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Synopsis

Introduction and Motivation

With the advent of new experimental techniques, Quantum Information is no longer a

subject of solely theoretical interest. Numerous quantum protocols, principles and results

discovered theoretically, are now being tested, verified and reinforced upon, by experi-

ments. Along with these new developments, comes a serious challenge of controlling

and understanding real life quantum systems, which are inherently open to the environ-

ment. This has been the motivation of my PhD work, which is mainly concentrated on

phenomenological and foundational understanding of the open quantum systems.

An open quantum system is essentially a system kept in contact with an environment,

where both the system and the environment are evolving jointly through a global unitary

operation. The resulting evolution on the system side, which is generally expressed as

a solution of a master equation, is the focus of our study. During this evolution, the

system interacts with the environment and gives rise to complex patterns of information

flow between them. Often this information flow gives rise to scenarios where the system

evolution retains memory of earlier times. This distinct property of remembrance of the

earlier dynamics is used to classify open quantum dynamics into two broad categories:

Markovian or memoryless and non-Markovian. Although the classical analog of this

classification is well defined [1], the definition of Markovianity in quantum regime is

debated. There are numerous prescriptions which capture different aspects of this complex

1



behavior, but a single unified description is yet to be found. Our work is, firstly to study

Markovianity from an operational point of view, investigating challenges faced during

analyzing real life open quantum systems, and secondly to study the fundamental aspects

of it, progressing towards a unified definition of Markovianity in quantum regime.

In the first part of ourworkwe considered a phenomenologicalmodel, where a system qubit

is interacting with an environment consisting of a finite number of qubits, and by tuning

the coupling between the system and individual environment qubits, we have analyzed

the Markovianity, non-Markovianity and transition between the two, of the dynamics. In

the second part of our work, we attempted to tackle of problem of having a number of

non-equivalent definitions of Markovianity in quantum regime. Notably all the different

definitions of quantum Markovianity can be classified into two broad classes, namely,

Information Backflow (IB) and completely positive divisibility. We have put forward a

general framework for the IB approach of Markovianity that not only includes a large

number, if not all, of IB prescriptions proposed so far, but also is equivalent to completely

positive divisibility for a large class of quantum evolutions including all invertible ones.

Following the common approach of IB, where monotonic decay of some physical property

or some information quantifier is seen as the definition ofMarkovianity, we proposed in our

framework a general description of what should be called a proper “physicality quantifier”

to defineMarkovianity. We elucidated different properties of our framework and used them

to propose an idea of degree of non-Markovianity, which would capture varied strengths

of non-Markovianity present in the dynamics.
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Figure 1: The model.

Non-Markovianity of a spin-environment

In our paper [2], we considered a system qubit interacting with an environment consisting

of N non-interacting qubits through an interaction Hamiltonian

Hse(t) = ~α
N∑

n=1

{
g∗n(t)σ(s)

+ ⊗
[
|0〉 〈0| ⊗ .. ⊗ σ(n)

− ⊗ .. ⊗ |0〉 〈0|
]

e

+ gn(t)σ(s)
− ⊗

[
|0〉 〈0| ⊗ .. ⊗ σ(n)

+ ⊗ .. ⊗ |0〉 〈0|
]

e

}
(1)

where σ(n)
+ = |0〉 〈1| , σ(n)

− = |1〉 〈0| and gn(t)’s are the coupling factors between the

system and the nth environment qubit. Note here that we have worked in the interaction

picture, and as a result, we have not considered the self-Hamiltonians of the system and

the environment. When we compare Eq. (1) with the usual Hamiltonian of a spin bath

model [3,4], given by

Hspin−bath = ~α
N∑

n=1

(
σ(s)

x σ(n)
x + σ

(s)
y σ(n)

y

)
, (2)

in the interaction picture, we find that the only difference comes from the |0〉 〈0| factors

arising in Eq. (1), which are replaced by 1 for the spin bath Hamiltonian. As a result of

this difference, the dynamics of the spin bath model is not entirely the same as our model.
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In the former, an exchange of one quanta of energy takes place between the system and

a particular environment qubit, when the rest of the environment qubits are allowed to

be in any state, whereas in the latter, the exchange will only take place when the rest of

the environment qubits are in their ground state. This difference, although significant in

general, will not play a major role when the state of the environment is close to the ground

state; or in other words, temperature of the environment is low. Thus we see for low

temperatures our model serves as a close approximation to the spin bath model. Moreover

the Hamiltonian of our model can be analytically solved for a large number of cases for

arbitrary number of environment qubits.

In our paper [2], we considered different functional forms and strengths of system-

environment coupling i e. gn(t) that gives rise to non-Markovianity in the system dynamics

of the above model. We chose the following forms of coupling: (i) time-independent and

homogeneous over environment qubits, (ii) time-independent but inhomogeneous over

environment qubits, (iii) homogeneous over the environment but is time-dependent, and

(iv) both time-dependent and inhomogeneous. Note here, in order to ascertain non-

Markovianity, we used the Rivas-Huelga-Plenio (RHP) measure of non-Markovianity,

which requires attaching an ancilla to the system and setting the initial system-ancilla state

to the maximally entangled state, as can be seen in Fig. 1. The RHP measure then detects

non-Markovianity whenever the entanglement between the system and ancilla shows a

non-monotonic decrease over time.

In cases (i) and (ii), where gn(t) = g and gn(t) = gn, we found the dynamics is always

non-Markovian. We also found the Kraus operators of the system dynamics for these cases.

In case (iii) we have gn(t) = g(t) and we found the dynamics is always non-Markovian if

the the coupling is a polynomial function of time i e, g(t) =
∑n

k=0 cktk . We also found

that if coupling is exponetial i e. g(t) = exp(−γt), then the dynamics is non-Markovian

if the real part γr of γ fails to be positive or violates the inequality α
√

N ≥ γrπ. Also for

this case we found the Kraus operators of the system dynamics.
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In case (iv), we studied the most general form of coupling in our model, which is both

time-dependent and site-dependent. We employed numerical simulations to study non-

Markovianity in this case and we also presented a step by step algorithm describing the

numerical technique. We considered the form of coupling gn(t) = e−γ1nt and found

that, for this case, there is a crossover from non-Markovianity to Markovianity as the

coupling strengths is decreased i e. γ1 is increased. We also found the extreme values

of γ1 which shows this transition. These values act as critical values for the transition

from non-Markovianity to Markovianity, and on plotting them as a function of N (no.

of environment qubits) they appeared to saturate to some fixed values. Moreover, we

analyzed another form of coupling gn(t) = t−nγ and showed that it is non-Markovian for

the parameter value γ = 0.3.

Generalized formalism for Information backflow

In this part, we considered the problem of having a number of non-equivalent definitions

of Markovianity in quantum regime. All prescriptions suggested so far can be broadly

classified into twomain categories: completely positive divisibility (CPD) and information

backflow (IB). The CPD approach comes from a mathematical point of view, where a

dynamical process is called Markovian if evolution up to a particular time t, can be

broken down into two valid quantum evolutions: one up to an intermediate time s (for any

s < t), followed by another from s to t. The IB approach, on the other hand, describes

a dynamical process to be Markovian if some quantifier, i.e., some physical property or

some quantifier of information, decreases in a monotonic fashion under the action of the

process. Examples of quantifiers include distinguishability, generalized trace-distance,

quantum mutual information, interferometric power, and local quantum uncertainty. The

IB approach can be further subdivided into two classes based on the type of quantifier used:

one which uses quantifiers based on the system only, and the other that uses an ancilla

to define the quantifier. With so many notions of Markovianity present, even within the
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IB category, one is compelled to look for inter-relations, hierarchies, or equivalence that

might be present within them.

In our paper [5], we attempted to tackle this problem by constructing a formalism that

is independent of any particular form of quantifier. We proposed a generalized form

of quantifier, called the physicality quantifier (PQ), for the whole of IB category. We

set a minimal requirement criteria for any quantity to qualify as a PQ, i.e., it should be

nonincreasing under any physical process. In doing so, we found that a large class, if not

all, of quantifiers considered so far in the literature come as special cases of our generalized

form. We also showed that our generalized formalism for IB is also equivalent to CPD

for invertible dynamical maps. Note here, by invertible dynamical map Λt , we mean Λt is

invertible for all t.

Preliminaries. If H is a Hilbert space, let L(H) be the space of all linear operators and

P+(H) the set of all density matrices on H. Let T (H,H) denote the space of all linear

maps from L(H) to L(H). Now, consider a d−dimensional system and a d−dimensional

ancilla with Hilbert spacesHS andHA, respectively. A dynamical map Λt ∈ T (HS,HS )

is a completely positive (CP) trace preserving (TP) map describing evolution up to a time t.

The full dynamics is described by a family of time-parametrized CPTP maps Λ := {Λt }t .

Definition 1. A dynamical map Λt is said to be divisible if it can be expressed as,

Λt = Vt,sΛs, (3)

for any t > s, whereVt,s ∈ T (HS,HS ). IfVt,s is (completely) positive and trace preserving

for any t > s, the dynamics is called (completely) positive divisible, and abbreviated as

(C)PD.

An ensemble of states on the system ES := {pi; ρi}
n
i=1 is defined as a finite collection of

states ρi ∈ P+(HS ) with a priori probabilities pi. Similarly, we define ESA := {pi; ξi}
n
i=1

on system-ancilla with ξi ∈ P+(HS ⊗ HA). Let F n
S :=

{
ES | ES = {pi; ρi}

n
i=1

}
and

6



F n
SA :=

{
ESA | ESA = {pi; ξi}

n
i=1

}
be the collections of all ensembles with n elements. We

define the sets of all possible ensembles of any size by,

FS :=
∞⋃

n=1
F n

S ; FSA :=
∞⋃

n=1
F n

SA. (4)

We proposed to define two types of PQ, IS : FS 7→ R and ISA : FSA 7→ R, as real bounded

functions on ensembles of quantum states, which follow the following condition. For

convenience, functions fS (ES) and fSA(ESA), are also represented by symbols fS
{
pi; ρi

}
and fSA

{
pi; ξi

}
, respectively.

Condition. Let T ∈ T (HS,HS ) be any CPTP map, acting on the system. For a given

form of IS or ISA, the following is true:

IS
{
pi; T[ρi]

}
≤ IS

{
pi; ρi

}
,

ISA
{
pi; (T ⊗ I)[ξi]

}
≤ ISA

{
pi; ξi

}
where I denotes the identity map in T (HA,HA).

For a dynamical map Λt we defined dynamic physicality quantifiers ΦIS
t and ΦISA

t based

on IS and ISA, in the following way,

Φ
IS
t

{
pi; ρi

}
:= IS

{
pi;Λt[ρi]

}
, (5)

Φ
ISA
t

{
pi; ξi

}
:= ISA

{
pi; (Λt ⊗ I)[ξi]

}
. (6)

We first defined Markovianity in terms of each valid form of PQ, and then we generalized

the notion to include subsets of PQ having fixed size or type (system or system-ancilla).

Note here that special PQ’s focused on only n element ensembles are denoted as In
S or

In
SA, and defined as In

S (ES) = 0 for ES < F n
S , and In

SA(ESA) = 0 for ESA < F n
SA.

Definition 2. A dynamical map Λt , is called IS-Markovian (ISA-Markovian) for some

form of IS (ISA), if ΦIS
t (ES)

(
Φ
ISA
t (ESA)

)
decreases monotonically with time t, for any

7



ES ∈ FS (ESA ∈ FSA).

Definition 3. A dynamical map Λt is called n-S-Markovian (n-SA-Markovian) if ΦIn
S

t (ES)(
Φ
In
SA

t (ESA)
)
decreases in a monotonic fashion with time t, for any form of In

S (In
SA) and

any choice of ensemble ES ∈ F n
S (ESA ∈ F n

SA).

Definition 4. A dynamical map Λt is called S-Markovian (SA-Markovian) if it is n-S-

Markovian (n-SA-Markovian) for any value of n.

Finally, we gave our generalized definition of Markovianity for backflow of information:

any dynamics which is both S-Markovian and SA-Markovian, is called IB-Markovian.

General properties of the formalism. We first note a hierarchy within our Markovianity

classes, which is apparent from their definition: any n-S-Markovian (n-SA-Markovian)

class is a subset of (n+1)-S-Markovian ((n+1)-SA-Markovian) class. We then presented

a result, that makes SA-Markovianity an equivalent criteria to IB-Markovianity.

Theorem 1. If any dynamical maps Λt is n-SA-Markovian, then it is n-S-Markovian.

We then showed how IB-Markovianity is related to CPD and in what way generalized

trace-distance (GTD) on extended space plays a vital role in relating these two quantities.

GTD is a quantity that gives the best possible distinguishing probability of a pair of

quantum states occurring with different probabilities p1 and p2. The corresponding PQ

IGT D
S is given by,

IGT D
S {p1, p2, ρ1, ρ2} := | |p1ρ1 − p2ρ2 | |1, (7)

where | |A| |1 = Tr
√

A†A. The definition of GTD can also be easily extended to system-

ancilla space. We call it generalized trace-distance measure extended (GTDE) and define

it in the following way,

IGT DE
SA {p1, p2, ξ1, ξ2} := | |p1ξ1 − p2ξ2 | |1, (8)

where ξi ∈ P+(HS ⊗HA).
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Definition 5. A dynamical map Λt is called GTD-Markovian or GTDE-Markovian in the

sense of definition 2, if the respective PQ are IGT D
S and IGT DE

SA .

Next we present the two main theorems of our work in this context.

Theorem 2. For an invertible dynamical map Λt , the following are equivalent: (i) Λt is

GTDE-Markovian, (ii) Λt is CPD, (iii) Λt is SA-Markovian or IB-Markovian, (iv) Λt is

2-SA-Markovian.

Theorem 3. A qubit dynamical map Λt is GTD-Markovian if and only if it is 2-S-

Markovian.

Extending the generalized formalism

In our ongoing paper [6] we extended our formalism by introducing a new system based

quantifier

IA
n

(
ES

)
=




���
���
∑n−1

i=0 Ai ⊗ ρi
���
���1 ES ∈ F n

S

0 ES < F n
S

(9)

where A = {Ai}
n−1
i=0 for Ai ∈ L(HS) and ρi ∈ P+(HS). Using this quantifier we showed

the following results.

Theorem4. S-Markovianity, SA-Markovianity andCPDare equivalent for image-nonincreasing

dynamical maps.

Here image-nonincreasing dynamical maps is a large class of dynamics called defined by

the following condition

Im(Λt ) ⊂ Im(Λs) (10)

for any s < t. Note that all invertible dynamical maps fall in this class. Moreover for qubit

dynamical maps we showed that

9



Figure 2: Hierarchy of Markovianity classes for image-nonincreasing or qubit dynamics.

Theorem 5. For any qubit dynamical map S-Markovianity, SA-Markovianity and CPD are

equivalent.

As a result of this theorem, we found a simplified hierarchical structure of Markovianity

classes as given in Fig 2. This description also provided a useful insight, that our formalism

can be used to define a degree of non-Markovianity, which would capture varied intensities

of memory effects present in image-nonincreasing or qubit dynamics. The higher the least

value of n, for which a dynamics fails to be n-S-Markovian, the weaker is the effect of

memory in the dynamics. We then tested our new quantifier on the following dynamics

known as eternal non-Markovian dynamics, given by

Λt[ρ] =
3∑

i=0
pi (t)σi ρσi, (11)

where p0(t) = 1+e−γt
2 , p1(t) = p2(t) = 1−e−γt

4 , p3(t) = 0, and σi’s are Pauli matrices with

σ0 = 1. We found a PQ of the form ΦIA
4

t is non-monotonic over time under the action of

the dynamics. Hence, we conclude the above dynamics is non-Markovian, at least with

respect to 4−S Markovianity class.

Next we considered the qubit random unitary dynamics again. In Eq. (11), we chose

pi (t) = αi[1 − p0(t)] ; i = 1, 2, 3, (12)
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where αi ≥ 1 and α1 + α2 + α3 = 1. Also note we must have p0(0) = 1. We therefore

considered two choices of dynamics with the following forms: (a) p0(t) = 1/(1 + t), (b)

p0(t) = (1 + cos t)/2. Using the PQ in Eq. (9), in both cases we found the dynamics is

non-Markovian, at least with respect to 2−S Markovianity class.
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Chapter 1

Introduction

The discovery of quantum theory, in the early twentieth century, fundamentally changed

the way Physics was perceived at that time. It brought about a change in the core

principles that formed the basis of contemporary Physics. Since then there has been

numerous occasions when quantum theory have jolted our “common sense” and startled

our understanding about the surrounding world. Perhaps, its most recent contribution is

to the area of Information Theory. Quantum Information Theory is an area, which brings

in elements of Information Theory and Quantum Theory together to provide a machinery,

that has been able to produce promising results like quantum teleportation [1], superdense

coding [2], and Shor’s algorithm [3, 4]. These developments and many more such results

have led to coinage of the term, which is also the the newest promise of quantum theory:

Quantum Technology.

1.1 The onset of Quantum Technology

In the last decade, quantum technology has emerged to be a field with not only theoretical

predictions but also real life implementations. In particular, the quantum random number

generator which derives its working principle from the Born rule of quantum mechan-
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ics [5], is already a developed and commercially available technology. Technologies are

now being developed which actually deal with quantum states and employ quantum prop-

erties like superposition and entanglement [6]. It is being expected that in the decade

to come quantum technology will make significant contribution in providing security to

communication systems [7]. There are also other areas like quantum simulation, quantum

computation and quantum metrology which are expected to develop significantly in the

coming years. These developments are being made possible due to the significant achieve-

ments made in experimental techniques, recently.

It should also be stressed that although quantum technology is very promising, it still faces

major impediments on its way to becoming a viable technological alternative. One of the

main problems in this direction is due to dissipation of useful quantum properties like

coherence and entanglement, on exposure to the environment. As a result, in recent years

the study of quantum systems interacting with environment has drawn a lot of interest.

1.2 Motivation of the thesis

Real life quantum systems are inherently interacting with the environment. This type of

systems are called open quantum systems, where, although the system and the environment

evolves jointly through a unitary process, the evolution on the system side is not necessarily

unitary. To understand this type of evolutions, more general rules for quantum evolution

beyond the standard unitary evolution via Schrödinger dynamics have been considered.

Interaction of the systemwith its environment gives rise to complex patterns of information

flow between them and often this results in scenarios where the system evolution retains

memory of earlier times. This distinct property has been used to classify open quan-

tum evolution into two broad categories: Markovian or memoryless and non-Markovian.

Although the classical analog of this classification is well defined [8], the definition of
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Markovianity in a quantum regime is debated. There are numerous prescriptions which

capture different aspects of this complex behavior, but a single unified description is yet

to be found. Therefore, a deeper understanding of Markovianity is required to develop a

consistent theory in the quantum regime. The motivation of the thesis is to understand

quantum Markovianity from a phenomenological as well as a foundational perspective.

On the phenomenological side, we choose a model mimicking a real physical scenario

and study aspects of Markovianity on it, by using the understanding about Markovianity

that is currently prevalent. On the foundational side, we look for more general definitions

of Markovianity, which will help proceed towards a consistent and complete theory of

Markovianity in the quantum regime.

1.3 Outline of the thesis

In chapter 2, we discuss the basics of open quantum system and some standard techniques

used in this area of research.

In chapter 3, we introduce the concept of Markovianity in quantum regime and discuss

different approaches, proposed so far, to describe quantum Markovianity.

In chapter 4, we discuss the contents of the first paper1, on which the thesis is based. We

deal with a phenomenological open quantum system, where a qubit system is interacting

with an environment consisting of finite number of qubits. The interaction is chosen in

such a way that for low temperatures, it is expected to produce similar results as that of

the spin bath model. The spin bath model is a commonly used model in several physical

scenarios like quantum theory of magnetism [9], quantum spin glasses [10] and theory of

conductors and superconductors [11]. In our model, we choose different forms of coupling

between the system and individual environment qubits and study aspects of Markovianity

1“Non-Markovianity of qubit evolution under the action of spin environment", Sagnik Chakraborty,
Arindam Mallick, Dipanjan Mandal, Sandeep K. Goyal, Sibasish Ghosh, Scientific Reports 9 (1), 2987
(2019).
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of it. We show that, for a number of forms of coupling, the model could be analytically

solved for arbitrary number of environment qubits. Moreover, a transition from non-

Markovian to Markovian regime can be witnessed for certain forms of coupling. In those

cases, we find the critical values of parameters which show the transition and study their

dependence on number of environment qubits and initial environment temperature.

In chapter 5, we discuss the contents of the second paper2, on which the thesis is based.

We propose a general framework for quantum Markovianity which takes into account a

large number, if not all, of the prescriptions for Markovianity proposed earlier in litera-

ture. Following a common approach of Markovianity, where monotonic decay of some

physical property or some information quantifier is seen as the definition of Markovianity,

we propose in our framework a general description of what should be called a proper

“physicality quantifier” to define Markovianity. We show for invertible evolutions our

prescription provides a unified understanding of Markovianity. We also show that our

framework allows for a hierarchy of Markovianity classes arranged in order of strength

of Markovianity. In particular, for qubit evolutions we find the necessary and sufficient

condition for any dynamical map to belong to a particular class.

In chapter 6, we discuss the contents of the third paper3, on which the thesis is based.

We introduce a new quantifier for defining Markovianity and extend our formalism to

non-invertible evolutions. We show that monotonicity over time of only system based

quantifiers are sufficient to establish Markovianity for qubit dynamical maps and so called

image non-increasing dynamical maps of higher dimension. Moreover, we demonstrate

that, there is a simple hierarchical structure of Markovianity classes for any qubit or

image non-increasing dynamical map of dimension d, which provides a degree of non-

Markovianity to the dynamics with d2−1 (d = 2 for qubits) being the most non-Markovian

and zero being Markovian. We also used our results to estimate the degree of non-

2“Generalized formalism for information backflow in assessing Markovianity and its equivalence to
divisibility”, Sagnik Chakraborty, Phys. Rev. A 97 032130 (2018).

3“Degree of non-Markovianity and equivalence between Information Backflow and Divisibility for Non-
invertible Dynamical maps”, Sagnik Chakraborty and Dariusz Chruscinski, (manuscript in preparation).
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Markovianity of a number of dynamical maps.

Finally, in chapter 7, we summarize the results obtained in the thesis and discuss plausible

future directions to the works discussed in the thesis.
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Chapter 2

Open Quantum Evolutions

In this chapter, we present the basic understanding of open quantum systems, that will be

used in the thesis. Moreover, we present short discussions on some standard techniques

used in this field.

2.1 Preliminaries

IfH is a Hilbert space, let L(H) be the space of all linear operators and P+(H) the set of

all density matrices on H. Let T (H,H) denote the space of all linear maps from L(H)

to L(H). Note that, elements of T (H,H) are also called super-operators or maps. We

now introduce the operator-vector correspondence, which is a one-to-one correspondence

between the operator space L(H) and the state spaceH ⊗H.

The vector correspondence of an operator A ∈ L(H), given by A =
∑

i, j ai j |i〉 〈 j |, is

defined as vec(A) =
∑

i, j ai j |i〉 | j〉, where
{
|i〉

}
forms an orthonormal basis in H. Note

that vec(A) ∈ H ⊗H.
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2.2 The most general quantum evolution

Although, there is a lot of debate [12] about what should be the most general description

of quantum evolution, we present here our perception on the matter, and the definition we

use in the thesis.

Let us first discuss trace preserving (TP) and completely positive (CP) maps. Consider a

system S having a d−dimensional Hilbert space Hd = C
d . A linear map Λ ∈ T (Hd,Hd)

is called TP if

Tr (Λ[ρ]) = Tr (ρ), (2.1)

for any ρ ∈ P+(Hd). This condition is equivalent to preserving normalization condition

of probability distributions before and after the action of the map. The TP property is

recognized as a fundamental rule that the most general quantum evolution must obey.

Next we present another major criteria, which is often regarded as another basic require-

ment for the most general quantum evolution. The map Λ is called CP if

(Λ ⊗ 1n)[ξ] ≥ 0 ; n ∈ {1, 2, . . . }, (2.2)

where ξ ∈ P+(Hd ⊗ Hn) is any joint state of the system S and an n−dimensional ancilla

with Hilbert space Hn. Eq. (2.2) reflects that if S is actually a sub-system of larger

composite consisting of S and the ancilla, the action of Λ on S does not map a physical

state (density matrix) of the system-ancilla to an unphysical state (non-positive operator).

The CP and the TP conditions are often recognized as the defining conditions for the most

general quantum evolution.

There is also an alternate view that the most general quantum evolution should include

scenarios where the input system S is not able to share arbitrary entanglement with an

arbitrary ancilla (which is the basic presumption behind the CP condition). This type of

scenarios occur in practice. For example, if the initial joint state of S and the environment
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E is chosen to be a maximally entangled state, there can be no entanglement between S

and any ancilla system. This fact is guaranteed by the monogamy of entanglement [13].

In this scenario, if the composite S + E is evolves through a joint unitary evolution,

the evolution on the system side will not necessarily be CP. In order to deal this type

of scenarios, there are prescriptions which further generalize the notion of most general

quantum evolution [12, 14, 15].

Although, this view is of significant importance, for the purpose of the thesis we will stick

to situations where the input system is able to share arbitrary entanglement with arbitrary

ancillae. As a result the system evolution must be a CPTP map.

2.3 Choi-Jamiolkowski representation and theKraus rep-

resentation

The Choi-Jamiolkowski representation or the CJ matrix J (Λ) is a representation of a map

Λ ∈ T (Hd,Hd) in form of a d2 × d2 matrix, as given below

J (Λ) =
d∑

i, j=1
Λ

[
|i〉 〈 j |

]
⊗ |i〉 〈 j | , (2.3)

where
{
|i〉

}d
i=1 forms an orthonormal basis inHd .

The Kraus representation of Λ is given by

Λ[ρ] =
n∑

i=1
Ai ρB†i , (2.4)

where Ai, Bi ∈ L(Hd) and n is some positive integer [16]. As Λ is linear, we can always

find a set {Ai, Bi} which obey Eq. (2.4). It can be also be seen that the CJ matrix and the
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Kraus representation are related through a simple identity [16] :

J (Λ) =
n∑

i=1
vec(Ai) vec(Bi)† (2.5)

This identity leads to the remarkable result that it is sufficient to consider only n = d in

Eq. (2.2) for checking the CP condition. We do not present the complete proof here, as

it can be found in [16]. Nevertheless, note that Λ is CP if and only if J (Λ) is a positive

operator i e. J (Λ) ≥ 0 or Λ has a Kraus representation of the following form

Λ[ρ] =
n∑

i=1
Ai ρA†i . (2.6)

Moreover, if Λ is TP the following condition should hold:

n∑
i=1

A†i Ai = 1d (2.7)

2.4 Description of open quantum systems

Consider a system S with a finite dimensional Hilbert space HS, interacting with an

environment E with a finite dimensional Hilbert space HE . Let S and E evolve jointly

through a global unitary operator USE (t, 0), where t represents time. We consider the

initial state of the system-environment ρSE ∈ P+(HS ⊗HE ) to be

ρSE = ρ ⊗ ρE, (2.8)

where ρ ∈ P+(HS) and ρE ∈ P+(HE ). The time evolved state of the system is then given

by

ρ(t) = TrE
(
USE (t, 0) ρSE USE (t, 0)†

)
. (2.9)

The time evolution mapΛt ∈ T (HS,HS), defined asΛt[ρ] = ρ(t), is called the dynamical
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map representing the evolution of the open quantum system S. Note that, our consideration

of choosing ρSE to be in a product form in Eq. (2.8) ensures the CP property of the

dynamical map [8]. This is the basic model of open quantum system that we will be using

in the thesis.

Although this description of dynamical maps is easy to understand, but often it becomes

very difficult to know the full evolution operator USE or the initial environment state ρE .

This is due to the fact that the environment is not always in control of the experimenter. In

those situations it becomes more convenient to have a definition of dynamical maps which

is solely defined on the system Hilbert space. As a result, we often define a dynamical

map to be just a time-parametrized family of CPTP map {Λt }t , where each Λt represents

evolution up to time t.

2.5 Master Equations

In this section, we present a description of the open quantum evolution in terms of a

differential equation. As the von-Neumann equation governs the evolution of isolated

systems, for open quantum systems there is master equation. Master equations often

providemore physical insight about the dynamics than the dynamicalmap. As for example,

the Gorini-Kossakowski-Lindblad-Sudarshan (GKLS) form ofmaster equations, whichwe

will discuss in the next chapter, not only describes dynamical maps obeying the semigroup

property but also provides insight about the self-Hamiltonian of the system and the factors

governing the dissipation in the dynamics.

A typical time local master equation has the following form

dρ
dt
= Lt[ρ] (2.10)

where Lt ∈ T (HS,HS) is called the time local generator of the dynamical map Λt . The
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time local generator is related to the dynamical map in the following way [17],

Λt = T exp
( ∫ t

0
Ludu

)
, (2.11)

where T denotes time-ordering [5]. There is also another equivalent approach to deal

with dynamical maps called the Nakajima–Zwanzig projection operator technique [18,19],

which shows under sufficiently general conditions, themaster equation of an open quantum

system has the following form

dρ
dt
=

∫ t

0
Kt−τ ρτdτ, (2.12)

where the function Kt is called the memory kernel.

2.6 Chapter summary

In this chapter, we have presented a short discussion on the most general form of quantum

evolution. We explored the two main schools of thought about the basic requirements of

such evolutions. We also discussed completely positive trace preserving maps and their

representation as Choi-Jamiolkowski matrix and Kraus representation. We then provided

a description of open quantum system which we will be using in the thesis, and finally we

introduced master equations. The idea of master equations will be used in the next chapter

to discuss ideas of Markovianity.
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Chapter 3

Markovianity in open quantum systems

In this chapter we introduce the idea of Markovian or memoryless dynamics in open

quantum systems. Markovianity is already a well defined concept in classical probability

theory [8, 20, 21]. If X denotes a discrete set of events and the probability of occurrence

of xn ∈ X at time tn is given by P{xn; tn}, the stochastic (probabilistic) process is called

Markovian if

P(x3; t3 |x2, t2; x2, t1) = P(x3; t3 |x2, t2) (3.1)

for any t3 > t2 > t1. The idea behind Markovian processes is that it does not retain

memory of earlier times.

In open quantum systems, information exchange between system and environment is an

essential feature. Information that has been previously transferred to the environment

may come back and affect the system, and this may appear as a memory-effect on the

system. When this information backflow from the environment is negligible we have a

situation analogous to the classical Markovian process and the system dynamics is called

memory-less or Markovian. On the other hand, when this information backflow affects the

system significantly i.e. when some long past history of the system influences its present

state, the system dynamics becomes retentive, and is called non-Markovian.
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3.1 Dynamical semigroup

The semigroup property of dynamical maps was initially recognized as the defining prop-

erty for Markovianity in quantum regime. A dynamical map Λt is called a semigroup

if

Λt+s = ΛtΛs, (3.2)

for all t, s ≥ 0 [8]. In the pioneering works by Gorini-Kossakowski-Sudarshan (GKS) [22]

and Lindblad [23], the master equation governing semi-group dynamical maps on a

d−dimensional systems was found to be1

dρ
dt
= −i[H, ρ] +

1
2

d2−1∑
k,l=1

ckl
(
[Fk, ρF†l ] + [Fk ρ, F

†

l ]
)
, (3.3)

where H† = H, Tr (H) = 0,Tr (Fk ) = 0, Tr[F†k Fl] = 0 for k, l = 1, 2, . . . , d2 − 1, and [ckl]

is a positive matrix. This form was actually obtained by GKS [22, 24]. Around the same

time Lindblad [23, 24] came up with an equivalent form valid for both finite and infinite

dimensional systems:

dρ
dt
= −i[H, ρ] +

1
2

∑
j

(
[Vj, ρV †j ] + [Vj ρ,V

†

j ]
)

(3.4)

Eqs. (3.3) or (3.4) is often called the GKLS form of master equation.

The GKLS form can also be represented as

dρ
dt
= −i[H, ρ] + Φ[ρ] −

1
2
{
Φ
∗[1], ρ

}
, (3.5)

where Φ is a CP map given by Φ[ρ] =
∑

j Vj ρV †j , while the conjugate map Φ∗ is given by

Φ∗[ρ] =
∑

j V †j ρVj . A brief history of the events that led to the GKLS form can found in

a recent article [24].

1taking ~ = 1
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3.2 Completely positive divisibility

A generalization of the idea of semigroup to define Markovianity was proposed by Rivas

Huelga and Plenio (RHP) in [25]. They proposed the idea of completely positive divisibility

or CP-divisibility, which is a generalization of divisible processes in classical probability

theory.

A dynamical map Λt is called divisible if it can be expressed as,

Λt = Vt,s Λs, (3.6)

for any t > s, whereVt,s ∈ T (HS,HS ). IfVt,s is (completely) positive and trace preserving

for any t > s, the dynamics is called (completely) positive divisible, and abbreviated as

(C)PD. Vt,s can be seen as the intermediate evolution from s to t, and it is uniquely defined

only when Λt is invertible i e. Vt,s = ΛtΛ
−1
s .

Recently, Chruscinski et. al. [26] showed that the necessary and sufficient condition for

divisibility is

Ker (Λs) ⊆ Ker (Λt ), (3.7)

for any t > s, where Ker (Λ) represents kernel or null space ofΛ. It can also be shown that

the master equation for a CPD dynamical map is of the GKLS form with time dependent

coefficients i e. H and Φ in Eq. (3.5) are time dependent [17, 27]. For a detailed

mathematical characterization of divisibility and (C)PD, refer to [26].

Consider the following dynamical map

Λt[ρ] = (1 − p(t))ρ +
p(t)

2
(ρ + σ3ρσ3) (3.8)

where σ3 is the Pauli z-matrix and p(t) is a time-dependent probability with p(0) = 0.

For retaining invertibility of Λt we choose p(t) < 1 for all finite t. Now from Eq. (2.10)
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we know Lt = Λ̇tΛ
−1
t where

Λ̇t[ρ] = −
ṗ(t)

2
(ρ − σ3ρσ3),

and

Λ
−1
t [ρ] =

1
2 − 2p(t)

[
2ρ − p(t)

(
ρ + σ3ρσ3

)]

Hence,

Lt[ρ] =
ṗ(t)

2 − 2p(t)
(σ3ρσ3 − ρ) (3.9)

Therefore, comparing with Eq. (3.5) we get H = 0 and Φ[ρ] = ṗ(t)
2−2p(t)σ3ρσ3. Hence, Λt

is CPD if and only if ṗ(t) ≥ 0 for all t.

Interestingly, for a master equation of the form Eq. (2.10), a criteria for checking if it is in

GKLS form, is given by [27]

(a) L[X†] = L[X]

(b) Tr (L[X]) = Tr (X )

(c) ω⊥J (L)ω⊥ ≥ 0, where J (L) is theCJmatrix ofL,ω⊥ = 1−ω andω = 1√
d

∑d
i=1 |i i〉.

3.3 Information Backflow

The information backflow approach is inspired from the fact that a Markovian dynamics

is characterized by unidirectional flow of information from the system to the environment.

As for example, in the Lindblad master equation [8] the non-negativity of the entropy

production rate signifies unidirectional information flow from the system to the environ-

ment, and thereby is a signature of Markovianity. A dynamics is called Markovian from

the information backflow approach, if some information quantifier decays over time in a
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monotonic way. Any departure from monotonicity of such quantifier is seen as a backflow

of information from the environment back to the system. As for example, Breuer, Laine

and Piilo (BLP) [28] used distinguishability of (any) two time evolved states [28],

I (Λt, ρ1, ρ2) := | |Λt[ρ1] − Λt[ρ2]| |1, (3.10)

where | |A| |1 = Tr
√

A†A, as the quantifier of information, and therefore any departure

from monotonicity of I (Λt, ρ1, ρ2) is a signature of non-Markovianity.

Consider the following example [29]

dρ
dt
=

3∑
i=1

γi (t)(σi ρσi − ρ), (3.11)

with γi (t) are real functions of time, and {σi} are the Pauli matrices. The corresponding

dynamical map has the form

Λt[ρ] =
3∑

i=0
pi (t)σi ρσi, (3.12)

where σ0 = 1, and pi (t)’s are probabilities with p0(0) = 1.

We can find,

p0(t) =
1
4

[1 + λ1(t) + λ2(t) + λ3(t)]

p1(t) =
1
4

[1 + λ1(t) − λ2(t) − λ3(t)]

p2(t) =
1
4

[1 − λ1(t) + λ2(t) − λ3(t)]

p3(t) =
1
4

[1 − λ1(t) − λ2(t) + λ3(t)]

where λα (t)’s are the eigenvalues for eigenvector σα i e. Λt[σα] = λα (t)σα for α =

0, 1, 2, 3 and

λi (t) = exp(−2Γj (t) − 2Γk (t)),
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where {i, j, k} is a permutation of {1, 2, 3} and Γk (t) =
∫ t

0 γk (τ)dτ.

Any traceless hermitian operator ∆ =
∑3

k=1 xkσk can be written as ∆ = α(ρ1− ρ2), where

α > 0. Hence ∆t = Λt[∆] =
∑3

k=1 xkλk (t)σk is also traceless and hermitian. Therefore,

| |∆t | |1 = Tr
√
∆2

t = 2ξ (t),

where ξ (t) =
√∑3

k=1 x2
kλk (t)2. As a result

d
dt
| |∆t | |1 =

1
ξ (t)

∑
k

x2
k

d
dt
λk (t)2

Hence d
dt | |∆t | |1 ≤ 0 for all possible xk only when d

dt λk (t)2 ≤ 0, which is equivalent to

γi (t) + γ j (t) ≥ 0 ; i, j = 1, 2, 3 (3.13)

Hence the dynamical map Λt is BLP-Markovian if the above condition is satisfied.

Different other quantifiers for measuring non-Markovianity were also suggested, like

measure of entanglement [25], quantum mutual information [30], etc. These quantifiers

describe different non-equivalent aspects of Markovianity. Only recently, there has been

attempts to unify all these different definitions [26, 31, 32] to provide a unified approach

to information backflow.

3.4 Chapter summary

In this chapter, we gave a brief motivation to quantumMarkovianity starting from classical

Markovian processes to quantum semi-group. We then discussed two major prescriptions

to quantum Markovianity: CP-divisibility and Information backflow. These prescriptions

have been extensively used in recent years to describe Markovianity. We also presented

examples to discusses these two concepts. In the next chapter, we will use these concepts
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to discuss Markovianity in a phenomenological model of spin systems.
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Chapter 4

Non-Markovianity in a spin bath

In recent years, non-Markovianity has been used as a resource in a number of infor-

mation theoretic protocols, namely, channel discrimination [33], preserving coherence

and correlation [34–51] and retrieving quantum correlations in both quantum and clas-

sical environments [52–56]. Non-Markovian effects also play important roles in areas

ranging from fundamental physics of strong fields [57, 58] to energy transfer process of

photosynthetic complexes [59].

Owing to its diverse applications, various aspects of non-Markovianity are now being

studied. Lately, researchers have been focusing on transition from non-Markovian to

Markovian dynamics [60–65]. Some of them have dealt with bosonic baths of finite and

infinite degrees of freedom, while some have considered a qudit system as the environment.

But in all of these studies, system-environment interaction has been considered to be

homogeneous in space, and the issue of non-Markovian toMarkovian transition in terms of

system-environment coupling strength has not been addressed. Note that, non-Markovian

toMarkovian transition is, in general, not a trivial issue, as in most cases finite dimensional

environments give rise to non-Markovianity.

In our study, we attempt to analyze the problem of whether the transition can be engineered

for the spin bath model [66]. We particularly choose the spin bath model since it has wide
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ranging applications in simulating real physical scenarios [66–68]. In our attempt, we

face a serious difficulty in diagonalizing the spin bath Hamiltonian, either analytically or

numerically, for larger number of spins in the environment. Although, analytic solutions do

exist for constant coupling [69] and some special forms of time dependent coupling [70],

general solution for arbitrary forms of system-environment coupling of the spin bath

Hamiltonian are hard to find. We therefore, try to circumvent the problem by choosing

a simple model, which we argue, is a close approximation to the spin bath model for

low temperatures. We choose an exchange type of interaction between a system qubit

and individual environment qubits, where for each environment qubit the coupling can

be chosen to be of different time dependent forms. But unlike the spin bath case, in our

model, when the exchange interaction takes place between the system and a particular

environment qubit, the rest of the environment qubits remain in a ground state; which

also closely resembles the state of environment for low temperatures. As we will see

in the following, this approximation helps us to calculate and analyze non-Markovian to

Markovian transition for different types of system-environment coupling.

We present four scenarios here, for different forms of system-environment coupling: (i) the

coupling is time-independent and homogeneous over environment qubits, (ii) the coupling

is time-independent but inhomogeneous over environment qubits, (iii) the coupling is

homogeneous over the environment but is time-dependent, and (iv) the coupling is both

time-dependent and inhomogeneous. We find that cases (i) and (ii) always give rise to

non-Markovian system dynamics. For cases (iii) and (iv), we find that some functional

forms of coupling for certain ranges of coupling strengths gives rise to non-Markovianity.

For example in case (iii), polynomial forms of coupling always give rise to non-Markovian

system dynamics, while exponential coupling give rise to non-Markovian system dynamics

only for certain ranges of parameter values. In case (iv) we find that a cross-over from non-

Markovianity to Markovianity can be achieved by varying the strength of coupling. We

also calculate, the extremal values of coupling parameter beyond which non-Markovianity

can no longer be detected. Thus we see, these extremal values act as critical values for
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transition from non-Markovian to Markovian regime. It is worth mentioning here that, for

the purpose of detecting non-Markovianity we use Rivas-Huelga-Plenio (RHP) measure

of non-Markovianity as proposed in [25]. Although there are different approaches of

defining Markovianity and each approach represent different aspects of Markovianity, for

the purpose of the present problem we choose, detection by the RHP measure as the

definition of Markovianity.

Similar works on this line were done in [71–73]. But in the first approach [71], the system

qubit directly interacts with a single environment qubit and the rest of the environment

qubits, only have an indirect effect on the system via the environment qubit directly

attached. Also, the coupling parameters involved do not have any time dependence. In the

second approach [72], the transition from Markovianity to non-Markovianity was shown

with a two tier environment; the first one being a multiple-spin system, while the second

one was a bosonic bath. Also in [73], the coupling between the system and individual

environment qubits were constant in space and time. We take into account all these factors

and present a detailed study of a spin environment and cover all the relevant cases.

4.1 Detecting non-Markovianity through Entanglement

As mentioned in the previous chapter, there are a number of non-equivalent definitions of

Markovianity, each representing different aspects of this property, for our purpose here we

consider information backflow, in terms of measure of entanglement i e. the RHPmeasure

as the description of Markovianity.

Let us first discuss entanglement measure of two-qubit states. The entanglement between

two two-level systems (two qubits) can be characterized by the Peres-Horodecki crite-

rion [74, 75] which states that a two-qubit state ρas, shared between a system qubit s and

an ancilla qubit a, is entangled if and only if the partial transpose of this state, i.e. (ρas)Ts ,

is not a positive-semidefinite operator i.e. (ρas)Ts � 0.
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Notably, for a two-qubit entangled state, the operator (ρas)Ts has exactly one negative

eigenvalue λ [76, 77]. Thus |λ | may be used as a measure of entanglement for the state

ρas. Formally, the entanglement measure can be defined as follows

E(ρas) = |λ | =
| |(ρas)Ts | |1 − 1

2
(4.1)

where, | |A| |1 = Tr
√

A†A is the trace norm of a matrix A. Note that, E(ρas) is nothing but

the negativity of the bipartite state ρas [78].

We will use this measure of entanglement as the quantifier for ascertaining Markovianity

of the dynamics from the information backflow approach. Using entanglement to detect

non-Markovianity was first done by Rivas, Huelga and Plenio in [25], and this measure has

been so called the RHPmeasure of non-Markovianity. Following their technique we attach

an ancilla to the system, onwhich a dynamical mapΛt is acting. Following the information

backflow approach, the dynamical mapΛt is calledMarkovian if E
(
(1⊗Λt )

[
|Φ+〉 〈Φ+ |

] )
is a monotonically decreasing function of time t, where |Φ+〉 〈Φ+ | is the maximally

entangled state, given by

|Φ+〉 =
1
√

2
(
|00〉 + |11〉

)
. (4.2)

4.2 The model

In this section, we present our model and discuss the motivation behind choosing it. We

also describe the technique in detail, by which non-Markovianity is detected in the system

dynamics .

We consider two qubits, one of which is called the system (s) and the other, the ancilla

(a). The system qubit is placed in an environment consisting of N non-interacting qubits

(see Fig. 4.1). We take the interaction between the system qubit and the environment in
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Figure 4.1: Schematic diagram of system qubit and ancilla qubit sharing a maximally
entangled state |Φ〉 = 1√

2
( |11〉 + |00〉). The system is interacting with an environment

consisting of finite number of non-interacting qubits.

the following form,

H̃se(t) = ~α
[
|1〉s 〈0| ⊗

N∑
n=1

g̃∗n(t) |0..0n..0〉e 〈0..1n..0|

+ |0〉s 〈1| ⊗
N∑

n=1
g̃n(t) |0..1n..0〉e 〈0..0n..0|

]
, (4.3)

where |0〉 and |1〉, respectively represent the ground and excited state of each qubit.

The coupling strength g̃n(t) is in general, a complex number and can also be time-dependent

as well as site-dependent, and α is a real parameter with the dimension of frequency. The

extra factor α is introduced to make the coupling strengths g̃n(t) dimensionless. For all

practical purposes α can be assumed to be 1.

The free Hamiltonians of the system and the environment are respectively given by,

Hs =
~ωs

2
σz, (4.4)

He =
∑

n

~ωn

2
σ(n)

z . (4.5)

It is convenient to work in the interaction picture where we replace the total Hamilto-

nian H = Hs + He + H̃se ≡ H0 + H̃se by the interaction picture Hamiltonian Hse(t) =
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exp(iH0t/~)H̃se exp(−iH0t/~) which reads,

Hse(t) = ~α
[
|1〉s 〈0| ⊗

N∑
n=1

g̃∗n(t)eiδωn t |0..0n..0〉e 〈0..1n..0|

+ |0〉s 〈1| ⊗
N∑

n=1
g̃n(t)e−iδωn t |0..1n..0〉e 〈0..0n..0|

]

= ~α
[
|1〉s 〈0| ⊗

N∑
n=1

g∗n(t) |0..0n..0〉e 〈0..1n..0|

+ |0〉s 〈1| ⊗
N∑

n=1
gn(t) |0..1n..0〉e 〈0..0n..0|

]
(4.6)

where δωn = ωs − ωn and gn(t) = g̃n(t)e−iδωn . Henceforth, our discussion will be based

on the Hamiltonian Hse(t).

We also consider the initial state of the environment to be in the thermal state,

ρe(0) =
[
p |0〉 〈0| + (1 − p) |1〉 〈1|

]⊗N
, (4.7)

where p =
(
1 + e−β

)−1 and β is a positive real parameter which can be identified as the

inverse of the temperature T of the environment.

4.2.1 Motivation behind the model

Here we argue that, our model is a close approximation to the ‘spin bath’ model [67, 68]

for low temperatures. Note that the Hamiltonian in Eq. (4.6) can also be written as,

Hse(t) = ~α
N∑

n=1

{
g∗n(t)σ(s)

+ ⊗
[
|0〉 〈0| ⊗ ..σ(n)

− .. ⊗ |0〉 〈0|
]

e

+ gn(t)σ(s)
− ⊗

[
|0〉 〈0| ⊗ ..σ(n)

+ .. ⊗ |0〉 〈0|
]

e

}
(4.8)

where σ+ = |0〉 〈1| and σ− = |1〉 〈0|.

When we compare Eq. (4.8) with the usual Hamiltonian of a spin bath model [67, 68] in
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the interaction picture :

Hspin−bath = ~α
N∑

n=1

(
σ(s)

x σ(n)
x + σ

(s)
y σ(n)

y

)
, (4.9)

we find that the only difference comes from the |0〉 〈0| factors arising in Eq. (4.8), which are

replaced by 1 for the spin bath Hamiltonian. As a result of this difference, the dynamics of

the spin bathmodel is not entirely the same as our model. In the former, an exchange of one

quanta of energy takes place between the system and individual environment qubit, when

the rest of the environment qubits are allowed to be in any state, whereas in the latter, the

exchange will only take place when the rest of the environment qubits are in their ground

state. This difference, although significant in general, will not play a major role when the

state of the environment is close to the ground states, or in other words, temperature of

the environment is low. Note that low temperature of environment correspond to values

of p in Eq. (4.7), which are very close to 1, and this also confirms the fact that for low

temperatures ρe is close to the ground state.

Thus we see for low temperatures our model serves as a close approximation to the spin

bath model. The main advantage of our model is the fact that our Hamiltonian is easily

diagonalizable, and for certain types of couplings, as we discuss latter in detail, allows for

exact determination of the system dynamics in terms of Kraus operators, for any number

of environment qubits.

We also stress that, although our model shows similarity to the spin bath model for low

temperatures, we find solutions and analyze the dynamics of our model for any temperature

whatsoever. The reason behind this is that our model being analytically solvable for certain

types of couplings, allows for an opportunity to exactly solve the dynamics for any number

of environment qubits, which is not often the case for systems with large number of spins.

Note that, even for the spin-bath Hamiltonian, it is not easy to find the exact solutions for

non-zero temperature.
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4.2.2 Diagonalizing the Hamiltonian of our model

There are only two non-zero eigenvalues of the Hamiltonian Hse(t) and they are,

E±(t) = ±~α

√√√ N∑
n=1
|gn(t) |2 = ±E (t), (4.10)

corresponding to the eigenvectors,

| χ±(t)〉se =
1
√

2
[
|1〉s ⊗ |0〉⊗N

e ± |ξ (t)〉se
]
, (4.11)

where |ξ (t)〉se = |0〉s ⊗ | β0〉e and,

| β0〉e =
~α

E (t)

N∑
n=1

gn(t) |0..1n..0〉e . (4.12)

Thus, the time evolution operator U (t, 0) corresponding to the Hamiltonian Hse is,

U (t, 0) = T exp
[
−

i
~

∫ t

0
Hse(τ′) dτ′

]
, (4.13)

where T represents time ordering.

We prepare the system and ancilla qubits in a maximally entangled state ��Φ+
〉
, as given

in Eq. (4.2). Due to the interaction of the system qubit with the environment, the

entanglement between the system and the ancilla qubit will evolvewith time. The deviation

of this time evolution of the entanglement, from monotonic decay is used to establish

the non-Markovian character of the dynamics. Note here, that this idea was used by

Rivas et al [25] to devise a measure of non-Markovianity. In the present case, we

follow this technique to consider the system dynamics to be non-Markovian whenever

the entanglement between system and ancilla, as described above, shows non-monotonic

behaviour, otherwise we consider the dynamics to be Markovian.
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The joint initial state of the system, ancilla and the environment is of the form,

ρase(0) = ��Φ+
〉 〈
Φ
+�� ⊗ ρe(0), (4.14)

which evolves to,

ρase(t) =
[
1a ⊗ U (t, 0)

]
ρase(0)

[
1a ⊗ U†(t, 0)

]
. (4.15)

Therefore, reduced time-evolved system-ancilla state can be calculated by tracing out the

environment part,

ρas (t) = Tre ρase(t). (4.16)

4.3 System - Environment couplings

In this section, we introduce various classes of system-environment coupling, and in

each case, we study their effect on the evolution of the system-ancilla joint state. We

classify all the couplings into four major classes : (A) when the coupling parameter

gn(t) is independent of the site index n (homogeneous) and time-independent; (B) when

gn(t) is inhomogeneous but time-independent; (C) when gn(t) is homogeneous but time-

dependent, and (D) when gn(t) is inhomogeneous and time-dependent. For each class,

we calculate the entanglement of the time evolved state of system-ancilla, and thereby try

to characterize the non-Markovian behaviour of the system dynamics. Henceforth, we

assume α to be 1.

4.3.1 Case A : Homogeneous and time-independent coupling

We have here the simplest situation, where the coupling of the system with all the en-

vironment qubits are uniform and time-independent i.e. gn(t) = g, a constant. As a
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result, the non-zero eigenvalues of the Hamiltonian, as given in Eq. (4.10), takes the form

E±(t) = ±E = ±~
√

N |g | ≡ ±~ω0, where ω0 =
√

N |g | is a constant with the dimension

of frequency. The time-evolution operator U (t, 0) is of the form,

U (t, 0) =
(
e−iω0t − 1

)
| χ+〉 〈χ+ | +

(
eiω0t − 1

)
| χ−〉 〈χ− | + 1. (4.17)

Using the above form and the form of ρe given in Eq. (4.7), we find the Kraus operators

Kmn(t) of system dynamics, which are defined in the following way,

ρs (0) → ρs (t) =
N∑

m,n=1
Kmn(t) ρs (0) K†mn(t), (4.18)

where the N2 Kraus operators are given by,

Kmn(t) =
√

pN−sn (1 − p)sn



cosω0t−1
ω2

0
gN−log m(t) g∗N−log n(t) + δmn − i

ω0
sinω0t gN−log m(t) δ0n

− i
ω0

sinω0t g∗N−log n(t) δ0m (cosω0t − 1) δ0mδ0n + δmn



(4.19)

where m, n = 1, . . . , N , log x refers to log2 x, and sn is the number of 1’s in the binary

equivalent of n. For example, if n = 6, then the binary equivalent of n is 110. Therefore

sn = 2. Moreover, gN−log n(t) is to be interpreted as a function gx (t) defined in the

following way :

gx (t) =




gx (t) x ∈ {0, .., N − 1}

0 x < {0, .., N − 1}
(4.20)

A detailed calculation is given in Appendix A.
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We then find time evolved state of the system-ancilla, using Eqs. (4.14), (4.15) and (4.16),

ρas(t) = ��Φ+
〉 〈
Φ
+�� −

1
2

[
pκ0

(
|11〉 〈11| − |10〉 〈10|

)
+ (1 − p)κ0

(
|00〉 〈00| − |01〉 〈01|

)
+ δ0(|00〉 〈11| + |11〉 〈00|)

]
, (4.21)

where κ0 = pN−1 sin2(ω0t) and δ0 = 2pN−1 sin2
(
ω0t
2

)
. The only possible negative

eigenvalue of [ρas(t)]Ts , if any, is of the form,

λ(t) =
1
4

[
κ0 −

√(
1 − 2p)2κ2

0 + 4(1 − δ0)2
]
. (4.22)

We present the plot of E(ρas (t)) = λ(t) versus time, latter in the Result section.

4.3.2 Case B : Inhomogeneous and time-independent coupling

Consider a system, where a single two-level system (perhaps an ion as an impurity) is

placed in a spin lattice. The lattice sites, closest to the impurity interacts very strongly

with the system, while, as we go away from the impurity site, the strength of interaction

becomes weaker and weaker. In such cases the interaction parameter gn(t) is in general

inhomogeneous, but there is no explicit time dependence. To mimic this situation let

us consider gn(t) = gn in our model. Hence, E±(t) = ±E = ~ω in Eq. (4.10) are also

time-independent. Note, in this case also ω =
√∑N

n=1 |gn |
2 is a constant with dimensions

of frequency. Following this, the analysis is same as in the last subsection. As a result,

the evolution operator U (t, 0), the Kraus operators Kmn(t), the time evolved state ρas(t)

and the only possible negative eigenvalue, if any, of [ρas(t)]Ts for this case are of the same

forms as in Eqs (4.17), (4.19), (4.21) and (4.22) respectively, except for ω0, in appropriate

places, replaced by ω.
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4.3.3 Case C : Homogeneous and time-dependent coupling

So far we have considered only couplings which are independent of time. In this section,

we consider time-dependent and homogeneous couplings. We take an arbitrary real

function of time, which is independent of site index n i.e. gn(t) = g(t). Note that

our coupling operator between system and individual environment qubit, as given in Eq.

(4.6), is of the form σ+ ⊗ σ− + σ− ⊗ σ+ which can also be expressed as σx ⊗ σx +

σy ⊗ σy. Thus, our system-environment coupling is a special case of the XY coupled

Hamiltonian. Such coupling with time-dependent coefficients have been used to show

non-trivial entanglement dynamics [79, 80].

Fortunately, theHamiltonians Hse(t) in this case commutes at different times, whichmakes

the analysis similar to the one in section 4.3.2. The only difference being the non-zero

eigenvalues in Eq. (4.10) to be of the form E±(t) = ±~
√

N |g(t) | = ±E (t), which is no

longer constant in time. The whole treatment of the dynamics of the system and the ancilla

remains the same if we replace ω0 and ω0t, in Eqs. (4.17), (4.19), (4.21) and (4.22), by
√

N |g(t) | and Ω(t), respectively, where

Ω(t) =
1
~

∫ t

0
E (τ)dτ =

∫ t

0

( N∑
n=1
|gn(τ) |2

) 1
2
dτ

=
√

N
∫ t

0
|g(τ) |dτ. (4.23)

4.3.4 Case D : Inhomogeneous and time-dependent coupling

The most general class of coupling gn(t) is when it depends both on the site n and time

t. The interaction Hamiltonian in such a situation does not commute at different times

and this makes the calculation for solving the dynamics difficult. However, we can use

numerical methods to simulate the time-evolution and get the solution for ρas(t). One can

obtain the following results analytically before starting the simulation part.
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Analytical Part: Only two of the eigenvalues of the Hamiltonian in Eq. (4.6) are non-zero,

as given in Eq. (4.10). The remaining (2N+1 − 2) of the eigenvalues are zero. A possible

choice for these null space eigenvectors are found in the following way:

Step I: We first feed the eigenvectors (corresponding to non-zero eigenvalues) given in

Eq. (4.11) as rows of a matrix A. Note, A is a 2 × 2(N+1) matrix.

Step II: By row reduction method [81] we find out a basis B for the Null space of A. Note

that B is not necessarily ortho-normal.

Simulation Part: Obtaining an orthonormal basis B′ from B analytically, is a challenging

job. We therefore resort to numerical techniques for this case.

Step I: From B, using Gram-Schmidt Orthonormalization procedure [81], we find an

orthonormal basis B′. Note, B′ forms the set of eigenvectors of the Hamiltonian corre-

sponding to zero eigenvalues.

Step II: As, the eigenvectors are time-dependent, the Hamiltonian is not different-time

commuting. Hence, the evolution operator may be found numerically from the following

expression,

Use(t, 0) = T exp
[
−

i
~

∫ t

0
Hse(τ′) dτ′

]

= lim
m→∞

[
exp

[
−

i
~

∫ mτ

(m−1)τ
Hse(τ′) dτ′

]

× exp
[
−

i
~

∫ (m−1)τ

(m−2)τ
Hse(τ′) dτ′

]
× ...

× exp
[
−

i
~

∫ τ

0
Hse(τ′) dτ′

] ]
, (4.24)

where T represents time ordering.

Step III: We evolve the initial ancilla -system-environment state ρase(0) by the unitary

operator Uase(t, 0) = 1a ⊗ Use(t, 0) and get the time evolved state ρase(t).
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Step IV: We trace out the environment from ρase(t) and get ρas (t) = Tre[ρase(t)]. We

then evaluate our entanglement measure E(t) given in Eq. (4.1), on ρas (t) and plot it as a

function of time.

Table 4.1: Nature of dynamics for different forms of coupling

Coupling Value of p Value of N Parameter values Nature
Homogeneous
and time inde-
pendent

any value any value – non-Markovian

Inhomogeneous
and time inde-
pendent

any value any value – non-Markovian

g(t) =
∑

m cmtm any value any value – non-Markovian

g(t) = e−γt any value any value Re(γ) ≤ 0, non-Markovian
Re(γ) > α

√
N/π

0.6 4 γ = 0.4, 0.8
g(t) = 1

1+γ t 0.5 4 γ = 0.4, 0.8 non-Markovian
0.6 8 γ = 0.4, 0.8
0.5 8 γ = 0.4, 0.8

1.0 3 γ1 = 0.45, .., 0.95 transition
gn(t) = e−γ1nt 0.6 3 γ1 = 0.15, .., 0.65 from

0.6 6 γ1 = 0.15, .., 0.35 non-Markovianity
1.0 8 γ1 = 0.45, .., 0.95 to Markovianity

1.0 3 γ = 0.35, 0.55, 0.75
gn(t) = 1

1+tnγ 0.6 3 γ = 0.35, 0.55, 0.75 non-Markovian
0.6 6 γ = 0.35, 0.55, 0.75
1.0 6 γ = 0.35, 0.55, 0.75

4.4 Results

In this section, we show that some of the classes of the couplings that we have considered

in the previous section always results in non-Markovian dynamics. However, there are also

some classes for which we can tune the parameters to find a transition from non-Markovian
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Figure 4.2: Plots showing the system-ancilla entanglement dynamics in different scenarios. For
simplicity we have considered α = 1. (a)When the coupling is homogeneous and time-independent
i.e. g = 1. (b) When the coupling is inhomogeneous and time-independent i.e. gn =

√
n. (c)

When the coupling is homogeneous and time-dependent, i.e. gn(t) = g(t) = exp(−γt) and N = 4.
(d) Coupling is g(t) = exp(−γt) and N = 8. (e) Coupling is of the form, g(t) = 1

1+γt and N = 4.
(f) Coupling is g(t) = 1

1+γt and N = 8.

to Markovian dynamics. In order to do so, we plot the entanglement dynamics between

the system and ancilla for each class as a function of time, and observe if there is any

departure from monotonicity in the plot. As mentioned in Sec 4.2, this technique helps

in characterizing non-Markovianity present in the system dynamics. In Figs. 4.2 and 4.3,

we present entanglement dynamics for different classes of system-environment coupling

considered in the previous section. Also in Table 5.1, we provide a concise summary

of all the resuts obtained in this section. We now present our findings for each class of

system-environment coupling.

4.4.1 For couplings in Cases A and B

In Figs. 4.2(a) and 4.2(b), we plot the entanglement as a function of time for the homo-

geneous time-independent, and the inhomogeneous time-independent couplings, respec-

tively, i.e, gn(t) = g and gn(t) = gn, respectively. Note here, that g and gn, for all values
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Figure 4.3: Plots showing the system-ancilla entanglement dynamics in different scenarios. For
simplicity we have considered α = 1. (a),(b),(c),(d) When the coupling is inhomogeneous and
time-dependent i.e. gn(t) = e−γ1nt . (e),(f),(g),(h) Coupling is gn(t) = 1

1+tnγ . (i) Transition values
of γ1 for coupling gn(t) = e−γ1nt as a function of N for different values of p.

of n, are arbitrary complex functions. The forms of the entanglement measure, as given

in Eq. (4.22) suggests a periodic behaviour for both the classes, which can also be seen

in Figs. 4.2(a) and 4.2(b). As a result, we conclude for both of these classes of couplings,

the dynamics is always non-Markovian.
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4.4.2 For couplings in Case C

We consider homogeneous and time-dependent couplings and find that if g(t) is some

polynomial function of t, we will get Ω(t) as a polynomial function of t. This gives rise

to a periodic function λ(t). As a result, the dynamics is non-Markovian in general.

If g(t) = exp(−γt) then non-Markovianity can be witnessed if the real part γr of γ fails

to be positive or violates the inequality α
√

N ≥ γrπ. Figs. 4.2(c) and 4.2(d) show the

entanglement vs time plot for two values of γr ; one of which violates the above mentioned

inequality. We also consider the case g(t) = 1
1+γt , and show in Figs 4.2(e) and 4.2(f) that

the dynamics is non-Markovian for various values of γ. N and p.

4.4.3 For couplings in Case D

For inhomogeneous time-dependent couplings, the dynamics can be made both non-

Markovian and Markovian by choosing the strength of the coupling appropriately. We

consider two special cases of inhomogeneous time-dependent coupling: (i) gn(t) = e−γ1nt ,

and (ii) gn(t) = 1
1+tnγ .

For analyzing coupling (i), we plot the system-ancilla entanglement measure as a function

of time in Figs. 4.3(a), 4.3(b), 4.3(c) and 4.3(d), for different values of the coupling

parameter γ1, at fixed values of N and p. In Figs 4.3(a), 4.3(b), 4.3(c) and 4.3(d),

monotonically decreasing entanglement values show signs of Markovianity and non-

monotonic decay are evidence of non-Markovianity. As expected, increasing the coupling

parameter γ1 i.e., decreasing coupling strength, leads to the transition from non-Markovian

to Markovian dynamics. The figures also show an interesting feature that, after sufficient

time, the entanglement in the system-ancilla state saturates to fixed values irrespective

of their Markovian or non-Markovian nature. This feature can be signs of possible

equilibration of the system ancilla state.
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Next, we find the extremal values of γ1 for which non-Markovianity is witnessed. These

extremal values serve as transition parameters from non-Markovianity to Markovianity.

On plotting these transition values as a function of N (see Fig. 4.3(i)), it appears that a

saturation is reached as N is increased for values p = 0.5 and p = 1.0. We perceive, this is

the result of the fact that for this type of coupling i.e. gn(t) = e−γ1nt , the larger is the value

of N , the smaller is its effect on the system dynamics. Although a definitive conclusion

about whether the saturation persists over large N can only be made after computing the

transition values for larger values of N , it is a computationally demanding process with

the computational facilities available at our disposal.

For coupling (ii), the dynamics shows non-Markovianity for various values of γ, N and

p, as shown in Figs 4.3(e), 4.3(f), 4.3(g) and 4.3(h).

4.5 Chapter summary

In this chapter, we have addressed the question of how non-Markovianity of a dynamics

changes with the interaction between the system and the environment and also with size of

the environment. We have taken a simplemodel constituting of a few qubits, which can also

be seen as a close approximation to the spin bath model for low temperatures. Even in this

minimalistic scenario, we were able to find a transition from non-Markovian to Markovian

dynamics by tuning the system-environment interaction. This is somewhat counterintuitive

as it is generally conceived that for having Markovian dynamics the bath/environment

should have infinite degrees of freedom, although there are exceptions [82]. We also

found, in our model, that if the interaction Hamiltonian is time-independent, the dynamics

is always non-Markovian, irrespective of the size of environment. In the case of site-

independent interaction, polynomial forms and certain cases of exponential forms of

interaction show non-Markovianity. Lastly, we study time-dependent and site-dependent

interaction for certain forms of system-environment coupling. In this last case, we also
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saw a transition from non-Markovian to Markovian regime. Interestingly, the transition

values appear to saturate to a certain value depending on the initial temperature of the

environment, as the number of environment qubits increases.

The above observations point out some interesting features about the nature of non-

Markovianity that might be seen in the spin-bath model for low temperatures. These

features can be useful in further theoretical understanding and real life implementation

of the spin-bath model. Firstly, we found the dynamics to be non-Markovian for time-

independent coupling for any number of qubits in the environment. We also saw in the

time-dependent and site-dependent case, fixed number of environment qubits can give rise

to both Markovian or non-Markovian dynamics depending on the strength of coupling.

These observations show that, at least for the spin-bath model, non-Markovianity is not

an effect of size of the environment. Secondly, the rapidly oscillatory feature of the

entanglement dynamics for the couplings in cases A and B suggests that a strongly non-

Markovian dynamics can be engineered in the spin-bath model by choosing these forms of

couplings. Thirdly, the Kraus operators of the dynamics found in cases A,B and C could

be used as the solution of the spin bath model for low temperatures.

It is noteworthy here, that although we draw analogies between our model and the spin-

bath model, in case D we performed our simulations with only a few number of qubits in

the environment. Therefore, it might not be justified to call the environment in our model

or the spin-bath model itself, a “bath" as the term usually refers to large dimension or

large number of degrees of freedom. Nevertheless, for the sake of convention and ease of

understanding we retain this nomenclature in our study.

Examining this type of spin environment is recently drawing some amount of interest [66].

Studies on similar lines was also done recently in [69], where an analysis of a qubit system

interacting with a sea of spins was given.
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Chapter 5

Generalized formalism for Information

backflow

Studying aspects of Markovianity in open quantum system has recently received renewed

focus from researchers working in various disciplines of physics. As mentioned in chapter

3, the definition of Markovianity in quantum regime is debated. Although a number of

prescriptions have been proposed, they are, in general, non-equivalent and capture different

aspects of Markovianity. A single unified description which take into account all these

different aspects is yet to be found.

All the prescriptions of Markovianity suggested so far can be broadly classified into two

main categories: completely positive divisibility (CPD) [17,25], and information backflow

(IB) [28,30,83–88]. The CPD approach comes from a mathematical point of view, where

a dynamical process is called Markovian if evolution up to a time t, can be broken down

into two valid quantum evolutions: one up to an intermediate time s (for any s < t),

followed by another from s to t. The IB approach, on the other hand describes a dynamical

process to be Markovian if some quantifier, i.e. some physical property or some quantifier

of information, decreases in a monotonic fashion under the action of the process. The

IB category can be further divided into two classes based on the type of quantifier used.
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One, which uses quantifiers based on the system only, which we call the information

backflow system only (IBS) class, and the other that uses an ancilla to define the quantifier,

which we call the information backflow system-ancilla (IBSA) class. The IBS class

involves system based quantifiers like distinguishability [28, 83] and generalized trace-

distance [84]. A number of measures to quantify the IBS class has also been suggested,

namely, fidelity [85], temporal steering weight [86], etc. Any such measure can be used

as a quantifier to define Markovianity. Similarly, the IBSA class involves joint system-

ancilla quantifiers like quantummutual information [30], interferometric power [87], local

quantum uncertainty [88], etc.

With so many notions of Markovianity present, even within the IB category, one is

compelled to look for inter-relations, hierarchies, or equivalence, that might be present

within them. A number of studies [89–92] have already shown that these notions are

not in general equivalent. To our knowledge, all the prescriptions under the IB category

can be shown to be CPD but the converse is not true. Attempts have been made to

find hierarchies [29, 93] or equivalence [26, 31, 94] within these approaches, either by

concentrating on specific models or by using modified forms of some quantifier. But a

general universal description that applies to any generic dynamics and any meaningful

quantifier is not yet found.

In the work reported in this chapter, we attempt to tackle this problem by constructing a

formalism that is independent of any particular form of quantifier. We give a generalized

form of quantifier, called the physicality quantifier (PQ), for the whole of IB category.

We set a minimal requirement criteria for any quantity to qualify as a PQ i.e. it should

be non-increasing under any physical process. In doing so, we found that a large class,

if not all, of quantifiers considered so far in the literature come as special cases of our

generalized form. Basically we consider an ensemble of quantum states, and define a

PQ as a real bounded function on the ensemble, that is non-increasing under any CPTP

map. We call a given dynamics, information backflow Markovian or IB-Markovian if all
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possible PQ, defined on any ensemble, decreases in a monotonic fashion with time. IB-

Markovianity is then sub-divided into system only (S) and system-ancilla (SA) class, where

in the latter case the ancilla considered, is of same dimension as the system. A dynamics

is said to belong to S-Markovian class, if the choice of ensemble for PQ is restricted to

include system states only, whereas it belongs to SA-Markovian class, if we allow arbitrary

system-ancilla joint states in the ensemble. Latter, we show that the S-Markovian class is

a subset of the SA-Markovian class. Thus, SA-Markovianity comes out as an equivalent

criteria to IB-Markovianity. Also, it can be easily inferred from the definition of PQ, that

our formalism is automatically CPD.

The motivation behind choosing this specific definition of PQ are two fold. On one hand,

as we demonstrate here, it allows for a lucid description of information flow between

system and environment, which clearly shows backflow, whenever there is a departure

from monotonicity in decay of a PQ. On the other hand, it results in filtering out of those

quantities which are decreasing, even for isolated systems, under unitary evolution. Thus

our definition serves as a minimal criteria, that captures only those quantities which reflect

information exchange between system and environment.

We then examine different properties of our formalism and prove that, for invertible

dynamics, the following are equivalent: (i) SA-Markovianity or IB-Markovianity, (ii)

Markovianity with respect to generalized trace-distance measure (GTD) on an extended

system-ancilla space, and (iii) CPD. We also show that our formalism can be used to

construct an infinite family of non-Markovianity measures, which would capture var-

ied strengths of memory effects present in the dynamics. Moreover, we prove that for

qubit dynamics, GTD (defined only on the system) serves as a sufficient criteria for

IB-Markovianity, for quantifiers defined on one or two system states; like fidelity, distin-

guishability, etc. Finally, we present some applications of our formalism and discuss the

context of our formalism with respect to incoherent and unital dynamics.
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5.1 Preliminaries

Consider a d−dimensional system and a d−dimensional ancillawithHilbert spacesHS and

HA, respectively. An invertible dynamics is a dynamical mapΛt which is invertible for all

t. Note that, most of the physical dynamical maps are invertible. Even the thermalization

process, where any initial state evolves asymptotically towards a fixed thermal state, is

invertible for finite times.

An ensemble on the system ES := {pi; ρi}
n
i=1 is defined as a finite collection of states

ρi ∈ P+(HS ) with a priori probabilities pi. Similarly, we define ESA := {pi; ξi}
n
i=1

on system-ancilla with ξi ∈ P+(HS ⊗ HA). Let F n
S :=

{
ES | ES = {pi; ρi}

n
i=1

}
and

F n
SA :=

{
ESA | ESA = {pi; ξi}

n
i=1

}
be the collection of all ensembles with n elements. We

define the set of all possible ensembles of any size by,

FS :=
∞⋃

n=1
F n

S ; FSA :=
∞⋃

n=1
F n

SA. (5.1)

5.2 Generalized formalism for information backflow

We now present a generalized formalism for the IB category in such a way that a large class

of IB prescriptions proposed so far [28, 30, 83–88] falls into it. We identify an essential

feature which is common to all quantifiers considered in the literature i.e. they are unitarily

invariant and non-increasing under CPTP maps. This suggests a ready generalization of

the definition of quantifier. Therefore, we propose to define two types of PQ, IS : FS 7→ R

and ISA : FSA 7→ R, as real bounded functions on ensembles of quantum states, which

follow condition 1 (given below). For convenience, any function fS (ES) or fSA(ESA), is

also represented by symbols fS
{
pi; ρi

}
or fSA

{
pi; ξi

}
, respectively.

Condition 1. Let T ∈ T (HS,HS ) be any CPTP map, acting on the system. For a given
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form of IS or ISA, the following are true:

IS
{
pi; T[ρi]

}
≤ IS

{
pi; ρi

}
,

ISA
{
pi; (T ⊗ I)[ξi]

}
≤ ISA

{
pi; ξi

}
where I denotes the identity map in T (HA,HA).

Note that, this readily implies invariance of PQ under any unitary evolution 1, i e.

IS
{
pi; U ρiU†

}
= IS

{
pi; ρi

}
, (5.2)

ISA
{
pi; (U ⊗ 1)ξi (U† ⊗ 1)

}
= ISA

{
pi; ξi

}
, (5.3)

where U ∈ L(HS ) and 1 ∈ L(HA) are unitary and identity operators, respectively.

As any PQ is real and bounded, for any given form we can always choose an equivalent

form, by adding the lower bound of the PQ, which would have the same monotonic

or non monotonic nature as the PQ and would also be positive. We would therefore

restrict ourselves to only positive PQ. Note that, distance measures like p-norms [95] on

qubit space, and general measures of information like order-α Renyi divergences in any

dimension for certain ranges of α [96], obey condition 1.

We further sub-divide PQ according to n, i.e. number of elements present in the ensemble.

We define special types of PQ, In
S and In

SA, which are focused on ensembles of size n,

in the following way: In
S (ES) = 0 and In

SA(ESA) = 0, for any ES < F n
S and ESA < F n

SA.

Note that as In
S and In

SA are valid PQ, they obey condition 1. Observe that, different forms

of quantifiers used in the literature, are defined on different subsets of F n
S or F n

SA, for

various values of n. For example, GTD [84] is defined on all elements of F2
S , whereas

distinguishability [28] is defined only on those elements of F2
S for which p1 = p2 = 1/2.

Likewise, quantum mutual information [30] is defined on all elements of F1
SA. To fit these

1Consider the CPTP maps ρ→ U ρU† and ρ→ U†ρU for any unitary U.
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Table 5.1: Physicality Quantifiers and their Class and Type

Type Class Physicality quantifier
Fidelity [85]

I2
S 2-S-Markovian State distinguishability [20]

Generalized trace-distance [84]

Im
S m-S-Markovian2 Temporal steering weight [86]

Quantum mutual information [30]
I1

SA 1-SA-Markovian Interferometric power [87]
Local quantum uncertainty [88]

I2
SA 2-SA-Markovian Generalized trace-distance extended

quantifiers in our formalism, we define compatible PQ in each case, which are of the form

In
S or In

SA. For example for GTD, we define a PQ, IGT D
S , which takes the same value as

GTD for elements in F2
S , and zero otherwise. Similarly for distinguishability, we define

IBLP
S such that, IBLP

S {p1 = 1/2, p2 = 1/2, ρ1, ρ2} = | |ρ1 − ρ2 | |1 and IBLP
S (ES) = 0, for

ES < F2
S or pi , 1/2 . Note that BLP stands for Breuer, Laine, and Piilo, who were the

first to use distinguishability as a measure of non-Markovianity [28]. In a similar way,

we find that a large class of system-ancilla quantifiers considered so far [30, 87, 88] also

correspond to PQ of the form In
SA, for different values of n. In particular, I2

S and I1
SA

corresponds to a large number of cases in the literature (see Table 5.1). Refer to Appendix

B.1, for a detailed disposition of how each quantifier corresponds to PQ.

For a dynamical map Λt we define dynamic physicality quantifiers ΦIS
t and ΦISA

t based

on IS and ISA, in the following way,

Φ
IS
t

{
pi; ρi

}
:= IS

{
pi;Λt[ρi]

}
, (5.4)

Φ
ISA
t

{
pi; ξi

}
:= ISA

{
pi; (Λt ⊗ I)[ξi]

}
. (5.5)

We now verify the perception, that non-monotonic decay of a PQ, rightly represents

2If Alice makes measurement Ma |x , where a = 1, . . . ,m1 and x = 1, . . . ,m2, then m = m1m2 (see
Appendix B.1).
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backflow of information from environment to the system. For any form of IS or ISA,

consider I′S or I′SA to be the same quantity defined on environment-system ensemble

{pi; ζ i
ES}i or environment-system-ancilla ensemble {pi; ζ i

ESA}i, respectively. As any open

system dynamics is a result of unitary evolution UES (t) of the system and environment

considered jointly [8], we conclude from Eqs. (5.2) and (5.3), thatΦI ′S
t andΦI ′SA

t , defined

in the sense of Eqs. (5.4) and (5.5), are constant in time. Now, consider II
′
S

env (t) = ΦI ′S
t −

Φ
IS
t or II

′
SA

env (t) = ΦI ′SA
t − Φ

ISA
t to represent the information content of the environment

and system (ancilla) combined, that cannot be obtained by knowing the system (ancilla)

ensemble alone. Hence, we get II
′
S

env (t)+ΦIS
t = constant and II

′
SA

env (t)+ΦISA
t = constant,

which means the net information content remains unchanged. Note, as partial tracing is

always isomorphic to a CPTP map3, from condition 1, we find II
′
S

env (t) and II
′
SA

env (t) are

both positive quantities. Therefore, we conclude non-monotonic decay of ΦIS
t and ΦISA

t

rightly signifies information backflow from environment to the system. Now we define

Markovianity in terms of each valid form of PQ.

Definition 2. A dynamical map Λt , is called IS-Markovian (ISA-Markovian) for some

form of IS (ISA), if ΦIS
t (ES)

(
Φ
ISA
t (ESA)

)
decreases monotonically with time t, for any

ES ∈ FS (ESA ∈ FSA).

There are numerous examples in the literature for the above definition [28,30,83–88]. We

generalize the above notion in the following way,

Definition 3. A dynamical map Λt is called n-S-Markovian (n-SA-Markovian) if ΦIn
S

t (ES)(
Φ
In
SA

t (ESA)
)
decreases in a monotonic fashion with time t, for any form of In

S (In
SA) and

any choice of ensemble ES ∈ F n
S (ESA ∈ F n

SA).

We now give generalized definition of Markovianity for all PQ defined on system and

system-ancilla.

Definition 4. A dynamical map Λt is called S-Markovian (SA-Markovian) if it is n-S-

3Consider the map Ω[X] =
∑

i KiX K†i , where Ki = |ψ〉 〈i |E ⊗ IS and {|i〉}i forms an orthonormal basis
in environment space.This CPTP map is isomorphic to partial trace operation TrE (•).
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Markovian (n-SA-Markovian) for all values of n.

Finally, we give our generalized definition of Markovianity for backflow of information:

any dynamics which is both S-Markovian and SA-Markovian, is called IB-Markovian.

5.3 General properties of the formalism

We first note a hierarchy within our Markovianity classes, which is apparent from their

definition: any n-S-Markovian (n-SA-Markovian) class is a subset of (n+1)-S-Markovian

((n + 1)-SA-Markovian) class. This observation provides a useful insight, that our for-

malism can be used to construct an infinite family of non-Markovianity measures, which

would capture varied intensities of memory effects present in the dynamics. The higher

the least value of n, for which a dynamics fails to be n-S-Markovian or n-SA-Markovian,

the weaker is the effect of memory in the dynamics. Also note, as any PQ obeys condition

1, all IB-Markovian dynamics are automatically CPD.We now present a result, that makes

SA-Markovianity an equivalent criteria to IB-Markovianity.

Theorem 1. If any dynamical maps Λt is n-SA-Markovian, then it is n-S-Markovian.

This result is expected, as any PQ on the system can be seen as a PQ on system-ancilla

by choosing the system ensemble states to be reduced density matrices of the system-

ancilla ensemble states. See Appendix B.2 for detailed proof. Figure 6.1 gives a concise

representation of all the hierarchies present in our formalism.

We now show how IB-Markovianity is related to CPD and in what way GTD on extended

space plays a vital role in relating these two quantities. GTD is a quantity that gives

the best possible distinguishing probability of a pair of quantum states, occurring with

different probabilities [97]. Suppose, Alice prepares one of two states ρ1 and ρ2 with

probabilities p1 and p2 and sends the ensemble to Bob. The best possible probability for

him to distinguish between these two states with a single-shot experiment is given by the
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Figure 5.1: Hierarchy of different classes of IB-Markovianity.

GTD of the ensemble. The corresponding PQ, IGT D
S is given by,

IGT D
S {p1, p2, ρ1, ρ2} := | |p1ρ1 − p2ρ2 | |1, (5.6)

where | |A| |1 = Tr
√

A†A. It was first proposed in [92] and latter in [84] that GTD can

be used as a quantifier to define Markovianity. The definition of GTD can also be easily

extended to system-ancilla space. We call it generalized trace-distance measure extended

(GTDE) and define it in the following way,

IGT DE
SA {p1, p2, ξ1, ξ2} := | |p1ξ1 − p2ξ2 | |1, (5.7)

where ξi ∈ P+(HS ⊗ HA). Note that IGT D
S and IGT DE

SA are special forms of I2
S and I2

SA,

respectively.

Definition 5. A dynamical map Λt is called GTD-Markovian or GTDE-Markovian in the

sense of definition 2, if the respective PQ are IGT D
S and IGT DE

SA .

Now we present one of the main theorems of this chapter.

Theorem 2. For an invertible dynamical map Λt , the following are equivalent: (i) Λt is
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GTDE-Markovian, (ii) Λt is CPD, (iii) Λt is SA-Markovian or IB-Markovian, (iv) Λt is

2-SA-Markovian.

The non-intuitive part of the theorem is (i) =⇒ (ii), which can be easily deduced by using

a result by Kossakowski [98], where TP contraction of trace-norm was shown to be the

necessary and sufficient criteria for positivity of maps (see Appendix B.3). Thus we see the

GTDE criteria is not only necessary but also sufficient for the whole of IB-Markovianity

class, for invertible dynamics.

5.4 The qubit case

We now show that for qubit dynamics, the GTD criteria is an equivalent criteria for 2-

S-Markovianity. From theorem 1, this implies that GTD is also a sufficient criteria for

1-S-Markovianity. Therefore, for qubit dynamics GTD serves as a sufficient criteria of

Markovianity for quantifiers defined on one or two states of the system, namely, distin-

guishability [28], fidelity [85], etc. The existence of this result is due to Alberti and

Uhlmann [99] and latter also by Chefles et al. [100] and Huang et al. [101], who showed

that TP contractivity of trace-norm is necessary and sufficient condition for existence of

physical transformations between two pairs of qubit states. The following lemma, and

consequently the theorem can be easily deduced by applying this result (see Appendix

B.4). For this section, we assume HS and HA to be the Hilbert spaces for a qubit system

and qubit ancilla, respectively.

Lemma 1. If a qubit dynamical map Λt is GTD-Markovian, then for any t > s and any

collection of states ρ1, ρ2, σ1, σ2 ∈ P+(HS ) such that ρi = Λs[σi] ; i = 1, 2, there exists

a CPTP map T12 ∈ T (HS,HS ) such that,

Vt,s[ρi] = T12[ρi] ; i = 1, 2. (5.8)
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Theorem 3. A qubit dynamical map Λt is GTD-Markovian if and only if it is 2-S-

Markovian.

Proof. As Λt is GTD-Markovian, it can be expressed as Eq. (3.6) (see Proposition 2 of

[26]). For any form of physicality quantifier I2
S , let us choose any ρ1, ρ2, σ1, σ2 ∈ P+(HS )

and t > s, such that ρi = Λs[σi] for i = 1, 2. As Λt is GTD-Markovian, using lemma 1 we

get I2
S {p1, p2,Vt,s[ρ1],Vt,s[ρ2]} = I2

S {p1, p2,T12[ρ1],T12[ρ2]}. Note, as T12 is CPTP and I2
S

obeys Condition 1, this implies ΦI2
S

t ≤ Φ
I2
S

s for any initial ensemble {p1, p2, σ1, σ2} and

t > s. Hence, we conclude that if Λt is GTD-Markovian then it is 2-S-Markovian. The

converse statement is easy to prove, as IGT D
S is a physicality quantifier of the form I2

S . �

It was shown in Ref. [84], that GTD is an equivalent criteria to P-divisibility for invertible

dynamics. Therefore, the above theorem shows that P-divisibility is equivalent to 2-S-

Markovianity for invertible qubit dynamics. A detailed algorithm for constructing T12 of

lemma 1 is given in theorems 2.1 and 2.2 of [101].

5.5 Applications of the formalism

5.5.1 Minimum strength of Non-Markovianity required to be used as

a resource: Case studies

A number of protocols have been suggested, where backflow of information in a non-

Markovian process has been used as a resource to enhance the efficiency of the protocol.

All these protocols require different minimum strengths of non-Markovianity to enable

the enhancement of efficiency.

We now present two such scenarios and in each case we identify the minimum strength of

non-Markovianity required.
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Preserving channel capacities :

Non-Markovianity was used by Bylicka et al [21, 33] to preserve channel capacity over

long channels. They used the fact that classical and quantum channel capacities, given

by Cc and Cq, show a non-monotonic decay over time, whenever the dynamical map is

non-Markovian.

Cc[Λt] = sup
ρ

I (ρ,Λt ), (5.9)

Cq[Λt] = sup
ρ

Ic(ρ,Λt ), (5.10)

where I (ρ,Λt ) is the quantum mutual information between the initial and the time evolved

state of the system, defined in the following way,

I (ρ,Λt ) := S(ρ) + Ic(ρ,Λt ). (5.11)

Here S(ρ) = −ρ log ρ is the von Neumann entropy and Ic is the quantum coherent

information, given by,

Ic(ρ,Λt ) = S
(
Λt[ρ]

)
− S

(
(Λt ⊗ I)

[
|Ψ〉 〈Ψ|

] )
, (5.12)

where ρ = TrA
(
|Ψ〉 〈Ψ|

)
and |Ψ〉 is a purification of ρ in a higher dimensional system-

ancilla space with ancilla dimension same as the system. It can be easily seen that I (ρ,Λt )

is a PQ of the form I1
SA.

Therefore, in order to have a revival of channel capacities, the dynamics should be non-

Markovian at least with respect to 1-SA-Markovianity class.
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As a thermodynamic resource :

Recently, Bylicka et al. [102] used a non-Markovian dynamics to obtain revival of ex-

tractable work from an n−qubit system. The main ingredient behind this result is non-

increasing nature of quantummutual information between system and ancilla, under action

of arbitrary CPTP map on one side of system or ancilla. Hence, we conclude that in order

to obtain a revival of extractable work, the dynamical process must be non-Markovian at

least with respect to 1-SA-Markovianity class.

5.5.2 Relation to the problem of existence of physical transformations

between states

The problem of whether there exists a physical transformation between two sets of quan-

tum states, is a well researched topic with various partial and complete results avail-

able [99–101, 103, 104]. We will follow the notation in [100] and denote the existence of

physical transformation between two sets of quantum states, each containing n elements,

by {ρ1, ρ2, . . . , ρn} =⇒ {σ1, σ2 . . . , σn}. Formally speaking, this means there exists a

CPTP map T connecting them i.e. T[ρi] = σi for all i = 1, . . . , n. In [103], it was shown

that this problem can be reformulated as a semidefinite programming problem and thus

using convex optimization techniques [105], it can be checked algorithmically. For any

given dynamics Λt , it can be easily shown (in a similar way as in Theorem 3) that, if

{ρ1(s), ρ2(s), . . . , ρn(s)} =⇒ {ρ1(t), ρ2(t), . . . , ρn(t)} for any t > s and {ρi}
n
i=1, then Λt

is n-S-Markovian. Note, here ρi (t) = Λt[ρi] represents the time evolved states.

5.5.3 A family of new non-Markovianity measures

As this formalism provides a general structure for constructing PQ, it is expected that a

number of new PQ will emerge, that was previously unknown to the literature. Any such
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PQ can be used to device a non-Markovianity measure in the following way,

NIS (Λt ) :=
∫

t∈
{

t ′:
d

(
Φ
IS
t

)
dt >0

}
d
(
Φ
IS
t

)
dt

dt. (5.13)

Here ΦIS
t is, as defined in Eq. (5.4). Note, positive time derivative of ΦIS

t implies,

departure from monotonic decay of the quantity over time. Similarly for PQ’s of the form

ISA, we can define non-Markovianity measures in the same way. Thus our formalism

provides a platform for an infinite family of non-Markovianity measures. For example,

in [106] a family of new metrics gD (A, B) on the space of linear operators of finite

dimension were suggested, which are monotonic (decreasing) under stochastic (CPTP)

maps i.e. gD (T[A],T[A]) ≤ gD (A, A), for any CPTP map T , any operator A and positive

operator D. See [106] for more details about gD (A, B). Any such metric can used to

device a new PQ of the form,

IgD
S {ρ} = gD (ρ, ρ). (5.14)

Note that this is a PQ of the form I1
S . Also, [95] presents a collection of norms, the

p−norms, that can used as PQ on qubit space in the following way,

Ip−norm
S {q1, q2, ρ1, ρ2} =




| |ρ1 − ρ2 | |p q1 = q2 = 1/2

0 qi , 1/2
(5.15)

where | |A| |p = [Tr (A†A)p/2]1/p, p ≥ 1, ρ1, ρ2 ∈ P+(HS) with HS = C
2 and q1, q2 are

probabilities. Note, p = 1 gives our usual trace-norm and we have, I1−norm
S = IBLP

S . We

now combine two forms of p−norms to define a new PQ,

Ip1−p2
S (ES) := q1Ip1−norm

S (E′S) + q2Ip2−norm
S (E′S) (5.16)

where ES = {q1, q2, ρ1, ρ2} and E′S = {1/2, 1/2, ρ1, ρ2}. Note that p−norms defined on

qubit space obey condition 1 and hence Ip−norm
S and Ip1−p2

S qualify as PQ of the form I2
S .
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To present an example, we consider the the random unitary dynamicsΛt on a qubit system,

which has been extensively studied in the literature. We follow the notations and results

presented in [29] to test our new PQ. The random unitary dynamics is given by,

Λt[ρ] =
3∑

α=0
rα (t)σα ρσα, (5.17)

where {r0(t), r1(t), r2(t), r3(t)} is a time dependent probability distribution with r0(0) = 1.

Also note, the Pauli matrices σα happen to be the eigenvectors of Λt with time-dependent

eigenvalues λi (t), i.e. Λt[σi] = λi (t)σi for i = 0, . . . , 3. We find, λi =
∑4

j=1 Hi jr j , where

H = [Hi j] is the Hadamard matrix given by,

H =

*..........
,

1 1 1 1

1 1 −1 −1

1 −1 1 −1

1 −1 −1 1

+//////////
-

.

Note that λ0(t) = 1 for all t. The master equation of this dynamics is given by,

d
dt
ρt =

3∑
i=0

γi (t)σi ρtσi, (5.18)

where γi =
1
4
∑3

j=0 Hi j
λ̇ j (t)
λ j (t)

for all i = 0, . . . , 3. This readily implies,

3∑
i=0

γi (t) = 0. (5.19)

Note that, this identity simplifies the above master equation to the following form,

d
dt
ρt =

3∑
i=1

γi (t)(σi ρtσi − ρt ). (5.20)
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Also, we find the following,

λ1(t) = e−2[Γ2(t)+Γ3(t)], (5.21)

λ2(t) = e−2[Γ1(t)+Γ3(t)], (5.22)

λ3(t) = e−2[Γ1(t)+Γ2(t)], (5.23)

where Γk (t) =
∫ t

0 γk (τ)dτ, for k = 1, 2, 3. Now, consider the ensembles ES and E′S, used

in Eq. (5.16). As ρ1 − ρ2 is a traceless hermitian operator, we get ρ1 − ρ2 =
∑3

k=1 xkσk ,

where x1, x2 and x3 are real numbers. Thus we have,

| |Λt[ρ1 − ρ2]| |p = 21/pη(t), (5.24)

where η(t) =
√∑3

k=1 λk (t)2x2
k . This implies,

d
dt
| |Λt[ρ1 − ρ2]| |p =

21/p−1

η(t)

3∑
k=1

x2
k

d
dt
|λk (t) |2. (5.25)

Thus we have,

d
(
Φ
Ip1−p2
S

t (ES)
)

dt
=

[
q121/p1−1 + q221/p2−1

] d
(
Φ
IBLP
S

t (E′S)
)

dt
, (5.26)

where,
d
(
Φ
IBLP
S

t (E′S)
)

dt
=

1
η(t)

3∑
k=1

x2
k

d
dt
|λk (t) |2. (5.27)

So we see Ip1−p2
S witnesses non-Markovianity whenever IBLP

S witnesses the same, and

vice-versa.

Example 1. On choosing γ1(t) = γ2(t) = 1 and γ3(t) = sin t, we get Γ1(t) = Γ2(t) = t
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and Γ3(t) = 1 − cos t. So we have,

λ1(t) = e−2(1+t−cos t), (5.28)

λ2(t) = e−2(1+t−cos t), (5.29)

λ3(t) = e−4t . (5.30)

Thus we get,

Φ
Ip1−p2
S

t (ES) =
(
q121/p1−1 + q221/p2−1)

×
[
(x2

1 + x2
2) e−4(1+t−cos t) + x2

3 e−8t ] 1
2 (5.31)

Since q1, q2, p1 and p2 are all positive and x1, x2 and x3 are real, it can be easily seen that

the above function is monotonically decreasing with t. Hence, we conclude that the above

dynamics is Ip1−p2
S −Markovian for any p1, p2 ≥ 1. Also, note this dynamics is not CPD

in general, as γ3(t) can take negative values [29].

Example 2. Choose r1(t) = r2(t) = 1−r0(t)
4 and r3(t) = 1−r0(t)

2 . Therefore λ1(t) = λ2(t) =

3r0(t)−1
2 and λ3(t) = r0(t). Also, γ1(t) = γ2(t) = − ṙ0(t)

4r0(t) and γ3(t) = − (3r0(t)+1)
4r0(t)

ṙ0(t)
(3r0(t)−1) .

So, we have,

Φ
Ip1−p2
S

t (ES) =
(
q121/p1−1 + q221/p2−1) [ 1

4
(
x2

1 + x2
2
) (

3r0(t) − 1
)2
+ x2

3 r0(t)2
]
. (5.32)

Figure 5.2 shows time evolution of ΦI2−3
S

t (i e. when p1 = 2 and p2 = 3) for different

initial ensembles and two different forms of r0(t): e−t and 1+cos t
2 . We find in both cases

the dynamics is I2−3
S − non-Markovian.
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Figure 5.2: Plot of dynamic PQ vs time for random unitary dynamics with r1(t) = r2(t) =
1−r0(t)

4 and r3(t) = 1−r0(t)
2 , for different initial ensembles ES and different functional

forms of r0(t). We consider ES = {q1, q2, ρ1, ρ2}, where ρi =
1
2 (σ0 +

∑3
k=1 ni

kσk ) and
ni = (si sin θi cos φi , si sin θi sin φi , si cos θi). The different cases considered here are:
(a) r0(t) = e−t , q1 = 0.7, q2 = 0.3, s1 = 1, θ1 = φ1 = π/2, s2 = 0.6, θ1 = π, φ1 = 0;
(b) r0(t) = 1+cos t

2 , q1 = 0.7, q2 = 0.3, s1 = 1, θ1 = φ1 = π/2, s2 = 0.6, θ1 = π, φ1 = 0;
(c) r0(t) = e−t , q1 = 0.3, q2 = 0.7, s1 = 0.7, θ1 = 2π/3, φ1 = π/6, s2 = 0.4, θ1 =
5π/6, φ1 = π/3; (d) r0(t) = 1+cos t

2 , q1 = 0.3, q2 = 0.7, s1 = 0.7, θ1 = 2π/3, φ1 = π/6,
s2 = 0.4, θ1 = 5π/6, φ1 = π/3.

5.6 Discussions

A number of measures of non-Markovianity were suggested for incoherent and unital

dynamics [107–109], which are not non-increasing under arbitraryCPTPmaps. Therefore,

they are not guaranteed to be monotonically decreasing under arbitrary CPD dynamics,

which are well accepted Markovian dynamics. Hence, in spite of them being useful

non-Markovianity measures for certain types of dynamics, we do not consider them as

appropriate quantifiers for describing Markovianity, in general.

5.7 Chapter summary

In this chapter, we have provided a generalized formalism for describing the IB approach of

Markovianity. We provided a general form of a quantifier, called the physicality quantifier,
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whose monotonic decay with time was seen as the defining criteria for Markovianity. We

defined the physicality quantifier, to be any real bounded function on the ensemble space,

that is non-increasing under CPTP maps. In doing so, we found that a large number of

prescriptions for IB-Markovianity in the literature, come as special cases of our formalism.

Also, by using our formalism we showed that for invertible dynamics, IB-Markovianity

is equivalent to CP-divisibility, as well as to Markovianity with respect to generalized

trace-distance measure in extended system-ancilla space.

We showed hierarchies of different subclasses of our formalism and argued that it can be

used to construct an infinite family of non-Markovianity measures, which would capture

varied strengths of memory effects present in the dynamics. We also used the formalism to

show that generalized trace-distancemeasure for qubit dynamics, serve as sufficient criteria

of IB-Markovianity for a number of prescriptions suggested earlier. Finally, we presented

certain applications of our formalism. We expect our formalism will shed light into

further understanding of physical and mathematical structure of quantum Markovianity

and enhance its applicability to more varied scenarios.
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Chapter 6

Extending the generalized formalism to

non-invertible dynamical maps

In this chapter, we extend the Generalized formalism for Information Backflow (GIB) to

include non-invertible dynamical maps. We introduce a new physicality quantifier (PQ)

and show that monotonic decrease of only system based PQ’s are sufficient to establish

completely positive divisibility (CPD) as well as Information backflow Markovianity (IB-

Markovianity) for all image non-increasing dynamical maps.

For qubit systems, we further extend the result to include all dynamicalmaps− invertible as

well as non-invertible. Moreover, using the new PQ, we show that a simplified hierarchical

structure of GIB can be found for image non-increasing and qubit dynamical maps, which

have only d2 Markovianity classes for any d−dimensional (d = 2 for qubit case) dynamical

map.

This classification provides a degree to the non-Markovianity of dynamical maps, an idea

first introduced in Ref [110]. In Ref [110], degree was determined by k−divisibility, a

representation of digression of sections of dynamics from complete positivity. In our

case, degree is determined by subsets of PQ’s which decay monotonically under the

action of the dynamics. Moreover, in most cases where non-Markovianity is used as a
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resource, revival over time of different PQ’s serve as the essential factor responsible for the

usefulness of the non-Markovianity as a resource. Therefore, we expect our description

of degree will be more useful in applications of non-Markovianity as a resource. We also

use this description to determine the degree of non-Markovianity of some commonly used

dynamical maps.

6.1 Preliminaries

Since, in this chapter we will use only system based PQ’s, we slightly modify the notations

to make it easier to follow.

We denote the system Hilbert space by H = Cd . An ensemble of states of the system is

denoted by E = {pi; ρi}
n
i=1, where ρi ∈ P+(H) and pi’s are the apriori probabilities. We

denote the set of all ensembles with fixed size n as Fn, and the set of all ensemble of any

size as

F =
∞⋃

n=1
Fn. (6.1)

A PQ on the system is denoted by I. PQ’s focused on ensembles with fixed size is denoted

as In(E ) = 0 if E < Fn. For a dynamical maps Λt , a dynamical PQ is denoted by ΦIn

t .

Definition 1. A dynamical maps Λt is called image-nonincreasing if Im(Λt ) ⊂ Im(Λs) for

any t > s, where Im(Λ) represents the image of a map Λ ∈ T (H,H).

Note that, for invertible dynamical maps, Im(Λt ) = L(H) for all t. Hence, all invertible

dynamical maps are image-nonincreasing. We call the mapΠM ∈ T (HS,HS), a projector

onto a subspaceM ⊂ L(HS) if Im
(
ΠM

)
⊂M and ΠM[X] = X for all X ∈M.
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6.2 Extending the generalized formalism

In this section, we extend the GIB to image non-increasing dynamical maps by introducing

a new system based PQ, In
A, of the form :

In
A(E ) =




����
∑n

i=1 Ai ⊗ ρi����1 E ∈ Fn

0 E < Fn

, (6.2)

where E = {pi; ρi}
n
i=1,A = {Ai}

n
i=1 with Ai ∈ L(H), and | |A| |1 =

√
A†A is the trace-norm.

Let us first recall a theorem on image non-increasing dynamical maps from [26].

Theorem 4. ( [26]) If an image non-increasing dynamical map Λt obeys the condition

d
dt
| |(Λt ⊗ I)H | |1 ≤ 0, (6.3)

for any hermitian H ∈ L(H ⊗H), then Λt is CPD.

We now present the principal result of this chapter.

Theorem 5. Any image non-increasing dynamical map Λt is CPD if and only if it is d2−S

Markovian.

Proof. The only if part can be trivially shown by comparing the definitions of CPD and

d2−S Markovianity. For proving the if part, we choose a set of density matrices {ρi}
d2

i=1

which forms a basis in L(H). Therefore, for any hermitian operator H ∈ L(H⊗H), there

exists a set A = {Ai}
d2

i=1 ⊂ L(H) such that H =
∑n

i=1 Ai ⊗ ρi. Using the set A we can

construct a PQ of the form Id2

A , as given in Eq. (6.2). Therefore, using d2-S Markovianity

of Λt , we get d
dt [Φ

Id2
A

t (E )] = d
dt | |(Λt ⊗ I)[H]| |1 ≤ 0, where E = {pi; ρi}

n
i=1. Hence, using

theorem 4, we conclude Λt is CPD. �
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6.3 A complete formalism for qubit dynamics

We first show some examples of dynamical maps which are not image non-increasing.

Example 1. Consider the following qubit dynamics.

Λt[ρ] =
(
1 − q0(t) − q1(t)

)
ρ + q0(t) |0〉 〈0| + q1(t) |1〉 〈1| (6.4)

where q0(t), q1(t) ≥ 0, q0(0) = q1(0) = 0 and 0 ≤ q0(t) + q1(t) ≤ 1 for all t ≥ 0. Let us

choose the qi (t)’s in the following form

q0(t) = θ(t)e−t ; q1(t) = θ(t)(1 − e−t ), (6.5)

where

θ(t) =




√
1 − (t − 1)2 0 ≤ t ≤ 1

1 t > 1
(6.6)

Note that θ(t) is a continuous and differentiable function of t. As a result, Λt is also

continuous and differentiable. Using this form of θ(t), it can be easily seen that Im(Λt ),

for t ≥ 1, is spanned by a single density matrix σt of the form

σt = e−t |0〉 〈0| + (1 − e−t ) |1〉 〈1| ; t > 1. (6.7)

Therefore it can be easily seen that Im(Λt1 ) ∩ Im(Λt2 ) is an empty set for any t2 > t1 > 1.

As a result Λt is not image non-increasing.

Example 2. Consider another qubit dynamics

Λt[ρ] =
(
1 − θ(t)

)
ρ + θ(t)

(
e−itσx |0〉 〈0| ρ |0〉 〈0| eitσx

+ e−itσx |1〉 〈1| ρ |1〉 〈1| eitσx
)
, (6.8)
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where θ(t) is as defined in Eq. (6.6). Note here that for any t > 1, Im(Λt ) is spanned

by density matrices e−itσx |0〉 〈0| eitσx and e−itσx |1〉 〈1| eitσx . As a result, for t > 1 all

density matrices in Im(Λt ) has block vectors along the z-axis, rotated by an angle t about

the x-axis. Hence it can be easily seen that the dynamics is not image non-increasing.

Thus we see, in order to take into account dynamics of the above kind, a complete

description of IB is required which applies to even those dynamical maps which are not

image non-increasing. We show below that our description of GIB is complete for qubits.

Consider the following results from [111],

Lemma 2. ( [111]) LetH = C2 be the Hilbert space of a qubit system and letM ⊂ L(H)

be a subspace spanned of a set of density matrices. IfM has dimension 3 then there exists

no CPTP projector ΠM onto M.

Using this lemma and a result from [26], we show the following result.

Theorem 6. If Λt represents a divisible dynamical map on a qubit system i e. H = C2

then the dimension of Im(Λt ) must not be 3 for any t.

Proof. As Λt is divisible, it admits a decomposition Λt = Vt,sΛs for all t > s. We prove

this theorem by contradiction. Let us assume there exists a time t, such that Im(Λt )

has dimension 3. It was shown in [26] that if t1 is the smallest time for which Λt1 is

non-invertible, that is, Λs is invertible for 0 ≤ s < t1, then

Πt1 = lim
ε→0+

Vt1,t1−ε . (6.9)

is a projector onto Im(Λt1 ). Evidently t1 < t. Im(Λt ) is the image of Im(Λt1 ) under the

action of a linearmapVt,t1 . As a result, dimension of Im(Λt1 ) must be greater or equal to that

of Im(Λt ). Using the fact that dimension of Im(Λt1 ) must be less than 4, we conclude that

the dimension of Im(Λt1 ) is 3. Also note that if we choose a set of linearly independent

states {ρ1, ρ2, ρ3, ρ4}, then the set {ρ1(t1), ρ2(t1), ρ3(t1), ρ4(t1)} spans Im(Λt1 ), where
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ρi (t) = Λt[ρi]. As a result Πt1 is a CPTP projector on a 3-dimensional subspace spanned

by density matrices. Using lemma 2, we conclude that this is impossible. �

Before proving the next theorem, let us recollect an old result proved by Alberti and

Ulhmann [99], where it was shown that if {σ1, σ2} and {σ′1, σ
′
2} are sets of input and

output qubit states of a linear map Γ then there exists a CPTP map T ∈ T (H,H) which

matches the action of Γ on σ1 and σ2 i e. T[σi] = Γ[σi] = σ′i for i = 1, 2, if and only if

| |σ1 − δσ2 | |1 ≥ ||σ
′
1 − δσ

′
2 | |1 (6.10)

for all δ > 0.

Theorem 7. Any dynamical map Λt on a qubit system i e. H = C2 is 4-S Markovian if

and only if Λt is CPD.

Proof. Proving the if part is trivial. For proving the only if part, we first choose

{ρ1, ρ2, ρ3, ρ4} ⊂ P+(H)

to be a set of four linearly independent density matrices. Therefore, any operator X ∈

L(H), can be written as X =
∑4

i=1 ci ρi, for a set of complex numbers {ci}. Let us

choose a PQ of the form I4
A, as in Eq. (6.2), where A = { A1 = c1 A, A2 = c2 A, A3 =

c3 A, A4 = c4 A} for some A ∈ L(H). Now, using 4-S Markovianity of Λt , we get
d
dt [Φ

I4
A

t (E )] = | |A| |1 × d
dt

[
| |Λt[X]| |1

]
≤ 0 for any X ∈ L(H) and any t ≥ 0, where

E = {pi; ρi}
4
i=1. As a result, using proposition 2 of [26], we conclude that Λt is divisible

i e. Λt = Vt,s ◦ Λs for any t > s. Thus, from Theorem 6 we conclude, the dimension of

Im(Λs) must be 4, 2 or 1. We consider each case separately.

(a) If dimension of Im(Λs) is 4 for any s, the dynamics is invertible and hence image-

nonincreasing. As a result, using Theorem 5 we conclude, the dynamics is CPD.

(b) If dimension of Im(Λs) is 2, then two of {Λs[ρ1],Λs[ρ2],Λs[ρ3],Λs[ρ4]} must be
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linearly independent and also span the subspace Im(Λs). Without loss of generality,

we choose σ1 = Λs[ρ1] and σ2 = Λs[ρ2] to be independent. Note that, the action

of Vt,s is fixed only on the subspace Im(Λs). Let us choose a PQ of the form I2
A,

where A = {A1 = A, A2 = −δA} for some A ∈ L(H) and δ ≥ 0. As Λt is 4−S

Markovian, it must also be 2−S Markovian. As a result for E = {p1, ρ1; p2, ρ2}, we get

Φ
I2
A

t (E ) = | |A| |1 × ||Vt,s[σ1] − δ Vt,s[σ2]| |1 ≤ ||A| |1 × ||σ1 − δσ2 | |1 for any δ ≥ 0. Now,

using Eq. (6.10), we conclude that there exists a CPTP map T ∈ T (H,H) such that

T[σi] = Vt,s[σi] for i = 1, 2. Note here that T is defined on the full space L(H). Thus we

see there is a CPTP extension of Vt,s defined on the full space L(H). Hence, we conclude

that the dynamics is CPD.

(c) If dimension of Im(Λs) is 1, then there must exist a σ ∈ P+(H) such that Λs[ρ] = σ

for all ρ ∈ P+(H). In this case, the action of Vt,s is specified only on the 1 dimensional

subspace spanned by σ. Let us choose the CPTP projector Πσ ∈ T (H,H) of the form

Πσ[X] = Tr[X]σ. It can be easily seen that Vt,sΠσ serves as a CPTP extension of Vt,s on

the full space. Hence, we conclude the dynamics is CPD. �

6.3.1 Degree of non-Markovianity

From theorem 5 and 7, we conclude that only system based quantifiers are sufficient to

establish CPD of image non-increasing and qubit dynamical maps. Moreover recall from

chapter 5, that if a dynamical map is CPD it must also be S-Markovian and SA-Markovian.

Hence, we conclude that d2-S Markovianity (4-S Markovianity in the case of qubits),

S Markovianity, SA Markovianity and CPD are all equivalent for image non-increasing

(qubit) dynamical maps.

As a result the hierarchical structure ofMarkovianity classes, proposed in chapter 5, can be

significantly simplified to the form given in Fig. 6.1. Note that this simplification readily

suggests existence of a degree of non-Markovianity (DONM) for image non-ncreasing and
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Figure 6.1: Hierarchy of Markovianity classes of qubit (d = 2) and image-nonincreasing
dynamical maps.

qubit dynamical maps :

DONM(Λt) := d2 −max{n | Λt is n-S Markovian}. (6.11)

Note that any dynamical map can always be shown to be 1-S Markovian1. As a result,

DONM of any image non-increasing and qubit (d = 2) dynamics can take a minimum

value of zero, when it is equivalent to CPD and a maximum value of d2 − 1, when it is

maximally non-Markovian. Thus, higher the value of DONM, stronger is the effect of

non-Markovianity.

6.4 Applications of the formalism

In this section, using numerical simulations, we estimate the minimum value of DONM

of a number of commonly used dynamics.

1For any PQof the formI1, if ρt = Λt [ρ] is the time evolved state of ρ after time t, consider theCPTPmap
Tρt to beTρt [X] = Tr[X]ρt . Therefore, for any t > s,ΦI1

t {ρ} = I1{ρt } = I1{T[ρs]} ≤ I1{ρ(s)} = ΦI1
s {ρ}.

Hence Λt is 1-S Markovian.
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6.4.1 Eternal non-Markovianity in qubits

Consider the qubit dynamics known as eternal non-Markovian [112] dynamics, given by

Λt[ρ] =
3∑

i=0
qi (t)σi ρσi, (6.12)

where q0(t) = 1+e−γt
2 , q1(t) = q2(t) = 1−e−γt

4 , q3(t) = 0, and σi’s are Pauli matrices with

σ0 = 1. Consider a PQ of the form I4
A, as given in Eq. (6.2), with A = {Ai}

3
i=0 to be of

the following form

A0 =
*..
,

1 0

0 0

+//
-

; A1 =
*..
,

0 1

0 0

+//
-

(6.13)

A2 =
*..
,

0 0

1 0

+//
-

; A3 =
*..
,

0 0

0 1

+//
-

(6.14)

We then consider an ensemble

E =
{1
4

; ρ0;
1
4

; ρ1;
1
4

; ρ2;
1
4

; ρ3
}
, (6.15)

where ρi =
1
2 (1 + xiσx + yiσy + ziσz) and xi = ri sin θi cos φi, yi = ri sin θi sin φi and

zi = ri cos θi. Here we consider

r0 = 0.8 , θ0 = 0.9π , φ0 = 3.1π; (6.16)

r1 = 0.5 , θ1 = 0.2π , φ1 = 1.8π; (6.17)

r2 = 0.3 , θ2 = 1.9π , φ2 = 0.3π; (6.18)

r3 = 0.9 , θ3 = 1.3π , φ3 = 2.1π; (6.19)

We now plot the dynamic PQ ΦI4
A

t (E ) as a function of time, as given in Fig 6.2(d), and

find that the dynamics fails to be 4-S Markovian. As a result, we conclude DONM(Λt)
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is at least 1. Also note that, as Λt is invertible and P-divisible [113], it must also be 2-S

Markovian [32]. Thus DONM of Λt is at most 2.

Figure 6.2: Violation of: (a) 2-S Markovianity class, as discussed in subsection 6.4.3(b),
(b) 2-SMarkovianity class, as discussed in subsection 6.4.3(a), (c) 5-SMarkovianity class,
as discussed in subsection 6.4.2, (d) 4-S Markovianity class, as discussed in subsection
6.4.1.

6.4.2 Non-Markovianity of Weyl channels

We consider the generalization of Pauli channels to d−dimensional space [113], given by

Λt[ρ] = e−dt ρ + (1 − e−dt )Φ̄[ρ], (6.20)

where,

Φ̄ =
1
d

(Φ1 + · · · + Φd), (6.21)
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where we have,

Φα =

d−1∑
l=0

P(α)
l ρP(α)

l ; α = 1, . . . , d. (6.22)

Here, P(α)
l = |ψ (α)

l 〉 〈ψ
(α)
l |, where {|ψ

(α)
0 〉 , . . . , |ψ

(α)
d−1〉} for α = 1, . . . , d along with the

computational basis {|0〉 , . . . , |d − 1〉} forms mutually unbiased bases (MUB) in d− di-

mension. The set of MUB’s other than the computational basis for a prime dimension p

is given by

〈k |ψαl 〉 =
1
√

d
e(2πi/p)(αk2+lk), (6.23)

for α = 1, . . . , p and k, l = 0, . . . , p− 1 [114,115]. Here we consider d = 3. Now consider

a PQ of the form I5
A where A = {Ai}

4
i=0 is given by

A0 =

*......
,

0.197607 0.636578 0.360871

0.501448 0.103937 0.429824

0.796486 0.149248 0.347865

+//////
-

; A1 =

*......
,

0.650907 0.287493 0.564978

0.71768 0.698053 0.355613

0.811352 0.828574 0.465072

+//////
-

A2 =

*......
,

0.102362 0.487076 0.215023

0.159078 0.0562856 0.951697

0.603284 0.382475 0.272579

+//////
-

; A3 =

*......
,

0.777797 0.503384 0.093342

0.006149 0.27209 0.756466

0.958651 0.665264 0.285476

+//////
-

A4 =

*......
,

0.736385 0.0201729 0.946703

0.315758 0.624188 0.724125

0.372077 0.593007 0.113422

+//////
-

.

Consider the ensemble,

E =
{1
5

; ρ0;
1
5

; ρ1;
1
5

; ρ2;
1
5

; ρ3;
1
5

; ρ4
}
, (6.24)
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where,

ρ0 =

*......
,

0.539296 0.048893 −0.152769

0.048893 0.126133 0.072201

−0.152769 0.072201 0.334571

+//////
-

; ρ1 =

*......
,

0.336771 −0.186573 −0.249316

−0.186573 0.253417 0.024165

−0.249316 0.024165 0.409812

+//////
-

ρ2 =

*......
,

0.365003 0.044078 −0.0102

0.044078 0.305657 0.063467

−0.0102 0.063467 0.32934

+//////
-

; ρ3 =

*......
,

0.218123 −0.111708 −0.120676

−0.111708 0.323393 −0.092277

−0.120676 −0.092277 0.458484

+//////
-

ρ4 =

*......
,

0.153128 0.185705 0.025751

0.185705 0.338135 −0.103136

0.025751 −0.103136 0.508737

+//////
-

.

We now plot the dynamic PQ of ΦI5A as a function of time in Fig 6.2(c), and conclude

that the dynamics fails to be 5-S Markovian. As a result, DONM(Λt) must be at least 3.

6.4.3 Some other qubit dynamics

Consider once again the dynamics given in Eq. (6.12). In this case, we choose

qi (t) = αi[1 − q0(t)] ; i = 1, 2, 3, (6.25)

where αi ≥ 1 and α1 + α2 + α3 = 1. Note that, we must have p0(0) = 1. We consider

two choices of dynamics with the following forms: (a) q0(t) = 1/(1 + t), (b) q0(t) =

(1 + cos t)/2.
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(a) In the first case, we consider a PQ of the form I2
A with A = {A0, A1}, where

A0 =
*..
,

0.676533 0.143323

0.530258 0.940163

+//
-
,

A1 =
*..
,

0.420843 0.281129

0.933353 0.368185

+//
-
.

We consider an ensemble,

E =
{1
2

; ρ0;
1
2

; ρ1
}
, (6.26)

where, ρi =
1
2 (1 + xiσx + yiσy + ziσz) and xi = ri sin θi cos φi, yi = ri sin θi sin φi and

zi = ri cos θi, and we consider

r0 = 1 , θ0 = 0, φ0 = 0; (6.27)

r1 = 1 , θ1 = 3.5π , φ1 = 0; (6.28)

(6.29)

On plotting the dynamic PQ ΦI2
A

t with time, as given in Fig. 6.2(b), we find the dynamics

is not 2-S Markovian.

(b) For this case, we choose the same ensemble as in Eq. (6.26), but the form of PQ is I2
A

with A = {A0, A1}, where

A0 =
*..
,

0.38592 0.922887

0.0302912 0.574226

+//
-
,

A1 =
*..
,

0.590118 0.271617

0.998843 0.728935

+//
-
.

The plot of dynamic PQ ΦI2
A

t versus time in Fig 6.2(a) shows that, for this case also the
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dynamics fails to be 2-S Markovian.

Hence in both cases (a) and (b), DONM(Λt) is 3, which is also the maximum value

DONM can take for qubit dynamics.

6.5 Chapter summary

In this chapter, we extended the GIB to image non-increasing dynamical maps. We

also showed that for qubit dynamical maps, GIB provides a complete description of

Markovianity. By introducing a new system based PQ, we showed that a description of

DONM could be given for image non-increasing and qubit dynamical maps, which would

take a minimum value of zero and a maximum value of d2 − 1 (d = 2 for qubits). We

showed that higher the value of DONM, stronger is the effect of memory in the dynamics.

We also estimated the DONM of a number of commonly used dynamics. We expect this

formalism will shed more light into the structure of dynamical maps and DONM will

serve useful in characterizing strength of non-Markovianity of dynamical maps.
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Chapter 7

Summary and future directions

In this thesis, we studied phenomenological and foundational aspects on non-Markovianity.

We first chose a model of spin systems which closely resembles the spin bath model for

low temperatures. In this model, a system qubit interacts with a sea of environment qubits,

where the coupling between the system and individual environment qubit is determined by

a coupling function. The coupling function can depend on time as well as site (location of

individual environment qubit). We studied the model for different forms of coupling func-

tion. For a number of forms, exact solution of the system dynamics could be analytically

found for arbitrary number of environment qubits. We also studied the non-Markovian

nature of the dynamics for different coupling forms. For a specific time and site dependent

form of coupling, we found a transition from non-Markovian to Markovian regime. We

studied the critical values of coupling strength which showed the transition.

As a future direction, we hope this approach can be extended to incorporate other forms

of physically realizable couplings. This would help predicting behavior of the spin-bath

model in different physical scenarios. As for example, some of the spin-bath models can

be realized, in principle, with the present day technology. For those models, our study

will provide directions towards studying the non-Markovian to Markovian transition of

the system dynamics. Our study could also be extended to environments consisting of a
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collection of harmonic oscillators. We also expect our approach of simplifying the form

of Hamiltonians to fit low-temperature scenarios can be applied to other models of many

body interactions.

We also provided a generalized framework for Information backflow for assessing Marko-

vianity in quantum regime. Our framework acts as an umbrella structure for a large

number, if not all, of Information backflow approaches proposed earlier in literature. We

showed that this framework is equivalent to CP-divisibility for invertible dynamical maps,

which we latter extended to qubit dynamical maps and image non-increasing dynamical

maps. As a result, for qubit dynamical maps, our framework provides a complete formal-

ism, taking into account both CP-divisibility and Information backflow. As an outcome of

this approach, we found a hierarchy of Markovianity classes that provides a degree of non-

Markovianity which captures the strength of non-Markovianity present in the dynamics.

A number of extensions of this work seems plausible:

• If the equivalence between the generalized formalism and CP-divisibility can be

extended to any non-invertible dynamical maps of higher dimension?

• If a necessary and sufficient criteria for checking if a dynamical maps falls in a

particular Markovianity class could be found?

• If master equations for each Markovianity class could be found? This would greatly

help understand and apply non-Markovianity as a resource in different information

theoretic protocols.

We expect our work would help figuring out better techniques of using Markovianity as

a resource in quantum technology. In particular, we expect our study will be useful in

developing efficient heat engine/refrigerator, efficient control of decoherence, etc.
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Appendix A

Calculation of Kraus operators

The initial state of the environment is given by

ρe(0) =
[
p |0〉 〈0| + (1 − p) |1〉 〈1|

]⊗N
=

N−1∑
n=0

pN−sn (1 − p)sn |n2〉 〈n2 | , (A.1)

where n2 is the binary equivalent of decimal number n and sn is the number of 1’s in n2.

Therefore, the time evolved system state ρs (t) is given by

ρs (t) = TrE
(
U (t, 0) ρs (0) ⊗ ρe(0) U (t, 0)†

)
=

N∑
m,n=1

Kmnρs (0)K†mn, (A.2)

where

Kmn =

√
pN−sn (1 − p)sn 〈m2 |U (t, 0) |n2〉 ,

=

√
pN−sn (1 − p)sn

{
(e−iω0t − 1) 〈m2 | χ+〉 〈χ+ |n2〉

+ (eiω0t − 1) 〈m2 | χ−〉 〈χ− |n2〉 + 1δmn
}
,

where we have used Eq. (4.17). Also note that in the above equation, U (t, 0) and

| χ±〉 are respectively system-environment operators and states, whereas |m2〉 and |n2〉 are

environment states. Moreover, the identity operator 1 is in system Hilbert space.
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Using Eq. (4.11), we have

〈m2 | χ±〉 =
1
√

2

(
δm0 |1〉 ± |0〉 〈m2 | β0〉

)
. (A.3)

Using Eq.(4.12) and E (t) = ~ω0, we get

〈m2 | β0〉 =
1
ω0

gN−log2 m(t), (A.4)

In the above equation, gN−log2 m(t) is to be interpreted as a function gx (t) given by

gx (t) =




gx (t) x ∈ {0, .., N − 1}

0 x < {0, .., N − 1}
(A.5)

Note that although in this case the coupling gn(t) is a constant, we use the time dependent

form in the above equation, as it will be later useful in deriving the Kraus operators in

other sections of chapter 4. Thus we have

Kmn =

√
pN−sn (1 − p)sn

{
e−iω0t − 1

2

(
δm0 |1〉 +

1
ω0

gN−log2 m(t) |0〉
) (
δn0 〈1|

+
1
ω0

g∗N−log2 n(t) 〈0|
)
+

eiω0t − 1
2

(
δm0 |1〉 −

1
ω0

gN−log2 m(t) |0〉
) (
δn0 〈1|

−
1
ω0

g∗N−log2 n(t) 〈0|
)
+ δmn1

}
=

cosω0t − 1
ω2

0

[
gN−log2 m(t)g∗N−log2 n(t) + δmn

]
|0〉 〈0|

− i sinω0t
gN−log2 m(t)

ω0
δn0 |0〉 〈1| − i sinω0t

g∗N−log2 n(t)

ω0
δm0 |1〉 〈0|

+
[
(cosω0t − 1)δ0mδ0n + δmn

]
|1〉 〈1|
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Appendix B

Details about the Generalized formalism

B.1 Physicality quantifiers considered so far in Literature

Most of the quantifiers, suggested in the literature, are defined on ensembles having fixed

number of elements. To fit them as valid physicality quantifiers, which are defined on

ensembles of any size, we define special forms of physicality quantifiers In
S or In

SA, which

are focused on ensembles of size n. We define, In
S (ES) = 0 and In

SA(ESA) = 0, for any

ES < F n
S and ESA < F n

SA. We now show that a large number of quantifiers considered

so far, correspond to physicality quantifiers of the form In
S or In

SA (for various values of

n) in such a way, that the physicality quantifier takes the same value as the quantifier, for

ensembles of size n. We denote Zk to be the set of positive integers from 1 to k and [a, b]

to be the closed interval of real numbers from a to b.

(i) Breuer et. al. [20] considered an equal mixture of states i.e. p1 = p2 = 1/2 and

defined distinguishability of two states as their quantifier. We define the physicality
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quantifier as,

IBLP
S {p1, p2, ρ1, ρ2} = | |ρ1 − ρ2 | |1; p1 = p2 = 1/2

= 0 ; pi , 1/2, (B.1)

where | |A| |1 = Tr
√

A†A. The Markovianity criteria, corresponding to this quanti-

fier, is popularly known as the BLP-criteria of Markovianity. It can be easily shown

that the above quantity is bounded and non-increasing under CPTP maps [97].

Hence, we see IBLP
S is a particular form of I2

S .

(ii) Rajagopal et. al. [85] also considered a form that corresponds to I2
S . They took

equal mixture of two states and used fidelity as their measure of non-Markovianity

i.e p1 = p2 = 1/2. We slightly modify their definition and define the physicality

quantifier in the following form,

IFid
S {p1, p2, ρ1, ρ2} = 1 − ||

√
ρ1
√
ρ2 | |1; p1 = p2 = 1/2

= 0 ; pi , 1/2, (B.2)

It is easy to show that IFid
S lies in the interval [0, 1] and non-increasing under CPTP

maps [85, 97].

(iii) Chen et. al. used temporal steering weight (TSW) [86] to quantify Markovianity.

In this setting Alice performs measurement Ma |x , ( a ∈ Zm1 , x ∈ Zm2) on a system

state , creating an ensemble {p(a |x), ρa |x }a |x . The ensemble is then passed through

a dynamical map Λt and the TSW of the output ensemble is calculated at each

instant t. It was shown in [86] that TSW is non-increasing under CPTP maps. Also,

TSW refers to maximum value of µ in Eq. (4) of [86]. Therefore, it is evident from

the construction that 0 ≤ µ ≤ 1. Thus we see, TSW corresponds to a physicality

quantifier of the form Im
S , where m = m1m2.

(iv) Dhar et. al. [87] used interferometric power for their criteria of Markovianity. It can
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be shown to be non-increasing under CPTP maps [87]. Also, for any system-ancilla

state, interferometric power is calculated by optimizing over local unitary operations

on the ancilla side [116]. Therefore, it can be inferred that interferometric power is

bounded. Hence, interferometric power is a valid physicality quantifier and is of the

form I1
SA .

(v) He et. al. introduced a measure of non-Markovianity based on local quantum

uncertainty (LQU) [88]. It can be shown that LQU is non-increasing under CPTP

maps. Also note, as LQU is determined though minimization of a bounded function

over unitaries, it is evident that LQU is bounded [117]. Hence we conclude, LQU

corresponds to a physicality quantifier of the form I1
SA.

(vi) Luo et. al. [30] used quantum mutual information (QMI) as their quantifier. The

corresponding physicality quantifier is

IQMI
SA (ξ) = S(ξS) + S(ξA) − S(ξ), (B.3)

where ξ ∈ P+(HS ⊗ HA), ξS/A = TrA/S (ξ) are reduced density matrices and

S(ρ) = −ρ log ρ is the usual von Neumann entropy. QMI is known to be bounded

[118] and non-increasing under CPTP maps [119]. Note that IQMI
SA is a special form

of I1
SA.

B.2 Detailed proof of Theorem 1

Proof. Assume Λt is n-SA-Markovian. For any system based physicality quantifier In
S ,

we define a real valued function In
SA on FSA, such that In

SA(ESA) = In
S (ES), where ES =

{pi; ρi}, ESA = {pi; ξi} andTrA(ξi) = ρi. This implies In
SA(ESA) = 0 for ESA < F n

SA and for

any CPTPmapT ∈ T (HS,HS), we get In
SA{pi; (T ⊗ I)[ξi]} = In

S {pi; T[ρi]} ≤ In
S {pi; ρi} =

In
SA{pi; ξi}. Also note, as In

S is bounded, In
SA must also be bounded. Therefore, we see
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for any physicality quantifier In
S on the system, there exists a physicality quantifier on

system-ancilla, which is of the form In
SA. These imply ΦIn

SA
t

{
pi; ξi

}
= Φ

In
S

t
{
pi; ρi

}
(see

Eqs. (5.4) and (5.5)). Thus, monotonic decrease of ΦIn
SA

t implies monotonic decrease of

Φ
In
S

t . Thus, Λt is n-S-Markovian. �

B.3 Detailed proof of Theorem 2

Proof. Note as Λt is invertible, it is also divisible i.e. it can be decomposed in the form

of Eq. (3.6). Moreover, the intermediate evolutions Vt,s must also be trace preserving for

any t > s.

(i) =⇒ (ii). Consider any hermitian operator H ∈ L(HS ⊗ HA). As Λs is an

invertible and positive map for any s > 0, there exists a hermitian operator H̃ such that

(Λs ⊗ I)[H̃] = H . Also from [84], we know that any hermitian operator can be written

as a positive number multiple of a Helstrom matrix i.e. H̃ = λ(p1ξ1 − p2ξ2) for λ > 0,

ξ1, ξ2 ∈ P+(HS ⊗ HA) and probabilities p1, p2. As Λt is GTDE-Markovianity, for any

t > s, we get | |(Vt,s ⊗ I)[H]| |1 = | |(Λt ⊗ I)[H̃]| |1 ≤ ||(Λs ⊗ I)[H̃]| |1 = | |H | |1 for any

hermitian H . Since Vt,s is trace preserving, this implies Vt,s ⊗ I must be a positive map for

any t > s [98]. Therefore, Vt,s is CP for any t > s. Thus, Λt is CPD.

(ii) =⇒ (iii). As Λt is CPD, Vt,s is CPTP. Hence from condition 1 and Eq. (5.5),

we get ΦISA
t = ISA

{
pi; (Vt,s ⊗ I)(Λs ⊗ I)[ξi]

}
≤ Φ

ISA
s for any form of ISA and any

ensemble ESA = {pi; ξi}. Therefore, Λt is SA-Markovian. Hence, from theorem 1, Λt is

IB-Markovian.

(iii) =⇒ (iv). This follows from the definition of SA-Markovianity.

(iv) =⇒ (i). This is trivial as IGT DE
SA in Eq. (5.7), given is of the form I2

SA. �
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B.4 Detailed proof of Lemma 1

Proof. Note, as Λt is GTD-Markovian it is divisibile i.e. it can be expressed as Eq. (3.6)

(see Proposition 2 of [26]). First Alberti et. al. [99] and latter Huang et. al. [101] showed

that the necessary and sufficient condition for a collection of qubit states ρ1, ρ2, ρ
′
1, ρ
′
2 ∈

P+(HS ) to have a CPTP map T12 connecting them i.e. T12[ρi] = ρ′i ; i = 1, 2, is

| |ρ′1 − xρ′2 | |1 ≤ ||ρ1 − xρ2 | |1 for any x ≥ 0. Since, p1 and p2 in the GTD quantifier in Eq.

(5.6) are probabilities, without loss of generality we can choose p1 > 0. For any t > s, let

us now choose ρ′i = Vt,s[ρi] ; i = 1, 2, and x = p2/p1. Therefore, if Λt is GTD-Markovian,

the necessary and sufficient condition for the existence of T12 connecting ρ1, ρ2, ρ
′
1 and ρ

′
2

is satisfied for any t > s. Hence, we conclude there must exist a CPTP map T12 satisfying

Eq. (5.8). �
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