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Summary

The focus of this thesis is the application of SU(3)-flavor symmetry to decompose the

decay amplitudes of two body hadronic charmless bottom baryon decays. The decay

amplitudes are conveniently expressed in terms of SU(3)-invariant amplitudes and ap-

propriate SU(3) Clebsch-Gordon coefficients. To begin with, the most general effective

Hamiltonian is considered that connects an initial anti-triplet bottom baryon to the final

state octet or decuplet baryon and a pseudoscalar meson. The number of independent

SU(3)-invariant amplitudes equals the total number of distinct decay modes in this case

resulting in no relations between the decay modes. Subsequently, the dimension-6 effec-

tive Hamiltonian responsible for hadronic weak decays of b-quarks is assumed. With this

choice, a significant reduction in the number of independent SU(3)-invariant amplitudes

is observed which indicates that there are several amplitude relations between different

decay modes. Of particular interest are the amplitude relations between two decay modes

that can be translated to decay rate and CP-asymmetry relations. The effect of SU(3)-

breaking on these relations is also explored. In absence of robust theoretical predictions,

the decay rate and CP-asymmetry relations derived using SU(3)-flavor symmetry pro-

vides a qualitative understanding of the bottom baryon hadronic decays that can also be

tested in experiments in near future.
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Synopsis

The Standard Model (SM) of particle physics has had unprecedented success when it

comes to describing the fundamental interactions of elementary particles. Over the years,

the evidence in favor of the SM has only grown with more and more experimental break-

throughs culminating in the discovery of the Higgs boson, the last missing link of the

puzzle. Despite of its overwhelming triumph, the SM fails to provide satisfactory explana-

tions to a number of theoretical issues and empirical observations starting with the matter-

antimatter asymmetry of the observable universe. In fact, the baryon-to-photon ratio, a

measure of the matter-antimatter asymmetry, inferred from primordial nucleosynthesis

and anisotropies in cosmic microwave background is many orders of magnitude higher

than the SM predictions. One of the necessary conditions for such matter-antimatter

asymmetry is sizable CP-violation at high energies. However, the only known source

of CP-violation in the SM arising from the complex phase in the Cabibbo-Kobayashi-

Maskawa (CKM) matrix is inadequate to explain the observed matter-antimatter asym-

metry. A number of beyond Standard Model (BSM) theories have been postulated to

address this issue by adding new degrees of freedom at a high energy scale. This may

also resolve some of the other unanswered questions in the SM like the existence of dark

matter, instabilities in the Higgs mass and Higgs vacuum expectation value and tiny neu-

trino masses to name a few. Besides looking for the imprints of new degrees of freedom

actively in high energy collider experiments, one can also study its e↵ects on low energy
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loop mediated processes in the SM.

Direct and indirect CP violation in hadronic B-meson decays have been measured exten-

sively in BABAR, Belle and most recently at LHCb. In a number of cases, these mea-

surements are in good agreements with the theoretical predictions. Naturally, one expects

b-baryon CP-asymmetries [1–3] to be of similar magnitude as observed in B-meson de-

cays since the underlying quark level transition are the same for the two cases. More-

over, a non-vanishing CP-asymmetry is a measure of direct CP violation as baryons and

antibaryons do not undergo mixing due to baryon number conservation. So far, all CP-

asymmetry measurements in bottom baryon decays [4–10] have been consistent with CP

conservation hypothesis. The situation may change, however, when the statistical errors

go down as LHCb gears up to analyze a significant number [11] of hadronic b-baryons

decays in its subsequent runs [12].

In absence of robust theoretical predictions for bottom baryon hadronic decay, we can still

use the approximate symmetries of the SM to relate di↵erent processes once some of them

are observed in experiments. Since, any high-energy BSM theory must reproduce the

correct low energy (energy scale ⇠ mb) behavior and symmetries, these relations should

remain una↵ected. In particular, the SU(3)-flavor symmetry of the light quarks have

successfully explained a number of experimental observations in the past. We focus on

hadronic bottom baryon charmless decays using SU(3) symmetry to a light octet baryon-

octet meson [13] or decuplet baryon-octet meson [14] pair.

In this thesis we analyze all possible strangeness changing and strangeness preserving

two body weak decays of bottom baryons. The general formalism allows us to SU(3)

decompose decay amplitudes in terms of a set of independent SU(3)-reduced amplitudes.

As the number of possible decays are higher than number of independent SU(3) param-

eters, we can derive all possible amplitude sum rules. We further derive CP-asymmetry

relations from this amplitude sum rules that are expected to hold to a given accuracy in the
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SM. The implications of SU(3)-breaking but isospin conserving e↵ects are also pointed

out in detail. We hope not only to test these relations but also to estimate the unknown

SU(3) parameters directly form experimental data as it becomes available in future.

SU(3)-analysis of two-body hadronic decays of b-baryons

The SU(3) symmetry is an approximate symmetry [15] of the SM that considers the light

quarks namely up (u), down (d) and strange (s) belonging to a triplet of SU(3)-flavor sym-

metry. Mesons and baryons which are bound states of a quark-antiquark pair and three

quarks respectively can also be arranged such that they transform as particular represen-

tations under SU(3)-flavor. Despite of not being an exact symmetry, SU(3)-flavor can

be used to derive amplitude relations [16–18] between di↵erent decay modes which hold

remarkably well in practice. The SU(3) decomposition of physical amplitudes describing

a decay process involves writing it in terms of reduced matrix elements of explicit SU(3)

operators with appropriate coe�cients. The procedure [18] is an application of Wigner-

Eckart theorem for the SU(3) group where the reduced matrix elements are all possible

SU(3) invariants with Clebsch-Gordon (CG) coe�cients connecting the basis involving

physical states to the group theoretic basis.

The case of interest, namely all possible strangeness preserving (�S = 0) and strangeness

changing (�S = �1) transitions of an anti-triplet (3̄ of SU(3)) bottom baryon to charmless

a) octet baryon and an octet meson [13] b) decuplet baryon and an octet meson final states

are considered [14]. The allowed SU(3) representations of the final state being an octet

baryon and an octet meson or a decuplet baryon and an octet meson is given below;

8⌦8 = 1�81�82�10�10�27, (1)

10⌦8 = 8�10�27�35. (2)

The most general Hamiltonian [19]H which connects the initial (i) and final ( f ) states via
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the matrix elements h f |H|ii, consists of exactly those representations [20] R appearing in

f ⌦ ī, where the labels i and f denote both physical states and SU(3) representations. The

expression of the amplitudes in terms of reduced SU(3) amplitudes is given as,

A(i! fb fm) = (�1)I3�
Y
2�

T
3

X

{ f ,R}
Yb+Ym=Y f ,Y f

�Yi=YH

Ib
3+Im

3 =I f
3 , I

f
3�Ii

3=IH
3

C
Ib
3 Im

3 I f
3

Ib Im I f

0
BBBBBBBBBB@

fb fm f

(Yb, Ib) (Ym, Im) (Y f , I f )

1
CCCCCCCCCCA

0
BBBBBBBBBB@

f ī R

(Y f , I f ) (�Yi, Ii) (YH , IH)

1
CCCCCCCCCCA
C

I f
3 �Ii

3 IH
3

I f Ii IH hf k RI k ii, (3)

where, Ca,b,c
A,B,C are the SU(2) Clebsch-Gordon coe�cients and

0
BBBBBBBBBB@

Ra Rb Rc

(Ya, Ia) (Yb, Ib) (Yc, Ic)

1
CCCCCCCCCCA
. (4)

are the SU(3) isoscalar coe�cients [21,22] obtained by coupling the representations Ra⌦

Rb! Rc. T is the triality of the initial state conjugate i and the phase factor appearing in

front ensures that correct signs are assigned to the individual initial b-baryon anti-triplet.

Given a form of e↵ective Hamiltonian (He↵), it can be SU(3) decomposed,

He↵ =
X

{Y,I,I3}
R

F
{Y,I,I3}
R RI, (5)

where F {Y,I,I3}
R depends on the SU(3) CG coe�cients appearing in front of the SU(3) rep-

resentations (RI). Moreover F {Y,I,I3}
R also contains additional factors entering Eq. (4.8) in

form of Wilson coe�cients and CKM elements. It is also important to note that by know-

ing the dynamical coe�cients for di↵erent isospin values in a given SU(3) representation,

one can drop the isospin Casimir label (I) and express the Wigner-Eckart reduced matrix
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element hf k R k ii, in its usual form, independent of the isospin I label. By using com-

pleteness of SU(3) CG coe�cients up to a phase factor,

hf k RI k ii = F {Y,I,I3}
R

r
dim f
dim R|                {z                }

dynamical Coe↵. of H

hf k R k ii. (6)

Apriori, the SU(3) analysis of these decays can be performed without a particular set of

dynamical assumptions while accounting for the e↵ects of an arbitrarily broken SU(3)

flavor symmetry where the number of SU(3)-reduced amplitudes exactly match the num-

ber of decay modes. In practice, the lowest order e↵ective Hamiltonian [19] for charm-

less b-baryon decays is assumed consisting of parts [20] that transform as 3, 6, 15 under

SU(3)-flavor and all the higher SU(3) representations end up not contributing as long as

exact SU(3) symmetry is considered. For quick reference, the SU(3) decomposition of

the tree, gluonic and electroweak part of the e↵ective Hamiltonian are given as,

p
2HT

4GF
=

(
�s

u

"
(C1+C2)

2

 
�151�

1
p

2
150�

1
p

2
3(6)

0

!
+

(C1�C2)
2

✓
61+3(3)

0

◆#

+ �d
u

"
(C1+C2)

2

 
�

2
p

3
153/2�

1
p

6
151/2�

1
p

2
3(6)

1/2

!
+

(C1�C2)
2

✓
�61/2+3(3)

1/2

◆#)
,

(7)

p
2Hg

4GF
=

⇢
��s

t


�
p

2(C3+C4)3(6)
0 + (C3�C4)3(3)

0

�
� �d

t


�
p

2(C3+C4)3(6)
1/2+ (C3�C4)3(3)

1/2

�

� �s
t


�
p

2(C5+C6)3(6)
0 + (C5�C6)3(3)

0

�
� �d

t


�
p

2(C5+C6)3(6)
1/2+ (C5�C6)3(3)

1/2

��
,

(8)
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p
2HEWP

4GF
=

(
��s

t

"
(C9+C10)

2

 
�

3
2

151�
3

2
p

2
150+

1
2
p

2
3(6)

0

!
+
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2

 
3
2

61+
1
2

3(3)
0

!#

��d
t

2
666664
(C9+C10)

2

0
BBBBB@�
p

3153/2�
1
2

r
3
2

151/2+
1

2
p

2
3(6)

1/2

1
CCCCCA+

(C9�C10)
2

 
�

3
2

61/2+
1
2
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1/2

!3777775

9>>=
>>; .

(9)

This restricts the number of independent SU(3)-reduced amplitudes to ten for the octet

baryon-octet meson

h81 k 3 k 3i, h82 k 3 k 3i, h81 k 6 k 3i, h82 k 6 k 3i, h81 k 15 k 3i

h82 k 15 k 3i, h10 k 15 k 3i, h10 k 6 k 3i, h27 k 15 k 3i, h1 k 3 k 3i (10)

and five for decuplet baryon-octet meson

h8 k 3 k 3i, h8 k 6 k 3i, h8 k 15 k 3i

h10 k 15 k 3i, h27 k 15 k 3i (11)

final states. The total number of decay modes for octet baryon-octet meson and decuplet

baryon-octet meson final states are 44 and 40 respectively. We have also discussed SU(3)-

singlet meson final states that need to be considered separately. In addition, we provide an

alternative approach in terms of familiar quark flavor-flow diagrams introduced for meson

decays specifically for the study of bottom baryons into a decuplet baryon and an octet

meson. While the SU(3)-flavor decomposition of decay amplitudes and the diagrammatic

approach are completely equivalent, the latter can sometimes highlight the dynamical

picture of the processes as we found out in the last case. Regardless of the method,

the number of distinct decay modes are higher than the number of independent SU(3)-

parameters resulting in several amplitude relations between di↵erent decay modes. The
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relations for the b-baryon decaying to a) octet baryon-octet meson case [13];

A(⇤0
b! ⌃

�K+) =A(⌅0
b! ⌅

�⇡+), A(⇤0
b! p+⇡�) =A(⌅0

b! ⌃
+K�),

A(⌅�b ! nK�) =A(⌅�b ! ⌅
0⇡�), A(⌅�b ! ⌅

�K0) =A(⌅�b ! ⌃
�K

0
),

A(⌅0
b! ⌅

�K+) =A(⇤0
b! ⌃

�⇡+), A(⌅0
b! ⌃

�⇡+) =A(⇤0
b! ⌅

�K+), (12)

A(⌅0
b! ⌃

+⇡�) =A(⇤0
b! p+K�), A(⌅0

b! nK
0
) =A(⇤0

b! ⌅
0K0),

A(⌅0
b! p+K�) =A(⇤0

b! ⌃
+⇡�), A(⌅0

b! ⌅
0K0) =A(⇤0

b! nK
0
),

b) decuplet baryon-octet meson case [14];

A(⇤0
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0+⇡�) =A(⌅0
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+K�), A(⇤0
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0K0),

A(⇤0
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+⇡�) =A(⌅0
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0+K�), A(⇤0
b! ⌃

00K0) =A(⌅b
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0+⇡�) = �A(⇤0
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b! ⌅
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1
p

2
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1
p

2
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b! ⌃
0
�K+) =A(⌅0

b! ⌃
0
�⇡+) =A(⌅0

b! ⌅
0
�K+),

A(⌅�b ! ⌃
0
�K0) = �

p
2A(⌅�b ! ⌅

0
�⇡0) =

r
2
3
A(⌅�b ! ⌅

0
�⌘8) = �

1
p

3
A(⌅�b !⌦

�K0)

=
1
p

3
A(⌅�b ! �

0
�K0) =

r
2
3
A(⌅�b ! ⌃

0
�⌘8) = �A(⌅�b ! ⌅

0
�K0) = �

p
2A(⌅�b ! ⌃

0
�⇡0).

are obeyed by both the tree and penguin part of the decay amplitudes. However once we

include SU(3)-breaking e↵ects, all the above mentioned relations are broken except the

one given below,

A(⇤0
b! �

0K0) = �A(⇤0
b! �

+K�) (14)

Two interesting isospin triangle relations for bottom baryons decaying to a decuplet baryon-
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octet meson pair,

2A(⇤0
b! ⌃

00⇡0)+A(⇤0
b! ⌃

0
�⇡+)+A(⇤0

b! ⌃
0+⇡�) = 0, (15)

p
6A(⇤0

b! �
0⇡0)+A(⇤0

b! �
�⇡+)+

p
3A(⇤0

b! �
+⇡�) = 0, (16)

continue to hold even after SU(3)-breaking e↵ects are considered. An analogous triangle

relation that survives SU(3)-breaking e↵ects for bottom baryons decaying to an octet

baryon-octet meson pair is,

2A(⇤0
b! ⌃

0⇡0)+A(⇤0
b! ⌃

�⇡+)+A(⇤0
b! ⌃

+⇡�) = 0. (17)

The decays mentioned Eq (12) and Eq (5.32) receive contribution from multiple partial

waves [23],

A = VubV⇤uqA
l
tree+VtbV⇤tqA

l
penguin (18)

where VubV⇤uq, VtbV⇤tq are the CKM elements, q = {d, s} and l = 0,1 or l = 1,2 for the octet

baryon-octet meson or decuplet baryon-octet meson final state. For each partial wave a

�a
CP relation can be derived based on the tree and penguin amplitude relations since,

�l
CP(Bb! BM) = �4J⇥ Im

h
A

l⇤
tree(Bb! BM)Al

penguin(Bb! BM)
i
, (19)

J-being the Jarlskog invariant. There are additional phase space factors that are required

to translate these �a
CP relations to ACP relations which can be actually measured in ex-

periments. In the U-spin limit [24], CP violation relations can be experimentally verified

using the relation [24–27],

ACP(Bbi! B jMk)
ACP(Bbl! BmMn)

' �
⌧Bbi

⌧Bbl

BR(Bbl! BmMn)
BR(Bbi! B jMk)

, (20)

where i, j, k and l, m, n are indices corresponding to the various baryons belonging to the
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above mentioned �CP relations.

Conclusion

This synopsis contains a brief summary of our work on hadronic bottom baryon decays

using SU(3)-flavor symmetry. Our approach facilitates an SU(3) decomposition of the

decays in terms of SU(3)-reduced amplitudes without any particular set of assumptions

about the underlying dynamics. Several amplitude relations and CP asymmetry relations

are derived for bottom baryons decaying to an octet or decuplet light baryon and an octet

meson. So far, despite of the promising hints, the results [5, 6, 8] are consistent with

CP-conservation hypothesis. Once CP-asymmetry is measured in some of these related

decay modes, it can serve as a test of SU(3)-symmetry where SU(3)-breaking e↵ects can

be studied systematically. Moreover, we hope to estimate the unknown SU(3) parameters

directly from the data once su�cient number of these decays are measured in near future.

Plan of the thesis

• The first chapter will contain an overview of the symmetries of the Standard Model.

• The second chapter will introduce di↵erent representations of SU(3) and their ten-

sor products.

• In chapter three we use SU(3)-flavor symmetry to categorize decays of anti-triplet

bottom baryons to an octet baryon and an octet meson.

• In chapter four we extend our analysis by studying decays of anti-triplet bottom

baryons to a decuplet baryon and an octet meson using SU(3)-flavor symmetry.

• Chapter five will contain a discussion of the results obtained in the thesis and gen-

eral outlook.
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Chapter 1
Introduction

The discovery of Higgs boson in 2012 has ushered in a new era of particle physics es-

sentially completing the Standard Model picture of elementary particles. This journey of

unearthing the fundamental interactions was far from straightforward and looking back, it

is almost hard to believe how far we have come from the discovery of the first elementary

particle, namely the electron in 1897 by J.J. Thompson. While experimental advances

have brought a paradigm shift in the way we understand the universe today, the central

role of symmetries as the underlying physical principle has largely remained unchanged.

In fact, the Standard Model is a fascinating tale of exact symmetries and broken symme-

tries. It all began with Lorentz symmetry that ensured universality of physical laws in all

inertial frames. Then electormagnetic interactions were cast in the language of quantum

field theory as a manifestation of abelian gauge symmetry. The invariance principle under

local transformations of the U(1) group demanded a massless gauge field, the photon.

The Fermi theory of weak interaction [28], proposed to explain nuclear �-decays, did not

fit into a symmetry principle at first. The extremely short range interaction required a

massive mediator which was in tension with the gauge symmetry principle. In addition,

experimental observations indicated that weak interactions maximally violated parity (P)

and charge-conjugation (C) symmetry which were presumed to be good symmetries of

nature [29, 30]. The resolution to this conundrum was the remarkable proposal [31, 32]

12
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of a local S U(2)⌦U(1) symmetry spontaneously broken down to the familiar U(1) elec-

tromagnetic gauge symmetry. In the process, the mediators of weak interaction become

massive while the photon’s mass remains identically zero. A major breakthrough on our

understanding of strong interactions came when fermionic quarks were proposed [15] as

constituents of baryons and mesons, collectively known as hadrons. Initially, three quark

’flavors’ connected by a SU(3)-flavor symmetry, were introduced to explain the structure

of hadrons. While constructing a completely antisymmetric wave function of a baryon

made out of three identical quarks, it was apparent that there must be yet another sym-

metry under which the quarks are antisymmetric. This was a compelling argument [33]

in favor of a SU(3) symmetry which was later found to be gauge symmetry [34] that de-

scribed quantum chromodynamics.

While the symmetries shed light on the structure of the SM, we still need to assign spe-

cific values to the parameters of the model [35] in order to make numerical predictions.

Assuming massless neutrinos, the SM has 18 unknown parameters that can only be fixed

from experimental inputs. The complex phase is one such parameter that is solely respon-

sible for all CP-violating phenomena in the SM. Weak interactions not only violate C and

P individually but also CP which makes CP non-conservation a feature of the SM [36,37].

However, unlike C and P violation which is due to the chiral nature of weak interactions,

there is no dynamical reason for CP violation in SM. Moreover, the CP violation from

the SM is inadequate to explain the matter-antimatter asymmetry of the observable uni-

verse. Since a potential enhancement in CP-asymmetry observations cannot be ruled out,

we look for those e↵ects in hadronic b-baryon decays. A non-vanishing CP-asymmetry

measurement in b-baryon decays is the first step towards that goal. It is also a mea-

sure of direct CP violation as baryons and antibaryons do not undergo mixing due to

baryon number conservation. So far, all CP-asymmetry measurements in bottom baryon

decays [5, 6, 8–10] have been consistent with CP conservation hypothesis. The situation

may change, however, when the statistical errors go down as LHCb gears up to analyze a

significant number [11] of hadronic b-baryons decays in its subsequent runs [12, 38, 39].
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The theoretical predictions for CP-violation in bottom baryon hadronic decay is also at an

early stage. The perturbative QCD (pQCD) [40, 41] and QCD factorization (QCDF) [42]

methods are used extensively to make quantitative predictions for decay rates and CP

asymmetries in two body nonleptonic B-meson decays. Both of these approaches rely on

the fact that the calculation of the hadronic matrix element of B meson decays into two

light hadrons can be factorized into a part containing the QCD form factor and another

new, unknown, non-local form factor. As it turns out, in a number of these non-leptonic

two-body B-decays, the decay matrix element is dominated by the term proportional to

the QCD form factor (accounting for the factorizable contribution) whereas the nonlocal

form factor term encoding the non-factorizable e↵ect introduces subleading perturbative

corrections. Moreover, the QCD form factor, calculated in pQCD, and treated as an ex-

ternal input parameter in case of QCDF, are in good agreement with each other resulting

in similar numerical predictions. In case of bottom baryon charmless decays, ⇤0
b ! p⇡

and ⇤0
b ! pK transitions are studied in pQCD [2] and to a somewhat lesser extent in

QCD factorization [43] approach. In the conventional pQCD scenario, the factoziable

contribution are approximately two orders of magnitude smaller than the non-factorizable

contribution [2]. In contrast, the branching fraction of ⇤0
b! p⇡, calculated by using light

cone sum rule form factors [44], indicate a dominant factorizable contribution when com-

pared to the experimental data allowing only moderate non-factorizable e↵ect.

Alternatively, one can use a general framework based on SU(3)-flavor symmetry to an-

alyze such weak decays of bottom baryons which are all decomposed in terms of a few

SU(3)-invariant amplitudes. These invariant amplitudes can be mapped to quantities that

are calculable employing pQCD or QCDF techniques. Once su�cient number of branch-

ing ratios and CP asymmetries are measured in experiments, these invariant amplitudes,

treated as fit parameters, can be determined directly from the data.
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At the same time, using SU(3)-flavor symmetry, we can acquire a qualitative understand-

ing of hadronic b-baryon decays in terms of relations between branching fractions and

CP-asymmetries of di↵erent decay modes. We will direct our e↵orts towards this goal

throughout the thesis.



Chapter 2
The Standard Model and its symmetries

It is well known that continuous symmetry operations correspond to Lie groups. The

Standard Model respects a set of local and global continuous symmetries which means

the symmetry of the SM can be expressed in terms of Lie groups. In particular, the

SM successfully describes three of the four fundamental interactions namely the strong,

weak and electromagnetic interactions using the local unitary product group SU(3)color⌦

SU(2)L ⌦U(1)Y . There are also approximate global symmetries like flavor symmetries

which are not exact but play an important role in our understanding of the results observed

in experiments. We will briefly recount the implications of all these symmetries in this

chapter [45–47].

2.1 Strong interactions

Originally proposed to restore complete antisymmetry to baryon wavefunctions, the the-

ory of strong interactions or Quantum chromodynamics (QCD) is based on the color prop-

erty of quarks. QCD is described by a local, non-abelian SU(3)color symmetry where

gluon is the mediator of strong interactions. The conserved quantity associated with this

symmetry is color. A quark for any given flavor can be represented as a triplet (3) under

16



Chapter 2: The Standard Model and its symmetries 17

SU(3)color having three colors;

q(x) ⌘

0
BBBBBBBBBBBBBBBBBB@

qr(x)

qg(x)

qb(x)

1
CCCCCCCCCCCCCCCCCCA

. (2.1)

The quark colors transform in the fundamental representation (3) under SU(3)color, that

is;

q(x)! q
0

(x) = Uq(x) = exp
h
� igs

�a

2
✓a(x)

i
q(x), (2.2)

where �a are the Gell-Mann matrices and the index a runs from 1 to 8. ✓a(x) are functions

of space-time which implies that we need to introduce eight vector boson fields namely

the gluons that transforms as an octate in the adjoint representation of SU(3)color to keep

the free Dirac Lagrangian invariant. The meaning of these di↵erent representations of

SU(3) will be clearer when they are introduced in the next chapter. The QCD Lagrangian

density involves writing all the terms that are SU(3)color-invariant,

LQCD = �
1
4

Ga
µ⌫G

aµ⌫+
X

f

q f
i

⇣
i /Di j
�m f �

i j
⌘
q f

j (2.3)

where Ga
µ⌫ is the gluon field strength tensor and q f

i are all quark flavors f with a and

i being the color index in the adjoint representation and fundamental representation of

SU(3) respectively. The di↵erent quantities introduced above are,

• /Di j : �↵(�i j@↵� igsA
↵
b T i j

b ), T i j
b = �

i j
b /2, gs being the strong coupling, .

• Ga
µ⌫(x) : @µAa

⌫(x)�@⌫Aa
µ(x)+gs f abc

A
b
µ(x)Ac

⌫(x),Aa
µ the gluon field, f abc the struc-

ture constants in the adjoint representation of SU(3).
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To preserve the local SU(3) invariance of the QCD Lagrangian described in Eq (2.3), the

gluon fieldsAµa(x) must transform as,

A
0µ
a Ta! UTaU�1

A
µ
a +

i
gs

(@µU)U�1 (2.4)

which in its infinitesimal form looks like,

A
0µ
a =A

µ
a +gs fabc✓bA

µ
c +@

µ✓a. (2.5)

It is also clear from the flavor diagonal mass term that strong force conserves the flavor of

the quark, i.e. no change of quark flavors.

2.2 Electroweak interactions

The Fermi theory of weak interaction and electromagnetism was unified into electroweak

interaction by Glashow, Weinberg and Salam using local S U(2)L ⌦U(1)Y invariance of

the SM Lagrangian. We begin by noting that, the fermions are chiral, which means the

left chiral fermion  L ⌘
(1��5)

2  and right chiral fermions  R ⌘
(1+�5)

2  transform as a

doublet of S U(2)L and a singlet under S U(2)L respectively. The conserved quantum

number is called weak isospin (T ) to distinguish it from the isospin symmetry respected

by strong interactions. In addition, the left-chiral and right-chiral fermions transform

di↵erently under U(1)Y while conserving weak hypercharge (Y). Apart from the fermions,

the transformation properties of the vector bosons and the scalar Higgs boson under local

S U(2)L⌦U(1)Y is also provided in the table

The electroweak Lagrangian density consists of all those terms which are invariant under

the S U(2)L⌦U(1)Y symmetry,

LEW =Lkin+LHiggs+LYukawa (2.6)
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Particle Generations Color Weak Isospin Hypercharge Electric

type S U(3)c S U(2)L U(1)Y Charge U(1)Q

2

Qi
L

0
BBBBBBBB@
uL

dL

1
CCCCCCCCA,

0
BBBBBBBB@
cL

sL

1
CCCCCCCCA,

0
BBBBBBBB@

tL

bL

1
CCCCCCCCA 3 T3(uL,cL, tL) = 1

2
1
3

2
3

T3(dL, sL,bL) = �1
2 �

1
3

2

Li
L

0
BBBBBBBB@
⌫eL

eL

1
CCCCCCCCA,

0
BBBBBBBB@
⌫µL

µL

1
CCCCCCCCA,

0
BBBBBBBB@
⌫⌧L

⌧L

1
CCCCCCCCA 1 T3(⌫eL,⌫µL,⌫⌧L) = 1

2 �1 0

T3(eL,µL,⌧L) = �1
2 �1

ui
R uR,cR, tR 3 1 4

3
2
3

di
R dR, sR,bR 3 1 �

2
3 �

1
3

ei
R eR,µR,⌧R 1 1 �2 �1

W±µ 1 T3(W±) = ±1 0 ±1

Z0
µ,A0
µ 1 T3(Z0,A0) = 0 0 0

Gµ 8 1 0 0

2

� =

0
BBBBBBBB@
�+

�0

1
CCCCCCCCA 1 T3(�+) = 1

2 1

T3(�0) = �1
2

Table 2.1: Representation of elementary particles under SM symmetry group

2.2.1 Kinetic term

Lkin contains all dimension-4 kinetic terms for vector bosons, fermions and fermion-

vector beson interactions,

Lkin = �
1
4

Wa
µ⌫W

aµ⌫
�

1
4

Bµ⌫Bµ⌫+
X

n

⇣
Qn

L /DQn
L+Ln

L /DLn
L+un

R /Dun
R+dn

R /Ddn
R+ en

R /Den
R

⌘
.

(2.7)

Here Wa
µ and Bµ are the massless vector bosons associated with the local S U(2)L and

U(1)Y symmetries respectively. The index a in Wa
µ runs over the three generators of the

SU(2) group given by T a = 1
2�

a, [T a,T b] = i✏abc
T

c �a being the 2⇥ 2 Pauli matrices.
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The generator of hypercharge Y in this space acts like identity and therefore commutes

with the three generators of S U(2)L. The field strength tensors are

Wa
µ⌫ = @µW

a
⌫ �@⌫W

a
µ +g✏abcWb

µW
c
⌫ , Bµ⌫ = @µB⌫�@⌫Bµ (2.8)

and /D = ��(@� + igT aWa
� +

i
2g
0

YBµ). The gauge couplings for the groups S U(2)L and

U(1)Y are g and g
0

respectively. The left-chiral quark and lepton S U(2)L doublets are

denoted by Qn
L and Ln

L respectively,

Qn
L :

0
BBBBBBBBB@
un

L

dn
L

1
CCCCCCCCCA
, Ln

L :

0
BBBBBBBBB@
⌫n

L

en
L

1
CCCCCCCCCA

(2.9)

with n = 1,2,3 being the generation index of the fermions. In contrast, the right-chiral

fermions un
R, dn

R and en
R are S U(2)L singlets, i.e T a f n

R = 0 . In order to make a direct cor-

respondence with vector bosons having definite electric charge we switch to the physical

basis by a transformation,

0
BBBBBBBBB@
W+µ

W�µ

1
CCCCCCCCCA
=

1
p

2

0
BBBBBBBBB@
1 �i

1 i

1
CCCCCCCCCA

0
BBBBBBBBB@
W1
µ

W2
µ

1
CCCCCCCCCA

0
BBBBBBBBB@
A0
µ

Z0
µ

1
CCCCCCCCCA
=

0
BBBBBBBBB@

cos✓w sin✓w

�sin✓w cos✓w

1
CCCCCCCCCA

0
BBBBBBBBB@

Bµ

W3
µ

1
CCCCCCCCCA

(2.10)

where the electric charge is given by Q = T3 +Y/2 and tan✓w =
g
0

g . The Weinberg angle

✓w is a parameter of the SM and its relation to the electric charge in fundamental units is

e = g
sin✓w

. After this transformation, Q(W±) = ±1 and Q(Z0) = Q(A0) = 0 that corresponds

to the charged W-bosons and the two neutral bosons A0 and Z0. We immediately notice

that any mass term of the form FµFµ for the vector bosons would explicitly break the

S U(2)L ⌦U(1)Y invariance of the kinetic term. Moreover, we are forbidden to write a

fermion Dirac mass term of the form m f f L fR as it also breaks S U(2)L⌦U(1)Y invarince of

the kinetic term since the right-chiral and left-chiral fermions transform di↵erently under

S U(2)L ⌦U(1)Y . At this point, we have to discuss the Higgs mechanism which solves

both of these problems and generates masses for vector bosons and fermions without
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breaking the S U(2)L⌦U(1)Y invariance at the Lagrangian level.

2.2.2 Higgs interactions

In order to not explicitly break the S U(2)L ⌦U(1)Y invariance of the electroweak La-

grangian we use the idea of spontaneous symmetry breaking (SSB). This implies that

the ground state of the theory is not invariant under S U(2)L ⌦U(1)Y while the actual

Lagrangian is still invariant under the original local symmetry. After SSB, the ground

state of the symmetry breaking field picks up a particular direction in the group space.

Clearly, if the field responsible for SSB is anything other than a scalar then the vacuum

expectation value of that field prefers a certain direction in spacetime, which would break

Lorentz invariance. Therefore, we can only introduce a scalar field � which is a doublet

under S U(2)L

� :

0
BBBBBBBBB@
�+

�0

1
CCCCCCCCCA
= 1/
p

2

0
BBBBBBBBB@
�1+ i�2

�3+ i�4

1
CCCCCCCCCA

(2.11)

and charged under U(1)Y to construct the LHiggs and LYukawa terms. The Lagrangin

density for this scalar field containing � is given by,

LHiggs = (Dµ�)†(Dµ�)�µ2(�†�)��(�†�)2 (� > 0) (2.12)

For spontaneous breaking of S U(2)L ⌦U(1)L we must have µ2 < 0 where we define the

vacuum expectation value (VEV) v;

v2 =
�µ2

�
(2.13)

is real. The potential of � is now given by, V(�) = �(|�|2� v2

2 ) where there is an infinite

number of degenerate states with minimum energy satisfying |�| = v
p

2
. By making a
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particular choice where

h�1i = h�2i = h�4i = 0, h�3i = v/
p

2 (2.14)

we see that while S U(2)L⌦U(1)Y gets broken by the ground state of �, the U(1)Q gener-

ator remains unbroken;

Qh�i =

0
BBBBBBBBB@
1 0

0 0

1
CCCCCCCCCA

0
BBBBBBBBB@

0

v/
p

2

1
CCCCCCCCCA
= 0, T a

h�i , 0. (2.15)

This unbroken subgroup is identified as U(1)EM with Q being the generator. A spon-

taneously broken continuous global symmetry gives rise to massless spin-0 Goldstone

bosons (GB) that correspond to the broken generators. In S U(2)L ⌦U(1)Y ! U(1)Q

breaking, the three massless GBs get ’eaten up’ by the longitudinal components of three

previously massless vector bosons W± and Z0. These vector bosons acquire masses as a

result. This is commonly known as the Higgs mechanism. The choice made in (2.14) en-

sures that only physical degrees of freedom appear and around the vacuum � is expanded

as,

�(x) =

0
BBBBBBBBB@

0
v+h(x)
p

2

1
CCCCCCCCCA
. (2.16)

The vector bosons get their mass from the (Dµ�†)(Dµ�) term leaving a photon massless,

mW =
1
2

gv, mZ =
v
2

q
g2+g02, mA0 = 0 (2.17)

A consequence of generating mass for vector bosons through SSB without breaking

S U(2)L⌦U(1)Y explicitly also solves the problem of renormalizability of a theory having

non-Abelian local symmetry with massive vector bosons.
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2.2.3 Yukawa interaction

We have already alluded to the fact that mass terms of the form m f f L fR are non-inavraint

under S U(2)L ⌦U(1)Y symmetry. With the help of the scalar field � charged under

S U(2)L⌦U(1)Y introduced before, we can write down the terms

LY = �
X

i, j
yi j

d QL
i
�d j

R�
X

i, j
yi j

u QL
i
�̃u j

R�
X

i, j
yi j
` LL

i
�e j

R+h.c. (2.18)

that are actually S U(2)L ⌦U(1)Y invariant. Once the electrically neutral component of

this scalar field � picks up a vacuum expectation value after SSB, these terms generate

fermion masses,

LY = �
X

i, j

vyi j
d
p

2
dL

i
d j

R�
X

i, j

vyi j
u
p

2
uL

iu j
R�

X

i, j

vyi j
`
p

2
eL

ie j
R+h.c. (2.19)

According to the notation used in Eq (2.18) and Eq (2.19):

• Qi
L, Li

` are quark and lepton S U(2)L doublets,

• ui
R, d

i
R, e

i
R are up, down and charged lepton S U(2)L singlets.

• � is the scalar field, �̃ = i�2�

• i, j generation indices, yi j
d ,y

i j
u ,y

i j
` up, down and charged lepton Yukawa couplings.

• Mass matrix for up-type quarks Mi j
u =

vyi j
up
2

, down-type quarks Mi j
d =

vyi j
dp
2

and charged

leptons Mi j
` =

vyi j
`p
2

Since the complex Yukawa coupling matrices for fermions (yi j
f ) need not be diagonal in

the generation indices, we need to make the following unitary transformations to obtain

diagonal fermion mass matrices,

uR! VuRuR, dR! VdRdR, uL! VuLuL, dL! VdLdL (2.20)
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that leaves the fermion kinetic term in Eq (2.7) invariant. The matrices VuL and VdL need

not be equal and therefore W boson-fermion charged current interaction introduces the

unitary matrix V†uLVdL in the quark sector,

Lcc = �
g
p

2

h
uLm(V†uL)ml�µW+µ (VdL)lndLn+dLm(V†dL

)ml�µW�µ (VuL)lnuLn
i
. (2.21)

that generates interaction between up-quark family and down-quark family belonging

to di↵erent generations. In contrast, the neutral-current interactions engender Z-boson-

fermion or photon-fermion coupling that are diagonal in the generation space,

Lnc =
�g

cos✓w
f�µ

h
T

3PL�Qsin2 ✓w
i
f Z0
µ � eQ f�µ f A0

µ. (2.22)

The unitary matrix V†uLVdL defined earlier is known as the Cabibbo Kobayashi Maskawa

(CKM) matrix [48]. While the most general 3⇥3 unitary matrix consists of 9 parameters,

a number of them can be absorbed by redefining the quark field leaving us with three

angles and a phase. This phase is the only source of CP-violation in the quark sector of

the SM. The CKM matrix VCKM is often parameterized as follows,

VCKM =

0
BBBBBBBBBBBBBBBBBB@

c12c13 s12c13 s13e�i�

�s12c23� c12s23s13ei� c12c23� s12s23s13ei� s23c13

s12s23� c12c23s13ei�
�c12s23� s12c23s13ei� c23c13

1
CCCCCCCCCCCCCCCCCCA

, ci j : cos✓i j, si j : sin✓i j

(2.23)

where the three mixing angles are ✓12, ✓23, ✓13 and � is the CP-violating phase. To identify

an invariant measure of CP violation in SM independent of basis choices, the Jarlskog

invariant (J) is defined,

Im
⇥
Vi jVmnV⇤inVm j

⇤
= J

X

kl

✏imk✏ jnl (2.24)
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where Vi j is the matrix elements of VCKM with no sum over repeated indices. According

to the parameterization of VCKM in Eq (2.23);

J = Im(V22V13V⇤23V⇤12) = c12c23c2
13s12s23s13 sin�. (2.25)

which is non-vanishing not only because of VCKM having a � , 0 but also for all mixing

angle being non-zero (✓i j , 0).

2.3 Global symmetries and approximate symmetries

So far, we have outlined the local symmetries that are imposed on the SM in order to

identify all possible allowed interactions between elementary particles. The global sym-

metries, in contrast, are not inputs in the SM and actually emerge from the fermion content

and continuous symmetries of the SM. A number of those global symmetries arise purely

from our unwillingness to write non-renormalizable interaction (operators with mass di-

mension higher than 4) at the Lagrangian level. For example, a term like

QLQLQLL` (2.26)

preserves the SM local symmetries but appears as a dimension-6 operator. By ignoring

such type of terms which are automatically suppressed we discover the accidental sym-

metries of the SM. Some particular global symmetries are broken when one or multiple

parameters are non zero. However, as long as those parameters are considered ‘small’

compared to a relevant dimensional quantity, these symmetries can prove to be quite use-

ful to make predictions. These are the approximate symmetries of the SM. We discuss

important aspects of some of those symmetries below.
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Custodial symmetry

We focus particularly on theLHiggs part of the SM Lagrangian and we immediately notice

that the scalar potential which is responsible for SSB has a bigger symmetry than SU(2)⌦

U(1). We recall that before SSB, the potential described in Eq (2.12) which is a function

of �†�,

�†� =
1
2

(�2
1+�

2
2+�

2
3+�

2
4), �i : real (2.27)

has an SO(4) symmetry. Since SO(4) symmetry is equivalent to aS U(2)⌦S U(2) symme-

try, which is bigger than the SU(2)⌦U(1) local symmetry, there is a residual symmetry

in this potential. After SSB, the �3 component picks up a VEV and the SO(4) symmetry

is broken down to an SO(3)-symmetry. From equivalence of group algebra SO(3) can be

identified as an SU(2) and we are left with the symmetry breaking pattern,

SU(2)⇥SU(2)! SU(2) (2.28)

before and after SSB of the scalar potential. This remnant symmetry is called the custodial

symmetry. The ramification of this symmetry is three vector bosons with equal mass after

SSB if the SM local symmetry was only SU(2)L. This is the limiting case of the actual

SM group S U(2)L ⌦U(1)Y with the gauge coupling g
0

! 0 for the U(1)Y group. Due

to the presence of the U(1)Y having g
0

, 0 the custodial symmetry indicates a modified

relation between the masses of the charged W-bosons and neutral Z0-boson,

⇢ =
m2

W

m2
Z cos2 ✓w

= 1 (2.29)

at tree level. In absence of custodial SU(2) symmetry breaking this continues to hold to

all orders in perturbation theory. In reality, at loop level, Yukawa couplings and gauge-

boson interactions would produce custodial SU(2) violating e↵ect, and thereby violate
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the mass relation quoted in Eq (2.29). However this breaking is small and deviations of

the ⇢-parameter from unity can be reliably estimated.

Flavor symmetries

The term flavor is used to describe copies or generations of fermions which are assigned

identical quantum numbers under the SM gauge group. In absence of Yukawa interactions

yi j
u,d,e = 0, a larger U(3)5 global symmetry [49–52] is manifest in the kinetic term of the

fermions having three generations, given in Eq (2.7). This corresponds to independent

unitary transformations in flavor space for five fermion fields,

G
global
S M (yi j = 0) = U(3)5 = SU(3)QL ⌦SU(3)uR ⌦SU(3)dR ⌦SU(3)L` ⌦SU(3)eR ⌦U(1)5

(2.30)

Once Yukawa interactions are switched on, we are left with

G
global
S M (yi j , 0) = U(1)B⌦U(1)L⌦U(1)e⌦U(1)µ⌦U(1)⌧ (2.31)

which are all accidental symmetries of the SM and therefore can be broken by non-

renormalizable interactions in principle. These U(1) symmetries correspond to total

baryon number, total lepton number, e lepton flavor, µ lepton flavor and ⌧ lepton fla-

vor conservation respectively.

The SU(3) symmetry of three light quarks given by up (u), down (d) and strange (s)

gives rise to a flavor symmetry that is most relevant to this thesis. The symmetry is an

artifact of low energy QCD where the masses of the light quarks can be taken to be equal

which are small compared to ⇤QCD. This assertion works well for the u and d quarks

but not for s quark which has a mass (ms ⇠ 100MeV) that is non-negligible compared to

⇤QCD ⇠ 300MeV. Nevertheless, we consider this as an approximate symmetry. We notice
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that in absence of mass terms the kinetic terms for u, d, s-flavors,

Lkin = iuR /DuR+ iuL /DuL+ idR /DdR+ idL /DdL+ isR /DsR+ isL /DsL (2.32)

have a SU(3)L⌦SU(3)R global symmetry. This symmetry is spontaneously broken down

to S U(3)V = S U(3)L=R subgroup by the ground state of QCD through non-zero expecta-

tion value of the qurak-antiquark condensates;

huui = hddi = hssi = V3. (2.33)

Moreover, the mass term for the light quarks already breaks the SU(3)L ⌦ SU(3)R sym-

metry explicitly. The result of SU(3)L⌦SU(3)R! SU(3)V breaking is 8 massive pseudo-

Goldstone bosons representing the octet of pseduscalar mesons:

P =

0
BBBBBBBBBBBBBBBBBB@

⇡0
p

2
+

⌘8
p

6
⇡+ K+

⇡� �
⇡0
p

2
+

⌘8
p

6
K0

K� K0 �

q
2
3⌘8.

1
CCCCCCCCCCCCCCCCCCA

(2.34)

Light baryons which are also bound states of three up, down or strange quarks is described

by the SU(3)L ⌦ SU(3)R! SU(3)V breaking. Under SU(3)V , the product of three quark

SU(3) triplets give a decuplet, two octets and a singlet of baryon. The well known proton

and neutron sit in the octet representation of the baryon,

B =

0
BBBBBBBBBBBBBBBBBB@

⌃0
p

2
+ ⇤

0
p

6
⌃+ p+

⌃� �
⌃0
p

2
+ ⇤

0
p

6
n0

⌅� ⌅0
�

2⇤0
p

6

1
CCCCCCCCCCCCCCCCCCA

(2.35)

whereas the spin-3/2 delta baryons belongs to the baryon decuplet. This understanding

of light mesons and baryons came long before we knew about the existence of quarks

thanks to the remarkable observation of Gell-Mann’s eightfold way. The SU(3)V from
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now on will be identified as the SU(3)flavor-symmetry. The three SU(2) subgroups of

SU(3)flavor known as I-spin, U-spin, V-spin correspond to an interchange symmetry be-

tween u-quark and d-quark, d-quark and s-quark, u-quark and s-quark respectively. In

the following chapters we will elucidate the use of this SU(3)flavor-symmetry to study

physical processes.



Chapter 3
The group SU(3)

SU(3) is defined as the group of all unitary 3⇥3 matrices having a determinant equaling

unity. If xi is a complex 3-vector, the group action on that vector is the following:

U : xi
! Ui

jx
j (3.1)

where the space of all xi form a basis for a representation of SU(3). The group elements

of SU(3) are written in terms of 8 parameters ✓a,

U = exp(�iTa✓a) (3.2)

where T a’s are the 8 traceless generators of the group with an implied sum over the index

a. In case ✓as are real then Tas are all hermetian. A brief outline of some important

representations of SU(3) are provided below.

Fundamental representation

This 3-dimensional representation, which follows from the definition of the group, is

called the fundamental representation of the group. The generators in this representation

are given by 3⇥ 3 traceless Hermitian matrices which are also known as the Gell-Mann

30
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matrices,

�1 =

0
BBBBBBBBBBBBBBBBBB@

0 1 0

1 0 0

0 0 0

1
CCCCCCCCCCCCCCCCCCA

, �2 =

0
BBBBBBBBBBBBBBBBBB@

0 �i 0

i 0 0

0 0 0

1
CCCCCCCCCCCCCCCCCCA

, �3 =

0
BBBBBBBBBBBBBBBBBB@

1 0 0

0 �1 0

0 0 0

1
CCCCCCCCCCCCCCCCCCA

, �4 =

0
BBBBBBBBBBBBBBBBBB@

0 0 0

0 0 1

0 1 0

1
CCCCCCCCCCCCCCCCCCA

, �5 =

0
BBBBBBBBBBBBBBBBBB@

0 0 0

0 0 �i

0 i 0

1
CCCCCCCCCCCCCCCCCCA

,

�6 =

0
BBBBBBBBBBBBBBBBBB@

0 0 1

0 0 0

1 0 0

1
CCCCCCCCCCCCCCCCCCA

, �7 =

0
BBBBBBBBBBBBBBBBBB@

0 0 �i

0 0 0

i 0 0

1
CCCCCCCCCCCCCCCCCCA

, �8 =
1
p

3

0
BBBBBBBBBBBBBBBBBB@

1 0 0

0 1 0

0 0 �2

1
CCCCCCCCCCCCCCCCCCA

(3.3)

The generators in the fundamental representation are chosen in such a way that they sat-

isfy the relations,

Tr(TaTb) =
1
2
�ab, [Ta,Tb] =

i
2

fabcTc (3.4)

that necessitates the identification of Tas as,

Ta =
�a

2
. (3.5)

The �a also follow the relations,

8X

a=1
�a

i j�
a
kl = 2�il�k j�

2
3
�i j�kl, (3.6)

8X

a=1
�a

i j�
a
kl =

16
9
�il�k j�

1
3

8X

a=1
�a

il�
a
k j (3.7)

The structure constants fabcs are totally antisymmetric in its three indices. The non-zero

entries are given by,

f123 = 1, f147 = f246 = f257 = f345 = � f156 = � f367 =
1
2
, f458 = f678 =

p
3

2
. (3.8)

The fundamental representation is denoted as the 3 of SU(3).
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Antifundamental representation

Another inequivalent 3-dimensional representation of SU(3) group is possible. A general

element of this representation is obtained by taking a complex conjugate of Eq (3.2);

U⇤ = exp(iT ⇤a✓a) (3.9)

which implies the following relation between the generators of the fundamental and anti-

fundamental representations,

(Ta)anti-fundamental = �(T ⇤a)fundamental. (3.10)

All the generators of the antifundamental representation cannot be related to the genera-

tors in the fundamental representation by a similarity transformation i.e.

�T ⇤a , S TaS �1 (3.11)

for any constant unitary 3⇥3 matrix S , which is why this representation is not equivalent

to the fundamental representation. The fundamental representation is denoted as the 3 of

SU(3).

Adjoint representation

The adjoint representation of SU(3) acts on the vector space of its Lie algebra and the

dimension of such a representation is given by the number of generators which in this

case is 8. The structure constants themselves generate this representation of the algebra

once we define a matrix such that,

(T adj
a )bc = �i fabc. (3.12)
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Since fabcs are all real, the generators of the adjoint representation is purely imaginary.

We now turn our attention to representations [21, 53] induced on the space of mixed ten-

sors with p upper indices and q lower indices as D(p.q) , or simply (p,q) in short. Here

the distinction between the upper and lower indices are important as the there are two

inequivalent 3-dimensional representations, namely the 3 and the 3. Moreover, antisym-

metric part of any tensor can be expressed in terms of a tensor of lower rank and the

completely antisymmetric ✏i1 j1k1 and ✏i2 j2k2 tensors:

A[i1,i2]...
a1b1...

= ✏i1i2kB...ka1b1...
. (3.13)

The mixed tensor can also be made traceless by using the �i1
j1

invariant tensor and tensors

of lower ranks. Therefore the mixed tensor (p,q) under consideration is

• purely symmetric in all p upper indices,

• purely symmetric in all q lower indices,

• traceless.

This family of tensors form inequivalent irreducible representations (IR) of SU(3). To

calculate the dimension of such a representation (p,q), the space of all completely sym-

metric tensors with p upper indices and q lower indices need to be decomposed into the

space of all symmetric tensors while respecting the traceless property. An IR having only

p upper indices has the dimension equal to the number of independent components,

pX

�=0
(p���1) =

1
2

(p+1)(p+2). (3.14)
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Similarly an IR having only q lower indices has the dimension,

qX

�=0
(q���1) =

1
2

(q+1)(q+2). (3.15)

A mixed tensor totally symmetric in its p upper and q lower components has therefore

n1 =
1
4(p+ 1)(p+ 2)(q+ 1)(q+ 2) independent components. The trace of a mixed tensor

totally symmetric in its p upper and totally symmetric in its q lower components has n2 =

1
4 p(p+1)q(q+1) independent components all identically zero due to the traceless property

of (p,q). Therefore the number of independent components as well as the dimension of

(p,q) is,

dim(p,q) = (n1�n2) =
1
2

(p+1)(q+1)(p+q+2). (3.16)

Sometimes this dimension is used as a label for particular S U(3) representation, although

it may turn out to be ambiguous as several choices of (p,q) can give rise to same number.

Since (p,q) and (q, p) have the same dimension, they are distinguished by labeling a

representation by its dimension if p > q, and by its dimension with a bar if q is greater

than p. Examples of some commonly used representations are given below;

(1,0)) 3, (0,1)) 3, (1,1)) 8, (3,0)) 10, (2,1)) 15, (4,0)) 15
0

. (3.17)

It is important to identify the isospin and hypercharge subgroups inside a SU(3) represen-

tation which are known to be good symmetries of the strong interaction. The subgroup

S U(2)⌦U(1) does this job where the SU(2) and U(1) corresponds to the isospin and the

hypercharge symmetry respectively. For example, consider the 3⇥ 3 matrices forming

the fundamental, or 3 of SU(3) acting on the space of states consisting of three-element

column vectors. The subgroup SU(2), identified with the isospin group can be assumed
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to consist of matrices of the form

U2 = exp(ia⌧a), ⌧a : Pauli matrices (3.18)

mixing only the first two entries of the 3-dimensional column vector, leaving the third one

unchanged. This means that under this subgroup, the 3 representation of SU(3) breaks

into a doublet, represented by the two upper elements of the column vector, and a singlet,

which is the lowest element. The U(1) quantum number of each entry is proportional to

the corresponding element of the diagonal matrix �8. Inspecting the explicit form of �8

in Eq (3.3), we conclude that the U(1) quantum number is equal for the two states in the

SU(2) doublet. It is obviously the case since U(1) commutes with the SU(2) and so the

states in any SU(2) representation should have the same U(1) property. We can therefore

write the 3 of SU(3) as,

3 = (
1
2
,
1
3

)� (0,�
2
3

) (3.19)

The anti-fundamental 3 of SU(3) is expressed as a complex conjugate of Eq (3.19),

3 = (
1
2
,�

1
3

)� (0,
2
3

) (3.20)

where only the U(1) charges switch sign while the complex conjugation of the 2-dimensional

representation of SU(2) maps onto itself. Clearly, the SU(3) invariant or identity repre-

sentation should be a singlet under SU(2) and having a U(1) charge 0,

1 = (0,0). (3.21)

More generally, for an IR representation (n,0) and (0,m) the isospin-hypercharge decom-
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position is given by,

(n,0) =
⇣n
2

⌘
n
3
�

⇣n�1
2

⌘
n
3�1
. . .�

⇣
0
⌘
�

2n
3
,

(0,m) =
⇣m

2

⌘
�

m
3
�

⇣m�1
2

⌘
�

m
3 +1
. . .�

⇣
0
⌘

2m
3

(3.22)

that is used to write down the isospin-hypercharge decomposition of the representation

(n,m);

⇣
n
2

⌘
n
3

⇣
n�1

2

⌘
n
3�1

. . . . . .
⇣
0
⌘
�

2n
3⇣

m
2

⌘
�

m
3

⇣
n
2 ⌦

m
2

⌘
n�m

3

⇣
n�1

2 ⌦
m
2

⌘
n�m�1

3
. . . . . .

⇣
m
2

⌘
�2n�m

3⇣
m�1

2

⌘
�

m
3 +1

⇣
n
2 ⌦

m�1
2

⌘
n�m+1

3
...

...⇣
0
⌘

2m
3

⇣
n
2

⌘
2m+n

3

3.1 Direct product of two SU(3) representations

The direct product of two SU(3) representations (n,m) and (n
0

,m
0

) is given by the general

formula [53],

(n,m)⌦ (n
0

,m
0

) =
min

�
n,m
0�

X

i=0

min
�
n
0
,m
�

X

j=0
�
�
n� i,n

0

� j;m� j,m
0

� i
�

(3.23)

where the sum indicates a direct sum over the objects given by (n,n
0

;m,m
0

). The repre-

sentation (n,n
0

;m,m
0

) is defined as that representation which has for its basis the set of

all tensors having (n+ n
0

) upper indices and (m+m
0

) lower indices, that are completely

symmetric among the first n upper indices, completely symmetric among the last n
0

up-

per indices, completely symmetric among the first m lower indices, completely symmetric

among the last m
0

lower indices while being traceless. We need to convert this (n,n
0

;m,m
0

)

into direct sums of IR’s. Operationally we want to decompose an arbitrary tensor from
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the basis of (n,n
0

;m,m
0

) into a sum of linear combinations of traceless tensors symmetric

under interchange of all of its upper and lower indices. Consider an arbitrary tensor

H
i1...inin+1...in+n0

j1... jm jm+1... jm+m0
(3.24)

which has first n upper indices i1 . . . in, last n
0

upper indices in+1 . . . in+n0 and first m lower

indices j1 . . . jm, last m
0

lower indices jm+1 . . . jm+m0 all symmetric under interchange. We

want to reexpress H
i1...inin+1...in+n0

j1... jm jm+1... jm+m0
such that the new tensors are fully symmetric under

interchange of any upper indices. Without any loss of generality we choose two indices

i1 and in+1 that are not symmetrized and use the property that any arbitrary tensor can be

written in terms of symmetric and antisymmetric tensor. Therefore,

H
i1...inin+1...in+n0

j1... jm jm+1... jm+m0
= S

i1...inin+1...in+n0

j1... jm jm+1... jm+m0
+A

i1...inin+1...in+n0

j1... jm jm+1... jm+m0
(3.25)

where the two indices i1 and in+1 that are anti-symmetric under interchange in A
i1...inin+1...in+n0

j1...

can be expressed in terms of the fully anti-symmetric ✏lmn tensor as,

A
i1...inin+1...in+n0

j1... jm jm+1... jm+m0
= ✏ki1in+1S

i2...inin+2...in+n0

k j1... jm jm+1... jm+m0
. (3.26)

This S
i2...inin+2...in+n0

k j1... jm jm+1... jm+m0
tensor is already completely symmetric in its lower indices as con-

traction of any pair of lower indices with the ✏ tensor identically vanishes. The upshot of

this procedure is that by removing pairs of upper indices and by adding a lower index or

by removing pairs of lower indices, and adding an upper index we can symmetrize the ar-

bitrary tensorH until the resulting tensor becomes completely symmetric in its upper and

lower indices. But we cannot remove a pair of upper indices and a pair of lower indices

simultaneously, since removal of a pair of upper (lower) indices makes the tensor already

completely symmetric in its lower (upper) indices. In summary, the object (n,n
0

;m,m
0

)
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can be decomposed as a direct sum of SU(3)-IRs given below [53],

(n,n
0

;m,m
0

) = (n+n
0

,m+m
0

) �
min(n,n

0
)X

a=1
(n+n

0

�2a,m+m
0

+a)

�

min(n,n
0
)X

b=1
(n+n

0

+b,m+m
0

�2b). (3.27)

As a concrete example we study the direct product of two IRs (1,1) with (1,1);

(1,1)⌦ (1,1) = (1,1;1,1)� (0,1,1,0)� (1,0,0,1)� (0,0,0,0)

(1,1;1,1) = (2,2)� (0,3)� (3,0), (1,0;1,0) = (1,1)

(0,1;1,0) = (1,1), (0,0;0,0) = (0,0) (3.28)

In terms of the dimension of a representation using Eq (3.16) we get,

8⌦8 = 27�10�10�81�82�1 (3.29)

Alternatively we can use Young tableaux [47] to find the tensor product of two irreducible

representations of SU(3). We will discuss Young tableaux specifically for SU(3) that

follow a set of rules given below,

• The Young tableaux corresponding to the fundamental representation (3 of SU(3))

will consist of just one box, since this representation acts on states with one index

(See Eq. (3.1)). That is,

xi
⌘ (3.30)

• For any other representation, there will be more boxes. If any two of the indices

are symmetric, we put the corresponding boxes in the same row. If the indices are

antisymmetric, the boxes are in the same column.



Chapter 3: Introduction to SU(3) 39

• A Young tableau is a diagram of left-justified rows of boxes where any row cannot

be longer than the row on top of it.

• Any column cannot contain more than 3 boxes.

• Any column with exactly 3 boxes can be crossed out since it corresponds to the

trivial representation (the singlet), Therefore any Young tableaux for SU(3) can

have at most two rows of boxes.

• In order to connect any Young tableaux with the SU(3) irreducible representation

(p,q) we note that q equals the number of boxes in the second row. p is given by

the di↵erence between the number of boxes in the first row and the second row.

• The complex conjugate of a given IR is represented by a tableaux obtained by

switching every column of k boxes with a column of (3� k) boxes.

The general recipe to find the tensor product of two SU(3) IRs using Young tableaux is

also outlined,

• Write the two tableaux which correspond to the direct product of IRs and label

successive rows of the first and second tableau with indices A, B and a, b such that

no two same indices appear in one column.

A A
B

⌦
a a
b

• Attach the boxes from the second to the first tableau, one a time following the order

a then b in all the possible way. The resulting diagrams should be valid Young

tableaux with no two a or b in the same column. This also means no row should be

longer than a row above it.

• If the resulting tableaux has a column of 3 boxes, that column is to be deleted and

the rest as the tableaux is treated as a valid tableaux.
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• Two tableaux with the same shape but labels distributed di↵erently have to be kept.

If two tableaux are identical only one has to be accounted for.

• While counting the labels from the first row from right to left, then the second row

again from right to left, at any given box position the number of b cannot be greater

than the number of a. For example a sequence (to be read from left to right) aba or

aab is allowed but baa is not.

• In general, we will be able to form multiple tableaux by following the rules above.

Each such solution will represent an SU(3) IR in the tensor product.

Below are some of the results of tensor product of SU(3) IR using the above mentioned

rules that are useful for the next chapter;

A A
B

⌦
a a
b

=
A A a a
B b

�
A A a
B a b

� A A a

8 8 27 10 10

�
A a
b

�
A a
a

� 1

81 82

A A A ⌦
a a
b

=
A A A a a
b

�
A A A a
a b

10 8 35 27

� A A a �
A A
a

10 8
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A A
B

⌦ a =
A A a
B

�
A A
B a

� A

8 3 15 6 3

A A A ⌦ a = A A A a �
A A A
a

10 3 150 15

A A A
B B B

⌦ a =
A A A a
B B B

�
A A
B B

10 3 24 6

A A A A
B B

⌦ a =
A A A A a
B B

�
A A A A
B B a

�
A A
B B

27 3 42 24 6

�
A A A
B

15

A A A A A
B

⌦ a =
A A A A A a
B

�
A A A A A
B a

35 3 48 42

� A A A A

150

This procedure of decomposing the direct product of two SU(3) IR’s into a direct sum of

IRs is called an expansion in the Clebsch-Gordan series [54–57] for SU(3). Here, |r1,↵1i,

|r2,↵2i and |R(m)
n ,Ani are the basis states for the representation r1, r2 and R(m)

n respec-
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tively. We can now define the Clebsch-Gordan coe�cients [21,22] G(R(m)
n ,An,r1,↵1,r2,↵2),

|r1,↵1i⌦ |r2,↵2i =
X
hR(m)

n ,An|r1,↵1,r2,↵2i|                       {z                       }
G(R(m)

n ,An,r1,↵1,r2,↵2)

|R(m)
n ,Ani (3.31)

that are nothing but the amplitudes for the projection of the product of two irreducible rep-

resentations r1, r2 of SU(3) onto the irreducible representations Rn found in the Clebsch-

Gordan series in Eq (3.23),

|r1,↵1i⌦ |r2,↵2i =
X

i
{m}

�R(m)
n (3.32)

Here, An, ↵1, ↵2 collectively denote the hypercharge (Y), isospin (I) and third component

of isospin (Iz) for the representations r1, r2 and R(m)
n respectively. The index m in R(m)

n

denotes the degeneracy of a particular representation in the tensor product of representa-

tions. To uniquely define these CG coe�cients, we have to define the relative phase of the

basis vectors of the IR Rm
n with respect to the basis vectors in the product representation

r1⌦ r2. In that regard,

• The internal phase convention, fixing the relative phases between states within a

particular representation completely is achieved by adopting the Condon-Shortley

phase convention [58] for the two subgroups of SU(3), namely the isospin (I) and

V�spin (in SU(3)-flavor the V� spin operators interchange u and s quarks) opera-

tors. This implies that eigenvalues of the isospin- raising and lowering operators as

well as the analogous raising and lowering operators of V-spin are real and positive.

In this convention, all SU(2) CG coe�cients are real and they satisfy the property,

hI Iz|i1 i1z i2 i2zi = (�1)I�i1�i2hI Iz|i2 i2z i1 i1zi. (3.33)

• The overall phases of representations in the decomposition of the product of two

irreducible representations is chosen in accordance with the convention of de Swart.
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According to the convention, a state in R(m)
n having the highest Iz that couples to

the state in the first factor representation (r1) having the highest isospin as well as

the the state in the second factor representation (r2) with the highest isospin should

have a Clebsch-Gordon coe�cient that is real and positive;

hR,Yh, Ih Ih
z |r1,yh

1,r2,yh
2, i

h
1 ih1z ih2 ih2zi > 0. (3.34)

These phase conventions ensure that the SU(3) CG coe�cients are all real [21, 22]. The

SU(3) Clebsch-Gordan coe�cients can be factored into products of SU(3) isoscalar fac-

tors and SU(2) Clebsch-Gordan coe�cients:

hR,Y, I, Iz|r,y, i, iz,r
0

,y
0

, i
0

, i
0

zi =

0
BBBBBBBBBB@

r r0 R

(y, i) (y
0

, i
0

) (Y, I)

1
CCCCCCCCCCA
hI, Iz|i, iz, i

0

, i
0

zi (3.35)

where hI, Iz|i, iz, i
0

, i
0

zi are the SU(2) CG coe�cients taking into account the Condon-

Shortley convention and

F(R,Y, I,r,y, i,r
0

,y
0

, i
0

) =

0
BBBBBBBBBB@

r r0 R

(y, i) (y
0

, i
0

) (Y, I)

1
CCCCCCCCCCA
. (3.36)

F(R,Y, I,r,y, i,r0 ,y0 , i0) are the SU(3) isoscalar factors. The order in which the SU(3)

representations are coupled is r⌦ r0 ! R. These isoscalar factors are all real in our cho-

sen phase convention. Moreover, there are two symmetry relations involving the SU(3)

isoscalar factors;

A) If the order in which the representations are coupled is reversed (i.e. r0 ⌦ r! R) then

the isoscalar factors pick up a phase factor;

0
BBBBBBBBBB@

r0 r R

(y
0

, i
0

) (y, i) (Y, I)

1
CCCCCCCCCCA
= (�1)I�i�i

0

⇠(R;r,r
0

)

0
BBBBBBBBBB@

r r0 R

(y, i) (y
0

, i
0

) (Y, I)

1
CCCCCCCCCCA
. (3.37)

Here ⇠(R;r,r0) is the phase factor [22] that depends only on the identity element of r, r0
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and R and the phase convention chosen above.

B) Conjugation operation on all three representations also give rise to a phase factor;

0
BBBBBBBBBB@

r r0 R

(y, i) (y
0

, i
0

) (Y, I)

1
CCCCCCCCCCA
= (�1)I�i�i

0

⇣(R;r,r
0

)

0
BBBBBBBBBB@

r r0 R

(�y, i) (�y
0

, i
0

) (�Y, I)

1
CCCCCCCCCCA
. (3.38)

Similar to the previous case, ⇣(R;r,r0) is the phase factor [22] that depends only on

the identity element of r, r0 and R and our chosen phase convention. As a corollary

of Eqs. (3.37) and (3.38),

⇠(R;r,r0) = ⇠(R;r,r
0

), (3.39)

⇣(R;r
0

,r) = ⇣(R;r,r
0

) (3.40)

⇣ and ⇠ can take values ±1 in our phase convention. They are independent of the third

component of isospin which is why we can choose the highest weight isospin state in the

product representation that fixes ⇣ and ⇠,

⇣(R;r,r
0

) = (�1)Ih�ih�i
0

h

⇠(R;r,r
0

) = (�1)Ih�ih�i
0

h
F(R,Y, I,r,y, i,r0 ,y0 , i0)
|F(R,Y, I,r,y, i,r0 ,y0 , i0)|

(3.41)

Another important result [21, 59] involving the isoscalar factors is quoted below,

0
BBBBBBBBBB@

r r0 R

(y, i) (y
0

, i
0

) (Y, I)

1
CCCCCCCCCCA
= (�1)i+y/2�(R;r,r

0

)
 
(2i
0

+1)dim(R)
(2I+1)dim(r0)

!1/2
0
BBBBBBBBBB@

r R r0

(y, i) (�Y, I) (�y
0

, i
0

)

1
CCCCCCCCCCA

(3.42)

where �(R;r,r0) = ±1 and can be fixed in a similar method as ⇠ and ⇣ using the highest
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weight state in the product representation. The isoscalar factors relevant for this thesis are

all listed in [21,22]. The details of the derivation of those isoscalar factors are beyond the

scope of this thesis and we henceforth will just use those values in the next chapter.

3.2 Wigner-Eckart theorem

The Wigner-Eckart theorem concerns the matrix element of an irreducible SU(3) tensor

operator between two basis states of SU(3) irreducible representations. We have already

noted that the irreducible representations act on basis states that are classified by the

hypercharge (Y), isospin (I) and third component of isospin (Iz). Let us assume two basis

states to be labeled by |R1,Y1, I1, I1zi and |R2,Y2, I2, I2zi respectively where R1 and R2

are two IRs of SU(3). An irreducible tensor operator T (R,Y, I, Iz) acts on the basis state

|R1,Y1, I1, I1zi transforming as a direct product of two IRs |R,Y, I, Izi⌦ |R1,Y1, I1, I1zi. The

Wigner-Eckart theorem states [21],

hR2,Y2, I2, I2z|T R
Y,I,Iz
|R1,Y1, I1, I1zi = hR2kT R

kR1i hR2,Y2, I2, I2z|R,R1;Y, I, Iz,Y1, I1, I1zi

(3.43)

where hR2kT R
kR1i is a number, called the SU(3)-reduced matrix element that is inde-

pendent of the hypercharge (Y), isospin (I) and third component of isospin (Iz) values of

the basis states. The SU(3) CG coe�cient hR2,Y2, I2, I2z|R,R1;Y, I, Iz,Y1, I1, I1zi is non-

zero if and only if R2 appears in the tensor product R⌦R1. Since the left hand side of

Eq. (3.43) transforms as a singlet of SU(3) or in other words an SU(3)-invariant, it is the

conjugate of R2 that forms a singlet with the R⌦R1. The SU(3)-reduced matrix elements

are basis independent and are invariant under SU(3) by themselves.

The initial and final states and the e↵ective Hamiltonian in this thesis transform as irre-

ducible representations of SU(3)-flavor. The Wigner-Eckart theorem implies the matrix

elements for a transition from an initial state to final state mediated by the Hamiltonian de-
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pend only a few reduced matrix elements which we will enumerate in next chapter. These

reduced matrix elements serve as a basis using which a group theory decomposition of all

possible decay amplitudes of di↵erent processes can be achieved.



Chapter 4
SU(3)-flavor analysis of bottom baryon

decaying to an octet baryon and an octet

meson

The contents of this chapter is based on a joint work [13] with Rahul Sinha and N.G.

Deshpande.

4.1 Prologue

The bottom quark is the only third generation quark that hadronizes and forms b-hadrons

that further decays to lighter hadrons and leptons. The theoretical formalism developed to

study heavy meson exclusive non-leptonic decays containing a b(b)-quark has proved to

be remarkably successful when it comes to reliably predicting a large number of branch-

ing ratios and other decay parameters. Experimentally, as well, these predictions have

been tested extensively and found to be in good agreement with most of the theory esti-

mates. The combined e↵ort of the theory and experimental collaborations have led to the

observation and then measurement of direct and indirect CP-violation in B-meson in the

47
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last few decades. In the SM, we recall that the only source of CP-violation in electroweak

quark flavor changing process is the complex phase in the Cabibbo-Kobayashi-Maskawa

(CKM) matrix. The CKM matrix is written as,

0
BBBBBBBBBBBBBBBBBB@

Vud Vus Vub

Vcd Vcs Vcb

Vtd Vts Vtb

1
CCCCCCCCCCCCCCCCCCA

(4.1)

where every matrix element Vi j correspond to the magnitude and phase of the quark flavor

changing process i! j. B-meson non-leptonic decays typically involve underlying quark

level processes such as b! u or b! c that are sensitive to the weak phases Vub and Vcb re-

spectively. A necessary condition for observable CP violating e↵ect is two non-negligible

amplitudes each having a di↵erent weak phase as well as strong phase contributing to the

same process. For example, consider the amplitude for a process i! f ,

A(i! f ) = ei�1ei↵1 |a1|+ ei�2ei↵2 |a2| (4.2)

The amplitude of the CP-conjugate process i! f is given by,

A(i! f ) = ei�1e�i↵1 |a1|+ ei�2e�i↵2 |a2| (4.3)

where the two weak phases ↵1, ↵2 switch sign but the strong phases �1, �2 do not. The

direct CP-asymmetry is given by,

aCP =
|A(i! f )|2� |A(i! f )|2

|A(i! f )|2+ |A(i! f )|2
=

�2|a1||a2|sin(�1��2)sin(↵1�↵2)
|a1|2+ |a2|2+2cos(�1��2)sin(↵1�↵2)

. (4.4)

A non-vanishing CP-asymmetry demands that both the strong phase di↵erence and weak

phase di↵erence are non-zero. Since the same b! u or b! c quark level transition and

therefore weak phases mediate b-baryon decays we can hope to observe CP-violation in

bottom baryon decays as well. Bottom baryons are three quark bound states with one of
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the quarks being the b-quark in contrast to a B-meson which is made of a quark-antiquark

bound state. In addition, the b-baryons also carry a spin providing a unique opportunity

to analyze its weak decay in the SM. A quantitative estimate of such non-leptonic weak

decays involve using perturbative QCD (pQCD) as one of schemes of factorization [40].

While such factorizable terms, in most cases, have the dominant contribution on B-meson

decay matrix elements, the same cannot be said for two-body hadronic weak decays of

b-baryons. It was pointed out [2] that non-factorizable e↵ects dominate over factorizable

contribution in ⇤0
b decays such as ⇤b! pK and ⇤b! p⇡. In another work, the two light

quarks inside b-baryon are approximated to form a scalar diquark. In this picture, the

hadronic weak decay of b-baryon is e↵ectively treated in QCD factorization [42] scheme,

which is known to work well in B-meson decaying to two mesons. Predictions based on

such calculations [43] are very important and more e↵ort is needed in this regard.

Alternatively, we can decompose the decay amplitudes of a class of processes into a likely

smaller set of invariant amplitudes classified according to their transformation properties

under SU(3)-flavor symmetry. This approach is closely related to the diagrammatic ap-

proach where quark flavor-flow topologies serve as the invariant amplitudes and certain

dynamical assumptions are invoked to include or neglect contributions from particular

diagrams. It is quite straightforward to derive several model independent amplitude re-

lations in these approaches that can be tested in experiments. Ultimately these invariant

amplitudes are treated as parameters that can be determined from an overcomplete set of

measurements.

A large b-baryon production fraction at LHCb encourages us to adopt the data-driven ap-

proach mentioned above. In particular, LHCb is expected to collect a substantial data set

of two-body weak decays of beauty-baryons [11,38,39] into charmless baryons and pseu-

doscalar mesons. Previously, such progress in the theoretical understanding of beauty

meson decays [16–18, 20, 27, 42, 60–94] came hand-in-hand through experimental ad-

vances at flavor factories Belle and Babar [95, 96] as well as in LHCb [38, 39, 97–100].

The general framework of SU(3) analysis in beauty mesons as well as charm meson de-
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cays [101–112] into two pseudoscalars (PP), pseudoscalar-vector boson (PV), and two

vector mesons (VV) successfully predicted several amplitude sum-rules and relationships

between CP asymmetries for various decay modes. While attempts have been made, a

comprehensive SU(3)-flavor analysis of hadronic beauty-baryons decaying into an octet

or singlet of light baryons and a pseudoscalar meson is so far missing in the literature.

In contrast to the methodology employed in [2, 3, 25, 26, 43, 113–130] for bottom and

charmed hadron decays, our approach [18] facilitates an SU(3) decomposition of the de-

cays in terms of SU(3)-reduced amplitudes without any particular set of assumptions

about the underlying dynamics.

The number of independent SU(3)-reduced amplitudes for any given initial and final state

is exactly calculable and relations between decay amplitudes emerge naturally once the set

of independent SU(3)-reduced amplitudes is smaller than the total number of possible de-

cays. The counting of independent SU(3) reduced amplitudes draws on the choice of the

e↵ective Hamiltonian, which in the most general case, indicate 44 independent reduced

SU(3) amplitudes equaling the number of all possible �S = �1 and �S = 0 processes.

In practice, the dimension-6 e↵ective Hamiltonian that mediates such hadronic decays of

bottom baryons allow only ten independent reduced SU(3) amplitudes. We therefore ob-

tain amplitude relations between the decay modes and derive them explicitly. Moreover,

our methodology naturally allows for a systematic study of the SU(3)-breaking e↵ects at

the level of decay amplitudes, order by order expanded in the SU(3) breaking parame-

ter. Since the number of independent SU(3)-reduced amplitudes increases, some of the

amplitude relations derived earlier may no longer hold which we subsequently identify.

Starting with the symmetries of the e↵ective Hamiltonian, we relate or neglect reduced

SU(3) amplitudes to derive several sum rules relations between amplitudes while indicat-

ing more general relations that continue to hold when the SU(3) symmetry is no longer

exact. Some of these amplitude relations can be turned into CP-asymmetry relations that

we also explore. This study is crucial for a detailed analysis of the CP asymmetry mea-
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surements in bottom baryons decays at the CDF and LHCb in recent times [4–9,99,100].

The approach to decompose the decay amplitudes in terms of reduced SU(3) amplitudes is

presented in Sec. 4.2. The results are summarized in Appendix. A.0.0.1-Appendix A.0.0.6.

In Sec. 4.3 we perform the SU(3) decomposition of unbroken e↵ective hadronic weak de-

cay Hamiltonian. The relations between the amplitudes for beauty baryon decays into

octets of light baryons and pseudoscalar mesons are derived in Sec. 4.5. The e↵ects of

SU(3) breaking on account of s-quark mass are considered in Sec. 4.5.1. The correspond-

ing relations between CP asymmetries are derived in Sec. 4.6. We finally conclude in

Sec. 4.7.

4.2 Application of SU(3) to decay amplitudes

The SU(3) decomposition of physical amplitudes describing a decay process involves

writing it in terms of reduced matrix elements of explicit SU(3) operators with appropriate

coe�cients. The procedure is a straightforward application of Wigner-Eckart theorem for

the group SU(3) where the reduced matrix elements are all possible SU(3) invariants

with Clebsch-Gordon (CG) coe�cients connecting the basis involving physical hadronic

SU(3) states to the group theoretic basis.

The most general Hamiltonian H which connects [18] the initial and final states via the

matrix elements h f |H|ii, consists of exactly those representations R appearing in f ⌦ ī,

where the labels i and f denote both physical states and SU(3) representations. It is im-

portant to note that in addition to the usual SU(3) CG coe�cients that arise from coupling

f ⌦ i, the most general e↵ective Hamiltonian (H) itself involves unknown coe�cients ap-

pearing in front of every SU(3) representation. A priori, these coe�cients are all indepen-

dent of each other which get determined once a particular form of e↵ective Hamiltonian

is assumed. The states of SU(3) representations are uniquely distinguished when in addi-

tion to the I3 and Y values, the isospin Casimir I2 is also specified. We note that this is
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not in contradiction with the Wigner-Eckart theorem since the isospin label in the reduced

SU(3) amplitudes are there to merely indicate our ignorance about coe�cients that may

turn out to be unequal for di↵erent components of a given representation of the e↵ec-

tive Hamiltonian. The full reduced SU(3) amplitude is thus described by h f |RI |ii. The

expression of the amplitudes in terms of reduced SU(3) amplitudes is concisely given as,

A(i! fb fm) = (�1)I3�
Y
2�

T
3

X

{ f ,R}
Yb+Ym=Y f ,Y f

�Yi=YH

Ib
3+Im

3 =I f
3 , I

f
3�Ii

3=IH
3

C
Ib
3 Im

3 I f
3

Ib Im I f

0
BBBBBBBBBB@

fb fm f

(Yb, Ib) (Ym, Im) (Y f , I f )

1
CCCCCCCCCCA

0
BBBBBBBBBB@

f ī R

(Y f , I f ) (�Yi, Ii) (YH , IH)

1
CCCCCCCCCCA
C

I f
3 �Ii

3 IH
3

I f Ii IH hf k RI k ii, (4.5)

where, Ca,b,c
A,B,C are the SU(2) Clebsch-Gordon coe�cients and

0
BBBBBBBBBB@

Ra Rb Rc

(Ya, Ia) (Yb, Ib) (Yc, Ic)

1
CCCCCCCCCCA
. (4.6)

are the SU(3) isoscalar coe�cients obtained by coupling the representations Ra ⌦Rb!

Rc. The initial b-baryon (i) belongs to a 3 of SU(3) and given as

Bb =
⇣
⌅�b �⌅0

b ⇤0
b

⌘
. (4.7)

The conjugate of the initial state is used in SU(3)-decomposition of decay amplitude,

the factor (�1)I3�Y/2�T/3 is put that takes care of the correct phase factor appearing in

front of ⌅�b , ⌅
0
b, ⇤

0
b. The triality (T ) of an SU(3) representation with m and n funda-

mental and anti-fundamental indices, i.e. an (m,n) of SU(3) is given by T
�
m,n

�
= (m�

n)mod3. To summarize, T = 1 and I3, Y of ī are assumed in Eq. (4.5). The symmetry

properties of the SU(3) isoscalar factor and its role in obtaining the SU(3) CG coe�-

cients [21, 22, 54, 55, 58, 131] is outlined in Chapter 3. The amplitude is written with
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specific attention to the order in which the representations are coupled, the final state rep-

resentations are coupled via fb ⌦ fm ! f, where the product ( f ) is then coupled through

the conjugate of the initial representation or equivalently f ⌦ ī!H . This ensures that all

possible SU(3) representations are generated in case of the most general e↵ective Hamil-

tonian.

Given a form of e↵ective Hamiltonian (He↵), it can be SU(3) decomposed,

He↵ =
X

{Y,I,I3}
R

F
{Y,I,I3}
R RI, (4.8)

where F {Y,I,I3}
R depends on the SU(3) CG coe�cients appearing in front of the SU(3)

representations RI. Moreover F {Y,I,I3}
R also contains additional factors entering Eq. (4.8)

in form of Wilson coe�cients and CKM elements. We hereby note that by knowing

the dynamical coe�cients for di↵erent isospin values in a given SU(3) representation,

one can now drop the isospin Casimir label (I) and express the Wigner-Eckart reduced

matrix element hf k R k ii, in its usual form, independent of the isospin I label. By using

completeness of SU(3) CG coe�cients up to a phase factor,

hf k RI k ii = F {Y,I,I3}
R

r
dim f
dim R|                {z                }

dynamical Coe↵. of H

hf k R k ii. (4.9)

The origin of this formula lies in Eq (3.42). Alternatively, we can directly start with the

given form of e↵ective Hamiltonian in Eq. (4.8) and perform an SU(3) decomposition of

the decay amplitude;
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A(i! fb fm) =
X

{YH ,IH ,IH
3 }

R

F
{Y,I,I3}
R

X

{ f }
Yb+Ym=Y f ,Y f=Yi+YH

Ib
3+Im

3 =I f
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f
3=Ii

3+IH
3
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3 Im
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3

Ib Im I f

0
BBBBBBBBBB@
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1
CCCCCCCCCCA

0
BBBBBBBBBB@

R i f

(YH , IH) (Yi, Ii) (Y f , I f )

1
CCCCCCCCCCA
C

IH
3 Ii

3 I f
3

IH Ii I f hf k R k ii. (4.10)

The case of our interest, namely, Bb(3)! B(8)M(8), where Bb, the initial anti-triplet

(3) beauty-baryon undergoes a charmless decay into an octet baryon (B) and an octet

pseudoscalar meson (M), is described by a Hamiltonian with �Q = 0 and �S = �1,0

(equivalently given in �I3 and �Y representation). The expressions for Q and S in terms

of Y , I3 and T is given,

Q = I3+
Y
2
+qb,

S = Y �
1
3

T, (4.11)

where qb is the electric charge of the bottom quark. The possible decays can be di-

vided into two sub classes, namely the �S = 0 and �S = �1 transitions. The allowed

final state SU(3) representations (f) are; 1, 81, 82, 10, 10, 27. It is also self evident that

to form singlets of SU(3) the tensor product of e↵ective Hamiltonian and initial states

should contain SU(3) representations that transforms as 1, 8, 10, 10, 27. There are 22

physical process possible for �S = �1 and another 22 for �S = 0. In Appendix A.0.0.1

and Appendix A.0.0.4 respectively each of these decay modes are decomposed in terms

of the SU(3) reduced amplitudes that add upto 44. Since the physical ⌘ and ⌘
0

mesons

are admixtures of octet ⌘8 and singlet ⌘1 mesons, a study of Bb(3)! B(8)M(1) is also

necessary. Therefore one has to take into account 8 (4 each for �S = 0 and �S = �1)

additional independent SU(3) amplitudes which are also described in Appendix A.0.0.7
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and Appendix A.0.0.8.

We emphasize that this way of counting accounts for a complete set of reduced ampli-

tudes [18], regardless of the specific form of interaction Hamiltonian. In particular, this

decomposition holds even if the SU(3) symmetry is arbitrarily broken and there is no

physical reason to organize particles in SU(3) multiplets. At this point, every process is

independent and to find relations among them requires assuming a specific form of the

interaction Hamiltonian.

4.3 SU(3) decomposition of unbroken e↵ective Hamilto-

nian

The lowest order e↵ective Hamiltonian [19,132,133] for charmless b-baryon decays con-

sists �S = �1 and �S = 0 parts. Each part is composed from the operators Q1,. . . , Q10.

The complete Hamiltonian can be written as:

He↵ =
4GF
p

2

h
�(s)

u
⇣
C1(Q(u,s)

1 �Q(c,s)
1 )+C2(Q(u,s)

2 �Q(c,s)
2 )

⌘
��(s)

t

X

i=1,2
CiQ

(c)
i ��

(s)
t

10X

i=3
CiQ

(s)
i

+�(d)
u

⇣
C1(Q(u,d)

1 �Q(c,d)
1 )+C2(Q(u,d)

2 �Q(c,d)
2 )

⌘
��(d)

t

X

i=1,2
CiQ

(c)
i ��

(d)
t

10X

i=3
CiQ

(d)
i

i
,

(4.12)

where VubV⇤us = �
s
u, VubV⇤ud = �

d
u, VtbV⇤ts = �

s
t , VtbV⇤td = �

d
t are the CKM elements and Ci s

are the Wilson coe�cients evaluated at an energy scale of the order of bottom quark mass.
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Q1 and Q2 are the “Tree” operators:

Q(u,s)
1 = (ui

L�
µb j

L)(s j
L�µu

i
L), Q(u,d)

1 = (ui
L�
µb j

L)(d
j
L�µu

i
L),

Q(c,s)
1 = (ci

L�
µb j

L)(s j
L�µc

i
L), Q(c,d)

1 = (ci
L�
µb j

L)(d
j
L�µc

i
L), (4.13)

Q(u,s)
2 = (ui

L�
µbi

L)(s j
L�µu

j
L), Q(u,d)

2 = (ui
L�
µbi

L), (s j
L�µu

j
L)

Q(c,s)
2 = (ci

L�
µbi

L)(s j
L�µc

j
L), Q(c,d)

2 = (ci
L�
µbi

L)(d
j
L�µc

j
L).

We have replaced the s-quark with a d-quark in second line of Eq (4.12) for the tree

operators. Clearly the �S = �1 and �S = 0 processes are mediated by the first line and

second line of Eq (4.12). Q3, . . . , Q6 are the “Gluonic Penguin” operators:

Q(s)
3 = (si

L�
µbi

L)
X

q=u,d,s

(q j
L�µq

j
L)

Q(s)
4 = (si

L�
µb j

L)
X

q=u,d,s

(q j
L�µq

i
L)

Q(s)
5 = (si

L�
µbi

L)
X

q=u,d,s

(q j
R�µq

j
R)

Q(s)
6 = (si

L�
µb j

L)
X

q=u,d,s

(q j
R�µq

i
R). (4.14)

Out of the four “EWP” (i.e. “Electroweak Penguins”) Operators: Q7, . . . , Q10, Q7 and

Q8:

Q(s)
7 =

3
2

(si
L�
µbi

L)
X

q=u,d,s

eq(q j
R�µq

j
R),

Q(s)
8 =

3
2

(si
L�
µb j

L)
X

q=u,d,s

eq(q j
R�µq

i
R), (4.15)

are typically ignored in hadronic decays because of the smallness of C7 and C8 with

respect to the other Wilson Coe�cients.
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The remaining “EWP” operators are:

Q(s)
9 =

3
2

(si
L�
µbi

L)
X

q=u,d,s

eq(q j
L�µq

j
L),

Q(s)
10 =

3
2

(si
L�
µb j

L)
X

q=u,d,s

eq(q j
L�µq

i
L). (4.16)

Once again we have replaced the s-quark with a d-quark in the second line of Eq (4.12)

for all the penguin operators. We note that the tree operators Q(c)
1 and Q(c)

2 can give

rise to “charming penguin" like contributions [68–72] which basically mean penguin di-

agrams with charm (c) quark going in the loop. Similar to B-meson charmless decays,

the insertion of Q(c)
1 and Q(c)

2 tree operators in penguin diagrams cannot be neglected in

comparison to tree diagrams where Q(u)
1 and Q(u)

2 contributes. Obviously the usual QCD

penguin operators Q3�Q6 as well as the electroweak penguin operators contribute to the

penguin diagrams having an internal top quark. We have already used the unitarity of the

CKM matrix and the relations

�(s)
u +�

(s)
c +�

(s)
t = 0, �(d)

u +�
(d)
c +�

(d)
t = 0 (4.17)

to express the first line of Eq (4.12) with VubV⇤us and VtbV⇤ts appearing in front of tree

and penguin operators respectively. Similarly in the second line of Eq (4.12) the CKM

elements appearing in front of the tree and penguin operators are VubV⇤ud and VtbV⇤td. We

will now focus on the SU(3) properties of each of these dimension-6 operators.

He↵ is a linear combinations of four quark operators of the form (q1b)(q2q3). These

operators transform as 3⌦3⌦3 under SU(3)-flavor and can be decomposed into sums of

irreducible operators corresponding to irreducible SU(3) representations: 15 ,6 ,3(6) ,3(3̄)

where the superscript index: ‘6’ (‘3’) indicates the origin of 3 out of the two possible

representations arising from the tensor product of q1 and q2. Through out this thesis, the

chosen convention for the SU(3) triplet representation of quarks (qi) and its conjugate
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denoting the anti-quarks (qi) consist of the flavor states;

qi =

0
BBBBBBBBBBBBBBBBBB@

u

d

s

1
CCCCCCCCCCCCCCCCCCA

qi =

0
BBBBBBBBBBBBBBBBBB@

d

�u

s

1
CCCCCCCCCCCCCCCCCCA

(4.18)

According to the sign convention chosen in Eq. (4.18), the meson wavefunctions are given

as,

K+ = us, K� = �su, K0 = ds, K
0
= sd

⇡+ = ud, ⇡� = �du, ⇡0 =
1
p

2
(dd�uu)

⌘8 = �
1

2
p

6
(uu+dd�2ss) ⌘1 = �

1
p

3
(uu+dd+ ss)

The physical mesons ⌘, ⌘
0

are related to the ⌘8 and ⌘1 through the SO(2) rotation,

0
BBBBBBBBB@
⌘

⌘0

1
CCCCCCCCCA
=

0
BBBBBBBBB@
�cos✓ sin✓

�sin✓ �cos✓

1
CCCCCCCCCA

0
BBBBBBBBB@
⌘8

⌘1

1
CCCCCCCCCA

(4.19)

where the definition of ✓ is consistent with the overall notation for the meson wavefunc-

tions as well as agreeing with the phenomenologically determined value of ✓. In the

following table the four quark operators, which appear in He↵, are decomposed using

SU(3) Clebsch-Gordan tables. It is worthwhile to note that in the Hamiltonian operators

appear as q1 q2 q3 whereas in Table 4.1 they are expressed conveniently as q1 q2q3. With

the help of Table 4.1, the e↵ective Hamiltonian can be expressed in terms of operators

having definite SU(3) transformation properties. The tree part consisting of Q1 and Q2 is

SU(3) decomposed below [77],
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15I=1 15I=0 6I=1 3(6)
I=0 3(3)

I=0 15I=3/2 15I=1/2 6I=1/2 3(6)
I=1/2 3(3)

I=1/2
u su �1/2 �1/

p
8 �1/2 �1/

p
8 �1/2

suu �1/2 �1/
p

8 1/2 �1/
p

8 1/2
sd d 1/2 �1/

p
8 �1/2 �1/

p
8 1/2

d sd 1/2 �1/
p

8 1/2 �1/
p

8 �1/2
s s s 1/

p
2 �1/

p
2

ud u �1/
p

3 �1/
p

24 1/2 �1/
p

8 �1/2
d uu �1/

p
3 �1/

p
24 �1/2 �1/

p
8 1/2

d d d 1/
p

3 �1/
p

6 �1/
p

2
d s s

p
3/
p

8 1/2 �1/
p

8 1/2
sd s

p
3/
p

8 �1/2 �1/
p

8 �1/2

Table 4.1: Operator Decomposition

p
2HT

4GF
=

(
�s

u

"
(C1+C2)

2

 
�151�

1
p

2
150�

1
p

2
3(6)

0

!
+

(C1�C2)
2

✓
61+3(3)

0

◆#

+ �d
u

"
(C1+C2)

2

 
�

2
p

3
153/2�

1
p

6
151/2�

1
p

2
3(6)

1/2

!
+

(C1�C2)
2

✓
�61/2+3(3)

1/2

◆#)
,

(4.20)

Since the c-quark is a singlet under SU(3) flavor, the Qc
1 and Qc

2 transforms as a sin-

gle 3 under SU(3). We cannot distinguish between the three 3 contributions as they all

transform identically under SU(3). In case of QCD penguin operators, the quark pair

is produced from a gluon which is SU(3)-flavor singlet. Naturally, under SU(3)-flavor,

Q3 . . .Q6 should transform as a 3, a fact that is reflected in the explicit decomposition of

those operators,

p
2Hg

4GF
=
⇢
��s

t


�
p

2(C3+C4)3(6)
0 + (C3�C4)3(3)

0

�
� �d

t


�
p

2(C3+C4)3(6)
1/2+ (C3�C4)3(3)

1/2

�

� �s
t


�
p

2(C5+C6)3(6)
0 + (C5�C6)3(3)

0

�
� �d

t


�
p

2(C5+C6)3(6)
1/2+ (C5�C6)3(3)

1/2

��
,

(4.21)

Finally we have the electroweak penguin operators where the quark pair is produced from

a photon or an o↵-shell Z-boson. Here the electric charge of the quarks has to be taken

into account. The SU(3)-flavor decomposition of the electroweak penguin operators are
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given below:

p
2HEWP

4GF
=

(
��s

t

"
(C9+C10)

2

 
�

3
2

151�
3

2
p

2
150+

1
2
p

2
3(6)

0

!
+

(C9�C10)
2

 
3
2

61+
1
2

3(3)
0

!#

��d
t

2
666664
(C9+C10)

2

0
BBBBB@�
p

3153/2�
1
2

r
3
2

151/2+
1

2
p

2
3(6)

1/2

1
CCCCCA+

(C9�C10)
2

 
�

3
2

61/2+
1
2

3(3)
1/2

!3777775

9>>=
>>; .

(4.22)

In absence of SU(3) breaking due to s-quark mass, it is clear from Table 4.1 that higher

SU(3) representations like 24, 42 and 150 are absent in the unbroken Hamiltonian.

4.4 Allowed SU(3)-reduced matrix elements

The SU(3)-reduced elements are SU(3)-invariants that can be constructed out of the given

initial state, final state and e↵ective Hamiltonian. We recall that before our choice of

a particular form of the e↵ective Hamiltonian we had all total 44 SU(3)-reduced ele-

ments equaling the total number of all �S = �1 and �S = 0 process, indicated in Ap-

pendix A.0.0.1 and Appendix A.0.0.4. We had to treat those SU(3)-reduced elements as

independent amplitudes since we didn’t know beforehand the dynamical coe�cients that

could connect one to the other. Now, from the tree and electroweak part of the Hamilto-

nian we can project out the coe�cients corresponding to the 15 part of the Hamiltonian

and write down the following relations between reduced matrix elements regardless of the

initial and final states,

hf k 150 k ii
hf k 151 k ii

=
1
p

2
,
hf k 151/2 k ii
hf k 153/2 k ii

=
1

2
p

2
(4.23)

�d
t hf k 150 k iiT

�s
t hf k 151/2 k iiT

=
p

3,
�d

t hf k 150 k iiEWP

�s
t hf k 151/2 k iiEWP

=
p

3 (4.24)

In case of several di↵erent operator structures contributing to the Hamiltonian as is the

case in Eq. (4.12), the relations between reduced matrix elements are expressed in the
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following way,

hf k RI k ii
hf k RI0 k ii

=

P
lClClP

mCmC0m
, (4.25)

where, the C(0)
i are the coe�cients of the di↵erent components of the Hamiltonian and

C j’s are the CG coe�cients and the sums extend over all the corresponding contributions

to the Hamiltonian. In addition, the absence of some of the SU(3) representations in the

Hamiltonian is a consequence of the vanishing dynamical coe�cients corresponding to

the reduced matrix elements hf k 42 k ii, hf k 24 k ii and hf k 150 k ii, regardless of the I

value and initial and final states. We shall see how these representations may contribute

when we discuss the e↵ects of SU(3)-breaking later. Finally, we are left with ten SU(3)-

reduced matrix elements,

h81 k 3 k 3i, h82 k 3 k 3i, h81 k 6 k 3i, h82 k 6 k 3i, h81 k 15 k 3i

h82 k 15 k 3i, h10 k 15 k 3i, h10 k 6 k 3i, h27 k 15 k 3i, h1 k 3 k 3i (4.26)

which are all independent of each other.

4.5 Amplitude relations

The �S =�1 and �S = 0 decay amplitudes and the reduced SU(3) elements are expressed

as column matricesA and R respectively and related by the matrix equation,

Atree = TR, (4.27)

Apenguin = PR (4.28)

where T and P are the coe�cient matrices. T and P contain those coe�cients that relate

the tree and penguin part of the e↵ective Hamiltonian in Eq. (4.20)-(4.22) to the physical
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initial and final states. The total decay amplitude can always be written as a sum of the

tree and penguin part,

A =Atree+Apenguin. (4.29)

The rank of matrix T is lower than the total number of decay modes suggesting that not

all of the reduced SU(3) matrix elements are independent. The number of actually in-

dependent reduced SU(3) matrix elements are equal to the rank of matrix T. Since the

choice of SU(3)-reduced amplitudes remain the same while considering gluonic and EW

penguin operators, the coe�cient matrix P, also has the same rank as matrix T. It is clear

from the previous section that the rank of T or P matrix is ten, which is the number of

independent SU(3)-reduced amplitudes. The number of amplitude relations can now be

estimated unambiguously which is the di↵erence between the total number decay modes

and rank of T(P). It is advantageous to factor out the CKM elements �s,d
u,t that was pre-

viously inside the SU(3)-reduced amplitudes. The explicit form of T and P for �S = �1

and �S = 0 processes without the overall CKM factors are provided in Appendix A.0.0.2,

Appendix A.0.0.5 and Appendix A.0.0.3, Appendix A.0.0.6 respectively. Moreover, a

spin-1/2 state decaying to another spin-1/2 state and a spin-0 state can go through two

possible relative angular momentum states. Thus we have to distinguish between l = 0

and l = 1 relative angular momentum final states while decomposing the decay amplitude

in terms of tree and penguin reduced amplitudes,

A
S = �q

uA
S
tree+�

q
tA

S
penguin,

A
P = �q

uA
P
tree+�

q
tA

P
penguin, (4.30)

where q = s, d denote the �S = �1, 0 process, S and P denote the S-wave (l = 0) and

P-wave (l = 1) amplitudes of the decay. The coe�cient matrices are now redefined as T

and P with entries that are nothing but products of Wilson Coe�cients (Ci) and Clebsch-

Gordon coe�cients. Of course, the number of independent rows remain unchanged and
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the matrix equations take the form,

A
i
tree = TR A

i
penguin = PR (4.31)

for i = S-wave, i = P-wave part. In case of gluonic penguins, 6 and 15 of SU(3) are

absent which result in a smaller set of independent reduced SU(3) matrix elements. This

implies additional amplitude relations between decay modes, some of which are violated

once the electroweak penguins are taken into account in the unbroken Hamiltonian. We

include electroweak penguins that have parts transforming as 3, 6 and 15 of SU(3) and

retain all the reduced SU(3) matrix elements. As a result, the amplitude relations derived

hold for the gluonic penguin part as well as the electroweak penguin part of the unbroken

Hamiltonian. We begin with identifying the identical rows of the T matrix which readily

gives the simplest amplitude relations for the tree part,

Atree(⇤0
b! ⌃

�K+) =Atree(⌅0
b! ⌅

�⇡+), (4.32)

Atree(⇤0
b! p+⇡�) =Atree(⌅0

b! ⌃
+K�), (4.33)

Atree(⌅�b ! nK�) =Atree(⌅�b ! ⌅
0⇡�), (4.34)

Atree(⌅�b ! ⌅
�K0) =Atree(⌅�b ! ⌃

�K
0
), (4.35)

Atree(⌅0
b! ⌅

�K+) =Atree(⇤0
b! ⌃

�⇡+), (4.36)

Atree(⌅0
b! ⌃

�⇡+) =Atree(⇤0
b! ⌅

�K+), (4.37)

Atree(⌅0
b! ⌃

+⇡�) =Atree(⇤0
b! p+K�), (4.38)

Atree(⌅0
b! nK

0
) =Atree(⇤0

b! ⌅
0K0), (4.39)

Atree(⌅0
b! p+K�) =Atree(⇤0

b! ⌃
+⇡�), (4.40)

Atree(⌅0
b! ⌅

0K0) =Atree(⇤0
b! nK

0
), (4.41)

and the same set of relations derived from the matrix P corresponding to the penguin part

of the e↵ective Hamiltonian. There are several triangle relations connecting the �S = �1
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decays modes;

A(⇤0
b! ⌃

+⇡�)+A(⇤0
b! ⌃

�⇡+)+2A(⇤0
b! ⌃

0⇡0) = 0,

A(⌅�b ! ⌅
�⇡0)�

p
3A(⌅�b ! ⌅

�⌘8)+
p

2A(⌅�b ! ⌃
�K0) = 0,

A(⌅�b ! ⌃
0K�)�

p
3A(⌅�b ! ⇤

0K�)+
p

2A(⌅�b ! ⌅
0⇡�) = 0, (4.42)

A(⌅0
b! ⌅

�⇡+)�A(⇤0
b! ⌅

�K+)+A(⇤0
b! ⌃

�⇡+) = 0,

A(⌅0
b! ⌃

+K�)�A(⇤0
b! p+K�)+A(⇤0

b! ⌃
+⇡�) = 0,

as well as the �S = 0 decay modes;

A(⌅�b ! ⌃
0⇡�)�

p
3A(⌅�b ! ⇤

0⇡�)�
p

2A(⌅�b ! nK�) = 0,

A(⌅�b ! ⌃
�⇡0)�

p
2A(⌅�b ! ⌅

�K0)�
p

3A(⌅�b ! ⌃
�⌘8) = 0, (4.43)

A(⌅0
b! ⌃

�⇡+)�A(⌅0
b! ⌅

�K+)�A(⇤0
b! ⌃

�K+) = 0,

A(⌅0
b! p+K�)�A(⌅0

b! ⌃
+⇡�)+A(⇤0

b! p+⇡�) = 0.

The simplest amplitude relations for the case of 3Bb ! 8B ⌦ 1M involving the SU(3)

singlet ⌘1 are indicated,

A(⌅0
b! ⌅

0⌘1) =A(⇤0
b! n⌘1),

A(⌅�b ! ⌅
�⌘1) =A(⌅�b ! ⌃

�⌘1), (4.44)

along with triangle relation for �S = �1 processes

A(⇤0
b! ⇤⌘1)� 1

p
3
A(⇤0

b! ⌃
0⌘1)�

p
2
p

3
A(⌅0

b! ⌅
0⌘1) = 0

and for �S = 0 processes,

A(⇤0
b! n⌘1)+

p
3
p

2
A(⌅0

b! ⇤
0⌘1)�

1
p

2
A(⌅0

b! ⌃
0⌘1) = 0.
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While there is no ground state SU(3) singlet ⇤ baryon, there can be l = 1 excited state

spin-3/2 ⇤0⇤
s -baryon, for which one can derive amplitude relations equivalent to the case

of 3Bb ! 1B⌦8M;

A(⌅0
b! ⇤

0⇤
s K0) =A(⇤0

b! ⇤
0⇤
s K0)

A(⌅0
b! ⇤

0⇤
s ⌘8) =A(⌅�b ! ⇤

0⇤
s K�) (4.45)

triangle �S = �1 relations:

A(⇤0
b! ⇤0⇤

s ⇡0)� 1
p

3
A(⇤0

b! ⇤
0⇤
s ⌘8)+

p
2
p

3
A(⌅0

b! ⇤
0⇤
s K0) = 0, (4.46)

triangle �S = 0 relations:

�
1
p

3
A(⌅0

b!⇤
0⇤
s ⌘8)+A(⌅0

b! ⇤
0⇤
s ⇡0)�

p
2
p

3
A(⇤0

b! ⇤
0⇤
s K0) = 0. (4.47)

The S-wave and P-wave parts of the decay amplitudes behave identically under SU(3)

decomposition and the relations hold individually for the tree and penguin part of the

all the above mentioned amplitude relations. Finally, we consider the trivial case of

3Bb ! 1B⌦1M where the final state baryon and meson are both SU(3) singlets. The only

relevant decay, ⇤0
b! ⇤

⇤0
s ⌘1, satisfying the SU(3) quantum numbers involve a single re-

duced SU(3) amplitude matching with the counting of the number of possible independent

SU(3)-reduced amplitudes. This concludes our discussion of all possible 3Bb ! 8B⌦8M,

3Bb ! 8B⌦1M, 3Bb ! 1B⌦8M, 3Bb ! 1B⌦1M decays of b-baryons. More SU(3) rela-

tions are obtained by starting from the T(P) matrix and expressing the dependent rows as

a linear combination of the independent ones. We do not list those relations here as they

are not particularly illuminating.
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4.5.1 SU(3) breaking e↵ect

While isospin symmetry holds to a good approximation, the SU(3) symmetry of the light

quarks is broken by the mass of the s quark (ms). To incorporate such SU(3) violating

e↵ects on decay amplitudes, we parametrize the breaking of flavor SU(3) by the following

interaction [101, 103, 110, 134–136],

�H = ✏ q�8 q (4.48)

where �8 is the Gell-Mann matrix that contributes to the SU(3)-breaking and the breaking

parameter ✏ depends on ms. The SU(3) structure of the unbroken Hamiltonian is modified

by this term and to the first order in strange quark mass, the broken Hamiltonian is made

of the following SU(3) representations [103],

(3�6�15)⌦ (1+ ✏ 8) = (3�6�15)+ ✏(3i�6i�151�152�151
3

�152
3�15

0

�242�243�42), (4.49)

where the subscript i = 1,2,3 indicates the origin of that representation from 3 ,6, 15

respectively. The set of reduced SU(3) amplitudes thus gets enlarged and there are less

number of relations as a result. The isospin relation,

A(⇤0
b! ⌃

+⇡�)+A(⇤0
b! ⌃

�⇡+)+2A(⇤0
b! ⌃

0⇡0) = 0 (4.50)

continues to hold even after including the SU(3) breaking e↵ect to the linear order.

There are other amplitude relations that can be derived on more general grounds. For

instance, the isospin symmetry of the unbroken Hamiltonian forbids a �I = 2 and �I =

5/2 transition. As a consequence, the SU(3)-reduced matrix elements hf k RI=2 k ii and

hf k RI=5/2 k ii must have a vanishing contribution to the decay amplitude for arbitrary

initial and final states. Such SU(3) breaking but isospin conserving relations are given
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below,
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(4.52)

The same set of relations hold for the penguin parts as well.

4.6 CP relations

The total decay rate for a two body decay of a spin-1/2 anti-triplet b-baryon (Bb) to a spin

0 pseudo-scalar (M) meson and a spin 1/2 baryon (B) has the following form [23,25,54,

137–139]

�(Bb! BM) =
|pB|

8⇡m2
Bb

h
|S |2+ |P|2

i
(4.53)

where |pB| is the momentum of the final state baryon given by,

|pB| =
1

2mBb

q
m4
Bb
+m4
B
+m4
M
�2m2

Bb
m2
B
�2m2

Bb
m2
M
�2m2

M
m2
B
. (4.54)
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The S-wave and P-wave contributions [23, 54, 116] in Eq. (4.53) are factored into kine-

matic factors and decay amplitudesAS andAP,

S =
p

2mBb(EB+mB)AS

P =
p

2mBb(EB�mB)AP (4.55)

whereAS andAP are expressed in terms of SU(3)-reduced amplitudes defined in Eq. (4.30).

The decay rate,

� =
|pB|
4⇡

(EB+mB)
mBb

h
|A

S
|
2+

⇣ |pB|
EB+mB

⌘2
|A

P
|
2
i

(4.56)

and ACP are defined subsequently as [135],

ACP =
�(Bb! BM)��(Bb! BM)

�(Bb! BM)+�(Bb! BM)

=
�CP(Bb! BM)
2�̃(Bb! BM)

, (4.57)

where, �̃(Bb!BM) = 1
2(�(Bb!BM)+�(Bb!BM)).We note that the amplitude re-

lations quoted in Eqs. (4.32)-(4.41) are actually U-spin relations that are no longer valid

when SU(3)-breaking e↵ects are considered. Nevertheless, we express CP relation among

those modes [24] relying on the identity Im(VubV⇤udV⇤tbVtd) = �Im(VubV⇤usV⇤tbVts) = J,

where J is the well known Jarlskog invariant. Notice that Eqs. (4.53) and (4.57) imply that

ACP is the sum of CP violation in S and P waves. We define a quantity �a
CP = |A

a
|
2
� |Ā

a
|
2,

for the partial wave a, where a = {S, P} andAa are defined in Eq. (4.55) with phase-space

factors removed from the respective partial waves. By definition,

�a
CP(Bb! BM) = �4J⇥ Im

h
A

a⇤
T (Bb! BM)Aa

P(Bb! BM)
i
. (4.58)
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Based on amplitude relations for the tree and penguin parts obtained in Eqs. (4.32)–(4.41)

the following ten �a
CP relations are obtained,

�a
CP(⇤0

b! ⌃
�K+) =��a

CP(⌅0
b! ⌅

�⇡+),

�a
CP(⇤0

b! p+⇡�) =��a
CP(⌅0

b! ⌃
+K�),

�a
CP(⌅�b ! nK�) =��a

CP(⌅�b ! ⌅
0⇡�),

�a
CP(⌅�b ! ⌅

�K0) =��a
CP(⌅�b ! ⌃

�K
0
), (4.59)
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CP(⇤0
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�K+),

�a
CP(⌅0

b! ⌃
+⇡�) =��a

CP(⇤0
b! p+K�),

�a
CP(⌅0

b! nK
0
) =��a

CP(⇤0
b! ⌅

0K0),

�a
CP(⌅0

b! p+K�) =��a
CP(⇤0

b! ⌃
+⇡�),

�a
CP(⌅0

b! ⌅
0K0) =��a

CP(⇤0
b! nK

0
), (4.60)

for both a = S and a = P. Finally we obtain ACP relations using,

ACP(Bb! BM) =
⌧Bb

BR(Bb! BM)
�CP(Bb! BM), (4.61)

where, ⌧Bb is the lifetime of the beauty-baryon. The relation between �CP and �CP is,

�CP =
|pB|
4⇡

(EB+mB)
mBb

h
�S

CP+
⇣ |pB|
EB+mB

⌘2
�P

CP

i
(4.62)

Since, �CP depends on the masses of the initial and final baryons as well as the final

state meson [23, 115], some approximation is needed to obtain ACP relations between

various modes. In the U-spin limit [24], by ignoring pB and mB di↵erences, CP violation

relations can be experimentally verified between the modes connected by S U(3)-flavor
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symmetry using the relation,

ACP(Bbi! B jMk)
ACP(Bbl! BmMn)

' �
⌧Bbi

⌧Bbl

BR(Bbl! BmMn)
BR(Bbi! B jMk)

, (4.63)

where i, j, k and l, m, n are indices corresponding to the various hadrons belonging to the

above mentioned �CP relations. There is a further simplification in case i = l, resulting in

ACP(Bbi! B jMk)
ACP(Bbi! BmMn)

' �
BR(Bbi! BmMn)
BR(Bbi! B jMk)

, (4.64)

where the uncertainties due to lifetime measurement also cancel out [25]. Alternatively,

if the longitudinal polarization of the daughter baryon can be measured from an angular

distribution study of the final states, one can estimate the relative strength of the P-wave

contribution [23,116] in the total decay width. The longitudinal polarization of the daugh-

ter baryon is given by,

↵ =
2Re(AS⇤

A
P)|pB|/EB+mB

|AS|2+ |AP|2(|pB|/EB+mB)2 (4.65)

The P-wave contribution can now be systematically taken into account resulting in a more

reliable prediction for ACP relations. These relations serve as an important test of flavor

SU(3) symmetry in beauty-baryon non-leptonic decays and one can compare these find-

ings with the analogous decays of bottom mesons to have a better understanding of the

SU(3) flavor symmetry breaking pattern.

4.7 Summary

We consider a general framework for hadronic beauty-baryon decays into octet or singlet

of light baryon and a pseudoscalar meson, based on SU(3) decomposition of the decay

amplitudes. We show that in the most general case, the 44 distinct decay modes require

44 independent reduced SU(3) amplitudes to describe all possible �S = �1 and �S = 0
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processes. In practice, the dimension-6 e↵ective Hamiltonian that mediates such non-

leptonic decays of bottom baryons allows only 10 independent reduced SU(3) amplitudes.

As a consequence there must exist relations between the decay amplitudes. We explicitly

derive several sum rules relations between decay amplitudes as well as relations between

CP asymmetries. Moreover, we systematically study the SU(3)-breaking e↵ects in the

decay amplitudes at leading order in the SU(3) breaking parameter. We further identify

amplitude relations that survives even when the SU(3) flavor symmetry is no longer exact.



Chapter 5
SU(3)-flavor analysis of bottom baryon

decaying into a decuplet baryon and an

octet meson

The contents of this chapter is based on a joint work [14] with Rahul Sinha and N.G.

Deshpande.

5.1 Prologue

In the last chapter we set up the formalism to study charmless decays of beauty baryons

into an octet baryon and an octet pseudoscalar meson using SU(3)-flavor symmetry. Since

decuplet baryon are known to exist, it is natural to ask whether we can observe a decuplet

baryon and a pseudo-scalar or vector meson in b-baryon decays. Experimental evidences

support this claim and in fact LHCb is well on its course to observe CP violation in regions

of the phase space that contain quasi-two body or three body decays of b-baryons featur-

ing a decuplet baryon in the final or intermediate state. There are two important attributes

of beauty-baryon decaying into a decuplet baryon and an octet pseudoscalar meson that

72
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Decay mode Invariant-mass requirements (in Mev/c2)

⇤0
b! p+⇡�⇡+⇡�

⇤0
b! �

++(1232)⇡�⇡� 1078 < m(p+⇡�) < 1432

⇤0
b! N0(1520)⇢0(770) 1078 < m(p+⇡�) < 1800 and m(⇡+⇡�) < 1100

⇤0
b! p+a�1 (1260) 419 < m(⇡+⇡�⇡+) < 1500

⇤0
b! p+K�⇡+⇡�

⇤0
b! �

++(1232)K�⇡� 1078 < m(p+⇡�) < 1432

⇤0
b! N0(1520)K⇤0(892) 1078 < m(p+⇡�) < 1800 and 750 < m(⇡+K�) < 1100

⇤0
b! ⇤

0(1520)⇢0(770) 1460 < m(p+K�) < 1580 and m(⇡+⇡�) < 1100

⇤0
b! p+K�1 (1410) 1200 < m(K�⇡+⇡�) < 1600

⇤0
b! p+K�K+K�

⇤0
b! ⇤

0(1520)�(1020) 1460 < m(p+K�) < 1600 and 1005 < m(K+K�) < 1040

⇤0
b! (pK�)high-mass�(1020) m(p+K�) > 1600 and 1005 < m(K+K�) < 1040

Table 5.1: Observed resonances in multibody decays of bottom baryons [9]

is worth pointing out. Firstly, all factorizable amplitudes vanish and non-factorizable

contributions play the dominant role in these decays. Secondly, only five SU(3)-flavor

parameters are required to describe all possible decays that can be determined from the

data as it becomes available. This motivates us to extend our analysis to anti-triplet (3)

beauty-baryon (Bb) decaying into a decuplet baryon (D) and an octet pseudoscalar meson

(M) i.e. Bb(3)!D(10)M(8) in this chapter. In addition, we also provide an alternative

approach in terms of quark diagrams and compare with the SU(3) decomposition in the

limit of exact SU(3)-flavor symmetry. Some of these quark diagrams do not contribute in

exact SU(3)-flavor symmetry limit, as we will see in detail later. This has implications on
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the number of free parameters that are required to describe all possible b-baryon decays

to a decuplet baryon and an octet meson. By pursuing both the SU(3)-reduction of de-

cay amplitudes and the diagrammatic prescription we are in a position to crosscheck our

assumptions directly in terms of experimentally measurable quantities.

5.2 Formalism

The formalism to study charmless decay of an anti-triplet (3) beauty-baryon into a decu-

plet baryon (D) and an octet pseudoscalar meson (M), i.e. Bb(3)!D(10)M(8) is exactly

the same as described in the last chapter. The possible decays can be divided into two sub

classes, namely the �S = 0 and �S = �1 transitions. The allowed final state SU(3) repre-

sentations (f) are; 8, 10, 27, 35. There are twenty physical process possible for �S = �1

and another twenty for �S = 0. In Appendix B.0.0.1 and Appendix B.0.0.2, each of these

decay modes are decomposed in terms of the SU(3) reduced amplitudes. The count of

total number of SU(3) reduced amplitudes add upto forty. Since the physical ⌘ and ⌘
0

mesons are admixtures of octet ⌘8 and singlet ⌘1 mesons, a study of Bb(3)!D(10)M(1)

is also necessary. Therefore one has to take into account four (two each for �S = �1

and �S = 0) additional independent SU(3) amplitudes. Since no assumption about the

particular form of e↵ective Hamilton has been made yet, these forty four reduced ampli-

tudes are all independent of each other and no amplitude relation exist between the decay

modes.

Now we assume same dimension-6 Hamiltonian with �Q = 0 and �S = �1,0 parts as

given in Eq (4.12). For quick reference, the SU(3) decomposition of the tree, gluonic and
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electroweak part of the e↵ective Hamiltonian are rewritten,
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With this particular choice of e↵ective Hamiltonian and allowed final state SU(3) repre-

sentations, there are five independent SU(3)-reduced matrix elements:

h8 k 3 k 3i, h8 k 6 k 3i, h8 k 15 k 3i

h10 k 15 k 3i, h27 k 15 k 3i (5.4)
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and the SU(3)-reduced amplitudes arising fromHT are conveniently expressed;

c8 = �(C1+C2) h8 k3(6)
k 3i+

p
2(C1�C2) h8 k 3(3)

k 3i,

b8 = (C1�C2) h8 k 6 k 3i,

a8 = (C1+C2) h8 k 15 k 3i, (5.5)

a10 = (C1+C2) h10 k 15 k 3i,

a27 = (C1+C2) h27 k 15 k 3i.

The decay amplitudes for all possible �S = �1 and �S = 0 processes are expressed using

Eq (5.5) and are given in Table 5.2 and Table 5.3 respectively.

An alternate description of decay amplitudes is obtained in terms of topological quark

diagrams. The symmetry properties of the final state decuplet baryons allow five possible

diagrams starting from a flavor anti-triplet b-baryon whose light quarks are in a flavor anti-

symmetric state. The flavor flow in five topologies [27] given in Figure 5.1 are described

below;

E1 : B[i j]D{km j}Ml
kHi

lm

E2 : B[i j]D{km j}Ml
kHi

ml

Pu : B[i j]D{k jl}Mi
kHm

ml

T : B[i j]D{lm j}Mi
kHk

ml

E3 : B[i j]D{klm}M j
mHi

kl

where B[i j], D{klm}, Mx
y are flavor wavefunctions of the initial anti-triplet (3) b-baryon,

the final state decuplet baryon (10) and the octet meson (8) respectively. Those flavor

wavefunctions are given in Eq (B.1) and Eq (B.2). The Hi
ab mediates the quark transition

b! qiqaqb and for �S =�1, �S = 0 processes, the only non-zero contribution come from

the elements H1
13 = 1 and H1

12 = 1 respectively. Those five independent topologies consist

of three W-exchanges (E1, E1, E3), one tree (T ) and a penguin-like (Pq) (q being the flavor
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Figure 5.1: Topological diagrams contributing to tree amplitude for anti-triplet b-baryon hadronic
decays. The first five diagrams contribute to Bb(3)! D(10)M(8) processes. The last diagram
contributes exclusively to Bb(3)!D(10)M(1) processes.

of the quark going in the loop) amplitude where the marked quarks are anti-symmetrized

in the initial state baryon. The sixth diagram, denoted as S contributes exclusively to

the decay modes containing the singlet ⌘1 meson. The mapping between the topological

amplitudes and the SU(3)-reduced amplitudes is given below,

c8 = �
1
8

⇣
�
p

10 E1+3
p

10 E2�2
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10 E3+8
p

10 Pu+2
p

10T
⌘
, (5.6)

b8 =
1
4

⇣p
15 E2�

p
15 E1

⌘
,

a8 =
1

24

⇣
5
p

6 E1+5
p

6 E2�10
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6 E3+2
p

6T
⌘
,

a10 =
1
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⇣
2
p

3 E1+2
p

3 E2+2
p

3 E3�
p

3T
⌘
,

a27 =

r
2
3

T.

The topologies E3 and T are sometimes ignored in accordance with Korner-Pati-Woo

theorem [140–151] based on “�I = 1/2” rule which suggests that the quark pair produced
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in weak interaction ending up in the same baryon must be anti-symmetric in flavor space.

However, the accuracy of such a statement is dependent on the modeling of the baryon-

baryon transition and exact SU(3) flavor symmetry. The details of the arguments made to

ignore E3 and T are reproduced below.

5.2.1 Lessons from Korner-Pati-Woo theorem

Considering only the tree operators in the e↵ective Hamiltonian,

H
e↵ =C1Q1+C2Q2 (5.7)

that can be recast as [140–144],

H
e↵ =C�Q�+C+Q+, (5.8)

where C� =C1�C2, C+ =C1+C2 and

Q� =
1
2

(Q1�Q2) =
1
2

⇣
(ui

L�
µb j

L)(d
j
L�µu

i
L)� (ui

L�
µbi

L)(d
j
L�µu

j
L)

⌘
(5.9)
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1
2

(Q1+Q2) =
1
2

⇣
(ui

L�
µb j

L)(d
j
L�µu

i
L)+ (ui

L�
µbi
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L�µu

j
L)

⌘
. (5.10)

Rewriting Q1 and Q2 we get,

Q1 =
1
4

h
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⇤
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l)�
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(d
j
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4
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(ui)↵
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�µ(1��5)

⇤
↵�(b

l)�
ih

(d
j
)�

⇥
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⇤
��(uk)�

i
�il� jk (5.12)

We use the identity,

1
2
✏ai j✏alk = (�il� jk

��ik� jl)
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to write Q� as,

Q� = �
1
2
.
1
2
.
1
4
✏ai j✏alk

h
(ui)↵

⇥
�µ(1��5)

⇤
↵�(b

l)�
ih

(d
j
)�

⇥
�µ(1��5)

⇤
��(uk)�

i
(5.13)

Using Firez transformation [152] one can recast Eq. (5.13) as [142],

Q� = �
1
4

1
2
✏alk

h
(b

l
)C(1��5) (uk)

i

|                      {z                      }
(bu)3

✏ai j
h
(ui)(1+�5) (d j)C

i

|                      {z                      }
(ud)†

3

(5.14)

where qC = Cq⇤, C being the charge-conjugation operator. According to diquark mecha-

nism [142,143], the diquark ✏ai j
h
(ui)(1+�5) (d j)C

i
has a total spin 0 and transforms as a 3

and 3 under SU(3)F and SU(3)color respectively. This diquark ending up completely in the

final state baryon cannot produce1 a decuplet baryon as any quark pair inside the decuplet

baryon transforms as 6 and 3 under SU(3)F and SU(3)color with a total spin equaling 1.

On the other hand, the operator Q+ which is a product of SU(3)color sextet currents can-

not produce a color singlet baryon. In diagrams T and E3, the quark pair antisymmetric

in color and flavor [140, 141] originating from weak interaction ends up in the decuplet

baryon which is forbidden by the above mentioned argument [145–151]. Since the quark

pair (ud)3 is in isospin 0 state2, the total quark transition obeys �I = 1/2 rule. In contrast,

in diagrams E1 and E2, the diquark argument is not applicable as only one of the quarks

from weak interaction form the final state baryon while the other ends up in the meson.

As a consequence, the number of independent diagrams reduces to three. If we demand

an equivalent description of all possible decays in terms of SU(3)-reduced amplitudes,

some of the reduced amplitudes can no longer be independent. The relation between the

1Assuming the baryon made of the diquark and a third quark transforming as a 3 and 3 under SU(3)F
and SU(3)color the final state transforms as SU(3)color : 3⌦3 = 1�8, S U(3)F : 3⌦3 = 1�8. Since baryons
are color singlet, a 6 of SU(3)color diquark can never form a baryon.

2Only allowed isospin values in a 3 of SU(3)F is 0 or 1/2.
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remaining diagrams and the SU(3)-reduced amplitudes is given below,

E1 =

p
3a10

4
�

2b8
p

15
, (5.15)

E2 =

p
3a10

4
+

2b8
p

15
, (5.16)

Pu = �

p
3a10

16
+

c8
p

10
�

b8
p

15
(5.17)

where c8, b8, a8, a10, a27 are defined in Eq. (5.5).

Equivalently, the following relations hold for the SU(3)-reduced matrix elements,

a27 = 0 (C1 , 0,C2 , 0) (5.18)

a8 =
5

8
p

2
a10. (5.19)

We derive several interesting tests (Eqs. (5.33)–(5.34)) to verify if the contribution from

the topological amplitudes E3 and T are indeed suppressed. We, however have chosen to

include the E3 and T diagrams throughout the rest of this thesis.

The SU(3)-decomposition of decays and the diagrammatic approach are equivalent and

imply that individual topological amplitudes cannot be expressed in terms of a single

SU(3)-reduced amplitude and vice-versa in these two basis. An exception to this obser-

vation is the T diagram which is expressible entirely in terms of a single SU(3)-reduced

amplitude a27 as is evident from Eq. (5.6). In context of the 10⌦ 1 transition, involving

the singlet meson, it is worth mentioning that the only SU(3)-reduced amplitude, given by

h10 k 15 k 3i needs to be counted independent of the five SU(3)-reduced amplitude con-

tributing to the 10⌦8 processes. The flavor-flow diagram S is expressed in terms of that

single SU(3)-reduced amplitude. It is also important to note that the topology, Pu, origi-

nate purely from the tree operators i.e. O1 and O2 as emphasized in [68–72], even though

it is denoted by Pu and referred to as a penguin topology. Moreover the W-exchange

topologies being a four-quark tree-like structure also contribute to the tree amplitudes.
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The transition induced by QCD penguin operators, given in Eq (4.21) is only a 3 un-

der SU(3) and corresponding SU(3)-reduced amplitude is identified with the ‘penguin’

amplitude Pt,

Pt = �
p

2(C3+C4+C5+C6)h8 k 3(6)
k 3i+ (C3�C4+C5�C6)h8 k 3(3)

0 k 3i. (5.20)

5.2.2 Relating EWP and Tree amplitudes

We begin this section by noting that the 15 and 6 part of the Hamiltonian described in

Eqs. (4.20) and (4.22) relate the contributions to the decay from the tree and EWP opera-

tors [20, 63, 74] respectively, so as to e↵ectively obey the following relations,

H
EWP
15 (�S ) = �

3
2
�s(d)

t (C9+C10)

�s(d)
u (C1+C2)

H
T
15(�S )

H
EWP
6

(�S ) = �
3
2
�s(d)

t (C9�C10)

�s(d)
u (C1�C2)

H
T
6

(�S ) (5.21)

These relations are valid independently for both �S = {0,�1} decays and remain unaf-

fected by the QCD penguin operators since O3 and O4 transforms entirely as a 3 under

SU(3). Apriori, the 3(6) and 3(3) operators do not follow a simple relation for arbitrary

values of C1,C2,C9 and C10. Since the set of SU(3)-reduced elements remains the same,

in analogy to Eq. (5.5) one can define,

cEW
8 = (C9+C10) h8 k 3(6)

k 3i+
p

2(C9�C10) h8 k 3(3)
k 3i

bEW
8 = �

3
2

(C9�C10) h8 k 6 k 3i

aEW
8 = �

3
2

(C9+C10) h8 k 15 k 3i (5.22)

aEW
10 = �

3
2

(C9+C10) h10 k 15 k 3i

aEW
27 = �

3
2

(C9+C10) h27 k 15 k 3i.
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The EWP reduced amplitudes bEW
8 ,a

EW
8 ,a

EW
10 and aEW

27 are expressed in terms of b8,a8,a10

and a27 defined in Eq. (5.5);

bEW
8 = �

3
2

C9�C10

C1�C2
b8, aEW

8 = �
3
2

C9+C10

C1+C2
a8, (5.23)

aEW
10 = �

3
2

C9+C10

C1+C2
a10, aEW

27 = �
3
2

C9+C10

C1+C2
a27

Using numerical values of the Wilson coe�cients to leading logarithmic order we obtain,

C9+C10

C1+C2
= �1.139↵,

C9�C10

C1�C2
= �1.107↵. (5.24)

To a good approximation [20] these two ratios of Wilson coe�cients can be taken to be a

common value [19, 133] given by ;

 =
C9+C10

C1+C2
=

C9�C10

C1�C2
' �1.12↵. (5.25)

With this additional assumption, Eq. (5.23) implies that the bEW
8 ,a

EW
8 ,a

EW
10 and aEW

27 are

proportional to the tree reduced amplitudes b8,a8,a10 and a27

bEW
8 = �

3
2
b8, aEW

8 = �
3
2
a8,

aEW
10 = �

3
2
a10, aEW

27 = �
3
2
a27. (5.26)

The equivalence of SU(3)-reduced amplitudes to topological diagrams, allows one to in-

terpret PEW
i as electroweak quark diagrams with one insertion of the electroweak penguin

operator;

PEW
Ei
= �

3
2
Ei (5.27)

PEW
T = �

3
2
T (5.28)
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where, i = {1,2,3}.

�S = �1 S U(3)� reduced amplitude Topological diagrams
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Table 5.2: Bb(3)!D(10)M(8) decay �S = �1 transitions

As mentioned earlier, there is no simple relation between the 3 part of the EWP Hamil-

tonian to the tree part. There are, however, decays where the 3 part of the Hamiltonian

cannot contribute to the formation of final states which require a pure �I = 1 or �I = 3/2

transition. For example, the decay ⇤0
b! �

+K� receives contribution from 6 and 15 part

of the e↵ective Hamiltonian and in this particular case the ratio of EWP and tree contribu-

tions is given entirely by the simple ratio �3/2(�s
t /�

s
u). The SU(3)-reduced amplitudes

for the penguin operators are provided in Appendix. B.0.0.5 and Appendix. B.0.0.6.
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�S = 0 S U(3)� reduced amplitude Topological Diagram
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Table 5.3: Bb(3)!D(10)M(8) decay �S = 0 transitions

5.3 Amplitude relations

The complete decay amplitude is given in terms of tree and penguin SU(3)-reduced am-

plitudes and the CKM elements,

A =�q
uAtree+�

q
tApenguin, (5.29)

where q = s, d denote the �S = �1, 0 process. Since the SU(3) operators appear in EW

and tree part of the Hamiltonian in a particular combination, the same amplitude relations

between �S = �1 and �S = 0 processes are satisfied by the EWP part and the tree part.

Moreover, the decay products of a spin-1/2 particle decaying to a spin-3/2 and a spin-0

particle can be in relative angular momentum l = 1 or l = 2 state. The decay amplitude is
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further decomposed into P-wave and D-wave parts;

A
P =�q

uA
P
tree+�

q
tA

P
penguin, (5.30)

A
D =�q

uA
D
tree+�

q
tA

D
penguin. (5.31)

Finally, the following decay amplitude relations are obtained for both the P-wave and

D-wave parts;
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The additional amplitude relations that emerge after applying the arguments from Korner-

Pati-Woo theorem are highlighted in the boxes,
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(5.33)
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In case of 3 ! 10⌦ 1 processes, it is clear from Eq (B.3) and Eq (B.4) that the only

amplitude relation between the two modes is,
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p
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00⌘1) (5.36)

Coming back to the 3! 10⌦ 8 processes we write down the �S = �1 triangle relations

(without using Korner-Pati-Woo theorem),
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The �S = 0 triangle relations are also obtained,
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5.4 SU(3) breaking e↵ects

The modified Hamiltonian after including linear SU(3) breaking e↵ects is exactly the

same as given in Eq (4.49). SU(3) breaking e↵ects will induce higher SU(3) represen-

tations and some of the amplitude relations will cease to hold as there are now thirteen



88 Chapter 5: SU(3) analysis of Bb!DM

independent SU(3)-reduced matrix elements. The isospin relation,
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and isospin triangle relations, for �S = �1,
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and for �S = 0,
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continue to hold. In addition, arbitrary SU(3)-breaking but isospin conserving e↵ects still

forbid �I = 2 and �I = 5
2 transitions which results in general amplitude sum rules,
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5.5 CP relations

The general decay amplitude for a spin-1/2 b-baryon (Bb) to a spin 0 pseudo-scalar (M)

and a spin-3/2 (D) is given by,

M = �iqµu
µ
D

(a+b�5)uBb , (5.64)

where uµ
D

is the Rarita-Schwinger spinor for the spin-3/2 decuplet baryon, qµ is the mo-

mentum of the pseudo-scalar meson and uBb is the spinor for the initial spin-1/2 b-baryon.

The two coe�cients a and b have dimension GeV�1 and contain the CKM elements as

well as the same flavor structure as Atree and Apenguin. The total decay rate for an un-

polarized b-baryon described by the decay amplitude of the form in Eq.(5.64) is given

by,
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(ED+mD)2 |b|
2
⌘

(5.65)

where |pD| is the magnitude of the 3-momentum of the decuplet baryon in the rest frame

of the initial b-baryon. The decay products can be in any one of the two possible relative

angular momentum states, l = 1 and l = 2 identified as P-wave and D-wave respectively.

The kinematic factors for P-wave and D-wave are given by,

P =

r
2
3
|pD|
mD

q
2m3
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(ED+mD)AP, (5.66)

D =

r
2
3
|pD|
mD

q
2m3
Bb

(ED�mD)AD (5.67)
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where AP and AD are defined in Eq. (5.30) and Eq. (5.31). In terms of the P-wave and

D-wave contributions introduced, the total decay rate � is;
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(|P|2+ |D|2) (5.68)
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. (5.69)

As before, ACP is defined as,

ACP =
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, (5.70)

where,
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�
.

ACP is the sum of CP violating contribution from the �P
CP and �D

CP with appropriate phase-

space factor multiplied:
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where ⌧Bb is the lifetime of the beauty-baryon.

By definition,

�l
CP(Bb!DM) = �4J⇥ Im

h
A

l⇤
tree(Bb!DM)Al

penguin(Bb!DM)
i
, (5.72)

J being the Jarlskog invariant. Based on amplitude relations for the tree and penguin parts
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obtained in Eq. (5.32) the following �a
CP relations [23, 137, 138] are obtained,

�l(⇤0
b! ⌃

0+⇡�) = ��l(⌅0
b! �

+K�),

�l(⇤0
b! ⌅

00K0) = ��l(⌅0
b! �

0K0),

�l(⌅0
b! ⌃

0+K�) = ��l(⇤0
b! �

+⇡�),

�l(⌅b
0! ⌃

00K0) = ��l(⇤0
b! ⌃

00K0),

�l(⌅�b ! ⌃
00K�) =

1
2
�l(⌅�b ! ⌅

00⇡�) = �
1
2
�l(⌅�b ! �

0K�) = ��l(⌅�b ! ⌃
00⇡�),

�l(⇤0
b! ⌃

0
�⇡+) = �l(⇤0

b! ⌅
0
�K+) = �l(⌅0

b! ⌅
0
�⇡+) =

1
3
�l(⌅0

b!⌦
�K+)

= �
1
3
�l(⇤0

b! �
+⇡�) = ��l(⇤0

b! ⌃
0
�K+) = ��l(⌅0

b! ⌃
0
�⇡+) = ��l(⌅0

b! ⌅
0
�K+),

�l(⌅�b ! ⌃
0
�K0) = 2�l(⌅�b ! ⌅

0
�⇡0) =

2
3
�l(⌅�b ! ⌅

0
�⌘8) =

1
3
�l(⌅�b !⌦

�K0)

= �
1
3
�l(⌅�b ! �

�K0) = �
2
3
�l(⌅�b ! ⌃

0
�⌘8) = ��l(⌅�b ! ⌅

0
�K0) = �2�l(⌅�b ! ⌃

0
�⇡0).

for both l = P and l =D. Since, ACP depends on the masses of the initial and final baryons

as well as the final state meson [23, 115], some approximation is needed to obtain ACP

relations between various modes. In the U-spin limit [24], by ignoring pD and mD di↵er-

ences between such modes, CP violation relations can be experimentally verified using

the relation [24, 27, 130],

ACP(Bbi! D jMk)
ACP(Bbl!DmMn)

' �
⌧Bbi

⌧Bbl

BR(Bbl!DmMn)
BR(Bbi!D jMk)

, (5.73)

where i, j, k and l, m, n are indices corresponding to the various baryons belonging to the

above mentioned �CP relations. There is a further simplification in case i = l, resulting in

ACP(Bbi!D jMk)
ACP(Bbi!DmMn)

' �
BR(Bbi!DmMn)
BR(Bbi!D jMk)

, (5.74)

where the uncertainties due to lifetime measurement also cancel out [25]. The decay

asymmetry parameter (↵) can be measured from an angular distribution study of the final

states provided that the subsequent decay of the decuplet baryon is parity violating. The
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relative strength of the D-wave contribution [23, 116] is extracted from ↵;

↵ =
2Re(AP⇤

A
D)|pD|/ED+mD

|AP|2+ |AD|2(|pD|/ED+mD)2 . (5.75)

By systematically taking into account both partial wave contributions, a reliable prediction

for ACP relations is possible.

5.6 Summary

We have explored hadronic anti-triplet (3) beauty-baryon into a decuplet baryon (D) and

an octet pseudoscalar meson (M), i.e. Bb(3)! D(10)M(8), based on SU(3) decom-

position of the decay amplitudes in a general framework. This extends our previous

analysis [13] of the anti-triplet beauty baryon decays into the octet or singlet of a light

baryon and a pseudoscalar meson and completes the application of the method to de-

cays involving any non-charmed baryon. We have shown that in the most general case,

the forty distinct decay modes require forty independent reduced SU(3) amplitudes to

describe all possible �S = �1 and �S = 0 processes. The dimension-6 e↵ective Hamil-

tonian and allowed final state SU(3) representations constrain the number of independent

SU(3)-reduced matrix elements to five. An alternative approach in terms of quark dia-

grams is also provided and compared with the SU(3) decomposition in the limit of exact

SU(3)-flavor symmetry. We explicitly demonstrate a one to one correspondence between

the quark-diagrams and SU(3)-reduced matrix elements. Both the approaches indicate

that there exist several amplitude relations between di↵erent decay modes. We explicitly

derive those sum rules relations between decay amplitudes as well as relations between

CP asymmetries. We further probe the SU(3)-breaking e↵ects in the decay amplitudes at

leading order in the SU(3)-breaking parameter and identify those amplitude relations that

survive even when the SU(3) flavor symmetry is arbitrarily broken.



Chapter 6
Conclusions and outlook

The Standard Model is undoubtedly the most significant step towards understanding the

interactions between fundamental particles. Over the years, we have realized that sym-

metries are at the heart of the SM which is highlighted by a large class of experimental

observations till date. In fact, this proof of principle have enabled us to construct be-

yond Standard Model theories with additional symmetries in order to explain some of the

unanswered issues of SM like matter-antimatter asymmetry, the existence of dark mat-

ter, instabilities in the Higgs mass and Higgs vacuum expectation value and tiny neutrino

masses. While the direct signature of such BSM physics are being actively pursued in

high energy experiments, we must not overlook its imprints on precision measurements

of various low energy decays of hadrons. In that regard, the interest in non-leptonic weak

decays of bottom baryons has been steadily increasing due to the possibility of observing

them in large numbers at LHCb in near future. Despite of its similarities with B-meson

hadronic decays, the theoretical understanding of analogous b-baryon decays are rather

limited and as a result theoretical predictions su↵er from a large amount of uncertainty.

In this thesis, we have provided a general framework based on SU(3)-flavor symmetry to

analyze such non-leptonic charmless weak decays of bottom baryons.

93
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First, we focus on all possible strangeness changing and strangeness preserving decays

of SU(3)-flavor anti-triplet (3) b-baryons to an octet baryon and a pseudoscalar meson.

We systematically build up the formalism where we decompose individual decay pro-

cesses in terms of a few independent SU(3)-reduced amplitudes. Starting with an arbi-

trary Hamiltonian we first demonstrate that the number of independent SU(3)-reduced

amplitudes is exactly equal to the number of distinct decay process. From that point, we

choose the unbroken dimension-6 e↵ective Hamiltonian and narrow down the number of

independent SU(3) parameters to 10. This opens up the possibility to derive a number of

amplitude relations between decay modes. We restrict ourselves to amplitude relations

involving two decay modes and three decay modes. Since the same relations hold for

the CP conjugate processes we then attempt to convert those amplitude relations to rela-

tions between CP-asymmetry observables. We then consider SU(3)-breaking e↵ects to

the linear order in the breaking parameter and find that the number of independent SU(3)-

reduced amplitudes increases. As a consequence, most of the amplitude relations derived

previously cease to hold and the remaining unbroken ones are identified by us. Our frame-

work also allows us to identify a number of general amplitude relations between decay

modes that hold even when SU(3)-flavor symmetry breaking is not restricted to linear

order.

Next, we extend our analysis of SU(3)-flavor anti-triplet (3) b-baryon charmless decays

to a decuplet baryon and a pseudoscalar meson final state. We apply the same formalism

developed in the previous case to find only 5 independent SU(3)-reduced amplitudes de-

scribing all possible decays with our choice of the dimension-6 e↵ective Hamiltonian. We

also provide an alternate description of the decays in terms of five topological flavor-flow

diagrams and show its equivalence with the SU(3)-decomposition of amplitude method.

The diagrammatic approach highlight the fact that a couple of flavor-flow toplogies have

a vanishing contribution in the SU(3)-flavor limit. This further reduces the number of in-

dependent amplitudes to 3. In order to test this assertion, we have come up with number
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of amplitude relations that will only be satisfied if the number of independent parameters

are indeed three. On the other hand, the amplitude relations inferred directly from the five

independent SU(3)-reduced amplitudes are also listed. The linear SU(3)-breaking e↵ects

incorporated in the e↵ective Hamiltonian once again introduces more parameters. We still

find a number of amplitude relation that remain una↵ected. The CP-asymmetry relations

are derived in the end.

In both of these works we have focused on deriving relations between decay modes that

can be verified in LHCb in its future runs. In absence of robust theoretical estimates, this

approach would provide at least a qualitative understanding of b-baryon decays. In light

of the recent data on B! K⇡ decays that are related by isospin, it is particularly impor-

tant to test analogous isospin relations that are una↵ected by SU(3)-breaking corrections.

However, there are several other interesting directions one can take. To begin with, we

can directly fit the independent SU(3) parameters to the actual data once we measure a

number of branching ratios and CP-asymmetries of di↵erent decay modes. This approach

is particularly relevant for b-baryons decaying to a decuplet baryon-pseudoscalar meson

pair where non-factorizable contributions dominate the decay but requires only a few

SU(3) parameters to fit the data. Interestingly, all amplitude relations and CP-asymmetry

relations for b-baryon decaying to a ground state baryon and vector meson can be ob-

tained by just replacing the pseudoscalar meson with a vector meson in the previously

derived relations in this thesis. In addition to two body decays, we can consider three-

body decays of b-baryons which are also being observed at LHCb. If CP-violation is

conclusively measured in a particular three body decay, it provides a strong motivation

to identify all those decay modes that are related by SU(3)-flavor. This can be achieved

quite straightforwardly using the methodology provided in this thesis.

The formalism developed in this thesis can be applied to other weak decays of heavy

hadrons. Perhaps the most important application of this technique is in hadronic weak
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decays of charm mesons and baryons where the massive data set from Belle II, BESIII

and LHCb can be used e↵ectively to estimate the SU(3) parameters and test a number of

amplitude relations in near future.
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A.0.0.1 SU(3)-decomposition of �S = �1 decay amplitudes for 3Bb ! 8B 8M for most general e↵ective Hamiltonian
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A.0.0.2 SU(3)-decomposition of tree part of �S = �1 decay amplitudes for 3Bb ! 8B 8M for dim-6 unbroken Hamiltonian
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A.0.0.3 SU(3)-decomposition of penguin part of �S = �1 decay amplitudes for 3Bb ! 8B 8M for dim-6 unbroken Hamiltonian
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A.0.0.4 SU(3)-decomposition of �S = 0 decay amplitudes for 3Bb ! 8B 8M for most general e↵ective Hamiltonian
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h27 k 421/2 k 3i
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A.0.0.5 SU(3)-decomposition of tree part of �S = 0 decay amplitudes for 3Bb ! 8B 8M for dim-6 unbroken Hamiltonian
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A.0.0.6 SU(3)-decomposition of penguin part of �S = 0 decay amplitudes for 3Bb ! 8B 8M for dim-6 unbroken Hamiltonian
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A.0.0.7 SU(3)-decomposition of �S = 0 decay amplitudes for 3Bb ! 8B 1M for most

general e↵ective Hamiltonian
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A.0.0.8 SU(3)-decomposition of �S = �1 decay amplitudes for 3Bb ! 8B 1M for

most general e↵ective Hamiltonian
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A.0.0.9 SU(3)-decomposition of �S = 0 decay amplitudes for 3Bb ! 1B 8M for most

general e↵ective Hamiltonian
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A.0.0.10 SU(3)-decomposition of �S = �1 decay amplitudes for 3Bb ! 1B 8M for

most general e↵ective Hamiltonian
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Appendix B
According to the phase convention chosen for quark (qi) and anti-quark (qi) flavor states

in Eq. (4.18), the initial b-baryon anti triplet B[i j] consists of the following states;

⇤0
b =

1
p

2
(ud�du)b, ⌅0

b =
1
p

2
(us� su)b, ⌅�b =

1
p

2
(ds� sd)b. (B.1)

The decuplet baryons have a completely symmetric flavor wave-function:

�++ = uuu, �� = ddd, �+ =
1
p

3
(uud+udu+duu), �0 =

1
p

3
(udd+ddu+dud),

⌃
0+ =

1
p

3
(uus+usu+ suu), ⌃

00 =
1
p

6
(uds+usd+dus+dsu+ sud+ sdu),

⌃
0
� =

1
p

3
(dds+dsd+ sdd), ⌅

00 =
1
p

6
(uss+ sus+ ssu),

⌅
0
� =

1
p

3
(dss+ ssd+ sds), ⌦� = sss. (B.2)

The SU(3)-decomposition of 3! 10⌦1 �S = 0 processes:

A(⇤0
b! �

0⌘1) = �
C+1,2
p

6
(�d

u �
3
2
�d

t ) h10 k 15 k 3̄i, A(⌅�b ! ⌃
0
�⌘1) = 0, (B.3)

�S = �1 processes:

A(⇤0
b! ⌃

00⌘1) = �
C+1,2
2
p

3
(�s

u�
3
2
�s

t ) h10 k 15 k 3̄i, A(⌅�b ! ⌅
0
�⌘1) = 0 (B.4)
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B.0.0.1 SU(3)-decomposition of �S = �1 decay amplitudes for 3Bb ! 10D 8M for most general e↵ective Hamiltonian
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B.0.0.2 SU(3)-decomposition of �S = 0 decay amplitudes for 3Bb ! 10D 8M for most general e↵ective Hamiltonian
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B.0.0.3 SU(3)-decomposition of tree part of �S = 0 decay amplitudes for 3Bb !

10B 8M for dim-6 unbroken Hamiltonian
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B.0.0.4 SU(3)-decomposition of tree part of �S = �1 decay amplitudes for 3Bb !

10D 8M for dim-6 unbroken Hamiltonian
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B.0.0.5 SU(3)-decomposition of penguin part of �S = 0 decay amplitudes for 3Bb!

10D 8M for dim-6 unbroken Hamiltonian
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B.0.0.6 SU(3)-decomposition of penguin part of�S =�1 decay amplitudes for 3Bb!

10B 8M for dim-6 unbroken Hamiltonian
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112 Appendix

Here we have used the following shorthand notation to express the tree (T ) and penguin

(P) matrices in a convenient form:

(C10±C9) =C±9,10, (C1±C2) =C±1,2,

(C3±C4) =C±3,4, (C5±C6) =C±5,6,

and D is given by the particular combination of Wilson coe�cients:

D = �
1

4
p

2

⇣
C+9,10+

p
2C�9,10

⌘
+

np
2C+3,4�C�3,4+

p
2C+5,6�C�5,6

o
. (B.5)
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