the same developmental burst (early and

late, respectively), while connections between neurons that arose during different bursts

populate the intermediate cluster.

In Fig. 2.2 (F) we had already seen that closely related neurons tend to have similar

birth times. This helps explain why, as seen in Fig. 2.4 (B), whenever synaptically con-

nected neurons have short lineage distance to each other, they also happen to belong to

the same developmental burst epoch. However, apart from the relative differences in the

birth times, the actual time of differentiation also determines the occurrence of a synapse

between neurons. Indeed, it is known from Ref. [83] that about 68% of long-range synaptic

connections occur between neurons both of which are born in the early burst of neuronal

differentiation. This is complemented by Fig. 2.4 (A) which shows that synapses between

neurons, whose cell bodies are separated by large distances, mostly occur when at least one

of the neurons was born early. Conversely, when both neurons are born in the late burst,

such long-range links become extremely unlikely. Indeed, the distribution of distances be-

tween cell bodies of connected neurons (see Appendix A, Figure A10, that compares the

empirical data with degree-preserved randomized networks where the connections are made

according to constraints imposed by the length of processes of each neuron) show that long-

range connections in the nematode typically do not occur significantly more often than that

expected by chance, given the process lengths of the neurons. Thus, specific mechanisms

for explaining the occurrence of such connections maybe unnecessary given that en pas-

sant synaptic contacts form between neighboring parallel neuronal processes. In contrast,

short range connections are much more numerous than that seen in the random surrogate

networks. This suggests that active processes may be driving synaptogenesis [71, 72] be-

tween neurons lying in close proximity, for example, chemoattractant diffusion [128, 58, 60].

Furthermore, the exceptional feature of early pre-synaptic neurons having long-range con-

nections to late post-synaptic neurons much more often than is expected by chance could

suggest a possible role of fasciculation in this process [48]. For instance, late-born neurons

could be following the extended processes of earlier neurons to connect to cell bodies placed

far away.
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Figure 2.4: Birth times and lineage distances constrain connections between neu-
rons whose cell bodies are spatially distant from each other. (A-B) The mean birth
time of synaptically connected pairs of neurons exhibit a trimodal distribution, with connections
clustering into three temporal groups corresponding to those (i) between neurons that are both
born early, i.e., in the embryonic stage, (ii) between one born early and the other born late (i.e.,
in the post-embryonic stage), and (iii) between neurons that are both born late. The hatching
time ht separating the embryonic from other developmental stages is indicated by the broken line.
We note from panel (A) that when both neurons are born late (corresponding to the uppermost
cluster of connections), synaptic connections are more likely to occur between neurons whose cell
bodies are located close to each other. (C-D) Synaptic connections between neurons that are
closely related to each other in terms of lineage (l < 10) occur almost always when their cell bod-
ies are in proximity, regardless of the time of birth of the neurons. We note that this restriction
is more pronounced than observed in Fig. 2.2 (E), where P (D, l) shows a prominent peak at the
lower end of D for small l suggesting that most closely related neurons (whether connected or
not) typically have short distances between their cell bodies. (E-H) Neurons connected by gap
junctions show patterns similar to those seen in the case of synaptic connections.

51



In Fig. 2.4 (C) and (D) we compare explicitly the pre- and post-hatching scenarios

in order to see whether early and late-born neurons differ in terms of how the synaptic

connections between them are influenced by the lineage and/or physical distances between

them. We note that for both groups of cells, closely related neurons that are connected

by synapse also happen to occur at spatially proximate locations. This is consistent with

Fig. 2.2 (E) where the peak in the joint probability distribution of all neuronal pairs with

lineage distance l and physical distance D is observed to occur at low D when l is small.

Qualitatively similar results are observed when we consider neuronal pairs connected by

gap junctions [see panels E-H of Fig. 2.4].

The results reported above provide remarkable evidence for the role that developmental

attributes (viz., lineage distances and birth-times of neurons) play in shaping the spatial

organization of cell bodies and the topological structure of the connections in the somatic

nervous system of the worm. However, the process length homophily described earlier

appears to be independent and cannot be explained as a consequence of lineage homophily.

The chrono-dendrograms (see Appendix A, Figure A11) showing the positions of neurons

with short, medium and long processes, respectively, on the lineage tree indicate that

neurons having a particular process length do not cluster together. This suggests that

neurons with extremely similar lineage may have very different process lengths (and vice

versa), so that the observed bias in the connection probability between neurons having

processes of similar length cannot simply be attributed to a common lineage.

Bilateral symmetric pairing homophily

The major fraction (≈ 66%) of neurons belonging to the somatic nervous system of C.

elegans occur in pairs. These are located along the left and right sides of the body of the

nematode in a bilaterally symmetric fashion. While there are instances of bilaterally sym-

metric neurons exhibiting functional lateralization (e.g., ASEL/R, see Ref. [129]), the vast

majority of the left/right members of such pairs remain in the symmetrical “ground state”,

i.e., they are indistinguishable functionally, as well as, in terms of anatomical features and
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gene expression [130].
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Figure 2.5: Symmetrically paired neurons have a high probability of being connected
and also exhibit strong association in their birth times and spatial positions. (A)
Bilaterally symmetric neurons that are positioned on the left and right of the body axis of the
organism tend to have a much higher probability of synaptic, as well as, gap junctional connections
between them, compared to that for all pairs of neurons. In addition, the synapses are highly
likely to be reciprocal (bidirectional). (B) The distribution of lineage distances between paired
neurons show that the mean value is lower than that for all neurons. We note that almost all
lineage distances between symmetric neurons are odd-valued suggesting that they occur at the
same rung of the lineage tree. (C-D) Symmetrically paired neurons have cell bodies located in
physical proximity of each other (C) and are born close in time as indicated by low birth-time
differences Δtb (D), compared to all pairs of neurons.

In particular, whenever one member of a bilaterally symmetric pair occurs in any of

the known functional circuits obtained through behavioral assays [131, 132, 133] (discussed

later), the other also appears in it without exception. While it is known that this symmetric

nature is manifested in the spatial arrangement (e.g., location of the cell bodies) and

connection structure of paired neurons, here we ask whether bilaterally symmetric neurons

share a similar network neighborhood, i.e., whether there is a high degree of overlap between
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the neurons that each of them connect to, or indeed whether they have a significantly

higher probability of being connected to each other. The latter assumes importance in

view of the fact that it is the direct contact between the paired cells AWCL/R that trigger

asymmetrical gene expression resulting in differential expression of olfactory-type G-protein

coupled receptors in the neurons [134].

Fig. 2.5 (A) shows that indeed the left/right members of a symmetric pair have a much

higher probability of connection between them than any two arbitrarily chosen neurons

belonging to the somatic system. Moreover, 25% of the bilaterally symmetric pairs have

reciprocal synaptic connections with each other, compared to less than 2% of all neuronal

pairs being connected in such a bidirectional manner. We can further distinguish the sym-

metric neuron pairs into those which originate from an early division across left/right axis

of the common ABp blastomere (i.e., they have similar lineage differing only in the early cell

division event ABpl/r) and those where members of a pair originate from non-symmetric

blastomeres (e.g., ABal and ABpr) [129]. These two distinct origins of the bilaterally sym-

metric neurons are reflected in the two peaks of the distribution of lineage distance between

the left/right members of each pair seen in Fig. 2.5 (B), with only the latter category of

paired neurons that do not share a bilaterally symmetric lineage history having low values

of l. The synaptic connection probability between the members of pairs belonging to these

two classes differ only by a small amount (0.34 for the former and 0.35 for the latter,

with the corresponding numbers reducing to 0.13 and 0.24, respectively, when we consider

reciprocal synapses). The occurrence of gap junctions between bilaterally symmetric neu-

rons is seen to be exceptionally high (47.8% of such pairs being connected) compared to

that for the entire system, with no distinction in numbers being observed between the

two categories of symmetric pairs. This preponderance of gap-junctional connections be-

tween bilaterally symmetric neurons (also indicated by the band diagonal structure of the

connectivity matrix shown in panel (B) of Fig. 2.1) suggests that their activity is highly

coordinated. This may possibly explain the co-occurrence of both members of a symmetric

pair in the different functional circuits.

In addition to exhibiting a high probability of being connected directly, bilaterally
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symmetric neurons are also characterized by a high degree of neighborhood similarity.

Figure A12 in Appendix A shows the magnitude of overlap between the neurons that each

member of a pair is connected by a synapse (either pre- or post-synaptically) or a gap

junction, which is seen to be much higher than that for any two arbitrarily chosen neurons.

This is consistent with the left/right neurons in the majority of bilaterally symmetric

pairs having an identical role in terms of the mesoscopic organization of the network (see

discussion related to mesoscopic functional roles). The large number of neighbors that

paired neurons share in common is a striking feature that cannot be explained from their

physical proximity alone.

We note that almost all lineage distances between symmetric neurons are odd-valued

suggesting that they are born at the same rung of the lineage tree. The only exception is the

pair AVFL/R, whose members have distinct non-symmetric lineage history, with a lineage

distance of 8. Given their shared lineage, it is perhaps unsurprising that most bilaterally

symmetric paired neurons also exhibit strong associations in their physical locations and

birth times. Panels (C-D) show that a large fraction of the left/right members have cell

bodies that are located in close physical proximity of each other (C) and are also born

close in time as indicated by low birth-time differences Δtb (D), compared to all pairs of

somatic neurons. Indeed we note that the only exception is the late-born pair SDQL/R

with bilaterally symmetric history whose members are located in the anterior and posterior

(respectively) parts of the organism, the physical distance between the cell bodies being

0.5 mm.

Relative importance of the different types of homophily in determining the

network connectivity

We have demonstrated here the existence of four different types of homophily, i.e., prefer-

ence of neurons to connect to other neurons having identical or similar attribute(s). We

identify these attributes to be (i) process length, (ii) birth cohort, (iii) shared lineage and

(iv) bilateral symmetric pairing. While (i) and (ii) are properties characterizing individual
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cells that allow neurons to be classified into distinct categories, (iii) is measured in terms

of the lineage distance between two neurons and is, hence, an attribute of a pair, as is

(iv). Thus, in order to quantitatively demonstrate homophily for these four attributes,

we have had to use different measures, viz., modularity Q in connections between neurons

belonging to the same (as opposed to different) categories for (i) and (ii), correlation be-

tween connection probabilities and lineage distances for (iii) and comparison of connection

probability between symmetrically paired neurons with that for the entire network for (iv).

We have also quantitatively established that these attributes are not dependent on each

other (see below).

We can now ask about the relative contributions of the four attributes in determining

the connectivity of the C. elegans nervous system. While, the lack of a common measure

means that we cannot directly compare numerical values characterizing these attributes,

we can estimate how strongly each of them affect the connection probability by using logis-

tic regression analysis (see Methods). Here, the connection probability P between a pair of

neurons is expressed as a function of four independent predictor variables Xp, Xb, Xl and

Xs corresponding to the four attributes that show homophily. For this, we first establish

that the predictor variables are not correlated by using Belsley collinearity diagnostics [119]

(see Methods). The condition indices for all predictors are less than 5, indicating very weak

dependencies among them. Furthermore, following the logistic regression analysis we ob-

served that the p-values for each of the predictor variables are extremely low (p ∼ 0) which

is indicative of very high significance for the dependence of the connection probability on

all of the predictors. For synaptic connections, the regression coefficients estimated from

the empirical data are βsyn
p = 0.35 (for process length), βsyn

b = 0.71 (for birth cohort),

βsyn
l = −0.06 (for lineage relation) and βsyn

s = 1.78 (for symmetric pairing). Magnitudes

of these coefficients indicate the extent by which connection probability is affected upon

altering the numerical value of the corresponding predictor variable by a single unit (keep-

ing the other predictors unchanged). Thus, symmetric pairing seems to have the strongest

influence in determining the synaptic connection probability. Birth cohort homophily ap-

pears to have the next highest contribution followed by process length. Lineage homophily
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has the weakest contribution, which may be surprising given the almost linear dependence

between lineage distance and connection probability [Fig. 2.2 (D)]. This is possibly related

to the fact that Xl is the only predictor variable whose numerical values are not confined

to be binary but instead ranges between 1 and 25. This suggests that the connection prob-

ability for a pair of neurons having a lineage distance of 2 will not differ much from that

for a pair having lineage distance 3, as compared to, for instance, the difference between

neurons belonging to the same and to different birth cohorts. We note that, increasing

the lineage distance between a pair of neurons by 6 units would have approximately the

same effect on connection probability as the difference in the probability of connections be-

tween neurons belonging to the same process length category and different process length

categories, given that |βp| ≈ 6 × |βl|. Using similar arguments, we can see that increas-

ing lineage distance by 12 units would lead to an approximately equivalent change in the

connection probability as seen between neurons belonging to the same birth cohort and to

different cohorts (|βb| ≈ 12× |βl|). For gap-junctions, the regression coefficients estimated

from the empirical data are βgap
p = 0.22 (for process length), βgap

b = 0.16 (for birth co-

hort), βgap
l = −0.08 (for lineage relation) and βgap

s = 3.22 (for symmetric pairing). Thus,

symmetric pairing and lineage relation have the strongest and weakest contributions, re-

spectively, for this case also. However, unlike synapses, process length homophily has a

larger effect on gap-junction connection probability than birth cohort homophily.

2.3.2 Temporal hierarchy of the appearance of neurons during

development is associated with their functional identity

We have been focusing, so far, on the various properties related to the developmental

history of neurons which govern their spatial organization as well as their inter-connectivity.

The latter, as we have shown above, is guided by several types of homophily, i.e., the

tendency of neurons which are similar in terms of certain features - viz., process length,

lineage, birth-time and bilateral symmetry - to be connected via synapses or gap junctions.

We shall now see how the functional identities of neurons are related to their developmental
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histories. In particular, we show that classes of neurons distinguished by their (i) type

(viz., sensory, motor and interneurons), (ii) functional role in the mesoscopic structural

organization of the network and (iii) membership in distinct functional circuits, strongly

influences the temporal order of their appearance in the developmental chronology of the

nervous system.

Sensory, Inter and Motor neurons

One of the simplest classifications of neurons is according to their position in the hierarchy

along which signals travel in the nervous system. Thus, sensory neurons receive infor-

mation from receptors located on the body surface of the organism and transmit them

onward to interneurons, which allow signals arriving from different parts to be integrated,

with appropriate response being eventually communicated to motor neurons that activate

effectors such as muscle cells. In the mature C. elegans somatic nervous system, the motor

neurons form the majority (106), while sensory (77) and interneurons (83) are comparable

in number. The remaining neurons are polymodal and cannot be uniquely assigned to a

specific functional type. In Fig. 2.6 (A) we show how the sub-populations corresponding

to each of the distinct types evolve over the course of development of the organism.

We immediately note that while the bulk of the sensory and interneurons differenti-

ate early, i.e., in the embryonic stage, followed by a more gradual appearance of the few

remaining ones in the larval stages, more than half of the motor neurons appear much

later after hatching. Moreover, of the 48 motor neurons which appear early, approximately

half (23) belong to the nerve ring while the rest are in the ventral cord, where they al-

most exclusively innervate dorsal muscles (the positions of neurons, classified according

to function type and birth time, is shown in Appendix A, Figure A13). On the other

hand, the 58 late-born motor neurons primarily belong to the ventral cord (with only 4

appearing in the nerve ring). In addition, the majority of them (41) innervate ventral body

muscles (see Appendix A, Table A4 for details). The few (11) late-born motor neurons

that do innervate dorsal muscles differ from the early-born ones in that they do not have
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Figure 2.6: Developmental histories of neurons show a bifurcation into early and
late branches, with a predominance of motor neurons in the latter. (A) Bulk of the
sensory and interneurons appear early, i.e., during the embryonic stage, while a large fraction of
motor neurons differentiate much later (L2 or L3) during development. (B) Planar projections
of a three-dimensional representation of the developmental history of the entire somatic nervous
system of C. elegans. Different colors and symbols have been used to denote distinct neuron
types (viz., sensory, motor and interneurons). The projection on the top surface shows the
lineage tree with branching lines connecting the single cell zygote (shown at rung 0) to each of
the differentiated neurons located on their corresponding rungs. At higher rungs (> 11) we see
that the differentiated cells are tightly clustered into two bundles of branches with a predominance
of motor neurons (also seen in the chrono-dendrogram projection shown at the right face of the
base). We note the absence of segregated clusters comprising exclusively the same functional
type of neurons (viz., sensory, motor or inter), suggesting that the progenitor cell can give rise
to neurons of different types. This in turn implies that commitment to a particular neuron
function occurs quite late in the sequence of cell divisions. The projection along the base (left
face) shows trajectories representing the developmental history of each final differentiated neuron,
indicating the time of each cell division starting from the zygote along with the corresponding
rung. For the first few rungs, cell division across different lineages appear to be synchronized and
occur at regular time intervals, which is manifested as an almost linear relation between time
of division and rung. However, between rungs 6-9, we observe a bifurcation of the trajectories
into two clusters widely separated in time. One of these comprises cells which differentiate in the
embryonic stage (termed as the “early branch”) while the other consists of cells that differentiate
much later (“late branch”). This is manifested in a bimodal distribution of birth times for neurons
occurring in rungs ≥ 10. In contrast to the regularly spaced cell divisions in the early branch, the
trajectories belonging to the late branch are widely dispersed, with relatively little correlation
between birth time of neurons and their rungs.
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complementary partners and bring about asymmetric muscle activation [135]. This early

innervation of dorsal muscle but late, larval-stage innervation of ventral muscles could

embody developmental constraints that deserve further exploration in the future.

Having looked at how neurons emerge according to their functional type at different

times and at different locations in the physical space described by the body of the worm, we

now consider the appearance of such neurons in the developmental space defined by lineage

and birth time [Fig. 2.6 (B)]. The projections of the chrono-dendrogram that are shown on

the top and the extreme right surfaces, both correspond to representations of the lineage

tree that are demarcated by rung and birth time, respectively. We note immediately that

the developmental trajectories of the neurons appearing in the late burst of development are

clustered into two distinct branches that originate in an early division across left/right axis

of the common ABp blastomere (i.e., cells in one branch originate from ABpl, while those

in the other emanate from ABpr). Unlike the case seen for neurons belonging to a specific

ganglion, we observe that neurons of the same functional type do not form localized clusters

in the tree that would have suggested a common ancestry. Thus, progenitor cells can give

rise to neurons of each of the different functional types, suggesting that the commitment

to a sensory/motor/interneuron fate happens later in the sequence of divisions during

development.

The projection on the remaining bounding surface (left face of the base) shows the

trajectories followed by cells to their eventual neuronal fate across a space defined by the

rung of the lineage tree along one axis and the time of cell division along the other. These

trace the developmental history of the entire ensemble of neurons comprising the somatic

nervous system. We observe that in the early phase of embryonic stage (corresponding to

rungs ≤ 6) there is a linear relation between the time at which a cell divides and the rung

occupied by the resulting daughter cells. This implies that cell divisions across different

branches of the lineage tree occur at regular time intervals in a synchronized manner.

Following this, we observe that the trajectories bifurcate and cluster into two branches

that are widely separated in time. The ‘early branch’, which results in cells differentiating

to a neuronal fate much before hatching, continues to follow the trend seen in the earlier
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rungs. However, several progenitor cells (that can occur in rungs ranging between 6 and 9)

suspend their division for extremely long times, i.e., until after hatching. These comprise

the ‘late branch’ where the final neuronal cell fate is achieved in the larval stages (L1-L3).

The occurrence of these two branches gives rise to the bimodal distribution of birth-times

shown in Fig. 2.2 (B). In contrast to the regular, synchronized cell divisions across different

lineages seen in the ‘early branch’, the ‘late branch’ exhibits a relative lack of correlation

between rung and birth time, manifested as a wide dispersion of trajectories followed by

individual cells. We note that the majority of differentiated neurons that eventually result

from the late branch are motor neurons, which corresponds to the late increase in the

subpopulation of motor neurons seen in Fig. 2.6 (A). Although there is little information

as to when synapses form, the late appearance of the majority of the motor neurons could

suggest that stimuli from neighboring neurons are playing an important role in shaping

their connectivity in comparison to that of sensory and interneurons that are primarily

guided by molecular cues.

Mesoscopic functional roles

Turning from the intrinsic features of neurons to the properties they acquire as a con-

sequence of the network connection topology, we observe that it has been already noted

that neurons that have a large number of connections are born early [83],[26]. This could

possibly arise as a result of the longer time available prior to maturation of the organism

for connections between these early born neurons to be formed with other neurons, includ-

ing those that differentiate much later. However, as many neurons which have relatively

fewer connections are also born in the early stage, there does not seem to be a simple

relation between the degree of a neuron and its place in the developmental chronology. To

explore in more depth how the connectivity of a neuron is related to the temporal order of

their appearance, we therefore consider the role played by it in the mesoscopic structural

organization of the network.

Specifically, we focus on the six previously identified topological modules of the
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Figure 2.7: Neurons functioning as connectors between different network modules
lead in development. (A) Schematic representation of the network of neurons belonging to the
somatic nervous system of Caenorhabditis elegans, indicating the role of each neuron (indicated
by the node size, see legend) in the mesoscopic structural organization of the network. This
organization is manifest in the partitioning of the entire network into six structural modules [82]
which are characterized by relatively dense connections among neurons in each module compared
to the connections between neurons belonging to different modules (node color representing the
identity of a module to which a neuron belongs). Within each module, neurons can be further
distinguished into those which have significantly higher number of connections to neurons within
their own module (hubs) and those which do not (non-hubs). According to their intra- and inter-
modular connectivity, every neuron is then classified into one of seven possible categories (see
Methods), viz. R1: ultra-peripheral (non-hub nodes with all their connections confined to their
own module), R2: peripheral (non-hub nodes with most of their connections occurring within
their module), R3: satellite connectors (non-hub nodes having with many connections to other
modules), R4: kin-less (non-hub nodes with connections distributed uniformly among all mod-
ules), R5: provincial hubs (hub nodes with a large majority of connections within their module),
R6: connector hubs (hub nodes with many connections to other modules) and R7: global hubs
(hub nodes with connections distributed uniformly among all modules). One representative neu-
ron from each of the categories is separately indicated with a label identifying them by name (note
that there are no neurons in the C. elegans somatic nervous system which belong to categories
R4 or R7). Neurons which function as connectors, e.g., RIAL (R6) and RIFL (R3), are seen to
have links to neurons belonging to many different modules (as indicated by the node color of their
network neighborings) while neurons belonging to other categories are connected predominantly
to neurons within their own modules (indicated by their network neighborhood being almost
homogeneous in terms of node color). Neighbors of labeled neurons are either shown clustered
around them (for VA07, PVM, RIFL and DD02) or indicated by a lighter shade of node color
(for RIAL).
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Figure 2.7 (previous page): (B) Distribution of differentiation times of neurons belonging to
the different network functional role categories indicate that the development of those functioning
as connectors and/or hubs (i.e., R3, R5 and R6) lead the other classes of neurons in the embryonic,
as well as, L1 stages. In particular, more than 90% of satellite connectors, provincial hubs and
connector hubs have appeared before hatching, while for the peripheral categories (R1 and R2),
70% or less of their members would have differentiated by that time.

C. elegans neuronal network, which are groups of neurons that have markedly more con-

nections with each other than to neurons belonging to other modules [82]. We classify

all the neurons by identifying their function in terms of linking the elements belonging to

a module, as well as, connecting different modules to each other [117]. This is done by

measuring (i) how significantly well connected a neuron is to other cells in its own mod-

ule by using the within-module degree z-score, and (ii) how dispersed the connections of

a neuron are among the different modules by using the participation coefficient P [136].

Cells are classified as hub or non-hub based on the value of z (see Methods for details).

The hubs can be further classified based on the value of P as (R5) local or provincial hubs,

that have most of their links confined within their own module and (R6) connector hubs,

that have a substantial number of their connections distributed among other modules. The

measured value of P is also used to divide the non-hub neurons into (R1) ultra-peripheral

nodes, which connect only to members of their own module, (R2) peripheral nodes, most

of whose links are restricted within their module and (R3) satellite connectors, that link

to a reasonably high number of neurons outside their module.

Fig. 2.7 (A) shows the roles (indicated by node size) played by each neuron in the

somatic nervous system of C. elegans using a schematic representation of the network. In

principle, while it is also possible to have (R7) global hubs and (R4) kinless nodes, viz.,

hub and non-hub nodes that may connect to other neurons homogeneously, regardless of

their module, none of the neurons appear to play such roles in the network.

Earlier investigation [82] has already established that the connector hubs are crucial in

coordinating most of the vital functions that the C. elegans nervous system has to perform.

Their importance to the network is further reinforced by observing from Fig. 2.7 (B) that
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all but one of the neurons belonging to the R6 category appear early in the embryonic

stage, exception being PVNR, which differentiates in the L3 stage. About 90% of (R3)

satellite connectors and (R5) provincial hubs are differentiated before hatching. By con-

trast, peripheral categories (R1) and (R2) have a much smaller fraction of their members

appear in the early burst of development and have to wait till the L1, L2 or L3 stage

for the development of their full complement. In particular, satellite connectors (R3) in

spite of having relatively lower degrees than (R5) or (R6) hubs, develop at par with the

hubs. Previous studies suggested that hubs, having high degrees, are expected to develop

early [83], but satellite connectors developing as early as hubs suggests that not only the

degree, but also the distribution of the connections of a neuron among the different modules

(quantified by the participation coefficient P ), and thus its functional role in coordinating

activity across different parts of the network, which is an important determinative factor

for its appearance early in the developmental chronology of the nervous system.

Membership in functional circuits

In order to delve deeper into a possible association between the function(s) that a neuron

performs in the mature nervous system and its developmental characteristics, specifically

its place in the temporal sequence of appearance of the neurons, we now focus on several

previously identified functional circuits of C. elegans [131, 132, 133]. These are groups of

neurons which have been identified by behavioral assay of individuals in which the cells have

been removed (e.g., by laser ablation). As their absence results in abnormal or impaired

performance of specific functions, these neurons are believed to be crucial for executing

those functions, viz., (F1) mechanosensation [92, 93, 94], (F2) egg laying [103, 104, 105],

(F3) thermotaxis [106, 107, 108], (F4) chemosensation [95], (F5) feeding [39, 92, 109], (F6)

exploration [39, 92, 109] (F7) tap withdrawal [93, 110], (F8) oxygen sensation [111, 112]

and (F9) carbon dioxide (CO2) sensation [113, 114] Note that several neurons belong to

multiple functional circuits. Fig. 2.8 (A) shows that one can classify these nine functional

circuits into two groups based on whether or not all the constituent neurons of a circuit
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Figure 2.8: The developmental duration of functional circuit neurons are strongly
indicative of their process length and connectivity. (A) Distribution of differentiation
times of neurons that belong to any of nine functional circuits identified from behavioral assays.
Note that the entire complement of neurons belonging to three functional circuits [shown using
solid lines] have differentiated before hatching, while those for others [shown using broken lines]
are completed later. (B) The distribution of neurons having short, medium and long processes
[indicated at left], among the different functional circuits [right]. We note a correlation between
the morphological feature of neurite length and the development time of functional circuit neurons,
viz., those in the circuits completed before hatching predominantly have short processes, while
those in circuits that are completed later mostly have medium to long processes (the exceptions
being thermotaxis and CO2 sensation circuits that comprise a majority of short process neurons).
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Figure 2.8 (previous page): (C) Comparison between the distributions of the number of
incoming and outgoing synaptic connections (kin [top panel] and kout [middle panel], respectively),
as well as, gap junctions (kgap [bottom panel]) of neurons in the entire somatic nervous system
(blue) and of the subset of functional circuit neurons (red). We note that the distribution of
outgoing synaptic connections for the functional circuit neurons is significantly different from that
for the entire network, as indicated by the result of a two-sample Kolmogorov-Smirnov test at 1%
level of significance (hKS = 1), but this is not the case for incoming synaptic connections or gap
junctions (hKS = 0). (D) Dispersion of kin (top panel), kout (middle) and kgap (bottom) for the
functional circuit neurons differentiating at various times is shown in terms of the adjoining box
plots where neurons are clustered into four groups according to the developmental stage during
which they are born, viz., Embryo, L1, L2 or L3. In general, the distributions are far more broad
for the early born neurons (Embryo) compared to those born later (L1-L3). Focusing on the
functional circuit neurons that develop in the embryonic stage, we note that the distribution of
incoming connections is more skewed than that for outgoing connections. The distribution of gap
junctions is even more skewed, with outliers lying very far from the median.

appear during the early burst of development in the embryonic stage. Thus, while circuits

for F4-F6 (shown using solid lines in the figure) have their entire complement of cells

differentiate prior to hatching, circuits for F1-F3 and F8-F9 lag behind (broken lines), with

less than 60% of the egg laying circuit having appeared at the time of hatching. Indeed,

for the entire set of neurons for the latter circuits to emerge one has to wait until the late

L1 (for F8 and F9), L2 (for F2) or L3 (for F1, F3 and F7) stages [note that out of the

16 neurons in the F7 circuit, 15 are common to those belonging in the F1 circuit, making

the former almost a subset of the latter]. While it makes intuitive sense that egg laying

circuit does not have all its components in place by the time of hatching (as the function is

required only in the adult), it may appear surprising that many circuits mediating functions

vital for the survival of the organism (such as mechanosensation, thermotaxis and oxygen

sensation) are not completed at the embryonic stage itself.

However, upon taking a closer look at the late-born neurons belonging to these func-

tional circuits we note that even though these neurons are essential for the normal execution

of the corresponding function, their absence have also been individually shown not to result

in a significant decline in the function. For example, it has been shown that the ablation

of the late born neurons PVDL/R and AVM, which belong to both the tap withdrawal

and mechanosensation circuits, do not significantly impair the response of the worm to a
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tap stimulus [93]. The same is the case for the late born neurons PDEL/R and PVM be-

longing to the mechanosensation circuit, whose removal does not significantly affect touch

response [110]. The late born neurons PLNL/R and SDQL/R in the oxygen sensation cir-

cuit and PQR and AQR belonging to the CO2 sensation circuits have all been identified as

“minor” sensory neurons for the respective gases [98]. It is to be noted that the principal

sensory neurons belonging to both of these circuits appear before the worm hatches. In

the thermotaxis circuit, the ablation of the late born neurons PVDL/R have been shown

not to cause any significant impairment of normal thermotactic behavior [108]. While the

thermosensory neurons PHCL/R at the tail that are also born late are indeed essential

for thermal avoidance behavior [108], the corresponding neurons FLPL/R in the head are

present before hatching ensuring that thermosensory behavior of the worm is not seriously

compromised immediately after hatching. Thus, the apparent paradox of how the worm

manages to survive after hatching even though several of its functionally critical circuits

are not yet complete by that time, is answered by the fact that the role of the late-born

neurons belonging to these circuits is often relatively minor. Possibly the sole exception is

the egg-laying circuit, in which some of the motor neurons (VC1, VC2, VC3, VC4, VC5)

responsible for generating muscle movement appear only after hatching.

An intriguing relation between process lengths of neurons and their occurrence in dif-

ferent functional circuits is suggested by Fig. 2.8 (B), from which we see that circuits which

have their entire complement of neurons differentiate early, viz., F5-F7, are dominated by

neurons having short processes. In contrast, circuits such as F1, F2, F7 and F8 that take

much longer to have all their members appear comprise a large number of neurons with

medium or long processes (the exceptions being circuits F3 and F9 that have predominantly

short neurons). This association between a morphological feature (viz., neurite length) of

a functionally important neuron and its time of appearance suggests a possible connection

with the process length homophily, viz., preferential connection between neurons having

short processes, mentioned earlier. Neurons with short processes that belong to the “early”

functional circuits are mostly chemosensory or interneurons that are all located in the head

region. To perform their task these neurons only need to connect to each other, whose
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cell bodies are mostly in close physical proximity of each other. Moreover, having their

synapses localized within a small region allows them to be activated by neuromodulation

through diffusion of peptides and other molecules [137, 138]. This assumes significance in

light of our observation that process length homophily between short process neurons is

marginally enhanced in the head. The value of Q, a quantitative measure of homophily

introduced earlier, is 0.1 (for synapse, for gap junctions it is 0.13) for early born short

process neurons which have their cell bodies located in the head region. In contrast, when

we consider all short process neurons, Q is 0.067 for synapse and 0.085 for gap junction,

respectively. Thus, the process length homophily we reported earlier could arise in short

process neurons because of functional reasons.

We shall now see how consideration of functional circuits help in obtaining a deeper un-

derstanding of the nuanced relation between the degree of a neuron and the time of its birth

that was discussed above (in the context of mesoscopic functional roles of neurons). As seen

in Fig. 2.8 (C), neurons belonging to the functional circuits show a significantly different

distribution for the number of synaptic connections (both incoming and outgoing) from

that of the entire system, as indicated by the results of two-sample Kolmogorov-Smirnov

test (test statistic hKS = 1) at 1% level of significance. Thus, the set of functionally

critical neurons - which, on average, have a larger number of connections than a typical

neuron in the somatic nervous system - may need to be treated separately from the other

neurons when we examine how synaptic degree correlates with birth time. In contrast,

their gap junctional degree distributions cannot be distinguished from that of all neurons,

as indicated by the result (hKS = 0) for the statistical test of significance.

Considering only the neurons that appear in functional circuits, we observe that most

of the neurons having a large number of synaptic connections (particularly, incoming ones)

do tend to appear early [Fig. 2.8 (D)]. On comparing the distributions of synaptic in-

degree separately for early and late appearing functionally critical neurons (see Appendix

A, Figure A14) we note that their difference is indeed statistically significant. When we

consider the distribution of the synaptic out-degree we see a very different result. The

distributions for the early and late born functionally critical neurons turn out to be sta-
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tistically indistinguishable (despite the appearance of a few extreme outliers such as the

command interneurons AVAL/R. In contrast, the rest of the neurons show a much broader

distribution (statistically distinguishable using a two-sample Kolmogorov-Smirnov test) for

the neurons that are born early, compared to those which are born late. This is consis-

tent with the assumption that pre-synaptic neurons that exist for a longer period during

development, are able to form many more connections than those neurons which appear

later (the latter presumably having less time to form connections before the maturation

of the nervous system). From this perspective, it is thus striking that the late born func-

tionally critical neurons have as many connections as they do (making them statistically

indistinguishable from the early born set), and is possibly related to their inclusion in the

functional circuits.

When we consider the gap-junctional degree distributions, we observe that there is no

statistically significant difference between the distributions for early and late born neurons,

whether they be functionally critical or other neurons. The box plots showing the nature

of the distribution at different developmental stages are all fairly narrow [bottom panel of

Fig. 2.8 (D)], even though the embryonic one shows several outliers with the four farthest

ones being the command interneurons AVAL/R and AVBL/R that appear in four functional

circuits, viz., those of mechanosensation, tap withdrawal, chemosensation and thermotaxis.

These, in fact, correspond to the outlying peaks of the kgap distribution, located on the

extended tail at the right of the bulk [bottom panel of Fig. 2.8 (C)]. Indeed, the outliers in

each of the distributions (for kin, kout and kgap), that appear only at the embryonic stage,

almost always happen to be command interneurons. Of these, AVAL/R are common

across the distributions and the fact that they occur in four of the known functional

circuits underlines the relation between function, connectivity and the temporal order of

appearance of neurons that we have sought to establish in this chapter.
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2.4 Discussion

The nervous system, characterized by highly organized patterns of interactions between

neurons and associated cells, is possibly the most complex of all organ systems that is as-

sembled in an animal embryo over the course of development [139]. For this neural network

to be functional, it is vital that the cells are able to form precisely delineated connections

with other cells that will give rise to specific actions. This raises the question of how the

“brain wiring problem” is resolved during the development process of an organism. In

addition to the processes of cellular differentiation, morphogenesis and migration that are

also seen in other tissue, cells in the nervous system are also capable of activity which

modulates the development of the neighboring cells they may interact with. Processes ex-

tending from the neuronal cell bodies are guided towards designated targets by molecular

cues, and the resulting connections are subsequently refined (e.g., by pruning) through the

activity of the cells themselves. In this chapter we have looked at a more abstract level of

guiding principles that can help in connecting the details of cellular wiring at the imple-

mentation level of molecular mechanisms with the final result, viz., the spatial organization

and connection topology of an entire nervous system. Using the relatively simple nervous

system of the model organism Caenorhabditis elegans, whose entire developmental lineage

and connectivity are completely mapped, we have strived to show how development itself

provides constraints for the design of the nervous system.

One of our key findings is that neurons with similar attributes, specifically, (i) the

lengths of the processes extending from the cell body (short/ medium/ long), (ii) the birth

cohort to which they belong (early/ late), (iii) the extent of shared lineage and (iv) bilateral

symmetry pairing (left/ right), exhibit a significant preference for connecting to each other

(homophily). Moreover, each of these are manifested by both the connection topology of

the network of chemical synapses, as well as, that of electrical gap-junctions, despite the

fundamental differences in the nature of these distinct types of links.

We have already discussed earlier a plausible mechanism by which homophily based

on lineage would be observed. As neurons are displaced from their initial locations while
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retaining their connections that have formed already, cells that share common lineage tend

to move apart. An alternative possibility that may explain lineage homophily for synaptic

connections is related to the suggestion that synaptogenesis could be guided by cellular

labels that are specified by a combinatorial code of neural cell adhesion proteins [68]. In

this scenario, cells that are close in terms of their lineage will be likely to share several of

the recognition molecules that will together determine the label code. Thus, if a sufficiently

large number of these determinants match each other, it could promote synapse formation

between such cells, resulting in lineage homophily. We would also like to note that, apart

from playing an important role in determining the topological structure of the synaptic

network, lineage relations between neurons also appear to shape the spatial organization

of neurons by segregating them into different ganglia.

In addition to investigating the probability that a connection will occur between a

pair of neurons during development, our study also considers how the distance between

cell bodies of the neurons thus connected is distributed. Our results suggest that for

synapses, the process length of the pre-synaptic neuron is a decisive factor in determining

the separation that is allowed between the neuronal partners. Birth time also appears to

play a role, particularly, in the case of long-range connections, i.e., between neurons whose

cell bodies are separated by more than two-thirds of the worm body length. Specifically,

such connections occur between pre-synaptic neurons that are born early and post-synaptic

neurons that are born late, much more often than is expected by chance. This suggests the

existence of an active process for the formation of such long-range connections, for example,

using fasciculation as an axon guidance mechanism [39, 48]. The latter involves a few

pioneer neurons with long process lengths acting as supporting pathways that guide axons

of the later developing neurons. This may also underlie a triadic closure-like phenomenon

in the network [123, 140] (viz., two neurons having links to one or more common neighbors

that have an increased likelihood of being connected to each other). Such a process is

known to yield strongly clustered networks with high communication efficiency [141, 142]

and could be responsible for the appearance of the so-called “common neighbor rule” that

has been reported in the C. elegans connectome [143].
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Our results also indicate that the temporal sequence in which neurons appear during

development of the nervous system is linked to their functional identities. The simplest of

these identities is simply the basic functional type of a neuron, viz., whether it is sensory,

motor or interneuron. The neurons belonging to these different types not only differ in

terms of the cells they connect to (for instance, only motor neurons connect to muscles and

sensory neurons are the only ones to receive connections from receptors, while interneurons

connect to all types of neurons) but also in their molecular inventory. While their lineage

does not show any significant differences, the different functional types of neurons do appear

to segregate to a certain extent in terms of their time of appearance. Specifically, we find

that the bulk of neurons that are born in the late, post-embryonic burst of development

are motor neurons. Our results suggest that there may be temporal cues that appear late

in the process of development which are responsible for the specialization of neurons into

different functional types according to their time of birth.

At a higher, mesoscopic level of organization of the network structure, we have con-

sidered the functional role of neurons in coordinating the activity of different topological

modules of the network. We show that this allows us to obtain a much more nuanced

picture of how the number of connections that a neuron has with other neurons, affects

its place in the temporal sequence in which neurons appear during development. Thus,

rather than a simple case of just the degree (the total number of connections) of a neuron

deciding its precedence in the sequence, it is both the hub (provincial, as well as, connector

hubs) and the connector neurons (satellite connectors, in addition to the connector hubs)

that appear early. We also examine in detail the subset of neurons that have been iden-

tified as belonging to one or more functional circuits in the C. elegans. We observe that

membership of a specific functional circuit does determine the order in which these neurons

appear, with certain circuits, such as those responsible for chemosensation, emerging early

(before hatching) while others circuits, such as those for mechanosensation and egg-laying,

appear much later (after hatching). In turn, the time of appearance of functional circuits

determines to an extent the morphological properties, such as the process lengths, of their

constituent neurons.
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The observations reported in this chapter are an attempt at resolving the “wiring prob-

lem” for the C. elegans nervous system by focusing at a level that is intermediate between

the molecular mechanism-level details of developmental processes and the resulting struc-

tural organization of the entire somatic nervous system. Specifically, we have attempted

to uncover general strategic principles governing the design of the neuronal network, which

will allow linking the complicated molecular machinery involved to the equally complicated

spatial and topological description of the nervous system. The next step in this approach

will involve delineating exactly how these governing principles (such as the various types of

homophily) are implemented by molecular mechanisms, and how genetics may be relating

the temporal sequence of appearance of neurons to their functional identities. Experimen-

tal and theoretical progress towards this direction would enable us to achieve a seamless

understanding of nervous system development involving different scales.
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Chapter 3

Mesoscopic architecture enhances

communication across the Macaque

connectome revealing

structure-function correspondence in

the brain

3.1 Introduction

Cortical localization, which refers to specific regions of the cerebral cortex being associated

with distinct functions such as vision and language, has long been a dominant paradigm

in neuroscience [144]. As the connectome provides the physical substrate for cognition

and behavior [145], it would seem intuitive that such localization would be reflected in the

structural attributes of the network [31]. However, brain imaging studies show that a large

number of regions become active during any cognitive task, ruling out a simple one-to-

one correspondence between a certain set of vertices of the connectome and a particular

function [146]. This suggests the necessity for a theoretic framework that investigates
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the dynamics of the brain in terms of how different areas connect and interact with each

other [147]. Such an approach should integrate complementary perspectives that focus

on (a) dynamics, where distributed activation of the entire network converges to different

attractors, and (b) computation, in which localized processing of information occurs in a

sequential manner, allowing us to interpret cognitive processing as dynamical computa-

tion [148].

An integrated view of how local and global coordination of activity across the brain can

arise may be obtained by adopting a mesoscopic approach to analyzing the connectome.

Such an approach focuses on understanding the interactions within and between commu-

nities of densely inter-connected brain areas (modules) that have been identified in nervous

systems of different organisms [11, 12, 13, 14, 15, 16, 17, 18, 19, 149]. Such structural mod-

ularity of the brain is expected from the advantages that such an architecture may confer

during evolution and development [150, 19], such as imparting robustness in the presence of

constraints on wiring and performance [151, 145]. Traditionally, modules have been viewed

in functional terms, associated with innate, domain-specific mental faculties (such as lan-

guage) that are believed to be relatively independent of each other [152]. Examining how

such cognitive modules relate to the structural communities of the connectome addresses

the fundamental issue of structure-function correspondence in the brain [77, 153].

In this chapter, we focus on the structure-function relation as evident in the modular

organization of the Macaque connectome, which balances specialized and integrated pro-

cessing by allowing rapid communication at both local and global scales. This is striking

in view of the role that modularity plays in promoting information encapsulation in other

network architectures [154]. In performing this analysis, we have added curated spatial

and functional information concerning the brain areas to the existing database of brain

connectivity, which can serve as a resource for the community. The modules revealed

by our analysis extends earlier work [12, 16, 149] by including sub-cortical regions. We

show that each module comprises both cortical and sub-cortical components, which is

intriguing in view of the proposal that the thalamo-cortical loop plays a central role in

the computational architecture of the neocortex [155]. More crucially, we show that the
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empirically determined pattern of intra- and inter-modular connectivity facilitates local,

as well as global, dissemination, complementing studies showing that maximizing infor-

mation flow may cause model networks to evolve towards a modular structure [156, 157].

Furthermore, while it has been suggested earlier that physical space constraints cannot

exclusively account for modules [14, 50, 158], our determination of the space-independent

modules and their relatively high overlap with the original communities clearly indicate

that the modularity of the Macaque brain has functional significance, viz., the facilitation

of communication across the connectome.

3.2 Materials and Methods

Data

Connectivity. We have used as the basis for reconstructing the Macaque connectome a di-

rected network of brain regions (cortical and sub-cortical) that was compiled in Ref. [159]

using several hundred tract tracing studies obtained from CoCoMac - a comprehensive

neuroinformatics database [160, 161, 162]. The original network comprised 383 vertices,

representing regions in the cortex, basal ganglia and thalamus, at different levels of spa-

tial resolution, and 6602 directed edges corresponding to tracts, i.e., myelinated bundles of

axons connecting different brain regions, which may span large distances. In this hierarchi-

cally organized arrangement of subdivisions starting from the level of the entire brain, the

same region may occur multiple times as a vertex could represent an area that is part of a

larger area corresponding to a different vertex. For example, the hippocampus is a vertex

of the network, as are its subdivisions CA1, CA3 and Dentate Gyrus. Consequently, there

is no unique mapping between brain regions and vertices of this network. It also leads to

ambiguity in interpreting edges connecting vertices that occur at any of the levels other

than the lowest one in the hierarchy. For instance, if both vertices A and B link to C, but

B is a sub-division of A, it is unclear if the two edges are distinct. These issues make it

difficult to interpret any results obtained by analyzing the original network.

In the connectome we consider here, these issues are avoided by considering only those
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nodes that occur at the lowest hierarchical level, i.e., corresponding to regions with no

further sub-divisions, in the original network. This yields a network comprising 266 nodes,

representing brain areas that span a range of spatial scales ranging from the visual cortex

area V1 (which has a volume of ∼ 2000 mm3) to the thalamic region PT#2 (which has

a volume of less than 2 mm3). The network that we consider, consequently, consists of

the 2602 directed links that occur between these nodes. Note that this procedure leads

to the network having a largest connected component of 261 nodes (as the following five

regions do not have any reported connections to the other areas at the lowest hierarchi-

cal level: PT#2, 6b-beta, 4a, 4b and Sub.Th). Despite the reduction in the size of the

network upon removal of the aforementioned redundancies, the resulting connectome has

similar macroscopic properties as the original network, such as the exponential nature of

the degree distribution (Fig. S1).

Spatial Positions. As the brain connectome is a spatially embedded network, it is impor-

tant to consider geometric information such as physical locations and extent of the different

brain regions, in addition to the connection topology. As the original network [159] did

not contain any spatial information, we have compiled a comprehensive database of the

positions of the areas corresponding to each of the nodes, as well as, the volumes spanned

by them. We have obtained the stereotaxic coordinates of each brain region in our con-

nectome from several sources. Information about 134 of the 266 regions included in the

connectome has been obtained from the website [163] associated with the Paxinos Rhesus

Monkey Atlas [164]. For the remaining regions, we manually curated the requisite data

from the relevant research literature. The position of a region is identified with the ap-

proximate location of its center obtained from the online three-dimensional visualization

platform in the website mentioned above. The volume spanned by a particular region was

estimated by approximating the cross-sectional area occupied by the region in each of the

coronal sections of the brain in which it appears and obtaining the sum of these areas

weighted by the thickness of the sections measured along the rostral-caudal axis.
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Modularity

A prominent mesoscopic structural property associated with many networks that occur in

nature is modular organization. Modules (or communities) are subnetworks that are char-

acterized by a higher density of connections between the constituent nodes compared to

that between nodes belonging to different modules [115]. One of the most well-known ap-

proaches for determining the modules of a network is to maximize a quantitative measure,

Q, defined for a given modular partitioning of the network as, Q = L−1Σi,jBijδcicj , where

Bij = Aij − (kin
i k

out
j /L) are elements of the modularity matrix B [165, 9]. The adjacency

matrix A (Aij = 1, if a directed link exists from j to i, and 0, otherwise) specifies the con-

nection topology of the network, while the number of incoming and outgoing connections

of node i are indicated by the in-degree kini = ΣjAij and out-degree kout
i = ΣjAji, respec-

tively, with L (= Σjk
in
j = Σjk

out
j ) being the total number of connections in the network.

The Kronecker delta function δij yields 1 if the communities ci and cj to which nodes i

and j belong respectively, are identical, and is 0 otherwise.

Spectral analysis and its refinement. In order to achieve an optimal partitioning of the

network through the maximization of Q we have used the spectral method [9]. Here, we

first bisect the network by assigning nodes to one of two communities according to the sign

of the elements of the eigenvector corresponding to the largest positive eigenvalue of the

symmetrized modularity matrix B+BT. Subsequently we refine the partition by swapping

the nodes between communities in order to achieve the highest possible value of Q. The

above procedure is carried out recursively on each of the communities to further subdivide

them until Q cannot be increased further [9]. This approach yields a maximum value of Q

for a partitioning of the network into 5 modules with Qspectral = 0.485.

Robustness of the partitioning. To ensure that the modular partitions of the network

obtained using the deterministic spectral technique (described above) are not sensitively

dependent on the specific method used for maximizing Q, we have used the stochastic

simulated annealing approach to obtain an ensemble of 103 optimal partitions. The dis-
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similarity between the different partitions generated by each realization of the annealing

technique reflects the extent of degeneracy (and hence, ambiguity) inherent in the mod-

ular decomposition of the network. Following Refs. [166, 167], for each realization of the

simulated annealing approach we begin with an arbitrary partition of the network and

iteratively change the modular composition by implementing one of three types of oper-

ations: (i) move a randomly chosen node to any other module including a newly created

one, (ii) merge two randomly chosen modules and (iii) split a randomly chosen module into

two parts so as to minimize the number of connections between the two parts. Any one

of the possible operations (across all types) is chosen at each step with equal probability.

The resulting partition associated with a change ΔQ in the modularity is accepted with a

probability exp(−|ΔQ|/T ) if ΔQ < 0 and p = 1 otherwise. Here, the parameter T , which

is analogous to temperature, is decreased over time according to a specified cooling sched-

ule. The process terminates when the number of successive failures at altering the modules

exceeds a threshold value. While the Q values corresponding to the partitions obtained for

different realization span a wide range, most of them cluster around that obtained from

the spectral method, Qspectral. We focus on the 291 partitions whose Q value deviates

from Qspectral by less than 3%. As shown in Appendix B (see Fig. B3-B4 and Table B1,

Appendix B), the modular membership of 70% of the nodes remain invariant across all

of these partitions, and are in fact identical to that obtained from the spectral method,

underlining the robustness of the modular decomposition. We have also used alternative

methods of module identification that do not rely on maximizing Q, viz., the Infomap

method [168], and have obtained qualitatively similar results (see Fig. B2, Appendix B).

For a detailed comparison of performance between the Newman’s spectral method and the

Infomap method, see Appendix C.

Classification of brain regions according to their role in the mesoscopic struc-

tural organization of the connectome

The importance of a given region within the topological organization of the Macaque brain

network is indicated by its connectivity within its own module (as defined above), as well
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as that across the entire brain, which is evident from its connections to regions belonging

to other modules. These can be quantitatively measured by the metrics (i) the within

module degree z-score (z) and (ii) the participation coefficient (P ), respectively [117, 169].

To identify regions that have significantly more connections within their own module, we

determine a within module degree z-score:

zi =
ki
ci
− �kj

ci
�j∈ci�

�(kj
ci)2�j∈ci − �kj

ci�2j∈ci
, (3.1)

where ki
ci
is the number of links between region i and other regions belonging to its module

(ci) and the average �. . . �j∈c is taken over all regions in a module c. As in Ref. [14], nodes

(regions) having z > 0.7 are identified as hubs, the remainder being classified as non-hubs.

In order to distinguish between brain regions in terms of their inter-modular connec-

tivity we calculate the participation coefficient Pi of region i as:

Pi = 1−
m�

c=1

�
ki
c

ki

�2

, (3.2)

where ki
c is number of links that region i has with those regions belonging to module c and

ki =
�

c k
i
c is the total degree of the i-th node (region). A region whose connections are

restricted within its own module has Pi = 0 while one whose links are uniformly distributed

among the different modules has Pi closer to 1. Based upon the value of Pi, which provides

a measure of how well a node (region) bridges different modules, the non-hub regions are

classified as ultra-peripheral (R1, p ≤ 0.05), peripheral (R2, 0.05 < p ≤ 0.62), satellite

connectors (R3, 0.62 < p ≤ 0.8) and kinless nodes (R4, p > 0.8), while the hubs can be

demarcated into provincial hubs (R5, p ≤ 0.3), connector hubs (R6, 0.3 < p ≤ 0.75) and

global hubs (R7, p > 0.75).

Degree- and modularity-preserved network randomization

We construct an ensemble of 103 networks obtained by randomizing the empirical network

preserving the in-degree and out-degree of each node (region) as well as the modular orga-
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nization of the network [14]. Each network is obtained by selecting directed connections,

e.g., i → p and j → q, such that the source nodes i, j belong to the same module A and

target nodes p, q belong to the same module B (which could be same as A), and then

rewire them so as to have i → q and j → p. This procedure is repeated for 106 times

for each realization of a randomized network. To randomize the network preserving the

degree alone, we follow the same procedure as above with the difference that there is no

constraint on the modular membership of the nodes.

Diffusive spreading model

As the function of the connectome is to facilitate communication between the different

brain regions, we investigate the role of the empirically observed pattern of intra- and inter-

modular connections on the diffusion of information across the system. For this purpose, we

consider discrete random walks that, starting from a given node on the network, proceeds

at each time step from one node to a randomly chosen node that receives an outwardly

directed link from the former. The rate at which spreading occurs in different parts of

the system can be analyzed by obtaining the distribution of first passage times (FPTs)

for a random walk to reach a target node starting from a source node. For this, we have

measured the FPTs τ to all nodes that are visited by a walk initiated from a given node of

the network. The process is repeated 103 times starting from each of the 266 nodes, with

a walk terminating when either every node has been visited at least once or a node with

no outgoing connections is reached. Separate distributions for intra-modular FPTs (τ intra)

and inter-modular FPTs (τ inter) can be obtained by considering the source and target

nodes to be in the same module or in different modules, respectively. For comparison,

we also compute the distributions of FPTs τD and τDM for randomized surrogates in

which either the degrees, or both the degrees and modular memberships, of the nodes

are preserved, respectively. In each case, the distribution is averaged over 20 network

realizations. The deviation of the empirical FPT distribution from those obtained from

the randomized surrogates by averaging over multiple realizations is quantified in terms of
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a z-score measure defined as:

z =
Pemp(τ)− �Prand(τ)�

�Prand(τ)2� − �Prand(τ)�2
, (3.3)

where Pemp(τ) and Prand(τ) are the empirical and randomized surrogate FPT distributions,

respectively.

Role of spatial geometry in the modular organization of the connectome

The physical distance dij between two brain regions i and j, whose centers are indicated

by the vectors x and y, respectively, has been measured in terms of the Euclidean metric

d(x,y) and scaled by the geometric mean of the radii ri, rj of the two regions (the radius

of each region being estimated from the its volume, see Appendix B).

Space-independent partitioning of the network into communities. For networks whose nodes

are embedded in a space associated with a metric, it can be argued that the network

properties, such as modularity, could be a consequence of the constraints imposed by the

underlying geometry. We therefore need to modify the method for determining the mod-

ular structure of a network outlined above, in order to take into account the role of the

physical space in which the network is embedded. This is done by re-defining the modu-

larity matrix B in the definition of the quantity Q (given above), so that the expectation

of a pair of nodes (i, j, say) being connected by chance in the null model incorporates

the physical distance (dij) between the nodes. Thus, following Ref. [170], we re-define

Bij = Aij − (kin
i k

out
j f(dij)/L), where f(d) = Σdij=dAij/(k

in
i kout

j ) is referred to as the de-

terrence function. This function, which is estimated from empirical data for the network,

contains information about how the physical distance between a pair of nodes modulates

their connection probability. Note that if the communities in the network arise entirely

because of spatial dependence, measuring Q taking into account the physical distance

between nodes does not yield any modular structure. Moreover, comparing the space-

independent modular decomposition of the network obtained using this technique with the
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communities determined using exclusively information about the connection topology (as

described earlier), we can infer whether the observed modularity is primarily driven by

physical distance constraints (see Appendix B). The similarity between the communities

obtained using the two methods is quantified using normalized mutual information.

Normalized mutual information. To quantify the similarity between two modular decom-

positions {cAi }MA
i=1 and {cBj }MB

j=1 resulting from different partitionings A and B of a network

(that yield MA and MB modules, respectively) we have used the normalized mutual infor-

mation [171]

Inorm(A,B) =
2
�

i

�
j P (cAi , c

B
j ) ln[P (cAi , c

B
j )/P (cAi )P (cBj )]

−�
i P (cAi ) lnP (cAi )−

�
j P (cBj ) lnP (cBj )

, (3.4)

where P (cAi ) is the probability that a randomly chosen node lies in module cAi in partition

A, P (cBj ) is the probability that a randomly chosen node lies in module module cBj in

partition B, and P (cAi , c
B
j ) is the joint probability that a randomly chosen node belongs

to module cAi in partition A, as well as, to module cBj in partition B (i = 1, . . . ,MA, and

j = 1, . . . ,MB). Each of the probabilities can be estimated from the ratio of the commu-

nity sizes to the size of the entire network.

Surrogate networks. In order to explicitly show that the modular organization is not

primarily driven by the constraints imposed by the physical distance d between brain

regions, we have demonstrated how spatial embedding affects the modular decomposition

of a network, using three classes of surrogate random network ensembles (of size 100 each)

having different underlying spatial dependences. The three ensembles, in increasing order

of importance of d in governing the connection probability P between nodes, comprise

networks with (a) P ∼ d0, (b) P ∼ d−1, which is the case in the empirical network, and

(c) P ∼ exp(−d), with nodes in each network occupying the same spatial position as

in the empirical network. Each network (comprising an identical number of nodes and

links as in the empirical network) was subject to community detection using information
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about the connection topology alone, as well as, space-independent modular decomposition,

following the two approaches described above. The difference between these two sets of

partitions provides a measure of the role that spatial embeddedness of the networks plays

in determining the modular nature of their connectivity (see Appendix B).

3.3 Results

3.3.1 Mesoscopic organization of brain areas in the Macaque

Fig. 3.1 (a-c) shows the modular organization of the Macaque brain network spanning

regions from the cortex, basal ganglia and thalamus, revealed by our analysis (for details

see Methods). The network is seen to comprise 5 modules, each module i being composed

of mi densely inter-connected brain regions (their numbers ranging between 39 and 71,

see the color key to the right of Fig. 3.1, a-c, containing the list of brain regions in each

module). The membership of the individual regions in these modules is seen to be robust

(see Methods). Given that the network is embedded in a specific geometry, namely that

of the Macaque brain, it is noteworthy that each of the modules are spatially clustered as

is clearly seen from the projections shown in Fig. 3.1(a-c). To understand the implications

of the spatial location of these modules, we visually represent the mapping between the

modules and the major anatomical subdivisions of the brain in Fig. 3.1 (d) [see also Table

B2, Appendix B].

We observe that every module comprises sizable number of both cortical and sub-

cortical regions. With the exception of #3, the modules have their sub-cortical compo-

nents located almost exclusively in the Thalamus. We note that each of these modules

are associated with different sensory modalities (discussed in detail later), consistent with

one of the primary functions of the Thalamus, namely, relaying information from the sen-

sory organs to cortical areas for further processing. As the Thalamus is also involved

in sleep-wake regulation coordinated via extensive reciprocal connections with the cor-

tex [172, 173, 174], it is reasonable to expect that the each of the network modules will
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have thalamic components along with cortical ones, with dense intra-modular connectivity

representing thalamo-cortico-thalamic circuits [175, 176]. However, none of the sub-cortical

components of module #3 (displayed in green in Fig. 3.1) belong to the Thalamus and in-

stead constitutes almost the entirety of the Basal Ganglia.

The locations of the cortical components of the different modules across the princi-

pal lobes of the cortex, viz., frontal, temporal, parietal and occipital, are indicated in

Fig. 3.1 (d). We observe that there is no simple correspondence between the modules,

which are topological partitions of the connectome, and the gross anatomical subdivisions

of the cortex. While the regions comprising the frontal and temporal lobes are split be-

tween several modules, those in the parietal and occipital are dominated by single modules

(modules #2 and #5, respectively), indicating the relative homogeneity of the latter lobes

in the mesoscopic organization of the network. This assumes importance in light of a pos-

sible connection between the modular divisions and functional specialization in the brain

- a point that we discuss below.

As mentioned in the Introduction, the term module has been primarily used in the

neuroscience literature to refer to a functionally integrated set of areas [178, 179, 180] that

allows for “information encapsulation” [152], whereas we employ the term in the sense of a

specific meso-level structural feature in the connectome [11, 12, 13, 14, 15, 16, 17, 18, 19].

In analogy with other biological networks where a structure-function correlation has been

established for modules [181, 117], we now ask whether the network modules that appear

as separate structural units of the brain can be considered as distinct functional units as

well. Using information about the known functions of different cortical and sub-cortical

areas obtained from decades of experimental studies, we have created a mapping between

the regions belonging to each module and the specific functionalities attributed to them

(see Table B3, Appendix B). A perusal of this information reveals that the different regions

belonging to a module complement each other in carrying out various cognitive functions.

For example, several cortical areas in module #5, viz., 45a and 8Ac of the pre-frontal

cortex, and V1 and V2 of the occipital lobe, are related through their involvement in vision,

even though they may be part of distinct lobes and have disparate functions (controlling
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Figure 3.1: Mesoscopic organization of the Macaque brain. The network of brain regions,
shown in (a) horizontal, (b) sagittal and (c) coronal projections, clearly indicate that the nodes
(filled circles) are organized into five modules, each characterized by dense intra-connectivity. The
modular membership of each node is represented by its color (see color key to the right, containing
the list of brain regions in each module), while node sizes provide a representation of the relative
volumes of the corresponding brain regions (the spatial scale being indicated by the horizontal
bar in each panel). The spatial positions of the nodes are specified by the three-dimensional
stereotaxic coordinates of the corresponding regions (see Methods). Links indicate the directed
nerve tracts connecting pairs of brain regions, and are colored in accordance with their source
nodes. For details of each of the brain regions see Appendix B. (d) Visual representation of
the association between the network modules and cortical (in black), as well as, sub-cortical (in
red) subdivisions of the brain, viz., FL: Frontal Lobe, PL: Parietal Lobe, TL: Temporal Lobe,
OL: Occipital Lobe, Cing.: Cingulate, Ins.: Insula, BG : Basal Ganglia, Thal.: Thalamus, Hyp.:
Hypothalamus, OFC : Olfactory complex, and MB : Mid-brain. For a detailed breakdown of the
major subdivisions of the brain in terms of their module membership, see Appendix B (Fig.
B5-B6, Table B2). This alluvial diagram has been created using the online visualization tool
RAW [177].
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saccadic eye movements in the case of 45a and 8Ac, and processing of visual information

in the case of V1 and V2). This suggests a general scheme of organization in which the

regions associated with each of the principal sensory modalities are localized in specific

modules, viz., visual in module #5, auditory in module #4, somatosensory (along with the

principal motor area M1) in module #2 and olfactory (as well as, gustatory) in module #1.

We show below that the known behavior of the regions comprising each of the modules is

consistent with the broad functions attributed to that module.

First, we observe that module #5 (diplayed in purple in Fig. 3.1) consists of the primary

visual area in the occipital lobe and association areas in the parietal (e.g., LIP, VIP etc.)

and temporal lobe (e.g., CIT, PIT, etc.). In addition, its thalamic component includes

lateral geniculate nucleus (LGN), which relays visual information to the cortex from the

retina. We note that these regions are all involved in various aspects of visual cognition,

which is consistent with the sensory modality associated with this module, viz., vision.

Second, module #4 (displayed in yellow in Fig. 3.1), consistent with its attributed sensory

modality, is seen to comprise the auditory cortex lying in the superior temporal gyrus

of the temporal lobe (as well as, the corresponding association areas), and the medial

geniculate nucleus in the thalamus, which is the relay for all auditory information destined

for the cortex from the brainstem [182]. Third, module #2 (displayed in red in Fig. 3.1),

contains the primary and secondary somatosensory areas (S1, S2) in the parietal lobe,

while its thalamic component contains all the regions which together comprise the ventral

posterior nucleus that relays somatosensory information to the cortex. Apart from its

sensory function, as noted earlier it also consists of primary and supplementary motor areas

which are associated with planning, control and execution of voluntary movements [183].

Finally, we note that module #1 (displayed in blue in Fig. 3.1), has the olfactory complex

and the gustatory cortex, both located in the frontal lobe, as well as, a few other regions

(e.g., the olfactory field of the entorhinal cortex, EO, in the temporal lobe) involved in the

sensory processing of smell. However, the module is dominated by association areas located

in the prefrontal cortex which are involved in high-level multi-modal sensory integration

and decision-making [184, 185, 186, 187, 188].
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In contrast to the other modules, #3 neither contains motor areas nor does it include

any primary or secondary sensory areas. This is possibly related to our earlier observation

that this module has a distinct structural arrangement, in that its sub-cortical components

do not have any contribution from the thalamus, but instead comprise regions belonging to

the basal ganglia. In particular, the module contains the entire amygdala which is known

to regulate emotional responses and fear-conditioning in mammals [189, 190, 191, 192].

This gains significance in light of the fact that both the Hippocampus and the Parahip-

pocampus, which are primarily involved in the formation of memory, feature prominentaly

among this module’s cortical components. It resonates with the known relation between

emotional state and formation of memories in individuals that have been established by

several studies [193, 194, 195, 196].

As the brain is characterized by structures occurring at several scales [197], it is perti-

nent to ask whether further levels of organization can be identfied in the connectivity
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Figure 3.2: Classification of brain regions according to their intra- and inter-modular
connectivity. (a) Nodes of the Macaque brain network [colored and scaled as per Fig. 3.1 (a-c)]
are displayed in accordance with their within-module degree z-score (z) and participation coef-
ficient (P ), which provide a measure of their intra- and inter-modular connectivity respectively.
This allows the brain regions to be categorized into one of seven possible categories (see Methods),
viz., R1: ultra-peripheral, R2: peripheral, R3: satellite connector, R4: kinless, R5: provincial
hub, R6: connector hub, and R7: global hub. Note that there are no regions in the Macaque brain
belonging to the categories R4 and R7. (b) The distribution of the regions of the entire Macaque
brain across the different categories R1-R7 is similar to the corresponding distributions observed
in several anatomical subdivisions, viz., Tha: Thalamus, FL#2 : Frontal Lobe, P1#6 : Parietal
Lobe, CgG#2 : Cingulate Gyrus, Insula, TL#2 : Temporal Lobe, OC#2 : Occipital Lobe, Amyg :
Amygdala and STR: Striatum. (c) The connectivity pattern between regions belonging to the
different categories R1-R7 indicated by the z-scores for abundance of links between each pair of
categories (the first symbol in Ri-Rj refers to the category of the source region and the second
to that of the target), measured with respect to degree- and modularity-preserved randomized
ensemble of networks (see Methods).
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Figure 3.2 (previous page): Large positive (or negative) z-scores, i.e., z > 1 (or z < −1),
indicated by the dotted lines, imply that the corresponding connection types occur significantly
more (or less) often than expected from random networks that have degree sequence and commu-
nity structure identical to the empirical network. (d) Sagittal projection of the network of brain
regions [see Fig. 3.1 (b)] showing that connections between provincial hubs (highlighted nodes)
are localized within each module. (e) Temporal evolution of spreading processes, quantified in
terms of distributions of first passage times (τ) of random walkers starting from one node to
reach another, contrasted between the empirical brain network (solid line, τemp) and randomized
ensembles of networks, generated by preserving either the degrees alone (red, τD), or both the
degree and the modular membership of each node (green, τDM ). (f) The distribution of τ differs
significantly, depending on whether the target and source nodes belong to the same module (blue,
τ intra) or different modules (red, τ inter). As in (e), spreading occurs significantly more rapidly
in the empirical network (solid lines) compared to the networks belonging to the randomized
ensemble (obtained by preserving degree and modular membership). In both (e) and (f), the
dotted lines and the shaded regions around them represent the mean and standard deviation of
P (τ) calculated over the randomized ensembles. To see how the different categories R1-R7 of
brain regions allow spreading to occur faster in the empirical brain network than in equivalent
randomized networks, we focus on the cases where the source nodes are either satellite connectors
R3 (g) or provincial hubs R5 (h). The z-score indicates that there is a statistically significant
shift in the empirical distribution towards lower values of τ in both cases. However, while for R3
the increase in the rate of spreading is similar, irrespective of whether the target is in the same
module or in a different one, we observe that for R5, there is a relatively larger shift at lower val-
ues for τ intra as compared to τ inter. This is consistent with the connectivity pattern of provincial
hubs with the other categories of nodes [shown in (c)] which particularly favors intra-modular
communication.

pattern within each of the modules described above. Indeed, when we consider module#5,

the most robust under different realizations of network partitioning (see Methods and Ap-

pendix B), and subject it to further modular decomposition, we observe that it comprises

three communities which we refer to as sub-modules. The largest of these contains the

visual cortex and almost the entirety of the sub-cortical components, while the other two

(which are comparable to each other in terms of the number of constituent regions) are

dominated by regions belonging to the superior temporal sulcus and the intraparietal sul-

cus, respectively (see Fig. B7, Appendix B). Intriguingly, we note that the latter two

communities appear to correspond to regions identified with different visual processing

pathways, viz., the dorsal and ventral streams [198, 199].
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3.3.2 Distribution profile of nodes in terms of their intra- and

inter-modular connectivity is conserved across cortical and

sub-cortical subdivisions

Having described the overall organizational structure of the network at the mesoscopic level,

we now focus on understanding the role played by the individual brain regions in connecting

other regions within their own module, as well as, across modules. The importance of each

region is quantified in this framework by measuring the within-module degree z-score and

the inter-modular participation coefficient P (see Methods for details).

As seen in Fig. 3.2 (a), the z-score allows regions to be distinguished between hubs, i.e.,

those having significantly higher number of connections to other regions in their module,

and non-hubs, while P further classifies the hubs into provincial (R5), connector (R6)

and global (R7) categories and the non-hubs into ultra-peripheral (R1), peripheral (R2),

satellite connector (R3) and kinless (R4) classes. We note that regions in each module

have a similar distribution across R1-R3 and R5-R6 (with the sole exception of module

#4 which has no region playing the role of a provincial hub, see Fig. B8, Appendix

B). Uniformity of this nature can also be observed in Fig. 3.2 (b) where we compare

the distributions of constituent regions across the different categories for the entire brain

with that of the various subdivisions of the cortex, such as the Frontal (FL#2), Parietal

(P1#6), Temporal (TL#2) and Occipital (OC#2) lobes, the Insula and the Cingulate

Gyrus (CgG#2), as well as, the Amygdala (Amyg) which belongs to the basal ganglia.

However, the Striatum which is also in the basal ganglia, and the Thalamus (Tha) have the

distinctive characteristic of being essentially devoid of regions that act as hubs, indicating

a relative lack of heterogeneity in the number of connections that their constituent regions

have with others in their modules.

We have also analyzed the relative frequency with which regions belonging to the differ-

ent categories connect to each other in the Macaque brain, compared to the corresponding

connectivity pattern observed in surrogate networks obtained by degree- and modularity-

preserving randomization (see Methods) [169]. The profile of connection preferences be-
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tween the various caregories shown in Fig. 3.2 (c), with under-representation of connections

between R1-R1, R5-R6 and R6-R6 which has been related to the occurrence of multi-star

structures, resembles other networks involved in information propagation [169]. As can also

be seen from the figure, non-hubs prefer in general to connect to hubs and vice versa. This

is indicative of degree disassortativity, i.e., connections between nodes having dissimilar

characteristics (in this case, the number of connections) are favored. However, on inves-

tigating the connectivity between pairs of these categories, we notice that source regions

belonging to peripheral (R2) and provincial hub (R5) categories show a distinct bias in their

connections in terms of the participation coefficient of the target regions. Specifically R2

regions prefer to connect to connectors, both hubs (R6) and non-hubs (R3), while avoiding

regions that are localized in their modules (R1, R2 and R5). The trend is reversed for R5

regions. In particular, they show a slight preference for connecting to each other, which

is in contrast to the other categories which exhibit a marked tendency to avoid others of

their own kind.

This homophily between provincial hubs could arise from two different patterns of con-

nectivity between them, viz., one in which connections between the R5 regions are confined

within the same module and another in which the corresponding regions across different

modules are connected. Fig. 3.2 (d) shows that the empirical evidence supports the former

arrangement where, within each module, provincial hubs connect to each other prefer-

entially. We note that the three R5 regions indicated in module #5 occur, respectively,

in the three different sub-modules that were identified in the previous subsection. This

intra-modular connectivity within provincial hubs, taken together with the observation

that they preferentially connect to peripheral regions while avoiding connectors, suggest

that they help co-ordinate activity locally within each module while limiting the spread of

information over the network.
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3.3.3 Information spreading within the brain is enhanced by the

specific pattern of intra- and inter-modular connections

The roles played by regions belonging to different categories in facilitating the transmission

of information within and between modules can be investigated by considering a process of

diffusive propagation across the network (see Methods). The distribution of first passage

times τ , i.e., the time elapsed between initiating a random walk from any source node and

the earliest arrival to any given target node, is shown in Fig. 3.2 (e). While, in general,

presence of modules in networks leads to slower global diffusion [154], surprisingly we

observe that the distribution for the empirical network is markedly shifted towards lower

values of τ compared to randomized networks with an identical degree sequence that may

or may not have modular organization. This indicates that, as opposed to information

encapsulation, the specific pattern of intra- and inter-modular connections between brain

regions belonging to different categories actually promotes faster communication across

the network. Moreover, as seen from Fig. 3.2 (f), the enhancement of the rate of diffusion

in the connectome (in comparison to the randomized surrogates) can be seen both for

transmission within a module, as well as, between different modules.

We also investigate how nodes having distinct intra- and inter-modular connectivity

roles contribute to enhancing communication in the network. This is achieved in each

case by having the source node belong to the respective category and comparing the corre-

sponding distribution of τ with that obtained from randomized surrogates (quantified using

z-score, see Methods). Fig. 3.2 (g) shows that starting from a satellite connector R3, dif-

fusion to other nodes belonging both within its module or to other modules is significantly

faster compared to randomized networks with identical modular organization and degree

distribution. In contrast, as seen from Fig. 3.2 (h), when starting from a provincial hub

R5, the increase in the rate of diffusion within a module, compared to that in the surrogate

networks, is even higher than the increase in the rate of diffusion across modules. This

resonates with the observation of homophily between provinical hubs in a module reported

earlier (Fig. 3.2 (d)). When the source node belongs to any of the other categories, the
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difference between the intra- and inter-modular diffusion time-scales is seen to lie between

the range seen for these two cases (see Fig. B11, Appendix B). This suggests that the

modular character of the mesoscopic organization of the connectome is further shaped by

the distribution of roles played by the different nodes in allowing information to spread

within a module, as well as, across different modules.

3.3.4 Spatial layout constrains the connectivity but does not de-

termine the modular organization of brain regions

So far we have investigated the modular structure of the network of brain regions exclusively

in terms of the connection topology. However, the brain is also a physical system that is

embedded in three-dimensional space associated with a distance metric which restricts the

possible connections between its constituent regions. Such constraints arise from resource

costs related to the spatial volume and transmission time associated with the connections,

and the rapid energy consumption during synaptic transmission [49, 200, 201, 202, 203, 204,

205]. Thus, given that the pattern of connections between the regions is a function of the

physical distance between them, we can ask to what extent are the modules a consequence

of the brain being a spatially embedded network [206]. To investigate the role of spatial

constraints on the structure of the brain network, we supplement the network topological

information with that of the physical locations and volumes of each of the regions (shown

in Fig. 3.1, a-c; for details see Methods). By comparing the distributions of the physical

distances d between all possible pairs of regions (connected or not) with that of only the

connected pairs [top panel of Fig. 3.3 (a)], we can obtain the dependence of the connection

probability between two regions on the distance d between them. As seen from the bottom

panel of Fig. 3.3 (a), this probability decays linearly with the reciprocal of the distance,

i.e., P (C|d) ∼ 1/d, explicitly demonstrating the constraint imposed by the spatial layout

of the brain regions on their connectivity.
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Figure 3.3: Physical distance between brain regions is seen to constrain their con-
nectivity, but the modular organization of the network is independent of their three-
dimensional spatial arrangement. (a, top) Probability distribution of the physical distances
d between all pairs of nodes (red) contrasted with that of connected pairs (blue). (a, bottom) The
variation with physical distance d of the connection probability P (C|d) between a pair of nodes
separated by that distance (red). The empirical data is best fit by the relation P ∼ 1/d (repre-
sented by the solid line). (b) Joint representation of the space-independent modular organization
of the network of brain regions showing the matrices indicating adjacency {Aij} (left surface),
modularity {Bij} (normalized by total number of links L, right surface) and physical distance
{dij} (top surface) between the different regions. Note that for matrix A the background inten-
sity of each block is proportional to the density of connections within that block, and for matrix
B only the values corresponding to linked pairs of nodes are shown. The nodes are grouped into
partitions corresponding to the space-independent modules of the network with the boundaries
indicated by solid lines. The relatively large positive values clustered along the diagonal blocks
of B indicate the occurrence of significantly higher density of connections within each module,
compared to that expected from the degrees of, and the distance between, every pair of nodes.
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Figure 3.3 (previous page): This characteristic signature of modularity is also visible in
the adjacency matrix A representing the connection topology, suggesting that the mesoscopic
structure of the brain network is a consequence of factors beyond the constraints associated with
physical distance. Indeed, this is also true for the spatial clustering of nodes in each network
module seen in Fig. 3.1 (a-c), as is apparent from the distance matrix showing that the modules
comprise many nodes that are spatially proximal even after discounting the effect of distance in
identifying the modules. (c) Visual representation of the correspondence between the network
modules determined using exclusively information about the connection topology (“Original”)
and those obtained from space-independent partitioning of the network into communities. on the
right). This alluvial diagram has been created using the online visualization tool RAW [177].

To see if the restriction on long-range connections implied by the above constraint is

responsible for the mesoscopic organization of the network we have reported here, we inves-

tigate whether the network can be partitioned into modules even after taking into account

the distance dependence of the connection probability in the null model (see Methods

for details). Thus, if the modules are exclusively a product of the distance constraint,

the deviation of the empirically obtained connection probabilities from those of the null

model will be minimal, yielding a single partition comprising the entire network (see Fig.

B12-B13 in Appendix B for results on different surrogate networks). In contrast to the

above scenario, we find that applying the method on the brain network yields an optimal

partitioning comprising seven space-independent modules indicated by the diagonal blocks

demarcated by white lines in the adjacency matrix shown in Fig. 3.3 (b) [left surface]. The

probability of connections within these modules deviate strongly from the values expected

from the null model as shown by the modularity matrix [Fig. 3.3 (b), right surface]. The

distance matrix [Fig. 3.3 (b), top surface] also appears to suggest that regions belonging

to the same module are, in general, physically closer to each other than those belonging

to different modules. However, this physical proximity cannot provide a causal expla-

nation for the modular structure as, even after filtering for spatial effects, the resulting

space-independent modules are substantially similar to those reported in the previous sub-

sections [see Fig. 3.3 (c)]. The similarity between the results of these two different modular

partitionings is quantitatively indicated by the corresponding normalized mutual informa-

tion Inorm(= 0.6) [see Methods]. Thus, the spatial layout of the brain regions cannot by
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themselves explain the mesoscopic organization of the network, and the existence of the

structural modules is a fundamental attribute of the brain.

3.4 Discussion

Despite differences in the details of their organization, the modules that we have identified

in the Macaque connectome have common structural features. Most notably, each of them

have cortical and thalamic components with the sole exception of module #3, suggesting

a distinct functionality of this module. The sizable thalamic contribution to modules

#2, #4 and #5 can be understood in terms of the roles that their cortical components

play in processing specific sensory modalities. In particular, the information from the

corresponding sensory organs arrive at the cortical regions belonging to these modules

via relay centers located in the thalamic component of the respective modules. This,

however, cannot explain the sizable contribution from thalamic regions to module #1, as

the sensory modalities it is associated with, namely, olfaction and gustation, do not involve

any thalamic relay. As one of the primary functions of this module is the integration of

information processed in different cortical regions (as mentioned earlier), it suggests that

regions in the thalamic component of this module serve as relay centers coordinating inter-

cortical communication.

The module with which a particular brain region is associated may also alert us to pos-

sible functions of this region that have not yet been identified. As an example we consider

multi-modal association areas, which integrate and process inputs from different sensory

modalities (such as the regions LIP, MIP and area 46 ). Using information about their

modular membership, we can identify which modality or function each of these regions are

most strongly associated with. This is illustrated by considering the LIP, VIP, AIP and

MIP areas of the Intraparietal Sulcus. Although they are all multi-modal association areas,

LIP and VIP are part of module #5, whereas areas AIP and MIP are part of module

#2. It is known that LIP and VIP are involved in visual attention and saccadic eye move-

ments [207, 208, 209], which are predominantly visual processing tasks (consistent with the
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broad function of module #5). In contrast, AIP and MIP coordinate the visual control

of reaching and pointing [210, 211, 212], which, although guided by visual information, is

primarily a motor function (consonant with the broad function of module #2). Thus, the

specific functionalities of these association areas seem to tie in with the modules that they

belong to.

The modular nature of the brain has been long recognized, both in terms of function

and, more recently, in the topological organization of its structural connections [19]. Con-

siderable attention has been focused on the question of structure-function convergence in

the context of brain modules [77]. The hypothesis of “information encapsulation”, whereby

it is assumed that the information processing related to specific functions are relatively un-

affected by those corresponding to other functions, has been suggested as an explanation

of how functional modules can arise from the structural organization of the connectome

into several communities [213]. Although this may appear intuitive because spreading

processes are generally fast within a module and slow down during their passage to a

different module [154], we find on the contrary that the specific modular organization of

the Macaque connectome allows signals to spread very fast. In fact, the communication

of information across the empirical network appears to be even faster than that seen in

equivalent networks whose connections are distributed homogeneously. This is surprising

as homogeneous networks tend to exhibit the fastest speed of propagation globally, which

usually tends to reduce once mesoscopic structural features such as modularity are intro-

duced [154]. We connect this counter-intuitive result to the detailed meso-level attributes

of the topological organization, specifically the roles played by different brain regions in

terms of their intra- and inter-modular connections. By analyzing these connections we re-

veal distinctive features of the connectome, namely, the tendency of provincial hubs within

a module to connect to each other, and the preference shown by connector hubs to link to

peripheral nodes across different modules.

We would like to note that our work parallels the viewpoint proposed in several earlier

studies that cognitive processes in the brain necessarily involve integration of information

across modalities and functionalities [214, 215, 216]. Thus, behavioral studies have been
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used to show that processes such as attention and perception involve interaction and in-

tegration among several functional modalities, for example, spatial cognition in humans

interacting with semantic cognition of language [217]. In particular, cross-modal integra-

tion has been investigated extensively in the context of semantic comprehension [218],

where the simultaneous processing of multiple inputs is believed to operate under mutual

constraint satisfaction [219], such that probability estimates of each input constrains the

estimates of the other inputs. Neurocomputational frameworks such as the ‘hub and spoke

model’ [220, 221, 222] have been used to suggest that modality specific sources of informa-

tion (spokes) are integrated in a transmodal hub to generate conceptual knowledge. There

is also substantial evidence in support of integration across different modalities occurring

in non-human primates [223, 224, 225, 226]. Our results show that the mesoscopic orga-

nization of the modules, which individually are reminiscent of the information encapsula-

tion perspective, can nevertheless enhance communication globally across the connectome,

thereby promoting information integration [214].

While the potential of rapid communication between different regions, made possible

by the underlying modular architecture of the network, suggests a plausible explanation for

the evolution of the observed mesoscopic organization of the macaque brain, it could also

plausibly be a consequence of optimizing for wiring lengths. However, we have explicitly

shown that the constraint imposed by the physical distance between the brain regions is

insufficient to explain the modular partitions observed by us. Indeed, although the five

modules of the connectome that we have identified comprise brain regions that are, for the

most part, spatially proximal, module #4 is a prominent exception. It spans two widely

separated locations in the brain, one comprising the primary and secondary auditory areas

which are in the temporal lobe and the other consisting of association areas located in the

prefrontal lobe. While it is well-established that the temporal lobe regions belonging to

this module contribute to its associated sensory modality, viz., auditory processing, it is

not entirely clear what role the prefrontal regions of this module plays in this context. We

note, however, that there are intriguing parallels between these areas and those occupying

corresponding locations in the human brain. Specifically, the prefrontal and temporal
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parts of module #4 that are known to have a role in social cognition in primates [227, 228]

correspond to the Broca’s and Wernicke’s areas in the human brain, respectively. As is well

known, the former is responsible for speech production in humans, while the latter is critical

for language comprehension [183]. Although there is no direct counterpart of language in

Macaques, non-human primates are known to be capable of communicating through signals

such as facial expressions and vocalizations [229]. This correspondence therefore warrants

consideration of whether some of the areas in module #4 of the Macaque brain developed

from a common evolutionary precursor of the apparatus responsible for facilitating language

in humans. Indeed, this view is supported by recent research [230, 231, 232] that have used

language-like behavior in non-human primates as models for understanding how speech and

language might have evolved in humans [233].
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Chapter 4

Invariances and diversity in the

human structural connectome : A

cohort study

4.1 Introduction

One of the key goals of neuroscience from its very inception has been to unravel the workings

of the human brain. Not only is this of great scientific interest and significant from a

philosophical perspective, but it is important also for informing clinical and psychiatric

practice. Studying the nervous systems of non-human model organisms do allow us to gain

an understanding of fundamental aspects of their development, structure and function.

Moreover, this has provided us with numerous insights on how a system as complex as

the brain could have evolved, and the associated emergence of behavior such as cognition.

However, there are limitations to how phenomena observed in relatively simpler nervous

systems can be generalized to those with much higher complexity. For instance the ocular

dominance columns of the visual cortex that occur in monkey and cat brains are not

seen in mice or rat brains. [234]. Similarly, the anatomical and functional organization

of a macaque brain is vastly different from that of a human brain [235]. In fact there
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are several fundamental aspects of human brain structure and function that are unique

to the species [236, 237]. Therefore, in spite of the ethical and technological bottlenecks

that hinder the study of the human brain to the level of detail and precision as can be

achieved in other mammals and invertebrates, it is crucial that techniques for analyzing

and interpreting the structure and function of human brains at multiple length and time

scales continue to be developed and refined.

One of the primary approaches that is commonly used to study a brain is to describe

its macro-scale connectome [28], i.e., the structure of connectivity between distinct brain

regions through axonal tracts. Several studies have pointed to the essential role of such a

“wiring diagram” of the nervous system as a foundational model in understanding func-

tional localization at multiple levels, ranging from molecular and cellular up to systems

and behavioral levels [31]. As shown in earlier chapters of this thesis, the wiring dia-

grams of neuronal connectivity can provide insights on the processes that underlie brain

development, as well as, the functional implications arising from their structural organi-

zation. However, one of the characteristic features of the human structural connectome is

its large variability across individuals [28, 238, 239] and over time [240]. This variability

in the structural connectome could be a key factor in understanding the generative mech-

anism underlying the development of brain structure [241]. The diversity in structural

connectivity is significantly smaller than that of functional connectivity [242, 243], which

is determined by temporal correlations between the electrophysiological activity of differ-

ent brain regions. These variabilities are important in studying the relationship between

structure and function in human brains, as not only is structural connectivity known to

affect brain function [244, 23], but function has been shown to influence the structure as

well [245, 246]. However, despite the high variability of brain networks in humans, it has

been observed that certain structural features are universal [3]. Thus, it is pertinent to

ask whether we can describe a typical “representative” structural connectome for a human

brain. Such a representative network might not only be useful in studying fundamental

aspects of the structure-function relationship in the human brain, but also the deviations

from this “basic plan” in a connectome might reveal structural correlates of functional
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impairments leading to clinical disorders.

In this work, we study a large ensemble of brain connectivity networks that were ob-

tained from a cohort of 196 healthy human subjects through diffusion tensor imaging for

the purpose of characterizing the variability in the structural connectome. We find that

there is a correspondence between the diversity of topological connectivities and the varia-

tion in the distribution of connection weights, suggesting that the generative mechanisms

giving rise to the “wiring” and those determining the weights are related. We further

find that the connection strengths of links that are frequently found in the population are

described by link-specific Poisson processes, indicating that the generative mechanism of

a significant portion of the brain connectivity might involve independent discrete random

processes. This allows us to reassign the link weights of structural connectivity, which

would represent the discrete Poisson variables instead of original weights and thus obtain

the rescaled weight matrices. Using the corresponding resting state functional connectivi-

ties obtained from the same cohort, we show that the structural connectome with rescaled

weights consistently show better correspondence with the functional connectivity, suggest-

ing that the rescaling process might provide a more informative framework for interpreting

the structural connectivity in terms of function. This also provides us with a means for

determining the generic “representative” network describing a human connectome. Finally,

we show that the representative network is intrinsically resolved into two components, one

which is invariant across the population and another that exhibits a much higher degree

of variability across individuals.

4.2 Materials and Methods

Connectivity Data.

The human brain structural and functional connectivity dataset analyzed here has been

derived from the Nathan Kline Institute (NKI) / Rockland Sample [247] - a publicly

available repository of diffusion tensor imaging (DTI) and resting state functional mag-

netic resonance imaging (rs-fMRI) data - which was further processed into connectivity
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matrices and made publicly available in the UCLA multimodal connectivity database at

http://umcd.humanconnectomeproject.org/ [248].

The data comprises structural connectivity matrices W and functional connectivity

matrices C obtained from 196 healthy human subjects: 114 male and 82 female, with

ages ranging from 4 to 85 years. Each matrix describes a network comprising 188 nodes

that represent 188 brain regions defined by parcellation of the entire gray matter region

of the human brain (cerebral cortex, sub-cortical areas, cerebellum, brain stem etc.) using

an fMRI based clustering method [249]. It also contains the 3-dimensional coordinates

for each of the brain regions in a standardized space. For structural connectivity (SC)

matrices W , the connection strengths Wij corresponding to the weighted undirected links

(i, j) represent the density of axonal bundles between brain regions i and j as obtained from

DTI, while the connection strengths Cij in functional connectivity matrices C represent the

Pearson’s correlation coefficients between the time-series of dynamical activities in regions

i and j, as measured through blood oxygen level dependent (BOLD) imaging using fMRI.

Rescaling to obtain Poisson distributed link weights.

A Poisson distribution of mean λ for a random discrete variable X is given by:

P (X = k) =
λke−λ

k!
, (4.1)

where the parameter characterizing the distribution λ = �X� = V ar(X). Here the link

weights Wij for a link between a pair of regions (i, j) are considered to be obtained by

rescaling Poisson distributed variables Wij that have mean λij, as Wij = sijWij. Such a

rescaled Poisson variable has also been described in [250]. The mean and variance of the

rescaled Poisson variables Wij are given by:

�Wij� = sijλij ,

V ar(Wij) = s2ijλij ,
(4.2)
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For a given distribution of weights Wij of a link (i, j), we determine sij from Eq. (4.2)

sij =
V ar(Wij)

�Wij�
(4.3)

Upon obtaining the rescaling factor sij for a link (i, j), we rescale the weights Wij across

the population to obtain the Poisson distributed rescaled weights:

Wij = �Wij

sij
+ 0.5� (4.4)

where �x+ 0.5� gives nearest integer of x. The rescaled weights are related to the Poisson

parameter by �Wij� = λij.

Goodness of fit.

Assuming a rescaled Poisson distribution for all links (i, j), we initially calculate the Poisson

parameter λij, rescaling factor sij and the rescaled weights Wij for each link. We then use a

Pearson’s Chi-squared test [251] to determine whether the rescaled weights obtained using

the method described above fits a theoretically expected Poisson distribution P(λij) for

the corresponding λij with significant likelihood. First, we calculate the test statistic χ2
ij

for the rescaled weight frequency distribution of each link:

χ2
ij =

n�

k=1

(Ok − Ek)
2

Ek

, (4.5)

where n is total number of bins, Ok is number of observations having Wij = k and Ek

is the theoretically expected number of observations, assuming a Poisson distribution for

Wij. Here, Ek is obtained from P (Wij = k) as: Ek = �N ∗ P (Wij = k) + 0.5�, where N

is the total number of connectomes analyzed. If a bin has Ek < 5, it is merged with the

adjacent bins, thus reducing the total number of bins. To ensure the validity of the test,

we require that the final number of bins n � 3. If the final number of bins is less than 3,

which may arise in the case of links with very low λij, we consider the link to be too rare for

this statistical test. When the number of bins are sufficient, we compare the statistic χ2
ij
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with the Chi-squared critical values for the upper tail one-sided test with significance value

α = 0.01, obtained from https://www.itl.nist.gov/div898/handbook/eda/section3/

eda3674.htm. Links having χ2
ij values less than the corresponding critical values, one

cannot reject the possibility that they are from a Poisson distribution.

Partial fitting by excluding outlier data from deviating links.

For each link (i, j) that deviated from a Poisson distribution, we performed an iterative

process where at each step the data point with the largest value of Wij was removed, new

values of λij, sij and Wij were calculated and the Chi-squared test was performed on the

reduced dataset. This sequential process is terminated when the distribution of the reduced

dataset is found to fit a Poisson distribution, or once as many as 20 data points (10%) have

been removed. Through this process, we determine the number of links that are Poisson

distributed over at least the bulk (� 90%) of the population. These links, together with

the links fitting Poisson distribution over entire population, are considered to comprise the

“representative” structural connectivity for a human brain, with connections weights being

λij.

Generating surrogate ensemble of finite size populations of brain networks.

In order to quantify the role of finite size effects and the specific distribution of λij values

in the observed deviation of some of the links from the Poisson distribution, we created

a surrogate ensemble of 1000 populations, each population containing the same number

(196) of structural connectomes as in the empirical dataset. For each link (i, j) in a sur-

rogate connectome, the link weight was drawn from the Poisson distribution P(λij) for

which we used the poissrnd function in MATLAB Release 2010b. For each population,

we then determined the fraction of links that deviated from the Poisson distribution using

the Chi-squared test described above. The distribution of the fraction of deviating links

fdev provides a measure of the extent to which apparent deviation of the link weights from

Poisson distribution, may arise from finite size effect.
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Simulated functional connectivity obtained via dynamical model for neural

population activity.

In order to obtain the functional connectome resulting from the dynamics of the structural

brain network, we use the Wilson-Cowan (WC) neural mass model [252, 253] to describe

the activity in each node of the structural connectome. The temporal evolution of the

mean activity of excitatory (ui) and inhibitory (vi) subpopulations of node i is given as:

τuu̇i = −ui + (κu − ruui)Su(u
in
i ) ,

τvv̇i = −vi + (κv − rvvi)Sv(v
in
i ) ,

(4.6)

where uin
i = cuuui−cuvvi+

��(wuu
ij −wuv

ij )+Iextu and vini = cvuui−cvvvi+
��(wvu

ij −wvv
ij )+Iextv

represent the total input to the excitatory and inhibitory subpopulations respectively. Here,

cµν(µ, ν = u, v) represents the interaction strengths within and between the subpopulations

of a node while τu,v and Iextu,v correspond to the time constants and the external stimuli for

each of the neural subpopulations. The interaction strength between the subpopulations of

different nodes are represented by wµν
ij (µ, ν = u, v), which are obtained from the connection

weights of the structural connectome of each individual. We assume that all inter-nodal

interactions are of equal strength: wµν
ij (µ, ν = u, v) = wij. The summation

�� is performed

over all neighbors of the structural network. The sigmoidal response function Sµ(z) =

[1 + exp{−aµ(z − θµ)}]−1 + κµ − 1 has a maximum value κµ = 1 − [1 + exp(aµθµ)]
−1.

Parameters are chosen such that the dynamics of isolated nodes (wµν
ij = 0) are in the

oscillatory regime. The matrices corresponding to the inter-nodal coupling weights wij

are taken to be scalar multiples of individual structural weight matrices W for one set of

simulations and individual rescaled weight matrices W for another set of simulations. We

also used other structural connectivity matrices such as the adjacency matrix corresponding

to the rescaled weight matrices A and the two types of representative structural network

matrices �W � and Λ. The corresponding functional connectivity was obtained by finding

Pearson’s correlation coefficient between the time series of ui and uj for each pair of nodes

(i, j). For the sake of comparison, we multiplied all the structural connectivity matrices
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(W , W , A, �W � and Λ) with corresponding normalizing constants, such that the mean

connection strength averaged over each network was always a constant wavg. We fixed the

value wavg = 100 since at this value of average coupling we obtained temporal activity that

is qualitatively very similar to typical empirically observed fMRI time series.

Bimodality coefficient

The bimodal nature of a probability distribution can be characterized by calculating

its bimodality coefficient [116]:

BC =
m2

3 + 1

m4 + 3 · (n−1)2

(n−2)(n−3)

, (4.7)

where m3 is the skewness, m4 is the excess kurtosis and n represents the sample size. A

distribution is considered to be bimodal if BC > BC∗, where BC∗ = 5/9. This benchmark

value corresponds to a uniform distribution, and ifBC < BC∗ the distribution is considered

unimodal.

Statistics.

The Kernel smoothened density function [121] has been used to estimate the probability

distribution functions of different quantities (e.g., the joint probability between fij and

Wij). For this purpose we have used the ksdensity function in MATLAB Release 2010b

with a Gaussian kernel.

The Two-sample Kolmogorov-Smirnov (KS) test [120] has been used to compare between

pairs of samples (e.g., matrix correlations of the functional and structural connectomes) in

order to determine whether both of them are drawn from the same continuous distribution

(null hypothesis), or if they belong to different distributions. For this purpose we have

used the kstest2 function in MATLAB Release 2010b, with the value of the parameter α

which determines threshold significance level set to 0.01.
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4.3 Results

“Wiring” and “weighting” are not independent processes.

The structural connectivity of a human brain displays large variability across individuals in

a population, in terms of both connection topology and weight distributions. However, not

all the links in the structural network exhibit the same extent of variability. In our analysis,

we consider an ensemble of 196 structural connectivity (SC) matrices, as illustrated in in

Fig. 4.1 (a), which allows us to study this variability across a diverse human population

(see Methods for details about the connectivity data). Each network contains 188 nodes,

and the density of axonal bundles between regions i and j is represented by the connection

strength Wij. Fig. 4.1 (b) shows the SC matrix for one of the individuals, where the

regions are ordered alphabetically and grouped into three broad regions: brain-stem (BS),

left brain and right brain. Not surprisingly, we observe a considerably higher density

of ipsilateral connections than contralateral ones. In order to characterize the topological

variability of the network across the population, for every link (i, j) we measure the relative

frequency of occurrence fij, which is given by the fraction of the total population in which

an axonal tract between regions i and j is observed. For all the 188C2 node pairs that can

in principle have a connection we obtain the fij values between 0 to 1, where 0 signifies

those links that are never observed in any individual and 1 identifies links that are found in

every member of the population. The connection topology is largely determined during the

course of development through the process of wiring, where a complex cascade of genetic

and molecular mechanisms determine the probability of connection between two neurons,

as mentioned in Chapter 2. However, there remains uncertainty as to the exact processes

that determine the connection weights at the level of the brain regions that are connected

through axonal tracts. Note that the connection weights in this case are not equivalent to

the weights of synaptic connections, whose strengths are governed by various learning and

plasticity mechanisms. Here the connection weights are actually the observed density of

axonal bundles, which is partially related to physical thickness of the connections.
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Figure 4.1: An increase in the occurrence of non-ubiquitous connections within
a population leads to a steady shift in the corresponding link weight distribution
towards higher values. (a) Ensemble of weighted structural connectivity (SC) matrices repre-
senting the structural brain networks of 196 human subjects obtained via diffusion tensor imaging
(DTI). (b) A sample SC matrix corresponding to the connectivity information obtained from one
of the subjects.
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Figure 4.1 (previous page): Each network comprises 188 nodes that correspond to brain
regions connected through white matter tracts, which are represented by weighted undirected
links in the SC matrix. For each network the matrix entries Wij represent the density of axonal
bundles between nodes i and j. The minimum possible link weight is 1, and matrix entries are
set to 0 if the connection does not exist or cannot be detected due to extremely low thickness.The
regions are alphabetically arranged and grouped into the brain-stem (BS), the left brain and the
right brain. Notice the relatively high density of ipsilateral connections (connections between
regions of the same hemisphere, as indicated by diagonal blocks in the matrix) and low density
of contralateral connections (connections between regions of opposite hemispheres, as indicated
by off-diagonal blocks). (c) Joint probability distribution P (fij ,Wij) of the relative frequency fij
that a link between brain regions i and j is seen across individuals in the population and the
weight Wij of the link. If a link does not exist we set Wij = 10−3 and subsequently use kernel
smoothing to obtain the distribution P (fij ,Wij). We observe a steady increase in the mode of the
distribution of link weights (represented by the broken white curve) as the frequency of occurrence
fij increases, with a much steeper rise after fij = 0.9. Furthermore, the distribution broadens on
increasing fij . (d) Frequency histogram showing the distribution of links over fij from the set of
all possible 188C2 = 17578 pairs of nodes (i, j), illustrating the variability in connection topology
of brain networks across the population. (e) The mean link weights (�Wij�) for non-ubiquitous
links of any given frequency of occurrence fij , averaged over the sub-population in which they
occur, is observed to vary over an order of magnitude with the interval of the range shifting
upwards with the increase in occurrence. Each point of the scatter plot represents a link, which
provides a link-wise resolution to the distribution of panel (c). The box plots representing the
distributions of �Wij� over consecutive intervals of fij clearly illustrate a steady increase of the
distribution.

Hence there is no prior reason to expect any correspondence between the ubiquity of a

link in the population, as quantified by fij, and the distribution of its weight across the

population.

Fig. 4.1 (c) shows that as the occurrence of links in the population increases, their

weights tend to steadily rise, as indicated by the joint probability distribution P (fij,Wij)

obtained using kernel smoothing (see Methods). The lower plateau represents the links

with weight Wij = 0 and the upper plateau, which includes link weights from 1 up to order

of 1000, not only displays an increase of P (fij,Wij) with increasing occurrence (which

trivially leads to increase in non-zero weights), but also shows a steady increase of Wij.

This indicates that those connections which are found more often in a population are likely

to have higher connection weights as well. Fig. 4.1 (d) displays the frequency histogram

of fij values, showing the highest concentration of links at 0 and 1. For a species with
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rigidly invariant topology over a population, such as C. elegans, this histogram would show

occupancy only at 0 and 1. Thus a large number of links which occur with frequencies 0 and

1 implies high topological variability in the structural connectivity within a population.

Even though the distribution of connection weights in the population shows correspondence

with the relative frequency of occurrence fij, the distribution widens with an increase in the

occurrence. This implies a large variability in connection weights, even for links with similar

values of occurrence. Assuming that the processes determining weights are still largely

independent of the processes determining the formation of the connection itself (wiring), it

is meaningful to consider the weight distribution of non-ubiquitous links (fij < 1) over only

those individuals from the population in which the link occurs. Fig. 4.1 (e) shows that even

when we consider mean weights of each link (�Wij�) averaged over the corresponding subset

of the population in which the link occurs, there is a steady rise in these partially averaged

values of the link weights. This further indicates that wiring and weighting processes for

the links are not entirely independent, even if they are separate processes.

The variation of the weights of frequently occurring links over the

population, as well as their frequency of occurrence, can both be

described by a single link-specific Poisson process.

One of the simplest stochastic processes that describes the distribution of the number

of recorded events is the Poisson process. It corresponds to a probability distribution

of discrete random independent events occurring at a constant rate over time or space.

Here we consider the hypothesis that the link weights Wij for link (i, j) are generated by

such discrete independent events occurring at a constant rate λij for each human subject.

In such a case, the link weights Wij would follow a Poisson distribution. As we have

already shown above that the processes determining the wiring and the weights of the

links appear to be at least mutually dependent, even if they are separate, weights having

Poisson distribution would actually mean that a single parameter λij would be sufficient

to explain the variability of link weights as well as their frequency of occurrence.
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Figure 4.2: The variation of the weights of frequently occurring links over the pop-
ulation, as well as their frequency of occurrence, can both be described by a single
link-specific Poisson process. (a) Frequency histograms corresponding to four separate links
(i, j) demonstrating that their rescaled link weights Wij , obtained using corresponding rescal-
ing factors sij , are distributed over the population in a Poisson process, with respective Poisson
parameters λij displayed in each case.
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Figure 4.2 (previous page): The solid lines, which represent the theoretical values of the
distributions, display close agreement with the histograms corresponding to the observed distri-
butions and the shaded region represents the fluctuations in the frequencies over a large number
of randomly drawn samples of size 196 (same as the population size) from the corresponding
Poisson distribution. The goodness of fit for the links with the Poisson distribution has been
quantitatively tested using Pearson’s Chi-square test [251]. (b) Scatter plot of the links, repre-
sented in terms of their mean weights across entire population �Wij� and the their variances σ2

ij .

It can be seen that for most links the weight distributions have σ2
ij ∝ �Wij�, which indicates the

possibility of a rescaled Poisson distribution. The links that fit a rescaled Poisson distribution
(as shown by Chi-squared goodness of fit test with significance α = 0.01), are distinguished by
showing them in red color and the linear regression fit for those points (red line) has a slope of
1.2. (c) Links which are shown to fit rescaled Poisson (red dots) have high values for the relative
frequency of occurrence (> 0.5) as well as higher values of mean link weights. (d) Adjacency
matrix showing the entries corresponding to 3342 links that fit the rescaled Poisson distribution
with α = 0.01 (black entries) and 577 links whose weight distributions deviate from the corre-
sponding Poisson distributions (red entries). (e) Joint probability distribution P (sij ,λij) of the
distribution of rescaling factors sij and Poisson parameter λij . We observe that P (sij ,λij) is
relatively unaffected by increasing or decreasing λ, which suggests that both these link properties
that together determine the observed weights for a link in the population, might originate from
distinct biological factors.

We find that for a large number of frequently occurring links (fij > 0.5), their weights

follow a rescaled Poisson distribution (see Methods) with each link having specific value of

λij and corresponding rescaling factor sij. The rescaling factor is a link-specific constant

scalar value for a link (i, j), which can be applied on its weights Wij across the population

to obtain the rescaled weights Wij, which follow a Poisson distribution P(λij) (see Methods

for details). Using Pearson’s Chi-squared goodness of fit test (see Methods) to determine

whether the rescaled weights for a link fits a Poisson distribution with high significance

(α = 0.01), we find that out of 15, 209 links that are seen at least once in the population

there are 3342 links whose rescaled link weights can be described by Poisson processes and

11, 290 links have too few occurrences for a reliable statistical fitting. Thus there are only

557 links that deviate significantly from the Poisson distribution.

Fig. 4.2 (a) demonstrates that the frequency histogram corresponding to rescaled link

weights of four separate links agree with the theoretically expected frequencies from a

Poisson distribution having the corresponding λij. As both the mean and variance of
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Poisson distributions are equal to the same parameter λ, it is expected that the rescaled

Poisson distribution followed by Wij has �Wij� ∝ σ2
ij, as can be seen in Fig. 4.2 (b).

Fig. 4.2 (c) shows that links described by a Poisson process appear to have high significance

in the structural connectivity in terms of both the topology (by having higher values of fij),

as well as, the strength of connection (by having higher values of partially averaged mean

link weights as described in Fig. 4.1 (e)). The adjacency matrix in Fig. 4.2 (d) illustrates

the highly dense network comprising of links described by Poisson processes, while also

showing the sparsely distributed 557 links that deviate from the Poisson process. Further,

the two factors determining the connection weight for a link, viz. λij and sij, seem to

have no dependence on each other, as can be seen in their joint probability distribution in

Fig. 4.2 (e). The Pearson’s correlation coefficient between respective values of λij and sij

is −0.09.

We next examine the 577 links which, in spite of having high frequency of occurrence,

do not fit Poisson distribution. We observed that the bulk of these links have a bimodal

distribution of rescaled weights, in which the first mode appears to be a Poisson distri-

bution while the other mode (occurring at much higher values) comprises outliers with

unexpectedly high weights. Hence the deviation from a purely Poisson process can pos-

sibly be attributed to such outliers. The rescaling factor sij and Poisson parameter λij

obtained from these links are possibly inaccurate because they are calculated by including

the outlier values. Thus, for each of these deviating links, we sequentially remove the data

points with the largest weight, calculate the λij and sij for the remaining subset and rescal-

ing the weights until the remaining data agrees with the Poisson process as per Chi-squared

goodness of fit with a high significance (α = 0.01). Out of 577 deviating links, we find that

520 links fit the rescaled Poisson distribution after excluding less than 10% of the outliers.

Fig. 4.3 (a) demonstrates that in four of the deviating links that are shown, the bulk of the

distribution (> 90%) agrees with a Poisson distribution, while the outliers (< 10%) deviate

significantly from the theoretical distribution. The adjacency matrix in Fig. 4.3 (b) shows

that the bulk of the deviating links fit the Poisson distribution by excluding few outliers.

We note that out of a total of 3919 links that have sufficient occurrences for statistical
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Figure 4.3: Exclusion of a small fraction of outliers can make deviating links fit
a Poisson distribution. (a) Frequency histograms corresponding to four separate links (i, j)
demonstrating that rescaled link weights Wij obtained using corresponding rescaling factors sij
are distributed over the bulk of the population in a Poisson process (represented by blue bars),
upon excluding a few outliers (< 10% of the population, represented by red bars) with high
values that deviate from the Poisson process. The solid lines which represent the theoretical
values of the distributions display close agreement with the histograms corresponding to the
observed distributions for the bulk of the population (blue bars) and the shaded region represents
the variability in the frequencies across a large number of randomly drawn samples of size 196
(same as the population size) from the corresponding Poisson distribution. (b) Adjacency matrix
showing that 520 links (shown as black entries) out of the 577 links that originally deviated from
the Poisson distribution over the entire population (as shown in Fig. 4.2 (d)), fit the Poisson
distribution on removing only upto 10% outliers from the population, as quantitatively shown
using the Chi-squared test. The remaining 57 links do not fit a Poisson distribution even after
the removal of 10% outliers (shown as red entries). (c) The empirically observed fraction of
links whose weights deviate from the Poisson distribution fdev (out of all the links with sufficient
frequency of occurrence, viz.≈ 0.15, as indicated by the arrow), cannot be explained by finite
size effect alone. The probability distribution shows the expected values for fdev in a randomly
generated network ensemble of sample size 196, where each link weight across all the networks
is drawn from a Poisson distribution with link-specific values of λij that were obtained from the
empirical dataset. Finite size effects contribute a value of fdev ≈ 0.03 which is much smaller than
that observed from empirical data.
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tests, 3862 links (98.5%) have their weights distributed according to link specific Poisson

processes for more than 90% of the population.

The deviation observed in these 577 links suggests that even though a single Poisson

process might be sufficient to describe the wiring and the weights for a large fraction of

links for most of the population, there may be other factors in the generative mechanism

that lead to a significant fraction of links (≈ 0.15) deviating from a Poisson process, even

if that deviation is due to the presence of a few outliers within the population. In order to

rule out the possibility that the deviation arises simply because of finite size effects in the

specific distribution of λ values, we generated a surrogate ensemble of SC matrix sets, each

comprising 196 matrices. The link weights were each drawn from the link-specific Poisson

distributions (see Methods for details). We find that in every realization, a small fraction of

links does not fit a Poisson distribution, as per the Chi-squared criterion. The distribution

of these values is shown in Fig. 4.3 (c). The deviations arising due to such finite size effects

are significantly lower than those seen empirically. This suggests that there must be other

significant factors in the generative mechanisms apart from the Poisson process that give

rise to the structural connectivity in human brains.

Rescaling of link weights using Poisson parameters might provide

greater functional interpretability to the structural connectivity.

While we have have thus far interpreted the Poisson parameter λij for the links as an ab-

stract representation of the net effect of all biological factors associated with the generative

mechanism of the structural connectivity of brain networks, an additional interpretation of

the Poisson parameter can be obtained by considering its effect on function. While there

have been several attempts to examine the relation between structural connectivity and

functional connectivity [244, 23], it has been observed that there is very low correspon-

dence between the two. Unlike synaptic and gap-junction weights which are interpreted

as coupling strengths between neuronal activities, the connection weights in the structural

macro-connectome elude a functional interpretation (such as for instance being a measure

117



of dynamical coupling between the activities of different brain regions). We have already

observed that rescaled weights appear to be a more fundamental structural property than

the original weights, since they are essentially discrete Poisson variables which are known

to arise in a wide range of natural phenomena. It is therefore reasonable to ask whether

the rescaled weights can have a deeper relation with the functional coupling. For example,

could the rescaled weight be directly related to the number of axons in axonal tracts?

Here we ask whether the individual structural connectivity of rescaled weights, which are

obtained from the analysis of SC matrices across a population, have a stronger correla-

tion with the corresponding functional connectivity as compared to the original structural

connectivity.

The Nathan Kline Institute (NKI) / Rockland Sample dataset that we consider [247]

includes resting state functional connectivities (FC) for each of the 196 individuals whose

structural connectivity we have analyzed thus far. Sample functional connectivity matrices

are displayed in Fig. 4.4 (a). In contrast to the structural connectivities, the functional

connectivities exhibit a large degree of variability across individuals. Examining a single FC

matrix (Fig. 4.4 (b)) reveals that the density of strong functional connections is much higher

than that of structural connections (Fig. 4.1 (b)), and unlike the structural networks there

is a significant number of connections across left and right hemispheres. We first examine

the correlation between the structural and functional connection strengths for each link

(Wij and Cij, respectively) over the entire population and observe that most of the links

have negligible correlation between the variations of structural and functional connectivity

strengths over the population (see Fig. D1 in Appendix D). While this supports the

previously known observation that there is very low correspondence between structure

and function at the level of individual links, we observe that a macroscopic comparison

between the FC matrices (C(n)) and structural weight matrices (W(n)) for each individual n

reveals statistically significant correlations, as seen in Fig. 4.4 (c). Furthermore, for every

individual in the population we observe that the matrix correlation of C(n) and structural

weight matrix W(n) is lower than the matrix correlation of C(n) and the corresponding

rescaled structural weight matrix W(n). Thus, there is a notable correspondence between
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Figure 4.4: Upon rescaling the weights, the structural connectivities consistently
show a greater association with the corresponding functional connectivities across
the population. (a) Ensemble of functional connectivity (FC) matrices representing the resting
state functional brain networks, determined by functional magnetic resonance imaging (fMRI),
of the same 196 human subjects whose structural connectivities have been analyzed in this work.
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Figure 4.4 (previous page): (b) A sample FC matrix corresponding to one of the subjects.
The nodes are arranged in the same way as described in Fig. 4.1 (b), and the matrix entries Cij

indicate the correlation between the haemodynamic activities of nodes i and j over a period of
time. Notice the striking difference between the SC shown in Fig. 4.1 (b) and the FC shown
here. Where the SC have relatively sparse connections and a much higher density of ipsilateral
connections than the contralateral ones, the FC have a much higher density of strong connections
(both positive and negative) with equal density of functional connectivity between ipsilateral
(diagonal blocks) as well as between contralateral regions (off diagonal blocks). (c) A comparison
of the dependence between individual functional connectivity matrices (C(n)) for an individual n
(where n ∈ 1, 2, 3 . . . 196) and the corresponding structural connectivities described respectively
by weight matrices (W(n)) and rescaled weight matrices (W(n)). Examples of the three types of
matrices are shown as insets. The scatter plot displays the correlation between C(n) and W(n)

for each n along the x-axis, and the corresponding correlation between C(n) and W(n) along the
y-axis. Note that while the correlations between functional and structural matrices of both types
are very low (< 0.3) (even though statistically significant), for every individual in the population
the functional connectivity matrices are more correlated with the corresponding W(n) than they
are with W(n). (d) Box-plots representing the distributions of the correlations of the functional
matrix C(n) for each individual n with the corresponding matrices weight W(n) and W(n) and the
adjacency matrix A(n), generated from the rescaled weight matrix W(n) by removing information
about the link weights. The correlation distribution for W(n) which is positioned higher than
that corresponding to W(n) as expected from the result in panel (c), is higher compared to
the correlation distribution for A(n), which contains information related to the topology of the
rescaled matrix but not the link weights. Note that topology of the rescaled weight matrices are
different from that of the original weight matrices, since the former has much fewer links. This
implies that in addition to the altered topology of rescaled weight matrices, the altered weight
distribution also makes W(n) a better structural correlate of the observed dynamical function of
the brain.

structure and function for each individual at the level of the entire brain network, and

furthermore, the rescaling of weights in the structural connectivity enhances this corre-

spondence between structure and function in all individuals. A possible explanation for

this enhanced correspondence with function might be the alteration in the distribution

of weights after rescaling, or it might also be attributed to the change in the connection

topology due to the rescaling of weights (as the rescaling process leads to the deletion of

links). To examine this, we computed matrix correlations of each C(n) with (unweighted)

adjacency matrices having the same connectivity as W(n), which we refer to as A(n). The

boxplots in Fig. 4.4 (d) shows that the matrix correlations of C(n) with W(n) are higher

than correlations with A(n), suggesting that the alteration of the weight distribution upon
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rescaling is the primary factor in making SC a better correlate of FC. The three distribu-

tions of matrix correlation values were found to be significantly distinct from one another

using the Two-sample Kolmogorov-Smirnov (KS) test (see Methods).

The resting state functional connectivities of the individuals in the dataset are simpli-

fied snapshots of a large repertoire of complex dynamical behaviors in the brain, which

are associated with various cognitive functions and arise from highly complex non-linear

interactions among the constituent brain regions. Therefore a simple correspondence be-

tween structural and functional connectivities would not be sufficient to establish that a

rescaled weight distribution in structural connectivity would be a better functional corre-

late than the original weight distribution. In order to understand how the weights in the

structural connectivity affect the dynamics, we simulate the complex dynamical activity

that would arise when the structural connectivity provides the basis for the non-linear in-

teractions between the brain regions. To describe the dynamical activity of brain regions,

we use a well-known neural mass model, viz., the Wilson-Cowan (WC) model [252, 253]

(see Methods for details). Fig. 4.5 (a) shows a schematic representation of one WC node

which is used to represent the activity in a single brain region. In order to generate the

time series of simulated activity of all brain region for each individual, we simulated sys-

tems of WC oscillators placed at the nodes of networks with the corresponding structural

connectivity matrix (Wij, as well as, Wij), with the associated connection strengths of

these matrices taken to be the same as the dynamical coupling strengths wij between WC

nodes. Fig. 4.5 (b) shows samples of such time series. By computing Pearson’s correlation

coefficient between the time series of activity for each pair of brain regions, we generated

the simulated functional connectivity matrices CW (Fig. 4.5 (c)) and CW (Fig. 4.5 (d))

for each individual to compare with the corresponding empirical functional matrices C

(Fig. 4.5 (e)). We compared the matrix correlations between individual C(n) and CW
(n) with

correlations between individual C(n) and CW
(n) matrices, as shown in Fig. 4.5 (f). Similar to

the result obtained from the comparison of FC matrices with SC matrices in Fig. 4.4 (c),

we find that simulated FC generated from rescaled weight matrices W(n) were consistently

better correlated with empirical FC than the ones generated from original
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Figure 4.5: Dynamical simulation of whole brain activity using a neuronal popu-
lation model suggests that structural connectivity with rescaled weights are better
structural correlates for brain function than those with original weights. (a) Schematic
representation of a single dynamical element (oscillator) of the Wilson-Cowan (WC) model, which
simulates the activity within a single region of the brain network, each comprising
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Figure 4.5 (previous page): interactions between the excitatory and inhibitory subpopulations
(U and V respectively), with strengths denoted by cµν where µ, ν = {u, v}, and their interactions
with the subpopulations belonging to other nodes of the network (with uniform coupling strength
w). The lightning bolt represents the external stimulation of strength Iu provided to the excitatory
subpopulation. (b) Time evolution of the dynamical activity of the excitatory subpopulations in
four out of 188 brain regions of a single individual, obtained from simulations of WC oscillators on
the network specified by the structural connectivity matrix associated with the rescaled weights
W as coupling strengths. As the model is dimensionless, here time is displayed in arbitrary
units (a.u.). (c-d) Functional connectivity matrices obtained from simulated brain activity using
one of the connectomes. The matrices CW and CW are respectively obtained from simulations
of WC oscillators on (c) the original weight matrix W , and (d) the rescaled weight matrix W.
(e) Empirical functional connectivity obtained from the resting state brain activity of the same
individual. (f) Scatter plot displaying the correlation between the empirical FC matrices C(n) and

the simulated FC matrices obtained from the original weight matrices CW
(n) for each individual

n along the abscissa, and the correlation between C(n) and the simulated FC matrix obtained

from rescaled weight matrix CW
(n) along the ordinate. It can be observed that corr(C(n), C

W
(n))

is consistently higher than corr(C(n), C
W
(n)) for the majority of individuals. This further extends

the result shown in Fig. 4.4 (c). (g) Box-plot showing that the correlations of the empirical FC
of individual brains C(n) with simulated FC from corresponding rescaled weight matrices CW

(n)

are comparatively higher than both corr(C(n), C
W
(n)) and corr(C(n), C

A(n)), where CW
(n) represents

the simulated FC matrices obtained from corresponding weight matrices, and CA
(n) represents

the corresponding adjacency matrices of the rescaled weights. Furthermore, as corr(C(n), C
A(n))

is the weakest, it suggests that the dynamical behavior of the brain is governed more strongly
by the weight distribution of the structural connectivity than by the network topology. We
also obtain simulated FC generated from two alternative representative structural networks of a
human brain, viz. C�W � which is generated from the matrix �W � that we obtain by averaging
each link weight Wij over entire population and Cλ which is generated from the matrix λ, which
comprises the Poisson parameters λij for each link that is Poisson distributed over at least 90%
of the population. We observe that the empirical FC matrices correlate better with the simulated
FC Cλ compared to the simulated FC C�W �, as indicated by the box-plots.

weight matrices W(n). We also generated simulated FC from adjacency matrices A(n)

obtained from W(n) and found that FC generated from adjacency matrices had the weakest

correlation with the empirical matrices out of all three types of simulated FC, as seen in first

three box-plots in Fig. 4.5 (g). This strongly suggests that the dynamics in complex non-

linear systems such as the brain is governed much more strongly by the weight distributions

of the connectivity than the connection topology itself.

Finally, we compare each of the empirical FC with the corresponding matrix generated
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by a generic “representative” network that would describe the structural connectivity of

the human brain. There are two alternative ways to obtain a “representative” network from

the SC ensemble. The widely used approach is to obtain an average network �W �, which
comprises the average weight of each link calculated over entire population. Our results

suggest a second approach, which is to consider the λ matrix, comprising the Poisson

parameters λij for all the Poisson distributed links, as the representative network. By

construction, it comprises only those links that follow a Poisson distribution. As we have

already observed that rescaled weights of an individual SC might be more relevant in

interpreting structural connections, it is more meaningful to consider the Λ matrix (which

effectively is the average of all rescaled weight matrices), as the representative structural

network. We generate simulated FCs corresponding to �W � and Λ, and observe that FC

generated from Λ is more strongly correlated with the bulk of the empirical FCs than the

one generated form �W �, as seen in the last two box-plots of Fig. 4.5 (g). All the correlation

distributions being considered here have been shown to be significantly distinct from each

other using the Two-sample Kolmogorov-Smirnov (KS) test (see Methods).

The representative structural connectome can be resolved into two

components: “Basal” network and “Superstructure” network.

We have thus far argued that the representative network described by the Λ matrix is

significant because: (i) the underlying generative mechanisms for determining the wiring

and weighting of links can be described by a Poisson process (Fig. 4.2 and Fig. 4.3), (ii)

the constituent links are significant in terms of topology, as well as, connection weights

(Fig. 4.2 (c)), and (iii) The Λ matrix is a better structural correlate to observed function

in comparison to the average SC matrix. We now return to one of our original questions

regarding the extent of variability of the structural network within the population in terms

of topology and weight distribution, focusing only on the constituent links of the represen-

tative network. On examining how various link-specific properties, such as the coefficient

of variation of link weights (CVij) and Poisson parameters (λij) are distributed among the

124



constituent links of the representative network, we find that the network can be resolved

into two distinct classes of links that we refer to as the “basal” and the “superstructure”

network, shown in Fig. 4.6 (a). The former comprises links that are seen in all individuals

(fij = 1) while the latter contains all the remaining links of the representative network.

They can be identified from the clearly observable bimodality in the distributions of CVij

(Fig. 4.6 (b)) and λij (Fig. 4.6 (c)). The bimodality in both distributions can be verified

by calculating their bimodality coefficients (see Methods). Basal links are distinguished

by very low variability in weight across the population but high values of average weights

and λij, while the superstructure links show highly variable connection weights across the

population, but typically low values of average link weights and λij. Notably, the distri-

bution of weight rescaling factors sij does not show any distinction between the basal and

superstructure networks (Fig. 4.6 (d)). Planar projections of the basal and superstructure

networks on horizontal, sagittal and coronal planes are provided in Fig. 4.7.

Using the representative network for human brain as the basis, we can explore the

mesoscopic organization of human brain in the same way as was done for macaque brain

in Chapter 3. We have shown the preliminary results from our modular analysis of human

brain network in Appendix D.
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Figure 4.6: The representative structural connectivity of a brain network can be
resolved into two components. (a) Sagittal plane projections of the “basal” network (left)
and the “superstructure” network (right). The former comprises 1106 ubiquitous links, i.e., those
that occur in every individual, and the latter consists of the remaining 2806 links. The thickness
and color of each link between a pair of regions (i, j) corresponds to their average weights �wij�
across the population (see legend). Note that the average link weights in the basal networks are
much higher than those in the superstructure network. (b) The distribution of the coefficients of
variation CVij for the link weights across the population (indicated by broken lines) is observed
to be bimodal. The mode corresponding to lower values of CVij is attributed to links from
the basal network (blue shaded region), whereas the links from the superstructure network (red
shaded region) primarily contribute to the mode corresponding to higher values of CVij . This
demonstrates that the links of the basal network tend to have higher link weights on an average,
and their weights are largely invariant across the population. In contrast, the link weights in the
superstructure network vary across individuals.

126



Figure 4.6 (previous page): (c) The distribution of Poisson parameters λij (indicated by
broken lines) is also bimodal, with each mode corresponding to the basal network links (blue
shaded region) and superstructure links (red shaded region) respectively. (d) The distribution of
weight rescaling factors sij (broken lines) is observed to be unimodal, in contrast to λij and CVij ,
with no distinction between the basal and the superstructure links as indicated by their strongly
overlapping distributions (blue and red shaded regions). Note that the separate distributions for
basal network links and superstructure network links are normalized according to their relative
sizes.

4.4 Discussion

Our results suggest that the expected weight distribution of a link in the structural connec-

tome, as well as its expected probability of occurrence in an individual, can be described

by a single parameter. This is indicative of a common generative mechanism that deter-

mines both the connection topology of the axonal tract wiring between brain regions, as

well as, the anatomical thickness of the tracts, which we refer to as the connection weight.

At the neuronal scale connection weights refer to the number of synapses between two

neurons, or the synaptic conductivity. These quantities have a direct measurable effect

on the complex electrophysiological interactions between the neurons. The plasticity and

learning mechanisms that determine and alter the connection weights between neurons

are well understood, e.g., spike-time dependent plasticity. However, in the case of the

macro-connectome, the role of connection weights, viz., the density of axonal bundles, in

the functional interactions of the brain areas is not well understood. By determining a

latent Poisson distributed quantity from the observed weight of a connection, which we

refer to as the rescaled weight, our results point towards a potential framework for a bet-

ter functional interpretation of structural connectivity. This might be extremely useful in

the development of dynamical models of various cognitive phenomena in the brain. To

probe this, we have used a relatively simple neural mass model to show that the rescaled

weights consistently give rise to dynamical behavior that have better correspondence with

the empirical data. This mode of functional interpretation of structural connectivity can

be further enhanced when we also consider information related to whether the synaptic
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Figure 4.7: “Basal” network and “Superstructure” Network. (a) Horizontal, sagittal
and coronal projections of the spatial representations for the “basal” network (left, top right
and bottom right respectively). (b) Horizontal, sagittal and coronal projections of the spatial
representations for the “superstructure” network (left, top right and bottom right respectively).
Note that the average weights �wij� (represented by the thickness and color of the links (i, j),
see legend) display a smooth spatial gradient. In addition, the long range connections between
spatially distant regions are more frequently observed in the superstructure network, as compared
to the basal network whose structure is closer to a lattice in that most of the connections are
between spatially adjacent regions.
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connections underlying given axonal pathways are excitatory, inhibitory or both. Another

component that is missing from the analysis of structural connectome is the directional

information about the connections. Although we represent the structural connectome as

an undirected weighted network, in reality synaptic connections are always directed. The

observation that the rescaled weight distribution showed a widespread enhancement in

correspondence between structure and function, even without the associated information

about the directionality and the type of connections, underpins the significance of this

framework. In that case, the latent Poisson parameter associated with the axonal path-

way, i.e., the rescaled weight, might represent functionally relevant factors such as the

actual number of axons in the tract or the number of synaptic connections, rather than

simply representing the anatomical thickness. Similarly, the corresponding rescaling fac-

tors might be representative of peripheral features that do not directly affect the neuronal

interactions, e.g., the thickness of myelin sheaths covering the axons.

We further observe that a significant fraction of links showed deviations from a Poisson

generative process, and these deviations are far greater than expected by the finite size

of the data. This further illuminates the generative mechanism: even though random

independent discrete processes might be involved in the wiring of major portion of the

brain, as indicated by the occurrence of Poisson distributions, there are other significant

effects at play. These might arise from genetic or developmental factors, or may be governed

by the specific functioning of an individual brain. For instance, pathways between certain

motor regions in the brain of a professional athlete might be exceptionally stronger than

that of other individuals due to prolonged specialized usage of certain circuits. Thus the

deviations might be indicative of plasticity in the macro-connectome - a hypothesis that

requires further exploration.

In this study we have argued that the inclusion of only the Poisson-distributed links in

a generic representative network for a human connectome, with the corresponding weights

being the link specific Poisson parameters, is a more meaningful approach than simply

obtaining an average of all structural connectivity matrices. The representative network

based on Poisson parameters at once informs us about the topological significance, the
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extent of variability, the generative mechanism and the functional importance of the un-

derlying links, thus making it far more useful for further network-theoretic or dynamical

analysis. The two distinct components of the representative network, which we refer as the

basal and the superstructure networks respectively, reveal an altogether new organizational

aspect of the brain. While the source of this dichotomy within the structural connectome

is not clear, one needs to do a more detailed exploration into the developmental and func-

tional implications of the two clearly distinguished components that comprise a generic

representative structural connectome of a human brain.
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Chapter 5

The Hierarchy Index: A tool for

revealing the sequential arrangement

of processing levels in brain networks

5.1 Introduction

In order to obtain a systems-level understanding of the functioning of the brain (or a

nervous system), several studies have applied a wide range of tools for the analysis of com-

plex networks on numerous structural and functional brain connectivity datasets [3, 254].

However, most studies of such networks at the mesoscopic level have focused on a specific

type of mesoscopic organization, viz., modularity [150, 19]. Modularity, or community

structure, is a widely-observed property in brain networks across species and length scales

where, as described in detail in Chapter 3 of this thesis, the network is partitioned into

communities that are distinguished by relatively dense inter-connections between nodes

of the same modules and sparse connections across different modules. However, there is

another commonly observed feature of brain networks that may not have received as much

attention, viz., hierarchical organization. In the literature, the concept of ‘hierarchy’ in

network analysis has been used in diverse contexts to describe different types of network
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arrangements. For instance, hierarchy has been used to describe a macroscopic property

of complex networks that makes them scale-free and highly clustered [255, 76]. In another

context, it has been used to describe the core-periphery structure in the C. elegans neuronal

network [21]. Another widely-observed network organization that has been described as

hierarchical, is the hierarchically modular organization [256, 117, 257, 10], which describes

a nested arrangement of modules at several levels, in which smaller modules are nested

inside larger modules.

The hierarchical organization we consider here, which is of particular relevance in the

context of brain networks, is a specific mode of mesoscopic organization that is distinct from

those discussed above. It stems from a commonly observed pattern of connectivity identi-

fied by a large number of feed-back and feed-forward pathways between distinct sets of brain

regions or neurons. Such an arrangement of reciprocal connectivity is associated with net-

works involved in highly complex information processing. Here, the network comprises of

several hierarchically arranged levels (or layers) where each level processes the information

obtained from the preceding level and then passes it onto the successive one. For instance,

the macaque visual cortex has a well-defined hierarchical structure [258, 259, 260] in which

visual information enters the brain through the Lateral Geniculate Nucleus (LGN), from

where the information is relayed to the primary visual cortex V1 and subsequently fed for-

ward to higher areas such as V2, V3, MT and so forth. Here, these areas can be considered

as hierarchical levels within the neuronal network, where each level integrates informa-

tion from its lower levels and successively performs more complex information processing.

Similarly, there are top-down feedback connections in the opposite direction, i.e., from the

higher to the lower levels. Such hierarchical organization is not confined to the macaque

brain, as it is also observed in rat brains [261] and mouse brains [262]. In addition to vi-

sual processing, hierarchical organization is also implemented in auditory processing [263].

Furthermore, the hierarchical arrangement of neurons is also important in those neural

circuits where a specific temporal sequence of neuronal firing is necessary. The synfire

chain is an idealized model of such a neural organization used to explain the synchronous

sequential firing of neurons [264]. One concrete example of hierarchically arranged neu-

132



ronal layers (synaptic chains) giving rise to collective neuronal firing in a precise temporal

sequence, is seen in the HVC neurons in zebra finch, one of the most widely studied species

of “songbirds” [265].

In all of the above examples of hierarchically organized networks, the distinct levels are

identified by their observed functions, such as the temporal sequence of firing in neurons

or the complexity of visual processing in brain regions. However, while there are many

network analysis tools available for the detection of modular organization in networks, no

comparable tools exist for the detection of hierarchical levels within a network of a given

connection topology. Recently there has been some work towards this direction [266],

where the inherent hierarchy has been identified in mouse cortical connectivity based on

the direction of information flow. With the rapid development of techniques for determining

the underlying structural connectivities in the brain network, and the resulting abundance

of connectivity data, more such approaches are required to identify the inherent structural

aspects of brain networks such as hierarchy - a point that been compellingly argued by

Sebastian Seung [30].

In this work, we propose a novel approach for identifying the underlying hierarchical

levels in a network, which is sufficiently general to be applicable outside the context of

neuroscience. We first define the hierarchy index, a new measure for quantifying the

extent of hierarchy in a network, and then describe a heuristic simulated annealing routine

that maximizes the hierarchy index to yield an optimal partitioning of the network into

levels, along with their sequential arrangement. We validate our method using a set of

benchmark networks and apply it to the three brain networks studied earlier in this thesis,

viz., the network of the C. elegans nervous system, the macaque brain connectome and the

representative human brain network. The preliminary findings of the hierarchical analysis

of these networks that we report here reveal a strongly hierarchical organization with robust

levels.
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5.2 Methods

Hierarchy index

We consider a network to have a hierarchical organization if it can be partitioned into

levels (interchangeably also called layers in this chapter), such that there is high degree

of connectivity between nodes of levels that are adjacent to each other in their sequential

arrangement and relatively sparse connections between non-adjacent levels. Here, the

sequential arrangement of connectivity, arising from the arrangement of the underlying

levels, attributes a sense of hierarchy in the chain of interactions across the network from a

mesoscopic perspective. Hence, the hierarchical organization of a network is specified by the

node membership of each of the partitioned hierarchical levels, along with the particular

sequential arrangement of these levels. Note that this is distinct from the concept of

hierarchical modular organization, which has been studied extensively [256, 117, 257, 10].

In order to characterize the extent to which a given network exhibits a hierarchical

organization, we define the hierarchy index H, which is analogous to the Newman-Girvan

measure Q for the degree of modularity in a modular network [115, 165]. For a directed-

unweighted network that can be arranged into a sequence of levels, the hierarchy index H

is given by:

H =
1

L

�

i,j

�
Aij −

kin
i · kout

j

L

�
· (δli,lj+1 + δli+1,lj) (5.1)

where, Aij refers to the element of adjacency matrix of the network which is 1 if there is

a directed link from node j to node i and 0 otherwise, kini refers to in-degree i.e., the total

number of connections received by node i (kini =
�

j Aij) and kout
j represents the out-degree

i.e., the total number of connections sent out by node j (koutj =
�

i Aij). Here the total

number of connections is represented as L (=
�

ij Aij). The Kronecker delta function term

δli,lj+1 + δli+1,lj yields 1 if the levels li and lj to which i and j belong are adjacent to each

other in the sequential arrangement, and is 0 otherwise.
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Maximization of the hierarchy index

In order to find the latent hierarchical structure in a given network, the task is to determine

the optimal partitioning of the network into levels, along with their optimal sequence of

arrangement that would yield the maximum value for H. A similar problem of finding

the optimal modular partitioning for maximizing Q in modular networks is known to be

NP-hard [267, 166]. Therefore it is reasonable to assume that finding the most optimal

solution for level partitioning and sequencing for a given network is also an NP-hard prob-

lem. We address this optimization problem by formulating a heuristic routine of simulated

annealing, which attempts to find the global maxima for the hierarchy index H by exten-

sively exploring the configuration space of levels. Here the configuration refers to a specific

partitioning of nodes into levels and the associated sequential arrangement of those levels.

The routine is described as follows.

We begin with an arbitrary configuration of sequentially arranged levels that is char-

acterized by a hierarchy index H. We then begin an iterative process whereby the level

configuration is modified through a single manipulation to the level of a node or level at

each step (see below). The hierarchy index of the network upon a single modification is

defined as H �, and the corresponding change in the hierarchy index is ΔH = H � − H.

If ΔH > 0, we accept the modification and consequently assign it to be the “current”

configuration, while if ΔH < 0 we accept the modification with a probability P , which is

given by P = e−|ΔH|/T . Here, T is a “temperature”, which is decreased slowly with each

iteration as the routine progresses. If we reject the modification, the current configuration

is retained for the next iteration. When continued for a sufficient number of iterations

until T → 0, the algorithm is guaranteed to converge to a local maximum in the hierarchy

index. For each network, we run many realizations of the simulated annealing routine to

obtain an ensemble of optimal level partitionings of the network.

The modifications that are performed at each iteration could be one of two types:

(i) single node modification and (ii) level modification. For a single node modification,

we randomly select a node from the network and either shift it from its current level to
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another randomly chosen level, or place it in a new level by itself at the end of the existing

level sequence. This modification set consists of a total of (N(k − 1) + N =)Nk moves

at each step, where N is number of nodes and k is the number of levels. For the level

modifications, we perform one of three actions: (a) merge a pair of randomly chosen levels

into a single level, (b) swap the sequential positions of a pair of randomly chosen levels, or

(c) split a randomly chosen level into two adjacent levels. This modification set comprises

(kC2 × 2 + k =) k2 moves at each step. The splitting of a randomly chosen level can in

principle be done using a random cut, but for faster convergence we cut the level into two

levels in such a way the number of links between the two is maximized. For this we adopted

the MINCUT algorithm [268] which is conventionally used to find the minimum cut weight

in a graph, i.e., partition a network into two subnetworks with a minimum number of links

between them. With a simple modification to the algorithm, we performed the opposite,

viz., partition a network into two subnetworks with maximum number of links between

them.

Thus, starting from an arbitrary level configuration, at each iterative step we chose one

out of all possible Nk+k2 modification moves described above with a uniform probability,

and each modification is accepted or rejected according to the above described criterion.

The initial temperature T0 was set as 10 and we decreased this as function of time (measured

in iteration steps) t, as T = T0 · e−λt, where λ = 2 × 10−6. The routine is run for a

sufficiently long time (t = 2×107) to allow the system to converge to an optimal hierarchical

configuration. If the system is stuck in a local maximum for too long, i.e., if there are no

accepted modifications for a large number of time steps tthresh, the routine is terminated.

As the value of tthresh must be sufficiently larger than the total number of possible moves,

we set tthresh = 5 × (Nk + k2). All these parameters are tuned for the sizes of networks

that are of interest to us, viz., N ≈ 300. The schematic representation summarizing the

above described procedure is shown in Fig. 5.1.

Given the inherent degeneracy of the method, namely that the solutions obtained for

optimal hierarchical level partitionings via the simulated annealing method are not unique,

we require a sufficiently large ensemble of solutions for any given network. For a network
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Figure 5.1: Schematic representation of hierarchy detection method. The input (shown
on the left panels, top and bottom) consists of a network with latent hierarchical arrangement of
levels (or layers). The adjacency matrix shown in the bottom left panel, characterized by a random
ordering of nodes, does not display any inherent structure. The iterative maximization routine
for the hierarchy index H is represented in the middle panels, where at each step we perform one
of the four types of level rearrangements that are illustrated in the bottom middle panel, viz: (1)
Moving a single randomly chosen node from its current level to either another randomly chosen
existing level or a new level, (2) merging two randomly chosen levels into a single level, (3) splitting
a randomly chosen level into two adjacent levels using a modified MINCUT algorithm, and (4)
swapping the sequence of two randomly chosen levels. The output (shown in the right panels,
top and bottom) contains the optimal ordering of nodes into sequentially arranged levels with
relatively denser connections between consecutive levels being clearly apparent. The adjacency
matrix shown in bottom right has the nodes ordered according to the levels obtained from the H
maximization routine, and shows a clear hierarchical structure (note the dense connections within
the off-diagonal blocks, corresponding to relatively high connectivity between adjacent levels).
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with a robust hierarchical structure, all the solutions obtained must be consistent with

each other to a large degree.

Random benchmark networks to test the performance of the method

In order to test the performance of the method, we generated random directed, unweighted

networks with embedded hierarchical levels. The extent of hierarchy in the networks were

parameterized by the ratio ρ/ρcon, where ρ represents density of connections between nodes

of non-consecutive levels (or the same level) whereas ρcon is the density of connection

between any two consecutive levels. For completely hierarchical levels we have ρ/ρcon = 0,

while for a completely homogeneous network lacking any mesoscopic structure we have

ρ/ρcon = 1. We generated 20 benchmark networks of size N = 250 with varying degrees of

hierarchy from values of ρ/ρcon = 0.05 up to ρ/ρcon = 1. Each network had 5 levels with 50

nodes in every level. We randomly rearranged the nodes of the adjacency matrix for each

network and ran our simulated annealing routine on those networks to identify the inherent

levels and their sequential arrangement. For each network, we carried 50 realizations to

obtain an ensemble of optimal solutions. The accuracy of the method was measured by

the similarity between the level partitioning obtained from the method and the original

embedded level partitioning used for generating the network.

We quantify the similarity between two level partitionings {lAi }LA
i=1 and {lBj }LB

j=1 result-

ing from different partitionings A and B of a network (that comprise levels LA and LB,

respectively) in terms of the normalized mutual information [171]:

Inorm (A,B) =
2
�

i

�
j P (lAi , l

B
j ) ln[P (lAi , l

B
j )/P (lAi )P (lBj )]

−�
i P (lAi ) lnP (lAi )−

�
j P (lBj ) lnP (lBj )

, (5.2)

where P (lAi ) is the probability that a randomly chosen node lies in level lAi in partition

A, P (lBj ) is the probability that a randomly chosen node lies in level lBj in partition B,

and P (lAi , l
B
j ) is the joint probability that a randomly chosen node belongs to level lAi in

partition A, as well as to level lBj in partition B (i = 1, . . . , LA, and j = 1, . . . , LB). Each
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of the probabilities can be estimated from the ratio of the level sizes to the size of the

entire network.

Data for neuronal/brain networks

Caenorhabditis elegans

Connectivity. We have used the information about the connectivity between 279 connected

neurons of the C. elegans somatic nervous system from the latest dataset, which is published

in Ref. [97].

Functional type. The information about the functional type of the neuron (viz. sensory,

inter- and motor neurons) has been obtained from the database provided in Ref. [102].

Spatial information. Information about the locations of the neurons was obtained from the

database reported in Ref. [100], accessible online from https://www.dynamic-connectome.

org/. The location information provides coordinates of each neuronal cell body projected

on a two-dimensional plane defined by the anterior-posterior axis and the dorsal-ventral

axis.

Macaque

Connectivity. We have used a reconstructed macaque structural connectome comprising

266 cortical and subcortical brain regions as described in Chapter 3, which was based upon

the compilation in Ref. [159]. The compilation had used several hundred tract tracing

studies obtained from CoCoMac - a comprehensive neuroinformatics database [160, 161,

162].

Spatial Information. We have obtained the stereotaxic coordinates of each brain region in

our connectome from several sources. Information about 134 of the 266 regions included

in the connectome has been obtained from the website [163] associated with the Paxinos

Rhesus Monkey Atlas [164]. For the remaining regions, we manually curated the requisite

data from the relevant research literature. The position of a region is identified with the

approximate location of its center, obtained from the online three-dimensional visualization

platform in the website mentioned above. The volume spanned by a particular region was
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estimated by approximating the cross-sectional area occupied by the region in each of the

coronal sections of the brain in which it appears and obtaining the sum of these areas

weighted by the thickness of the sections measured along the rostral-caudal axis.

Human

The Human brain structural connectivity analyzed in this study constitutes the “basal net-

work” component of the representative human brain network (see Chapter 4 for details). It

comprises 188 brain regions spanning the gray matter region (cerebral cortex, sub-cortical

areas, cerebellum, brain stem, etc) connected to each other through axonal tracts. The

“basal” network was determined through the cohort analysis of structural brain networks

of human subjects, as obtained from the Nathan Kline Institute (NKI) / Rockland Sam-

ple [247] - a publicly available repository of diffusion tensor imaging (DTI) data - which

was further processed into connectivity matrices and made publicly available by the UCLA

multimodal connectivity database at http://umcd.humanconnectomeproject.org/ [248].

As described in Chapter 4, the “basal” network comprises those connections which are seen

in each of the 196 individual brain networks, and are distinguished by very low variability

in connection weights across the population. The database also contains the 3-dimensional

coordinates for each of the brain regions in a standardized space.

In this study, all the networks analyzed were unweighted. We carried 200 realizations

of simulated annealing routines for each of the empirical networks.

5.3 Results

Prior to applying the detection method to uncover the inherent hierarchical structures on

real-world networks, where the existence of underlying sequentially interconnected levels is

not known a priori, we test the reliability and the efficacy of the results obtained using this

method. To this end, we generate a set of “synthetic” random networks with an embedded

hierarchical structure embedded in them, that we refer to as benchmark networks (see

Methods). These networks are obtained by specifying the level partitioning of nodes and

their sequential arrangement, and randomly connecting the nodes while maintaining a
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relatively high density of connections between consecutive level ρcon, in comparison to the

connection density over remaining network ρ. As the hierarchy maximizing algorithm does

not utilize any prior information about the levels, it is expected to identify the embedded

levels accurately even if the nodes are rearranged randomly.

As can be seen from Fig. 5.2 (a-b), not only is the method able to recover the embedded

levels in the benchmark networks for strongly hierarchical networks with extremely high

accuracy (Fig. 5.2 (a)), but it is remarkably accurate in identifying the embedded levels

in networks with much weaker hierarchical structure as well (Fig. 5.2 (b)). In Fig. 5.2 (c)

we show the variation in the average performance of the method over many realizations

of H maximization, with the degree of hierarchy that is embedded in the network. We

observe that the method performs with remarkably high accuracy (Inorm � 0.8) over a

broad range of values for the extent of hierarchy (up to ρ/ρcon ≈ 0.4). This performance

level is consistent across the distinct realizations of hierarchy detection for a single network,

as indicated by the narrow shaded region representing the variation of Inorm across many

realizations for each network. The optimality of the identified levels from the method

becomes further evident by comparing the values of hierarchy index H for each network,

as obtained with respect to the originally embedded level arrangement, with those that were

obtained with respect to the level arrangement determined from the method. Fig. 5.2 (d)

shows that the H values obtained with respect to the determined levels almost coincide

with those corresponding to the originally embedded levels up to ρ/ρcon ≈ 0.4.
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Figure 5.2: Investigating the accuracy of the method in detecting hierarchical levels
in random benchmark networks with embedded hierarchy. (a-b) Application of the
hierarchy detection method to random directed-unweighted benchmark networks with embedded
hierarchical levels.
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Figure 5.2 (previous page): The extent of hierarchy in each benchmark network is indicated
by the ratio of the density of connections between nodes of non-consecutive levels ρ with that
of the density of connections between nodes of consecutive levels ρcon, viz. (a) ρ/ρcon = 0.05
(strongly hierarchical) and (b) ρ/ρcon = 0.45 (weakly hierarchical). The three adjacency matrices
in each row represent the same benchmark network, but differ in terms of the ordering of the
nodes. The white entries in the matrices correspond to links, while the connection density between
nodes belonging to any two distinct levels, as well as within-level connectivity for each level is
indicated by the brightness of the corresponding block in the matrix. The matrices at the left
represent the original arrangement of nodes, in which the embedded level structure (indicated
by red lines) is apparent, as only the off diagonal blocks adjacent to the diagonal blocks show
a high density of connections. The matrices in the middle are obtained by randomly reordering
the nodes, while preserving the connection topology. This matrix serves as the input for the
hierarchy detection method. The matrices on the right are obtained by rearranging the nodes
according to the levels that were obtained from the method (indicated by red lines). It can
be observed that the obtained levels closely match the original embedded levels in each case.
The accuracy of the method is quantified by the degree of similarity between the initial network
partitioning according to the embedded levels and the final network partitioning according to the
obtained levels, by calculating the normalized mutual information Inorm (see Methods) between
the two partitionings. For two completely identical partitionings we have Inorm = 1 and for
maximally distinct partitionings we have Inorm = 0. It can be observed that even for a weakly
hierarchical network (panel (b)), the method detects the underlying levels with remarkably high
accuracy (Inorm = 0.78). (c) Performance of the hierarchy detection method, as indicated by
Inorm, tested on benchmark networks with values of ρ/ρcon varying between 0.05 to 1, over a
sufficiently large number of realizations (50 for each benchmark network). Note the remarkably
high accuracy of the method up to ρ/ρcon = 0.4, which corresponds to networks that are weakly
hierarchical. The solid curve corresponds to the mean of Inorm calculated over the ensemble,
while the shaded region represents the standard deviation. (d) The average value of hierarchy
index H over all realizations corresponding to each value of ρ/ρcon (solid line), compared with
the H values corresponding to the original embedded level partitionings (dashed line). For higher
values of ρ/ρcon (> 0.5), the H values for the obtained levels tend to saturate at 0.1, whereas
those corresponding to the original levels tend to 0.

The benchmark analysis provides a strong validation for our hierarchy detection method.

In order to investigate its applicability in uncovering the latent hierarchical structure of

real-world networks, particularly in brain networks, we consider three neuronal systems

that have been studied in the previous chapters of this thesis. In this chapter we report

findings from the preliminary analysis of: (i) Caenorhabditis elegans somatic nervous sys-

tem, (ii) structural connectome of the macaque brain, and (iii) structural connectome of

the human brain (see Methods for the details of the network data).

The hierarchical arrangement of levels obtained from one of the 200 realizations of
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H-maximization for the case of the C. elegans nervous system is shown in Fig. 5.3 (a-

b). The spatial representation of the neurons (colored according to their levels) and their

connections across the anterior-posterior axis (head to tail) shows the spatial configuration

of the hierarchical levels. The network is arranged into 14 levels, with the initial levels (1

to 4) mostly confined around the tail region, and which appear to predominantly consist

of interneurons. Intriguingly, the following sequence of levels (5 to 10) are located around

the very opposite end of the nervous system, viz., the head region. The magnified view of

the head region in Fig. 5.3 (b) shows a large diversity in the type of cells in these levels but

sensory neurons are relatively predominant. The subsequent terminal levels (11 to 14) are

spread across the ventral nerve chord, which is known to mostly consist of motor neurons

that help the organism in locomotion. The hierarchical levels vary considerably in size

(within an order of magnitude) as shown in Fig. 5.3 (c), upper panel, which displays the

average number of neurons in each level, as well as its variation, over all 200 realizations.

These quantities are also shown separately for each neuron type (viz. sensory, inter- and

motor neurons). We observe that the predominance of motor neurons in the terminal

levels is consistent across all realizations. A more illuminating scenario is revealed from

the composition of each level in terms of the types of constituent neurons, as shown in

Fig. 5.3 (c), lower panel. The average share of the neurons of a particular type within

each level (expressed in fractions) serves as a functional characterization for the levels.

The composition of the levels appear to be largely consistent over all the realizations, as

indicated by the variation of the fractions across realizations (shaded region). Surprisingly,

in all of the realizations of optimal level partitionings obtained from the method we find

that the initial levels are predominantly composed of interneurons, while the following

intermediate levels are dominated by sensory neurons, which in turn are followed by levels

that are mostly motor neurons. This is consistent with observations from Fig. 5.3 (a-b),

which corresponds to just one out of 200 realizations. The adjacency matrix for C. elegans

neuronal connectivity shown in Fig. 5.3 (d) illustrates the dense inter-level connectivity

between consecutive levels, which is characteristic of a strongly hierarchical organization.

Furthermore, the robustness of hierarchical description of the network with respect to
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Figure 5.3: Hierarchical structure of the C. elegans somatic nervous system. (a)
Planar projection of the spatial representation of the Caenorhabditis elegans neuronal network
underlying the somatic nervous system along the anterior-posterior axis (head and tail are indi-
cated), where each node represents a neuron and each link represents a synapse or a gap-junction.
The shape of the nodes indicates the neuron type, viz. sensory neurons (circles), interneurons
(triangles) or motor neurons (squares).
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Figure 5.3 (previous page): The node color represents the hierarchical level of the corre-
sponding neuron, as obtained from one of the realizations of hierarchy detection method (see the
legend above). The links are colored in accordance with the corresponding source node. Note
that the initial levels are found near the tail region (nodes colored in blue shades), the mid-levels
are located in the head region (nodes colored in green shades), and the terminal levels are spread
across the ventral nerve cord, comprising mostly motor neurons (nodes colored in red shades).
(b) A magnified view of the head region that is enclosed by the broken lines in panel (a). Note
the high density of connections between neurons of consecutive levels (mostly levels 7 and 8).
(c) Variation in the sizes of levels, and their composition, in terms of neuronal type, determined
using the hierarchy detection method over an ensemble of 200 realizations. The upper panel
shows the absolute number of neurons in each level, where the solid curve represents the mean
and the translucent band represents the standard deviation across all realizations. The number
of sensory, inter and mirror neurons are represented by green, blue and red curves respectively,
while the black curve represents the total number of neurons in each level. The composition of
each level in terms of the constituent neurons is represented by fraction of each level occupied
by each type of neuron, as shown in the lower panel. Note that the initial levels are dominated
by interneurons, followed by levels with high dominance of sensory neurons, and the terminal
levels are almost entirely occupied by motor neurons. (d) The adjacency matrix representing the
C. elegans somatic nervous system, where nodes are rearranged according to the levels obtained
from one of the realizations using the hierarchy detection method. The white entries represent un-
weighted directed links and the connection density between neurons belonging to any two distinct
levels, as well as within-level connectivity for each level, is indicated by the brightness of the cor-
responding block in the matrix. Here, the high density of connections between consecutive levels
are indicative of the strongly hierarchical organization of the underlying network. (e) Variability
in the hierarchical organization obtained across all the realizations of hierarchy detection. The
fraction of simulated annealing realizations fSA in which a particular neuron (abscissa) is placed
in a given level (ordinate) is indicated by the color coding provided in the legend. The neurons
are arranged according to the levels obtained from one of the realizations using the hierarchy
detection method, and is used as a reference to compare all other realizations. We observe that
there is a significant number of neurons whose membership in their respective levels are highly
consistent across different realizations, as indicated by the high values of fSA. This indicates
a robust hierarchical organization with an underlying sequence of neuronal connectivity at the
mesoscopic level (see the diagonal arrangement of yellow-shaded blocks across the levels).

all realizations is shown in Fig. 5.3 (e). The frequency with which a particular neuron

appears in a given level over different realizations (expressed in terms of the fraction of

realizations fSA), shows that a significant number of neurons consistently appear in the

same level. This implies that even though the distinct partitionings obtained from all real-

izations might differ marginally at the microscopic level of few nodes, those partitionings

are largely in agreement at the mesoscopic level. This strongly suggests that there is an
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inherent hierarchy in the neuronal connectivity of the C. elegans nervous system at the

mesoscopic level, collectively represented by all the degenerate solutions obtained from the

many realizations of our method.

The hierarchical analysis of the macaque brain network is shown in Fig. 5.4. In com-

parison to the C. elegans nervous system, the spatial configuration of the 17 hierarchical

levels in the macaque connectome exhibits a much more spatially contiguous arrangement

in that the sequentially adjacent levels also appear to be spatially adjacent (as seen in

Fig. 5.4 (a)). We observe a contiguous progression of levels from the anterior to poste-

rior region (see the sagittal section in top right panel), starting from the prefrontal cortex

(nodes shown in blue shades) across the parietal lobe, and up to the occipital lobe. From

the occipital lobe the subsequent levels progress in the reverse direction across the temporal

lobe to finally terminate in the prefrontal cortex (nodes shown in red). Intriguingly, both

the initial and the terminal levels are located in the frontal lobe. The adjacency matrix

showing the dense inter-level connections illustrate the strongly hierarchical organization in

the macaque connectome, which is visually even more apparent than that in the C. elegans

neuronal network (Fig. 5.3 (d)). Finally in Fig. 5.4 (c), the frequency of occurrence for each

of the brain regions in different levels that are obtained across all the realizations shows an

extremely robust partitioning that is largely invariant across realizations. Almost all brain

regions show a high frequency of occurrence in their respective levels. Comparing this with

the scenario in Fig. 5.3 (e) suggests that the hierarchy in the macaque connectome is far

more robust than that of the C. elegans nervous system.
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Figure 5.4: Hierarchical structure of the macaque brain network. (a) Planar projections
of the spatial representation for the structural connectivity of the macaque brain hemisphere (as
described in Chapter 3) on the horizontal (left panel), sagittal (top right panel) and coronal
(bottom right) planes. Each node represents a brain region and links represent directed axonal
tracts between the brain regions.
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Figure 5.4 (previous page): The size of the nodes indicate the spatial volumes occupied by
corresponding brain regions and color of the nodes represent their respective hierarchical levels
obtained from one of the realizations of hierarchy detection method (see legend). The links are
colored in accordance with the corresponding source node. (b) The adjacency matrix representing
the macaque connectome, where nodes (brain regions) are rearranged according to the levels
obtained from one of the realizations using the hierarchy detection method. The white entries
represent unweighted directed links and the connection density between brain regions belonging
to any two distinct levels, as well as within-level connectivity for each level, is indicated by the
brightness of the corresponding block in the matrix. Here, the high density of connections seen
between consecutive levels are indicative of the strongly hierarchical organization in the underlying
network. (c) Variability in the hierarchical organization obtained across all the realizations of
hierarchy detection. The fraction of simulated annealing realizations fSA in which a particular
brain region (abscissa) is placed in a given level (ordinate) is indicated by the color coding provided
in the legend. The brain regions are arranged according to the levels obtained from one of the
realizations using the hierarchy detection method, and is used as a reference to compare all other
realizations. We observe that almost all brain regions display a highly consistent membership in
the respective levels across different realizations, as indicated by high values of fSA. This indicates
a highly robust hierarchical organization with an underlying sequence of brain connectivity at
the mesoscopic level (see the diagonal arrangement of yellow-shaded blocks across the levels).

The final network whose hierarchical organization we analyzed in this study is the

“basal” component of the representative human brain network, as described in Chapter

4 of this thesis. The basal network, as determined from the cohort study in Chapter 4,

comprises the ubiquitous structural connections, i.e., connections that are seen to occur in

all the individuals of the cohort, and which are distinguished by extremely low variability

of connection weights across individuals (see Methods). The analysis of the hierarchy

of the basal network is hence expected to be of more general applicability as compared

to, for instance, analyzing a connectome obtained from a single individual. Fig. 5.5 (a)

shows the spatial configuration of the hierarchical levels. The first striking observation

is that the spatial arrangement of levels across the left and the right hemispheres are

qualitatively distinct from each other, such that the directions of level progression in the

two hemispheres are orthogonal to each other. Although the levels are spatially contiguous

in both the hemispheres, the levels in left hemisphere progress across the anterior-posterior

direction, i.e. from the frontal lobe to the left temporal lobe eventually to the occipital lobe

(see sagittal section, top right panel), while in the right hemisphere, the levels progress
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Figure 5.5: Hierarchical structure of the human brain network. (a) Planar projections
of spatial representations for the structural connectivity of the “basal” network from the human
connectome (as described in Chapter 4) on the horizontal (left panel), sagittal (top right panel)
and coronal (bottom right) planes. Each node represents a brain region and links represent axonal
tracts between the brain regions.
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Figure 5.5 (previous page): The color of the nodes represent their respective hierarchical levels
obtained from one of the realizations of the hierarchy detection method (see legend). The links are
colored in accordance with the corresponding source node. (b) The adjacency matrix representing
the basal network of the human connectome where nodes (brain regions) are rearranged according
to the levels obtained from one of the realizations using the hierarchy detection method. The
white entries represent unweighted directed links and the connection density between brain regions
belonging to any two distinct levels, as well as within-level connectivity for each level, is indicated
by the brightness of the corresponding block in the matrix. The high density of connections seen
between consecutive levels are indicative of the strongly hierarchical organization of the underlying
network. (c) Variability in the hierarchical organization obtained across all the realizations of
hierarchy detection. The fraction of simulated annealing realizations fSA in which a particular
brain region (abscissa) is placed in a given level (ordinate) is indicated by the color coding
provided in the legend. The brain regions are arranged according to the levels obtained in one of
the realizations of the hierarchy detection method, and is used as a reference to compare all other
realizations. We observe that a significant number of brain regions display a highly consistent
membership in the respective levels across different realizations, as indicated by high values of
fSA. This indicates a highly robust hierarchical organization with an underlying sequence of
brain connectivity at the mesoscopic level (see the diagonal arrangement of yellow-shaded blocks
across the levels).

across the dorsal-ventral direction, i.e., from right temporal lobe to the parietal lobe (see

coronal section, bottom right panel). This lateral asymmetry in the hierarchical arrange-

ment is particularly intriguing. The strength and robustness of the hierarchy in the human

brain network is shown in Fig. 5.5 (b-c). As in the previously examined cases, we observe

a dense inter-level connectivity between consecutive levels (Fig. 5.5 (b)), and a significant

number of brain regions occurring consistently in their respective levels across many re-

alizations (Fig. 5.5 (c)). The robustness however, is far lower than that of the macaque

brain network (see Fig. 5.4 (c)).

In Table 5.1, we display a comparison between the three connectomes analyzed above,

viz., C. elegans, macaque and human, in terms of the three main parameters characterizing

their hierarchical organization: the hierarchy index H, the ratio ρ/ρcon and the total

number of levels Nlevels. The mean and standard deviation of these quantities, computed

over 200 realizations, are displayed in each case. The results suggest that the hierarchy in

the C. elegans connectome appears to be relatively weaker than the other two, as indicated

by lower values of H and higher values of ρ/ρcon.
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Table 5.1: Quantitative comparison between the hierarchical structures of neu-
ronal/brain networks of C. elegans, macaque and human

C. elegans Macaque Human
H 0.332± 0.003 0.423± 0.001 0.422± 0.005
ρ/ρcon 0.173± 0.013 0.133± 0.010 0.111± 0.010
Nlevels 14.90± 0.95 16.86± 0.86 17.74± 1.86

5.4 Discussion

In this chapter we propose a novel paradigm for studying the mesoscopic organization

of complex networks, viz., their hierarchical organization. This notion of hierarchy is

distinct from the hierarchy manifest in the hierarchical modular organization of net-

works [256, 117, 257, 10]. Our method follows an approach broadly similar to modularity

detection algorithms in that it aims to identify mesoscopic sub-components (viz., hierarchi-

cal levels in our case). However, the connectivity among the levels of a hierarchical network

strictly adhere to their sequential arrangement, where only the adjacent levels are densely

connected to each other. Hence, while modularity represents a structural compartmen-

talization within a network, the hierarchy represents a “sequentialization” of interactions

between the network nodes. In order to quantify the extent of hierarchy in a given net-

work, we have defined a new measure, viz., the hierarchy index. Using the this index as the

quantity to be optimized, we have developed a heuristic simulated annealing routine that

can identify the optimal layer partitioning and their corresponding sequential arrangement

of levels which would maximize the hierarchy index.

Along with a detailed description of our hierarchy detection method, in this chapter we

report results from our preliminary analysis of some of the brain networks in terms of this

still-developing paradigm. Although preliminary, the results shown here, demonstrate the

potential for opening up new directions of inquiry regarding the structural organization

of brain networks. In addition to demonstrating that the three brain networks analyzed

here are strongly hierarchical, having well defined sequentially arranged levels, we also

showed that these hierarchical levels are robust and largely invariant across realizations.

This suggests that the observed levels are an inherent feature of the network, as opposed
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to being an artifact of the specific method that we implement here.

Our findings from the analysis of the C. elegans neuronal network is particularly in-

triguing. We observed a counter-intuitive trend in the composition of the underlying hi-

erarchical levels in terms of sensory, inter- and motor neurons. It is conventionally known

that sensory neurons act as the ’doorway’ of the nervous system to the external stimuli,

interneurons behave as the intermediate processors of the sensory stimuli, and the mo-

tor neurons function as the actuators of the organisms response to the stimuli. Given

these broad functional descriptions, one would expect the initial levels of the hierarchi-

cal arrangement to be composed primarily of sensory neurons, the subsequent levels to

comprise mainly of inter-neurons, which in turn would be followed by levels consisting of

motor neurons. However, in contrast to expectations, we observe the predominance of sen-

sory neurons in the intermediate levels instead of the initial levels, while the interneurons

dominated the levels that preceded the sensory-dominated levels in the hierarchy. This

reveals a very novel structural aspect of the C. elegans nervous system, especially from the

perspective of information processing.

The spatially contiguous progression of levels seen in the macaque and human brain

networks are equally intriguing for their own specific reasons. In the macaque brain net-

work (comprising a single hemisphere), we observe potentially two separate streams of

information processing that progress in parallel along the anterior-posterior axis. One

stream extends from the frontal lobe to the occipital lobe via the parietal lobe, whereas

the other extends from the occipital lobe to frontal lobe via the temporal lobe. The func-

tional implications of this architecture needs to be investigated thoroughly, along the same

lines as our modular analysis of the macaque brain in Chapter 3. Similarly, the spatial

progression of levels in the human brain (which comprises both the hemispheres) reveals

a mutually orthogonal arrangement in the two hemispheres. In the left hemisphere, the

levels progress along the anterior-posterior axis from the frontal lobe to occipital lobe,

whereas in the right hemisphere the levels progress along the dorsal ventral axis from the

right temporal lobe to the parietal lobe. In future work, it would be intriguing to see how

this orthogonal arrangement of hierarchically connected levels in the left and right hemi-
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spheres may be related to the specific functional specializations of the two hemispheres.

One instance of such functional specialization is speech and language processing, which is

primarily executed in the left hemisphere. One could potentially investigate whether the

left-right asymmetry in the hierarchical organization in the human brain manifests in such

functional specialization.
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Chapter 6

Conclusions

“I am a brain, Watson. The rest of me is a mere appendix. Therefore, it is the brain I

must consider.”

–Arthur Conan Doyle, “The Adventure of the Mazarin Stone”

The work described in this thesis has as its primary focus the investigation of different

aspects of structural connectivity in three diverse neuronal systems, viz., the somatic ner-

vous system of the nematode C. elegans and the macaque and human brains. The central

underlying idea is that as the wiring between neurons and brain areas provides the anatom-

ical basis for behavior and cognition, by uncovering patterns in the connectome we can gain

insights about how brains function, and about the factors that shape the organization of

the network. In the following subsections, we summarize the key results that are reported

in the thesis, and conclude by providing a glimpse of possible future investigations that

are suggested by our work.
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6.1 Summary of main results

Developmental trajectory of Caenorhabditis elegans nervous sys-

tem governs its structural organization

A central problem of neuroscience involves uncovering the principles governing the organi-

zation of nervous systems which ensure robustness in brain development. The nematode

Caenorhabditis elegans provides us with a model organism for studying this question. In

this chapter, we focus on the invariant connection structure and spatial arrangement of

the neurons comprising the somatic neuronal network of this organism to understand the

key developmental constraints underlying its design. We observe that neurons with cer-

tain shared characteristics - such as, neural process lengths, birth time cohort, lineage

and bilateral symmetry - exhibit a preference for connecting to each other. Recognizing

the existence of such homophily and their relative degree of importance in determining

connection probability within neurons (for example, in synapses, symmetric pairing is the

most dominant factor followed by birth time cohort, process length and lineage) helps in

connecting specific neuronal attributes to the topological organization of the network. Fur-

ther, the functional identities of neurons appear to dictate the temporal hierarchy of their

appearance during the course of development. Providing crucial insights into principles

that may be common across many organisms, our study shows how the trajectory in the

developmental landscape constrains the structural organization of a nervous system.

Mesoscopic architecture enhances communication across the Macaque

connectome revealing structure-function correspondence in the

brain

Analyzing the brain in terms of organizational structures at intermediate scales provides an

approach to negotiate the complexity arising from the interactions between its large num-

ber of components. Focusing on a wiring diagram that spans the cortex, basal ganglia and
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thalamus of the Macaque brain, we provide a more insightful description of the topological

architecture at the mesoscopic level of one of the most well-studied of mammalian connec-

tomes. The robust modules we identify each comprise densely inter-connected cortical and

sub-cortical areas that complement each other in carrying out specific cognitive functions.

While the areas in each module are broadly spatially contiguous, we find that this phys-

ical proximity cannot by itself explain the modular organization, as a similar mesoscopic

structure can be obtained even after factoring out the effect of distance constraints on the

connectivity. We observe that the distribution profile of brain areas, classified in terms

of their intra- and inter-modular connectivity, is conserved across the principal cortical

subdivisions, as well as, sub-cortical structures. In particular provincial hubs, which have

significantly higher number of connections with other members of their module, but rel-

atively less well-connected to other modules, are the only class that exhibits homophily,

i.e., a discernible preference to connect to each other. By considering a process of diffusive

propagation between areas, we demonstrate that this architecture facilitates rapid commu-

nication across the connectome. Our work, which supplements the topological information

about the Macaque connectome with that of physical locations, volumes and functions of

the constituent areas collated by us, suggests a counter-intuitive role played by the modular

architecture of the brain in promoting global interaction instead of aiding in information

encapsulation as might be assumed.

Invariances and diversity in the human structural connectome :

A cohort study

In order to understand the complex cognitive functions of the human brain, it is essential

to study the structural macro-connectome, i.e., the wiring of different brain regions to

each other through axonal pathways, that has been revealed by the ongoing progress in

non-invasive imaging techniques such as diffusion tensor imaging (DTI). However, relating

structure to function is complicated by the high degree of plasticity and cross-population

variability that are seen in human brains, motivating a search for invariant patterns in the
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connectivity. At the same time, intra-species variability can provide information about

the generative mechanisms at work. In this chapter we consider an ensemble of human

structural connectomes obtained from 196 subjects and analyze the connection topology

and link-weight distribution for each of these. By demonstrating a correspondence between

the occurrence frequency of individual links and their average weight across the population,

we show that the “wiring” process in the human brain is not independent of the “weighting”

process. Furthermore, using the specific distribution of connection weights associated with

each link over the entire population, we show that a single parameter that is specific to a

link can account for its frequency of occurrence, as well as, the variation in its weight across

different subjects. This parameter provides a basis for “rescaling” the link weights in each

connectome, allowing us to eventually obtain a generic “representative” network for the

human brain, that is more informative than simply averaging over all connectomes. By

implementing a well known dynamic model for neural population activity on each of the

vertices in the structural connectome to simulate the functional connectome, and comparing

this with the empirical functional network, it is seen that the “rescaling” procedure yields

a closer structure-function correspondence in the human brain. We also show that the

representative network is divided into two components, a “basal” network that is stable

across the population, and a highly variable “superstructure” network.

The Hierarchy Index: A tool for revealing the sequential arrange-

ment of processing levels in brain networks

The mesoscopic organization of complex networks crucially affects their function. One such

feature shown by many networks is hierarchy, involving dense feed-forward and feed-back

connectivity between nodes occurring in sequentially arranged levels. Such an organization

is associated with circuits in the brain that process information, e.g., in visual pathways,

and has been suggested to occur in circuits responsible for executing collective neuronal

firing in a precise temporal sequence, e.g., HVC neurons in songbird. However, there are

no well-accepted methods for identifying such hierarchical structures from the network
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topology alone. In this chapter, we propose a novel approach to determine the hierarchy in

any given network, revealing the underlying levels and their sequential arrangement. We

define a Hierarchy Index to quantify the degree of hierarchy present in a network. We also

propose an optimization procedure using simulated annealing to obtain the optimal hier-

archical configuration which would yield the maximal value of the Hierarchy Index. After

validating the accuracy of the proposed method using synthetic benchmark networks, we

use it to determine the hierarchical arrangement embedded within the C. elegans somatic

nervous system, the macaque connectome and the human connectome. We find that all

three networks are strongly hierarchical having robust levels (consistent across many real-

izations of the optimization routine), the hierarchy of the Macaque connectome being the

most robust among the three. Our results provide a basis for possible future investigations

into the functional implications of the specific hierarchical organization of a brain network.

6.2 Outlook

The systems analyzed in this thesis, viz., C. elegans, macaque and human structural con-

nectomes, vary greatly in terms of their length scale, complexity, as well as, resolution.

While the C. elegans connectivity is described at the neuronal level and encompasses the

entire somatic nervous system with a description of all the chemical synapses and electrical

gap junctions, the macaque brain is described at a lower resolution, comprising brain areas

belonging to an entire hemisphere that are connected by directed, unweighted links. For

the human brain, we analyze an ensemble of structural connectomes where each network

comprises areas across both the hemispheres that are connected by links whose weights,

as well as, connection topology is available. This diversity allows us to address distinct

scientific questions using each of the systems.

The intra-species invariability of neuronal connectivity in C. elegans renders it suitable

for addressing the “wiring problem”, i.e., how the genetic program and developmental

processes of an organism governs the structural layout of its neuronal network. We uncover

a set of key strategies that may connect the level at which the molecular mechanisms of
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gene expression operate with that at which the resulting neuronal network in the adult

organism becomes manifest. We have shown that genetic relatedness plays a significant

role in deciding connectivity. A natural extension of this investigation would be to consider

the dynamics of gene regulation within the cells in order to bridge the gap between the

machinery of gene expression and the wiring of the neuronal network. A similar attempt

has been made for brain networks of rodents [269, 270]. This bridging of networks that

occur at two distinct scales can be expected to be more fruitful in the case of C. elegans

as we not only have complete information about the wiring diagram, but we also know the

entire lineage tree for all the cells of the organism. The lineage relation between neurons

would be a key link that connects the gene expression within neurons and the resultant

neuronal connectivity.

Our analysis of the macaque brain reveals a very significant property of the connec-

tome that can be attributed to the specific mesoscopic arrangement of connectivity within

and between different modules, viz., the facilitation of rapid communication at both the

local and global scales. This suggests a novel evolutionary purpose for the emergence of

modularity in brain networks, apart from roles which have traditionally been attributed

to it, such as information encapsulation or robustness. This raises the question as to

whether this property may be conserved across species? For this purpose, one would need

to examine brain networks of other organisms in terms of their intra- and inter-modular

connectivity. For example, if one finds that networks as different as that of the C. elegans

somatic nervous system and the human brain have similar mesoscopic arrangement that

enables rapid communication across the network compared to randomized surrogate en-

sembles, it would establish more strongly that the modular organization of nervous systems

that is observed across species is specifically designed for fast transmission of information.

Further, as we discovered that the structural modules seen in the macaque brain are not

a consequence of spatial constraints, it would be of interest to know whether the modules

in the human structural connectome are also spatially independent. The representative

network for human brain obtained from our study would be a suitable starting point for

such an investigation.
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Apart from looking for the spatial independence of modules in the representative net-

work of human brain, one can undertake a study of the modular organization in human

brains across the population. We have only scratched the surface by analyzing the vari-

ability in connection weights of the underlying links. The next step would be to analyze

the cross-population variation in the modular structures in the human connectome. Since

the networks in this case would be weighted, it would add an extra layer of complexity

to the mesoscopic analysis and determination of structure-function correspondences. As

the human brain connectome comprises both the hemispheres, another possible aspect to

study in the human connectome could be the lateralization of the network across left and

right hemispheres. This could be done by analyzing the degree of left-right asymmetry

within an individual brain network and also across the population. While functional later-

alization has been extensively studied, i.e., how left and right hemispheres are specialized

for separate functions, there are as yet no extensive and systematic studies of structural

lateralization.

The most pressing question however, which calls for a separate investigation, is: how

are the structural links correlated to each other across the individual brains of human

subjects ? We have already shown that the Poisson distribution of connection weights

suggests that the generative process involves discrete independent random events. In this,

we have not considered that the links can influence each other. As we know that various

cognitive functions are executed through brain circuits involving a subset of brain regions

and their connections, it may be reasonable to expect that the link weights of connections

belonging to a specific circuit are correlated across the population. Thus, if link (i, j)

and link (k, l) belong to the same circuit corresponding to a particular function, we may

expect their weights across different individuals to be significantly correlated. Conversely,

observation of significant correlations among a pair of links might indicate that these links

belong to a specific circuit. Using data analysis tools such as Principal Component Analysis

one can search for such correlations. However, a major bottleneck for such a study would

be the paucity of the number of connectomes (≈ 200) compared to the number of links

(≈ 4000) which would impair the statistical robustness of the findings.
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Finally, using our proposed method for determining the hierarchical organization of

networks, a large number of systems can be investigated. A detailed study of the functional

implications of the observed hierarchical levels in the three systems we have analyzed can

be a separate study in its own right. Thus, the results presented here could be the harbinger

of a much more detailed understanding of the implications of the hierarchical organization

in nervous systems.
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Summary

Networks, i.e., systems whose structure is completely described by specifying a set of

vertices (or nodes), and the set of edges (or links) connecting these vertices to each other,

are ubiquitous in nature. Among the large number of complex networks seen in the natural

world, nervous systems, comprising neurons that communicate with each other through

chemical (via synapses) or electrical (via gap junctions) means, are particularly fascinating

because of the rapid and precise transfer of information they allow between different parts.

Thus, explaining how the structural organization of networks in the brain aids in the

attainment of its functional goals has become the aim of “connectomics”, the collective

term given to efforts at understanding various facets of the topological arrangement of

connections between the cells and regions comprising the brain.

In this thesis, we have analyzed the network underlying the nervous system of different

organisms and asked the following questions:

i. What are the key features that characterize the connection topology across the entire

brain ?

ii. Can such structural features of the network be related to the functional goals of the

nervous system (i.e., the “structure-function” relationship) ?

iii. What constraints ensure that a relatively invariant topological organization of the

connections between neurons emerge over the course of development (i.e., the “wiring

problem”) ?

The different systems that we have considered in this thesis range between the somatic
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nervous system of the hermaphrodite nematode Caenorhabditis elegans, the network of

cortical and sub-cortical areas in the brain of the rhesus macaque monkey and an ensem-

ble of networks of the whole brain reconstructed from diffusion tensor imaging of human

subjects.

Our key findings include the determination of different kinds of homophily at play in the

C. elegans nervous system. These tendencies of neurons with certain shared traits to con-

nect to each other over the course of development appear to serve as key constraints during

development that shape the structural organization of the nervous system. Our mesoscopic

analysis of the macaque brain network reveals a robust modular structure, with each mod-

ule corresponding to specific sensory modality or motor function. We reveal an underlying

pattern of inter- and intra modular connectivity that promotes significantly faster commu-

nication across the network compared to other equivalent networks. Through analysis of

a cohort of human structural brain networks we obtain a “representative network” char-

acterizing the fundamental wiring patterns of the human brain. More informative than

a simple averaging over the networks, this generic diagram indicates the frequency of oc-

currence and connection weight variability across the population for each link as well as

provides better correspondence between the structural and functional connectivity. In this

thesis we also propose an entirely new approach to analyze a specific type of mesoscopic or-

ganization in networks, viz., hierarchy. Using our hierarchy detection method, we uncover

a robust arrangement of hierarchical levels in different nervous systems. Our analysis aims

at contributing to a novel framework for understanding the structure-function relationship

in networks of the brain.
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Appendix A

The following tables and figures comprise the supporting information for the analysis de-

scribed in Chapter 2.

Table A1: Process length homophily among neurons segregated into groups compris-
ing cells with long, medium and short processes. The extent of homophily is quantified by
the modularity measure Q computed over the different classes of neurons (which are considered
to be the communities or modules for the purpose of calculation of Q). The empirical Q values
are compared with those calculated from two different types of randomized surrogate ensembles.
Members of one of these ensembles are constructed by randomly shuffling the process length cat-
egories of the empirical network keeping the network connections invariant, while those belonging
to the other ensemble are obtained by degree preserved randomization of the empirical network
with the cell positions and process lengths kept unchanged (top and center, respectively). Note
that the Q values are significantly higher than that expected by chance (as seen for the sur-
rogate ensembles) for the entire network, as well as, individually within each of the different
process length categories, suggesting process length homophily in both synaptic and gap-junction
connections between neurons. (Bottom) Note that significantly higher values of class-specific Q
(compared to the randomized surrogate) occur only when we consider pairs of neurons belonging
to the same class, further underlining the process length homophily.

Comparison of Q value for empirical network and ensemble of

surrogate networks obtained by randomly shuffling process lengths of

neurons keeping network unchanged

Synaptic Gap junction

Process Q (empirical) Q (randomized) Q (empirical) Q (randomized)

Long 0.042 -0.001 ± 0.003 0.073 -0.001 ± 0.004

Medium 0.016 -0.001 ± 0.003 0.022 -0.001 ± 0.005

Short 0.067 -0.001 ± 0.005 0.085 -0.002 ± 0.008

All 0.125 -0.003 ± 0.008 0.18 -0.003 ± 0.013
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Table A1 continued from previous page

Comparison of Q value for empirical network and ensemble of

surrogate networks obtained by randomly shuffling connections keeping

process length, positions of cell bodies and node degree unchanged

Synaptic Gap junction

Process Q (empirical) Q (randomized) Q (empirical) Q (randomized)

Long 0.042 0.000 ± 0.003 0.073 -0.012 ± 0.007

Medium 0.016 0.001 ± 0.002 0.022 0.002 ± 0.005

Short 0.067 0.003 ± 0.005 0.085 -0.006 ± 0.008

All 0.125 -0.004 ± 0.008 0.18 -0.016 ± 0.014

Z-scores of class specific Q values obtained by comparing empirical

values with surrogate ensemble of randomized networks obtained by

randomly shuffling connections keeping process length, positions of

cell bodies and node degree unchanged

Synaptic

Short Medium Long

Short 14.77 -6.07 -14.73

Medium -6.43 5.57 2.13

Long -13.93 1.67 15.39
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Table A1 continued from previous page

Gap junction

Short Medium Long

Short 11.16 -3.34 -13.97

Medium -3.34 4.55 -1.5

Long -13.97 -1.5 16.27

Table A2: Birth cohort homophily among neurons segregated into groups comprising
cells differentiating before and after hatching (early and late-born, respectively). The
extent of homophily is quantified by modularity Q computed over the different classes of neurons
(which are considered to be the communities or modules for the purpose of calculating Q).
(Top) The empirical values are compared with those calculated from the corresponding surrogate
ensemble obtained by degree preserved randomization with the cell positions and process lengths
of neurons kept unchanged. Note that the Q values are significantly higher than that expected by
chance (as seen from the surrogate ensemble) for the entire network, as well as, individually for
the early-born and late-born cohorts. This is indicative of birth cohort homophily for synaptic, as
well as, gap-junctional connections between neurons. (Bottom) The z-scores for class-specific Q
values computed with respect to the randomized surrogate ensemble. Significantly higher values
of Q occur only when we consider pairs of neurons belonging to the same category (early- or
late-born) and not for pairs where the constituent neurons belong to different categories, further
underlining the homophily.

Comparison of Q value for empirical network and ensemble of surrogate networks

obtained by randomly shuffling connections keeping process length, positions of

cell bodies and node degree unchanged

Synaptic Gap junction

Birth cohort Q (empirical) Q (randomized) Q (empirical) Q (randomized)

Early 0.044 0.010 ± 0.003 0.035 0.013 ± 0.005

Late 0.042 0.009 ± 0.003 0.035 0.002 ± 0.005

Total 0.087 0.02 ± 0.005 0.07 0.026 ± 0.011
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Table A2 continued from previous page

Z-scores of class specific Q values obtained by comparing empirical values with

surrogate ensemble of randomized networks obtained by randomly shuffling connections

keeping process length, positions of cell bodies and node degree unchanged

Synaptic

Early Late

Early 13.8 -13.57

Late -13.4 13.24

Gap junction

Short Medium

Early 4.2 -4.19

Medium -4.19 4.18

Table A3: For synaptically connected neurons, process length of the pre-synaptic
neuron primarily decides the average distance between the cell bodies. Statistically
significant deviation (measured in terms of z-score) between the average distance �d� of cell bodies
in pairs of connected neurons (having short, medium or long processes) and the average distance
�D� between any pair of neurons randomly sampled from the same process length categories. The
latter average is calculated over a set having the same number of pairs as for the set of connected
pairs. Note that except for two cases (pre-synaptic long process to post-synaptic short process
and pre-synaptic medium process to post-synaptic long process, shown in bold font), connections
between cells in all other process length categories tend to be much shorter than that expected
by chance, as indicated by z < 0.

Synapse

short medium long

short -19.71 -4.54 1

medium -12.03 -8.11 -0.69

long -7.84 1.41 -1.5
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Table A3 continued from previous page

Gap Jn.

short medium long

short -12.7 -7.65 -2.41

medium -7.65 -7.72 -4.1

long -2.41 -4.1 -1.61
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Table A4: Neurons belonging to the somatic nervous system of C. elegans segregated
into those which are born in the early (embryonic) and those born in the late (post-
embryonic) developmental bursts. The respective lineage information and functional descrip-
tion are also provided. Motor neurons are highlighted. We note that motor neurons that appear
early mostly innervate dorsal muscles, whereas, motor neurons that appear late primarily innervate
ventral muscles. All information shown here is obtained from WormAtlas [98].

Early Born Neurons

Neurons Lineage Description

ADAL AB plapaaaapp Ring interneuron

ADAR AB prapaaaapp Ring interneuron

ADEL AB plapaaaapa Anterior deirid, sensory neuron

ADER AB prapaaaapa Anterior deirid, sensory neuron

ADFL AB alpppppaa Amphid neuron

ADFR AB praaappaa Amphid neuron

ADLL AB alppppaad Amphid neuron

ADLR AB praaapaad Amphid neuron

AFDL AB alpppapav Amphid finger cell

AFDR AB praaaapav Amphid finger cell

AIAL AB plppaappa Amphid interneuron

AIAR AB prppaappa Amphid interneuron

AIBL AB plaapappa Amphid interneuron

AIBR AB praapappa Amphid interneuron

AIML AB plpaapppa Ring interneuron

AIMR AB prpaapppa Ring interneuron

AINL AB alaaaalal Ring interneuron

AINR AB alaapaaar Ring interneuron

AIYL AB plpapaaap Amphid interneuron

AIYR AB prpapaaap Amphid interneuron

AIZL AB plapaaapav Amphid interneuron

AIZR AB prapaaapav Amphid interneuron

ALA AB alapppaaa Neuron, sends processes laterally and along dorsal cord

ALML AB arppaappa Anterior lateral microtubule cell

ALMR AB arpppappa Anterior lateral microtubule cell
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Table A4 continued

ALNL AB plapappppap Neuron associated with ALM

ALNR AB prapappppap Neuron associated with ALM

ASEL AB alppppppaa Amphid neurons, single ciliated endings

ASER AB praaapppaa Amphid neurons, single ciliated endings

ASGL AB plaapapap Amphid neurons, single ciliated endings

ASGR AB praapapap Amphid neurons, single ciliated endings

ASHL AB plpaappaa Amphid neurons, single ciliated endings

ASHR AB prpaappaa Amphid neurons, single ciliated endings

ASIL AB plaapapppa Amphid neurons, single ciliated endings

ASIR AB praapapppa Amphid neurons, single ciliated endings

ASJL AB alpppppppa Amphid neurons, single ciliated endings

ASJR AB praaappppa Amphid neurons, single ciliated endings

ASKL AB alpppapppa Amphid neurons, single ciliated endings

ASKR AB praaaapppa Amphid neurons, single ciliated endings

AUAL AB alpppppppp Neuron, process runs with amphid processes but lacks ciliated ending

AUAR AB praaappppp Neuron, process runs with amphid processes but lacks ciliated ending

AVAL AB alppaaapa Ventral cord interneuron

AVAR AB alaappapa Ventral cord interneuron

AVBL AB plpaapaap Ventral cord interneuron

AVBR AB prpaapaap Ventral cord interneuron

AVDL AB alaaapalr Ventral cord interneuron

AVDR AB alaaapprl Ventral cord interneuron

AVEL AB alpppaaaa Ventral cord interneuron, like AVD but outputs restricted to anterior cord

AVER AB praaaaaaa Ventral cord interneuron, like AVD but outputs restricted to anterior cord

AVG AB prpapppap Ventral cord interneuron

AVHL AB alapaaaaa Neuron, mainly postsynaptic in ventral cord and presynaptic in the ring

AVHR AB alappapaa Neuron, mainly postsynaptic in ventral cord and presynaptic in the ring

AVJL AB alapapppa Neuron, synapses like AVHL/R

AVJR AB alapppppa Neuron, synapses like AVHL/R

AVKL AB plpapapap Ring and ventral cord interneuron

AVKR AB prpapapap Ring and ventral cord interneuron
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Table A4 continued

AVL AB prpappaap
Ring and ventral cord interneuron and an excitatory GABAergic motor

neuron for rectal muscles. Few synapses

AWAL AB plaapapaa
Amphid wing cells, neurons having ciliated sheet-like sensory

endings closely associated with amphid sheath

AWAR AB praapapaa
Amphid wing cells, neurons having ciliated sheet-like sensory

endings closely associated with amphid sheath

AWBL AB alpppppap
Amphid wing cells, neurons having ciliated sheet-like sensory

endings closely associated with amphid sheath

AWBR AB praaappap
Amphid wing cells, neurons having ciliated sheet-like sensory

endings closely associated with amphid sheath

AWCL AB plpaaaaap
Amphid wing cells, neurons having ciliated sheet-like sensory

endings closely associated with amphid sheath

AWCR AB prpaaaaap
Amphid wing cells, neurons having ciliated sheet-like sensory

endings closely associated with amphid sheath

BAGL AB alppappap Neuron, ciliated ending in head, no supporting cells, associated with ILso

BAGR AB arappppap Neuron, ciliated ending in head, no supporting cells, associated with ILso

BDUL AB arppaappp
Neuron, process runs along excretory canal and into ring,

unique darkly staining synaptic vesicles

BDUR AB arpppappp
Neuron, process runs along excretory canal and into ring,

unique darkly staining synaptic vesicles

CEPDL AB plaaaaappa Cephalic neurons, contain dopamine

CEPDR AB arpapaappa Cephalic neurons, contain dopamine

CEPVL AB plpaappppa Cephalic neurons, contain dopamine

CEPVR AB prpaappppa Cephalic neurons, contain dopamine

DA1 AB prppapaap Ventral cord motor neurons, innervate dorsal muscles

DA2 AB plppapapa Ventral cord motor neurons, innervate dorsal muscles

DA3 AB prppapapa Ventral cord motor neurons, innervate dorsal muscles

DA4 AB plppapapp Ventral cord motor neurons, innervate dorsal muscles

DA5 AB prppapapp Ventral cord motor neurons, innervate dorsal muscles

DA6 AB plpppaaap Ventral cord motor neurons, innervate dorsal muscles

DA7 AB prpppaaap Ventral cord motor neurons, innervate dorsal muscles
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Table A4 continued

DA8 AB prpapappp Ventral cord motor neurons, innervate dorsal muscles

DA9 AB plpppaaaa Ventral cord motor neurons, innervate dorsal muscles

DB1 AB plpaaaapp Ventral cord motor neurons, innervate dorsal muscles, reciprocal inhibitor

DB2 AB arappappa Ventral cord motor neurons, innervate dorsal muscles, reciprocal inhibitor

DB3 AB prpaaaapp Ventral cord motor neurons, innervate dorsal muscles, reciprocal inhibitor

DB4 AB prpappapp Ventral cord motor neurons, innervate dorsal muscles, reciprocal inhibitor

DB5 AB plpapappp Ventral cord motor neurons, innervate dorsal muscles, reciprocal inhibitor

DB6 AB plppaappp Ventral cord motor neurons, innervate dorsal muscles, reciprocal inhibitor

DB7 AB prppaappp Ventral cord motor neurons, innervate dorsal muscles, reciprocal inhibitor

DD1 AB plppappap Ventral cord motor neurons, reciprocal inhibitors, change synaptic pattern during L1

DD2 AB prppappap Ventral cord motor neurons, reciprocal inhibitors, change synaptic pattern during L1

DD3 AB plppapppa Ventral cord motor neurons, reciprocal inhibitors, change synaptic pattern during L1

DD4 AB prppapppa Ventral cord motor neurons, reciprocal inhibitors, change synaptic pattern during L1

DD5 AB plppapppp Ventral cord motor neurons, reciprocal inhibitors, change synaptic pattern during L1

DD6 AB prppapppp Ventral cord motor neurons, reciprocal inhibitors, change synaptic pattern during L1

DVA AB prppppapp Ring interneurons, cell bodies in dorsorectal ganglion

DVC C aapaa Ring interneurons, cell bodies in dorsorectal ganglion

FLPL AB plapaaapad Neuron, ciliated ending in head, no supporting cells, associated with ILso

FLPR AB prapaaapad Neuron, ciliated ending in head, no supporting cells, associated with ILso

HSNL AB plapppappa
Hermaphrodite specific motor neurons (die in male embryo),

innervate vulval muscles, serotonergic

HSNR AB prapppappa
Hermaphrodite specific motor neurons (die in male embryo),

innervate vulval muscles, serotonergic

IL1DL AB alapappaaa Inner labial neuron

IL1DR AB alappppaaa Inner labial neuron

IL1L AB alapaappaa Inner labial neuron

IL1R AB alaappppaa Inner labial neuron

IL1VL AB alppapppaa Inner labial neuron

IL1VR AB arapppppaa Inner labial neuron

IL2DL AB alapappap Inner labial neuron

IL2DR AB alappppap Inner labial neuron
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Table A4 continued

IL2L AB alapaappp Inner labial neuron

IL2R AB alaappppp Inner labial neuron

IL2VL AB alppapppp Inner labial neuron

IL2VR AB arapppppp Inner labial neuron

LUAL AB plpppaapap Interneuron, short process in post ventral cord

LUAR AB prpppaapap Interneuron, short process in post ventral cord

OLLL AB alppppapaa Lateral outer labial neurons

OLLR AB praaapapaa Lateral outer labial neurons

OLQDL AB alapapapaa Quadrant outer labial neuron

OLQDR AB alapppapaa Quadrant outer labial neuron

OLQVL AB plpaaappaa Quadrant outer labial neuron

OLQVR AB prpaaappaa Quadrant outer labial neuron

PDA AB prpppaaaa Motor neuron, process in dorsal cord, same as Y cell in hermaphrodite, Y.a in male

PHAL AB plpppaapp Phasmid neurons, chemosensory

PHAR AB prpppaapp Phasmid neurons, chemosensory

PHBL AB plapppappp Phasmid neurons, chemosensory

PHBR AB prapppappp Phasmid neurons, chemosensory

PLML AB plapappppaa Posterior lateral microtubule cells, touch receptor neurons

PLMR AB prapappppaa Posterior lateral microtubule cells, touch receptor neurons

PVCL AB plpppaapaa
Ventral cord interneuron, cell body in lumbar ganglion, synapses onto

VB and DB motor neurons, formerly called delta

PVCR AB prpppaapaa
Ventral cord interneuron, cell body in lumbar ganglion, synapses onto

VB and DB motor neurons, formerly called delta

PVPL AB plppppaaa Interneuron, cell body in preanal ganglion, projects along ventral cord to nerve ring

PVPR AB prppppaaa Interneuron, cell body in preanal ganglion, projects along ventral cord to nerve ring

PVQL AB plapppaaa Interneuron, projects along ventral cord to ring

PVQR AB prapppaaa Interneuron, projects along ventral cord to ring

PVR C aappa Interneuron, projects along ventral cord to ring

PVT AB plpappppa Interneuron, projects along ventral cord to ring

RIAL AB alapaapaa Ring interneuron, many synapses

RIAR AB alaapppaa Ring interneuron, many synapses
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RIBL AB plpaappap Ring interneuron

RIBR AB prpaappap Ring interneuron

RICL AB plppaaaapp Ring interneuron

RICR AB prppaaaapp Ring interneuron

RID AB alappaapa Ring motor neuron/interneuron, projects along dorsal cord

RIFL AB plppapaaap Ring interneuron

RIFR AB prppapaaap Ring interneuron

RIGL AB plppappaa Ring interneuron

RIGR AB prppappaa Ring interneuron

RIH AB prpappaaa Ring interneuron

RIML AB plppaapap Ring motor neuron

RIMR AB prppaapap Ring motor neuron

RIPL AB alpapaaaa Ring/pharynx interneuron, only direct connection between pharynx and ring

RIPR AB arappaaaa Ring/pharynx interneuron, only direct connection between pharynx and ring

RIR AB prpapppaa Ring interneuron

RIS AB prpappapa Ring interneuron

RIVL AB plpaapaaa Ring interneuron

RIVR AB prpaapaaa Ring interneuron

RMDDL AB alpapapaa Ring motor neuron/interneuron, many synapses

RMDDR AB arappapaa Ring motor neuron/interneuron, many synapses

RMDL AB alpppapad Ring motor neuron/interneuron, many synapses

RMDR AB praaaapad Ring motor neuron/interneuron, many synapses

RMDVL AB alppapaaa Ring motor neuron/interneuron, many synapses

RMDVR AB arapppaaa Ring motor neuron/interneuron, many synapses

RMED AB alapppaap Ring motor neuron

RMEL AB alaaaarlp Ring motor neuron

RMER AB alaaaarrp Ring motor neuron

RMEV AB plpappaaa Ring motor neuron

RMGL AB plapaaapp Ring motor neuron/interneuron

RMGR AB prapaaapp Ring motor neuron/interneuron

SAADL AB alppapapa Ring interneuron, anteriorly projecting process that runs sublaterally
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SAADR AB arapppapa Ring interneuron, anteriorly projecting process that runs sublaterally

SAAVL AB plpaaaaaa Ring interneuron, anteriorly projecting process that runs sublaterally

SAAVR AB prpaaaaaa Ring interneuron, anteriorly projecting process that runs sublaterally

SABD AB plppapaap
Ring interneuron, anteriorly projecting process that runs sublaterally,

synapses to anterior body muscles in L1

SABVL AB plppapaaaa
Ring interneuron, anteriorly projecting process that runs sublaterally,

synapses to anterior body muscles in L1

SABVR AB prppapaaaa
Ring interneuron, anteriorly projecting process that runs sublaterally,

synapses to anterior body muscles in L1

SIADL AB plpapaapa Receive a few synapses in the ring, have posteriorly directed processes that run sublaterally

SIADR AB prpapaapa Receive a few synapses in the ring, have posteriorly directed processes that run sublaterally

SIAVL AB plpapappa Receive a few synapses in the ring, have posteriorly directed processes that run sublaterally

SIAVR AB prpapappa Receive a few synapses in the ring, have posteriorly directed processes that run sublaterally

SIBDL AB plppaaaaa Similar to SIA

SIBDR AB prppaaaaa Similar to SIA

SIBVL AB plpapaapp Similar to SIA

SIBVR AB prpapaapp Similar to SIA

SMBDL AB alpapapapp Ring motor neuron/interneuron, has a posteriorly directed process that runs sublaterally

SMBDR AB arappapapp Ring motor neuron/interneuron, has a posteriorly directed process that runs sublaterally

SMBVL AB alpapappp Ring motor neuron/interneuron, has a posteriorly directed process that runs sublaterally

SMBVR AB arappappp Ring motor neuron/interneuron, has a posteriorly directed process that runs sublaterally

SMDDL AB plpapaaaa Ring motor neuron/interneuron, has a posteriorly directed process that runs sublaterally

SMDDR AB prpapaaaa Ring motor neuron/interneuron, has a posteriorly directed process that runs sublaterally

SMDVL AB alppappaa Ring motor neuron/interneuron, has a posteriorly directed process that runs sublaterally

SMDVR AB arappppaa Ring motor neuron/interneuron, has a posteriorly directed process that runs sublaterally

URADL AB plaaaaaaa Ring motor neuron

URADR AB arpapaaaa Ring motor neuron

URAVL AB plpaaapaa Ring motor neuron

URAVR AB prpaaapaa Ring motor neuron

URBL AB plaapaapa Neuron, presynaptic in ring, ending in head

URBR AB praapaapa Neuron, presynaptic in ring, ending in head
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URXL AB plaaaaappp Ring interneuron

URXR AB arpapaappp Ring interneuron

URYDL AB alapapapp Neuron, presynaptic in ring, ending in head

URYDR AB alapppapp Neuron, presynaptic in ring, ending in head

URYVL AB plpaaappp Neuron, presynaptic in ring, ending in head

URYVR AB prpaaappp Neuron, presynaptic in ring, ending in head

Late Born Neurons

Neurons Lineage Description

AQR QR.ap Neuron, basal body. not part of a sensillum, projects into ring

AS1 P1.apa Ventral cord motor neuron, innervates dorsal muscles, no ventral counterpart

AS2 P2.apa Ventral cord motor neuron, innervates dorsal muscles, no ventral counterpart

AS3 P3.apa Ventral cord motor neuron, innervates dorsal muscles, no ventral counterpart

AS4 P4.apa Ventral cord motor neuron, innervates dorsal muscles, no ventral counterpart

AS5 P5.apa Ventral cord motor neuron, innervates dorsal muscles, no ventral counterpart

AS6 P6.apa Ventral cord motor neuron, innervates dorsal muscles, no ventral counterpart

AS7 P7.apa Ventral cord motor neuron, innervates dorsal muscles, no ventral counterpart

AS8 P8.apa Ventral cord motor neuron, innervates dorsal muscles, no ventral counterpart

AS9 P9.apa Ventral cord motor neuron, innervates dorsal muscles, no ventral counterpart

AS10 P10.apa Ventral cord motor neuron, innervates dorsal muscles, no ventral counterpart

AS11 P11.apa Ventral cord motor neuron, innervates dorsal muscles, no ventral counterpart

AVFL P1.aaaa/ W.aaa Interneuron

AVFR P1.aaaa/ W.aaa Interneuron

AVM QR.paa Anterior ventral microtubule cell, touch receptor

DVB K.p
An excitatory GABAergic motor neuron/interneuron located in dorso-rectal ganglion.

Innervates rectal muscles

PDB P12.apa Motor neuron, process in dorsal cord, cell body in pre-anal ganglion

PDEL V5L.paaa Neuron, dopaminergic of postderid sensillum

PDER V5R.paaa Neuron, dopaminergic of postderid sensillum

PHCL TL.pppaa Neuron, striated rootlet in male, possibly sensory in tail spike
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PHCR TR.pppaa Neuron, striated rootlet in male, possibly sensory in tail spike

PLNL TL.pppap Interneuron, associated with PLM

PLNR TR.pppap Interneuron, associated with PLM

PQR QL.ap Neuron, basal body, not part of a sensillum, projects into preanal ganglion

PVDL V5L.paapa Neuron, lateral process adjacent to excretory canal

PVDR V5R.paapa Neuron, lateral process adjacent to excretory canal

PVM QL.paa Posterior ventral microtubule cell, touch receptor

PVNL TL.appp Interneuron/motor neuron, post. vent. cord, few synapses

PVNR TR.appp Interneuron/motor neuron, post. vent. cord, few synapses

PVWL TL.ppa Interneuron, posterior ventral cord, few synapses

PVWR TR.ppa Interneuron, posterior ventral cord, few synapses

RMFL G2.al Ring motor neuron/interneuron

RMFR G2.ar Ring motor neuron/interneuron

RMHL G1.l Ring motor neuron/interneuron

RMHR G1.r Ring motor neuron/interneuron

SDQL QL.pap Post. lateral interneuron, process projects into ring

SDQR QR.pap Ant. lateral interneuron, process projects into ring

VA1 W.pa Ventral cord motor neuron, innervates vent. body muscles

VA2 P2.aaaa Ventral cord motor neuron, innervates vent. body muscles

VA3 P3.aaaa Ventral cord motor neuron, innervates vent. body muscles

VA4 P4.aaaa Ventral cord motor neuron, innervates vent. body muscles

VA5 P5.aaaa Ventral cord motor neuron, innervates vent. body muscles

VA6 P6.aaaa Ventral cord motor neuron, innervates vent. body muscles

VA7 P7.aaaa Ventral cord motor neuron, innervates vent. body muscles

VA8 P8.aaaa Ventral cord motor neuron, innervates vent. body muscles

VA9 P9.aaaa Ventral cord motor neuron, innervates vent. body muscles

VA10 P10.aaaa Ventral cord motor neuron, innervates vent. body muscles

VA11 P11.aaaa Ventral cord motor neuron, innervates vent. body muscles

VA12 P12.aaaa
Ventral cord motor neuron, innervates vent. body muscles,

but also interneuron in preanal ganglion
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VB1 P1.aaap
Ventral cord motor neuron, innervates vent. body muscles,

also interneuron in ring

VB2 W.aap Ventral cord motor neuron, innervates vent. body muscles

VB3 P2.aaap Ventral cord motor neuron, innervates vent. body muscles

VB4 P3.aaap Ventral cord motor neuron, innervates vent. body muscles

VB5 P4.aaap Ventral cord motor neuron, innervates vent. body muscles

VB6 P5.aaap Ventral cord motor neuron, innervates vent. body muscles

VB7 P6.aaap Ventral cord motor neuron, innervates vent. body muscles

VB8 P7.aaap Ventral cord motor neuron, innervates vent. body muscles

VB9 P8.aaap Ventral cord motor neuron, innervates vent. body muscles

VB10 P9.aaap Ventral cord motor neuron, innervates vent. body muscles

VB11 P10.aaap Ventral cord motor neuron, innervates vent. body muscles

VC1 P3.aap
Hermaphrodite specific ventral cord motor neuron innervates vulval muscles

and ventral body muscles

VC2 P4.aap
Hermaphrodite specific ventral cord motor neuron innervates vulval muscles

and ventral body muscles

VC3 P5.aap
Hermaphrodite specific ventral cord motor neuron innervates vulval muscles

and ventral body muscles

VC4 P6.aap
Hermaphrodite specific ventral cord motor neuron innervates vulval muscles

and ventral body muscles

VC5 P7.aap
Hermaphrodite specific ventral cord motor neuron innervates vulval muscles

and ventral body muscles

VD1 W.pp Ventral cord motor neuron, innervates vent body muscles, reciprocal inhibitor

VD2 P1.app Ventral cord motor neuron, innervates vent body muscles, reciprocal inhibitor

VD3 P2.app Ventral cord motor neuron, innervates vent body muscles, reciprocal inhibitor

VD4 P3.app Ventral cord motor neuron, innervates vent body muscles, reciprocal inhibitor

VD5 P4.app Ventral cord motor neuron, innervates vent body muscles, reciprocal inhibitor

VD6 P5.app Ventral cord motor neuron, innervates vent body muscles, reciprocal inhibitor

VD7 P6.app Ventral cord motor neuron, innervates vent body muscles, reciprocal inhibitor

VD8 P7.app Ventralcord motor neuron, innervates vent body muscles, reciprocal inhibitor

VD9 P8.app Ventral cord motor neuron, innervates vent body muscles, reciprocal inhibitor
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VD10 P9.app Ventral cord motor neuron, innervates vent body muscles, reciprocal inhibitor

VD11 P10.app Ventral cord motor neuron, innervates vent body muscles, reciprocal inhibitor

VD12 P11.app Ventral cord motor neuron, innervates vent body muscles, reciprocal inhibitor

VD13 P12.app Ventral cord motor neuron, innervates vent body muscles, reciprocal inhibitor
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Table A5: Time of appearance of neurons in the course of development of the C.
elegans nervous system. The data has been manually transcribed from lineage charts provided
in references [66, 67]

Neuron Birth time (min.) Neuron Birth time (min.)

ADAL 420 ALML 420

ADAR 420 ALMR 420

ADEL 420 ALNL 480

ADER 420 ALNR 480

ADFL 280 AQR 1140

ADFR 280 AS01 1440

ADLL 300 AS02 1500

ADLR 300 AS03 1500

AFDL 300 AS04 1500

AFDR 300 AS05 1500

AIAL 300 AS06 1500

AIAR 300 AS07 1620

AIBL 280 AS08 1620

AIBR 280 AS09 1620

AIML 280 AS10 1620

AIMR 300 AS11 1620

AINL 320 ASEL 340

AINR 320 ASER 340

AIYL 300 ASGL 300

AIYR 300 ASGR 300

AIZL 420 ASHL 300

AIZR 420 ASHR 300

ALA 300 ASIL 400
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Table A5 continued from previous page

ASIR 400 AVM 1260

ASJL 340 AWAL 300

ASJR 340 AWAR 300

ASKL 380 AWBL 280

ASKR 380 AWBR 280

AUAL 340 AWCL 300

AUAR 340 AWCR 300

AVAL 300 BAGL 300

AVAR 300 BAGR 300

AVBL 300 BDUL 420

AVBR 300 BDUR 420

AVDL 280 CEPDL 380

AVDR 280 CEPDR 380

AVEL 300 CEPVL 400

AVER 300 CEPVR 400

AVFL 1560 DA01 300

AVFR 1500 DA02 320

AVG 300 DA03 300

AVHL 300 DA04 320

AVHR 300 DA05 300

AVJL 300 DA06 300

AVJR 300 DA07 300

AVKL 280 DA08 300

AVKR 280 DA09 300

AVL 280 DB01 280
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DB02 300 IL2DL 280

DB03 300 IL2DR 280

DB04 280 IL2L 300

DB05 300 IL2R 300

DB06 300 IL2VL 300

DB07 300 IL2VR 300

DD01 300 LUAL 420

DD02 300 LUAR 420

DD03 320 OLLL 400

DD04 320 OLLR 400

DD05 320 OLQDL 400

DD06 320 OLQDR 400

DVA 300 OLQVL 400

DVB 1560 OLQVR 400

DVC 320 PDA 300

FLPL 420 PDB 1620

FLPR 420 PDEL 1920

HSNL 400 PDER 1920

HSNR 400 PHAL 300

IL1DL 400 PHAR 300

IL1DR 400 PHBL 400

IL1L 400 PHBR 400

IL1R 400 PHCL 1560

IL1VL 400 PHCR 1560

IL1VR 400 PLML 480
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PLMR 480 RID 320

PLNL 1560 RIFL 420

PLNR 1560 RIFR 410

PQR 1260 RIGL 300

PVCL 420 RIGR 300

PVCR 420 RIH 280

PVDL 2100 RIML 300

PVDR 2100 RIMR 300

PVM 1260 RIPL 280

PVNL 2040 RIPR 300

PVNR 2040 RIR 300

PVPL 300 RIS 280

PVPR 300 RIVL 300

PVQL 300 RIVR 300

PVQR 300 RMDDL 280

PVR 220 RMDDR 300

PVT 300 RMDL 300

PVWL 1320 RMDR 300

PVWR 1320 RMDVL 300

RIAL 320 RMDVR 300

RIAR 320 RMED 300

RIBL 300 RMEL 300

RIBR 300 RMER 300

RICL 400 RMEV 260

RICR 410 RMFL 2220
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RMFR 2220 SMBVR 300

RMGL 300 SMDDL 300

RMGR 300 SMDDR 300

RMHL 1500 SMDVL 300

RMHR 1500 SMDVR 300

SAADL 300 URADL 320

SAADR 300 URADR 320

SAAVL 300 URAVL 300

SAAVR 300 URAVR 300

SABD 300 URBL 300

SABVL 420 URBR 280

SABVR 410 URXL 380

SDQL 1260 URXR 380

SDQR 1260 URYDL 280

SIADL 300 URYDR 280

SIADR 300 URYVL 300

SIAVL 300 URYVR 300

SIAVR 300 VA01 1320

SIBDL 300 VA02 1560

SIBDR 300 VA03 1620

SIBVL 300 VA04 1620

SIBVR 300 VA05 1680

SMBDL 400 VA06 1680

SMBDR 400 VA07 1680

SMBVL 300 VA08 1680
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VA09 1680 VD06 1500

VA10 1680 VD07 1500

VA11 1800 VD08 1620

VA12 1800 VD09 1620

VB01 1560 VD10 1620

VB02 1500 VD11 1620

VB03 1560 VD12 1620

VB04 1620 VD13 1620

VB05 1620

VB06 1680

VB07 1680

VB08 1680

VB09 1680

VB10 1680

VB11 1680

VC01 1500

VC02 1500

VC03 1500

VC04 1500

VC05 1620

VD01 1320

VD02 1440

VD03 1500

VD04 1500

VD05 1500
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Table A6: Classification of C. elegans neurons according to their role in the meso-
scopic organization.

The classification of neurons in the C. elegans somatic nervous system,

according to their role in intra- and inter-modular connectivity

R1 R2 R3 R5 R6

Ultraperipheral Peripheral Nonhub connector Provincial Connector

nodes nodes nodes hubs hubs

ALNL ADEL/R ADAL AIAL ADFR

AS06 ADFL ADAR AIAR AIZL

DD03 ADLL ADLR ASEL ASHR

IL1L AFDL/R AIBR ASER AVAL

IL1R AIBL AIML AWCL AVAR

OLLL AINL/R AIMR AWCR AVBL

OLQDL AIYL/R ALA CEPDL AVBR

PDA AIZR AQR DD02 AVDR

PDB ALML/R AVDL DD06 AVER

RMEL ALNR AVEL OLLR AVG

RMEL AS01 AVFR PVNL AVHL

VA07 AS02 BDUL RMDDL AVHR

VB07 AS03 DVC RMDL AVJL

AS04 FLPL RMDR AVKR

AS05 FLPR RMDVL DA02

AS07 HSNR RMDVR DD01

AS08 PVQR RMEV DVA

AS09 RID SMDDL HSNL

AS10 RIFL SMDDR PVCL

AS11 RIFR SMDVL PVCR

ASGL/R SABD VD12 PVNR
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ASHL SABVL PVPL

ASIL/R SABVR PVPR

ASJL/R URXL PVR

ASKL/R VB01 PVT

AUAL/R RIAL

AVFL RIAR

AVJR RIBL

AVKL RIBR

AVL RIH

AVM RIML

AWAL/R RIMR

AWBL/R RIR

BAGL/R RIS

BDUR RMGL

CEPDR SMDVR

CEPVL/R

DA01

DA03

DA04

DA05

DA06

DA07

DA08

DA09

DB01

DB02

DB03
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DB04

DB05

DB06

DB07

DD04

DD05

DVB

IL1DL/R

IL1VL/R

IL2DL/R

IL2L/R

IL2VL/R

LUAL/R

OLQDR

OLQVL/R

PDEL/R

PHAL/R

PHBL/R

PHCL/R

PLML/R

PLNL/R

PQR

PVDL/R

PVM

PVQL

PVWL/R

RICL/R
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RIGL/R

RIPL/R

RIVL/R

RMDDR

RMED

RMFL/R

RMGR

RMHL/R

SAADL/R

SAAVL/R

SDQL/R

SIADL/R

SIAVL/R

SIBDL/R

SIBVL/R

SMBDL/R

SMBVL/R

URADL/R

URAVL/R

URBL/R

URXR

URYDL/R

URYVL/R

VA01

VA02

VA03

VA04
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VA05

VA06

VA08

VA09

VA10

VA11

VA12

VB02

VB03

VB04

VB05

VB06

VB08

VB09

VB10

VB11

VC01

VC02

VC03

VC04

VC05

VD01

VD02

VD03

VD04

VD05

VD06
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VD07

VD08

VD09

VD10

VD11

VD13

Table A7: The neuronal composition of different functional circuits in the C. elegans
somatic nervous system.

F1 F2 F3 F4 F5

Mechanosensation Egg laying Thermotaxis Chemosensation Feeding

CEPVL/R ASKL/R AFDL/R ADFL/R ADLL/R

CEPDL/R AVJL/R ASIL/R ADLL/R AIBL/R

ASHL/R AWCL/R AWCL/R AIBL/R AIZL/R

AVAL/R AIAL/R FLPL/R AIZL/R ASKL/R

AVBL/R AVFL/R PVDL/R ASEL/R AWAL/R

AVDL/R HSNL/R PHCL/R ASGL/R AWCL/R

AVEL/R VC1 AIAL/R ASHL/R RIBL/R

ADEL/R VC2 AIYL/R ASIL/R

ALML/R VC3 AIZL/R ASJL/R

AVM VC4 AIBL/R ASKL/R

PDEL/R VC5 RIAL/R AVAL/R

PVDL/R VC6 RIBL/R AVBL/R

PVM RIML/R AVEL/R

PLML/R AWAL/R

PVCL/R AWBL/R
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AWCL/R

RIBL/R

AIAL/R

AIYL/R

F6 F7 F8 F9

Exploration Tap withdrawal O2 sensation CO2 sensation

ASIL/R AVAL/R AQR ASEL/R

RIML/R AVBL/R ASHL/R PQR

AIYL/R AVDL/R URXL/R AFDL/R

ALML/R ALNL/R BAGL/R

AVM PQR URXL/R

PVDL/R PLNL/R AQR

DVA ADLL/R AIYL/R

PLML/R RMGL/R

PVCL/R SDQL/R

BAGL/R
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Figure A1: Birth cohort homophily is seen specifically for connections between neu-
rons whose cell bodies are in close physical proximity. Frequency distributions of the
mean birth time for all pairs that are connected via synapses (A-C) or gap-junctions (D-F). The
distributions for the empirical network (shown in red) are compared with distributions obtained
from surrogate ensembles of randomized networks (blue curve shows the average over 100 real-
izations, the dispersion being indicated by the shaded area). The latter are constructed from
the empirical network by randomly rewiring the connections while keeping the total number of
connections (degree) for each neuron, the spatial location of its cell body and its process length
unchanged. In addition, to allow only physically possible connections between neurons, we have
imposed process-length constraint which disallow linking two cells if the distance between their
cell bodies is greater than the sum of their individual process lengths. The different panels cor-
respond to connections between neurons whose cell bodies are separated by distance d which is
short (d < L/3: A, D), medium (L/3 < d < 2L/3: B, E) or long (d > 2L/3: C, F) relative to
the total body length of the worm L. As in Fig. 2.4 in Chapter 2, the trimodal nature of these
distributions arise from three classes of connected neuronal pairs, viz., (i) where both cells are
born early (i.e., in the embryonic stage), (ii) where one is born early while the other late (i.e., in
the post-embryonic stage) and (iii) where both are born late. Birth cohort homophily is indicated
when the peaks of the empirical frequency distribution, corresponding to connections between
neurons that are either both born early or both born late, have significantly higher values than
the randomized distribution (the latter corresponding to a null model where connections between
cells can occur independent of the time of their birth). This is seen only in panels (A) and (D),
i.e., for connections between neurons whose cell bodies are located relatively close to each other.
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Figure A2: Spatial distribution of cell bodies of the neurons belonging to the somatic
nervous system of Caenorhabditis elegans. (A) Projection of the physical locations of the
neuronal cell bodies on the two-dimensional plane formed by the anterior-posterior (AP) axis
(x, along the horizontal) and the ventral-dorsal axis (y, along the vertical). Cells having short,
medium and long processes are indicated using different symbols. The animal is oriented such
that its head is located near the left end and tail near the right end of the plane. (B-D) Probability
distributions of the location of the cell bodies along the AP axis (x, measured in mm) for neurons
having (B) short, (C) medium and (D) long processes. We note that the distributions for neurons
having short and long processes, both have an approximately bimodal nature. It suggests that
most cells of these two types are localized near either the head or the tail regions, while neurons
with medium length processes are distributed across the body of the worm in a relatively more
homogeneous manner.
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Figure A3: Distribution of distances between cell bodies of synaptically connected
pairs of neurons differs from that of all pairs. Comparison of the distributions of distances
between synaptically connected pairs (blue) and all pairs (red) of neurons distinguished in terms
of their respective process lengths (S: short, M: medium, L: long). The mean value for each of the
distributions (distinguished by their color) is marked by broken lines. Note that for all pairs of
process length categories (with the exception of LS and ML), the average distance for synaptically
connected pairs is less than the average calculated over all pairs of neurons, consistent with the
results shown in Table A3.
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Figure A4: Distribution of distances between cell bodies of pairs of neurons con-
nected by gap-junctions differs from that of all pairs. Comparison of the distributions of
distances between pairs connected by gap-junctions (blue) and all pairs (red) of neurons distin-
guished in terms of their respective process lengths (S: short, M: medium, L: long). The mean
value for each of the distributions (distinguished by their color) is marked by broken lines. Note
that for all pairs of process length categories, the average distance for pairs connected by gap-
junctions is less than the average calculated over all pairs of neurons, consistent with the results
shown in Table A3.
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Figure A5: Dependence of the probability of connection between two neurons on
the physical distance between their cell bodies. (A) The variation of the probability
of connection between two neurons by either synapse (squares) or gap-junction (circles) as a
function of the physical distance between their cell bodies d (measured in mm). Linear fitting of
the functions show a decay with d overall (thick broken lines), but the relation is much weaker
compared to that seen between probability of synaptic connection between two cells and their
lineage distance l [see Fig. 2.2 (D) in Chapter 2]. In particular, the correlation is diluted by the
relatively high probability for synapses to form between neurons whose cell bodies are located at
the opposite ends of the worm (corresponding to the peak around x = 1 mm). However, when
we focus only on connections between cell bodies that are in close physical proximity (d < 0.4
mm), the dependence on d appears to be much more prominent (thin broken lines). This stronger
correlation between connection probability and d at short distances is not necessarily an outcome
of constraints imposed by the process lengths of the neurons. This is suggested by panel (B),
where we focus exclusively on neurons with short processes. (B) The relation between connection
probability between neurons, both of which have short processes, and the distance between their
cell bodies, d, is seen to be not more prominent than that already seen for all neurons [in panel
(A)].
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Figure A6: A stochastic branching model for the lineage tree of cells involved in the
development of the C. elegans somatic nervous system. (A) Comparison of the distri-
bution of rung R occupied by each cell (progenitor cells of the neurons, as well as, differentiated
neurons) in the lineage tree obtained empirically (broken curve) with that generated by the model
(solid curve shows the mean computed over an ensemble of 103 realizations, the dispersion being
indicated by the shaded area). (B) Comparison of the distribution of lineage distance l between
pairs of differentiated neurons of C. elegans (broken curve) with that obtained from the model
(solid curve showing the mean computed over an ensemble of 103 realizations, the dispersion being
indicated by the shaded area). The high degree of overlap between the empirical and simulated
distributions indicates that the stochastic branching model is a reasonably accurate description
of the lineage tree of neurons. (C) The branching probabilities P1 (blue curve) and P2 (red
curve) of a progenitor cell at each rung, estimated from the empirical lineage tree (by definition,
P1 ≥ P2). Note that both of the branching probabilities show a prominent dip after rung 10.
Guided by this, in the stochastic branching model, P1, P2 have been chosen to have a constant
high value upto rung 10 (viz., P1 = 1, P2 = 0.85), after which both are decreased to a constant
low value (viz., P1 = 0.25, P2 = 0.2). The inset shows a schematic of the stochastic branching
model where a node, occurring at any rung, can branch (or not) based on the probabilities P1
and P2 which will result in any one of the following three possibilities: (i) proliferation occurs
along both branches, (ii) only one branch appears (the other branch leading to either apoptosis
or a non-neural cell fate), and, (iii) there is no branching so that we obtain a terminal node of
the tree (i.e., the cell differentiates into a neuron).
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Figure A7: Developmental chrono-dendrograms for the Anterior (G1, top left), Dor-
sal (G2, top right), Lateral (G3, bottom left) and Ventral (G4, bottom right) ganglia,
showing that each comprises multiple localized clusters of neurons. Colored nodes repre-
sent neurons belonging to the specified ganglion while gray nodes show other neurons. Branching
lines trace all cell divisions starting from the single cell zygote (located at the origin) and termi-
nating at each differentiated neuron. The time and rung of each cell division is indicated by its
position along the vertical and radial axis respectively. The entire time period is divided into four
stages, viz., Embryo (indicated as E), L1, L2 and L3. A planar projection at the base of each
cylinder shows the rung (concentric circles) of each progenitor cell and differentiated neuron.
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Figure A8: Developmental chrono-dendrograms for the Retrovesicular (G5, top left),
Posterolateral (G6, top right), Preanal (G7, bottom left) and Dorsorectal (G8, bot-
tom right) ganglia, showing that each comprises multiple localized clusters of neu-
rons. Colored nodes represent neurons belonging to the specified ganglion while gray nodes show
other neurons. Branching lines trace all cell divisions starting from the single cell zygote (located
at the origin) and terminating at each differentiated neuron.
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Figure A8 (previous page): The time and rung of each cell division is indicated by its position
along the vertical and radial axis respectively. The entire time period is divided into four stages,
viz., Embryo (indicated as E), L1, L2 and L3. A planar projection at the base of each cylinder
shows the rung (concentric circles) of each progenitor cell and differentiated neuron.

Figure A9: Developmental chrono-dendrograms for the Lumbar ganglion (G9, left)
and the Ventral Cord (G10, right), showing that each comprises multiple localized
clusters of neurons. Colored nodes represent neurons belonging to the specified ganglion while
gray nodes show other neurons. Branching lines trace all cell divisions starting from the single cell
zygote (located at the origin) and terminating at each differentiated neuron. The time and rung
of each cell division is indicated by its position along the vertical and radial axis respectively.
The entire time period is divided into four stages, viz., Embryo (indicated as E), L1, L2 and
L3. A planar projection at the base of each cylinder shows the rung (concentric circles) of each
progenitor cell and differentiated neuron.
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Figure A10: Connections between neurons born at different developmental epochs
are over-represented when the cell bodies are far apart, suggesting the presence of
active processes facilitating such links. Frequency distributions of the distance d between
cell bodies of all neuronal pairs that are connected via synapses (A-D) or gap-junctions (E-
G). The distributions for the empirical network (shown in red) are compared with distributions
obtained from surrogate ensembles of randomized networks (blue curve shows the average over
100 realizations, the dispersion being indicated by the shaded area). The latter are constructed
from the empirical network by randomly rewiring the connections while keeping the total number
of connections (degree) for each neuron, the spatial location of its cell body and its process length
unchanged. In addition, to allow only physically possible connections between neurons, we have
imposed process-length constraint which disallow linking two cells if the distance between their
cell bodies is greater than the sum of their individual process lengths. The different panels
correspond to the situations where (A,E) both cells in a connected pair are born in the early
developmental burst, (B,C,F) one is born early and the other is born late [in (B) it is the pre-
synaptic neuron which is born early, while in (C) the post-synaptic neurons appears in the early
developmental burst], and (D,G) both cells are born late. When two neurons are born in the
same developmental epoch (either early or late), the empirical frequency distribution is seen to
have significantly higher values than the randomized distribution at low d (seen in panels A and
D, and even more prominently in panels E and G), indicating that neurons prefer to connect to
other members of their birth cohort whose cell bodies are in close proximity. This is particularly
evident for neurons born in the late developmental epoch. Note that this result complements the
earlier observation that birth cohort homophily is seen specifically for neurons whose cell bodies
are located relatively close to each other (Fig. A1).
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Figure A10 (previous page): More intriguingly, connections between neurons whose cell
bodies lie far apart are seen to occur more frequently than expected by chance when the pre-
synaptic neuron is born early and the post-synaptic neuron is born late (see panel B). A similar
phenomenon is also seen in the case of early- and late-born neurons connected by gap junctions
(see panel F). These results suggest the presence of an active process forming connections between
neurons born in different epochs.

A B C

Figure A11: Absence of segregated clusters in the developmental chrono-
dendrograms for neurons having similar process lengths (viz., short, medium and
long) suggest that process length is not exclusively determined by lineage. Colored
nodes represent neurons having a specified process length, viz., short in (A), medium in (B) and
long in (C), while grey nodes show other neurons. Branching lines trace all cell divisions starting
from the single cell zygote (located at the origin) and terminating at each differentiated neuron.
The time and rung of each cell division is indicated by its position along the vertical and radial
axis respectively. The entire time period is divided into four stages, viz., Embryo (indicated as
E), L1, L2 and L3. A planar projection at the base of each cylinder shows the rung (concentric
circles) of each progenitor cell and differentiated neuron.
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Figure A12: Physical proximity alone cannot explain the high degree of overlap be-
tween the cells that each member of a bilaterally symmetric pair of neurons connect
to. Complementary cumulative probability distributions (CCDF) of the overlap between the sets
NG(i), NG(j) of the neighbors (defined for a network G) of neurons Ni and Nj , where the indices
i and j can run over (i) all pairs of neurons (dash-dotted curves), (ii) only bilaterally symmetric
pairs (solid curves) or (iii) pairs whose cell bodies are spatially adjacent to each other (d < 0.05
mm, broken curves). The overlap is measured in terms of the Jaccard index J , defined for the
pair i, j as J(i, j) = [NG(i) ∩NG(j)]/[NG(i) ∪NG(j)], where ∩ and ∪ refers to intersection and
union of two sets, respectively. The different panels correspond to different networks G used to
define neighbors for a neuron, viz., (A) pre-synaptic neighbors, i.e., cells from which the neuron
receives a synaptic connection, (B) post-synaptic neighbors, i.e., cells to which the neuron sends
a synaptic connection, and (C) gap-junctional neighbors, i.e., cells to which a neuron is coupled
via a gap junction. We note that the overlaps between the neighborhoods (for all three types
of network neighbors considered here) of bilaterally symmetric neurons are consistently higher
than that of all pairs of neurons, as well as, of pairs whose cell bodies are in close physical prox-
imity. Thus, bilaterally symmetric neurons share neighbors to a much greater extent than that
expected by their cell bodies being located close to each other. (D-F) The Jaccard index matrices
J showing overlaps between the neighbors for every pair of neurons Ni, Nj when the network
neighborhood defined is that of (D) pre-synaptic partners, (E) post-synaptic partners and (F)
gap-junctional partners. The large overlap between neighbors of bilaterally symmetric neurons
is indicated by the occurrence of bands of brightly colored entries along the diagonal (note that
bilaterally symmetric neurons are always located on adjacent rows/columns).
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Figure A13: Spatial distribution of the cell bodies of sensory, inter and motor neurons
of the somatic nervous system of Caenorhabditis elegans. Projections of the physical
locations of the neuronal cell bodies, distinguished according to functional type (sensory: circles,
inter: triangles and motor: squares) and whether they appear in the early (unfilled symbols) or
late (filled symbols) developmental epochs, on the two-dimensional plane formed by the anterior-
posterior (AP) axis (x, along the horizontal) and the dorsal-ventral axis (y, along the vertical).
Top panel shows the entire worm, with its body oriented such that the head is located near the
left end and tail near the right end of the plane. The bottom panel shows a magnified view of the
region near the head (bounded by broken lines in the top panel). We note that almost all cells in
this region appear at the embryonic stage, during the early burst of development. By contrast,
the ventral cord predominantly comprises neurons that appear in the post-embryonic stage (see
top panel).
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Figure A14: The number of synaptic connections of a neuron is influenced by its
functional criticality, as well as, the developmental epoch in which it appeared. (A-
C) Scatter plots indicating the relation between the time of appearance of a neuron and its
number of (A) incoming synaptic connections from other cells (synaptic in-degree), (B) outgoing
synaptic connections to other cells (synaptic out-degree) and (C) gap junctions with other cells
(gap-junctional degree). Filled circles represent neurons belonging to any of nine previously
identified functional circuits (see Fig. 2.8 in Chapter 2) while unfilled circles show other neurons.
(D-F) Probability distributions of different types of connections for neurons categorized in terms
of those which are functionally critical, i.e., belong to a functional circuit (red), or not (blue),
and whether they appear in the early (solid curve) or late (broken curve) developmental epochs.
The different panels correspond to (D) synaptic in-degree, (E) synaptic out-degree and (F) gap-
junctional degree. Synaptic in-degree for functionally critical, early-born neurons is seen to have
a heavy-tailed distribution which is significantly different from that of the other types of neurons
(in terms of a 2-sample Kolmogorov-Smirnov test at 5% level of significance). For the case of
synaptic out-degree, however, the distributions for functionally critical neurons that are born at
different epochs are statistically indistinguishable. However, for other neurons, the distribution of
those that are born in the later, post-embryonic developmental burst are distinct from those that
are born early (demonstrated by a 2-sample Kolmogorov-Smirnov test at 5% level of significance).
This statistically significant difference between the outgoing connections of early and late-born
neurons could arise from the former neurons being present for a much longer period during which
they can send out synapses. 205



Figure A14 (previous page): Distributions of gap junctional connections for all categories
of neuron appear to be statistically indistinguishable, suggesting that gap junction formation is
relatively unaffected by the functional criticality or time of appearance of the neurons.
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Figure A15: Comparison of the Caenorhabditis elegans connectome data obtained
from Cook et al. [97] and Varshney et al. [61]. Difference between the adjacency matrices
corresponding to the two connectivity data-sets are shown for synapses (left) and gap-junctions
(right). Black-colored entries represent connections common to both datasets, while red- and
blue-colored entries denote connections that are found exclusively in the Cook and Varshney
datasets, respectively. The columns and rows are arranged according to the spatial ordering
of the neuronal cell bodies along the head-tail axis. The horizontal and vertical panels for the
synapse matrix shows the difference in the out-degree and in-degree, respectively, of each neuron
across the two data-sets. For the gap-junction matrix, the horizontal panel shows the change in
degree for each neuron across the data-sets. We note that the two data-sets differ substantially,
especially in terms of a large number of additional gap-junctions near the tail region that appear
in the database of Cook et al.
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Figure A16: Comparison of the Caenorhabditis elegans connectome data obtained
from Varshney et al. [61] and Haspel et al. [96]. Difference between the adjacency matrices
corresponding to the two connectivity data-sets are shown for synapses (left) and gap-junctions
(right). Black-colored entries represent connections common to both datasets, while red- and
blue-colored entries denote connections that are found exclusively in the Haspel and Varshney
datasets, respectively. The columns and rows are arranged according to the spatial ordering of the
neuronal cell bodies along the head-tail axis. The horizontal and vertical panels for the synapse
matrix shows the difference in the out-degree and in-degree, respectively, of each neuron across
the two data-sets. For the gap-junction matrix, the horizontal panel shows the change in degree
for each neuron across the data-sets. We note that the two data-sets differ relatively little.
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Appendix B

The Structure of the Macaque Connectome

Fig. B1 shows some of the macroscopic properties of the network, viz., the cumulative dis-

tributions for the number of in-coming, out-going and total connections, and the correlation

between the number of in-coming and out-going connections for each node. Fig. B1 (a)

shows that the total degree distribution of the nodes [shown in the bottom panel] follows

an exponential distribution, in agreement with the observed properties of the network in-

vestigated by Modha and Singh [159]. This suggests that the network that we have worked

with, which has been processed extensively from the original network of 383 nodes (which

contained many redundancies, as explained in Chapter 3), shares the same macroscopic

features as the original network. The top and middle panels show the in-degree and out-

degree distributions. While both of these appear to also follow an exponential form, the

former shows a deviation in the tail indicating that there exist regions that have more in-

coming connections than is expected given the form of the distribution. In particular, the

four nodes having the highest in-degrees [top panel] that show the largest deviation from

the best-fit exponential distribution are all located in the pre-frontal cortex and are also

seen to belong to the same module, viz.,#1. This is in accordance with the known cognitive

function of prefrontal cortex regions which is high-level multi-modal sensory integration.

In order to see whether regions which attract many in-coming connections also tend

to have many out-going connections, we have looked at the correlation between in- and

out-degrees in terms of a scatter plot [Fig. B1 (b)]. Here the nodes are colored according
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to the module to which they belong, while the relative volumes are represented by the size

of the corresponding markers. We note that while most of the nodes are fit well by a linear

relation between in-degree and out-degree, there does appear to be several nodes which have

a disproportionately higher number of out-going connections than is expected from their

in-degree, given the linear relation between the two. Specifically, there are 38 nodes whose

out-degree deviate significantly from the value that is expected from the best-fit linear

relation with their in-degree, i.e., they are larger than the upper bound given by the root

mean square deviation (the upper lighter curve, see figure caption for details). Although

the membership of these outliers span across all modules and functional categories (in

terms of the role they play in the mesoscopic organization of the connectome), we note

that 32% of all connector hubs (R6) and 26% of all satellite connectors (R3) belong to

these outliers. As nodes belonging to both of these categories are characterized by having

their connections are distributed over several modules, it suggests a possible functional

importance of the outlier nodes in coordinating information processing in the Macaque

brain.
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Figure B1: (a) The distributions of the (top) in-degree, (center) out-degree and (bottom) total
degree of the Macaque connectome, indicating the best-fit exponential distribution (broken line)
in each case. (b) Scatter plot indicating the correlation between in-degree and out-degree of the
different nodes in the connectome. The relatively darker central curve represents the best-fit
linear relation between kin and kout (the linear correlation coefficient is r = 0.62, with a p-value
of 0) corresponding to a slope of 0.49. The two lighter curves on either side indicate the root
mean square deviation of the empirical data from the best-fit linear relation. The color and sizes
of the nodes are same as in Fig. 3.1 of Chapter 3.

Modular Organization of the Connectome

Establishing the robustness of the modular decomposition

As described in the Methods section of Chapter 3, we have ensured that the partitioning

of the connectome is not sensitively dependent on the specific method used for the decom-

position. Fig. B2 shows that the communities obtained using the Infomap method [168],

which is based upon optimally compressing information about dynamic processes on the

network, have a high degree of overlap with those obtained using a spectral method [9] that

maximizes the modularity Q (for details, see Methods in Chapter 3). While the Infomap

method generates a larger number of modules (specifically, 17), not only are many of these

extremely small (in some cases comprising only a single node), but several of them are
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in fact further subdivisions of the relatively fewer modules (specifically, 5) obtained using

the spectral method. The relatively high degree of correspondence between the partitions

generated by using techniques that employ completely different principles suggests that

the modular decomposition reported here is an intrinsic property of the network, and is

not strongly affected by the partitioning method used.

Figure B2: Visual representation of the comparison between the modular decomposition of
the Macaque connectome obtained using spectral partitioning [left] with that obtained using the
Infomap method [right]. The modules are represented as vertical bars, connected by bands which
are colored according to the module obtained using the spectral method from which they originate
[using the same color scheme as in Fig. 3.1 (d) of Chapter 3]. This alluvial diagram has been
created using the online visualization tool RAW [177].

To verify that the method used for maximizing Q does not alter our results significantly,

we have performed 103 realizations of a stochastic simulated annealing algorithm for de-

tecting communities [166]. As mentioned in the Methods (see Chapter 3), by comparing

between these large number of optimal partitionings of the network, we can determine the

extent to which the modular groupings among the different nodes is robust. Fig. B3 shows

the Modularity Q values corresponding to these realizations, using a representation such

that similar partitionings (corresponding to the circles) occur close to each other in the

two-dimensional plane orthogonal to the axis representing Q. The two-dimensional coor-
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dinates of each circle in this plane is obtained by Curvilinear Component Analysis (CCA,

see Ref. [271]) as described in Ref. [166].

Figure B3: Modularity of the Macaque connectome, shown as a function reconstructed from 103

partitionings (circles) obtained through a simulated annealing method for determining commu-
nities [166]. The axes on the horizontal plane orthogonal to the vertical axis that corresponds to
modularity Q represent embedding dimensions that are themselves complex functions of the parti-
tion space, such that the scale of these axes are irrelevant. The distance between the partitionings
(whose positions on the horizontal plane are obtained by CCA) are indicative of the degree of
dissimilarity between the corresponding modular partitions of the network. The partition ob-
tained by the deterministic spectral method yielding a Q-value of Qspectral = 0.485 (diamond),
and which has been used for our analysis, is seen to occur in the high-modularity plateau com-
prising a large number of similar partitions, all having a high value of Q. The 291 partitionings
that occur at the top of this surface, whose Q values differ by less than 3% from Qspectral = 0.485
(specifically, the circles lying above the translucent plane corresponding to Q = 0.47 shown in
the figure), have been used to determine the robustness of the modular identities of the different
nodes in the connectome, as shown in Fig. B4 (left).

As can be seen from Fig. B3, there are a large number of partitionings having high values

of Q that occur close to each other in the plateau and where the partition obtained from

the spectral method (diamond, having a Q-value of Qspectral = 0.485) that has been for our

analysis is also seen. This suggests that the modular decomposition of the nodes in these

high Q partitionings are similar to that determined by the spectral method. Fig. B4 shows
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the brain regions whose modular identity is invariant across all the partitionings whose Q

differs by less than 3% (i.e., Q > 0.47, left panel) and 7% (i.e., Q > 0.45, right panel)

from Qspectral. The conserved modular memberships of a large fraction (∼ 70%) of the

brain regions across all the different partitionings possessing high modularity (highlighted

nodes in Fig. B4 [left]; see Table B1 for their identities) emphasizes that the modular

mesoscopic organization we have described here does not depend sensitively on the method

used to partition the network, underlining that it is an intrinsic property of the Macaque

connectome.
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Figure B4: The network of brain regions shown in (a) horizontal, (b) sagittal and (c) coronal
projections, indicating the regions (highlighted) whose modular memberships are invariant across
the partitionings obtained by the spectral method (used in our analysis) as well as those obtained
by simulated annealing, whose Q differs by less than (left) 3% and (right) 7% from Qspectral =
0.485. As in Fig. 3.1 (a-c) in Chapter 3, the modular membership of each node is represented by its
color (see color key at the bottom of each panel), the spatial positions of the nodes are specified
by the three-dimensional stereotaxic coordinates of the corresponding regions, and node sizes
provide a representation of the relative volumes of the corresponding brain regions (the spatial
scale being indicated by the horizontal bar shown next to each projection). (Left) Within the 291
partitionings that have Q > 0.47, around 70% of the 266 brain regions have the same modular
membership as that seen in the spectral modular decomposition, underlining the robustness of
their modular identities. (Right) For the 625 partitionings that have Q > 0.45, we see a much
higher degree of variation in the modular identities of the regions across the partitionings as a
result of including those with much lower values of Q. Specifically, modules #1, #3 and #5 are
seen to have several nodes that are robust (i.e., consistently belong to the corresponding module)
across the partitionings, while, for module #4, only some of the nodes belonging to the temporal
lobe have this property. The nodes belonging to module #2, on the other hand, change from one
partitioning to another.
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Table B1: Brain regions highlighted in Fig. B4 (left) whose modular membership is conserved
across all the 291 distinct partitionings with Q > 0.47, arranged according to the modules, and
subsequently into the largest anatomical subdivision (viz., lobe / nuclei), to which they belong.
For each region, the corresponding within-module degree z-score and the participation coefficient
are displayed in the last two columns (see Methods for details).

Module #1

Lobe/nuclei region zscore pcoeff

FL

14r 1.154 0.344

13L 0.481 0.148

13M 0.443 0.102

13a 2.837 0.471

32 3.061 0.688

10m -0.230 0.000

10v -0.791 0.000

10d -0.866 0.000

10o 0.443 0.000

12o 2.613 0.619

12m 0.593 0.263

12r 0.107 0.069

12l 2.239 0.659

11l 0.368 0.108

11m 1.042 0.447

PrCO 0.032 0.559

6Vb -0.305 0.457

6Va -0.267 0.438

TL

TPag -0.529 0.000

TPg -0.305 0.000

TPdgv -0.604 0.000
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TPdgd -0.604 0.000

Su#2 -0.754 0.000

Sb -0.754 0.000

cing 24b 0.780 0.549

Insula

Ial -0.267 0.000

Iam 0.630 0.373

Iapm 0.705 0.515

Iai 1.752 0.432

Thal

AM#1 -0.492 0.569

Cim -0.828 0.000

Cif -0.716 0.444

Cdc -0.754 0.560

MDcd -0.828 0.000

MDpm -0.754 0.000

MDfi -0.679 0.000

BG
SI#2 0.219 0.410

Pu r 0.219 0.429

OFC OFC -0.679 0.408

Module #2

Lobe/nuclei region zscore pcoeff

FL

F5 2.706 0.515

4c -0.575 0.180

F4 0.807 0.355

F7 3.512 0.551

F2 2.418 0.360

M2-FL -0.862 0.480
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F6 1.267 0.512

M1-FL 2.073 0.256

MI-of -0.402 0.272

PL

1#1 0.691 0.174

2#1 0.634 0.121

3b 0.346 0.322

3a 0.173 0.227

SII-f -0.920 0.000

PR#4 -0.690 0.000

PFop -0.805 0.000

PGop -0.690 0.000

PFG#1
0.404 0.140

PF#1 0.807 0.353

AIP -0.517 0.165

MIP 0.749 0.307

PEm 0.979 0.463

5 Foot -1.035 0.000

PEc#1 1.152 0.228

PGm 2.188 0.627

PECg 1.267 0.399

OL V6A 0.231 0.375

cing

24d -0.114 0.290

23c 2.188 0.563

TSA -0.057 0.355

Insula Ri#1 -0.632 0.494
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Thal

Pcn 0.289 0.650

CM#2 0.231 0.226

Csl -0.287 0.640

Ret -0.287 0.338

Pul.o 0.576 0.291

X -0.287 0.427

VPS -0.862 0.000

VPM -0.460 0.278

VPLo -0.517 0.000

VPLc -0.057 0.194

VLm -0.575 0.180

VLps -0.575 0.320

VLo 0.058 0.308

VLc -0.114 0.198

VApc -0.460 0.375

BG Pu c -0.460 0.375

Module #3

Lobe/nuclei region zscore pcoeff

TL

TFM -0.309 0.000

TFL 0.190 0.254

35 2.044 0.469

36c 1.117 0.111

36r 2.329 0.177

36p -0.452 0.000

EI 0.547 0.453

ER#1 0.048 0.499

218



28m -0.594 0.180

ECL -0.309 0.408

EC#2 0.689 0.487

Pros. -0.166 0.430

PaS -0.737 0.406

TH 3.327 0.666

PrS -0.452 0.514

CA1 0.333 0.159

DG -0.808 0.245

cing 29d -0.951 0.560

BG

Bla 0.261 0.442

Abpc 0.832 0.320

Bi 0.903 0.412

ABd 0.261 0.000

Bvl -0.024 0.000

ABv 0.261 0.000

MB -0.024 0.290

ABvm 0.547 0.204

ABmg 0.832 0.420

A -0.095 0.111

I#2 -0.879 0.278

ME#1 -0.166 0.430

CE#1 -0.095 0.360

AHA -0.594 0.180

PAC2 -0.238 0.000

COp -0.808 0.000
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NLOT -0.808 0.000

COa -0.523 0.397

Ldi 1.117 0.216

Ld#2 -0.166 0.219

Lv 0.974 0.229

Lvl 0.618 0.137

Module #4

Lobe/nuclei region zscore pcoeff

FL

M9 0.227 0.677

D9 -0.257 0.602

46v 2.437 0.741

46d 0.848 0.477

8B 2.299 0.629

TL

A1 0.641 0.340

STPg -0.326 0.418

ProK -0.326 0.231

paAc 0.089 0.381

L#1 0.019 0.320

CL#4 -0.671 0.480

AL#4 -0.464 0.426

ST3 1.194 0.370

ST2 0.641 0.445

ST1 0.227 0.469

Tpt 0.848 0.461

TPOc 0.710 0.571

TPOr -0.257 0.492
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TAa 0.434 0.441

Thal

MG -0.533 0.000

SG -0.188 0.519

Li 0.019 0.615

Module #5

Lobe/nuclei region zscore pcoeff

FL
45A 0.385 0.562

8Ac -1.003 0.000

PL

LIPe -0.268 0.660

LIPi -0.023 0.568

VIP 0.793 0.507

PIP#1 -0.268 0.000

TL

CITv 0.466 0.560

TEm -0.350 0.691

PITd -0.023 0.142

PITv 0.058 0.500

IPa 0.385 0.710

MT 2.997 0.314

FST 1.446 0.454

MSTp 0.140 0.231

MSTd 1.446 0.497

OL

V3A 0.793 0.159

V3v 0.711 0.000

V4t 0.140 0.338

DLr -0.921 0.000

DLc -0.921 0.000
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V4v -0.758 0.000

VPP -0.921 0.000

V6 1.283 0.447

DP 0.303 0.443

VOT -0.595 0.000

V1 1.283 0.250

V2 3.160 0.387

Thal

LGN -0.595 0.278

PIl-s -0.921 0.000

PIp -0.840 0.000

PIm -0.513 0.245

PIl -0.431 0.000

PIc -0.431 0.219

PLa#1 -0.921 0.000

PLvl -0.758 0.000

PLvm -0.758 0.000

BG Cd g -0.105 0.653

MB MB#2 -0.187 0.298
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Modular decomposition of the cortical and sub-cortical subdivi-

sions of the Macaque brain

As mentioned in Chapter 3, there is no simple correspondence between the modules and the

anatomical subdivisions of the brain. The nodes of the connectome we have investigated

are brain regions that belong to larger subdivisions, such as the prefrontal cortex, which

in turn are part of broader anatomical categories such as the frontal lobe. The association

between the network modules and the largest subdivisions have been shown in Fig. 3.1 (d)

in Chapter 3. A more detailed representation of this relation is given in terms of the

modular spectra of the anatomical subdivisions in Table B2 which indicates how the regions

belonging to each subdivision are distributed among the five modules. We note that some

of the subdivisions constitute a single brain region in the connectome we consider (e.g.,

Visual area V1 in the Occipital lobe), so that they belong exclusively to one of the modules.

Larger subdivisions that comprise multiple regions, on the other hand, can have their

constituent regions distributed non-uniformly among several modules. In such cases, we

highlight the dominant module(s) of the subdivision, i.e., those amongst the five modules

having the largest number of brain regions, in the table. The spatial layout of the brain

regions belonging to these larger subdivisions, colored according to the modules to which

they belong, are also shown in Figs. B5 and B6. Note that, the regions belonging to the

parietal lobe occur predominantly in module #2, while those in the occipital lobe occur

predominantly in module #5 (see Fig. B5). Fig. B6 suggests that the regions belonging to

the basal ganglia mostly occur in module #3.
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Table B2: Modular decomposition of the brain regions in different anatomical subdivisions of
the Macaque brain.

Lobe/Nuclei Subdivision [abbreviation] modular distrib.

(no. of brain

regions)
1 2 3 4 5

Frontal lobe (58)

beltline of sensorymotor syst.

[belt sm]

0 1 0 0 0

Prefrontal cortex [PFC] 18 5 0 11 2

Supplementary motor area [Area

6]

3 11 1 0 0

Primary motor area [MI] 0 4 2 0 0

Temporal lobe (56)

Ventral temporal cortex [TCV] 4 0 6 0 0

Parahippocampal cortex [PHC] 3 0 11 0 0

Hippocampus [Hip] 0 0 3 0 0

Superior temporal gyrus [STG] 0 0 0 11 0

Inferotemporal area [TE] 0 0 3 0 4

Superior temporal sulcus [STS] 0 1 0 5 5

Parietal lobe (27)

Primary somatosensory cortex

[S1]

0 4 0 0 0

Secondary somatosensory cortex

[S2]

0 1 1 0 0

beltline of sensory syst. [belt s] 1 0 0 0 0

Rostral parietal area [PR#4] 0 1 0 0 0

Somatosensory association area

[7#1]

0 5 0 2 0

Cortex of intraparietal sulcus

[PCip]

0 2 0 0 4
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Dorsal parietal cortex [PCd#2] 0 6 0 0 0

Occipital lobe (16)

Visual anterior cortex [VAC] 0 1 0 0 12

Visual area V1 [V1] 0 0 0 0 1

Prostriate cortex [ProST] 1 0 0 0 0

Visual area V2 [V2] 0 0 0 0 1

Thalamus (53)

Anterior nuclei [AN] 2 1 0 0 1

Midline nuclei [ML] 5 1 1 0 0

Geniculate nucleus [GN] 0 0 0 1 1

Intralaminar nuclei [IL2] 1 3 0 1 0

Massa intermedia [MI1] 0 1 0 0 0

Posterior nuclei [PN] 0 0 0 2 0

Reticularis thalami [Ret] 0 1 0 0 0

Pulvinaris thalami [Pul#1] 0 1 0 3 8

Medial dorsal nucleus [MD] 3 2 0 1 0

Ventrolateral nuclei [VN] 1 12 0 0 0

Basal Ganglia (31)

Amygdala [Amyg] 0 0 22 0 0

Substantia nigra [SN] 0 0 1 0 0

Substantia innominata [SI#2] 1 0 0 0 0

Nucleus subthalamus [Sub.Th] 0 0 1 0 0

Globus pallidus [GPe] 0 0 0 0 1

Striatum [STR] 1 1 1 0 1

Claustrum [Clau] 0 1 0 0 0

Cingulate Gyrus (13)

Area 24 [24] 3 1 0 0 0

Area 23 [23] 2 2 0 0 0

Area 26 [26] 0 0 2 2 0
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Area 25 [25] 0 0 1 0 0

Insula (9)

Granular insular cortex [Ig#1] 0 0 1 0 0

Retroinsular cortex [Ri#1] 0 1 0 0 0

Insular proisocortex [IPro] 0 1 0 0 0

Parainsular field [Pi#1] 0 0 1 0 0

Anterior insula [IA] 4 0 1 0 0

Hypothalamus (1) Hypothalamus [Hyp] 0 0 1 0 0

Midbrain (1) Midbrain [MB] 0 0 0 0 1

Olfactory complex

(1)
Olfactory complex [OFC] 1 0 0 0 0
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Frontal Lobe Parietal Lobe

Temporal Lobe Occipital Lobe

Figure B5: The network of brain regions shown in (a) horizontal, (b) sagittal and (c) coronal
projections, indicating the modular memberships of the regions (highlighted) that belong to the
frontal (top left), parietal (top right), temporal (bottom left) and occipital (bottom right) lobes.
As in Fig. 3.1 (a-c) in Chapter 3, the modular membership of each node is represented by its color
(see color key at the bottom of each panel), the spatial positions of the nodes are specified by the
three-dimensional stereotaxic coordinates of the corresponding regions, and node sizes provide a
representation of the relative volumes of the corresponding brain regions (the spatial scale being
indicated by the horizontal bar shown next to each projection).
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Thalamus Basal Ganglia

Cingulate Insula

Figure B6: The network of brain regions shown in (a) horizontal, (b) sagittal and (c) coronal
projections, indicating the modular memberships of the regions (highlighted) that belong to the
thalamus (top left), basal ganglia (top right), cingulate (bottom left) and insula (bottom right).
As in Fig. 3.1 (a-c) in Chapter 3, the modular membership of each node is represented by its color
(see color key at the bottom of each panel), the spatial positions of the nodes are specified by the
three-dimensional stereotaxic coordinates of the corresponding regions, and node sizes provide a
representation of the relative volumes of the corresponding brain regions (the spatial scale being
indicated by the horizontal bar shown next to each projection).
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Functional characterization of modules

As mentioned in Chapter 3, we have investigated a possible structure-function correlation

in the mesoscopic organization of the connectome, which would be reflected in the modules

being predominantly associated with certain functionalities. In Table B3 we list the known

functions (obtained from the literature) either of the brain regions belonging to each of

the modules, or of the broader subdivisions to which such regions belong (the first column

indicating the lobe or nuclei, and the second specifying the areas comprising it). As the

different regions belonging to a subdivision may lie in distinct modules, the fraction of all

the regions in a subdivision that are in a specific module are indicated in the third column.

The role that these regions play in terms intra- and inter-modular communication can be

inferred from the average values (computed over all the regions in the subdivision that are

in the same module) of the participation coefficient, �p�, and the within-module degree

z-score, �z�, which are shown in the fourth and fifth columns, respectively. Some of the

brain regions in a subdivision that have been investigated relatively more extensively are

mentioned in the sixth column, while the seventh column provides a non-exhaustive list of

the functions that are known to be associated with these regions and/or the subdivision

to which they belong (along with references to the relevant literature). As alluded to in

Chapter 3, regions belonging to the same module have certain functions that appear to

complement each other in carrying out a specific cognitive task, e.g., high-level multimodal

sensory integration and decision-making (module #1), motor control and somato-sensory

processing (module #2), memory and emotion (module #3), auditory processing (module

#4) and visual processing (module #5).
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Table B3: Functional characterization of modules

Module #1

Lobe/Nuclei
Subdi-

vision Frac.
�p� �z� Notable regions Known functions

Frontal lobe

PFC
18/36

0.24 0.63 10, 11, 13, 14

sensory

integration,

decision making

[184, 185, 186,

187, 188]

Area 6 3/15 0.48 -0.18
6Va, 6Vb,

PrCo

complex

locomotion (e.g.

climbing)

[272, 273]

Temporal lobe
TCv 4/10 0.00 -0.51

PHC 3/14 0.17 -0.68 EO olfaction [274]

Parietal lobe belt s 1/1 0.64 -0.70

Occipital lobe ProSt 1/1 0.50 -0.86

Thalamus

AN 2/4 0.52 -0.62

ML 5/7 0.39 -0.78

IL#2 1/5 0.00 -0.90

MD 3/6 0.00 -0.75

VN 1/12 0.57 -0.15

Basal Ganglia

SI#2 1/1 0.41 0.22

STR 1/4 0.43 0.22 Pu r

motor skills,

reinforcement

learning [275]
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Cingulate

gyrus

Area

24
3/4 0.57 0.60 24a, 24b, 24c

emotional

behavioural

control [276]

Area

23
2/4 0.61 -0.55 23a,23b

multi-sensory

integration [276]

Insula IA 4/5 0.33 0.70 Iam, Iai
social

cognition [277]

olfactory

complex

OFC 1/1 0.40 -0.68 olfaction [274]

Module #2

Lobe/nuclei
Subdi-

vision Frac.
�p� �z� Notable regions Known function

Frontal lobe

belt sm
1/1 0.54 -0.52

PFC 5/36 0.48 -0.46 45B, 8Ad

saccadic guidance

(frontal eye field)

[278]

Area 6
11/15

0.36 0.66

complex

locomotion

(climbing

etc.) [272]

MI 4/6 0.27 0.20 M1-FL, M1-HL

voluntary

movement

(primary motor

area) [183]

Temporal lobe STS 1/11 0.44 -0.98
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Parietal lobe

S1 4/4 0.21 0.46

primary

somatosensory

cortex [183]

S2 1/2 0.00 -0.92 SII-f

secondary

somatosensory

area (face repre-

sentation) [279]

PR#4 1/1 0.00 -0.69

Area 7 5/7 0.10 -0.28 PF#1, PFG#1
visual-motor co-

ordination [280]

PCip 2/6 0.24 0.12 AIP, MIP

visual control of

reaching &

pointing [210,

211]

PCd#2
6/6 0.39 0.91 PEm, PEc#1

somesthesia &

motor

control [281]

Occipital lobe VAC 1/13 0.38 0.23

Thalamus

AN 1/4 0.72 -0.86

ML 1/7 0.59 -0.63

IL#2 3/5 0.50 0.07

MI#1 1/1 0.00 -1.09

Ret 1/1 0.34 -0.29

Pul#1 1/12 0.29 0.58

MD 2/6 0.60 -0.50

232



VN
12/13

0.19 -0.45

somatosensory

information

relay [183]

Basal Ganglia STR 1/4 0.37 -0.50 Pu c

motor skills,

reinforcement

learning [275]

Cingulate

gyrus

Area

24
1/4 0.29 -0.11

Area

23
2/4 0.46 1.06

Insula
Ri#1 1/1 0.49 -0.63

Ipro 1/1 0.00 -1.03

Module #3

Lobe/nuclei
Subdi-

vision Frac.
�p� �z� Notable regions Known function

Temporal lobe
TCv 6/10 0.16 0.82 35, 36c, 36r

visual perception

& memory of

objects [282]

PHC
11/14

0.46 0.09 TH
spatial

memory [283]

Hip 3/3 0.28 -0.38

spatial

cognition [284,

285] and

recognition

memory [286]

TE 3/8 0.65 0.17

Parietal lobe S2 1/2 0.50 -1.16
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Basal Ganglia

Amyg
22/22

0.20 0.1

emotional

response [189,

190]

SN 1/1 0.61 -0.88

STR 1/4 0.57 -0.80 Cd t
reinforcement

learning [275]

Cingulate

gyrus

Area

26
2/2 0.57 -0.88

Area

25
1/1 0.65 2.48

Insula

Ig#1 1/1 0.60 0.83

Pi#1 1/1 0.64 0.19

IA 1/5 0.70 0.90

Hypothalamus Hyp 1/1 0.69 -0.80

Module #4

Lobe/nuclei
Subdi-

vision Frac.
�p� �z� Notable region Known function

Frontal lobe PFC
11/36

0.55 0.25 46d, 46v

working

memory [287,

288]

Temporal lobe
STG

11/11
0.39 0.17 A1

auditory

cortex [289, 290]

STS 5/11 0.52 -0.04
TPOc, TAa,

Pga

complex sound

processing [291,

290]

Parietal lobe Area 7 2/7 0.69 1.40 PG#1
somato-motor co-

ordination [280]
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Thalamus

GN 1/2 0.00 -0.53 MG

auditory

information

relay [183]

IL#2 1/5 0.66 -0.67

PN 2/2 0.56 -0.08

Pul#1 3/12 0.00 -1.22

MD 1/6 0.66 -0.60

Cingulate

gyrus
Area 26 2/4 0.30 -0.81

Module #5

Lobe/nuclei
Subdi-

vision Frac.
�p� �z� Notable region Known function

Frontal lobe PFC 2/36 0.28 -0.30 45A, 8Ac

saccadic guidance

(frontal eye

field) [278]

Temporal lobe

TE 4/7 0.47 0.03
CITv, PITd,

PITv,TEm

ventral visual

pathway [198,

199]

STS 5/11 0.44 1.28
MT, MST,

FST

dorsal visual

pathway [198,

199]

Parietal lobe PCip 4/6 0.43 0.06 LIP, VIP, PIP

visual

attention [208,

209]

Occipital lobe VAC
12/13

0.11 -0.23 V3A, V3B, V6
visual

cortex [183]

235



V1 1/1 0.25 1.28
primary visual

cortex [183]

V2 1/1 0.39 3.15
secondary visual

cortex [183]

Thalamus AN 1/4 0.69 -0.51

GN 1/2 0.28 -0.59 LGN

visual

information

relay [183]

Pul#1 8/12 0.06 -0.70
visual

processing [292]

Basal Ganglia

Gpe 1/1 0.67 -0.84

STR 1/4 0.65 -0.10 Cd g
reinforcement

learning [275]

Mid brain MB 1/1 0.30 -0.19

236



The structure-function correlation associated with the mesoscopic organization, can be

seen not only at the level of modules (as indicated by the Table B3 above) but can be

extended even further. As mentioned in Chapter 3, we have sbjected module #5 to further

partitioning which yields three sub-modules. Fig. B7 shows the nodes in module #5 that

belong to these sub-modules. We find that they ae associated with distinct funtionalities,

with 5A containing the visual cortex and almost all the sub-cortical components, while the

regions identified with different visual processing pathways, viz., the ventral and dorsal

streams belong to 5B and 5C, respectively.
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5A 5B 5C
LGN 8Ac 45A
PIl-s VIP LIPe
PIp FST LIPi
PIm MSTp CITv
PIl MSTd PITd
PIc V3A PITv

PLa#1 V4t IPa
PLvl DP V3v
PLvm LD#1 V4v
PIP#1 VOT
TEm
MT
V3d
DLr
DLc
VPP
DI#1
V6
V1
V2

MB#2
Cd g
GPe

Figure B7: The network of brain regions shown in (a) horizontal, (b) sagittal and (c) coronal
projections, indicating that the nodes in module #5 (highlighted) can be further grouped into
three sub-modules. The sub-modular membership of each node of module #5 is represented by
its color (see color key at the bottom) with the list of brain regions belonging to each of the three
sub-modules shown in the table in the right. Sub-module #5A is seen to comprise primary visual
regions and subcoritcal regions, while sub-modules #5B and #5C contain regions that belong
to the ventral and dorsal visual pathways, respectively. The node sizes provide a representation
of the relative volumes of the corresponding brain regions (the spatial scale being indicated by
the horizontal bar in each panel). The spatial positions of the nodes are specified by the three-
dimensional stereotaxic coordinates of the corresponding regions. Links indicate the directed
nerve tracts connecting pairs of brain regions, and are colored in accordance with their source
nodes.
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Categorization of nodes in terms of inter- intra-modular connec-

tivity

As described in Chapter 3, the role played by each of the brain regions in the mesoscopic

organization of the connectome can be classified into seven categories according to their

intra- and inter-modular connectivity, viz., R1: ultra-peripheral, R2: peripheral, R3: satel-

lite connector, R4: kinless, R5: provincial hub, R6: connector hub, and R7: global hub

(note that there are no regions in the Macaque brain belonging to the categories R4 and

R7). With the exception of module #4 which has no region playing the role of a provin-

cial hub, each module has a qualitatively similar distribution of its regions across these

categories (Fig. B8, top).
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Figure B8: The distribution of the regions across the different categories R1-R7 (see Fig. 3.2 in
Chapter 3) is similar for different modules (top), with the sole exception of module #4 which does
not possess any provincial hub (R5) nodes. This is illustrated in the dendrogram (bottom) that
represents the extent of similarity between these distributions, quantified by the Jensen-Shannon
divergence, for the different modules.
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The extent of similarity between the modules is represented by the dendrogram shown in

Fig. B8 (bottom) in which the distance between the distributions across x ∈ {R1, . . . ,R7}
for two modules A and B , viz., PA(x) and PB(x), is measured in terms of the Jensen-

Shannon divergence:

JSD(PA, PB) =
1

2

�

x

�
PA(x) lnPA(x) + PB(x) lnPB(x)− {PA(x) + PB(x)} ln

�
PA(x) + PB(x)

2

��
.

After calculating JSD between all pairs of modules, we perform hierarchical clustering of

the nodes to generate a dendrogram showing how the modules are related to each other [293]

as follows. We successively merge pairs of modules that are closest to each other in terms

of JSD. After each merger, the JSD between the remaining clusters are calculated and

the process repeated until only a single cluster is left. The distance between two clusters

is obtained using a single-linkage clustering algorithm, i.e., we chose the minimum of the

distance between any member of the first cluster to any member of the second cluster.

This quantification of the difference between a pair of distributions is also employed in

Fig. B9 to indicate the extent of similarity between the various anatomical subdivisions of

the brain, the corresponding distributions of whose regions across the categories R1-R7 is

shown in Fig. 3.2 (b) in Chapter 3.
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Figure B9: Dendrogram illustrating the extent of similarity between several anatomical subdi-
visions of the brain, viz., Tha: Thalamus, FL#2: Frontal Lobe, P1#6: Parietal Lobe, CgG#2:
Cingulate Gyrus, Insula, TL#2: Temporal Lobe, OC#2: Occipital Lobe, Amyg: Amygdala and
STR: Striatum, in terms of the distribution across the categories R1-R7 of their constituent
regions (see Fig. 3.2 (b) in Chapter 3). As in Fig. B8 (bottom), the difference between the dis-
tributions corresponding to two subdivisions is measured using the Jensen-Shannon divergence.
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Next, we focus on how regions belonging to specific categories connect to each other.

In Chapter 3, we mention that within each module, the provincial hubs (R5) connect

with each other significantly more often than expected by chance. This intra-modular

connectivity between the R5 nodes can be clearly seen from Fig. B10, where these nodes

are highlighted and their colors indicate the modules to which they belong (see color key

at the bottom). Note that one of the projections shown here is identical to Fig. 3.2 (d) in

Chapter 3.
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Figure B10: The network of brain regions in (a) horizontal, (b) sagittal and (c) coronal projec-
tions, showing that connections between provincial hubs (highlighted nodes) are localized within
each module [Figure 3.2 (d) in Chapter 3 is identical to panel (b) above].
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Figure B11: To see how the different categories R1-R7 of brain regions allow spreading to
occur faster in the empirical brain network than in equivalent randomized networks, we compare
the case where the source node can belong to any category (a) with those where the source is
either ultra-peripheral R1 (b), peripheral R2 (c), satellite connector R3 (d), provincial hub R5
(e), or global hub R6 (f). The z-score indicates that there is a statistically significant shift in the
empirical distribution towards lower values of τ in all cases. However, while for R3 the increase
in the rate of spreading is similar irrespective of whether the target is in the same module or
in a different one, we observe that there is a relatively larger shift at lower values for τ intra as
compared to τ inter for most of the other categories (in particular, R1 and R5 ). Indeed, the
latter behavior dominates when we consider sources across all categories [see panel (a)]. Note
that panels (d) and (e) are identical to see Fig. 3.2 (g-h) in Chapter 3.
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In Chapter 3 we have described our investigation of the role played by regions belonging

to different categories R1-R7 in facilitating information transmission. For this we simulate

diffusive propagation within and between modules and obtain the distribution of first

passage times for random walks between a source node and a target node. Fig. B11 (a)

shows that the rate of diffusion in the connectome is enhanced both within a module and

between modules (as indicated by the statistically significant shift - measured in terms of

z-score - in the empirical distributions for both τ intra and τ inter towards lower values) as

compared to that seen in equivalent randomized networks.

Fig. B11 (b-f) show how nodes belonging to categories R1, R2, R3, R5 and R6 (re-

spectively), which have distinct intra- and inter-modular connectivity roles, contribute to

enhancing communication in the connectome. In each case the source node belongs to the

respective category and we quantify the difference in the distributions of both τ intra and

τ inter from that obtained from randomized surrogates. We observe that for source nodes

of most categories, with the exception of satellite connectors R3, the increase in the rate

of diffusion within a module, compared to that in the surrogate networks, is even higher

than the increase in the rate of diffusion across modules.

Spatial dependence of connectivity and modular orga-

nization

In Chapter 3, we have stated that modular organization of the connectome is not primarily

driven by constraints imposed by the physical distance between the brain regions. This

is established by using three classes of surrogate random network ensembles to investigate

how spatial embedding affects the modular decomposition of a network, with all the regions

occupying the same positions in physical space as in the Macaque connectome. The three

ensembles we have chosen for our investigation are specified by the dependence of the

connection probability P between regions on the physical distance d between them, viz.,

(i) P ∼ d0, i.e., independent of the distance, (ii) P ∼ 1/d, i.e., power-law dependence
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as in the empirical network, and (iii) P ∼ exp(−d), i.e., exponential dependence, for

which the constraint of distance most strongly affects the probability of connection. For

each category, we have generated 100 different networks that have identical numbers of

nodes and links as the empirical connectome. Subsequently, we subject these networks to

community detection techniques using information about the connection topology alone,

as well as space-independent modular decomposition which explicitly accounts for the

dependence of P on d (see Chapter 3 for details).

Fig. B12 shows how the modular nature of the networks belonging to each of the three

ensembles described above vary upon two approaches for identifying the modules, viz.,

(i) using the topological information about the connections alone, and (ii) employing a

space-independent partitioning that takes into account the dependence of the probability

of connections between regions on the physical distance between them. The similarity be-

tween the modules obtained using these two methods is measured using normalized mutual

information Inorm (see Methods in Chapter 3). Note that, if the two types of partitionings

yield identical modules then Inorm = 1, while Inorm = 0 implies maximal dissimilarity.

Without any spatial dependence, the identified modules arise through fluctuations alone,

and hence the similarity between the partitions obtained by the two methods will be en-

tirely stochastic in nature, resulting in the broad distribution for Inorm seen in panel (a).

In contrast, the ensemble underlying the distribution shown in panel (b) has an inverse

relation between connection probability and physical distance, as in the empirical network.

The value of Inorm obtained for the empirical network (indicated by the arrow) is seen to be

significantly larger than those for the random ensemble. This suggests that had the modules

arisen exclusively from a distance-dependent constraint on connections, the topological and

space-independent approaches would have yielded highly dissimilar partitionings. Qual-

itatively similar results are obtained when the dependence of connection probability on

physical distance is even stronger, viz., P decaying exponentially with d as in the case of

the ensemble whose Inorm distribution is shown in panel (c). The fact that partitioning the

empirical network using either the topological or the space-independent approach results in

relatively similar modular decompositions suggest that constraints other than those related
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to physical distance plays a significant role in shaping the mesoscopic organization of the

Macaque connectome. The results described above are supported by the corresponding

distributions of the modularity Q measured for the different partitionings obtained using

each of the two approaches (broken and solid curves in panels d-f). Thus, in the absence

of any spatial dependence, the distributions of Q obtained using the topological and the

space-independent approaches completely overlap [as seen in (d)]. When P ∼ d−1, the

relatively weak spatial dependence gives rise to marginally lower values of Q for the par-

titionings obtained using the space-independent method, as compared to those obtained

using the topological information alone. This is seen to be true for both the empirical net-

work (broken and solid arrows) and the random ensembles [panel (e)]. With the stronger

spatial dependence inherent in an exponentially decaying functional relation, we expect

to see much larger differences in the Q values for the two types of partitionings, and this

is indeed observed in the distributions shown in panel (f). Therefore, the more dominant

the role of the constraint on physical distance in determining the connections, the more

dissimilar the partitionings obtained by the two methods and the larger the difference in

the corresponding Q values.

Fig. B13 illustrates the space independent modular organization of random networks

with the three different types of spatial constraints as described above, employing the

representation used in Fig. 3.3, Chapter 3. The distributions of the physical distances

d between the nodes and the nature of variation of the connection probability between

nodes with d are shown in the panels (a) for networks the role of spatial constraint on

connectivity is (left) absent, viz., P ∼ d0, (center) weak, viz., P ∼ 1/d, and (right) strong,

viz., P ∼ exp(−d). Comparison of the modules obtained using the information about

the connection topology alone and those determined using the space-independent method

(shown in the panels (b) for each of the networks) indicate that in the absence of any

dependence of P on d (left) the partitions overlap to a large extent. Introducing a role for

the spatial constraint in determining the connections result in the two types of partitionings

differing substantially. This is seen for the power-law dependence of P on d (center), but

most prominently when P decays exponentially with d (right). For the latter case, a single
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Figure B12: The distributions of (top row) the degree of similarity between the topological
and space-independent modular partitionings of a network as measured by normalized mutual
information Inorm between them, and (bottom row) the corresponding values for the modularity
Q obtained using the two methods, for three types of random surrogate network ensembles. These
are distinguished by the dependence of connection probability P between a pair of brain regions
on the physical distance d between them, viz., P ∼ d0 [(a) and (d)], P ∼ 1/d [(b) and (e)] and
P ∼ exp(−d) [(c) and (f)]. As the Macaque connectome we have investigated also exhibits a
power-law dependence, viz., P ∼ 1/d, similar to that examined in (b) and (e), we have indicated
in those panels the corresponding values for the empirical network (arrows).
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large module is seen to encompass the bulk of the network. As in this case the topological

modules arise primarily from the spatial constraint on connections between nodes, on

taking this dependence on d into account in the space-independent method the mesoscopic

structure becomes relatively homogeneous. The panels (c) show the joint representation of

the adjacency, modularity and physical distance matrices for each of the three networks [as

per the convention used in Fig. 3.3 (b) of Chapter 3]. The partitions obtained by using the

space-independent method are indicated by bounding lines in each matrix. Note that when

we take into account the constraint that physical distance places on connectivity between

regions, the partitioning results in modules that exhibit only a marginal higher density of

connections within them (compared to the overall connection density). This is expected

as the modules observed in the topological arrangement of connections in these random

networks arise exclusively from the spatial constraint, and therefore the space-independent

method should render the networks relatively homogeneous. Thus, the observation of non-

trivial modules in the empirical network upon partitioning it with the space-independent

method suggests that the observed mesoscopic organization of the Macaque connectome

cannot be explained exclusively by the spatial layout of the regions.
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Appendix C

Comparing the performance of community detection

algorithms on benchmark networks

Although the modules that we obtain using Newman Spectral analysis are robust (as

demonstrated by the results from stochastic simulated annealing described in the main

text), it remains an open question as to which community detection algorithm would

be ideally suited for identifying the modular composition of a given network. A recent

study on the efficiency of a range of community detection algorithms on benchmark mod-

ular networks [294, 295] has suggested that the Infomap algorithm [168], which uses an

information-theoretic approach, is most accurate in identifying the community structure.

However, we find that the Newman Spectral algorithm is better suited for the type of the

empirical network that we consider here. To demonstrate this, we compare the outputs

obtained using the two algorithms on an ensemble of benchmark modular networks char-

acterized by a range of degree distributions and variability in module sizes that we have

deviced as discussed below.

Generating benchmark networks

In order to systematically examine the comparative efficiency of the community detection

methods, we measure their performances for a set of benchmark networks of specified mod-

ular structure. In addition to examining the effect of increasing the number of modules
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in a network of fixed size, we investigate the role of module size heterogeneity on the out-

come. To this end, we develop an algorithm that generates a modular network, where the

spread in module sizes can be tuned through a single parameter. The following procedure

creates a directional network of size N , with m modules of average size n, whose sizes are

drawn from a normal distribution with standard deviation σ (or coefficient of variation

CV = σ/n), where the average number of connections per node is �k� and the ratio of

inter- to intra-modular connectivity is r:

1. We considerm boxes, each of initial size n, select two boxes at random, and increment

the size of one of them by 1 and correspondingly decrease that of the other by 1.

2. We next pick two boxes at random again and repeat the procedure in step [1] for a

total of T steps. Note that this essentially corresponds to a random walk in the size

of each of the m boxes, and that at every step a pair of boxes exhibits random walks

in opposite directions. Thus we effectively have m/2 non-concurrent random walks

occurring over T steps. From the central limit theorem, we know that the position

of a random walker after T steps of size 1 is governed by a normal distribution with

variance σ2, i.e. T = σ2. The variance of box sizes as a result of our procedure is

thus σ2 = T/(m/2), or in other words we repeat step [1] T = σ2 m/2 times to obtain

a set of boxes whose sizes follow a normal distribution with standard deviation σ.

Having finalized the box sizes, we next connect the nodes so as to obtain a network

with the desired modularity. We generate benchmark networks with three different types of

degree distributions, namely Poisson, exponential and power law distributions, respectively.

To generate networks with Poisson degree distributions, we connect nodes in a manner

similar to the generation of Erdős-Rényi random graphs (which is also characterized by

a Poisson degree distribution), with the constraint that the probability of connection of

nodes within modules is different to that across modules. Specifically, if sizes of box i are

given by ni, then the intra and inter-modular connection densities are given by:

ρin =
N �k�

Σini (ni − 1) + Σir ni (N − ni)
, ρout = r ρin .

253



Note that in the limit r → 1 this procedure yields an Erdős-Rényi random network with

connection density ρ = �k�/(N − 1).

For the case of networks with exponential and power-law degree distributions, we assign

an in-degree and out-degree to every node in the network through a process of repeatedly

drawing a random variable from the desired probability distribution. Note that in principle

we can generate the required degree sequence from any arbitrary degree distribution, by

using the following procedure.

Generating a random variable from a desired probability function

Consider a probability distribution function p(k) such that

� kmax

kmin

p(k) · dk = 1 , (C1)

As we require a finite network of size N , the natural bounds kmin and kmax of this degree

distribution are 1 and N , respectively. We vary kmin and kmax within these bounds to obtain

the desired average degree �k�. For the given distribution p(k), we define the cumulative

distribution function (CDF):

F (k) =

� k

kmin

p(κ) · dκ = Y , (C2)

where 0 � Y � 1. In a discrete system where the random variables represent the degree

sequence of the network, the CDF can also be considered as the rank order for the degree

sequence arranged in ascending order. Hence for any given degree k, we obtain its rank

order in Y . Now, for any degree distribution, the rank is always distributed uniformly,

since it is just the order of occurrence in an arrangement. Thus in order to generate the

random variable k, we first generate Y as a uniform random variable between 0 and 1, and

then invert the function F (k).

F (k) = Y ∈ U(0, 1) , (C3)
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k = F−1(Y ) , (C4)

Following this procedure, we can obtain a degree sequence S = {k1, k2, . . . kN} from any

given probability distribution.

Generating an in-degree and out-degree sequence with desired correlation

Consider the uncorrelated sequences S1, S2 and S3 that were randomly generated from the

a probability distribution. We can obtain two correlated sequences Sin and Sout for the

in-degree and out-degree of the network, respectively, from the above three sequences with

a mixing parameter m(∈ [0, 1]) in the following way:

Sin = m · S1 + (1−m) · S2 , (C5)

Sout = m · S1 + (1−m) · S3 , (C6)

Now, calculating the correlation between Sin and Sout gives:

corr(Sin, Sout) = c =
m2

2m2 − 2m+ 1
, (C7)

Hence in order to generate two degree sequences with a desired correlation c, we generate

three uncorrelated sequences and mix them in the above given way using mixing parameter

m given by:

m =
1

1 +
�

1
c
− 1

. (C8)

Community detection using Infomap

Upon generating the benchmark networks, we compare the modules identified using New-

man Spectral Analysis with those using the Infomap algorithm [168]. This technique

operates on the principle of optimally compressing information about a dynamic pro-

cess (viz. a random walk) on a given graph, such that the whole process can be re-

covered as accurately as possible upon decoding the information. The optimization is
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done using a combination of greedy search and simulated annealing, to yield the under-

lying community structure. The code for Infomap that we use is freely available from

http://www.tp.umu.se/~rosvall/code.html.

Comparison of the robustness of the Infomap and Newman Spec-

tral algorithms

A comparison of the results obtained upon using the Infomap and Newman Spectral al-

gorithms for detecting community structure is shown in Fig. C1. While both approaches

identify the existence of modules, the Infomap algorithm yields a much larger number of

modules than the Spectral method. As discussed in Appendix B, the modules obtained

using Infomap are essentially a finer decomposition of those obtained using the Spectral

method. However, a comparison of the accuracy of the two methods on generated modular

benchmark networks with Poisson degree distributions shows that the Spectral method

is accurate over a broader range of the modularity parameter r. Fig. C1(c-f), displays

the probability distributions of the normalized mutual information Inorm of the modular

structure obtained from the method with the embedded modular structure, over a range of

values of r. As can be seen in all cases, the performance of Infomap drops close to r = 0.1,

whereas the Newman Spectral method is more robust even for higher r values, regardless

of the choice of m or CV for the benchmark modular network.

Comparison of results obtained for modular benchmark networks

with different degree distributions

In order to confirm that the results discussed above are independent of the degree distribu-

tion of the modular benchmark network, we compare results obtained using networks with

Poisson, exponential and power-law degree distributions, with different choices of average

degree �k�. As can be seen in Fig. C2, the two algorithms yield similar results for the

normalized mutual information Inorm, regardless of degree distribution. Furthermore, for
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Figure C1: Robustness of the detected community structure of the brain network.
(a-b) Adjacency matrices of the macaque brain network, with nodes arranged according to the
community partitioning obtained, using (a) Newman Spectral Analysis and (b) Infomap, respec-
tively. The brightness of each block is proportional to the density of connections within it, and
the white dots in the diagonal and off-diagonal blocks represent intra- and inter-community links,
respectively. (c-f) Probability distributions of the normalized mutual information Inorm, which
measures the performance of each algorithm (purple: Newman Spectral Analysis, pink: Infomap)
in accurately detecting the community structure, on ensembles of benchmark modular networks
with Poisson degree distributions. The networks are of size N = 400, each comprising m commu-
nities (c, e: m = 5, d, f: m = 10) whose size distribution has a coefficient of variation CV (c, d:
CV = 0, e, f: CV = 0.5) and average degree �k� = 10. These distributions are obtained from 100
realizations, and are displayed over a range of values of inter- to intra-community connectivity
ratio r, which we vary from 0.01 (highly modular) to 1 (homogenous random network).
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Figure C2: Comparison of the accuracy of the community detection algorithms for
different modular benchmark networks using normalized mutual information. Nor-
malized mutual information of the communities obtained using a community detection algorithm
with those of a benchmark modular network of size N = 400, containing m = 5 modules and with
average degree �k�. Results are shown for benchmark networks with three different degree distri-
butions: Poisson, exponential and power-law, for the cases where the module sizes are identical
(CV = 0). For the case of the exponential distribution, the exponents vary with average degree
(0.2 for �k� = 5, 0.1 for �k� = 10 and 0.065 for �k� = 15), while for the power-law distribution,
we use an exponent of α = 3 in each case. The solid and dashed lines represent the average
values of Inorm obtained using the Newman Spectral and Infomap algorithms, respectively, over
an ensemble of 100 trials, while the shaded regions represents the standard deviation of these
quantities. Results are displayed over a range of values of the modularity parameter r.
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Figure C3: Comparison of the accuracy of the community detection algorithms for
different modular benchmark networks using the modularity parameter Q. Modularity
parameter Q of the communities obtained using a community detection algorithm with those of
a benchmark modular network of size N = 400, containing m = 5 modules and with average
degree �k�. Results are shown for benchmark networks with three different degree distributions:
Poisson, exponential and power-law, for the cases where the module sizes are identical (CV = 0).
For the case of the exponential distribution, the exponents vary with average degree (0.2 for
�k� = 5, 0.1 for �k� = 10 and 0.065 for �k� = 15), while for the power-law distribution, we use
an exponent of α = 3 in each case. The dotted, solid and dashed lines represent the average
values of Q of the original benchmark networks and those obtained using the Newman Spectral
and Infomap algorithms, respectively, over an ensemble of 100 trials, while the shaded regions
represents the standard deviation of these quantities. Results are displayed over a range of values
of the modularity parameter r.
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Figure C4: Comparison of results obtained for modular benchmark networks with
different values of CV Normalized mutual information of the communities obtained using a
community detection algorithm with those of a benchmark modular network of size N = 400,
containing m = 5 modules and with average degree �k� = 10. Results are shown for networks with
three different types of degree distributions: Poisson, exponential and power-law, for the cases
where the module sizes are identical (right, CV = 0) and variable (left, CV = 0.5). For the case
of the exponential distribution, we use an exponent of 0.1, while for the power-law distribution,
we use an exponent of α = 3. The solid and dashed lines represent the average values of Inorm
obtained using the Newman Spectral and Infomap algorithms, respectively, over an ensemble of
100 trials, while the shaded regions represents the standard deviation of these quantities. Results
are displayed over a range of values of the modularity parameter r.

average degree �k� = 10 and higher, the accuracy of the Infomap algorithm drops sharply

beyond a critical value of r.

In addition, in Fig. C3 we display a comparison of the modularity parameter Q for

the communities obtained in the case displayed in Fig. C2. Note that we expect Q to

gradually drop to zero as r → 1, corresponding to the network becoming less modular. We

note that the Q values of Infomap drops sharply around the same values as for the case of

Inorm (for �k� ≥ 10), which indicates that the method is not applicable beyond a critical

value of r. However, we also observe that the value of Q does not drop to 0 for the case

of Newman Spectral algorithm, even in the limit r → 1. This deviation from the expected

trend suggests that the Newman Spectral algorithm is not applicable for networks with

high values of r. Finally, in Fig. C4 we compare results obtained for the case where the
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module sizes are identical (CV = 0) and variable (CV = 0.5) for the three choices of degree

distributions of benchmark modular networks. We find that the results are similar in both

cases, with a slight shift in the values of Inorm in the two cases, suggesting that the results

are robust with respect to variability in module size.

Hence, we find that while the Infomap algorithm can accurately identify the community

structure of highly modular networks, it quickly breaks down beyond a critical value of r

for networks with average degree �k� ≥ 10. In contrast, the Newman Spectral method can

identify modules even for higher values of r, and only breaks down in the limit r → 1. This

provides justification for our choice of the Newman Spectral method for the detection of

community structure in the macaque network (which has an average degree of �k� = 9.782).
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Appendix D

The following figures comprise the supporting information for the analysis of human struc-

tural connectome, as described in Chapter 4.

Structure-function correlation for each link

In Fig. D1, we display the correspondence between structure and function for every link

(i, j) belonging to the “representative” brain network over the population of individuals

(see Chapter 4). We observe that the link-wise correlation Corr(Wij, Cij) between the

structural connection weights Wij and corresponding weights in functional connectivities

Cij, calculated across all individuals, tends to be extremely low for most of the links. This

suggests that the functional connectivity has a negligible dependence on the structural

connectivity when observed at the level of nodes and links. This is in contrast with the

macro-level picture shown in Fig. 4.4 of Chapter 4, where we compared the structural and

functional connectivities across entire networks, and found a comparatively higher and

statistically significant correspondence between the two.

Community structure in the human structural connectome

We have analyzed two types structural connectivity: the first corresponding to original

connection weights, as given in the database, and the second consisting of “rescaled”

connection weights (for details, see Methods in Chapter 4). We have found modules in

the brain network of each individual by implementing two separate community detection

methods which are described in Chapter 3 and also in Appendix C, viz., Newman Spectral
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Figure D1: The link-wise correlations between each structural connection and its
corresponding functional connection over the population are extremely low. For each
link between a pair of regions (i, j) we display the correlation between their structural connection
weights Wij and corresponding weights in functional connectivities Cij , calculated across all
individuals (left panel). The probability distributions for the correlation values are shown in the
right panel. Only those links that are identified as part of the representative network, i.e., whose
weights are Poisson distributed over the population, are shown here.
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Analysis [9] and the Infomap Method [168]. We have included only those links that comprise

the “representative” structural network (as described in Chapter 4). Fig. D2 and D3 show

the modular decomposition of the original network (Fig. D2) and the rescaled network

(Fig. D3) for the same individual, as obtained from Newman Spectral Analysis.

We observe that the modules obtained are spatially contiguous with clearly defined

boundaries. There is only a slight variation between the modular partitionings of the two

types of the networks shown in Fig. D2 and D3. The similarity of modular partitioning

between different individuals is shown in Fig. D4 where we show the normalized mutual

information Inorm between all pairs of modular partitionings (for details about normalized

Figure D2: Modules in the structural brain network of an individual subject, ob-
tained using Newman Spectral Analysis. (a) Horizontal, sagittal and coronal projections
(left, top right and bottom right, respectively) of the spatial representations for the structural
brain network of an individual subject, highlighting the 6 modules obtained from Newman Spec-
tral Analysis. Here, the nodes are colored in accordance with the module to which they belong,
and the color of each link corresponds to that of its respective source node, while the thickness
of each links is proportional to its connection weight. Only those links that are part of the rep-
resentative network (as described in Chapter 4) are considered here. (b) Weighted adjacency
matrix representing the network shown in panel (a). Here, the nodes are rearranged and grouped
according to their modular membership. The matrix elements are colored in accordance with the
connection weights Wij of the corresponding links (see legend at the right). The 6 modules that
were obtained from the analysis correspond to the diagonal blocks, marked by green lines.
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Figure D3: Modules in the rescaled structural brain network of an individual sub-
ject, obtained using the Newman Spectral Analysis. (a) Horizontal, sagittal and coronal
projections (left, top, right and bottom right, respectively) of the spatial representations for the
rescaled structural brain network of an individual subject, highlighting the 6 modules obtained
from Newman Spectral Analysis. The individual represented here is the same as that in Fig. D2.
Here, the nodes are colored in accordance with the module to which they belong, and the color
of each link corresponds to that of its respective source node, while the thickness of each links is
proportional to its connection weight. Only those links that are part of the representative network
(as described in Chapter 4) are considered here. (b) Weighted adjacency matrix representing the
rescaled network shown in panel (a). Here, the nodes are rearranged and grouped according to
their modular membership. The matrix elements are colored in accordance with the rescaled
connection weights Wij of the corresponding links (see legend at the right). The 6 modules that
were obtained from the analysis correspond to the diagonal blocks, marked by green lines.

mutual information, see Chapter 3). For most pairs of individuals, the Inorm values are

≈ 0.5, which indicates that modular partitioning is moderately varying across individuals.

Qualitatively similar results are obtained on using the Infomap method to detect mod-

ules in original structural network (Fig. D5) and the rescaled structural network (Fig. D6).

The networks represented in Fig. D5 and D6 are from the same individual as that in Fig. D2

and D3. Fig. D7 shows that the modules obtained across the individuals using Infomap

method are relatively more similar to each other, as indicated by higher Inorm values, in
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Figure D4: Similarity of Newman Spectral modules across different individual brain
networks. Pair-wise values of Inorm, which quantifies the similarity of modular paritionings
between a pair of individuals, as well as the kernel-smoothened distributions of the correspond-
ing Inorm values, are shown for (a) the brain networks having original connection weights, and
(b) brain networks having rescaled weights. Note that the mode of the Inorm distributions in
both cases is ≈ 0.5, indicating that the modular decomposition of individual brain networks
varies moderately over the population.

comparison to those obtained using Newman Spectral Analysis.
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Figure D5: Modules in the structural brain network of an individual subject, ob-
tained using the Infomap method. (a) Horizontal, sagittal and coronal projections (left,
top, right and bottom right, respectively) of the spatial representations for the structural brain
network of an individual subject, highlighting the 8 modules obtained from the Infomap method.
The individual represented here is the same as that in Fig. D2. Here, the nodes are colored in
accordance with the module to which they belong, and the color of each link corresponds to that
of its respective source node, while the thickness of each link is proportional to its connection
weight. Only those links that are part of the representative network (as described in Chapter 4)
are considered here. (b) Weighted adjacency matrix representing the network shown in panel (a).
Here, the nodes are rearranged and grouped according to their modular membership. The matrix
elements are colored in accordance with the connection weights Wij of the corresponding links
(see legend at the right). The 8 modules that were obtained from the analysis correspond to the
diagonal blocks, marked by green lines.
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Figure D6: Modules in the rescaled structural brain network of an individual subject,
obtained using the Infomap method. (a) Horizontal, sagittal and coronal projections (left,
top, right and bottom right, respectively) of the spatial representations for the rescaled structural
brain network of an individual subject, highlighting the 11 modules obtained from the Infomap
method. The individual represented here is the same as that in Fig. D2. Here, the nodes
are colored in accordance with the module to which they belong, and the color of each link
corresponds to that of its respective source node, while the thickness of each link is proportional to
its connection weight. Only those links that are part of the representative network (as described in
Chapter 4) are considered here. (b) Weighted adjacency matrix representing the rescaled network
shown in panel (a). Here, the nodes are rearranged and grouped according to their modular
membership. The matrix elements are colored in accordance with the rescaled connection weights
Wij of the corresponding links (see legend at the right). The 11 modules that were obtained from
the analysis correspond to the diagonal blocks, marked by green lines.
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Figure D7: Similarity of Infomap modules across different individual brain networks.
Pair-wise values of Inorm, which quantifies the similarity of modular paritionings between a pair
of individuals, as well as the kernel-smoothened distributions of the corresponding Inorm values,
are shown for (a) the brain networks having original connection weights, and (b) brain networks
having rescaled weights. Note that the mode of the Inorm distributions in both cases is ≈ 0.6,
indicating that the modular decomposition of individual brain networks varies moderately over
the population.
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The thesis aims to explore the structural organization of brain networks at different levels of complexity in order 

to address several  questions such as (i) how is the brain network formed during development with its precise 

connectivity (‘wiring problem’)? (ii) how does the structure of brain networks relate to their function (‘structure-

function correspondence’)? and (iii) how diverse (or invariant) is the structure of brain network across a 

population? 

 

For the nematode Caenorhabditis elegans, the only organism for which the connections of the entire nervous 

system have been mapped, the wiring problem is addressed by showing how the strategies for connecting the 

neurons arise from the developmental trajectory of the organism. Analysing the connectivity structure, spatial 

organization and lineage history reveal the developmental constraints that 

shapes the nervous system. 

 

For the Macaque brain, the modular organization of the connectome   

Is shown to have counter-intuitive properties. Instead of information 

encapsulation by modules, the arrangement of inter- and intra-modular 

links facilitates extremely rapid dissemination of information, even faster  

than in random, homogenous networks. In the adjoining figure, the five  

modules obtained using a spectral method of modularity  

detection are shown. 

 

Analysis of an ensemble of human brain network shows that connection  

weights have a Poisson distribution. Based on this, representative  

connections in the network are identified by rescaling the link weights  

that correspond marginally better to corresponding functional networks. 

The connections are categorized into two broad categories, depending on 

 the variability of the link weights across the population.  

 

A new approach to determine hierarchical organization in brain  

networks is proposed. Robust hierarchical layers in the nervous systems 

of Macaque, human and C. elegans are obtained.                                                                                                                      

     

Mesoscopic organization of the Macaque 

brain. The network of brain regions, shown 

in (a) horizontal, (b) sagittal and (c) coronal 

projections, clearly indicate that the nodes 

(filled circles) are organized into five 

modules, each characterized by dense intra-

connectivity. The modular membership of 

each node is represented by its color, while 

node sizes provide a representation of the 

relative volumes of the corresponding brain 

regions 
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