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Synopsis

Polyelectrolytes (PEs) are polymers with ionizable groups which release counterions

when dissolved in solutions, rendering the backbone of the polymer chain charged. Ex-

amples of PEs include biological polymers such as DNA, RNA, actin, virus, etc. [1–3] , as

well as synthetic polymers such as sulphonated polystyrene, polyacrylic acid, etc. [4–8].

PEs have a wide range of applications, such as gene therapy, drug coating, water purifi-

cation, color removal, paper making, etc. The dynamic and structural properties of PEs,

critical for their applications, are crucially dependent on the conformational phases of

PEs. These phases are primarily determined by the competition between the repulsive

electrostatic interactions among like-charged monomers of the PE chains and the entropy

of the unbound counterions. Depending on the relative dominance, the unbound coun-

terions may condense onto the polymer backbone, renormalizing the charge density, and

facilitate effective short-ranged attractive interactions between monomers [9]. In the di-

lute limit of a single PE chain in isolation, the effective interactions can result in extended,

bead-necklace, and collapsed conformations depending on the charge density of the PE

chain and the temperature of the system [10–18]. At finite densities of PE chains, the

effective attractive interactions among the PE chains may lead to aggregation.

This thesis is divided into two parts. The first part addresses the mechanism that drives

the collapse transition of a single PE from an extended to a collapsed phase. The second

part studies the statics and dynamics of aggregation in a collection of PEs, both flexible
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and rigid. Both these problems are studied primarily using extensive molecular dynamics

(MD) simulations of coarse-grained models.

Mechanism of the collapse of a single flexible PE

Several experiments and simulations have shown that at large enough charge density, `B, a

like-charged PE chain undergoes a transition from an extended to collapsed conformation

regardless of the solvent quality [11–15]. This counterintuitive transition is driven by the

condensation of counterions onto the chain, reducing the effective charge density. The

nature of the effective attractive interactions driving the transition is not well-understood

and there are competing theories explaining their origin. For the collapsed state, these

theories predict that the gyration radius, Rg, of a PE has the scaling form Rg ∼ N1/3
m `

−γ
B ,

where Nm is the PE chain length, and the exponent γ can potentially depend on system

parameters. In the literature, there are three theoretical approaches [15–18], based on dif-

ferent physical models, to account for the electrostatics-driven counterintuitive collapse

of similarly charged PEs. All the theories predict a single collapsed regime, but differ in

their prediction of the exponent γ characterizing the dependence of Rg on `B. In the first

approach [16], the system of charged, collapsed PE and the corresponding counterions is

modeled as an amorphous ionic solid. In this theory, the system achieves minimum free

energy when the PE is in a collapsed state and the Rg is independent of the charge density

of the PE, thus leading to γ = 0. In the second theory, pairs of condensed counterions and

PE monomers are treated as fluctuating dipoles, and the attractive dipole-dipole interac-

tion energy is identified as the driving force behind the collapse of the PE in both good

as well as poor solvents [17, 18]. The dipole theory proposes a scaling of Rg with `B as

Rg ∼ `
−2/3
B , leading to a value of γ = 2/3 for both good and poor solvents. The third theory,

referred to as counterion fluctuation theory, proposes that attractive interactions driving

the collapse transition is a result of the density fluctuations of the condensed counteri-

ons leading to a negative pressure [15]. This theory predicts γ = 1/2 for good solvent

2
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Figure 1: The variation of the radius of gyration (Rg) of the collapsed phase with charge
density (`B) for a PE chain of length Nm and bond length a in (a)-(c) good solvent condi-
tions and (d)-(f) poor solvent conditions.

conditions.

We present the results of extensive MD simulations exploring the collapsed conforma-

tion of a single flexible PE chain in both good and poor solvents. Our main results are

summarized below.

• MD simulation results of a good solvent [Fig. 1(a)-(c)] reveal two collapsed regimes,

that we refer to as weak and strong electrostatic regimes. In the first regime, the ex-

ponent γ = 1/2 (characterizing the dependence of Rg on `B) while in the second one

γ = 1/5. This scaling is robust and independent of the valency of the counterions,

volume interaction models between chain monomers and on the solvent models.

The scaling in the weak electrostatic regime (γ = 1/2) is not consistent with the

predictions of either the fluctuating dipole theory (γ = 2/3) [17,18], or of the amor-

phous ionic solid (γ = 0) [16], but agrees with the counterion fluctuation theory [15]

proposed earlier. However, the scaling in the strong electrostatic regime (γ = 1/5)

is not consistent with any of the existing theories.

• We find the existence of several sub-regimes in the dependence of the gyration

radius of the chain Rg on `B for poor solvents as shown in Fig. 1 (d)-(f). In contrast

3



to a good solvent, the exponent γ for a poor solvent crucially depends on the size

and valency of the counterions.

• We develop a generalized theory for a collapsed regime of a PE in good and poor

solvents based on counterion fluctuation theory [15], by explicitly considering the

monomer-monomer, monomer-counterion and counterion-counterion interactions.

In the original counterion fluctuation theory [15], the volume contribution of PE free

energy was truncated at the second virial coefficient. We have included more terms

in the virial expansion depending on the packing fraction of the system, resulting in

multiple regimes with different exponents. This generalized counterion fluctuation

theory describes the MD results for both good and poor solvents well.

• We also show that the presence of condensed counterions modifies the effective

attraction among the chain monomers and modulates the sign of the second virial

coefficient under poor solvent conditions.

Aggregation dynamics of rigid PEs

At finite densities of PE chains, the effective attractive interactions among the PE chains

can lead to aggregation, in addition to individual collapsed phases. Understanding such

counterion-mediated aggregation of charged polymers is very relevant as the aggregation

of biopolymers such as DNA and actin has been implicated to play an important role

in biological functions such as cell scaffolding, DNA packaging, and cytoskeletal orga-

nization [2, 19]. In addition to biological polymers, recent studies have shown that the

aggregation of synthetic polymers is crucial in their ability to function as biomimetic and

functional materials [20–22].

We study the dynamics of aggregation of rigid PEs using MD simulations. Figure 2

shows the snapshot of a system of N(0) = 100 rigid PEs with charge density `B = 3.57 and

valency Z = 3 at different times. As the time evolves, the PEs aggregate and the number
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Figure 2: Snapshots of a collection of rigid PEs system at different times for `B = 3.57
and Z = 3. The counterions are not shown for better clarity.

of aggregates decreases. The main results obtained are summarized below.

• The fraction of aggregate n(t) = N(t)/N(0) decreases with scaled time t/t∗ as a

power law t−θ. From our simulations, we find θ = 0.62±0.07, as shown in Fig. 3.
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0.5

1

n
(t
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Figure 3: The variation of the fraction of aggregates n(t) with scaled time t/t∗ for different
values of `B for systems with trivalent counterions, where t∗ is the time at which n(t) = 0.9.
The straight line corresponds to power law (t/t∗)−0.62.

• We find that the exponent θ is independent or utmost weakly dependent on `B and

other system parameters such as valency (Z), density (ρ), length of PE chains (Nm).

• The exponent θ characterizing the power law decay of the number of aggregates is

quite universal. It is thus plausible that aggregation is driven by diffusion and irre-

versible aggregation (we do not see any fragmentation event) due to short-ranged

attractive forces. With this assumption, we recast the aggregation dynamics of PE
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in terms of the Smoluchowski equation for irreversible aggregation [23],

dN(m)
dt

=
1
2

m−1∑
m1=1

K(m1,m−m1)N(m1)N(m−m1)−
∞∑

m1=1

K(m,m1)N(m)N(m1), (1)

where N(m) is the number of aggregates of size m at time t, and collision kernel

K(m1,m2) is the rate at which two masses m1 and m2 collide. The first term in

Eqn. (4.6) describes the aggregation of particles to form an aggregate of size m,

while the second term describes the loss of an aggregate of size m due to collision

with other particles. From the observed cylindrical shape of PE aggregation, we

deduce the collision kernel. For this collision kernel, we find θ = 2/3, which is

in agreement with our MD simulation results. Our results suggest that once coun-

terions condense, effective interactions between PE chains short-ranged and the

aggregation of PEs are diffusion-limited.

Role of flexibility in the aggregation of multiple PEs

The introduction of flexibility in the charged polymer backbone is expected to funda-

mentally alter the aggregation dynamics, as additional time scales can emerge due to the

possibility of the system getting trapped by kinetic barriers. We aim to understand the

behavior of aggregation in the case of completely flexible PEs (FPEs). The main results

are summarized below.

• In the case of FPEs, aggregation as well as fragmentation events are present.

• Unlike rigid charged polymers, the phase diagram of the flexible charged polymers

with valency Z = 3 as shown in Fig. 4, consist of three different phases depending

on the charge density: one with no aggregation, another with finite bundles and a

fully phase separated phase.

• An individual FPE chain within an aggregate becomes more extended with increas-

6



Figure 4: Phase diagram for a collection of flexible PEs in the ρ-`B plane. There are three
phases: one with no aggregation, another one with finite-sized bundles and a completely
phase separated phase.

ing aggregate size, and we show that its non-bonded nearest neighbors are increas-

ingly from other FPE chains, implying that the FPE chains within an aggregate are

strongly entangled.

• The dynamics of aggregation in the phase-separated phase were quantified through

the temporal variation of the fraction of the aggregate n(t) : n(t) ∼ t−θ as in the case

of rigid PEs. We find that, θ decreases with increasing charge density and varies

from from 0.6−0.35 for the range of charge densities considered. This is in contrast

to the charge independent value of θ≈ 0.62 obtained for rigid PE chains through MD

simulations. The reason for the dependence of the exponent on charge may be due

to the additional time scale involved in the system due to the rearrangements inside

an aggregate such as opening up and closing up of an existing aggregate consisting

of entangled FPE chains, during the addition of a new one. Such a rearrangement

is absent in the case of rigid PE aggregation.

• In the case of FPE aggregate, we observe multiple regimes characterized by differ-

ent scaling exponents in the relation between the radius of gyration and the effective

Bjerrum length of the PE chain (Rg ∼ `
−γ
B ) as predicted by generalized counterion

fluctuation theory for a single PE chain collapse. This provides further evidence

for the counterion fluctuation theory being the correct description for the effective

7



attractive interactions in charged PE systems.
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Chapter 1

Polyelectrolytes: Introduction

Polyelectrolytes (PEs) are long, electrically charged molecules in polar solutions. The

oppositely charged counterions are present in the solution such that the system is overall

neutral. This chapter deals with a brief introduction to polymers and PEs, which includes

different measurement parameters of polymers, basic models etc. It also contains the

outline of the thesis.

1.1 What are polyelectrolytes?

Polyelectrolytes (PEs) are polymers with ionizable groups, which release counterions

when dissolved in solutions, rendering the backbone of the polymer chain charged. These

are similar to simple salts such as NaCl, which gives Na+ and Cl− in solution. Hence, PEs

are also known as polysalts. PEs have characteristics of both polymers and electrolytes. A

polymer molecule is defined as a long chain with repeating units of atoms that are bonded

through covalent bonds. The group of atoms that repeat are called monomers, and a poly-

mer is group of monomers connected via covalent bonds. If the monomers are identical

then such polymers are called homopolymers whereas if more than one kind of monomers

exist in a single chain, then such polymers are called heteropolymers. The total number

9



of monomer units present in a polymer is referred to as the degree of polymerization.

In a PE, the degree of ionization is denoted by f and it’s value varies from 0 to 1. If all

the monomers are charged, then f = 1, and such PEs are called strongly charged PEs

whereas if f <1 only some of the monomers are charged and they are called weakly

charged PEs. The schematic diagram of a strongly charged and a weakly charged PE

are given in Fig. 1.1. When the ionizable groups dissociate, polymer molecules become

Figure 1.1: A schematic diagram of a PE with (a) f = 1 and (b) f < 1.

charged either positively or negatively, depending upon the specific functional groups

present. Polymers whose ionizable functional groups have a net positive charge are called

cationic PEs and those with a net negative charge are called as anionic PEs. The poly-

mers having both positive and negative charges such that they have zero total charge are

called nonionic PEs. Examples of PEs vary from naturally occurring PEs to synthetic

PEs. [1–8].

1.1.1 Biological PEs

Examples of biological PEs include DNA, RNA, actin, virus, polypeptides, polysaccha-

rides etc [1–3]. The double stranded DNA (dsDNA) is a highly charged PE of −2e charge

10



per base pair and each elementary charge comes from phosphate group present in the

backbone [24]. The electrostatic interactions in biological PEs play a crucial role in their

structural and dynamical properties. For example, PEs often self-organize by the elec-

trostatic interactions to form superstructures. DNA compaction into chromatin fiber in

the nuclei of eukaryotic cells is a typical example of such super structures [24]. The ge-

nomic DNA forms superstructures with the help of positively charged histone proteins in

the nuclei of eukaryotic organisms [25, 26]. Aggregation of biological PEs are important

to some disease states. For example, histones promote the aggregation and fibrillation

of α-synuclein protien, which plays an important role in the pathogenesis of Parkinson’s

disease [27]. Furthermore, molecular cluster formation can also cause debilitating neu-

rodegenerative diseases like Alzheimer syndrome, where a few identical small fragments

of large proteins show the tendency to form fibrils. For example, Aβ16−22 peptides self-

assemble into aggregated structures with a high β-strand content [28].

1.1.2 Synthetic PEs

Examples of synthetic polymers include sulphonated polystyrene, polyacrylic acid, etc [4–

8]. The charges on PEs can be dynamic, causing polymer chains to adopt different equi-

librium conformations even with relatively small changes to the surrounding environment

such as pH, temperature, presence of solvent etc. This property of PEs is used in chem-

ical separation and bio-medical applications such as drug delivery [6, 29–31], gene ther-

apy [5, 32–34] etc. PEs are widely used as flocculants, which are used in solid-liquid

separation [4]. If a charged macro-ion is added to a system of colloidal suspensions, it

destabilizes the suspensions and form a large aggregate and which separates from liq-

uids by sedimentationand this process is called flocculation. Synthetic PEs are widely

used as flocculants in many industries such as in water purification [7, 35–37], color re-

moval [8,38–40], paper making [4,41] etc. The cross-linked PEs form three-dimensional

structures that swell in water rather than dissolving in it. They can retain extremely large
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amounts of liquid relative to their own mass (500 times its weight) through hydrogen

bonding with water molecules. This feature of PEs is used in making super absorbent

products like baby diapers and other disposable personal hygiene products, such as adult

protective underwear and sanitary napkins [42–45].

1.1.3 Importance of PE studies

The description of PEs is quite challenging primarily because of the long range electro-

static interaction. Many non linearly coupled variables control the properties of PE and the

whole system is strongly correlated. The dynamical and structural properties of the PEs,

critical for their applications, are crucially dependent on the conformational phases that

the PEs may assume depending on a variety of conditions and parameters of the system.

These phases are primarily determined by the competition between the repulsive electro-

static interactions among the like-charged monomers of the PE chains and the entropy

of the free counterions. Depending on the relative dominance between the energy and

the entropy, free counterions may condense onto the polymer backbone [9,46,47], renor-

malizing the charge density, and facilitate effective short-ranged attractive interactions

between monomers and cause counterintuitive behavior to PE systems. Several theoret-

ical, computer simulations, and the experimental studies have been done on PE system

and some of them will be described briefly in later sections, though the understanding of

the behavior of PEs are still incomplete.

1.2 Neutral polymer vs Polyelectrolyte

Polymers exhibit different interesting behaviors depending on external conditions such

as temperature, solvent quality etc. and the conformations of polymers are determined

by the resultant dominant interactions in the system. Consider a polymer in a solvent,

where the typical interactions are between monomer-monomer, monomer-solvent, and

12



Figure 1.2: Typical snapshot of a neutral polymer in (a) good solvent (b) poor solvent.
In good solvent, polymer acquires an extended conformation where as in poor solvent, it
acquires a collapsed conformation.

solvent-solvent. If monomer-monomer interaction dominates over monomer-solvent in-

teraction, then the chain is likely to be in a collapsed state and the polymer is said to

be in poor solvent conditions. On the other hand if the monomer-solvent interaction is

greater than the monomer-monomer interaction, then the chain is likely to be in an ex-

tended state and the polymer is said to be in good solvent conditions. Such solvents are

known as good solvents. Solvent quality can be changed by changing the temperature, as

we increase temperature nature of solvent changes from poor to good solvent quality [48].

Neutral polymer undergoes a transition from extended to collapsed conformation as we

change temperature or solvent quality from good to poor solvent. A typical conformation

of a neutral polymer in a good solvent and a poor solvent is shown in Fig. 1.2 (a) and

Fig. 1.2 (b) respectively. The detailed theoretical description of extended to collapsed

transformation is explained in Sec. 1.2.3.

Charged polymers, PEs are intrinsically different from neutral polymers since they carry

multiple charges along its backbone, which generates long-range electrostatic interaction.

Furthermore, the PE backbone is always accompanied by oppositely charged counterions

which neutralizes it. These features constitute the unique and complicated properties of

PEs, such as chain conformation, rheology, dynamics, and phase behaviors, different from

those of neutral polymers.

13



One of the important length scales in system of PEs is Bjerrum length (`B) and it is

the length scale at which the electrostatic interaction energy of two monovalent ions is

comparable to the thermal energy kBT , where T is the absolute temperature. Bjerrum

length is given by

`B =
e2

4πε0kBT
, (1.1)

where ε0 is the dielectric constant and e is the charge of monomer. The quantity `B

is a measure of the distance at which the Coulomb energy and the thermal fluctuations

are comparable. If the distance between ions is shorter than `B, the electrostatic inter-

actions dominate. In other-words, for large Bjerrum length `B electrostatic interactions

dominate whereas for small Bjerrum length thermal effects dominate. In water at room

temperatures, Bjerrum length `B ∼ 0.7nm [24]. For small Bjerrum lengths, counterions

are likely to move throughout the entire volume and the counterion entropy will be max-

imum. Fig. 1.3 shows the snapshot of a single flexible PE at different Bjerrum lengths.

At very small `B [Fig. 1.3 (a)], the chain behaves like a neutral polymer and the coun-

terions are randomly distributed in the box to maximize their entropy. For critical `B,

counterion starts condensing on the chain and a phenomenon called Manning condensa-

tion occurs [Fig. 1.3 (b)]. For very high Bjerrum length the polymer chain collapses due

to the attractive interactions arising from the condensed counterions [Fig. 1.3 (c)].

1.2.1 Counterion condensation

The electrostatic interaction of PE system increases as the charge density `B increases

and the counterions starts to bound to the PE chain above some critical charge density.

This phenomenon is known as counterion condensation, or Manning condensation. This

process was first proposed by Onsager and later analysed by Manning [46, 49, 50] and

Oosawa [51]. The counterion condensation can be understand as follows. Consider a sys-

tem of cylindrical rod of uniformly charged with radius R and counterions of oppositely

charged as shown in Fig. 1.4. The electrostatic potential at a distance r > R arising from
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Figure 1.3: Behavior of a PE chain in good solvent at different Bjerrum length (`B).
(a) At very small `B, the chain is in an extended state and the counterions are randomly
distributed in the box to maximize its entropy. (b) Intermediate `B, corresponding to
Manning condensation, counterion starts condensing on the chain, and the chain is in
extended state irrespective of solvent quality. (c) High `B, PE chain collapses irrespective
of solvent quality.

R

Figure 1.4: A schematic picture of a single infinite charged rod (blue) immersed in an
aqueous solution containing counterions (red).

the charged rod with a linear charge density of 1/` is

φ(r) =
2`B

`
ln

( r
R

)
, (1.2)

and the counterion density can be estimated by using Boltzmann distribution as

n(r) ∼ e−φ(r). (1.3)
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The number of counterions inside a cylindrical shell of radius R0 around charged rod can

be calculated as

Q(R0) = 2π
∫ R0

R
rdr n(r) =

2π

R−2`∗B

∫ R0

R
drr(1−2`∗B) ∼ r2(1−`∗B)|

R0
R , (1.4)

where `∗B =
`B
` is the dimensionless Bjerrum length and is called Manning parameter.

When `∗B < 1, Q(R0) grows with R0 and the counterion are distributed in the entire volume,

maximizing their entropy. For `∗B > 1, Q(R0) is independent of R0 in the asymptotic limit

R0 → ∞ and therefore, counterions are bound. This phenomenon is called counterion

condensation. Dependency of manning parameter on the valency is `∗B ≤ Z−1, where Z is

the valency [52]. In later part of this thesis, we use this manning parameter, `∗B everywhere

and for notational simplicity we drop ∗ and use `B.

1.2.2 Different measures of polymer conformations

In this section, we describe different measures that can characterize polymer conforma-

tions. A typical polymer conformation is shown in Fig. 1.5. The centre of mass of polymer

chain is RCM and Ri is the position of ith monomer with respect to the centre of mass of

chain (RCM). The conformations of polymer chain can be described by following param-

eters.

RCM

R3

R2R1

R0

RN−3

RN−2 RN−1

RN

Figure 1.5: A typical conformation of a polymer chain. Ri is the position of ith monomer
with respect to the centre of mass of chain (RCM).
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• Mean square end-to-end distance, 〈R2
ee〉

〈
R2

ee

〉
=

〈
(RN −R0)2

〉
, (1.5)

where 〈〉 represents the ensemble or time average.

• Radius of gyration, Rg :

R2
g =

1
N

〈N−1∑
i=0

R2
i

〉
. (1.6)

In static scattering experiments (using neutron, x-ray, light), a typically measured

quantity is the radius of gyration Rg.

• Hydrodynamic radius, Rh:

Rh =

 1
N

N−1∑
i=0

∑
j>i

〈 1
|Ri−R j|

〉
−1

. (1.7)

This quantity is measured in dynamic scattering experiments.

• Shape factor Rg/Rh:

The ratio of radius of gyration (Rg) to hydrodynamic radius (Rh) is known as shape

factor. It is the measure of anisotropy of the shape of the molecule and also provides

structural information. The shape factor for a spherical shell with all particles are

uniformly distributed on its surface is 1 where as uniformly distributed particle in a

sphere has shape factor 0.77. The shape factor increases with anisotropy and takes

a value about 4 for a rod-like conformation [53].

• Persistence length, lp:

The persistence length of a polymer is a measure of the flexibility of backbone

and is the length beyond which the orientations of two bonds along the chain are

uncorrelated. The orientation correlation between ith and jth bonds decays with the
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distance along the chain backbone a| j− i| as

〈ui.u j〉 = a2exp
[
−

a| j− i|
lp

]
, (1.8)

where a is the bond length, ui = Ri −Ri−1 and u j = R j −R j−1 are the bond vectors

and lp is defined as the persistence length. For distances a| j− i| smaller than lp,

the bond orientations are correlated and hence the conformation is rod-like and for

distances a| j− i| larger than lp, the bond orientations are uncorrelated and hence the

conformation is coil-like. The flexible chains have smaller persistence length while

the rigid chains have larger persistence length. The stiff polymer in nature, ds-

DNA has a persistence length of lp ∼ 500Å whereas the flexible synthetic polymer,

polystyrene has persistence length of lp ∼ 10−14Å [54].

• Gyration tensor:

The gyration tensor can be defined as

S αβ =
1
N

N∑
i=1

RiαRiβ, α,β = 1,2,3, (1.9)

where Riα is the αth component of position vector Ri of ith particle measured from

the center of mass. Gyration tensor and its eigen values are widely used in polymer

physics to describe the geometrical properties such as radius of gyration, shape

anisotropy, asphericity etc. Let the eigenvalues be denoted by λ1, λ2, and λ3, where

λ1 ≥ λ2 ≥ λ3. The different shape descriptors in terms of the eigen values can be

expressed as

– Radius of gyration:

R2
g = λ1 +λ2 +λ3. (1.10)

– Shape anisotropy:

κ2 =
3
2

λ4
1 +λ4

2 +λ4
3

(λ2
1 +λ2

2 +λ2
3)2
−

1
2
. (1.11)
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Shape anisotropy varies between 0 for spherically symmetric particles and 1

for all the particles lies on a line.

– Asphericity:

b = λ2
3−

1
2

(λ2
1 +λ2

2). (1.12)

It measures, how the shape deviates from basic spherical geometry. Aspheric-

ity, b is always non-negative and b = 0 for spherically distributed particles.

– Acylindricity:

c = λ2
1−λ

2
2. (1.13)

It determines how the shape varies from cylindrical shape. Acylindricity, c = 0

for particle distributed with cylindrical symmetry.

1.2.3 Theoretical description of a neutral polymer and charged

polymer (PE)

Neutral polymer

Theoretical description of polymer using a Flory-type free energy functional is described

in this section. For a neutral polymer, the contribution in free energy mainly comes from

the entropic part and excluded volume interactions. In general, the free energy of a poly-

mer chain can be written as

F = Fentropy + Fint, (1.14)

where Fentropy is the free energy due to entropic contribution of chain and Fint is the free

energy due to volume interaction. According to Flory, the equilibrium conformation of

polymer chain is determined by the balance between volume interactions and entropic

interactions [55]. In the following section, we briefly explain these terms.

The free energy due entropic elasticity of chain
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To explain the entropic free energy, let us consider an ideal polymer chain in which there

Ree

u3u2

u1

uN−2 uN−1

uN

Figure 1.6: An ideal freely joined chain with N rigid segments (bonds) with bond vector
ui and the end to end distance is Ree.

is no interaction between solvent or monomers of same or other polymer. An example of

ideal chain is freely joined chain composed of N rigid segments as shown in Fig. 1.6, each

of length l, able to direct in any direction. The motion of each segment is independent

and there is no interaction between segments. The end-to-end vector Ree of freely joined

chain is:

Ree =

N∑
i=1

ui, (1.15)

where ui = Ri−Ri−1 is the bond vector. The mean square end-to-end distance of a freely

joined chain is

〈
Ree

2
〉

=

〈 N∑
i=1

ui


2 〉

=

N∑
i=1

〈u2
i 〉+ 2

∑ ∑
1≤i< j≤N

〈uiu j〉. (1.16)

Since the segments in freely joined chain are not correlated, 〈uiu j〉 = l2〈cosθi j〉 = 0 and

〈u2
i 〉 = l2. Hence the mean square end-to-end distance is

〈
Ree

2
〉

= Nl2. (1.17)

This definition of mean square end-to-end distance is equivalent to the definition given in

Eqn. (1.5).

So, for a random chain, the mean length of the chain is Ree = N1/2l , which is small

compared to fully extended state Ree = Nl. The equilibrium state of a macromolecule is

an extended state with end-to-end distance of the order of Ree = N1/2l, where the entropy
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of chain is maximum (large number of configurations possible, whereas for Ree = Nl, only

one conformation is possible with the completely stretched case).

Since the mean size of coil is N1/2l and volume is N3/2l3, the mean concentration of

monomers can be calculated as

n ∼ N/N3/2l3 ∼ N−1/2l−3. (1.18)

This quantity tends to zero as the chain length increases.

From the Central Limit Theorem, the probability distribution function of a freely joint

chain with N segment having end to end deistance Ree is given by,

PN(Ree) =

(
2πNl2

3

)− 3
2

exp
[
−

3R2
ee

2Nl2

]
, (1.19)

and hence the statistical distribution of end-to-end vector of ideal chain is Gaussian and

the ideal chain is also known as Gaussian chain.

The partition function of a Gaussian chain of end-to-end vector Ree is

ZN(Ree) = N
′

PN(Ree), (1.20)

where N
′

is the normalizing factor which is independent of Ree. The free energy of ideal

chain is

F(Ree) = −T ln ZN(Ree) = const +
3TR2

ee

2Nl2
. (1.21)

From Eqn. (1.21), it is seen that as the Ree increases free energy also increases. The nature

always tries to minimise free energy. The end-to-end distance, Ree increases, implies that

stretching of polymer chain, induces an elastic force in the opposite direction to minimise

free energy. This is entropic in nature. One can replace Ree with Rg, the radius of gyration

since both the quantities are proportional.
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We derived the free energy of an ideal chain which is the entropic contribution in free

energy corresponding to an extended chain. As we know from the Sec. 1.2, neutral poly-

mer has two conformations namely, extended and collapsed state. In order to derive the

free energy corresponding to the entropic contribution collapsed state, let us consider an

ideal macromolecule located inside a spherical cavity with diameter D much larger than

the persistence length of the polymer and smaller than the length of the stretched polymer

chain. Such a polymer conformation is identical to collapsed state. The entropy of such a

system decreases as a result of confinement and the free energy takes the form [54]

Fentropy = T f
(

N1/2l
D

)
, (1.22)

where the function f is unknown, but can be evaluated by using properties of free energy.

The free energy is extensive and should be proportional to N, the function f (x) ∼ x2,

hence free energy for a collapse state is

Fentropy ∼ T
Nl2

D2 . (1.23)

The different polymer conformations can be recognised by measuring radius of gyration,

end-to-end distance and hydrodynamic radius. All these three quantities show same scal-

ing with respect N, and one can replace Ree with Rg in the expressions for free energies,

which also adds constant factors.

The free energy due to volume interaction

Role of volume interaction can be parametrized by the expansion coefficient, α, the ratio

of mean square radius of gyration of the polymer chain (Rg) to that of gaussian chain (Rg0)

is given as

α2 =
R2

g

R2
g0

. (1.24)
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The expansion coefficient α� 1 corresponds to extended state and α� 1 corresponds

to collapsed state. Since the monomer concentration in the extended state is low as in

Eqn. (1.18), the thermodynamic function can be expanded into power series of the number

of particles in the unit volume ie., virial expansion. The free energy Fint can be expanded

in terms of virial expansion as

Fint(α)
T

∼ R2
gB

 N
R3

g

2

+ R3
gC

 N
R3

g

3

+ ............., (1.25)

where B and C are second and third virial coefficients respectively, and are defined by the

interaction potential. Equation (1.25) can be written in terms of expansion coefficient α

as follows:
Fint(α)

T
∼

(
BN1/2

l3

)
α−3 +

(C
l6

)
α−6 + ............. (1.26)

The second-virial coefficient is a measure of the strength of two-body interactions u(r),

and is given by

B(T ) =
1
2

∫ {
1− exp

[
−

u(r)
T

]}
d3r. (1.27)

In good solvent condition, the effective interaction between the monomers are repulsive

and hence B(T ) is positive whereas in the poor solvent, attractive interaction between the

monomer leads to negative B(T ).

The entropic free energy defined in Eqns. (1.21) and (1.23) can be written in terms of

expansion coefficient α as follows:

Fentropy(α)
T

=


aR2

g/Nl2 ∼ α2, α� 1,

Nl2/R2
g ∼ α

−2, α� 1.
(1.28)

Combining the two limiting cases by interpolation, we get

Fentropy(α)
T

∼ α2 +
1
α2 , (1.29)
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where α� 1 corresponds to swollen (extended) state and α� 1 correspond to collapsed

state. The total free energy of a neutral polymer in terms of swelling parameter can be

written as

F ∼ α2 +α−2 +

(
BN1/2

l3

)
α−3 +

(C
l6

)
α−6 + ............., (1.30)

The equilibrium value of α, the swelling parameter can be calculated by minimizing the

total free energy with respect to α. From α one can find the relation between Rg and N.

For an extended chain, the scaling relation is Rg ∝ N3/5 whereas for a collapsed chain, the

scaling relation is Rg ∝ N1/3.

Polyelectrolytes

The Flory like theory for a PE was first introduced by Kuhn et al [56]. The free energy

expression contains all terms as in the case of neutral polymers and the one corresponding

to electrostatic interactions. This electrostatic interactions are relevant only at large Bjer-

rum length(`B), at small Bjerrum length (`B), the PE chain behaves essentially as neutral

polymer.

The electrostatic interaction part of free energy can be evaluated by neglecting the con-

nectivity of the polymer chain and assuming that the monomers are uniformly distributed

within the chain volume Vch [57]. Due to the electrostatic interactions, the chain elon-

gates and forms an ellipsoid shape with its longitudinal diameter equal to the end-to-end

distance of an ideal chain. The electrostatic contribution of such an uniformly charged

ellipsoid with net charge e f N can be written as

Fel

kBT
∼
`B( f N)2

Ree
ln

( Ree

lN1/2

)
. (1.31)

The PE free energy will be described in more detail in Chapter 3.
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1.2.4 Simulation models of polymers

This section provides an overview of some of the popular computational models used to-

day in the field of simulation of polymers. The length scale of polymer ranges from sev-

eral Å to nano meter and the time scale required for simulation varies from femtoseconds

to hours depends on the required material properties. A single model can not achieve all

these requirements, hence we use different models which represents different length and

time scales as illustrated in Fig. 1.7. The models have basic units as electrons (quantum

chemistry), atom (force field), monomers or group of monomers (mesoscopic models),

entire polymer chain (soft fluids), or volume elements (finite elements). As we can see

from the Fig. 1.7, the time and length scales at which one can simulate a particular model,

increases as we reduce the number of degrees of freedom. These models can be quantum

or classical with respect to their number of degrees of freedom. Choosing the correct

model depends on the objective of the problem. For example: chemical reaction stud-

ies need the information regarding electronic wave function and one has to use quantum

chemical methods with a few atoms and simulate for a small duration. On the other hand,

many physical properties such as diffusion constant do not need electronic properties or

atomistic properties. Instead, one has to simulate bigger systems for longer times. In

such cases mesoscopic models are good enough. Models which involve atomic or sub-

atomic levels are computationally very costly. The brief description of some models are

described in the following sections.

Models with Electronic Degrees of Freedom - quantum mechanical models

The most fundamental level of modeling of polymeric system include the electronic de-

grees of freedom, which are responsible for the properties like polymerization stere-

ochemistry, electronic conductivity, non-linear optical properties, photochemistry etc.

These models treat the electronic wave function quantum mechanically within the frozen-

nuclei approximation through Born-Oppenheimer approximation. The Born-Oppenheimer
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Figure 1.7: The schematic representation of length and time scales associated with differ-
ent models.

approximation separates the electronic and nuclear motion [58] and hence one can write

a separate equation of motion for the electronic degrees of freedom with the nuclear po-

sitions entering only as parameters and not as dynamic degrees of freedom. At the next

level of approximation, only nuclear degrees of freedom and their mutual interactions are

treated according to classical mechanics.

Chemically Realistic Models of Polymers - Atomistic models

Chemically realistic models consider the nuclear positions and potentials to develop a

model which is classical in nature. These models do not consider electronic degrees of

freedom explicitly. The time step used in the simulations depends on the highest fre-

quency present in the systems ie., time step should be less than the inverse of the bond

vibration frequency present in the system. The potentials in the system include both

bonded and non bonded interactions which are described in detail in Sec. 2.3. In atom-

istic models the chemical structure of all constituents are reproduced. In such models,
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each interacting site represents a constituent atom, bonded to others in accordance with

chemical composition. The parameters in the interactions are obtained either from ex-

periments or from quantum mechanical calculations. Atomistic simulation are limited by

time taken for each of simulation and number of particle as well.

Coarse-Grained Models

Polymers have many common mesoscopic characteristics which are independent of the

atomistic structure of the chemical repeating units. For instance, the self-similar structure

of polymers in solutions or melts at large length scales is only characterized by the chain’s

end-to-end distance. Hence one can neglect the chemical details of the system and use a

coarse-grained description. In coarse-grained simulations, a group of atoms or molecules

is treated as a single force centre hence decrease the number of force sites and thus reduce

computational requirements for molecular simulation. While these models are success-

ful in describing structural properties, dynamic evolution is faster than the corresponding

atomistic simulations or experiments. Implementation of coarse-grained models involves

two major steps. The first is mapping of all-atom system onto a coarse-grained represen-

tation. The second is optimizing the effective interactions between coarse-grained sites.

Similar to empirical potentials scheme, coarse-grained interactions are optimized to repro-

duce certain structural and thermodynamic properties of reference all-atom system. This

second stage is more challenging and there are several systematic coarse-graining tech-

niques developed to address it, such as iterative Boltzmann inversion, force-matching,

inverse Monte Carlo etc [59].

The coarse-grained models can be classified as off-lattice models and lattice models. The

examples of off-lattice models include pearl necklace model of either of the tangent hard-

sphere type, where the bond lengths between neighboring pearls along the chain can vary

freely within tight limits, or of the bead-spring type, where neighboring beads are con-

nected by anharmonic springs (refer Sec. 1.2.3). Another example of an off-lattice model
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consists of ellipsoidal repeating units. Lattice models of polymer solutions are simple

and computationally efficient realization, and therefore they have interest both for single

chain simulations as well as for simulations of polymer solutions and melts [60–63]. In

simple lattice models, a small group of atomistic repeating units is represented by a site

on a simple cubic lattice or any other lattice. These monomers undergoes self avoiding

random walk on lattices. Required conditions may apply externally for the movement of

monomers. The main disadvantage of lattice models is that only the configurational part

of the partition function can be investigated. The earliest lattice model, bond fluctuating

model defined on a cubic lattice with a monomer occupies in eight lattice sites in three

dimension (four sites in two dimension) and the bond distances and angles are allowed to

vary between different discrete possibilities [64]. The movement restricted such as not to

overlap the different polymer chains.

In the higher degree of coarse-graining, one consider entire polymer chain as a single unit

such models are called soft fluid and the one consider volume element as the basic unit is

called finite elements method.

Computational model for PE and solvent

m, q

m, −Zq

Figure 1.8: Bead-spring model of a PE chain and counterions. The monomer is repre-
sented by blue spheres and the counterion by red spheres. m and q are mass and charge
respectively. Z is the valency of counterions.

In this thesis, PEs are modeled by a coarse-grained model called bead-spring model. The

monomers (group of atoms), the smallest repeating units, are represented as spheres and
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are connected by springs as shown in Fig. 1.8. Each monomer has a charge q, unit mass

and radius. The counterions are also spheres of unit mass and various radii depending

on the problem. The charge and number of the counterions are such as to neutralize the

system.

Figure 1.9: Polymer of length N=5000 (a) in good solvent (b) poor solvent.

In general, solvents can be classified as good and poor solvents. In good solvents, the

solute particle has affinity with the solvent particle. A polymer in a good solvent is likely

to be in a coil/extended/swollen state [Fig. 1.9 (a)], whereas in a poor solvent, solute and

solvent particles ’dislike’ each other. A polymer is likely to be in a globule/collapsed

configuration in a poor solvent [Fig. 1.9 (b)]. By changing the temperature one can move

from one solvent quality to the other. The solvent can be simulated in explicit as well

as implicit models. In explicit solvent simulations of protein, water is represented by

all-atom force field models or by coarse-grained models. Currently several water models

are being used in bio-molecular simulations such as SPC,SPC/E,TIP3P,TIP5P. Each of

these models are optimized to one or more physical properties of water, such as radial

distribution function, diffusivity, density anomaly etc. But none of these models can

simultaneously reproduce all properties. The presence of water molecules in the system

increases the number of degrees of freedom by more than 1000. Coarse-grained (CG)

models are less structured representations of a molecule obtained by mapping two or

more atoms onto a single interaction site. i.e. the entire water/solvent molecule is mapped

to one coarse-grained bead located at the centre of mass of the water/solvent molecule.
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Significant speed-ups are obtained due to lesser number of degrees of freedom, simpler,

softer potentials and larger time steps. Simulations will be simplified with coarse grained

models of water.

In implicit solvent method, the interaction between the solute particles determine the qual-

ity of the solvent. The interaction between the monomers are taken to be attractive for

poor solvents and are taken to be repulsive for good solvents. There is no solvent particle

in the system. We use implicit solvent method in all our simulations.

1.3 Contribution of this thesis

This thesis is divided into two parts. The first part addresses the mechanism that drives

the collapse transition of a single PE from an extended to a collapsed phase. The second

part studies the statics and dynamics of aggregation in a collection of PEs, both flexible

and rigid. Both these problems are studied primarily using extensive molecular dynamics

(MD) simulations of coarse-grained models. A brief introduction to these problems is

given below.

1.3.1 Extended-collapse transition in PEs

Several experiments and simulations have shown that the PE chain undergoes a transition

from extended to collapsed conformation above critical charge density [10–15,57,65–67].

This transition is independent of the solvent type, though the configuration of charged

polymer at very low charge density and the critical charge density corresponding to this

transition depends purely on the nature of the solvent. Other than the solvent the coun-

terion properties such as valency, size, shape etc are also crucial in determining criti-

cal charge density for transition. Collapsed state of PE can be found in the biological

world, for example, RNA or DNA are densely packed in cells and viruses [68–70]. Ex-
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Figure 1.10: The extended to collapsed transition of PE: Radius of gyration as a function
of charge density for a PE with trivalent counterions in a good solvent condition. Snap-
shots corresponds to different charge density is shown. Note that the snapshots are not
scaled same for clarity. Polymer chain is represented in blue color and counterions are in
red color.

tended to collapse transition was first observed in experiments, where it was found that

DNA molecules collapse in to highly compact configurations upon the addition of mul-

tivalent counterion [71]. The order of this phase transition is shown to be first order in

nature [14, 15, 72, 73].

The variation of radius of gyration with the charge density for a PE with trivalent counte-

rion in a good solvent from our simulations is shown in Fig. 1.10. The first snapshot cor-

responds to the PE with fraction of counterion condensed on it and in extended state with

high radius of gyration (Rg). As `B increases, Rg decreases corresponding to the extended

to collapsed transition. Another important aspect regarding extended-collapse-transition

is that the pathway of transition. In neutral polymers several theories says different mech-

anism of transition with different intermediate state such as peal necklace phase [74–77].

Whether such transition pathway exists in the case of PE chain is an unanswered question.
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1.3.2 Aggregation of multiple PEs

In the dilute system of PE chains, each chain is surrounded by the cloud of oppositely

charged counterions. The resident charges in the PE chain and counterion cloud cause

repulsion between them, whereas, when the charge clouds overlap, then the respective

PE chains attract. This happens above a critical charge density, which is different from

the critical charge density corresponds to extended to collapse transition. These coun-

terion mediated attraction is observed in nature as well, for example, biologically rele-

vant charged polymers such as DNA, actin and microtubules, may aggregate into bundles

in the presence of counterions [2, 78–82]. The double stranded DNAs in solution repel

each other due it’s like charge and the addition of counterion decreases their repulsion

as the concentration of counterions increases and turns attractive above critical concen-

tration [83, 84]. F-actin has large persistence length and can be treated as a rigid PE

and is anionic in nature. In the presence of divalent counterions, F-actin filaments will

drive the ordering of close-packed bundles of twisted filaments [85]. The PEs aggregates

irrespective of chain flexibility, flexible biological polymers such as proteins show ag-

gregation and the protein-protein disordered aggregates cause many neurodegenerative

diseases [86, 87]. Depending on the concentration of multivalent ions, different phases

observed in the case of PEs system such as isolated rods, aggregated networks of rods

and aggregated bundles of rods [88–100]. Aggregation of multiple PEs has been studied

extensively [2, 89–118]. The different simulation studies shows that the finite sized bun-

dles is the equilibrium state for intermediate value of charge density and phase separated

state for the large charge density [92, 93]. Now the question of interest is regarding the

equilibrium state of multiple PE aggregation, whether it is phase separated state or finite

size bundles and also how do the dynamics of aggregation changes with different system

properties such as valency, charge density, monomer density, chain length, flexibility etc..
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1.3.3 Organisation of thesis

The rest of the thesis is organized as follows. The molecular dynamics (MD) simula-

tion technique is described in chapter 2. Brief description of algorithm, various bonded

and non bonded interaction, model for PEs and different technique for thermostatting are

described in this chapter.

In chapter 3, mechanism of collapse of PE irrespective of solvent quality is described.

The nature of the effective attractive interactions driving the extended to collapse tran-

sition is not well-understood and there are competing theories explaining their origin.

For the collapsed state, these theories predict that the gyration radius, Rg, of a PE has

the scaling form Rg ∼ N1/3
m `

−γ
B , where Nm is the PE chain length, and the exponent γ

can potentially depend on system parameters. In the literature, there are three theoretical

approaches [15–18], based on different physical models, to account for the electrostatics-

driven counterintuitive collapse of similarly charged PEs. All the theories predict a single

collapsed regime, but differ in their prediction of the exponent γ characterizing the de-

pendence of Rg on `B. We present the results of extensive MD simulations exploring the

collapsed conformation of a single flexible PE chain in both good and poor solvents and

trying to identify the possible theory to explain the mechanism of collapse.

The behaviour of system of multiple PEs are described in chapter 4 and 5. Chapter 4

explains the aggregation dynamics of rigid PEs, where, the simulation results suggest that,

though the system of PEs and counterions interact via long-range Coulomb interactions,

the effective attractive interactions between the aggregating polymers are short-ranged.

The aggregation dynamics, monitored through the decay of number of aggregates with

time, is shown to behave like a power law t−θ, where θ is shown to be independent of the

charge density of the polymers, the valency of the counterions, the length and the number

density of the rigid polymers. Using these simulation results, the aggregation of rigid

PEs is modeled using Smoluchowski coagulation equation for irreversible aggregation of

particles of different masses. From this modeling, we obtain θ = 2/3, in close agreement
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with MD simulation data (θ=0.62) strengthening the argument of effective short-range

interactions in rigid PE systems. We also find that the morphology of the aggregates and

the mode of merging of aggregates is not unique and depends critically on the charge

density of the polymers. For lower charge density, the aggregates are cylindrical in shape,

and they change to a more elongated collinear shape at higher charge density.

In chapter 5, phase diagram and dynamics of aggregation of flexible PE is described.

The introduction of flexibility alters the aggregation dynamics, as additional time scales

emerge due to the possibility of the system getting trapped by kinetic barriers. Unlike

rigid PEs, the phase diagram of the flexible charged polymers is rich and depends on

the charge density of the polymer. Three different phases are observed: one with no

aggregation, another with finite bundles and a fully phase-separated phase. The additional

time scales are reflected in the power law exponent with the value of exponent depending

on the charge density, unlike the rigid charged polymers. These results underscore the

crucial role of flexibility in the emergence of a rich phase behavior.

In chapter 6, the results of this thesis are described.
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Chapter 2

Simulation methods

In this chapter, a brief introduction to both molecular dynamics (MD) simulations is given.

2.1 Molecular dynamics simulation

Molecular dynamics (MD) simulations determine the time evolution of a set of interacting

particle by integrating their equations of motion. Since the microscopic configuration is

known at all times, the macroscopic properties may be read out at any time.

Classical MD simulations of atomic systems is based on the Born-Oppenheimer approx-

imation (BOA) [58]. Consider a system of electrons of charge e with mass m and atomic

nuclei (N) of mass M, the hamiltonian of such a system can be written as

H = KN(R) + Ke(r) + PNe(R,r) + PNN(R) + Pee(r), (2.1)

where KN(R) and Ke(r) are the kinetic energy terms of the nuclei and the electrons re-

spectively. PNe(R,r), PNN(R), Pee(r) are the potential energy terms of nucleus - electron

interaction, nuclei-nuclei interaction and electron-electron interaction respectively. The

system is described by the Schrödinger equation, ĤΨ = ih̄∂Ψ
∂t , where Ĥ is the hamiltonian
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operator and the wave-function Ψ is a function of the co-ordinates of both the nuclei and

the electrons. Solving the Schrödinger equation for a many particle system is both time

and memory consuming, and many approximations are used to simplify the problem. One

of the most important approximations is the BOA, which is based on the large difference

between the masses of the nuclei and electrons. Due to the comparatively large mass, the

nuclei move slowly compared to electrons, and they may be treated as stationary. Since

the electrons move fast in the field of nuclei, this leads to a difference in the time scale of

the motion of electrons and the nuclei, and according to BOA, one can treat the motion of

electron and nuclei independently. So the wave function can be written as the product of

individual wave function as follows:

Ψ(R,r) = χ(R).ψ(r), (2.2)

where χ(R) is the wave function of the nuclei and ψ(r) is that of the electrons. Under

BOA, the motion of nuclei can be treated classically, with nuclei moving in an averaged

background potential due to electrons. The dynamics are governed by Newton’s equations

of motion

mir̈i = −
∂U(ri)
∂ri

, (2.3)

where mi is the mass of the ith nucleus at position ri and U(ri) is the potential experienced

by the ith nucleus, due to the presence of all other nuclei. The classical MD simulation

solves Newton’s equations of motion numerically.
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2.2 Measurements and the ergodic hypotheses

The average value of observables in the system can be measured in two ways, ensemble

average and time average. The time averages of the measured quantity A is given by

〈A〉t = lim
τ→∞

1
τ

∫ τ

0
A[q(t), p(t)]dt. (2.4)

On the other hand the ensemble average is given by

〈A〉e =

∫
A[q(t), p(t)]ρ[q(t), p(t)]dqdp∫

ρ[q(t), p(t)]dqdp
, (2.5)

where ρ[q(t), p(t)] is phase space density at the volume element dqdp. According to

the ergodic hypotheses, in equilibrium, the time average of a quantity which is obtained

by repeated measurement in the same system, and the ensemble average obtained from

measuring each system of an ensemble just once, is the same, i.e.

〈A〉t = 〈A〉e. (2.6)

The ergodic hypothesis is used in MD as well as Monte Carlo (MC) simulations for taking

averages of quantities in different ensembles.

2.3 Interactions in the system

The problem of finding a realistic potential that would mimic the true energy surfaces is

nontrivial. In MD, empirical potentials with a specific functional form and parameters

represent the physics and chemistry of the systems of interest. The parameters are chosen

such as to get a good fit to realistic potentials. Quantum mechanical calculations, iterative

algorithms and data from experiments are used for this purpose. A typical force field takes

37



the form

U(r1,r2...,rN) =
∑

bonds

1
2

Kb(ri j−b)2 +
∑

angles

1
2

Kθ(θi jk − θ0)2 +
∑

torsions

kφ[1 + cosφi jkl] (2.7)

+
∑

atom pairs

4εi j

(σi j

ri j

)12

−

(
σi j

ri j

)6+
∑

atom pairs

qiq j

4πε0εrri j
.

In the first three terms the summation indices run over all the bonds, angles and torsion

angles defined by the chemical nature of the system through covalent bonds, whereas in

the last two terms the summation indices run over all pairs of atoms which are not bonded

chemically.

φi jkl

i

kj

ri j θi jk

l

Figure 2.1: Schematic description of the parameters in bonded interactions using a simple
chain.

1. Bonded interactions: The first term in Eqn. (2.7), a harmonic bond potential, rep-

resents the bond interaction energy between ith and jth covalently bonded particle

separated by a distance ri j. b is the equilibrium bond length, and Kb is the force

constant associated with the bond. The second term in Eqn. (2.7) represents the

interaction energy corresponding to the bond angle defined between two adjacent

bonds making an instantaneous angle θi jk and equilibrium angle θ0. Kθ is the force

constant associated with the angle. The third term represents potential involving the

angle between planes containing particles i, j,k and j,k, l and is known as torsion in-

teraction or dihedral interaction. This interaction constraints the rotation around a

bond. The schematic representation of different bonded interactions is shown in

Fig. 2.1.
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2. Non-bonded interactions: The non-bonded interactions in Eqn. (2.7) consist of

van der Waals (fourth term) and electrostatic (last term) interactions. Non-bonded

interactions applies to pairs of sites separated at-least by four covalent bonds, since

bonded interactions are separated by at-most three covalent bonds. Specific envi-

ronmental effects can be accounted by properly adjusted partial charges qi (and an

effective value of the constant ε0) as well as the LJ parameters εi j and σi j. The

non-bonded interactions are assumed to be pairwise additive.

r
σ

ULJ(r)

ε

rcds

ε

Figure 2.2: The form of LJ potential and the different parameters.

In excluded volume interaction, ri j is the distance between particles i and j, εi j

is the minimum of the potential and σi j is the inter-particle distance at which the

potential is zero. The LJ interaction is zero at infinite separation of particle and

as the separation is reduced, the interaction turns attractive and attains a minimum,

εi j. As the separation is further reduced, below σi j, the interaction turns strongly

repulsive, which prevents overlap between the pairs. A schematic representation of

LJ potential is shown in Fig. 2.2. LJ parameters are usually defined for identical

particles and for non-identical particle one can calculate the parameters using the
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Lorentz-Berthelot mixing rule [119] as follows:

εi j =
√
εiiε j j σi j =

1
2

[σii +σ j j]. (2.8)

LJ interaction is considered to be short range for all practical purposes and the in-

teraction is chosen to be zero beyond a cut-off distance rc for better computational

efficiency. This can be done by using a switching function to truncate the potential

smoothly at the cut-off distance. The switching starts at a distance called switch

distance ds (see Fig. 2.2) which is always less than the cut-off distance. The switch-

ing function helps the LJ potential to truncate to zero smoothly and hence avoids

the discontinuity associated with force and conserves energy.

The second non-bonded interaction is the electrostatic (Coulomb) interaction, where

qi and q j are the charges of ith and jth particle separated by a distance ri j, ε0 is the

permittivity of free space and εr is the relative permittivity of media. The Coulomb

interactions are long-range in nature and hence computing this interaction is the

most computationally intensive in MD simulation. Different techniques are used

for this purpose and are explained in Sec. 2.6.

2.4 Algorithms for integrating the equations of motion

The potential energy is a function of the positions of all atoms and it is hard to solve

the equations of motion analytically. In 1967, L. Verlet introduced a simple algorithm to

solve these equations numerically [120] and this algorithm is known as Verlet algorithm.

The solution of Newton’s equations using the Verlet algorithm is based on a Taylor series

expansion. We explain the Verlet algorithm using a single particle problem. Let r(t) be

the position of the particle at time t. Using Taylor series expansion up to the second-order

term, one can write the expression for the position at later (t + δt) and previous (t− δt)
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times as

r(t +δt) = r(t) + ṙ(t)δt +
1
2!

r̈(t)δt2 +
1
3!

...r (t)δt3 +O(δt4), (2.9)

r(t−δt) = r(t)− ṙ(t)δt +
1
2!

r̈(t)δt2−
1
3!

...r (t)δt3 +O(δt4), (2.10)

where ṙ(t) = v(t) is the velocity and r̈(t) =
f (t)
m is the acceleration. Adding Eqns. (2.9) and

(2.10) removes the velocity term and gives an expression for the position at time t +δt as

r(t +δt) = 2r(t)− r(t−δt) +
f (t)
m
δt2 +O(δt4). (2.11)

Equation (2.11) is straightforward and easy to implement in simulations. Note that the

Verlet algorithm relies on two previous time steps, t and t−δt, to find the solution forward

in time t +δt, and it is a fourth-order method.

This algorithm does not directly calculate velocity. This may be a problem if properties

of the system that depend on velocity, such as kinetic energy, are desired. The velocity

can be calculated using equation

v(t) =
1

2(δt)
[r(t +δt)− r(t−δt)]. (2.12)

The velocity at time t can be calculated only after calculating r(t + δt). So the calculation

of velocity is one step behind and this is the main drawback of this algorithm. Later

Swope et al [121] modified the Verlet algorithm such as to get both position and velocity

together, which is known as velocity Verlet algorithm. Velocity Verlet algorithm can be

derived as follows. The Newton’s equation of motion is a second order equation and can

be written as two first order equations as

ṙ(t) = v(t), (2.13)

v̇(t) =
f (t)
m
. (2.14)
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Using Taylor series expansion,

r(t +δt) = r(t) + ṙ(t)δt +
1
2!

r̈(t)δt2 +O(δt3),

r(t +δt) = r(t) + v(t)δt +
1
2!

f (t)
m
δt2 +O(δt3). (2.15)

Similarly, Taylor expansion for velocity can be written as

v(t +δt) = v(t) + v̇(t)δt +
1
2!

v̈(t)δt2 +O(δt3). (2.16)

We can use f
m to eliminate v̇, but we need to develop an expression for v̈ in terms of known

quantities. This can be done by expanding v̇(t +δt)

v̇(t +δt) = v̇(t) + v̈(t)δt +O(δt2).

On rearranging we get

1
2

v̈(t)δt2 =
1
2

[v̇(t +δt)− v̇(t)]δt +O(δt3). (2.17)

Now the expression for v(t +δt) becomes

v(t +δt) = v(t) + v̇(t)δt +
1
2

[v̇(t +δt)− v̇(t)]δt +O(δt3),

v(t +δt) = v(t) +
1
2

[ f (t +δt) + f (t)]δt +O(δt3). (2.18)

In the velocity Verlet algorithm, positions and velocities are calculated simultaneously

with the expressions (2.15), (2.18).The algorithm is implemented in the following steps:

1. positions at (t +δt) are calculated according to Eqn. (2.15).
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2. velocity at (t + δt
2 ) is calculated using

v
(
t +

δt
2

)
= v(t) +

f (t)
2m

δt. (2.19)

3. force at (t +δt) is computed based on r(t +δt).

4. velocity at (t +δt) is calculated using

v(t +δt) = v
(
t +

δt
2

)
+

f (t +δt)
2m

δt. (2.20)

2.5 Boundary conditions

In a finite system with boundaries, the particles at the boundary experience a different en-

vironment than those in the bulk, which changes the accuracy of measurements. In order

to avoid this surface effect, we simulate the system with periodic boundary conditions,

by placing a virtual box in all three cartesian directions, completely filling space and this

virtual box is an exact replica of the original box. In simulations, a particle moves in the

original box, its periodic images in each of the neighboring boxes also move in a con-

certed manner by the same amount and in the same fashion. As the simulation evolves,

atoms can move through the boundary of the simulation cells. When this happens, an im-

age atom from one of the neighboring cell enters to replace the lost particle. This process

in two dimensions is illustrated in Fig. 2.3, where the original box is shown in blue and all

other boxes are images. When a particle in the central box, numbered 1, moves across the

boundary, all its images also moves across boundary. The image numbered 2, from the

lower box enters from the lower box to the original box and replaces particle 1. Thus the

particle does not feel any boundary and the total number of particles in each box is always

conserved. In order to calculate the interactions involving particle 1, we must consider the

interactions between every other particle in the simulation box. In principle, we should

include the interactions between all the images in the nearby boxes as well which leads
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1

2

Figure 2.3: Illustration of periodic boundary condition in two dimension. The original
box is shown in blue and all other boxes are images. Particle number 1 in the blue box is
moving to the upper box whereas the image particle labelled 2 is coming to the blue box
from the lower box, thus the particle does not feel any boundary.

to an infinite number of terms in the interaction. This is practically impossible and one

should make constraints on the summation. To consider the interactions involving parti-

cle 1, we can fix the particle position as center of a box of same size and geometry as the

original simulation box and consider interactions of particle 1 between all other particle

within that box. There will be N-1 terms in the interaction. This is called minimum im-

age convention. For short range potentials, the contributions come only from the nearest

neighbors hence we can introduce a spherical cut-off rc for calculating the potential.

2.6 Calculation of long-range interactions

Interactions which decay slower than r−d are treated as long-range interactions, where d is

the dimension of the system [122]. In three dimensions, electrostatic interactions are long-

range interactions. The calculation of long-range interactions, in the presence of periodic

boundary conditions is difficult since it involves interactions among infinite number of

particles. In order to overcome this issue, there are different algorithms such as Ewald
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summation and particle particle / particle mesh (PPPM) algorithm. All the simulations

mentioned in this thesis use PPPM. The main concept behind these two methods is that

the long-range behaviour in real space becomes shortrange in the corresponding Fourier

space.

2.6.1 Ewald summation

The basic concept of Ewald summation is splitting the potential into long-range and short-

range parts by adding and subtracting a Gaussian distribution of charge [123]. The short-

range interaction in real space is evaluated in real space itself and the long-range interac-

tion in real space is evaluated in Fourier space.

The total Coulomb interaction energy due to N particles, each particle at position ri having

charge qi is

Vel =
∑
(i, j)

qiq j

|ri j|
, (2.21)

where ri j = r j− ri and the sum is over all pairs (N(N −1)/2 pairs in total). When periodic

boundary conditions are applied, the total electrostatic interaction energy can be computed

for all periodic images also. The expression can be modified as

Vel =
∑

n

∑
(i, j)

qiq j

|ri j + nL|
, (2.22)

where nL =
∑3

i=1 nici , ci is lattice vector and ni is an integer. In terms of the potential

Vel =
1
2

N∑
i=1

qiφ[i](ri), (2.23)

where φ[i] is the potential field generated by all ions plus their images, excluding ion i.

One cannot use this expression in simulations, since the sum converges poorly. One can

overcome this issue by screening the charge with a cloud of opposite charge. The charge

density corresponding to a system of N point charges qi at position ri can be represented
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as

ρ(r) =

N∑
i=1

qiδ(r− ri). (2.24)

Introducing screening,

ρ(r) = ρ(r) +ρgauss−ρgauss, (2.25)

= [ρ(r)−ρgauss] +ρgauss, (2.26)

= ρS +ρL, (2.27)

where ρgauss is the screening charge which can be described by a Gaussian distribution.

In this case, the fraction of unscreened charge qi goes to zero at a large distance. The

screening charge density can take a Gaussian distribution as

ρgauss(ri) = qi(α/π)3/2 exp(−αr2), (2.28)

where α determines the width of the Gaussian distribution, ρS = ρ(r)−ρgauss is the screened

charge distribution for which the electric potential is short range and the potential corre-

sponding to ρL = ρgauss is long-range. The pictorial representation of charge splitting is

ρ

ρS

ρL

Figure 2.4: Ewald summation: The point charges can be considered as sum of point
charges, screening charges and cancelling charge distribution.
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shown in Fig. 2.4. The potential field generated by this charge distribution is the solution

of the Poisson equation

∇2φi(r) = −
ρi(r)
ε

. (2.29)

The potential can also be split into short-range and long-range parts [124]. The short-

range part can be computed in real space and is given by

φS
[i](r) =

qi

r
er f c(

√
αr), (2.30)

where er f c(x) = 1− er f (x) is the complementary error function and the error function is

er f (r) ∼ 2√
π

∫ r
0 e−t2dt.

The long-range part can be calculated by solving Eqn. (2.29) in Fourier space and the

solution is

φL
[i](r) =

1
2V

∑
k,0

4π
k2 |ρ(k)|2 exp(−k2/4α)− (α/π)(1/2)

N∑
i=1

q2
i . (2.31)

The detailed derivation can be found in reference [124]. The computational complexity

needed of the calculation of the Ewald sum is of the order of O(N3/2).

2.6.2 Particle-Particle/ Particle-Mesh Algorithm(PPPM)

In PPPM, charges are assigned to the grid points and then the potential is evaluated by

using a technique called Fast Fourier Transform (FFT). This method is faster than the

Ewald method, with a computational complexity of the order of O(N log N). The different

steps in the algorithm are

1. Charge assignment : assigning charges present in the system to grid points. This is

done with the help of a charge assignment function.

2. Evaluation of potential : potential evaluated by solving the Poisson equation using

FFT technique.
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3. Calculation of electrostatic field : electrostatic field at each grid point is calculated

from the negative gradient of the potential.

4. Calculation of force : the force on each particle due to the electric field at each grid

point is calculated.

2.7 Choice of ensemble

MD simulations are usually performed in microcanonical or constant NVE, canonical or

constant NVT , isothermal-isobaric or constant NPT and grandcanonical ensemble or con-

stant µVT , where N is the number of particles, V is the volume, E is the internal energy, T

is the temperature, P is the pressure and µ is the chemical potential. The suitable ensem-

ble is chosen depending on the nature of the thermodynamic quantities to be evaluated

and also on the experimental conditions for ease of calculation of quantities of interest.

All the ensembles are equivalent in the thermodynamic limit of a system with short-range

interactions. In contrast, for a system with long-range interactions, different ensembles

are inequivalent [125–127]. The main reason for this inequivalence is the non-additivity

of total energy and the non-concavity of the microcanonical entropy.

The different ensembles may not be equivalent for a PE system, since the electrostatic

interactions are non-additive long-range interactions. However, most of the theoretical

and computational studies on PEs have been done in the canonical ensemble. In MD

simulations, simply integrating Newton’s equations of motion generates a microcanonical

ensemble as a consequence of the conservation of total energy. Several methods have

been introduced to keep the temperature constant (canonical ensemble) while using the

microcanonical ensemble. A brief introduction to such methods is given below:

1. Andersen thermostat: The constant temperature method was proposed by Ander-

sen [128] and is achieved by coupling the system to a heat bath. This is imple-
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mented by adding stochastic collisions in the system. In this scheme, randomly

selected particles are allowed to collide occasionally and change their velocity, this

changed velocity is selected from a Maxwell-Boltzmann distribution correspond-

ing to the desired temperature. All other particles are unaffected by this collision

and the main drawback of this method is the randomly updating of velocities of

the particles which are involved in the collision. The dynamics of this method is

not physical and hence one cannot use this method for the evaluation of dynamical

properties.

2. Berendsen Thermostat: Another method of keeping the temperature constant

was introduced by Berendsen [129]. In this method the velocities of particles are

rescaled so as to obtain the desired temperature. The temperature of the system is

corrected such that the deviation exponentially decays with a constant time τ,

dT
dt

=
T −T0

τ
. (2.32)

Though this method fails to produce fluctuations in energy and hence does not give

the canonical ensemble, the method is widely used in equilibration process due to

the efficiency with which it relaxes a system to the target temperature.

3. Langevin Thermostat: Langevin thermostat uses stochastic disturbances to con-

trol the temperature. The particle is assumed to be moving through a sea of small

particles. The smaller particles create a damping force on the large particle, −γi pi,

where γi is the friction coefficient and pi is the momentum of ith particle. Also the

smaller particle moves with a kinetic energy and gives random kicks to the larger

particle. In other words, the idea is to apply a frictional force and random force to

the momenta

ṗi = Fi−γi pi + Ri(t), (2.33)

where Fi is the force acting on atom i due to interaction potential, γi is the damping
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factor (friction coefficient) and Ri(t) is the zero-averaged random force having the

property

< Ri(0)Ri(t) >= 2miγikBTδ(t), (2.34)

where T is the desired temperature and δ(t) the time-step used in MD to integrate

the equations of motion.

4. Nosé-Hoover Thermostat: Nosé-Hoover thermostat is a commonly used method

to achieve constant temperature and this deterministic method was first introduced

by Nośe and further modified by Hoover [130, 131]. This method uses an extended

Lagrangian, which has additional artificial position and momentum co-ordinates.

These co-ordinates give the effect of a heat bath. There are no random forces or

velocities used in this method. The dynamical equations for this method are

ṙi =
pi

m
, (2.35)

ṗi = fi− ζpi, (2.36)

ζ̇ =

∑
iα p2

iα/m−gkBT

Q
=VT

(
T

T
−1

)
, (2.37)

where ζ is the friction coefficient, Q is the thermal inertia parameter, VT is the

relaxation rate for thermal fluctuations, g ∼ 3N is the number of degrees of freedom

and T is the instantaneous ‘mechanical’ temperature. If the system is too hot, i.e.

T > T , then the friction coefficient (ζ) increases. When ζ becomes positive the

system begins to cool down. If the system is too cold, the reverse happens, and the

friction coefficient may become negative, thus heat the system up again. This way,

the Nosé Hoover thermostat maintains a constant temperature. The main advantage

of this method is that the dynamics of all degrees of freedom are deterministic

and time-reversible, and no random variables are used. The equations of motion

obeyed by these additional degrees of freedom guarantee that the original degrees

of freedom (rN , pN) sample a canonical ensemble.
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Chapter 3

Mechanism of collapse of single flexible

polyelectrolyte

We test the predictions of the different theories describing the collapse transition of a

flexible PE using large scale MD simulations. To explain the observed behavior in the

collapsed regime, we modify the counterion fluctuation theory by explicitly consider-

ing the interactions between monomer-monomer, monomer-counterion and counterion-

counterion. A detailed comparison between the theoretical predictions and the results of

the simulations are presented. This chapter is based on work presented in Refs. [132] and

[133].

3.1 Coil-globule transition of a neutral polymer

The transition of a flexible polymer chain from an extended to a collapsed state is known

as coil-globule transition. The neutral polymer undergoes a coil-globule transition upon a

change of temperature, pH of the solution, or addition of other polymer molecules [134,

135]. In general, the polymer is in an extended state under good solvent conditions,

whereas it is in a collapsed state in a poor solvent. The coil-globule transition has direct
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implications for many biological systems, such as proteins [136–138].

In computer simulations, the extended or collapsed state of a polymer can be achieved in

different ways, for example, by changing the temperature or by adjusting the interaction

parameters in the system. Snapshots of a neutral polymer simulated under different values

of the interaction parameter, εLJ are shown in Fig. 3.1, where εLJ is the parameter of

the LJ interaction between the monomers as defined in Sec. 2.3 and rc = 2.5. As εLJ

increases, the quality of the solvent changes from good to poor and the polymer undergoes

a transition from an extended to a collapsed state.

Figure 3.1: Snapshots of a neutral polymer simulated under different values of the pa-
rameter, εLJ associated with the LJ interaction between the monomers. We set rc = 2.5.
The values εLJ = 0.9 and 1.0 are correspond to a poor solvent whereas εLJ = 0.25 and 0.4
correspond to a good solvent.
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3.2 Coil-globule transition of a flexible PE

The behavior of PEs, is more complicated than neutral polymers due to additional elec-

trostatic interactions in the system. The PE undergoes a transition from an extended to

a collapsed state irrespective of the solvent quality [10–15, 57, 65–67]. Unlike neutral

polymers, the conformations of a PE depend not only on the solvent quality, but cru-

cially depend also on the interplay between the electrostatic energy of the system and the

translational entropy of the counterions [15, 57]. The transition occurs at a critical charge

density, which depends on the solvent quality. Figure 3.2 shows the snapshot of the single

PE system at different charge densities in good and poor solvents where, the top panel

of figures corresponds to the PE in a good solvent and the bottom panel corresponds to

that in a poor solvent. The strength of the electrostatic interactions depends on the charge

density along the PE, which is quantified by the dimensionless Bjerrum length `B (see

Sec. 1.2 ). For a small charge density, counterions are dispersed away from the PE, and

the chain is in an extended conformation when in a good or theta-solvent as in Fig. 3.2 (a)

and is collapsed into a compact globule in a bad solvent as in Fig. 3.2 (d) [14, 54]. With

increasing charge density, the PE attains an extended conformation, regardless of solvent

quality due to the electrostatic repulsion. As we increase the charge density further, coun-

terions begin to condense onto the PE [see Fig. 3.2 (b) and Fig. 3.2 (e)], renormalizing

its charge density [46, 54, 139]. This results in an effective attraction between similarly-

charged monomers of the PE and it collapses into a globule conformation, independent of

the solvent quality as in Fig. 3.2 (c) and Fig. 3.2 (f) [10–15, 57, 65, 66].

The compaction of a PE chain into a globular conformation is of great biological impor-

tance. For instance, biological PE molecules like RNA or DNA are densely packed in

cells and viruses [68–70] which are orders of magnitude smaller than the contour length

of the PE molecule, requiring it to be highly compacted [16, 19].
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Figure 3.2: Snapshot of a PE simulated under different values of charge density and sol-
vent quality. Snapshot in the upper panel corresponds to good solvent conditions and that
in the lower panel corresponds to poor solvent conditions.

3.3 Competing theories on the collapse of a PE

The nature of the effective attractive interactions driving the transition is not well un-

derstood and there are competing theories explaining their origin. For the collapsed

state, these theories predict that the radius of gyration, Rg, of a PE has the scaling form

Rg ∼ N1/3
m `

−γ
B , where N is the number of monomers of the PE chain, and the exponent γ

can potentially depend on system parameters. In the literature, there are three theoreti-

cal approaches [15–18, 140–142], based on different physical models, to account for the

electrostatics-driven collapse of PEs. All the theories predict a single collapsed regime,

but differ in their prediction of the exponent γ characterizing the dependence of Rg on `B.

The different theories are described below.
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Dipole theory

In the dipole theory, it is assumed that condensed counterions and the PE monomers form

fluctuating dipoles [17, 18, 141, 142]. The dipoles freely rotate, yielding, on average,

an attractive interaction between the segments of the chain; this leads to the collapse of

a PE even in a good solvent. For a highly charged flexible PE in a salt-free solution,

this theory predicts that the radius of gyration of the collapsed conformation scales as

Rg ∼ N1/3
m

∣∣∣`2
B− cB

∣∣∣−1/3, where B is the second virial coefficient, Nm is the number of

monomers in the PE chain and c is a dimensional constant that depends on the details

of the system. This dependence is predicted for both good [17, 18, 142] and bad [17,

142] solvents. For theta-solvent with B = 0 [54], a simpler scaling, Rg ∼ `
−2/3
B Nm

1/3 is

obtained [17].

Counterion fluctuation theory

In the counterion fluctuation theory [15], the free energy of the collapsed chain is cal-

culated by assuming that the condensed counterions and the monomers are completely

uncorrelated. The contribution towards the total free energy has four parts. One is the

free energy of the ideal chain, and the rest are the contributions due to the counterion

entropy, electrostatic interactions and the volume interactions. The negative part of the

free energy comes from the fluctuations in the condensed counterions and leads to a neg-

ative pressure in the system that causes the collapse of the PE. The counterion fluctuation

theory, when restricted to the second virial coefficient in the volume interactions, predicts

that in a good solvent Rg ∼ `
−1/2
B Nm

1/3.

Ionic Solid theory

This theory is based on modeling the collapsed conformation as an amorphous ionic

solid [16]. For large charge density of the PE and in the presence of multivalent counteri-
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ons, the free energy of the solid is smaller than that of the extended PE, driving the chain

collapse. In the collapsed conformation, the condensed counterions and the monomers

form a dense network, i.e. the condensed counterions do not fluctuate but are localised by

forming ionic bonds. This theory, however, does not predict any dependence of the radius

of gyration Rg on `B.

All mechanisms discussed above imply a collapsed phase, Rg ∼ N1/3
m for large values

of charge density, but different dependence of Rg on `B. Due to a great significance

for applications, especially for nano-medicine and biotechnology, it is vital to have an

appropriate theory of the interactions that drive the collapse of a PE.

3.4 MD simulation details

We model a flexible PE chain as described in Sec. 1.2.3, with Nm monomers of charge e

connected by harmonic springs of energy

Ubond(r) =
1
2

k(r−a)2, (3.1)

where k is the spring constant, a is the equilibrium bond length, and r is the instanta-

neous distance between the bonded monomers. The PE chain and Nc = Nm/Z neutralizing

counterions with a valency Z are placed in a box of linear size L. Pairs of all non-bonded

particles (counterions and monomers) separated by a distance ri j interact through the vol-

ume (or van der Waals) interactions. Here we model these interactions by the Lennard

Jones (LJ) 6−12 potential with a cut-off of rc as

ULJ(ri j) = 4εLJ

[(
σ/ri j

)12
−

(
σ/ri j

)6
]
, ri j ≤ rc. (3.2)
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LJ energy parameter εLJ Cutoff distance rc Solvent quality
1 1 Good

0.25 2.5 Good
1 2.5 Poor

1.5 2.5 Poor

Table 3.1: The different LJ parameters between monomers used in the implicit solvent
simulations and the corresponding solvent quality is listed in table.

The values of εLJ and rc are varied to model solvents of different qualities. The electro-

static energy between the charges qi and q j separated by a distance ri j is given by

Uc(ri j) =
qiq j

εri j
, (3.3)

where ε is the dielectric permittivity.

In the simulations, we use a = 1.12σ, k = 500.0kBT/σ2, L = 370σ, Nm=204 and 402. All

energies are measured in units of kBT , and we maintain the temperature at 1 through a

Nosé-Hoover thermostat. All distances are measured in terms of σ which we set to 1.

The long-range Coulomb interactions are evaluated using particle-particle/particle-mesh

(PPPM) technique.

The different LJ parameters between the monomers, used in the implicit solvent simu-

lations and the corresponding solvent quality is listed in table 3.1. For all other volume

interactions among counterions and between monomers and counterions, the LJ interac-

tions are repulsive, εLJ = 1.0 and rc = 1.0. These conditions are chosen in such a way that,

when the charge on the monomers is zero (neutral polymer), a PE chain adopts a collapsed

conformation or an extended conformation, mimicking poor or good solvent conditions

respectively. We also performed additional simulations in which the counterion size (σc)

is varied. Another set of simulations were performed in the presence of explicit solvent

molecules with good solvent conditions. We used the attractive interactions between the

monomers and solvent pairs (rc = 2.5, εLJ = 1.0) and repulsive interactions for all other

pairs.
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The equations of motion are integrated in time using molecular dynamics simulation pack-

age LAMMPS [143] with a time step of 0.001. All the systems are equilibrated for 5×106

timesteps and the data presented in this work are averaged over 5×106 timesteps of pro-

duction runs.

3.5 Results

3.5.1 MD simulation studies on the collapse of a PE in a good solvent

In this section, we discuss the results from MD simulations of a single PE in a good

solvent with purely repulsive LJ interactions between all non-bonded pairs of monomers

and counterions. The cut-off of the LJ interaction is set to be rc = 1.0 and the LJ energy

parameter is εLJ = 1. We simulate the system for various values of `B > `
c
B such that the

equilibrium configuration of a PE is a collapsed state with Rg ∼ N1/3
m , where `c

B is the

critical charge density corresponding to the extended to collapse transition.

Radius of gyration of the collapse

The variation of the radius of gyration Rg with `B in the collapsed regime is shown in

Fig. 3.3. It is clear that the Rg decreases as a power law and separates two regimes.

The two power laws intersect at Rg/aN1/3
m ≈ 0.63, 0.66 and 0.69 with the corresponding

crossover values `∗B(Z) ≈ 3.71 , 5.58 and 13.70 for valency Z = 3, 2 and 1 respectively.

It can be seen that for `B < `
∗
B(Z) the observed dependence, Rg ∝ `

−1/2
B N1/3

m , is consistent

with the predictions of the counterion fluctuation theory [15]. However, for `B > `
∗
B(Z),

we find a crossover to a different scaling, Rg ∝ `
−1/5
B N1/3

m , which is not predicted by any of

the existing theories. These two regimes of `B < `
∗
B(Z) and `B > `

∗
B(Z) will be referred to

as weak and strong electrostatic regimes respectively. We verified that the exponents and
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Figure 3.3: Variation of the radius of gyration Rg of a PE chain with the reduced Bjer-
rum length `B for different valencies of counterions. The chain length is Nm = 204 and
interactions in the system are εLJ = 1.0 and rc = 1.0 between all pairs of particle. The two
power laws intersect at Rg/aN1/3

m ≈ 0.63 (Z = 3), 0.66 (Z = 2) and 0.69 (Z = 1) with the
corresponding crossover values `∗B(Z) ≈ 3.71 (Z = 3), 5.58 (Z = 2), and 13.70 (Z = 1).

associated features seen in Fig. 3.3 are robust and independent of the details of the solvent

model by simulating two other systems good solvent conditions. For the first system, we

use LJ potential with attractive interaction (rc = 2.5, εLJ = 0.25) between monomer pairs

and purely repulsive interaction (rc = 1.0, εLJ = 1.0) for all other pairs. From Fig. 3.1,

it is evident that the above conditions on the LJ potential correspond to good solvent

conditions since the neutral polymer with same parameters is in an extended state. The

variation of the radius of gyration Rg with `B in the collapsed regime of the above system

is shown in Fig. 3.4 (a-c). This agrees with the observed scaling in Fig. 3.3. For the

second system, we perform the simulation of the PE chain in the presence of explicit

solvent molecules. In this system, we use attractive interaction between monomer and

solvent pairs (rc = 2.5, εLJ = 1.0) and purely repulsive interaction (rc = 1.0, εLJ = 1.0)

for all other pairs. It can be seen from Fig. 3.4 (d) that the observed scaling regimes and

power laws in Fig. 3.3 are independent of the system with the solvent particle present

explicitly. In order to understand whether the results are independent of the chain length

N, we perform simulations with Nm = 204 and 402. From Fig. 3.4 (e), it is clear that the

results are independent of the length of the chain Nm as well.
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Figure 3.4: The variation of the radius of gyration Rg with respect to charge density `B
for different models of good solvent systems, (a)-(c) implicit solvent with εLJ = 0.25 and
rc = 2.5 (d) explicit solvent and Z = 3 and (e) implicit solvent with εLJ = 1.0 and rc = 1.0
with different N and Z = 3.

The two scaling regimes

As we already discussed, in our analysis there are two scaling regimes present in our

system depending upon the charge density (see Fig. 3.3), we call them the weak and the

strong regimes. In this section, we try to differentiate these regimes structurally with the

intuition that, in the weak regime the counterions and the monomers are loosely bound,

whereas in the strong regime, they are tightly bound. These can be studied by looking at

the counterion distribution and the radial distribution function.

Counterion distribution inside the collapse

Typical snapshots of the system with monovalent counterions in the weak and strong

electrostatic regimes are shown in Fig. 3.5 (a-b), which demonstrate that the PE is much

more compact in the strong electrostatic regime. This can be further quantified by the

radial number density profile ρ as function of r/r′ is shown in Fig. 3.5 (c). Here r is the

distance of the counterion from the center of mass of the chain, r′ is the distance at which

the density is 50% of the density at r = 0 and ρ′ = N/V′, where V′ = 4
3πr′3. It can be
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Figure 3.5: Snapshots of collapsed PE in (a) weak electrostatic regime, Z = 1, `B = 10.93
(left) and (b) strong electrostatic regime, Z = 1, `B = 34.86 (right). (c) The corresponding
radial number density profile ρ of the counterions where r is the distance of the counterion
from the center of mass of the chain. r′ is the distance at which the density is 50% of the
density at r = 0 and ρ′ = N/V′, where V′ = 4

3πr′3.

seen that the profile has a broader tail in the weak electrostatic regime, suggesting that the

counterions are more loosely bound compared to that in the strong electrostatic regime.

Radial distribution function of the monomers and the counterions inside the collapse
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Figure 3.6: Radial distribution function (g(r)) between monomers (a-c) and counterions
(d-f) at different values of charge density (`B) and valency (Z).

The radial distribution function, g(r), gives information regarding the structural arrange-

ment of the particle with respect to the reference particle. The height of the peaks of g(r)

gives the information regarding how tightly the particles are arranged in the system. For

example, an increase in the peak height implies a more tightly packed structure [144].
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Fig. 3.6 (a-c) shows an analysis of g(r) between non-bonded monomers of the PE for

different values of charge density `B and Fig. 3.6 (d-f) shows that between counterions.

It can be seen from all the plots that the height of the first peak increases as the charge

density increases. We can conclude that, both the monomers and the counterions in the

weak electrostatic regime are loosely packed, compared to that in the strong electrostatic

regime.

3.5.2 Generalized counterion fluctuation theory

The aim of this section is to develop a generalized theory for the electrostatic-driven col-

lapse of a PE in a good as well as a poor solvent. We start with the counterion fluctuation

theory for a good solvent and retain the electrostatic term in the original theory [15]. We

modify the theory by changing the volume interactions and show that the generalized

counterion fluctuation theory is applicable to both good and poor solvent conditions.

Free energy of a PE system

Our main objective is to get a relation between Rg and `B. Hence we write the free energy

in terms of Rg and `B and minimize it with respect to Rg to obtain the dependence of Rg on

`B. If we take into account the contributions from various entropic and energetic terms,

then the expression for the free energy of the system can be written as

F(Rg) = Fid.ch(Rg) + Fen(Rg) + Fel(Rg) + Fvol(Rg), (3.4)

where Fid.ch, Fen, Fel, and Fvol account for the free energy of an ideal chain, entropy of

the counterions, the electrostatic interactions between all the charged particles, and the

volume interactions between all the particles respectively.

Fid.ch(Rg), the part of the free energy corresponding to the ideal chain is described by
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Eqn. (3.5) [15, 54, 145] (For more details see Sec. 1.2.3).

βFid.ch '
9
4

(
α2 +α−2

)
, (3.5)

where α = Rg/Rg.id is the expansion factor, with Rg.id being the radius of gyration of the

ideal chain, R2
g.id = Nma2/6, where a is the inter-monomer distance.

The second part of the system free energy, Fen(Rg), accounting for the entropy of the coun-

terions and the third part of the system free energy, Fel(Rg) accounting for the electrostatic

interactions among all charges are given by the counterion fluctuation theory [15]. In the

counterion fluctuation theory, a simplified approximation of two constant counterion den-

sities, one for the condensed counterions inside the gyration volume, r < Rg (r is the

distance from the PE center of mass and Rg is the radius of gyration), and the other one

for free counterions, r > Rg, have been used. That is, the following model for the reduced

counterion density ρ̃c(r) = ρc(r)/(n/Z) has been exploited:

ρ̃c(r) = ρ̃θ(Rg− r) + (1− ρ̃)θ(r−Rg)η3, (3.6)

where ρ̃ is a constant, n = Nm/Vg (Vg = 4πR3
g/3) is the concentration of monomers inside

the globule, assumed to be constant, n/Z is the maximal concentration of counterions

within the globule, θ(x) is the unit step-function and η = Rg/R0 � 1, with R0 being the

radius of the "Wigner-Seitz" cell, which quantifies the volume per one PE chain [146].

The value of R0 corresponds to the size of the simulation box L in our MD simulations.

Using the above counterion density one can compute the entropic part of the counterion

free energy [15] can be written as
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βFen

Nm
=

4π
Nm

∫ R0

0
drr2ρc(r)

(
ln[Λ3

cρc(r)]−1
)

(3.7)

= 3
∫ R0/Rg

0
dxx2ρ̃c(x) (ln[ρ̃c(x)]−1)

' −
3
Z

(1− ρ̃) ln
(R0

a

)
, (3.8)

where Λc is the thermal wavelength of counterions, ρ̃ = ρc.in/ρg with ρc.in being the

number density of counterions within the globule of gyration volume Vg = 4πR3
g/3 and

ρg = Nc/Vg = Nm/(ZVg) is the maximal counterion number density corresponding to com-

plete condensation.

The third part of the system free energy, Fel(Rg), accounting for the electrostatic interac-

tions among all charges is given by the counterion fluctuation theory [15] as

βFel

Nm
=

3
√

6`BN1/2
m (1− ρ̃)2

5α

(
1−

3Rg

2R0

)
−

3
2

(
2
π2

)1/3
`B
√

6Z2/3ρ̃4/3

N1/6
m α

. (3.9)

The first term on the right hand side of Eqn. (3.9) gives the mean-field result for the

electrostatic interactions in the system. The second term describes the contribution to

the free energy from the correlated fluctuations of the charge density and is beyond the

Poisson-Boltzmann approximation [15]. Both Eqns. (3.8) and (3.9) are valid for dilute

salt-free PE solutions, R0 � Rg and long chains, Nm � 1 [15]. In this limit, the terms

proportional to Rg/R0 are negligibly small. Also, it has been assumed that the densities

of free and condensed counterions are constants [15] in obtaining Eqns. (3.8) and (3.9).

Within this approach one can analyze all conformational regimes of a PE chain, from an

extended to a collapsed one, and predict that the electrostatic collapse takes place, for

Nm→∞, as a first-order phase transition [15].

Finally, the free energy accounting for the volume interactions, Fvol(Rg), may be written
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as

Fvol(Rg) = Fvolm.m.+ Fvolc.m.+ Fvolc.c., (3.10)

where Fvolm.m. is the free energy for the volume interactions among monomers, Fvolc.m. is

the free energy for the volume interactions among counterions and monomers, and Fvolc.c.

is the free energy terms for the volume interactions among counterions.

The free energy for the volume interactions among monomers may be written in the form

of a virial expansion as

βFvolm.m. =

∞∑
k=2

Bkρ
k
m Vg =

∞∑
k=2

Bk

(
Nm

Vg

)k

Vg

=

∞∑
k=2

(
4πa3

3
√

6

)1−k N(3−k)/2
m

α3(k−1) Bk, (3.11)

where Bk is the k-th virial coefficient for monomer-monomer interactions and ρm = Nm/Vg

is the average density of monomers inside the gyration volume. Similar to Eqn. (3.11),

the free energy of the volume interactions of counterions is given as

βFvolc.c. =

∞∑
k=2

Ckρ
k
c.in Vg =

∞∑
k=2

Ck

(
Nc

Vg

)k

Vg

=

∞∑
k=2

(
4πa3

3
√

6

)1−k Ck

Zk

N(3−k)/2
m

α3(k−1) , (3.12)

where ρc.in ' Nc/Vg = Nm/ZVg is the average counterion density inside the gyration vol-

ume. We approximate it by the corresponding density, when all counterions are con-

densed. Ck are the virial coefficients for the counterion-counterion interactions. In the

above equation, we neglect the term that accounts for the volume interactions of the free

counterion Ff.c.
volc.c., since it is negligibly small as compared to Fvolc.c.:

βFf.c.
volc.c. =

∞∑
k=2

Ck

(
Nc(1− ρ̃)

Vg

)k

Vg

(
Rg

R0

)3(k−1)

� βFvolc.c.. (3.13)
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Furthermore, the monomer-counterion volume interactions are described by the term

βFvolc.m. =

∞∑
k=2

k∑
l=0

Ck
l ρ

l
c.inρ

k−l
m Dl,k−lVg (3.14)

=

∞∑
k=2

(
4πa3

3
√

6

)1−k N(3−k)/2
m

α3(k−1)

k∑
l=0

Ck
l

Zl Dl,k−l,

where Ck
l = k!/l!(k− l)! are the combinatorial coefficients and Dl,k−l is the k-th virial co-

efficient for monomer-counterion volume interactions which refers to l counterions and

k− l monomers.

Using Eqns. (3.11), (3.12) and (3.14) one can write the part of the free energy responsible

for the volume interactions in the system in the following compact form:

βFvol =

∞∑
k=2

N(3−k)/2
m

α3(k−1) B̃k, (3.15)

where the renormalized virial coefficients B̃k, that account for all volume interactions, are

defined as

B̃k =

(
2πa3

9
√

6

)1−k Bk +

k∑
l=0

Ck
l

Zl Dl,k−l +
Ck

Zk

 . (3.16)

When the packing fraction of monomers is small, the free energy is well-approximated by

the truncated virial expansion [54]. The counterion fluctuation theory, uses only the sec-

ond virial term. In order to explain the additional observed regime in the MD simulation

results (see Sec. 3.5.1), keeping all terms up to the third virial term is necessary. Then we

obtain for Fvolm.m.

βFvolm.m. =
(
B2ρ

2
m + B3ρ

3
m

)
Vg =

B2

(
Nm

Vg

)2

+ B3

(
Nm

Vg

)3 Vg

= b̃−1 B2

α3N1/2
m

+ b̃−2 B3

α6 , (3.17)

where B2 and B3 are the second and third virial coefficients for monomer-monomer in-

teractions, ρm = Nm/Vg is the average density of monomers inside the gyration volume
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and b̃ =
(
2πa3/9

√
6
)
. Both B2 and B3 are positive in the case of a good solvent. For a

poor solvent, in general, we expect B2 to be negative, making it necessary to keep the

third virial term, the first positive term in the virial expansion. The free energy of the

volume interactions involving counterions Fvolc.c. and Fvolc.m. will have a similar form as

in Eqn. (3.17). Combining these expressions for Fvolm.m., Fvolc.m. and Fvolc.c. we obtain

the free energy Fvol for the collapsed PE to be:

βFvol =
B̃2

α3N1/2
m

+
B̃3

α6 , (3.18)

where B̃2 and B̃3 are the renormalized second and third virial coefficients respectively that

account for all volume interactions. The general expression of these coefficients is given

in Eqn. (3.16) and for the present case is given as

B̃2 = b̃−1
(
B2 +

2D1,1

Z
+

C2

Z2

)
, (3.19)

B̃3 = b̃−2
(
B3 +

3D1,2

Z
+

3D2,1

Z2 +
C3

Z3

)
. (3.20)

The value of the bare virial coefficients Bk, Ck and Dl,k−l are determined by the relative

strength of the LJ interactions and the thermal energy kBT . Due to the dominance of re-

pulsive forces in the monomer-counterion and counterion-counterion volume interactions

considered here, all coefficients Ck and Dl,k−l are positive, Ck > 0 and Dl,k−l > 0 for k ≥ 2

and 1 ≤ l ≤ k. We also assume that the renormalized third virial coefficient B̃3 is positive

as well.

The sign of the renormalized second virial coefficient B̃2 is difficult to determine apriori.

Though the "bare" value B2 is negative for poor solvents, the renormalized coefficient

B̃2 also depends on the counterion valency and the virial coefficients Ck and Dl,k−l [see

Eqn. (3.19)]. If these positive coefficients are large and the valency Z is small, B̃2 could

potentially change sign and become positive. The values of the virial coefficients Ck

and Dl,k−l are determined by the size of the counterions: the larger the counterions, the
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larger are the virial coefficients. Hence, it is expected that large counterions will result

in a positive renormalized coefficient, B̃2 > 0. These predictions will be checked in our

MD simulations discussed in Sec. 3.5.3. The virial expansion truncated at the third virial

term [see Eqn. (3.18)] is valid for a poor solvent for low packing fractions. For a good

solvent, it is necessary to include the third virial term to explain the observed scaling of

Rg with `B in the strong electrostatic regime described in Sec. 3.5.1. At the same time, the

packing fractions remain relatively low for a wide range of `B values and the inclusion of

only the third virial term is sufficient. However, for a poor solvent, due to the attractive

volume interactions, we anticipate that the packing fractions will be larger than that of a

good solvent at the same `B. When the packing fraction is high, the truncated expansion

Eqn. (3.17) loses its accuracy. In this case, either all the terms in the virial expansion must

be retained or an effective equation of state (EOS) for dense fluids like Flory-Huggins or

van der Waals EOS or EOS for Lennard-Jones mixtures (e.g. ref [147]) is to be used.

In the EOS approach, one has to use model parameters, specific for a particular system,

which may be obtained only by fitting available experimental or numerical data. However,

we choose the first approach, developed for dense gases [148], where the virial coefficients

are explicitly expressed in terms of the interaction potential. Including additional terms

in the virial expansion, we obtain the general form as in Eqn. (3.15) has to be considered.

Combining the different contributions [Eqns. (3.5), (3.8), (3.9) and (3.15)] the free energy

in Eqn. (3.4) attains the form

βF(α)
Nm

'
9

4Nm

(
α2 +α−2

)
−

3
Z

(1− ρ̃) ln
(R0

a

)
(3.21)

+
3
√

6`BN1/2
m (1− ρ̃)2

5α

(
1−

3Rg

2R0

)
−

Z̃2`B

N1/6
m α

+

∞∑
k=2

N(1−k)/2
m

α3(k−1) B̃k,

where Z̃2 = (3/2)(2/π2)1/3
√

6Z2/3. In the collapsed regime, it is well known that, regard-

less of the solvent quality, almost all counterions are located within the gyration volume

of the PE chain. Hence, the average counterion density inside the gyration volume will

be ρc.in ' ρg = Nc/Vg resulting in ρ̃ ≈ 1 in Eqns. (3.8) and (3.9). This allows us to ig-
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nore the second and third terms on the right hand side of Eqn. (3.21) 1. These two terms

correspond to the entropy of counterions and to the mean-field contribution to the elec-

trostatic energy. Moreover, since Rg ∼ N1/3
m in a collapsed regime, the expansion factor

α ∼ N−1/6
m � 1. Thus, the term proportional to α2 in Fid.ch(α) [refer Eqn. (3.5)] can also

be neglected. It is straightforward to see that, in this limit, the term proportional to α−2 in

Fid.ch(α) is small compared to the volume terms and may be dropped as well. With these

approximations, Eqn. (3.21) for the free energy of a PE in a collapsed state, in terms of

Rg, reduces to the following expression, regardless of the solvent quality:

βF(Rg)
Nm

= −
Z̃2a`B
√

6

Nm

R3
g

1/3

+

∞∑
k=2

B̃ka3k−3

6(3k−3)/2

Nm

R3
g

k−1

. (3.22)

Dependence of Rg and energies of a PE chain on `B

Our aim is to understand the correct theory through the relation between Rg and `B.

The dependence of Rg on `B (Rg ∼ `
−γ
B ) may be obtained by minimizing the free energy,

Eqn. (3.22), with respect Rg as

2Z̃2`B =

Nma3

R3
g

2/3 B̃2 +
2B̃3

65/2

Nma3

R3
g

+
3B̃4

63

Nma3

R3
g

2

+ . . . ,

 (3.23)

The relative importance of different terms in Eqn. (3.23) depends on the packing fraction

Nma3/R3
g and the virial coefficients B̃k. We consider three cases below

1. When the packing fraction is small and the sign of B̃2 is positive, the right hand side

of Eqn. (3.23), which arises from virial expansion, can be truncated at B̃2, yielding

the following dependence of Rg on `B:

Rg =

√
B̃2aN1/3

m
√

2Z̃`1/2
B

, (3.24)

1One can also use a more rigorous approach as in the original counterion fluctuation theory [15] and
minimize the total free energy with respect to ρ̃. This will give the value of ρ̃ very close to unity. Moreover,
for Nm→∞ the collapse occurs as a first-order phase transition and ρ̃ = 1 exactly in this limit.
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which implies Rg ∝ `
−1/2
B .

2. When the packing fraction is small and the sign of B̃2 is negative, the most dominant

positive term on the right hand side of Eqn. (3.23) is the term proportional to B̃3.

Truncating the series at B̃3, we obtain

Rg =
B̃1/5

3 aN1/3
m

63/10Z̃2/5`1/5
B

, (3.25)

or γ = 1/5. Here we also assume that the electrostatic term strongly dominates over

the term with the negative virial coefficient B̃2.

3. When the packing fraction is large, the truncation of virial expansion fails as dis-

cussed in Sec. 3.5.2. In this case, all the terms on the right hand side of Eqn. (3.23)

have to be retained. Qualitatively, we expect Rg to decrease with `B with a continu-

ously varying "local " exponent γ. As it follows from the above analysis, the value

of γ is determined by the dominating virial coefficient. If for some interval of `B

the k-th virial coefficient is dominating, similar considerations lead to the conclu-

sion, that Rg ∼ `
1/(3k−4)
B for this interval. Since k > 3, one finds that γ < 1/5. With

increasing `B, the number k that refers to the dominating coefficient is expected to

increase.

In the case of a good solvent, the packing fraction is small and truncating virial expansion

at the third virial coefficient is enough to explain the observed behavior, whereas in the

case of a poor solvent, more terms in the virial expansion are needed, depending on the

strength of the solvent and the charge density.

We also derive the dependence of the internal energies, associated with the electrostatic

and volume interactions, on the radius of gyration Rg. Using the thermodynamic relation
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for the internal energy E = ∂βF/∂β, we obtain

βEel

Nm`B
= −

Z̃2aN1/3
m

√
6Rg

∼
N1/3

m

Rg
, (3.26)

βELJ

Nm
=

B̃′2Nm

R3
g

+
B̃′3N2

m

R6
g

+
B̃′4N3

m

R9
g

+
B̃′5N4

m

R12
g

+ . . . , (3.27)

where Eel and ELJ are the electrostatic and the volume components of the internal energy

and the constants B̃′k may be expressed in terms of the derivatives of the renormalized

virial coefficients B̃k with respect to the temperature.

Packing fraction of monomers

The packing fraction of monomers φm may be estimated as follows:

φm =
π

6
Nm

Vact
d3, (3.28)

where d is the effective hard-core diameter, which for the soft-sphere potential v(r) may

be found from the expression [149]

d =

∫ ∞

0

[
1− e−v(r)/kBT

]
dr . (3.29)

For the LJ potential with the cutoff at rc = 1.0 and εLJ/kBT = 1 we obtain

d = 0.973σ. (3.30)

Taking into account the relation between the actual volume of the globule and the gyration

volume, we obtain for the packing fraction

φm = 0.0535
Nmσ

3

R3
g
, (3.31)
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which gives the packing fraction φm of about 0.08 for the weak electrostatic collapse

and about 0.166 for the strong electrostatic collapse for Z = 1, with similar values for

other valencies. If one takes into account the volume interaction with the counterions,

the effective packing fraction may be twice large, as an upper limit. Still, it may be

shown that in the range of studied parameters one has either the dominance in the volume

interactions of the term of the second virial coefficient (for the weak collapse) or of the

third virial coefficient (for the strong collapse); the term associated with the fourth virial

coefficient is always smaller and may be approximated by zero. This guarantees that

for the addressed range of parameters, two scaling regimes are observed Rg ∼ `
−1/2
B and

Rg ∼ `
−1/5
B for PE in a good solvent.

3.5.3 Corroboration of theory using MD simulation studies

Poor solvent

It is more challenging, however, to study a collapsed state of a flexible PE in a poor solvent

[150–156] since, unlike in a good solvent, there exist additional attractive interactions

between monomers which compete with the repulsive part of electrostatic interactions.

The valency of counterions determines the number of counterions condensed inside the

collapsed globule and hence affects the monomer-monomer distance and thereby modifies

the attractive volume interactions. Hence, the valency of the counterions which played no

role in determining the exponent γ for a good solvent becomes significant for a poor

solvent and possibly influences the exponent γ.

We simulate a flexible PE in poor solvents of varying the strengths, to obtain the depen-

dence of Rg on `B as well as strength of the solvent. Fig. 3.7 shows the variation of Rg for

a collapsed PE with `B for different counterion valency for two poor solvent conditions

(εLJ = 1.0, 1.5 and rc = 2.5 for monomer-monomer interaction). When εLJ = 1.0 [see

Fig. 3.7 (a)-(c)] and εLJ = 1.5 [see Fig. 3.7 (d)-(f)], for monovalent and divalent counteri-
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Figure 3.7: Variation of the radius of gyration Rg with `B for a PE chain with different
counterion valency for poor solvent conditions with (a-c) εLJ = 1.0 and (d-f) εLJ = 1.5
and rc = 2.5 for monomers. The solid straight lines correspond to the power laws with
exponents γ = 1/2 and the dashed lines correspond to γ = 1/5 as predicted by the theory.

ons, two dominant sub-regimes characterized by Rg ∼ `
−γ
B , with γ = 1/2 and 1/5 exist. For

trivalent counterions, we do not observe the regime with γ = 1/2 for εLJ = 1.0 [see Fig. 3.7

(c)], while for the case εLJ = 1.5 [see Fig. 3.7 (f)] , both regimes with γ = 1/2 and 1/5 are

absent. Also, in the case of divalent and trivalent counterions, for larger `B, an additional

sub-regime appears where Rg decreases as a convex function of `B with a continuously

decreasing slope (in the log-log plot). Qualitatively, this corresponds to an effective local

power-law exponent γ, smaller than 1/5 as discussed in Sec. 3.5.2. Following the dis-

cussion, the regimes with smaller values of γ that are observed in our simulations may

potentially correspond to a larger packing fraction of the collapsed PE, where the trun-

cation of virial expansion at the third term fails. The MD data presented in Fig. 3.7 are

consistent with the theoretical predictions of Sec. 3.5.2.

Effect of the counterion size on the second virial coefficient

The appearance of γ = 1/2 in Fig. 3.7, which corresponds to a positive second virial co-

efficient is surprising, since in poor solvent conditions, the bare second virial coefficient

B2, when restricted to monomer-monomer interactions, is expected to be negative. In-
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deed when the charge of monomers is zero, the neutral PE always adopts a collapsed

state in a poor solvent condition, corresponding to negative value of B2 [54]. Then from

Eqns. (3.23) and (3.25), it can be seen that the largest possible value for the exponent γ

should be 1/5, corresponding to the (positive) third virial term for a poor solvent. Hence,

we envisage that the presence of the counterions inside a collapsed globule leads to the

change of the sign of B2 for the range of LJ parameters and valency of counterions con-

sidered here. This agrees with the theoretical analysis in Sec. 3.5.2 , where we argued

that for large counterions, the effective second virial coefficient, B̃2, could be positive,

although the bare coefficient B2 is negative, yielding the regime with γ = 1/2. Physically,

the negative sign of B̃2 follows from the dominance of attractive volume interactions.

However, in the case of large counterions with a low valency (which implies a larger

counterion density inside a globule), can potentially keep the chain monomers apart and

reduce the effect of attractive volume interactions between them; this results in the alter-

ation of the sign of B̃2 and the regime with γ = 1/2 can be observed. At the same time,

small counterions of high valency (which implies lower density of these inside the glob-

ule) cannot effectively keep the monomers apart, so that the effective attractive volume

interactions between monomers can yield a negative B̃2. For these systems the regime

with γ = 1/2 would be absent. In other words, if the regime with γ = 1/2 is observed

for some system (B̃2 > 0), the decrease of counterion size should entail the alteration of

the sign of B̃2 and hence, the disappearance of this regime, as for B̃2 < 0. On the other

hand, if the regime with γ = 1/2 is absent (B̃2 < 0), the increase of the counterion size

should lead to the change of the sign of B̃2 and appearance of the regime with γ = 1/2,

as for B̃2 > 0. To confirm these predictions regarding the effect of counterion size on sec-

ond virial coefficient, we perform additional simulations varying the size of counterions,

σc−c: (1) for the case of monovalent counterions we decrease σc−c and test whether the

regime with γ = 1/2 disappears and (2) for the case of trivalent counterions, we increase

σc−c and check whether the regime with γ = 1/2 emerges. The MD data for these two

simulations are shown in Fig. 3.8. As predicted, in the case of monovalent counterions,
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Figure 3.8: (a) Plots showing the disappearance of Rg ∼ `
−1/2
B and Rg ∼ `

−1/5
B regimes

for monovalent-counterion system with εLJ = 1 when the radius of the counterion is re-
duced [compare with Fig. 3.7 (a)]. (b) The appearance of Rg ∼ `

−1/2
B regime for trivalent-

counterion system with εLJ = 1.0 by increasing the counterion radius [compare with
Fig. 3.7 (e)]. (c) The presence of Rg ∼ `

−1/2
B regime for a good solvent (εLJ = 1 and

rc = 1), the valency of counterions Z = 1 for different radius of counterions. The chain
length is Nm = 204.

as the size of the counterions is reduced, we find that the regime with γ = 1/2 vanishes

[see Fig. 3.8 (a)], i.e, B̃2 becomes negative. On the other hand, in the case of trivalent

counterions, the regime with γ = 1/2, absent for σc−c = 1 [see Fig. 3.7 (e)], appears when

the counterion size increases up to σc−c = 2 [see Fig. 3.8 (b)]. These data confirm that the

presence of counterions inside the condensed phase can strongly modulate the effective

attractive interactions between the monomers of PE and can change the sign of the second

virial coefficient B̃2.

For a good solvent, with repulsive interactions between the monomers, the counterion size

and valency are expected to play no role. In Fig. 3.8 (c), we present the results from MD

simulations of a PE in a good solvent for three different counterion sizes (σc−c) which

clearly show the presence of the sub-regime with γ = 1/2 for all the σc−c. The results in

Fig. 3.8 (c) combined with those in Fig. 3.8 (a-b), show that, while the sign of B̃2 is unam-

biguous in a good solvent, the same is not true in the case of a poor solvent and depends

on several system parameters such as the strength of the solvent, the valency and the size

of the counterions. This suggests that, for charged polymers with attractive monomer-

monomer volume interactions and in the presence of counterions, the sign of the second

virial coefficient cannot be assumed to be always negative. This is in a striking contrast
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with collapsed neutral polymers, which have the same attractive monomer-monomer in-

teractions, where the sign of B2 is always negative.

Electrostatic and LJ energy
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Figure 3.9: The dependence of the electrostatic energy, Eel on the radius of gyration Rg
for different counterion valencies for (a) poor solvent and (b) good solvent. Solid line
corresponds to R−1

g .

The counterion fluctuation theory, as developed in Sec. 3.5.2, may be further confirmed

by computing the energies Eel and ELJ from MD simulations. As can be seen from

Eqn. (3.26), the scaling of Eel/`B is independent of `B across a wide range of `B values

and the solvent quality and scales as the inverse of Rg. The results for dependence of Eel

on Rg from our MD simulations, shown in Fig. 3.9, capture the linear dependence of Eel

on R−1
g for all valencies, irrespective of the solvent quality.

The dependence of ELJ on Rg is more complicated and exhibits a crossover from one

regime to another, similar to the dependence of Rg on `B. The total LJ energy ELJ has

contributions from attractive monomer-monomer interactions and repulsive interactions

between other pairs. This makes it difficult to analyse ELJ in terms of second and third

virial coefficients. Instead, we measure Emc
LJ , the monomer-counterion component of the

LJ energy as only repulsive interactions contribute to it. Emc
LJ , shown in Fig. 3.10 (a),

captures the dependence of ELJ on R3
g and R6

g well, validating the free energy expression,

Eqn. (3.22). For ELJ , we also note that, as the valency of the counterions is increased,

powers of Rg, corresponding to larger virial terms, appear. A possible physical explana-

tion for this is that, as the electrostatic interactions in the system become stronger and the
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packing fraction of all the species inside the globule increases, more terms to account for

the volume interactions in the collapsed state are needed.
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Figure 3.10: The monomer-counterion component of the LJ energy, Emc
LJ , on the radius of

gyration Rg for different counterion valencies for (a) poor solvent and (b) good solvent.

In the case of a good solvent, we retained the first two terms in the equation. If the

first term on the right hand side of Eqn. (3.27) dominates, one obtains ELJ ∼ R−3
g ; if the

second one dominates, then ELJ ∼ R−6
g . In Fig. 3.10 (b), we plot the respective internal

energy due to volume interactions from our MD data. The figure convincingly illustrates

the dominance of the second and third virial terms in the weak and strong electrostatic

regimes correspondingly, with the crossover occurring at Rg/aN1/3
m ≈ 0.63 (Z = 3), 0.64

(Z = 2) and 0.68 (Z = 1). These values match closely with the crossover found in Fig. 3.3.

3.5.4 Behavior of the collapse at an extremely high charge density

It has also been suggested that at very large charge densities, the PE can collapse into a

crystalline-like conformation known as Wigner crystal [157–159], preceded by a glass-

like behavior. It would also be interesting to probe these conformations in both good

and poor solvents and understand the role of condensed counterions on such quenched

structures. The primary questions of interest in such systems is to elucidate whether

the counterion-counterion interaction or the counterion-monomer interactions drive these

quenched structures when the electrostatic interaction in the system are very high.

Fig. 3.11 shows the snapshots for a flexible PE for very high charge density in good and
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Figure 3.11: Snapshots of collapsed conformation of PE in good and poor solvent condi-
tion for the same value of charge density along the PE (`B = 37.7).

poor solvent conditions and for monovalent counterions. The data show that though for

both solvent qualities, the collapsed conformation of the PE takes on a more crystallized

form with respect to both monomers and counterions for high values of charge density,

the crystallization is much more significant in the case of a good solvent than a poor sol-

vent. This can be understood in terms of the effective interactions between the monomers

of the PE chain. For a good solvent, the monomers only interact via repulsive volume

interactions and effective electrostatic interactions due to condensed counterions. How-

ever, there are additional volume interaction terms between monomers in the case of a

poor solvent, and these attractive interactions may result in a more fluid-like behavior in

the collapsed conformation of the PE in the poor solvent as compared to that in the good

solvent at the same charge density. In earlier work on understanding the dynamics of col-

lapsed conformations of strongly charged polymers [153], it was also suggested that for

the not so poor solvent quality a Wigner crystal conformation is to be expected whereas

for poor solvent conditions Wigner glass-like structures are expected. Though we cannot

confirm the glassy behavior, we can conclude that the behavior of the system is more

fluid-like.
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3.6 Discussion

In this chapter, we described theoretically and by means of MD simulations the nature

of a collapsed state of a polyelectrolyte (PE) for different strengths of electrostatic and

volume interactions. Our main results can be summarized as follows.

The main objective of this work is to identify the correct theory describing the collapse

of a PE. The detected scaling from the MD simulations (Rg ∼ N1/3
m `−1/2

B ) is not consistent

with the predictions of the theories of fluctuating dipoles (Rg ∼ N1/3
m `−2/3

B ) [17, 18, 141,

142], or those from the theory of the amorphous ionic solid (Rg ∼ N1/3
m `0

B) [16], but agrees

with those from the counterion fluctuation theory [15]. At the same time, we observe

other scaling regimes which are not consistent with any of the existing theories.

Using MD simulations, we studied the collapsed regime for a PE in both good and poor

solvents. We identify different sub-regimes at different `B depending on the packing frac-

tion of the particles inside the collapse. In the case of a good solvent, we observe two

collapsed regimes, that we call as weak and strong electrostatic regimes. In the first

regime, the radius of gyration Rg of a chain scales with Bjerrum length `B as Rg ∼ `
−1/2
B

while in the second one Rg ∼ `
−1/5
B . This scaling is robust and is independent of the va-

lency of the counterions, volume interaction models between chain monomers and solvent

models. Whereas, the collapsed phase of a PE chain in a poor solvent consists of several

sub-regimes, characterized by different power law scaling of Rg with `B (Rg ∼ `
−γ
B ).

We generalize the counterion fluctuation theory [15] in such a way as to accommodate

the additional observed scaling regimes. In the original theory, the volume interaction

is truncated with two-body interactions and gives a scaling Rg ∝ `
−1/2
B . From the MD

simulations, we have seen the emergence of an additional scaling regime with the increase

in `B due to the increase in the packing fraction of the particles inside the collapse. Then,

truncating the volume interaction at the two-body interaction cannot work for systems

with higher packing fractions, therefore we modify the volume interactions including
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more terms in the virial expansion depending on the nature of the packing fraction. In

the case of a good solvent, truncating the virial expansion at the third term is enough to

explain the weak and strong electrostatic regimes, whereas in the case of a poor solvent,

the truncation of the virial expansion depends on several factors such as the charge density,

solvent quality etc. The most dominant sub-regimes have origins in the second (γ = 1/2)

and third (γ = 1/5) virial coefficients, when the packing fraction of PE monomers in the

collapsed phase is small. As the packing fraction increases, additional sub-regimes with

an effective power law exponent γ < 1/5 start to appear. We observe that the effective γ

decreases continuously with `B, which demonstrates the contribution of additional terms

in the virial expansion.

We also demonstrate that the condensation of counterions on a PE chain leads to an effec-

tive renormalization of the volume virial coefficients. The renormalized virial coefficients

strongly depend on the valency of counterions and the strength of the poor solvent, which

is characterized by the value of εLJ - the energy parameter of the LJ potential. Surpris-

ingly, the MD results for a particular set of parameters for the volume interaction potential

show, via the presence of a sub-regime with the exponent γ = 1/2, that the renormalized

second virial coefficient B̃2 is positive. This is contrary to the expectation for B̃2 to be

negative, as the simulations were performed for a poor solvent. We note that, while in

MD simulations the solvent quality can be controlled by the interaction potential between

monomers, in a theory this property is characterized by the sign of the second virial coef-

ficient: B2 is positive (B2 > 0) for a good solvent and negative (B2 < 0) for a poor one. It

is not clear, however, whether this definition of solvent quality, based only on monomer-

monomer interactions, remains meaningful for charged polymers in the presence of coun-

terions. Within our generalized theory, we expect that the sign of the renormalized B̃2

will be manifested in MD simulations through the presence of the sub-regime, Rg ∼ `
−γ
B ,

with the exponent γ = 1/2 for B̃2 > 0 and absence of this regime for B̃2 < 0.

To understand the role of condensed counterions on the sign of renormalized B̃2, we per-

80



formed a theoretical analysis as well as additional simulations in which we varied the size

of the counterions and demonstrated that the appearance and disappearance of the sub-

regime with γ = 1/2 crucially depends on the size of the counterions. This dependence

of the sign of the renormalized B̃2 on the counterion size and valency occurs only for a

poor solvent, as the condensed counterions can modulate the effective attractive interac-

tions between monomers resulting in the alteration of the sign of B̃2. For a good solvent,

with repulsive interactions between the monomers, the counterion size and valency play

no role.

The original counterion fluctuation theory [15] predicts that the electrostatic internal en-

ergy of the system, Eel, scales with the radius of gyration as Eel ∼ R−1
g . At the same time,

the dependence of internal energy associated with the volume (LJ) interactions is expected

to be different for different sub-regimes, similar to the dependence of Rg on `B described

above. The MD simulation results are in complete agreement with these predictions. We

also note that the values of Rg at which the crossover from one sub-regime of ELJ(Rg) to

another take place coincide with the values of Rg where the crossover between regimes

with different exponents γ are detected.

The different regimes of electrostatic collapse observed in the MD simulations reported

here may be experimentally realized as well. In organic solvents, like mixtures of water

and alcohol, the dielectric permittivity may be reduced (≤ 18) leading to a large Bjerrum

length ( `B ∼ 10) and collapse of a biological PE like DNA has been observed experimen-

tally [13] under such conditions. We note that if all monomers of DNA were charged, one

obtains `B ' 29 and the range of these experimentally realizable `B values are similar to

the ones considered in this study. Another system with a comparably high linear charge

density is a solution of charged worm-like micelles [160–162]. We hope that experimen-

talists find it interesting to check the existence of different collapse regimes for different

counterion valencies and sizes.

We also observed a crystalline-like conformation at very high charge density. The nature
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of this conformation is different for different solvent qualities. Further studies need to be

performed to classify the nature of this crystalline state and its properties.
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Chapter 4

Aggregation dynamics of rigid PEs

The dynamics of aggregation of rigid PEs are studied using large scale molecular dy-

namics simulations. We show that the number of aggregates decrease with time as power

laws with exponents that are, within numerical uncertainty, independent of the charge

density of the polymers, valency of the counterions, density, and length of the PE chain.

We find that the morphology of the aggregates depends on the value of the charge den-

sity of the polymers. For moderate values of charge density, the shape of the aggregates

is cylindrical with height equal to the length of a single PE chain. However, for larger

values of charge density, the linear extent of the aggregates increases as more and more

polymers aggregate. We model the aggregation dynamics using the Smoluchowski coag-

ulation equation with kernels determined from the molecular dynamics simulations and

justify the numerically obtained value of the exponent. Our results suggest that once

counterions condense, effective interactions between PE chains are short-ranged and the

aggregation of PEs are diffusion-limited. The results of this chapter has been published

in Ref. [163].
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4.1 Introduction

Rigid PEs are an important class of PEs for which the persistence lengths of the polymer

backbone are larger than their contour lengths. Many biologically relevant polymers such

as DNA, actin and microtubules are examples of rigid PEs. They may aggregate into bun-

dles in the presence of counterions [2, 78–82]. The Fig. 4.1 shows snapshots of a system

of N = 100 rigid PEs with chain length Nm = 30 at different times. It is evident that the

PEs aggregate and the number of clusters decrease with time. The aggregates of biolog-

Figure 4.1: Snap shot of system at different time for `B = 3.57 and Z = 3. The counterions
are not shown for better clarity.

ical polymers play an important role in cell scaffolding and possess superior mechanical

properties compared to well known synthetic flexible polymers [21,22]. More recently, it

has been possible to synthesize non-biological polymers with comparable backbone stiff-

ness and the ability of these polymers to aggregate is an important parameter in using

them as functional biomimetic materials, for instance artificial cytoskeletal or extracellu-

lar matrix [20, 164]. With recent studies on various biological phenomena such as DNA

packaging, cytoskeletal organization, understanding counterion mediated aggregation of

charged polymers becomes very relevant [19, 165].

The aggregation of rigid PE chains has been studied extensively via experiments [2,101–

109], simulations in the presence and absence of salt/solvent [89–100] and using theo-

retical approaches [110–118]. While it has been fairly well established that multivalent

counterions induce aggregation among the similarly charged PEs, the ability of mono-

valent counterions to induce a similar aggregation is debated [91, 94, 95, 97, 100, 102–
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106, 109, 110, 114, 166–171]. There are some experimental [102–104, 166, 167] and the-

oretical [110, 114] results argues that the monovalent counterions cause aggregation. At

the same instant, other experimental [105, 106], theoretical [169, 170, 172] and numeri-

cal [91, 94, 95, 97, 100, 171] studies report the absence of aggregation in the presence of

monovalent counterions. It has been showed, using molecular dynamics simulations as

well as computing potential of mean force, that for high enough charge density along PE

backbone, monovalent counterions also induce aggregation [173].

While the aspect of attraction between similarly-charged PE chains, typically using coarse-

grained bead-spring models, is numerically well-studied in the literature [90–99], the

dynamics of aggregation of such PE chains is less studied. This is in part due to the

computational cost of simulating large number of PE chains with long-ranged Coulomb

interactions. Using a hybrid Monte Carlo scheme, and simulating a system with 61 PE

chains, it was argued that for intermediate values of the charge density, finite-size PE

bundles exist at thermodynamic equilibrium, while further increase of charge density, re-

sults in phase separation and precipitation [92, 93]. Using similar parameters, the time

dependence of the number of clusters were obtained in Refs. [89,90]. The numerical data

was modeled by the Smoluchowski coagulation equation which is the basis of classical

mean-field model of understanding aggregation kinetics [174], and the number of clus-

ters decrease with time as t−1. However, the coagulation kernel derived by considering

the particles with equal masses and sizes. This assumption seems unreasonable as the

aggregate sizes become heterogeneous with time. In addition, it is not very clear how

parameters such as the valency of the counterions, the charge density of PE chains, or the

overall number density of the system, affect the aggregation dynamics. In this chapter, we

numerically study and model the dynamics of rigid PE in detail.
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m, q

m, −Zq

Figure 4.2: Bead-spring model of a rigid PE chain and counterions. The monomer is
represented by blue spheres and the counterion by red spheres. m and q are mass and
charge respectively. Z is the valency of counterions. The binding energy of the inter-
monomer springs are set to a high value such that the PE remains rigid for the temperatures
considered.

4.2 MD simulation details

We consider a system of N rigid PE chains. Each PE chain consists of Nm monomers, of

charge +q, connected by bonds as shown in Fig. 4.2. The counterions have charge −Zq,

where Z is the valency of the counterion. In this work, we consider Z = 2,3 corresponding

to divalent and trivalent counterions respectively. We have not considered monovalent

counterions due to it’s large simulation time. The number of counterions are chosen

such that the system is overall charge neutral. The interactions between the particles are

described below.

Excluded volume: The excluded volume interaction is modeled by the 6-12 Lennard Jones

potential

ULJ(ri j) = 4εi j

(σi j

ri j

)12

−

(
σi j

ri j

)6 , (4.1)

where ri j is the distance between particles i and j, εi j is the minimum of the potential

and σi j is the inter-particle distance at which the potential is zero. Both εi j and σi j are

(in reduced units) set to εi j = εLJ = 1.0 and σi j = σ = 1.0 for all pairs of particles. The

Lennard Jones potential is chosen to be zero beyond a cut-off distance rc = σ, such that

the excluded volume interaction between all pairs is purely repulsive.
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Coulomb: The electrostatic interaction is

Uc(ri j) =
qiq j

4πε0ri j
, (4.2)

where qi and q j are the charges of ith and jthparticle, and ε0 is the permittivity.

Bond stretching: The nearest-neighbour monomers along the PE chains are connected by

harmonic springs with the potential

Ubond(ri j) =
1
2

k(ri j−a)2, (4.3)

where k is the spring constant and a is the equilibrium bond length. We set a = 1.12σ and

k = 500.0.

Bond bending: Bending of the bond is controlled by following potential

Uθ(θ) = kθ[1 + cosθ], (4.4)

where θ is the angle between the bonds. The strength of this interaction is set to a large

value kθ = 1000.0 for rigid PE.

All the simulations are performed for N = 100 PE chains at values of linear charge density,

`B as defined in Eqn. (1.1), that are larger than the critical value beyond which the PEs

aggregate, as determined in Ref. [173]. A variety of parameters such as `B, valency of

the counterions, PE chain length and density of the system are varied and the details of

the systems simulated are given in Table 4.1. The analyses are performed over 20 initial

conditions for each set of parameter values in Table 4.1.

The equations of motion are integrated in time using the molecular dynamics simula-

tion package LAMMPS [175, 176]. The simulations are carried out at constant tem-

perature (T=1.0), maintained through a Nosé-Hoover thermostat (coupling constant =

0.1) [130, 131]. The long-ranged Coulomb interactions are evaluated using the particle-
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valency (Z) charge density (`B) chain length (Nm) Density (ρ)
2.01 30 ρ
3.57 30 0.75ρ
3.57 30 ρ
3.57 30 1.5ρ
3.57 30 2ρ

3 4.52 30 ρ
5.57 30 ρ
6.75 30, N=50 ρ
6.75 30, N=100 ρ
6.75 30, N=200 ρ
8.03 30 ρ

3.57 15 ρ
3.57 30 ρ

2 3.57 60 ρ
5.58 30 ρ

14.28 30 ρ

Table 4.1: The different values of valency of counterions (Z), charge density `B, PE
chain length (Nm), and density used in the MD simulations. Density is expressed in terms
of ρ = 3.8× 10−4. The analyses are performed over 20 initial conditions for each set of
parameter values.

Figure 4.3: Snapshot of a typical initial set up consist of N = 100 rigid PEs.

particle/particle-mesh (PPPM) technique [177]. The time step for integrating equations

of motion is chosen as 0.001. A homogeneous initial state is prepared as follows. N

non-overlapping PE chains of length Nm are placed in a cubic box with periodic boundary

conditions with randomly distributed counterions. The charge density of the PE chains is
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set to a very small value (`B = 0.22) much below the critical charge density corresponds

to manning condensation, which ensures that counterions do not condense onto the PE

chains initially. The system is then evolved to ensure homogeneous distribution of the PE

chains and the counterions. Twenty random configurations, as shown in Fig. 4.3, which

are temporarily well separated, are chosen and appropriate values of `B are chosen for

further simulations.

4.3 Results

4.3.1 Aggregation dynamics
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Figure 4.4: The variation of the fraction of aggregates n(t) with scaled time t/t∗ for dif-
ferent values of `B for systems with trivalent counterions. t∗ is the time at which n = 0.9.
The straight line corresponds to power law (t/t∗)−0.62. Insets shows the dependence of t∗

on `B.

Two PEs are said to form an aggregate of size two if the distance between any two

monomers (not from the same PE) is less than 2σ, and the same definition is extended to

an aggregate of size m. We first present results for the temporal dependence of number

of aggregates. Fig. 4.4 shows the fraction of aggregates n(t) = N(t)/N(0), as a function

of time t/t∗ for trivalent counterions. Here, N(t) is the number of aggregates at time t,

and t∗ is the time taken for number of clusters to reach 90% of N(0). For small times
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n(t) ≈ 1 and aggregation is initiated only after t∗, which is the time taken for counterion

condensation to occur. Beyond t∗, n(t) decreases as a power law t−θ. From Fig. 4.4, we

find that the exponent θ is independent or utmost very weakly dependent on `B and has

the value θ = 0.62±0.07.

The crossover at large `B

Figure 4.5: Snapshots of systems with trivalent counterions for (a) `B = 2.01 and (b)
`B = 8.03. In (c) and (d), magnified images of clusters of size 10 in the snapshots of (a)
and (b) are shown. (Counterions are not shown in the picture for the sake of clarity.)

For systems with trivalent counterions and large `B, we find that n(t) deviates from the

power law behavior at long times (see Fig. 4.4). To understand this crossover, we study

the morphology of the aggregates. Figure 4.5 shows snapshots of the system for `B = 2.01

and `B = 8.03 in (a) and (b), along with enlarged snapshots of aggregates of size 10 in (c)

and (d). For smaller values of `B, the aggregates are cylindrical in shape with length

of the aggregate being roughly the same as the length of a PE, while for larger `B, the

aggregates are linear but with larger aggregates having longer length. For very high `B,

the aggregates are linear with larger aggregates having longer length, and the crossover

seen in Fig. 4.4 at large times is only for these values of `B. One possible reason for

the crossover is the setting in of finite size effects since it is possible that the length of

the aggregates for these systems may span the simulation box at long times. To check

the possibility of finite size effects, we simulated systems with trivalent counterions and

`B = 6.57 for different number of PE chains (N = 50,100,200) keeping the density fixed.

The variation of the fraction of clusters with time is shown in Fig. 4.6 (a). Initially, the
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Figure 4.6: (a) The variation of n(t), the fraction of aggregates with scaled time t/t∗ for
systems with trivalent counterions and `B = 6.57 for different number of PE chains N. (b)
The data for different N collapse onto a single curve when scaled as in Eqn. (4.5) with
ν = 0.16 and θ = 0.62.

data for the different system sizes lie on top of each other, showing that the system size

plays no role. At later times, however, they deviate slightly from each other with the data

for larger system sizes deviating at later times. Let this crossover time be denoted by

tc(N). We expect tc(N) ∼ Nν. Assuming finite size scaling, we write

n(t) ' N−νθg(tN−ν), (4.5)

where g is a scaling function such that g(x) ∼ x−θ when x << 1. The data for the differ-

ent sizes collapses onto a single curve when scaled as in Eqn. (4.5) with ν = 0.16 [see

Fig. 4.6 (b)].

There are two obvious choices for the origin of the finite size effects: one is when the end

to end distance of the largest cluster is of the order of the length of the simulation box,

and the other when the size of the largest cluster (of mass M) is order of N. In the former

case, we find that tc ∼ M1/θ ∼ N2/3θ, where the relation between M and N is obtained

from measurements of the morphology of the cluster (see Sec. 4.3.3). In the latter case,

tc ∼ M1/θ ∼ N1/θ. Given that θ = 0.62, these two cases give ν = 1 and ν = 1.5, both very

different from the numerical value of θ = 0.16 obtained above. Given that the origin of

ν remains unclear, and also because the system sizes being considered are small and the

numerically observed finite size effects are slight, it is possible that the crossover is due to
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different dynamics setting in at larger times. Another explanation could be that systems

which have such collinear-type aggregates follow very different dynamics, the study of

which requires computationally expensive simulations of much larger system sizes. In

this chapter, we restrict the discussion to times smaller than this crossover time.

Universality of the exponent, θ

Similar to Fig. 4.4, The variation of the fraction of aggregates n(t) with scaled time t/t∗

for different values of `B for systems with divalent counterions is shown in Fig. 4.7 (a). It

is evident that the exponent θ is same for divalent counterions as is for trivalent counterion

also. In an earlier paper [173], it was shown that monovalent counterions induce aggrega-

tion among similarly-charged PE chains, and preliminary data suggested θ ≈ 0.66. This,

being consistent with the results obtained in this work for divalent and trivalent counteri-

ons, we conclude that the dynamics is independent of valency of counterions. The charge

density required for aggregation with monovalent counterions is much larger than that

for divalent and trivalent counterions, resulting in much longer simulations needed for

obtaining good data. For efficient computational purposes, we restrict the simulations in

this work to divalent and trivalent counterions. We also confirm that the exponent θ does
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Figure 4.7: The variation of the fraction of aggregates n(t) with scaled time t/t∗ for (a)
different values of `B for systems with divalent counterions, (b) different densities and
trivalent counter ions for `B = 3.57 , and (c) different PE length Nm and divalent counter
ions for `B = 3.57.

not depend on the density ρ and Nm, the length of the PE chain, as can be seen from the

collapse of the data for different ρ and Nm onto one curve [see Fig. 4.7 (b) and (c)]. We
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thus conclude that the exponent θ characterizing the power law decay of number of ag-

gregates is quite universal and does not appear to depend on parameters such as valency,

density or length of the PE. It is thus plausible that aggregation is driven by diffusion and

irreversible aggregation (we do not see any fragmentation event) due to short-ranged at-

tractive forces. With this assumption, we recast the aggregation dynamics of PE in terms

of the Smoluchowski equation in Sec. 4.3.3.

4.3.2 Two kinds of dynamics

For large values of `B, we observed that the aggregates are collinear with the effective

length increasing with size of aggregate [see Fig. 4.10 (b)]. However, we find that such

aggregates, when isolated, rearrange themselves from elongated to more compact cylin-

drical structures whose lengths are comparable to that of a single PE chain. To quantify

this, we extract aggregates of size 3 and 10 from the simulations for `B = 8.03 and with

trivalent counterions, isolate them, and allow them to evolve for different values of `B. A

typical time profile of the end to end distance, Ree is shown in Fig. 4.8 (a). It decreases in

steps with sudden decreases in length due to re-arrangement, separated in time. From the

history averaged data (see Fig. 4.8), a relaxation time associated with the rearrangement

(call as sliding time, τ) may be extracted.

Thus, there are two time scales in the problem: one is the diffusion time scale correspond-

ing to the time taken for two aggregates to be transported nearby, and the second is the

sliding time scale τ corresponding to the time taken for an aggregate to re-align itself into

a compact cylindrical shape. The sliding time scale increases rapidly with `B as seen in

Fig. 4.8 (b). For large `B, the sliding time scale is much larger than the diffusion time

scale and the re-alignment may be ignored.

We also find that the process by which two aggregates merge are different for small and

large `B. For small `B, when two PEs merge, they first orient in orthogonal directions, and

93



0 2000 4000 6000 8000
t

1

3

10

20

60
δ
R

e
e

(a)

exp(−t/2000)

0 2000 4000 6000 8000
t

30

40

50

60

70

R
e
e

(b)

2 3 4 5
ℓB

101

102

103

104

105

τ

m = 3

m = 10

(c)

Figure 4.8: The deviation of the end to end distance of the aggregate, δRee, from its
equilibrium value as a function of time t. It decreases with time as an exponential. The
data is for an aggregate of size three with trivalent counterions, `B = 3.57 and averaged
over three realizations. (a) The end to end distance Ree for a single realization for the same
parameters as in main plot. (b) The variation of the relaxation times τ with `B for different
aggregate sizes. The straight lines are exp(1.51`B) (m = 3) and exp(1.61`B) (m = 10).

Figure 4.9: Snapshots describing the merging of two PEs for (a) `B = 2.01 (b) `B = 8.03
for a system with trivalent counterions.

the point of intersection moves towards the center. At later times, they align and rearrange

themselves from elongated to more compact cylindrical structures [see Fig. 4.9 (a)]. For

large `B, the aggregates intersect and align themselves without sliding [see Fig. 4.9 (b)].

4.3.3 Modeling using Smoluchowski equation

The Smoluchowski equation describes irreversible aggregation of particles that are trans-

ported by some mechanism such as diffusion or ballistic motion. These equations are

widely applied in phenomena like polymerization, aggregation of colloidal particles, for-

mation of stars and planets, behavior of fuel mixtures in engines etc [178]. Smoluchowski
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equation provides a macroscopic description for the evolution of the densities in a system

whose particles are prone to binary aggregation. These equation comes in two flavors:

discrete and continuous. The aggregate mass may take values in the set of positive inte-

gers in the case of discrete version, whereas the aggregate mass takes values in R+ in the

continuous version [179].

In Sec. 4.3.1, we showed that the PE aggregation dynamics is independent of PE charge

density (`B) and valency of counterions (Z). We model the aggregation as one of diffusing

neutral rod-like particles that aggregate due to short-ranged attraction. The Smoluchowski

equation for irreversible aggregation (for reviews, see [23, 180]) is

dN(m, t)
dt

=
1
2

m−1∑
m1=1

K(m1,m−m1)N(m1)N(m−m1)−
∞∑

m1=1

K(m,m1)N(m)N(m1), (4.6)

where N(m, t) is the number of aggregates of size m at time t, and K(m1,m2) is the rate at

which two masses m1 and m2 collide. The first term in Eqn. (4.6) describes the aggregation

of particles to form an aggregate of size m, while the second term describes the loss of an

aggregate of size m due to collision with another aggregate.

If the kernel K(m1,m2) is a homogeneous function of its arguments with homogene-

ity exponent λ, i.e., K(hm1,hm2) = hλK(m1,m2), then the number of aggregates N(t) =∑
m N(m, t), decreases in time as a power law N(t) ∼ t−θ, where

θ =
1

1−λ
, λ < 1. (4.7)

To construct the kernel K(m1,m2), we consider the aggregates to be effective spheres of

radius
√
`2 + r2, where ` and r are the the height and radius of the cylindrical aggregate.

This is justified because we observe that the aggregates rotate at a rate that is much larger

than the rate of collision. For diffusing spheres in three dimensions, the coagulation kernel
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is known to be (for example, see [181])

K(m1,m2) ∝ [D(m1) + D(m2)][R(m1) + R(m2)], (4.8)

where D(m) and R(m) are the diffusion constant and effective radius of an aggregate of

size m. In the absence of a solvent, the diffusion constant is inversely proportional to mass

of an aggregate

D(m) ∝ m−1. (4.9)

The dependence of the radius R(m) on m may be determined by studying the geometry

of the aggregates obtained from the MD simulations. The geometry of an aggregate may

be quantified by the eigenvalues of the gyration tensor S defined in Eqn. (1.9). Let the

eigenvalues be denoted by λ1, λ2, and λ3, where λ1 ≥ λ2 ≥ λ3. Modeling the shape of the

aggregate as a cylinder, we obtain the length and radius of the aggregate to be ` =
√

12λ1

and r =
√

2(λ2 +λ3). The length and radius, thus measured, are shown in Fig. 4.10 for

`B = 2.01 and `B = 8.03. For small values of `B, ` is independent of aggregate size m, i.e.

` ∼m0, while the radius r increases with m as r ∼
√

m [see Fig. 4.10 (a)]. For large values

of `B, we find that ` ∼
√

m and r ∼
√

m [see Fig. 4.10 (b)]. Thus, aggregation is controlled

by two types of kernels

K(m1,m2)
m−1

1 + m−1
2

∝


√

N2
m + m1 +

√
N2

m + m2 if `B & `Bc

√
m1 +

√
m2 if `B� `Bc,

(4.10)

where `Bc is the critical charge density beyond which aggregation sets in. The radius

and length of cluster are calculated from the eigenvalues of gyration tensor, defined in

Eqn. (1.9).

For `B � `Bc, the kernel is homogeneous with homogeneity exponent λ = −1/2. From

Eqn. (4.7), we obtain θ = 2/3. This is in excellent agreement with the numerical value of

0.62±0.07 from molecular simulations, as described in previous section. When `B & `Bc,
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Figure 4.10: The length and radius of different cluster sizes m for (a) `B = 2.01 and (b)
`B = 8.03.

the kernel is no longer homogeneous. For large m1 and m2, it is homogeneous with

λ = −1/2. Equation (4.7) gives θ = 2/3. On the other hand, for small m1, m2, we may

ignore the dependence of radius on mass, and the kernel is homogeneous with λ = −1 or

equivalently θ = 1/2. The numerically obtained value of 0.62± 0.07 lies between these

two bounds 0.5 and 0.67.

In our MD simulations, computational expense limits the number of PEs that can be

studied to few hundreds. However, large-scale Monte Carlo simulations can be used to

study the effect of the kernel for `B & `Bc on the measured θ. In these simulations, we start

with M = 105 particles of mass 1. Any pair of particles of masses m1 and m2 undergo

aggregation to form a particle of mass m1 + m2 with rate

K(m1,m2) = Λ(m−1
1 + m−1

2 )(
√

L2 + m1 +
√

L2 + m2), (4.11)

where L is a parameter and Λ is chosen to be proportional to M−2. Each parameter value

was averaged over 1000 histories. The results for n(t) for different parameter values are

shown in Fig. 4.11. As L increases the effective power law changes from −0.67 to −0.5,

and θ = 0.62±0.07 from molecular dynamics falls within this range.

From the above analysis based on Smoluchowski equation, we obtain θ = 2/3 very similar

to the value obtained through our MD simulations (θ = 0.62±0.07). More accurate deter-

mination of θ through MD simulations will require much larger systems to be simulated
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Figure 4.11: Monte Carlo simulations with kernel as in Eqn. (4.11) for different values of
the parameter L.

for much longer times, currently a very expensive proposition. In earlier simulations of

rigid PEs [90], it was suggested that the decay of the number of aggregates scales with

time as t−1 different from the exponent obtained in this work (t−0.62). This difference

could be attributed to the assumption made in the analysis based on Smoluchowski equa-

tion in the earlier paper [90] that collisions occur between aggregates of approximately

equal size [182]. In this work, we explicitly take into consideration collisions between

aggregates of different sizes, which is much more realistic picture and hence we consider

the result obtained in this work to be more accurate.

4.4 Discussion

The study on the dynamics of aggregation of similarly-charged rigid PE chains using

extensive MD simulations has shown that the dynamics of aggregation is effectively de-

termined by short-ranged interactions between the PE chains, even though the monomers

and counterions interact via long-ranged Coulomb interactions. We also showed that the

number of aggregates decreases with time as a power law, t−θ, where the exponent θ is in-

dependent of the charge density of the PE chains, whether the counterions are divalent or

trivalent, number density, and length of the PE chains. The data is modeled using Smolu-
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chowski equation with coagulation kernel determined from the MD simulations. From the

molecular dynamics simulations, we estimate θ = 0.62±0.07, which is consistent with the

value θ = 2/3 obtained from the Smoluchowski equation.

It has been argued that for intermediate values of the charge density, finite size PE bundles

exist at thermodynamic equilibrium, while further increase of charge density, results in

phase separation and precipitation [89, 90, 92, 93]. However, in our simulations, for all

the values of charge densities that we have considered, the number of aggregates decrease

continuously as a power law, and show no tendency to plateau which would be the case

if finite sized bundles at thermodynamic equilibrium existed. In addition, we find that the

cluster size distribution for different times obeys a simple scaling N(m, t) ' t−2θ f (mt−θ),

where f is a scaling function (see Fig. 4.12), showing that the system continuously

coarsens to presumably a phase separated state. This discrepancy in results could be due

to the fact that the observation of finite sized bundles in Refs. [89, 90, 92, 93] was based

on their short simulations and the system may not reach the equilibrium configuration.
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Figure 4.12: (a) Aggregate size distribution N(m, t) for different times t for a system with
trivalent counterions and `B = 2.01. (b) The data for different times collapse onto a single
curve when m and N(m, t) are scaled as shown in the figure with θ = 0.62.

It has also been suggested in literature that similarly-charged rigid PE chains tend to

approach each other at right angles, align and then slide to align with the bundle while

merging with each other. This mode has been referred in the literature as zipper model [89,

90, 93, 183]. Another model of approach called collinear model was also proposed for

rigid PE chains, in which the centers of mass of approaching PE chains lie on a line
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parallel to their longer axes [183]. This model was shown to have lower kinetic barrier

of approach and can explain the observation of elongated structures in experiments [184,

185] similar to that observed in our MD simulation. From our MD simulations, we see

that the approach of merging depends significantly on the charge density of rigid PE

chains. While zipper model seems to be the mode of aggregation for PE chains with

lower charge density, the approach mechanism changes to collinear model for PE chains

with high charge density.
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Chapter 5

Role of flexibility in aggregation of

multiple PEs

In this chapter, using large-scale coarse-grained molecular dynamics simulations, we ob-

tain the phase diagram of the aggregated structures of flexible charged polymers in the

presence of trivalent counterions. We also characterize the morphology of the aggregates

as well as the aggregation dynamics. In addition to aggregation, we observe fragmenta-

tion events as well. Three different phases are observed depending on the charge density:

no aggregation, a finite bundle phase where multiple small aggregates coexist with a large

aggregate and a fully phase separated state. We show that the flexibility of the polymer

backbone causes strong entanglement between charged polymers leading to additional

time scales in the aggregation process. These results are contrary to those obtained for

rigid polyelectrolytes, emphasizing the role of backbone flexibility in the conformational

dynamics of PE. The results presented in this chapter has been published in Ref. [186].
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5.1 Introduction

Biological polymers such as proteins are essentially flexible PEs (FPEs) and understand-

ing the mechanism of aggregation of such FPEs is relevant as protein-protein disordered

aggregates are implicated in many neurodegenerative diseases [86, 87]. The aggregation

mechanism of FPE chains, whose conformational flexibility can introduce additional time

scales and barriers in the aggregation dynamics might be different from that of rigid PEs

described in chapter 4. The flexibility of FPE chains can possibly introduce additional

kinetic barriers due to the disentanglement and subsequent entanglement required for in-

corporating new FPE chains into an existing aggregate, altering the aggregation dynamics

as compared to rigid PE chains. It is possible that during the process to include a new

FPE chain, the existing aggregate may fragment into individual PE chains, further com-

plicating the aggregation dynamics. Another aspect of importance is to understand the

underlying effective attractive interactions that play a dominant role in aggregation of

like-charged FPE chains and whether these interactions are similar to those in the col-

lapsed phase of a single flexible PE chain. In chapter 3, we have shown that the collapsed

regime of a single FPE chain (in either good or poor solvent conditions) is composed of

multiple sub-regimes. These sub-regimes are characterized by different scaling exponents

in the relation between radius of gyration and the effective Bjerrum length (`B) of the PE

chain, especially when the PE chain is strongly charged. Among existing theories to ex-

plain the counterintuitive collapse of a charged PE chain [15–18, 140–142], we identified

counterion fluctuation theory [15] to be the correct theory and modified it suitably to ac-

count for the existence of several sub-regimes in the collapsed phase of a single PE chain.

It would be interesting to explore whether similar sub-regimes exist for strongly charged

PE chains in their aggregated regime and whether counterion fluctuation theory still holds

good for aggregated structures. It can be envisaged that when the strongly charged PE

chains self-assemble into an aggregated structure, the counterions are no longer bound to

a specific FPE chain but move freely within the aggregate of multiple PE chains and this
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scenario may not be very different from a collapsed regime of a single long collapsed PE

chain.

In this chapter, we study the equilibrium conformations and dynamics of aggregates of

highly charged FPE chains, using molecular dynamics (MD) simulations (model and MD

details in Sec. 5.2). In Sec. 5.3.1, we discuss the effects of backbone flexibility of FPE

chains on the equilibrium phases in the presence of trivalent counterions and contrast

them with the results for rigid PE chains with rigid backbones. We also characterize the

morphology of the aggregates in detail in Sec. 5.3.2 and study the role of conformation of

a single FPE chain in emergence of kinetic barriers that affect the aggregation dynamics.

In Sec. 5.3.3, we characterize the dynamics of aggregation in the phase separated state

by measuring the power law exponent describing the number of aggregates. Finally, in

Sec. 5.4 we provide a detailed discussion of our results.

5.2 MD simulation details

We consider a system of N = 100 PE chains, each one consisting of Nm = 30 monomers of

charge +qm, and corresponding number of neutralizing counterions of charge qc = −Zqm,

where Z is the valency of the counterion as in the case of rigid PE aggregation. In the

present study, we only consider trivalent counterions (Z = 3) for the computational sim-

plicity. The PE chains are modeled using a bead spring model [163, 173], as in our previ-

ous chapters, where the monomers are connected by harmonic springs with the interaction

potential

Ubond(ri j) =
1
2

k(ri j−a)2, (5.1)

where k is the spring constant and a is the equilibrium bond length. The flexibility of the

chain is maintained by not including a three-body bond bending interaction, hence the

chains are fully flexible.
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Parameters value
σ 1
a 1.12σ
εLJ 1
rc σ
T 1
k 500

Table 5.1: Parameters used in the MD simulations.

The non-bonded particles interact through 6–12 Lennard Jones potential

ULJ(ri j) = 4εLJ

( σri j

)12

−

(
σ

ri j

)6 , (5.2)

where ri j is the distance between particles i and j, εLJ is the minimum of the potential and

σ is the inter-particle distance at which the potential is zero. The parameters εLJ and σ

are the same for all pairs of particles. The Lennard Jones potential goes to zero smoothly

beyond a cutoff distance [122] rc (ULJ(r)) = 0 for r > rc) between any two particles and

is chosen to be σ. This results in purely repulsive interactions between all the particles,

implicitly mimicking good solvent conditions.

The electrostatic interaction among all pairs of particles is given by Coulomb interaction

Uc(ri j) =
qiq j

4πεrri j
, (5.3)

where qi and q j are the charges of the ith and the jth particles, which can take values qm or

qc, depending on whether it is a monomer or counterion and εr is the effective dielectric

constant of the medium. The strength of electrostatic interactions in the system can be

scaled via dimensionless Bjerrum length `B, which can be changed either by changing

monomer charge qm keeping effective dielectric constant εr fixed or by changing εr and

keeping qm fixed. In our simulations, we systematically scale the monomer charges qm to

vary `B. Larger the value of `B, stronger the electrostatic interactions. The PE chains and

the corresponding counterions are placed in a box of linear size L with periodic boundary
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conditions. The equations of motion are integrated in time using the molecular dynamics

(MD) simulation package LAMMPS [175,176] using a time step of 0.001 at temperature

T = 1 maintained through a Nosé-Hoover thermostat [130,131]. Details of the interaction

parameters are given in Table 5.1. The long-ranged electrostatic interactions are calcu-

lated using Particle-Particle/Particle-Mesh (PPPM) technique [177].

Figure 5.1: Snapshots of the system at the initial configuration for (a) reverse simulations
and (b) forward simulations.

We perform two kinds of simulations which differ from each other in their initial condi-

tions. The first set of NVT simulations are used to obtain the different phases that the

aggregates may exist and obtain ρ -`B phase diagram, where ρ = NNm/L3 is the monomer

number density. The initial conditions for these sets of simulations were obtained by per-

forming a NPT (P = 1, T = 1) simulation of a system of randomly dispersed PE chains and

counterions with `B = 3.57 (much larger than that of a critical charge density above which

counterions condense onto the PE chains and above critical charge density for aggrega-

tion) until all the 100 PE chains aggregate into a single aggregate. The corresponding

initial configuration is shown in Fig. 5.1 (a). This single aggregate is then evolved in

time for different values of `B and number density ρ (we change the volume of the sys-

tem keeping the number of monomers fixed) for 107 steps to ascertain the stability and

morphology of the resultant aggregates. These simulations will be referred to as "reverse
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simulations" in the chapter. In the second set of NVT simulations, the initial condition

is one where all the PE chains and the counterions are dispersed uniformly throughout

the simulation box. To ensure that the initial conformations of the PE chains are well

dispersed throughout the simulation box, we set the charge density of the PE chains to a

very small value (`B = 0.22), much less than that of a critical charge density above which

counterions condense onto the PE chains (`Bc ≈ 1) and equilibrate the system. Twenty

random configurations, which are temporally well separated (time step between two con-

figuration is chosen to be 5000) are chosen for further simulations in which the value of

charge density of the FPE chains, `B, is varied. Here we keep the number density fixed

(L = 129 and ρ = 1.43×10−3 in units of σ) and vary `B. For each value of `B considered,

20 independent simulations are performed, each for 107 steps. These simulations will be

referred to as "forward simulations". An initial configuration for the forward simulation

is shown in Fig. 5.1 (b).

5.3 Results

5.3.1 Equilibrium phases and phase diagram

Figure 5.2: Reverse simulations: snapshots of the system at the end of 107 MD steps
for different values of charge density `B and at fixed monomer number density ρ =

1.43× 10−3. The monomers and counterions are colored in blue and red respectively.
The snapshots are not to scale.

106



We first identify the equilibrium phases and phase diagram of a system of flexible PE

chains, as a function of PE chain charge density `B and monomer number density ρ. This

can be done in two ways, either using a forward simulation in wherein well dispersed

PE chains and counterions as the initial state or by reverse simulation in wherein a large

aggregate of size m = 100 as the initial state and observe the equilibrium state. The equi-

libration time for the PEs system in the forward simulation is unknown and is large, it

would be difficult to conclusively distinguish between finite bundle formation and fully

phase separated states. Setting an arbitrarily fixed equilibration time [92, 93] can poten-

tially lead to erroneous conclusions regarding the phase diagram. The reverse simulations

help to avoid this problem. We study the stability of a fully phase separated aggregate

structure by performing reverse simulations at various values of `B and ρ.
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Figure 5.3: (a) The variation of the fraction of aggregates, n(t) with time for different
values of the charge density `B and fixed monomer number density ρ = 1.43× 10−3 in
reverse simulations. The initial condition is one where all PE chains are in one aggregate
corresponding to n(0) = N−1 = 0.01, where N is the total number of PE chains. For
intermediate values of `B, n(t) attains a time-independent constant value between 0.01 and
1, corresponding to the existence of finite-sized bundles. To show equilibration, n(t) for
`B = 2.01 in forward simulations, averaged over twenty initial conditions, is also shown.
(b) φ(m), the mean fraction of PE chains contained in an aggregate of size m, as a function
of m for different values of `B. The data is for monomer number density ρ = 1.43×10−3.

The snapshots of the system at the end of 107 steps are shown in Fig. 5.2 for different

values of `B and fixed monomer number density ρ = 1.43×10−3. For a given value of ρ,

we find that the system may exist in three different phases. These phases correspond to

the aggregate being (a) completely fragmented (no aggregation), (b) partially fragmented

(finite bundles characterized by the presence of a single large aggregate and multiple small
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aggregates), or (c) intact (phase separation).

To show the stability of the three phases, the equilibration of the system as well as inde-

pendence of the final state on the initial conditions have to be checked. To do this, we

define a quantity n(t) which quantifies the number of aggregates in the system, irrespec-

tive of their size, as in the case of rigid PE described in chapter 4. n(t) takes a value of

1, when there are no aggregates of size more than 1 (completely fragmented state) and

0.01(= 1/N) when there is a single aggregate comprising of all PEs (completely phase

separated state). For reverse simulations n(0) = 0.01 whereas for forward simulations

n(0) = 1. The variation of n(t) with time in shown in Fig. 5.3 (a). From the figure, three

different regions are observed, consistent with Fig. 5.2. For `B < 1.28, the initial single

aggregate of size 100 fragments completely and n(t) increases from 0.01 to nearly 1. For

1.29 < `B < 2.73, within the first half of the simulation time, n(t) reaches a steady state

value between 0 and 1. From these results, we identify two critical values of charge den-

sity denoted by `B1 ≈ 1.29 and `B2 ≈ 2.73 above which finite bundles and phase separated

states appear respectively. We check that in this range of `B [for example `B = 2.01 is

shown in Fig. 5.3 (a)] values, the steady state values of n(t) are independent of the ini-

tial conditions by doing a forward simulation in which all the PE chains are uniformly

distributed within the simulation box. The steady state values from these runs (averaged

over 20 initial conditions) as well as from the reverse simulations tend to the same value

at large times, showing that the system is equilibrated. For values of `B larger than 2.73,

the initial single aggregate remains intact throughout the simulation time scale suggesting

that for these values of `B complete phase separation is the equilibrium phase.

Characterizing the finite bundle phase only in terms of n(t) is incomplete, as it does not

distinguish between many small-size aggregates coexisting with a large aggregate, or a

system consisting of only aggregates of small size. To understand more about the coexis-

tence of aggregates, we study the aggregate size distribution. Let N(m, t) be the number of

aggregates of size m at time t. The number of aggregates n(t), defined earlier, is then given

108



Figure 5.4: Snapshot of merging of two aggregate of size m = 50 to form an aggregate of
size m = 100.

by n(t) = N−1 ∑
m N(m, t). Also, it is clear that

∑
m mN(m, t) = N because the total number

of PEs is conserved during aggregation. We consider the quantity φ(m, t) = mN(m, t)/N

(where
∑

mφ(m, t) = 1) which measures the fraction of total number of PEs that appears

in the form of aggregates of size m, in a given configuration. Once the system reaches

equilibrium, the average value of φ(m, t) reaches a time independent value. We then de-

fine φ(m) = 〈φ(m, t)〉, where the average is done over all equilibrium configurations, that is

obtained by discarding the initial equilibration run in the backward simulations. Defined

this way, φ(1) = 1.0 in fully fragmented phase and φ(100) = 1.0 in a completely phase

separated state, with all other φ(m) = 0. The variation of φ(m) with m for different values

of `B is shown in Fig. 5.3 (b). For `B = 1.08, which is in the fully fragmented phase,

it can be seen that the peak of the distribution is at m = 1 with φ(1) ≈ 1.0, showing that

the system is made of aggregates of size one. For two values of `B = 2.09,2.73 in the

finite bundle phase, the distribution is inhomogeneous and consists of two parts: a peak

at large values of m and a decaying distribution for small values of m. This shows that the

finite bundle phase consists of the co-existence of a single large aggregate and multiple

small-size aggregates. On the other hand, for the fully phase separated state (`B = 8.03),

the peak of the distribution is at 100, as expected for a stable aggregate of size 100. The

aggregate size distribution, along with the data for the total number of aggregates n(t)

shown in Fig. 5.3, clearly demonstrates the existence as well as the nature of the finite
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Figure 5.5: Phase diagram in the ρ-`B plane. There are three phases: one with no aggre-
gation, another one with finite-sized bundles and a completely phase separated state.

bundle phase, albeit for a range of `B values.

The stability of the phase separated state is checked by doing an additional simulations

starting with a system consist of two aggregates, each of having size m = 50 and `B = 8.03.

the snapshot of such a system at different time in Fig. 5.4 is clearly showing that each

aggregates merge at large times to form a single aggregate of size 100. Which is a clear

indication of stable phase separated state.

The critical values `B1 and `B2, which characterize the beginning and end of the finite

bundle phase, are expected to depend on the monomer number density ρ since the volume

available for a monomer decreases as the density increases and hence the entropy also

decreases. To construct the phase diagram in the ρ -`B plane, we performed extensive

simulations for many values of ρ and the results are shown in Fig. 5.5. The approximate

transition points are identified by measuring n(t) and we label the region 0.95< n(t)< 0.02

as the finite bundle phase. From Fig. 5.5, within numerical error, the transition from the

finite bundle phase to the fully phase separated state appears to be independent of the

monomer number density for the range of densities considered in our simulations. Which

indicate the electrostatic interactions overcomes the entropic contributions, and hence is

presumably driven only by electrostatic interactions.

110



5.3.2 Morphology of aggregates
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Figure 5.6: The variation of the eigenvalues (a) λ1, (b) λ2 and (c) λ3 of the gyration tensor
with aggregate size m for different charge densities `B.

In our previous work on rigid PE chains described in chapter 4, it was observed that the

morphology of the aggregates depended on the charge density `B of the individual rigid

PE chains. For lower values of `B, the aggregates were cylindrical with length same

as that of a single rigid PE chain. In this section, we examine the effect of backbone

flexibility on the morphology of the aggregates of FPE chains. The aggregates of FPE

chains are compact as may be seen in Fig. 5.2 and we characterize the morphology of the

aggregates, of size m, through eigenvalues of the gyration tensor as defined in Eqn. (1.9).

S αβ(m) is the gyration tensor for an aggregate of size m. The three eigenvalues of this

tensor, λi(m), i = 1,2,3 with λ1(m) > λ2(m) > λ3(m) measure the square of the aggregate

dimensions along the three principal axes, and can be used to define parameters that reflect

the morphology of the aggregate. The eigenvalues are measured over the trajectory of

simulation, accumulating data about aggregates of different sizes and then averaging over

the length of the trajectory for each aggregate of size m. In the case of a compact spherical

morphology, the radius is proportional to m1/3, where m is the size of the aggregate and

hence the eigenvalues are expected to scale as m2/3. The variation of the eigenvalues

λi(m) with the size of the aggregate, m, for different values of `B is shown in Fig. 5.6 (a-c)

and for all values of `B shown, λi(m) is proportional to m2/3, as expected for a compact

spherical aggregate.

Another measure of morphology of aggregates is prolateness, which characterizes the
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spheroidness of an object [187], and this can also be defined in terms of the eigenvalues

as

S (m) =

∏3
i=1λi(m)− λ̄m

λ̄3
m

, (5.4)

where λ̄m is the average value of eigenvalues λ1(m),λ2(m) and λ3(m) measured for an

aggregate of size m. Negative values of S (m) correspond to oblate ellipsoids and positive

values to prolate ellipsoids [187]. For a perfect sphere, S (m) = 0. We measure the pro-

lateness S (m) by averaging over the length of the trajectory for all aggregates of size m.

The dependence of prolateness S on `B and size of the aggregate m are shown in Fig. 5.7.
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Figure 5.7: The variation of the prolateness S with m for different values of `B.

It can be seen that for all values of `B, S is positive and decreases to zero as the size of

the aggregate increases. Thus, the shape of the aggregates is prolate for small aggregate

sizes and becomes more spherical with increasing aggregate size.

Conformations of individual chains

Next, we probe the conformations of individual FPE chains inside an aggregate in order

to understand their role to act as limiting factors in the path to achieve complete phase

separation at high values of `B. Towards this goal, we calculate R1
g(m), the average radius

of gyration of a single PE chain in an aggregate of size m relative to its gyration radius

when it is not part of any aggregate, R1
g(1), as a function of m as well as `B and the data
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Figure 5.8: (a)Scaled radius of gyration of a single FPE chain belonging to an aggregate
of size m, as a function of m for different `B for the forward simulation. The average
number of non-bonded nearest neighbors of a monomer, that belong to same/different
FPE chains for (b) `B = 2.49 and (c) `B = 8.03.

are shown in Fig. 5.8 (a). The gyration radius of a FPE chain increases for all values of `B,

implying that a single FPE chain is in a more extended state in an aggregate. The relative

change is larger for higher values of `B. The implications of such extended states of single

FPE chains in aggregates can be the emergence of strong entanglement of individual

chains in the aggregate, which can potentially slow down the aggregation dynamics at

higher values of `B as will be discussed in next section. To quantify the entanglement

of individual FPE chains in aggregates, we compute the average number of non-bonded

nearest neighbors (within a radius of 2σ) for any monomer of a FPE chain and ask whether

they belong to the same FPE chain or a different one. In the case of high entanglement

(and more extended conformations), we expect that any given monomer will see more

neighbors belonging to other chains than its own chain. From data shown in Fig. 5.8 (b)

and (c), it is clear that at low values of `B, an individual FPE chain is more likely to be

in a more compact conformation, with any monomer seeing more neighbors belonging

to its own chain and even as the size of the aggregate increases, the nature of the nearest

neighbors remains the same. However, at high values of `B, there is a crossover regime, as

a function of aggregate size, where any given monomer of an individual FPE chain begins

to see more neighbors from other chains than from its own polymer chain. This, when

correlated with the data in Fig. 5.8 (a), shows that at high values of `B, the individual

chains are not only in more extended conformation, but are also entangled with other
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chains.
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Figure 5.9: (a) The scaling of the gyration radius Rg of largest aggregate with charge
density `B. Each point in the plot is averaged over 2000 frames. Nl is the size of largest
aggregate. (b) The variation of fraction of aggregates n(t) with scaled time t/t∗ for dif-
ferent values of `B, where t∗ is the time at which n(t) = 0.9 for forward simulations. The
straight lines are power laws and guides to the eye.

The entanglement of FPE chains in an aggregate suggests that an aggregate of m FPE

chains of length Nm can potentially behave like a single FPE chain of size m×Nm. In

earlier work described in chapter 3, we showed that the collapsed state of a single FPE

chain consists of multiple sub-regimes. These power law sub-regimes are characterized

by different scaling relations between Rg and `B, depending on the most dominant volume

interaction virial term in the free energy expression for a collapsed FPE chain with elec-

trostatics described by counterion fluctuation theory. For aggregates of FPE chain with

high values of `B it can be envisaged that the counterions inside the aggregate may not

have a preference to a particular FPE chain and may behave collectively as counterions

inside a collapsed phase of a single long FPE chain. If this is true, we should be able to

observe sub-regimes, similar to that for a single PE chain, as the value of `B is increased.

To check this, we measured Rg/N1/3 for the largest aggregate at a particular value of `B,

from our reverse simulations and are shown in Fig. 5.9. For small values of `B, Rg de-

creases as Rg ∼ `
−1/2
B , while for large values of `B, Rg decreases as Rg ∼ `

−1/5
B , and for

even larger values of `B, the scaling is consistent with Rg ∼ `
−1/8
B . These sub-regimes are

identical to those obtained in simulations of a single PE chain and as predicted by the

counterion fluctuation theory for the effective attractive interactions between monomers
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of the PE chain. This clearly shows that once, two PE chains aggregate, the aggregate

may be treated as a single PE chain of twice the original length.

5.3.3 Dynamics

We now study the pathway to full phase separation (for high values of `B) starting from

an initial condition of completely dispersed PE chains, using forward simulations, as de-

scribed in Sec. 5.2. Here, we focus on three aspects of the pathway, which have been also

studied for rigid PE chains [89–93, 163, 173, 188, 189]. First, the aggregation dynamics

are characterized by monitoring the evolution of fraction of aggregates n(t) with time. For

rigid PE chains, n(t) decreases as a power law t−θ, showing the absence of a characteristic

size of aggregates. Using extensive MD simulations described in chapter 4, we showed

that θ is independent of system parameters such as charge density `B of the rigid PE

chains, valency of counterions etc., and has a value θ ≈ 0.62, in contrast to θ = 1 obtained

in other studies [89,90]. Second aspect is whether the aggregation dynamics can be under-

stood by modeling the system using classical Smoluchowski coagulation equation, which

describes irreversible aggregation of particles that are transported by some process, such

as diffusion or ballistic motion, and aggregate on contact [23,180]. By modeling the rigid

PE chains as neutral, rotating cylinders that diffuse and aggregate on contact, we obtained

θ = 2/3, in close agreement with the results from MD simulations (θ ≈ 0.62), strongly

suggesting that even though the dominant Coulomb interactions in this system of charged

PE chains are inherently long-ranged in nature, the effective interactions that drive the ag-

gregation process are short-ranged in nature. The third aspect of the aggregation pathway

that is of interest is understanding the mode of merging of two aggregates. Simulations

suggest that, at lower values of `B, two merging rigid PE chains approach each other per-

pendicularly, followed by a sliding motion of one of the rigid PE chains onto the other in

a manner that has been referred to as zipper model [89,90,92,93,163,173,183]. At higher

values of `B, the mode of aggregation of two aggregates changes from a zipper model to
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Figure 5.10: Snapshots of aggregation and fragmentation events over a time period for an
aggregate of size m = 4 for `B = 3.57.

a collinear model where the approaching rigid PE chains are parallel to each other and

join end to end with larger sliding times, resulting in elongated structures spanning the

simulation box. However, irrespective of the mode of aggregation, it was observed that

the aggregate size increases monotonically and no fragmentation occurs in the pathway

towards a bigger aggregate structure from constituent smaller aggregates. In this section,

we examine how the flexibility of the FPE chains affect the three aspects of aggregation

dynamics described above.

In case of FPE chains, unlike the case of rigid PE chains, we observe fragmentation events

along the pathway of aggregation formation for intermediate values of `B. Snapshots of

a typical aggregation pathway of formation of an aggregate with 4 FPE chains are shown

in Fig. 5.10 for `B = 3.57. It clearly shows intermittent fragmentation events at t = 3464,

and 7480, where we identify a fragmentation event as one in which a PE chain that was a

long-existing component of an aggregate gets separated. A fragmentation event is usually

preceded by the addition of a new FPE chain into the aggregate. For example, in the

fragmentation event around t = 3464, it can be noticed that the inclusion of a new FPE

chain, labeled 1, results in the subsequent expulsion of an already existing FPE chain

of the aggregate, labeled 2. We, however, note that the fragmentation events are less

frequent as the charge density of the FPE chains increases, possibly due to high attractive

electrostatic interactions among the constituent FPE chains in an aggregate, and the higher

entanglement between FPE chains as discussed in Sec. 5.3.2.

The aggregation dynamics is characterized by monitoring the temporal evolution of frac-
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Figure 5.11: Snapshots of aggregation showing the opening up of an existing aggregate
to incorporate another PE chain.

tion of aggregates, n(t), which decreases on aggregation and increases with fragmentation

and attains a value of N−1 = 0.01, in the fully phase segregated phase or remains close

to 1 in the non-aggregated phase. The variation of n(t) with scaled time t/t∗ is shown in

Fig. 5.9 (b), where t∗ is set to be the time when n(t) = 0.9. It can be seen that n(t) decreases

with t/t∗ as a power law, albeit with varying values of the exponent θ which decrease with

the charge density of the FPE chain, in stark contrast to the single exponent (θ ≈ 0.62) that

we obtained in the aggregation dynamics of rigid PE chains. The exponent θ varies from

0.6 to 0.35 for the range of `B values considered here.

Smoluchowski theory

We now ask whether the aggregation dynamics of the FPE chains can be modeled by the

Smoluchowski equation, which was successfully applied to the case of aggregation of

rigid PE chains as explained in chapter 4. It can be seen from Fig. 5.2 and Fig. 5.6, the

shape of aggregates, in the case of FPE chains, is spherical and hence R(m) ∝m1/3, giving

the homogeneity exponent λ = −2/3 (see Sec. 4.3.3 for more details). Substituting this

value of λ for spherical aggregates in Eqn. (4.7), we obtain θ = 3/5. This is in contrast

to the value of λ = −1/2 and θ = 2/3 that we obtained in the case of rigid PE chains in

chapter 4, using the kernel for rotating cylindrical aggregates with R(m) ∝ m1/2.

The result obtained from Smoluchowski theory (θ = 3/5) is close to the numerical value
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obtained for smaller values of `B [see lower guide line in Fig. 5.9 (b)]. However, the

exponent for larger values of `B is dependent on `B and is significantly smaller θ = 3/5

[see upper guide line in Fig. 5.9 (b)] showing a lower aggregation rate with larger `B.

This discrepancy could possibly be due to the existence of kinetic barriers, due to the

entanglement of the extended FPE chains in aggregates, that have to be crossed when two

aggregates merge. In the case of rigid PE chains, the typical aggregate conformation is

linear and a new rigid PE chain gets attached to the existing aggregate without modifying

the structure of the previous aggregate. This is not the case for FPE chains, as may be

seen from the snapshots of a typical aggregation event shown in Fig. 5.11. In the case of

FPE chains, owing to their inherent highly flexible backbones, the aggregates have a more

entangled structure and incorporation of a new FPE chain into such an aggregate requires

significant global conformational changes, as can be seen in Fig. 5.11. This process can

introduce additional time scales into the aggregation dynamics, altering the power law

exponent from the result obtained via Smoluchowski theory suggesting that the flexibility

of the PE chain backbone can significantly alter the aggregation dynamics as compared to

rigid PE chains. It can also be envisaged that these additional time scales become increas-

ingly more significant at higher values of `B, where the strong electrostatic interactions

are the dominant forces holding the aggregate together leading to larger deviations from

the classical Smoluchowski theory.

5.4 Discussion

In this chapter we determined, using extensive MD simulations, the effects of backbone

flexibility of FPE chains on their aggregation dynamics as well as the equilibrium phases

in the presence of trivalent counterions, and contrasted them with the known results for

rigid PE chains with rigid backbones. We showed the existence of three possible phases.

At low charge densities, the FPE chains do not aggregate and remain uniformly distributed

throughout the available volume. At intermediate charge densities, the system exists in
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a finite bundle phase, where a fraction of the FPE chains form an aggregate while the

remaining FPE chains are in the form of multiple small aggregates. At large charge den-

sities, the equilibrium configuration is one of phase separation where all the FPE chains

come together as a single aggregate. Surprisingly the critical charge density for the tran-

sition from finite bundles to fully phase separated state would appear to be independent,

within numerical error, of the monomer number density of the system. We characterized

the morphology of the aggregates in detail. Due to the flexibility of the PE chain, the

aggregates are compact and their shapes become more spherical with increasing charge

density as well as aggregate size. An individual FPE chain within an aggregate becomes

more extended with increasing aggregate size, and we show that its non-bonded nearest

neighbors are increasingly from other FPE chains, implying that the FPE chains within an

aggregate are strongly entangled. Finally, we characterized the dynamics of aggregation

in the phase separated state by measuring the power law exponent describing the decreas-

ing in the number of aggregates. Surprisingly, we find this exponent to vary with charge

density.

The equilibrium phases of aggregates of PE chains has been a long standing issue, with

most of the studies focusing on rigid PE chains [89–93]. Conflicting results from both

experimental and theoretical studies suggest that the final equilibrium configuration of

an aggregate phase, in the presence of multivalent counterions, could be either a fully

phase separated state or coexisting finite aggregates [89–93]. Theoretical studies have

also shown that the size of the multivalent counterion, frustration of the interactions be-

tween the rods due to growth of the aggregate, as well as kinetic barriers play a role in

determining whether finite-sized bundles or complete phase separation are the equilibrium

states [188,189]. However, by performing large-scale simulations on systems of 100 rigid

PE chains, unlike earlier simulations with fewer PE chains as well as shorter simulation

time scales [89,90,92,93], we showed that the equilibrium state is either a fully separated

state or one of no aggregation, and could find no evidence of a finite bundle phase [163].

In contrast, for FPE chains, we find that for a large regime of charge density for each
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value of monomer number density, there exists a finite bundle phase where large aggre-

gates coexist with multiple small aggregates, emphasizing the crucial role played by the

flexibility of the polymers. In the fully separated phase, there is always a finite probability

of FPE chains fragmenting and forming smaller aggregates. However, we expect that this

fraction would be thermodynamically negligible. To show this more rigorously, we would

need to systematically simulate larger systems, which is computationally expensive and

is beyond the scope of the present study.

The aggregation dynamics of the FPE chains is qualitatively and quantitatively different

from that of rigid PE chains. Qualitatively, we find that in the aggregation of FPE chains,

we observe fragmentation events where an existing aggregate breaks up into smaller ones.

This occurs particularly for charge densities corresponding to finite bundles phase. Such

fragmentation events were not observed in the aggregation of rigid PE chains. The ag-

gregation dynamics were quantified through the temporal variation of the fraction of ag-

gregate n(t) in forward simulations: n(t) ∼ t−θ. We find that for FPE chains, θ decreases

with increasing charge density and varies from from 0.6 and 0.35 for the range of charge

densities considered. This is in complete contrast to the charge independent value of

θ ≈ 0.62 obtained for rigid PE chains through MD simulations. We rationalize the addi-

tional time scales that emerge by carefully monitoring a single aggregation event in which

a new FPE chain merges with the existing aggregate. To incorporate a new FPE chain into

an aggregate, a global reorganization of the existing aggregate is required in the form of

adopting an open configuration as the new FPE chain approaches. Once the FPE chain

is assimilated into the existing aggregate, another global conformational rearrangement

occurs before the new aggregate adopts an almost spherical shape and closed conforma-

tion. This opening and closing of the structures can have two possible consequences. If

the effective attractive interactions holding the FPE chains in the aggregate are not strong

enough, fragmentation events can occur slowing down the aggregation dynamics process.

Additionally, at higher charge densities, the opening of the aggregate structures may be

difficult due to high attractive energetic barriers introducing additional time scales, issues
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that do not impact the aggregation of the rigid PE chains. The slowing down of aggre-

gation dynamics at higher values of `B, for FPE chains, can also be understood in terms

of individual conformations of FPE chains in aggregates. We showed that as the value

of `B increases, the individual FPE chains in aggregates are more extended, compared to

the case of a single FPE chain, and are also more entangled with other chains resulting in

appearance of kinetic barriers in the pathway of forming bigger aggregates. The stronger

entanglement at larger values of `B also explains why fragmentation events occur only at

lower values of `B.

Understanding the effective interactions driving both the collapse of a single PE chain

and aggregation of similarly charged PE chains is a long-standing problem of fundamen-

tal interest. In particular, the emergence of short-ranged attractive interactions in a system

of similarly charged entities with inherently long-ranged Coulomb interactions is an as-

pect that is not well-understood. Several theories [15–17, 140] have been proposed to

explain the nature of the effective interactions based on minimization of free energy of a

PE chain. In our earlier work [132, 133], using both extensive MD simulations and ana-

lytical calculations, we showed conclusively that the counterion fluctuation theory and its

modifications best explains the observed emergence of multiple regimes in the collapse

phase of a single PE chain. The data Fig. 5.9 shows the emergence of similar regimes,

characterized by different scaling exponents in the relation between radius of gyration and

the effective Bjerrum length of the PE chain (Rg ∼ `
−α
B ) as predicted by counterion fluc-

tuation theory for a single PE chain collapse. This is further evidence for the counterion

fluctuation theory being the correct description for the effective attractive interactions in

charged PE systems. The results also suggest that at high values of `B, the multiple FPE

chains in an aggregate are strongly entangled and behave effectively like a single long PE

chain.

Considering our observation that the aggregates in case of FPE chains are nearly spher-

ical, we model the aggregation of FPE chains using Smoluchowski equation, which for
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neutral spheres that diffuse and coagulate on contact, gives θ = 3/5 for aggregation dy-

namics. In the case of FPE chains we obtained a charge dependent value of θ which varied

from 0.6 and 0.35. To obtain such a charge dependent θ, it would be necessary to modify

the collision kernel to include effects beyond geometry, such as the time scale associated

with opening up an aggregate consisting of entangled FPE chains. Quantifying these time

scales in a systematic manner is a promising area for future study. We note that modeling

the aggregation dynamics of rigid PE chains using Smoluchowski coagulation equation

gives θ = 2/3 very close to the numerical obtained value of 0.62, and indicates the lack

of rearrangement required to incorporate a new rigid PE chain into an existing aggre-

gate. It may still be possible to understand the different phases in terms of competition

between aggregation and fragmentation of neutral aggregates. In simple lattice models

of aggregation and fragmentation, an interesting phase transition occurs when fragmen-

tation is limited to a finite number of units fragmenting from an existing aggregate to a

neighbor [190–195]. As fragmentation rate is decreased, the system undergoes a non-

equilibrium phase transition from a phase characterized by an exponential distribution of

aggregate sizes (akin to no aggregation) to a phase characterized by the presence of a con-

densate containing a finite fraction of the polymers, and the remaining polymers being in

smaller aggregates distributed as a power law. In the limit of zero fragmentation, phase

separation happens in the form of a single condensate. The phases seen in this work have

a one to one mapping with the phases seen in such an aggregation-fragmentation model.

However, the mapping is at a qualitative level and understanding the role of charge density

in determining the fragmentation rate in systems like charged polymers is an interesting

open problem.
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Chapter 6

Conclusions

Polyelectrolytes (PEs) are charged polymers. In this thesis, various aspects of highly

charged PE systems, both single and multiple chains, are studied using extensive MD

simulations. The main results of these simulations are summarized below.

In the first problem, we test the predictions of the different theories describing the col-

lapse transition of a flexible PE using large scale MD simulations. Main results can be

summarized as follows:

• We observe two collapsed regime with well defined exponent γ= 1/2 and 1/5 (char-

acterizing the dependence of Rg on `B) in the MD simulation results of good solvent,

that we refer to as weak and strong electrostatic regimes. This scaling is robust and

independent of the valency of the counterions, volume interaction models between

chain monomers and on the solvent models.

• The scaling in the weak electrostatic regime (γ = 1/2) is not consistent with the

predictions of either the fluctuating dipole theory (γ = 2/3) [17,18], or of the amor-

phous ionic solid (γ = 0) [16], but agrees with the counterion fluctuation theory [15]

proposed earlier. However, the scaling in the strong electrostatic regime (γ = 1/5)

is not consistent with any of the existing theories.
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• We find the existence of several sub-regimes in the dependence of the gyration

radius of the chain Rg on `B for poor solvents, the exponent γ for a poor solvent

crucially depends on the size and valency of the counterions.

• We develop a generalized theory for a collapsed regime of a PE in good and poor

solvents based on counterion fluctuation theory [15], by explicitly considering the

monomer-monomer, monomer-counterion and counterion-counterion interactions.

• We also show that the presence of condensed counterions modifies the effective

attraction among the chain monomers and modulates the sign of the second virial

coefficient under poor solvent conditions.

In the second problem, we study the aggregation dynamics of rigid PEs using large scale

molecular dynamics simulations. The main results are summarized below

• We show that the number of aggregates decrease with time as power laws with

exponents that are, within numerical uncertainty, independent of the charge density

of the polymers, valency of the counterions, density, and length of the PE chain.

• We find that the morphology of the aggregates depends on the value of the charge

density of the polymers. For moderate values of charge density, the shape of the

aggregates is cylindrical with height equal to the length of a single PE chain. How-

ever, for larger values of charge density, the linear extent of the aggregates increases

as more and more PEs aggregate.

• We model the aggregation dynamics using the Smoluchowski coagulation equation

with kernels determined from the molecular dynamics simulations and justify the

numerically obtained value of the exponent.

• Our results suggest that once counterions condense, effective interactions between

PE chains are short-ranged and the aggregation of PEs are diffusion-limited.
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In the last problem, we study the behavior of aggregation in the case of completely flexible

PEs (FPEs). The main results are summarized below.

• In the case of FPEs, aggregation as well as fragmentation events are present.

• Unlike rigid PEs, the phase diagram of the FPEs with valency Z = 3, consist of three

different phases depending on the charge density: one with no aggregation, another

with finite bundles and a fully phase separated phase.

• An individual FPE chain within an aggregate becomes more extended with increas-

ing aggregate size, and we show that its non-bonded nearest neighbors are increas-

ingly from other FPE chains, implying that the FPE chains within an aggregate are

strongly entangled.

• In contrast to rigid PEs aggregation, the dynamics of aggregation in the phase-

separated regime depends on charge density. The reason for the dependence of the

exponent on charge may be due to the additional time scale involved in the system

due to the rearrangements inside an aggregate such as opening up and closing up of

an existing aggregate consisting of entangled FPE chains, during the addition of a

new one. Such a rearrangement is absent in the case of rigid PE aggregation.

• In the case of FPE aggregate, we observe multiple regimes characterized by differ-

ent scaling exponents in the relation between the radius of gyration and the effective

Bjerrum length of the PE chain (Rg ∼ `
−γ
B ) as predicted by generalized counterion

fluctuation theory for a single PE chain collapse. This provides further evidence

for the counterion fluctuation theory being the correct description for the effective

attractive interactions in PE systems.
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