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Summary

The timing analysis of radio pulsars gives many interesting results and is expected to

contribute further in many areas of fundamental physics in the future. In this connection,

it is important to understand the external factors affecting the values of the parameters

estimated in the timing analysis. Among all these timing parameters, the measured values

of the time-derivatives of the frequencies (both the spin and the orbital) are affected by

the velocity, the acceleration, the jerk, etc. of the pulsar. These effects are known as

‘dynamical contributions’. In this thesis, we explore these dynamical effects in the first as

well as the second time-derivatives of the frequency (both the spin and the orbital).

The previous studies on estimation of the dynamical terms contributing to the first and

the second derivatives of the frequency (or the period) resorted to approximate methods

which fail to provide accurate values of these parameters for all the pulsars spread across

the Galaxy. We point out the limitations of existing methods to calculate the dynamical

effects in the first and the second derivatives of the frequency and argue the need for

improved methods to extract these effects. We present improved methods to do so and

emphasize the fact that these methods should be used for pulsars located away from the

solar system, especially when precise values of the first and the second derivatives of the

frequency are needed.

We provide analytical expressions for all the dynamical terms contributing to the first

and the second derivatives of the frequency without resorting to any numerical fitting.

These analytical expressions are derived in terms of the Galactic coordinates, the proper

motion, the distance, the radial velocity, and the observed values of the frequency and its

derivatives, with the assumption that the gravitational potential of the Galaxy is the only

cause of the acceleration and the jerk of the pulsar.

We introduce a package, ‘GalDynPsr’, that evaluates these different dynamical effects in

the first derivative of the period (both the spin and the orbital), following the traditional
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as well as improved methods based on a well-known model of the Galactic potential. We

also demonstrate the differences between the results returned by the improved methods

from those obtained using the traditional ones.

We then introduce another python package ‘GalDynPsrFreq’ that estimates the dynamical

terms in the measured values of the first and the second time derivatives of the frequency

(both the spin and the orbital). We demonstrate the usage of GalDynPsrFreq in the study

of the effect of the dynamics on the measured values of the second derivative of the fre-

quency for real as well as simulated pulsars. We establish the fact that all dynamical terms

affecting the measured values of the second derivative of the frequency are equally impor-

tant. With the help of simulated pulsars, we demonstrate that the effects of the dynamics

would be much larger for pulsars near the Galactic centre than those for the pulsars in the

Galactic field. We also show how dynamics can affect values of the braking index and the

second derivative of the orbital frequency.
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Chapter 1

Introduction

1.1 Overview

On August 6, 1967, a young graduate student at Cambridge, Jocelyn Bell, found some-

thing strange in her data from the radio telescope she helped build to detect quasars. These

were a series of radio pulses recorded, with each being a little more than a second apart,

something that was unprecedented. As we now know, Bell had stumbled upon the very

first discovery of a pulsar. It has been more than 50 years since the discovery of pulsars

and yet they continue to be the source of intrigue.

But, what are pulsars? Pulsars are the radio-observable subsets of neutron stars. When a

star of mass in the range of 8−25 M�1 undergoes gravitational collapse as it advances in

its life cycle, it results in a supernova explosion (Vidaña, 2018). The brief mechanism of

such an explosion is outlined below. The final stage in burning of the fuel inside a star

is the formation of an iron core, as iron has the maximum binding energy per nucleon.

This iron core starts growing by silica shell burning, which makes the core cross the

Chandrashekhar limit of 1.44 M�. At this stage, the electron degeneracy pressure can

no longer counter the self-gravity, and consequently, the core collapses. This causes an

1M� is the unit of mass in terms of the mass of the Sun, i.e., 1.989 × 1030 kg.
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explosion in which the outer shells and the heavy elements from the core are released in

the interstellar medium. This event is called the core-collapse supernova (Couch, 2017).

The resulting core-collapsed star has a neutron-rich inner crust and a core of superfluid

neutrons (Lorimer and Kramer, 2005). So, quite fittingly, this collapsed star is called a

neutron star. It should be noted that some theoretical studies expect exotic particles, e.g.,

hyperons inside such stars (Balberg et al., 1999; Vidaña, 2016). If the progenitor star had

a mass greater than 25 M�, the eventual collapse of the star would have resulted in the

formation of a black hole (Fryer, 1999).

Neutron stars are extremely dense. The masses of the known neutron stars are in the range

of 1−2 M� while their radii are around 10 km. Because of such a high density, neutron

stars have very strong gravitational fields. They also have very high magnetic fields, lying

in the range of 108 − 1015 G.

A neutron star emits beamed electromagnetic waves along its magnetic axis, which may

not coincide with the spin axis. This radiation covers a wide spectrum of electromagnetic

waves, most of which are blocked by the earth’s atmosphere. The part of the radiation in

the radio wavelengths reaches the earth’s surface unattenuated. During a rotation of the

neutron star, it may happen that the beam of the electromagnetic radiation sweeps across

an observatory (radio telescope) on the earth. This repeats with consecutive rotations.

At the observatory, it appears that radio pulses are being received at regular intervals.

Such neutron stars which appear to emit radio pulses are referred to as radio pulsars2. In

the present thesis, radio pulsars are called pulsars for the sake of simplicity. The regular

intervals at which the pulses are received are the approximate measures of the spin period

of the pulsar.

So far, more than 2800 pulsars have been discovered. These are located in the Galac-

tic disk and the field, in globular clusters, in the Large Magellanic Cloud, and in the

Small Magellanic Cloud. No pulsars have been yet discovered in any other galaxy. In-

2There are other types of pulsars like γ-ray pulsars, X-ray pulsars, etc., whose emission mechanisms are
different and are observed with space-based detectors. We do not study such pulsars in the present thesis.
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dividual pulsars are denoted by their coordinates, e.g., PSR J2145−0750 is a pulsar with

the value of the right ascension (RA) as 21hh45mm50.46s and the declination (DEC)

as −07dd50mm18.59ss in the J2000 coordinate system; PSR B1913+16 is a pulsar with

RA 19hh15mm28ss and DEC +16dd06mm27.40s in the B1950 coordinate system. In

both of the cases, ‘PSR’ stands for pulsar. A little over 11% of these occur in a binary

system with another star (or a heavy planet in some cases). Such pulsars are called bi-

nary pulsars. Some examples of binary pulsars are PSR J0437−4715, PSR J1012+5307,

and PSR J1713+0747 (Manchester et al., 2005). The pulsars with no companion are

called isolated pulsars, e.g., PSR J0002+6216, PSR J1044−5737, and PSR J1821−1432

(Manchester et al., 2005). Out of the known pulsars, only two have been found to occur

in triple systems, PSR B1620−26 (a system of a pulsar, a white dwarf, and a planetary-

mass object; (Sigurdsson et al., 2003)), and PSR J0337+1715 (a system of a pulsar, and

two white dwarfs; Ransom et al. (2014)). Fig. 1.1 shows the Aitoff projection plot in the

Galactic longitude and the Galactic latitude (in degrees) in subplot 1.1(a) and in the right

ascension and declination (in degrees) in subplot 1.1(b) for all known pulsars using the

data from the version 1.64 of the ATNF (Australian Telescope National Facility) pulsar

catalogue (Manchester et al., 2005).

In the following sections, we discuss various characteristic features and parameters of

pulsars, as well as their use to explore various aspects of fundamental physics. In section

1.2, we discuss the electromagnetics and the emission mechanism of pulsars. In section

1.3, we discuss the high magnetic field strength of pulsars. In section 1.4, we discuss

the binary system formation and the resulting orbital dynamics. In section 1.5, we talk

briefly about the technique of pulsar timing analysis. In section 1.6, we discuss various

parameters of pulsars and methods to measure those. In section 1.7, we talk about a few

applications of pulsars as tools to study physics. In section 1.8, we briefly discuss the

application of a pulsar parameter, namely, the braking index, in the study of the structure

of pulsars. In section 1.9, we discuss the dynamical effects that influence measured pulsar

parameters. In section 1.10, we present the structure of this thesis.
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Figure 1.1: a) Aitoff projection diagram of all known pulsars in the Galactic longitude
and the Galactic latitude (in degrees). b) Aitoff projection diagram of all known pulsars
in the right ascension and declination (in degrees). Data are taken from the version 1.64
of the ATNF pulsar catalogue (Manchester et al., 2005).
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1.2 Rotation Powered Emission Mechanism

The electromagnetic energy emitted from the pulsar comes at the expense of its rotational

kinetic energy. That is why these pulsars are called ‘rotation powered pulsars’. Hence,

with time, the rotational kinetic energy decreases and the pulsar slows down, i.e., the spin

period increases. The rate of loss of the kinetic energy (Ėrot) is given by3:

Ėrot = − d
dt

�
1
2

Iω2
s

�
= −I ωs ω̇s = 4π2IṖsP−3

s , (1.1)

where I is the moment of inertia of the pulsar about its spin axis, Ps is the spin period,

and ωs (= 2π/Ps) is the angular frequency of the rotation. Ėrot is also called the spin down

luminosity and indicates the total power output of the pulsar (Lorimer and Kramer, 2005).

Pulsars act as rotating magnetic dipoles. Generally, the magnetic axis is not aligned with

the spin axis of the pulsar. This misalignment between the two axes results in a time-

varying magnetic moment from the spinning magnetic dipole. This time-varying mag-

netic moment, in turn, is responsible for the emission of the electromagnetic radiation

along the magnetic axis of the pulsar, which we eventually receive as radio signals. The

electromagnetic power generated from the rotating magnetic dipole is given as (Lorimer

and Kramer, 2005):

Ėdipole =
2

3c3 |m|2ω4
s sin2 α , (1.2)

where |m| is the magnitude of the magnetic moment, α is the angle between the magnetic

moment and the spin axis, and c is the speed of light in vacuum.

Assuming that the loss of the rotational kinetic energy is used entirely in the generation

of the electromagnetic power, we can equate Ėrot to Ėdipole. Therefore, from eqs. (1.1) and

(1.2), we get:

ω̇s = −
�
2|m|2 sin2 α

3Ic3

�
ω3

s . (1.3)

Extending the idea put forth in eq. (1.3), to a more general power law expression of ḟs in

3The dot on any parameter, henceforth, represents the time-derivative of that parameter.
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terms of the power of fs, where fs = ωs/(2π), we can write:

ḟs = −K f n
s , (1.4a)

and taking the time derivative of eq. (1.4a),

f̈s = −n K f n−1
s ḟs , (1.4b)

where K =
� |m|2 sin2 α

6π2Ic3

�
is the proportionality constant, and n is called the braking index.

The braking index can be calculated from the measured values of fs, ḟs, and f̈s using the

following equation:

n =
fs f̈s

ḟ 2
s

. (1.5)

For an ideal magnetic dipole, n = 3, as seen in eq. (1.3). However, in reality, the rotational

kinetic energy might be dissipated through processes other than electromagnetic radiation

as well, such as the pulsar wind, the gravitational radiation, etc. Hence, the value of n

might differ from three.

The magnetic moment is related to the magnetic field strength (B) at a distance r as

B(r) ≈ |m|/r3 . Using this expression in eq. (1.3), and replacing ωs and ω̇s by 2π/Ps

and −(2πṖs)/P2
s respectively, we get the expression for the magnetic field strength at the

surface of the neutron star, Bsurface as:

Bsurface =

�
3c3

8π2

I
R6 sin2 α

PsṖs , (1.6)

where r in the expression of B(r) has been substituted by R, the radius of the neutron star.

Using canonical values of I = 1045 gm cm2, R = 10 km, and the maximum value of the

sinα, i.e., 1, one gets the minimum value of the surface magnetic field as:

Bsurface,min = 3.2 × 1019
�

PsṖs G . (1.7)

The values of Bsurface,min obtained for pulsars using the measured values of Ps and Ṗs in

the above equation match closely with the values of the magnetic field at the surface of
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neutron stars measured by other methods (Konar, 2017).

In terms of Ps and Ṗs, eq. (1.4a) can be written as Ṗs = K P2−n
s . This differential equation

can be integrated from t = 0 to t = T to give

T =
Ps

(n − 1) Ṗs

1 −
�

Ps,0

Ps

�n−1 , (1.8)

where Ps,0 is the spin period at the time of the birth of the pulsar. Assuming the spin down

being caused only by the magnetic dipole radiation, i.e., n = 3, and Ps,0 << Ps, we define

the characteristic age (τc) from eq. (1.8) as,

τc =
Ps

2 Ṗs
≈ 15.8 × 106 yr

�Ps

s

� � Ṗs

10−15

�−1

. (1.9)
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Figure 1.2: The values of Ps are plotted along the abscissa and the values of Ṗs along the ordinate
in the logarithmic scale for all known pulsars. The red triangles denote the millisecond pulsars
and the blue circles denote the normal pulsars (see the text for definitions). Constant Bsurface,min
and constant τc lines as defined, respectively, in eqs. (1.7) and (1.9), are also plotted. We also plot
the ‘deathline’ that represents the equality of the condition (1.10).

In Fig. 1.2, we plot Ps along the abscissa and Ṗs along the ordinate for all known rotation

powered pulsars. We also draw constant Bsurface,min and constant τc lines as defined in
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eqs. (1.7) and (1.9). In the figure, we see some pulsars (denoted by red triangles) at the

bottom-left part of the figure with Bsurface,min in the range of 0.5×108 − 0.5×1010 G, τc in

the range of 108 − 1011 yr, and Ps in the range of 1.3 − 30 ms. These pulsars are known

as ‘millisecond pulsars (MSPs)’ or ‘recycled pulsars’. Pulsars with Ps > 30 ms are called

‘normal pulsars’. This nomenclature is explained in subsection 1.4.1.

Fig. 1.2 also shows the ‘deathline’, which represents the condition that needs to be sat-

isfied by the neutron star to be classified as radio-observable. This condition is given by

(Bhattacharya et al., 1992)

Bsurface,min

P2
s

≥ 0.17 × 1012 G/s2 , (1.10)

where the equality represents the ‘deathline’. As expected, in Fig. 1.2, we see that most

of the pulsars lie above the ‘deathline’, i.e., satisfy the above condition. However, there

exist a handful of pulsars below the ‘deathline’ that indicate the need for more rigorous

models for the emission mechanism than the simple rotating dipole model described here.

Most of the models explaining the radio emission mechanism require the presence of ac-

celeration gaps in the magnetosphere of the pulsar. In these gaps, there exist residual elec-

tric fields. These gaps occur in the regions of depleted plasma. In the acceleration gaps

near the magnetic polar caps, the residual electric field pulls the charged particles from

parts of the magnetosphere close to the surface of the neutron star. These charged particles

get accelerated along the magnetic field lines. This accelerated motion of the charged par-

ticles produces γ-ray photons due to the curvature emission or inverse Compton scattering

(Lorimer and Kramer, 2005). These photons further create electron-positron pairs in the

presence of the strong magnetic field. These new generation particles further create pho-

tons and more charged particles, causing a cascading effect called the secondary plasma

production. This secondary plasma is considered to be responsible for the observed radio

emission (Lorimer and Kramer, 2005).
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1.3 The High Magnetic Field

As shown in Fig. 1.2, pulsars have large values of the magnetic field at their surfaces. The

same is true for other types of neutron stars too (Konar, 2017). In Table 1.1, we compare

the values of the surface magnetic fields of pulsars with various terrestrial objects.

Table 1.1: Comparison of orders of magnitude of magnetic field strength of various ob-
jects.

Order of magnitude (CGS) Object Reference
6×10−4 G to 0.007 G Electric toaster Gauger (1985)

(measured at a distance of 30 cm)
0.013 G to 0.027 G High power (500 kV) transmission lines EPA (1992)

(measured at a distance of 30 m)
0.040 G to 0.080 G Microwave oven Gauger (1985)

(measured at a distance of 30 cm)
0.580 G Earth (at 50◦ latitude) Matzka et al. (2010)
100 G Typical refrigerator magnet Slocum (1992)

1.5×104 G to 3×104 G Typical MRI Nowogrodzki (2018)
108 G to 1014 G Pulsar (surface) Fig. 1.2

and Lorimer and Kramer (2005).

The question that arises at this point is how neutron stars get such high magnetic field

strengths. The most popular hypothesis for the origin of these high magnetic fields is

the flux conservation during the core-collapse. This would lead to amplification of the

progenitor star’s magnetic field as the radius decreases during the gravitational collapse.

Spruit (2008) discusses three scenarios for the origin of magnetic fields in neutron stars:

• The fossil field: It is hypothesized here that the final magnetic field of the neu-

tron star is the remnant of the already existing magnetic field of the original main

sequence star. This field gets amplified due to the flux conservation during the

core-collapse. Spruit (2008) argues that this process is not statistically viable and

unsuitable to explain extremely high magnetic fields of magnetars, which are mag-

netically powered neutron stars having the surface magnetic field strength in the

range of about 1014 − 1015 G.
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• Fields generated internally in the supernova progenitor: In this scenario, it is hy-

pothesized that the magnetic field is somehow internally generated in the progenitor

star during the pre-supernova phase. This field eventually gets amplified, again due

to the flux conservation. Here too, Spruit (2008) argues that the fields produced

after amplification would still be lower in strength than that observed for pulsars

and magnetars.

• Field generation during the core collapse: Spruit (2008) mentions that, in terms

of energetics, if the rise of the magnetic energy is driven only by the gravitational

collapse, it increases as ∼ 1/(radius). This is insufficient to produce dynamically

significant fields. The differential rotation is a major driving force for the magnetic

field generation during the collapse, as the rotational kinetic energy increases as

∼ 1/(radius)2, which is sufficient to produce the high values of the magnetic fields

possessed by pulsars (Spruit, 2008).

There are a few additional hypotheses to explain the high magnetic field of neutron stars.

One such hypothesis is the generation of the magnetic field caused by thermal effects in

their outer crust (Blandford et al., 1983). However, according to this model, the growing

magnetic field saturates when the surface value reaches around 1012 G and then starts

decreasing.

So this model is inadequate to explain the magnetic fields of not only the magnetars, even

of the slow pulsars of magnetic field strength in the range of 1013 to 1014 G. The version

1.64 of the ATNF pulsar catalogue lists 75 such pulsars.
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1.4 The Binary Pulsars

1.4.1 Formation of Binary Pulsars

Out of the total 2872 pulsars presently known, 11.21% are in binary systems. Out of

all these binaries, 80.61% contain millisecond pulsars, 10.27% contain pulsars with the

values of Ps in the range of 30−100 ms, and the rest 9.12% contain pulsars with Ps > 100

ms (normal pulsars). There are total 32 pulsars in the second category (i.e., with Ps in the

range of 30 − 100 ms), and 9 of them are neutron star − neutron star binaries or double

neutron star binaries. In other words, out of total 322 binary pulsars, 189 are neutron star

- white dwarf binaries, 20 are neutron star - neutron star binaries, 23 are neutron star -

main sequence binaries and 58 are neutron star - sub-stellar systems (spider pulsars). It

should be noted that out of all double neutron star binaries, for only one, both neutron

stars are pulsars, and this is the double pulsar PSR J0737−3039A/B.

These facts can be understood from the evolution and formation of binary pulsars. Below

we describe a brief outline of the most common evolutionary channel of binary neutron

stars.

In a binary stellar system, the more massive star evolves faster and becomes a neutron star

first after going through a core-collapse supernova. If the binary survives the explosion, a

neutron star binary is born.

This neutron star, if it is a pulsar, slows down as the constant emission of the electro-

magnetic waves takes place at the expense of its rotational kinetic energy. So, the older

pulsars are supposed to be slower. These are the normal pulsar population. If the pulsar

slows down significantly, it might go below the deathline and cannot emit electromagnetic

waves anymore.

However, with time, the companion star also advances in its life cycle and becomes a

giant before starting to undergo gravitational collapse. During its red giant phase, the

41



outer layers of the companion star expand and become more loosely bound to its core. At

this point, depending on the separation between the neutron star and the companion, the

strong gravitational field of the neutron star might attract matter from the outer layers of

the companion. This accretion of matter forms an accretion disk around the neutron star

and is responsible for the transfer of the orbital angular momentum to the neutron star.

This causes the neutron star to spin up and its spin period decreases. Such a neutron star,

when observable as a pulsar, is called a recycled pulsar. Note that during the accretion

process, the neutron star does not emit radio pulses, it rather emits X-ray pulses. When

the accretion process stops, the neutron star again can emit radio pulses. After a suffi-

cient amount of accretion, the spin period of this recycled pulsar becomes in the order of

milliseconds, and hence, its called a millisecond pulsar (Alpar et al., 1982; Radhakrish-

nan & Srinivasan, 1982; Lorimer, 2009). If the companion star is massive enough and

evolves very fast so that the duration of the mass-transfer phase is short, i.e., there is not

enough transfer of angular momentum, a mildly-recycled pulsar is born with Ps in the

range of 30 − 100 ms (Keith et al., 2009; Lazarus et al., 2014). This explains why most

of the pulsars in double neutron star binaries are mildly recycled (Martinez et al., 2017).

It is obvious that the second-born neutron star in a double neutron star system will not be

recycled, i.e., if it is a pulsar, it will be a normal pulsar.

There are some millisecond pulsars that are found to exist without any orbiting compan-

ion, mostly inside globular clusters, but a few in the Galactic field as well. The ones in

globular clusters can be explained by the knocking away of the companion by stars pass-

ing by very closely. For the ones in the Galactic field, it is hypothesized that during the

course of time, the pulsars, originally in the binary system, might have completely ablated

their companions with strong pulsar winds (Lorimer, 2008).
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Figure 1.3: The schematic diagram of a binary pulsar system. P0 denotes the pulsar, C0 denotes
the companion star, CM denotes the centre of mass of the binary system, O denotes the origin of
a reference coordinate frame (denoted by the orthonormal unit vectors �ex, �ey and �ez). �rp is the
position vector of the pulsar, �rc is the position vector of the companion, �rCM is the position vector
of the centre of mass of the binary system, and �r is defined as �rp − �rc.

1.4.2 The Binary Orbit: A Central Force Problem

A schematic diagram of a binary pulsar system is shown in Fig. 1.3. In this figure, P0

denotes the pulsar, C0 denotes the companion star, CM denotes the centre of mass of the

binary system, and O denotes the origin of a reference coordinate frame. �rp is the position

vector of the pulsar, �rc is the position vector of the companion, �rCM is the position vector

of the centre of mass of the binary system, and �r is defined as �rp − �rc. We can study the

two-body binary pulsar system as a one-body central force problem as discussed below.

The Lagrangian for the binary system is given by:

L =
1
2

mp�̇rp
2
+

1
2

mc�̇rc
2
+

Gmpmc

|�rp − �rc| , (1.11)

where the pulsar and the companion masses are denoted by mp and mc respectively, and

G is the gravitational constant.

From Fig. 1.3 and the definition of the centre of mass, we can write �rp = �rCM +
mc
M�r, and

�rc = �rCM − mp

M �r where M = mp +mc is the total mass. In case of a binary system free from
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any external influence, the centre of mass can be taken as stationary, i.e., �̇rCM = 0.

With these expressions, we can rewrite eq. (1.11) in terms of the separation r = |�r|, the

total mass M, and the reduced mass µ = mpmc

M , as,

L =
1
2

mp�̇rp
2
+

1
2

mc�̇rc
2
+

Gmpmc

|�rp − �rc|
=

1
2

mp

�mc

M
�̇r
�2
+

1
2

mc

�mp

M
�̇r
�2
+

Gmpmc

r

=
1
2

mpmc

�mp + mc

M2

�
�̇r

2
+

GmpmcM
Mr

=
1
2
µ�̇r

2
+

GµM
r
, (1.12)

which represents the Lagrangian of a fiducial body of mass µ in an orbit around the central

force generating source of the effective mass M. The semi-major axis of the orbit of this

fiducial body is related to the orbital period as:

P2
b =

4π2

GM
a3 , (1.13)

which is the generalised form of the Kepler’s third law. The semi-major axes of the

pulsar’s orbit (ap) and the companion’s orbit (ac) are related by the expressions:

a =ap + ac , (1.14)

ap =a
mc

M
, and (1.15)

ac =a
mp

M
. (1.16)

It should be noted that, in reality, we observe the signal from the pulsar, not from the

fiducial body of mass µ. Hence, we need to study the parameters for the orbit of the

pulsar. The orbit of the pulsars is characterised by some geometrical parameters that will

be discussed next.

A schematic diagram of a pulsar in an elliptical orbit in a binary system is shown in Fig.

1.4. Here, i is the angle of inclination of the orbital plane to the sky plane. AT represents

the true anomaly, which is the angle between the pulsar (P) and the periastron (L) at the
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Figure 1.4: The schematic diagram of a pulsar (P) in an elliptical orbit with the centre of mass
(C) as one of the focii. Here, i is the angle of inclination of the orbital plane to the sky plane. AT

represents the true anomaly, which is the angle between the pulsar (P) and the periastron (L) at the
centre of mass (C). The ascending node (N) is the point on the orbit where the sky plane passing
through the centre of mass appears to cut the orbital plane and the orbit appears to rise above at
this point. The longitude of the ascending node, Ωasc, represents the angle between the reference
direction (X) and the ascending node (N) subtended at C in the sky plane. The longitude of the
periastron, �, is the angle between the semi-major axis and the line joining the ascending node to
the centre of mass. The line of sight is perpendicular to the sky plane.

centre of mass (C). C is located at one of the focii of the orbital ellipse. The ascending

node (N) is the point on the orbit where the sky plane passing through the centre of mass

appears to cut the orbital plane and the orbit appears to rise above at this point with respect

to the observer. The longitude of the periastron, �, is the angle between the semi-major

axis and the line joining the ascending node to the centre of mass. The line of sight is

perpendicular to the sky plane. Fig. 1.4 also shows the longitude of the ascending node,

Ωasc, which represents the angle between the reference direction (X) and the ascending

node (N) subtended at C in the sky plane. The reference direction is generally taken to be

the perpendicular projection of the line joining the celestial north pole and the observer,

on the sky plane.

As the pulsar moves in its orbit, it has orbital velocity, acceleration, jerk, etc. It is the

line-of-sight components of these parameters that affect observable parameters. Hence,

we first study the expressions for these higher time derivatives of the line-of-sight velocity

(vl), i.e., the line-of-sight acceleration (al = dvl/dt), the line-of-sight jerk ( jl = dal/dt),
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the line-of-sight jounce (Jol = d jl/dt), the line-of-sight crackle (Ckl = dJol/dt) and the

line-of-sight pop (Popl = dCkl/dt).

The equation for an elliptical orbit is known as:

r = ap

�
1 − e2

�
(1 + e cos AT )−1 , (1.17)

where r is the magnitude of the radius vector, e is the eccentricity of the orbit, AT is the

true anomaly and ap is the semi-major axis of the orbit. Here, the subscript ‘p’ stands

for pulsar, although the analytical expressions derived in this section are valid for binary

systems in general. The line-of-sight component of r is given by:

rl = a�p
�
1 − e2

�
(1 + e cos AT )−1 sin (AT +�) , (1.18)

where a�p = ap sin i is the projection of the semi-major axis to the plane containing the

line of sight. Differentiating rl with respect to time, we get,

vl = a�p
�
1 − e2

�
[cos (AT +�) + e sin �]

ȦT

(1 + e cos AT )2 . (1.19)

We further obtain an expression of ȦT in terms of AT and e by simultaneously solving the

following Kepler’s equations,

AM =
2π
Pb

(t − To) , (1.20a)

AE − e cos AE = AM , and (1.20b)

tan
AT

2
=

�
1 + e
1 − e

tan
AE

2
, (1.20c)

where AM is the mean anomaly, Pb is the orbital period, AE is the eccentric anomaly, To

is the epoch of the periastron passage, and t is the time. Using the eqs. (1.20a), (1.20b),

and (1.20c), we get,

ȦT =
(1 + e cos AT )2

(1 − e2)3/2

2π
Pb
. (1.21)
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Substituting the expression for ȦT in eq. (1.19), we get,

vl =
2π
Pb

a�p√
1 − e2

[cos (AT +�) + e sin �] . (1.22)

It should be noted that, here we take ė = 0, �̇ = 0, and Ṗb = 0. This is so because

currently, we are considering a non-relativistic description of binary systems. Non-zero

values of ė, �̇, and Ṗb are consequences of general relativity and are added separately as

Post-Keplerian parameters that will be discussed later. These parameters are so small that

they can be ignored over a few orbital cycles.

Continuing the time-differentiation, we get the higher order parameters as follows:

al = v̇l = −
�
2π
Pb

�2 a�p
�
1 − e2�2 sin (AT +�) (1 + e cos AT )2 , (1.23)

jl = ȧl = −
�
2π
Pb

�3 a�p
�
1 − e2�7/2 (1 + e cos AT )3 [cos (AT +�) + e cos �

−3e sin (AT +�) sin AT ] , (1.24)

Jol =
d jl

dt
=

�
2π
Pb

�4 a�p
�
1 − e2�5 (1 + e cos AT )4[2e sin AT cos (AT +�) + 4e sin (2AT +�)

+(1 − 3e2) sin (AT +�) +
3
2

e2 sin (3AT +�) +
9
2

e2 cos 2AT sin (2AT +�)] , (1.25)

Ckl =
dJol

dt
=

�
2π
Pb

�5 a�p
�
1 − e2�13/2

�
1
8

�
(1 + e cos AT )5

�
3e2(9e2 − 4) cos �

−15e3 cos (2AT −�) + 10e2 cos (AT −�) + (8 − 68e2) cos (AT +�)

+(100e − 45e3) cos (2AT +�) + 210e2 cos (3AT +�) + 105e3 cos (4AT +�)
�
, (1.26)
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and

Popl =
dCkl

dt
=

�
2π
Pb

�6 a�p
�
1 − e2�8

�
1

16

�
(1 + e cos AT )6

�
75e4 sin (3AT −�)

+(40e2 − 210e4) sin (AT −�) + (32e − 272e3) sin �

−(16 − 496e2 + 270e4) sin (AT +�) − (448e − 1050e2 + 42e3) sin (2AT +�)

−(1960e2 − 420e4) sin (3AT +�) − (1050e2 + 1470e3) sin (4AT +�)

−945e4 sin (5AT +�)
�
. (1.27)

Although the expressions for vl, al, jl, Jol, and Ckl were already known in the literature

(Bassa et al., 2016), the expression for Popl is given for the first time.

1.5 Pulsar Timing Analysis

Pulsar timing is a powerful tool to study a wide range of physics, e.g., dense matter

equations of state (Bagchi, 2018), properties of interstellar medium (Keith et al., 2013),

alternative theories of gravity (Freire et al., 2012a; Bagchi and Torres, 2014), and even

low-frequency gravitational waves (Detweiler, 1979). In this technique, pulse time of

arrivals (ToAs) are measured and are compared with the pulse arrival times calculated

from a pulsar timing model. The differences in these two times are called the timing

residuals. The set of parameters that leads to a good fit between the expected pulse time of

arrivals and the observed time of arrivals is called a timing solution. The timing solutions

of radio pulsars contain various measured parameters such as the coordinates of the pulsar,

the proper motion, the spin frequency and its derivatives, the dispersion measure, the

parallax (not always), etc. In case of binary pulsars, timing solutions give Keplerian

parameters like the orbital period, the orbital eccentricity, the longitude of periastron,

the projected semi-major axis of the orbit, and the epoch of periastron passage as well as

Post-Keplerian parameters like the time-derivative of the orbital period, the advance of the

periastron, the shape the Shapiro delay, the range of the Shapiro delay, and the Einstein
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delay. Sometimes, even the higher-order time-derivatives of the spin and/or the orbital

frequency are fitted.

1.6 Pulsar Parameters

Pulsars are characterized by various parameters. These include the spin period Ps, the

spin period derivative Ṗs, the mass mp, the radius R, the minimum dipolar magnetic field

strength at the surface Bsurface,min, the braking index n, etc. The values of these parameters

unveil intrinsic properties of the pulsar. Among these parameters, only Ps and Ṗs are

directly measurable through timing analysis, others can be inferred indirectly and will

be discussed later. There are additional parameters that are not so inherent to pulsars.

These include the location of the pulsar in the Galaxy, the parallax, the proper motion

of the pulsar, the dispersion measure, etc. Pulsar timing analysis can measure either

the equatorial coordinates (right ascension and declination) or the ecliptic coordinates

(ecliptic longitude and latitude). These can be converted to the Galactic longitude and

latitude, and even can pinpoint the location of the pulsar in the Galaxy if, in addition to

those, the distance of the pulsar from the solar system is also known. The proper motion

is the change in the location of the pulsar in the sky plane and is a result of the motion

of the pulsar in the Galaxy. On the other hand, the parallax is the apparent change in

the location of the pulsar due to the change in the line of sight (mainly caused by the

earth’s orbital motion). The dispersion measure is the column density of electrons of the

interstellar medium, integrated along the line of sight and causes a differential arrival time

of the same pulse at different frequencies.

As already mentioned, in the case of binary pulsars, there are additional parameters that

can be categorized into i) Keplerian and ii) Post-Keplerian (PK). Keplerian parameters

include the orbital period (Pb), the eccentricity (e), the longitude of the periastron (�),

the projection of the semi-major axis perpendicular to the sky plane (a�p), the epoch of
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the periastron passage (To), and the longitude of the ascending node (Ωasc). The PK

parameters describe the relativistic effects on the orbit and cause deviations from the

Keplerian picture. These include the rate of change of the orbital period (Ṗb), the advance

of the periastron (�̇), Einstein delay factor (γ), the range of Shapiro delay (rsh), and the

shape of Shapiro delay (ssh).

The PK parameters can be written as (Lorimer and Kramer, 2005):

Ṗb = ṖQ
b,GW = −

192π
5

�G M�
c3

�5/3 �Pb

2π

�−5/3� (1 + (73/24)e2 + (37/96)e4)
(1 − e2)7/2

��
mp mc

(mp + mc)1/3

�
,

(1.28)

�̇ = 3
�G M�

c3

�2/3 �Pb

2π

�−5/3 1
1 − e2 (mp + mc)2/3 , (1.29)

γ =
�G M�

c3

�2/3 �Pb

2π

�1/3

e
mc(mp + mc)
(mp + mc)4/3 , (1.30)

rsh =

�G M�
c3

�
mc , (1.31)

and

ssh = sin i =
�G M�

c3

�−1/3 �Pb

2π

�−2/3

a�p
(mp + mc)2/3

mc
. (1.32)

In eqs. (1.28), (1.29), (1.30), (1.31), and (1.32), mp and mc are the masses of the pulsar

and the companion respectively, both in the unit of the solar mass, and a�p = ap sin i. The

value of G M�/c3 is 4.925490947 µs where G is the gravitational constant.

All these expressions were derived using the post-Newtonian approximation (to the low-

est order) of general relativity. For some parameters, depending on the characteristics of

the system, there might be additional classical or relativistic effects (Lorimer and Kramer,

2005). The expression for the rate of change of the orbital period as shown in eq. (1.28)

has been derived with the assumption that it is caused solely due to the emission of
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quadrupolar gravitational waves (the only type of gravitational waves allowed by gen-

eral relativity), and hence we could write Ṗb = ṖQ
b,GW.

1.6.1 Estimation of Pulsar Parameters

Here, we briefly discuss methods to measure values of some of the parameters of pulsars.

• Astrometric parameters, spin parameters, and binary parameters: Astrometric pa-

rameters include positional coordinates of the pulsar, e.g., the right ascension (RA)

and the declination (DEC) (or Ecliptic latitude and longitude), the proper motion

(either in RA and DEC or in the ecliptic latitude and longitude), and the paral-

lax. The spin parameters include the spin frequency and its derivatives. The binary

parameters are the Keplerian as well as the PK parameters. In order to measure

these parameters, we use pulsar timing which is a technique used for measurements

of various pulsar parameters from the observational data of the time of arrival of

pulses (see section 1.5).

• Distance: If the parallax is measured either through the timing analysis or by the

very-long-baseline interferometry (VLBI) technique (Deller et al. (2019) and ref-

erences therein), then the inverse of the parallax gives the distance of the pulsar

(Lorimer and Kramer, 2005). Otherwise, the dispersion measure along with a model

of the electron density of the interstellar medium can give an estimate of the dis-

tance (Lorimer and Kramer, 2005). Presently, two such models of the electron

density are in use, one is the NE2001 model (Cordes and Lazio, 2002, 2003), and

the other is the YMW16 model (Yao et al., 2017).

• Magnetic field strength: Cyclotron radiation spectra from accreting neutron stars

forming X-ray binaries can lead to measurements of the surface magnetic field

(Bsurface). However, for radio pulsars no technique for direct measurement of the

magnetic field is available. However, we can have an indirect estimation of the
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minimum value of the dipolar magnetic field at the surface of the pulsar using the

relation given in eq. (1.7).

• Mass: The PK parameters (left hand sides of equations (1.28), (1.29), (1.30), (1.31),

and (1.32)) are the functions of Keplerian parameters Pb, e, and a�p, as well as mp

and mc. Both Keplerian and PK parameters are measured in a timing analysis (might

not be all PK parameters for every binary pulsar), but not mp and mc. However, here

we have five equations with only these two unknowns (mp and mc). So, whenever

we have measurements of at least two PK parameters, we can solve the equations for

those PK parameters simultaneously to obtain the values of mp and mc. Therefore,

the mass of the pulsars can be estimated only in case of binary pulsars (Lorimer and

Kramer, 2005).

• Radius: Conventionally, luminosity observations were used to estimate the size of

the emitting region. Observations carried out in the optical and X-ray regime of

the spectrum were considered useful in estimating the radius of the neutron star

(Lorimer and Kramer, 2005). Recently, X-ray timing analysis of the pulsed thermal

X-ray emission from several millisecond pulsars using the data taken by NICER

satellite provided measurements of the radius of several neutron stars (Bogdanov

et al., 2019).

1.7 Pulsars As Tools To Study Gravitational Physics

Pulsars can be used as laboratories to study various aspects of fundamental physics such

as the detection of gravitational waves and tests of general relativity (GR), as well as

alternative theories of gravity.
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1.7.1 Detection of Gravitational Waves

Pulsars can be used for the detection of different types of gravitational waves (GWs)

like the continuous GWs from spinning pulsars (due to pulsars being deformed spheres),

the short burst of GWs emitted during individual cases of inspiral and merger of binary

pulsars, the isotropic stochastic gravitational waves background, GWs from individual

supermassive black hole Binaries, and the GW memory from GW burst sources. For the

first two types of sources, interferometric gravitational wave detectors like LIGO (Laser

Interferometer Gravitational-Wave Observatory) and Virgo are used, whereas, for the last

three types of sources, Pulsar Timing Arrays can be used (Lommen, 2015).

Pulsar Timing Array (PTA) is the experiment that carries out observations, using radio

telescopes, of an ensemble of millisecond pulsars scattered across the observable Galac-

tic coordinates for the detection of the above-mentioned GW signals. There are three main

established PTA consortia- the European Pulsar Timing Array (EPTA), the North Ameri-

can Nanohertz Observatory for Gravitational Waves (NANOGrav), and the Parkes Pulsar

Timing Array (PPTA). These three PTAs and additionally a comparatively new Indian

Pulsar Timing Array (InPTA) together form a consortium of consortia called the Interna-

tional Pulsar Timing Array (IPTA) (Perera et al., 2019; Joshi et al., 2018). There are two

more emerging PTAs, the South African PTA (SPTA) and the Chinese PTA (CPTA) that

are associated members of IPTA.

GWs cause perturbations in the space-time fabric, which is then manifested as small per-

turbations in the time of arrival (ToA) measurements of pulses from pulsars. The resulting

redshift (z(t)) due to the fractional change in the pulse frequency is given by,

z(t) =
ν0 − ν(t)
ν0

=
1
2
α2 − β2

1 + γ
Δh+ +

αβ

1 + γ
Δh× , (1.33)

where ν0 is the initial pulse frequency, ν(t) is the pulse frequency at time t, (α, β, γ) are the

direction cosines of the GW propagating in the z-direction. Δh(+,×) = hP
(+,×) − hE

(+,×), where

(+,×) are the polarizations of the GW, and hP
(+,×)(t − d/c) and hE

(+,×)(t) are gravitational
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wave strain values at the pulsar (at a distance d) and the earth, respectively (Manchester,

2015). hP
(+,×) signals remain uncorrelated from pulsar to pulsar, whereas hE

(+,×) signals

are correlated over a pair of pulsars due to the presence of GWs. PTAs aim to detect

this correlation over an ensemble of pulsars for the detection of GWs. PTAs can detect

the stochastic gravitational waves background in nanohertz regime and the corresponding

GW amplitude is represented in the form of a dimensionless ‘characteristic strain’ given

as a function of frequency of the GWs ( fgw) by,

hc( fgw) ≈ 10−15
�

fgw

yr−1

�−2/3

. (1.34)

1.7.2 Tests of gravity theories

Pulsar timing is also used for tests of various theories of gravity. The tests of gravity

theories can be divided into tests of GR and tests of alternative theories of gravity. Tests

of GR can further be categorized as being about i) matching the measured values of PK

parameters from pulsar timing with those predicted using GR (also called the Strong field

gravity tests), or ii) putting constraints on the parameters that denote the violation of GR,

especially, the Strong Equivalence Principle (SEP) (Stairs, 2003). The parametrized post-

Newtonian (PPN) formalism was developed to facilitate the comparison among various

gravity theories by Will and Nordtvedt (1972). The constraints on PPN parameters serve

as constraints on various GR violation effects too. We briefly discuss some of these tests

below.

1.7.2.1 Test of GR: Strong field gravity tests

As already mentioned, for binary pulsars, PK parameters can be measured through timing

analysis of the pulsars. Using eqs. (1.28), (1.29), (1.30), (1.31), and (1.32), the measured

values of PK parameters are plotted as curves in the mp − mc phase space as values of

Pb, e and a�p are also measured. If the post-Newtonian approximation of GR is correct,
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then all such curves should intersect at a particular point representing the true mass of

the pulsar and the companion. Fig. 1.5 shows one such example of a mass-mass diagram

of PSR J0737−3039A/B, where the PK parameters agree with GR predictions within an

uncertainty of 0.05% (Kramer et al., 2006). However, an important point to consider

here is the fact that the measured values of Ṗb, one of the best measured PK parameters,

is generally contaminated by the dynamics of the pulsar. These dynamical effects need

to be subtracted from the measured values of Ṗb before using PK parameters for the

measurement of masses and the strong field tests of gravity.

Figure 1.5: Mass-mass diagram of PSR J0737−3039A/B (Kramer et al., 2006). This diagram
shows the measured values of PK parameters plotted as functions of masses. The PK parameters
shown are the derivative of the orbital period Ṗb, Einstein delay factor γ, the advance of the peri-
astron �̇, the Shapiro delay parameters- the range rsh and the shape ssh. The last three parameters
are denoted by ‘ω̇’, ‘r’, and ‘s’, respectively in the plot. As for this system, both members of
the binary are pulsars, one additional parameter R that represents the mass ratio obtained from
the ratio of the projected semi-major axes of the orbits of the two members of the binary, was
measured and plotted. The separation of parallel lines corresponding to a parameter represents the
measurement uncertainty in that parameter. The small turquoise region residing in the intersection
of pairs of lines denotes the measurement precision of the masses of the components of the binary
system.

55



1.7.2.2 Test of GR: Violation of SEP

The two equivalence principles are the two main components of GR. The Weak Equiva-

lence Principle (WEP) states that objects of different compositions and masses experience

the same acceleration in an external gravitational field (also interpreted as the universality

of free fall or UFF). The Strong Equivalence Principle (SEP) incorporates the WEP and

adds to it the existence of a local Lorentz frame (where laws of special relativity are valid)

in an external gravitational field. SEP also includes the local Lorentz invariance, i.e., the

outcome of any local experiment is independent of the velocity of the freely falling frame,

and the local position invariance, i.e., the outcome of any local experiment is independent

of where and when it is performed. We mention here some of the tests on violation of

SEP and its consequences.

• Test of Strong field extension of Nordtvedt effect: In a binary system, if SEP is vio-

lated, then the two members of the system would experience different acceleration

from the external gravitational field of the Galaxy and consequently the orbit will

be polarized. This is known as the Nordtvedt effect (Nordvedt, 1968). In the case

of SEP violation, there is also a difference in the gravitational mass of a body and

its inertial mass. Damour & Schäfer (1991) considered the strong field extension

of the Nordtvedt effect and suggested that this would lead to a forced eccentricity

in the direction of the gravitational force from the Galaxy. The expression for this

forced eccentricity (eF) induced in the orbit of the pulsar is given by:

�eF =
3
2

�g⊥ Δ
�̇ ap (2π/Pb)

, (1.35)

where the projection of the gravitational field of the Galaxy onto the orbital plane

of the pulsar is denoted by �g⊥. We also define Δ = Δpulsar − Δcompanion, such that for

the ith body, Δi represents the fractional difference between the gravitational mass

(mg) and the inertial mass (min) of the body (which is zero if SEP is valid). The
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expression for Δi is,

Δi =

�
mg

min

�

i
− 1 = η

�
Egrav

min c2

�

i
+ η�

�
Egrav

min c2

�2

i
... . (1.36)

Here, η is the Nordtvedt parameter and is a combination of PPN parameters, η�

is another dimensionless parameter that denotes the strong field extension of the

Nordtvedt effect and its expression depends on the 2PN theory-specific framework

(Freire et al., 2012b). Egrav is the gravitational self-energy of the body. Timing anal-

ysis of pulsars in binary systems can sometimes put constraints on the Nordtvedt

parameter (Manchester, 2015).

• Test of violation of the Local Lorentz Invariance (LLI): LLI violations also pro-

duce forced eccentricity whose expression is analogous to the one produced in the

Nordtvedt effect. This forced eccentricity also depends on the PPN parameters,

which can be constrained through the timing analysis of binary pulsars (Manch-

ester, 2015).

• Test of constancy of the gravitational constant: Gravity theories that violate SEP

can also cause the gravitational constant G to vary with time. A time-varying G

will contribute to the orbital period decay as,

Ṗb

Pb
= −2

Ġ
G
. (1.37)

Timing solutions of binary pulsars can provide measured Pb and Ṗb values that

can put constraint on the ratio of Ġ
G (Stairs, 2003). It should be noted that here

one should use the corrected value of Ṗb obtained after eliminating the dynamical

effects from the measured value.

1.7.2.3 Test of scalar-tensor and scalar-vector-tensor theories of gravity

In the case of scalar-tensor theories of gravity, scalar fields couple to the metric tensor

fields through a coupling function. Similarly, in the case of scalar-vector-tensor theories
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of gravity, additional vector fields couple to the metric tensor fields through a coupling

function. The coupling constants, defined from the coupling functions in terms of the

asymptotic values of the coupled fields, appear in the expressions of some PPN param-

eters as well as PK parameters derived from those theories of gravity. Constraints from

observations on those PPN and PK parameters, help us put constraints on the coupling

constants. These theories may violate SEP and may also lead to other effects like the

time-variation of G and emission of dipolar gravitational waves (Damour, 2009).

1.8 Braking Index as a Probe to Structural Properties of

Pulsars

The braking index (n) of a pulsar acts as an indicator of the kind of spin-down mechanism

followed by the pulsar. As mentioned earlier, if we consider a pulsar to be an ideal rotating

magnetic dipole, its braking index turns out to be three. However, in reality, pulsars

exhibit braking indices, calculated based on the measured values of the first and the second

derivatives of the spin frequency in eq. (1.5), in a wide range. Various people have tried

to find the physical reason for the deviation of n from three (Hobbs et al., 2004; Ho and

Andersson, 2012; Dang et al., 2020). Hobbs et al. (2004) reported measurements of n

for 374 pulsars. They found that the reported values of n for a number of pulsars lie in

the range of −2.6 × 108 to 2.5 × 108. These large deviations from the expected value

of three cannot be due to the timing noise as they had taken care of it by whitening the

timing residuals. Dang et al. (2020) suggested that the measured values of the braking

index are affected by the glitch4 recovery in the case of pulsars with τc < 105 yrs, while

for pulsars with τc � 105 yrs, the measured values of the braking index are contaminated

by the red timing noise. A red noise is a noise with more power at lower frequencies

in the power spectrum of the timing residual. The possible reasons for this red timing

4Glitches are the sudden increase in the spin frequency of pulsars owing to the rotational instabilities
whose origin lie in the structural properties of pulsars.
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noise, as suggested by Dang et al. (2020), can be due to fluctuations in the magnetic

inclination angle, in the magnetosphere of the pulsar, or in the rate of transfer of the

angular momentum from the superfluid in the interior of the neutron star to its crust. The

study of these fluctuations can give an insight into the structure of pulsars, for which

knowing the correct value of the braking index is essential. The first step to obtain a

correct value of the braking index is to use the correct values of the spin frequency and its

derivatives in eq. (1.5).

1.9 The Dynamical Effects

We have seen that the accurate knowledge of the values of the spin frequency and its

derivatives is important in some studies of structural properties of pulsars, e.g., studies

that involve the braking index, etc. Furthermore, accurate knowledge of the values of the

orbital period and its derivatives is essential to study gravitational physics. However, the

values of the derivatives of the spin frequency and the orbital frequency (in the case of a

binary pulsar) measured in a timing analysis do not represent the values intrinsic to the

pulsar system. To establish this fact, we will present some extreme examples in the next

paragraph. It is noteworthy to mention here the fact that through the process of timing

analysis, one fits values of the spin frequency and its derivatives, while in the case of

orbital parameters, fits the values of the orbital period and its first derivative. However,

for some cases, especially when higher derivatives are needed to obtain a good timing

solution, the orbital frequency and its derivatives are fitted (Crawford et al., 2013; Deneva

et al., 2016; Shaifullah et al., 2016; Ridolfi et al., 2016; Freire et al., 2017). That is why

in the present thesis, we worked both in the period and frequency domain. In particular,

when we investigate the effect of the dynamics on the second derivatives, we work in the

frequency domain, as, whether the spin or the orbital, it is the frequency whose second

derivatives are fitted in a timing analysis. So, results of the timing analysis can be used

directly in our expressions without the need of the conversion from the period domain
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to the frequency domain or vice versa using the relations: Ps = 1/ fs, Ṗs = − ḟs/ f 2
s ,

P̈s = 2 ḟ 2
s / f 3

s − f̈s/ f 2
s , and Ṗb = − ḟb/ f 2

b , Ṗb = − ḟb/ f 2
b , P̈b = 2 ḟ 2

b / f 3
b − f̈b/ f 2

b .

We have already mentioned that the emission of the electromagnetic waves causes the

pulsar to slow down, i.e., Ps to increase with time (see eq. 1.1). In reality, there might

be additional forms of energy losses from pulsars, e.g., the emission of continuous grav-

itational waves from the rotationally deformed pulsars, the loss of charged particles from

the magnetosphere of the pulsar in the form of winds, etc. All of these would make Ps

to increase with time, i.e., the value of Ṗs would be positive for non-accreting rotation

powered pulsars5.

Similarly, we have seen that the emission of the gravitational waves causes the orbital pe-

riod to decrease with time, i.e., Ṗb is negative. Note that, there might be other phenomena

that can cause Pb of a binary to change differently. Some examples of such phenomena

are the mass transfer from one member to another, the tidal interaction between the mem-

bers of the binary, etc. However, most of the known radio pulsars are in binaries where

these processes do not take place. Hence, for binary radio pulsars Ṗb is expected to be

negative.

The signs of the measured values of Ṗs and Ṗb usually comply with these expectations.

There are, however, some pulsars with the measured values of the rate of change of the

spin period as negative quantities, e.g., PSRs J1144-6146 and J1801-3210 (Manchester

et al., 2005). Likewise, there are some pulsars with the measured values of the rate

of change of the orbital period being positive, e.g., PSRs J0613-0200 and J1012+5307

(Manchester et al., 2005).

It is known that the observed values of the rate of change of the orbital and the spin fre-

quencies of pulsars are affected by dynamical parameters of the pulsars, e.g., the relative

velocity, acceleration, jerk, etc. of the pulsar with respect to the Solar system barycentre

5When a neutron star accretes matter from its binary companion, it gets spun-up due to the transfer of
the angular momentum, i.e., Ṗs becomes negative. However, such pulsars emit X-ray pulses instead of radio
pulses and are not being studied in the present thesis.
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along the line of sight. The gravitational potential of the Galaxy plays a significant role in

imparting the acceleration and jerk to pulsars (Damour & Taylor (1991); Nice & Taylor

(1995) and references therein).

This thesis studies these dynamical effects in the first and the second time-derivatives

of the frequencies or periods (both the spin and the orbital). It also presents accurate

methods to eliminate these dynamical terms facilitating estimation of the true values of

these derivatives that would enable people to probe fundamental physics with pulsars.

1.10 Structure of the Thesis

In the second chapter, we present analytical derivations of the dynamical terms contribut-

ing to the measured values of the derivatives of the frequency, in terms of the observable

parameters like the Galactic longitude, the Galactic latitude, the distance, the proper mo-

tion in the Galactic longitude and latitude, the relative radial velocity of the pulsar with

respect to the solar system barycentre, and the observed (measured) values of the fre-

quency and its derivatives.

In the third chapter, we present the numerical works done to eliminate the dynamical ef-

fects in the first derivative of the period (either the spin or the orbital). We describe a

python-based package ‘GalDynPsr’ that we created for this purpose in this chapter. Gal-

DynPsr has several methods to compute the dynamical contribution in the derivative of the

period due to the relative acceleration. Some of the methods involve traditional approxi-

mate methods and some are new methods based on a realistic model of the gravitational

potential of the Galaxy. There are some mixed models too. These methods are discussed

in detail and the results obtained by various methods are compared. The new method is

superior to older ones.

In chapter four, we describe the numerical works done in order to eliminate the dynamical

effects in the second derivative of the frequency (either the spin or the orbital). We intro-
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duce ‘GalDynPsrFreq’, a python package to estimate the dynamical terms in the first and

the second time-derivative of the frequency (both spin and orbital). In this chapter, we

also investigate how dynamical terms can affect the measured values of the braking index

and we also explore the contributions from the dynamical terms to the second derivative

of orbital frequencies.

In chapter five, we present the conclusions of this PhD work.
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Chapter 2

Dynamical Effects in Frequency

Derivatives (Spin and Orbital):

Analytical Description

2.1 Introduction

In Chapter 1 of the present thesis, we have discussed how various parameters can be mea-

sured through the timing analysis of a pulsar. Among all these parameters, the measured

values of the time-derivatives of the frequency or the period (both the spin and the orbital)

play crucial roles in revealing properties of pulsars and their evolutionary histories, and,

assist in testing postulates of fundamental physics. However, to achieve these goals, it is

essential to estimate the ‘true’ or ‘intrinsic’ values of these parameters precisely by un-

derstanding and eliminating external factors as accurately as possible. In the process of

pulsar timing analysis, although one fits the values of the spin frequency and its deriva-

tives, it is the period and its derivative that are generally fitted when it comes to the orbital

parameters. However, for some cases, especially when higher derivatives are needed to

obtain a good timing solution, orbital frequency and its derivatives are fitted. So, we aim
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to devise formalisms to estimate the intrinsic values of the first derivative of the period

and the first and the second derivatives of frequencies so that our formalisms can be used

directly without the need for conversion of the period to the frequency or vice versa.

We know that for a clean binary system, i.e., where gravity is the only interaction be-

tween the pulsar and its companion and both of them can be treated as point-like objects,

it is believed that the orbital period decreases due to the emission of gravitational waves1,

and hence the rate of change of the orbital period must be negative. On the other hand,

the existence of various forms of energy loss from pulsars, e.g., the emission of electro-

magnetic waves, the emission of winds of charged particles, the expected emission of

continuous gravitational waves due to the rotational deformation of the pulsar, etc., lead

to the expectation of the rate of change of the spin-periods of the non-accreting rotation

powered radio pulsars to be positive. The signs of the measured rate of change of the

orbital and the spin periods usually comply with these expectations, although there are a

few exceptions for both of the parameters. These exceptions are explained as results of

external effects, some of which will be discussed in this thesis. The values of the rate

of change of the spin frequency and the orbital periods are very small, still, these can be

measured accurately if a timing campaign is pursued long enough. For instance, 15-years

of data of PSR J0437−4715 by the Parkes Pulsar Timing Array enabled the measurements

of both of the derivatives very accurately, e.g., the rate of change of the spin frequency as

−1.728361(5) × 10−15 s−2 and the rate of change of the orbital period as 3.728(6) × 10−12

ss−1(Reardon et al., 2016). Such accurate measurements would be useless if the knowl-

edge of the external factors is not accurate enough. The Doppler shift is one of these

external factors. Like other periodic functions, both the spin and the orbital periods (or

the frequencies) experience the Doppler shift due to the relative motion between the pul-

1Otherwise, various other phenomena might cause the orbital period to change, e.g., the mass loss from
the binary, tidal interactions between the members of the binary, etc. The changes of the orbital period due
to such processes would be different from those caused by the emission of the gravitational waves. So,
knowledge of the exact nature and amount of the change of the orbital period would help us understand
physical processes happening in the system. Identification and elimination of external dynamical causes
from such intrinsic change of the orbital period would be the first step to achieve this goal. This thesis is
aimed to facilitate this first step.
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sar (the source) and the observer. As a result, the first and the second derivatives of the

periods (or the frequencies) depend on the dynamical parameters of the pulsars, e.g., their

velocities, accelerations, and jerk with respect to the observer.

In this chapter, we derive analytical expressions for the dynamical terms contributing to

the first and the second time derivative of the frequency (both the spin and the orbital), as

well as to the first derivative of the period. Additionally, we also provide ways to evaluate

those dynamical terms.

We start the chapter with a discussion of earlier works to set the preamble of our work

in section 2.2. In section 2.3, we describe unit vectors and their derivatives used in our

subsequent derivations. In section 2.4, we describe the components of the velocity and

the acceleration of the Sun and the pulsar. In section 2.5, we derive the analytical expres-

sions for the dynamical terms contributing to the first time-derivative of the frequency and

consequently present the expression for the intrinsic first derivative of the frequency. In

section 2.6, we derive analytical expressions for the dynamical terms contributing to the

second time-derivative of the frequency and consequently present the expression for the

intrinsic second derivative of the frequency. In section 2.7, we give the expressions for the

dynamical terms contributing to the first derivative of the period and consequently present

the expression for the intrinsic first derivative of the period. In section 2.8, we describe

the methods of obtaining values of the components of the relative acceleration between

the pulsar and the Sun, both parallel and perpendicular to the Galactic plane. In section

2.9, we describe the methods of obtaining the components of the relative jerk between the

pulsar and the Sun, both parallel and perpendicular to the Galactic plane. The expressions

derived in 2.8 appear in sections 2.5, 2.6, and 2.7, while the expressions derived in section

2.9 appear only in section 2.6. In sections 2.10 and 2.11, we briefly discuss additional dy-

namical effects that might arise in specific cases but are not the subject of study of the

present thesis. We summarize the results of this chapter in section 2.12.
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2.2 Preamble to our work: earlier studies

As already mentioned, the first and the higher-order time derivatives of the spin and the

orbital frequencies are affected by dynamics. In one of the seminal works on this topic,

Joshi and Rasio (1997) discussed how the higher derivatives of the spin frequency bear

the imprints of unmodeled orbital motion. More specifically, they expressed the spin

frequency derivative as the line of sight acceleration, the spin frequency second derivative

as the line of sight jerk, and so on. However, they ignored a few effects, e.g., the intrinsic

values of the frequency derivatives, the acceleration and jerk of the pulsar due to the

gravitational potential of the Galaxy, and the change in the direction of the line of sight

due to the motion of the pulsar.

In reality, the line of sight acceleration, jerk, jounce, etc., might arise due to the motion

of the pulsar in the gravitational potential of the Galaxy as well as due to the orbital

motion (if any). The contribution of the gravitational potential of the Galaxy to the line of

sight jerk and higher-order terms are usually small. However, these can be non-negligible

if they are due to the orbital motion of an unmodeled binary and can eventually help

constrain the parameters of the binary (Joshi and Rasio, 1997; Bassa et al., 2016; Perera

et al., 2017). It is noteworthy to mention here the fact that the higher derivatives of the

spin frequency in the timing solution might arise due to the intrinsic ‘timing noise’ too.

Careful analysis and the use of good noise models (Shannon & Cordes , 2010; Coles et

al., 2011) can help us overcome such ambiguities.

The expressions for the line of sight acceleration, jerk, jounce, and crackle, due to the

orbital motion are given in Bagchi et al. (2013) and Bassa et al. (2016). The expression

for the line of sight pop due to the orbital motion has been given for the first time in

Chapter-1 of this thesis.

A few years ago, Liu et al. (2018) provided a semi-analytical derivation for the dynamical

effects in the first and the second derivatives of the pulsar spin frequency. However, the
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expressions they provided were in the frame where the motion of the Sun is taken to be

negligible. Additionally, instead of deriving and using analytical expressions for the terms

involving the acceleration, jerk, etc., they used a model of the gravitational potential of

the Galaxy and an orbit integrator to integrate the motion of the pulsars and numerically

obtained the acceleration and jerk terms by a polynomial fitting.

In the present thesis, we derive complete analytical expressions for the dynamical effects

in the first and the second derivatives of the frequency as well as in the first derivative

of the period. We also devise methods to compute these terms if they are caused by the

gravitational potential of the Galaxy. In the next few sections, we present our formalism.

2.3 Geometrical Understanding: unit vectors, their deriva-

tives, and proper motion

During the procedure of pulsar timing analysis, the site arrival times are translated to the

barycentric arrival times, i.e., the solar system barycentre plays the role of the observer in

the Doppler shift equation, which is the origin of the dynamical effects we are studying.

The barycenter of the Solar system lies very close to the surface of the Sun, specifically,

within 0.008 AU from the centre of the Sun (Perryman and Schulze-Hartung, 2011). So,

the word ‘Sun’ is used in this thesis in the place of the ‘solar system barycenter’.

To obtain expressions for unit vectors and their derivatives that will be used later, we use

a Sun centred spherical coordinate system as well as a Sun centred cartesian coordinate

system as shown in Fig. 2.1. In this figure, the Sun is denoted by ‘S’, the pulsar by ‘P’,

and the Galactic centre by ‘C’. Additionally, θ is the angle, which, the radius vector (
−−→
S P)

makes with the positive Z-axis, φ is the angle that the projection of the radius vector on

the XY-plane (
−−→
S P�) makes with the positive X-axis, b is the Galactic latitude, l is the

Galactic longitude, and the distance of the pulsar from the Sun, S P = d, is equivalent to
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Figure 2.1: a) A schematic 3D-diagram describing the position of a pulsar P. b) The top
view of the Galactic plane shown in the left panel. See the text in section 2.3 for the
description of the figure.

its radial coordinate r, i.e., the spherical coordinates (r, θ, φ) are equivalent to (d, 90◦ − b,

90◦ + l). Here, the Sun centred cartesian coordinate system is chosen in such a way that

the Galactic centre ‘C’ is along the Y-axis having the (x, y, z) coordinates as (0,Rs, 0),

where Rs is the Galactocentric distance of the Sun. SP is projected on the Galactic plane

as SP� = d cos b, i.e., P� is the projected location of the pulsar on the Galactic plane.

The value of P�C is denoted by Rp� , which is the Galactocentric distance of the pulsar

projection on the Galactic plane. Fig. 2.1 shows that,

z = d sin b , (2.1)

where z (P�P) is the vertical height of the pulsar from the Galactic plane. z is positive

for positive values of b (above the Galactic plane) and negative for negative values of b

(below the Galactic plane).

Using the properties of spherical coordinates, we can write:

�er = sin θ cos φ�ex + sin θ sin φ�ey + cos θ�ez, (2.2)

�eθ = cos θ cos φ�ex + cos θ sin φ�ey − sin θ�ez, (2.3)

�eφ = − sin φ�ex + cos φ�ey , (2.4)
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where �ex, �ey, �ez are the Cartesian unit vectors and �er, �eθ, �eφ are the unit vectors of the

spherical coordinate system as mentioned above. Also, θ = 90◦ − b gives sin θ = cos b,

cos θ = sin b, θ̇ = −ḃ, and φ = 90◦ + l gives sin φ = cos l, cos φ = − sin l, φ̇ = l̇.

The well-known expressions for the time-derivatives of�er,�eθ, and�eφ are:

�̇er = θ̇�eθ + φ̇ sin θ�eφ, (2.5)

�̇eθ = −θ̇�er + φ̇ cos θ�eφ, (2.6)

�̇eφ = −φ̇ �
sin θ�er + cos θ�eθ

�
= −φ̇

�
cos φ�ex + sin φ�ey

�
(2.7)

The second expression of �̇eφ came from eq. (2.4).

From Fig. 2.1(a), we can see that the unit vector from the Sun to the pulsar�nsp is the radial

unit vector�er. Hence,�nsp =�er gives �̇nsp = �̇er and �̈nsp = �̈er, which can be written as:

�̈nsp = �̈er

= θ̈�eθ + θ̇�̇eθ + φ̈ sin θ�eφ + φ̇ θ̇ cos θ�eφ + φ̇ sin θ�̇eφ [Used eq. (2.5)]

= θ̈�eθ + θ̇
�
−θ̇�er + φ̇ cos θ�eφ

�
+ φ̈ sin θ�eφ + φ̇ θ̇ cos θ�eφ + φ̇ sin θ

�
−φ̇ �

sin θ�er + cos θ�eθ
��

[Used eq. (2.6) and (2.7)]

=
�
θ̈ − φ̇2 sin θ cos θ

�
�eθ −

�
θ̇2 + φ̇2 sin2 θ

�
�er +

�
2 θ̇ φ̇ cos θ + φ̈ sin θ

�
�eφ . (2.8)

The total proper motion of a star is defined as the angular velocity across the sky exhib-

ited by it, i.e., µT = vT/d where vT is the transverse velocity (the velocity in the sky plane

perpendicular to the line of sight�er) and d is the distance of the star (here pulsar). There

are different conventions to measure components of proper motions. These can be mea-

sured in terms of the components in the equatorial coordinates, i.e., the proper motion in

the right ascension (µα where α is the right ascension) and the proper motion in the dec-

lination (µδ where δ is the declination) giving µT =

�
µ2
α + µ

2
δ or in terms of its ecliptic

coordinates, i.e., the proper motion in the ecliptic longitude (µeλ where eλ is the the eclip-

tic longitude) and the proper motion in the ecliptic latitude (µeβ where eβ is the ecliptic
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latitude) giving µT =
�
µ2

eλ + µ
2
eβ, or the proper motion in the Galactic latitude (µb) and

the proper motion in the Galactic longitude (µl) giving µT =

�
µ2

b + µ
2
l . We prefer the last

convention where we can use µb = −θ̇ = ḃ, µl = φ̇ sin θ = φ̇ cos b = l̇ cos b.

The unit vector in the direction of the transverse velocity is denoted by �eT,v so that the

transverse velocity is �vT = vT�eT,v. To understand how the time derivatives of �er and �eT,v

can be expressed in terms of the total proper motion, let us consider a 2-dimensional

Cartesian plane (X� Y �) containing the orthonormal unit vectors �er and �eT,v as shown in

Fig. 2.2, such that �er makes an angle γ with �ex� and so �eT,v makes an angle γ + 90◦ with

�ex� . As a result, γ̇ = µT is the total transverse proper motion. Additionally,

�er = cos γ�ex� + sin γ�ey� , (2.9a)

and

�eT,v = − sin γ�ex� + cos γ�ey� . (2.9b)

Taking time-derivatives of above equations, we get,

�̇er = γ̇(− sin γ�ex� + cos γ�ey�)

= µT�eT,v [used γ̇ = µT and eq. (2.9b)]

=
vT

d
�eT,v [as µT = vT/d ] , (2.10a)

and

�̇eT,v = −γ̇(cos γ�ex� + sin γ�ey�)

= −µT�er [used γ̇ = µT and eq. (2.9a)]

= −vT

d
�er [as µT = vT/d ] . (2.10b)

From Fig. 2.1, it is clear that in a Galactocentric cylindrical coordinate system, the coor-

dinates of the Sun and the pulsar are (Rs, 0, 0) and (Rp, ζ, z) where the azimuthal angle ζ
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Figure 2.2: A schematic 3D-diagram showing unit vectors �er and �eT,v at point P in the
Cartesian plane (X�Y�) centred at a point O.

is taken with respect to the line CS. We also see that Rp = Rp� .

2.4 Components of velocities and accelerations

The stars in the Galaxy move with different values of velocity, acceleration, jerk etc. The

gradient of the gravitational potential of the Galaxy is the main source of accelerations of

the objects in it. There can be additional sources like local potentials, orbital motions, etc.

In the present thesis, we mainly concentrate on the first source of acceleration.

In this section, we demonstrate the directions and magnitudes of the velocities of the Sun

and the pulsar (�vs and �vp respectively) as well as their accelerations (�as and �ap). Like any

other vector, these vectors can also be decomposed into two mutually perpendicular com-

ponents, and we take one component parallel and the other perpendicular to the Galactic

plane. So, �vs = �vs,pl + �vs,z, �vp = �vp,pl + �vp,z, �as = �as,pl + �as,z, and �ap = �ap,pl + �ap,z. Here

subscripts ‘pl’ stands for parallel to the Galactic disc and the subscript ‘z’ stands for the

‘z-direction’ or perpendicular to the Galactic disc. The magnitudes of these vectors are

denoted by the same symbols without the arrow over them. In fact, as the Sun is orbiting

around the Galactic centre, at any instant, vs,pl is along the X-axis and as,pl is along the
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Figure 2.3: A schematic 3D diagram describing the accelerations experienced by the Sun
(in red) and the Pulsar (in blue) due to the gravitational potential of the Galaxy. Here, S
is the location of the Sun, P is the location of the pulsar, P� is the projection of P on the
Galactic plane, C is the Galactic centre, and C� is the projection of C on the plane parallel
to the Galactic plane passing through the pulsar. Additionally, the velocity of the Sun has
also been shown with a purple arrow. In the text, we have used Rp as the value of PC� and
Rp� as the value of P�C. It is obvious that Rp = R�p.

Y-axis, in the coordinate system shown in Fig. 2.1(a).

The vertical velocity of stars in the Galaxy with respect to the local standard of rest is

defined as vz = W = ḋ sin b + µb d cos b (Bovy, 2011). The first term contains the radial

velocity vr = ḋ which is difficult to measure. For five binary pulsars, optical spectroscopy

of their binary companions made it possible to measure vr (Liu et al., 2018)), whose

absolute value lie in the range of 42−185 km s−1, and in their simulation, they vary vr from

−200 km s−1 to 200 km s−1. The second term in the expression of W is usually smaller, as

for the 106 pulsars in the Galactic field with reported values of µb and dispersion measure

independent measurements of distances, we find that the values of this term can be fitted

with a Gaussian of mean −12.49 km s−1 and standard deviation 172 km s−1. These two

terms in the expression of W can add up if they have the same sign. On the other hand,

for the Sun, the latest measurement of W is only 7.25+0.37
−0.36 km s−1 (Schönrich et al., 2010).

This means that the value of W for the Sun is usually negligible in comparison to the value

of W of pulsars, i.e., vs,z << vp,z.

Additionally, Schönrich et al. (2010) also reported other two components of the motion
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of the Sun with respect to the local standard of rest. These are the radial (U) and along

the Galactic rotation (V) velocities, values being 11.1+0.69
−0.75 km s−1 and 12.24+0.47

−0.47 km s−1

respectively. These values would contribute to the net velocity of the Sun parallel to the

disc vs,pl =
�

(ΘS + V)2 + U2 where ΘS is the Galactic rotation at the location of the Sun,

whose value (240±8 km s−1 according to Reid et al. (2014)) is much larger than the values

of U and V .

As the Sun is located in the Galactic plane with a vertical height zero, the value of the z-

gradient of the gravitational potential of the Galaxy, which causes the vertical acceleration

of the stars, is zero at this location (Pathak and Bagchi, 2018). Although, the measured

value of the vertical acceleration of the Sun is non-zero, 3.95 ± 0.47 mm s−1 yr−1 (Xu

et al., 2017) which translates (dividing by c) into 4.17 × 10−19 s−1. The cause of this

acceleration is not yet understood, but surely something in addition to the acceleration

due to the standard Galactic gravitational potential. However, this value is much smaller

than the z-component of the Galactic acceleration at most of the places in the Galaxy, as

shown in Fig. 2.8(b), and hence can be ignored, i.e., as,z = 0. The non-zero components

of the accelerations of the Sun and the pulsar are shown with thick coloured arrows in

Fig. 2.3. In this figure, the velocity of the Sun has been shown too. Note that, although

the pulsar has been shown located above the Galactic plane (XY plane), in reality, there

are pulsars below the Galactic plane too. As �ap,z is always directed towards the Galactic

plane, we can write,

�ap,z =



−ap,z �ez if b > 0 ,

ap,z �ez if b < 0 .
(2.11)

Similarly, the parallel components of the accelerations can be written as:

�ap,pl = −ap,pl �eRp , (2.12)

�as,pl = −as,pl �eRs , (2.13)
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where �eRp and �eRs are the unit vectors in the Galactocentric cylindrical coordinate R at

the location of the pulsar and the Sun respectively. Note that �eRp and �eRs are directed

outwards while �ap,pl and �ap,pl are directed inwards. The positive, negative signs of the

above three equations ensures that ap,z, ap,pl, as,pl are all positive quantities, which help us

use trigonometric relations in the next few sections.

2.5 Analytical expression for the intrinsic first derivative

of the frequency

The Doppler shift of the frequency (either the spin or the orbital) of the pulsar can be

written as:

fint = (c + �vp.�nsp)(c + �vs.�nsp)−1 fobs , (2.14)

where c is the speed of light in vacuum, �vp is the velocity of the pulsar, �vs is the velocity

of the Sun, �nsp is the unit vector from the Sun to the pulsar and is taken to be the radial

direction (�er in Fig. 2.1(a)), fobs is the observed (measured) frequency, and fint is the

intrinsic frequency. As the pulse arrival times on the earth are first translated to the Solar

system barycentre before doing any timing analysis, the Solar system barycentre plays

the role of the receiver in the Doppler shift eq. (2.14), and due to the proximity of the

barycentre to the Sun, we simply write it as ‘the Sun’. Differentiating eq. (2.14) with

respect to time, we get,

ḟint =

�
�ap ·�nsp + �vp · �̇nsp

�

(c + �vs ·�nsp)
fobs −

(c + �vp ·�nsp)
(c + �vs ·�nsp)2

�
�as ·�nsp + �vs · �̇nsp

�
fobs +

(c + �vp ·�nsp)
(c + �vs ·�nsp)

ḟobs .

(2.15)

In eq. (2.15), �ap = �̇vp is the acceleration of the pulsar, �as = �̇vs is the acceleration of the

Sun, the dot over any parameter corresponds to the time derivative of that parameter, and

the double dot represents the second time derivative. Dividing of eq. (2.15) by eq. (2.14)
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and assuming 1 + �vs.�nsp

c � 1 and 1 + �vp.�nsp

c � 1, we get,

ḟint

fint
=

(�ap − �as) ·�nsp

c
+

1
c

(�vp − �vs) · d
dt

(�nsp) +
ḟobs

fobs
. (2.16)

The above assumptions just before eq. (2.16) also enable us to write fint � fobs = f ,

ḟobs
fobs
=

ḟobs
f =

�
ḟ
f

�
obs

, and ḟint
fint
=

ḟint
f =

�
ḟ
f

�
int

. (2.16) is then simpliefied as:

�
ḟ
f

�

ex
=

�
ḟ
f

�

obs
−

�
ḟ
f

�

int
= −

�
(�ap − �as) ·�nsp

c
+

1
c

(�vp − �vs) · d
dt

(�nsp)
�
. (2.17)

The subscript ‘ex’ means the ‘excess’ term. The first term in the right hand side of eq.

(2.17) depends on the acceleration of the pulsar relative to the Sun. As we are consid-

ering the gradient of the gravitational potential of the Galaxy to be the only source of

acceleration of objects, the first term can be written as
�

ḟ
f

�
ex,Gal

= − (�ap−�as)·�nsp

c .

We have seen in section 2.4, that both of the acceleration vectors in the above term can

be decomposed into two components, one is parallel to the Galactic plane and the other is

perpendicular to the Galactic plane. The contribution from these parallel components is

denoted by
�

ḟ
f

�
ex,Galpl

= −(�ap,pl−�as,pl)·�nsp

c , while the contribution of the perpendicular terms is
�

ḟ
f

�
ex,Galz

= −(�ap,z−�as,z)·�nsp

c , i.e.,
�

ḟ
f

�
ex,Gal

=
�

ḟ
f

�
ex,Galpl

+
�

ḟ
f

�
ex,Galz

.

The second term in the right hand side of eq. (2.17), which involves the relative ve-

locity and the change of the location of the pulsar, is the well-known ‘Shklovskii term’

(Shklovskii , 1970) and is denoted by
�

ḟ
f

�
ex,Shk

. So, we can write,

�
ḟ
f

�

ex
=

�
ḟ
f

�

ex,Gal
+

�
ḟ
f

�

ex,Shk
=

�
ḟ
f

�

ex,Galpl
+

�
ḟ
f

�

ex,Galz
+

�
ḟ
f

�

ex,Shk
. (2.18)

The terms in the right hand side of eq. (2.18) can be calculated using a model of the

gravitational potential of the Galaxy and the measured values of the locations and the

motions of the pulsars. The expressions for these terms have been derived in sections

2.5.1 and 2.5.2. Using expressions derived in those sections, we can write,

�
ḟ
f

�

ex
=

cos b
c

�
ap,pl

Rs

Rp�

�
d cos b

Rs
− cos l

�
+ as,pl cos l

�
+

1
c

(ap,z sin b) − 1
c

v2
T

d
, (2.19)
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where the meaning of various parameters are the same as in section 2.3.

After computing
�

ḟ
f

�
ex

using eq. (2.19), one can estimate the value of ḟint using the rela-

tion:

ḟint = f
��

ḟ
f

�

obs
−

�
ḟ
f

�

ex

�
= ḟobs − f

�
ḟ
f

�

ex
, (2.20)

if f and ḟobs are known.

Sometimes, it might be useful to work with the absolute dynamical terms instead of the

fractional dynamical terms shown in eq. (2.18). The absolute dynamical terms can be

written as:

ḟGalpl = f
�

ḟ
f

�

ex,Galpl
, (2.21a)

ḟGalz = f
�

ḟ
f

�

ex,Galz
, (2.21b)

ḟGal = f
�

ḟ
f

�

ex,Gal
= ḟGalpl + ḟGalz , (2.21c)

ḟShk = f
�

ḟ
f

�

ex,Shk
, (2.21d)

and

ḟint = ḟobs − ḟGal − ḟShk . (2.21e)

All these equations will remain the same regardless of whether we use the spin frequency

and its derivatives or the orbital frequency and its derivatives.

However, if the pulsar is in an unmodeled binary, the expression for
�

ḟs
fs

�
ex

will have an

extra term caused by the line-of-sight component of the orbital acceleration. There will

be additional terms in both
�

ḟb
fb

�
ex

and
�

ḟs
fs

�
ex

if the pulsar is in a globular cluster. We do not

explore these effects in the present thesis.

Next, we describe the derivation of each of the terms on the right-hand side of eq. (2.17).
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2.5.1 Simplifying the first term of eq. (2.17), i.e., (�ap−�as)·�nsp

c

The first term in right hand side of eq. (2.17) can be simplified as:

�
ḟ
f

�

ex,Gal
= −(�ap − �as) ·�nsp

c
= −

�
(�ap,pl + �ap,z) − (�as,pl + �as,z)

�
·�nsp

c

= −
�
�ap,pl − �as,pl + �ap,z − �as,z

�
·�nsp

c

= −
�
�ap,pl − �as,pl

�
·�nsp

c
−

�
�ap,z − �as,z

�
·�nsp

c

=

�
ḟ
f

�

ex,Galpl
+

�
ḟ
f

�

ex,Galz
, (2.22)

where
�

ḟ
f

�
ex,Galpl

= −(�ap,pl−�as,pl)·�nsp

c and
�

ḟ
f

�
ex,Galz

= − (�ap,z−�as,z)·�nsp

c as already mentioned. Sim-

plifying the parallel term further with the help of Figs. 2.1 and 2.3:

�
ḟ
f

�

ex,Galpl
= −

�
�ap,pl − �as,pl

�
·�nsp

c

= −1
c

�
ap,pl cos(l + λ − π

2
)�ex + ap,pl sin(l + λ − π

2
)�ey − as,pl�ey

�
·�er

= −1
c

�
ap,pl cos(l + λ − π

2
)�ex + ap,pl sin(l + λ − π

2
)�ey − as,pl�ey

�

·
�
sin θ cos φ�ex + sin θ sin φ�ey + cos θ�ez

�

= −1
c

�
ap,pl sin(l + λ) sin θ cos φ − ap,pl cos(l + λ) sin θ sin φ − as,pl sin θ sin φ

�

= −1
c

�
−ap,pl sin(l + λ) cos b sin l − ap,pl cos(l + λ) cos b cos l − as,pl cos b cos l

�

[as sin θ = cos b, cos φ = − sin l, and sin φ = cos l ]

=
cos b

c

�
ap,pl cos λ + as,pl cos l

�
. (2.23)

To eliminate the unknown angle λ from eq. (2.23), one can use the triangle law as (see

Fig. 2.1(b)):

R2
p� = R2

s + (d cos b)2 − 2Rs(d cos b) cos l , (2.24a)

R2
s = R2

p� + (d cos b)2 − 2Rp�(d cos b) cos λ . (2.24b)
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From eqs. (2.24a) and (2.24b), one gets

cos λ =
Rs

Rp�

�
d cos b

Rs
− cos l

�
. (2.25)

Therefore, we can write eq. (2.23) as,

�
ḟ
f

�

ex,Galpl
=

cos b
c

�
ap,pl

Rs

Rp�

�
d cos b

Rs
− cos l

�
+ as,pl cos l

�
. (2.26)

The perpendicular term can be written as:

�
ḟ
f

�

ex,Galz
= −

�
�ap,z − �as,z

�
·�nsp

c

= −�ap,z ·�nsp

c
[as �as,z � 0]

=
1
c

ap,z sin |b| . (2.27)

At the last stage of the above derivation, we have used the fact that �ap,z ·�nsp = −ap,z sin |b|
where ap,z is the magnitude of �ap,z as given by eq. (2.11) and always positive, while b

is positive if the pulsar is located above the Galactic disc and negative if it is located

below the Galactic disc. This will be clear from Fig. 2.4, which shows the edge-on view

of the Galactic plane with two pulsars P1 and P2 above and below the Galactic plane,

respectively, and their vertical accelerations as well as unit vectors in the direction from

the Sun to the pulsars.

The non-observables appearing in many places in this section are the components of the

acceleration of the pulsar parallel and perpendicular to the Galactic plane, ap,pl and ap,z re-

spectively, as well as the component of the acceleration of the Sun parallel to the Galactic

plane (ap,pl). Different methods to estimate these quantities in terms of observables can be

found in section 2.8.
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nsp1

nsp2

b1

b2

d1

d2

P1

P2

ap1,z

ap2,z

ze

S
C

Figure 2.4: Schematic diagram to understand the relative acceleration perpendicular to
the Galactic plane (z-acceleration). Two pulsars, P1 at positive z1, b1 and P2 at negative
z2, b2 are shown (z refers to the vertical distance of the pulsar from the Galactic plane and
b refers to the Galactic latitude). S is the location of the Sun and C is the Galactic centre.

2.5.2 Derivation of Shklovskii effect

For the sake of completeness, here we re-derive the well known Shklovskii term (the

second term in the right hand side of eq. (2.17)):

�
ḟ
f

�

ex,Shk
= −1

c
(�vp − �vs) · d

dt
(�nsp) , (2.28)

where �vp − �vs is the velocity of the pulsar with respect to the Sun. This velocity can be

written as:

�vp − �vs =
d
dt

(d�er) = ḋ�er + d�̇er = ḋ�er + d θ̇�eθ + d φ̇ sin θ�eφ [used eq. (2.5)].

(2.29)
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From Fig. 2.1(a), we can see that �nsp =�er, giving �̇nsp = �̇er. Using this fact and eqs. (2.5)

and (2.29), eq. (2.28) becomes

�
ḟ
f

�

ex,Shk
= −1

c
(ḋ�er + d θ̇�eθ + d φ̇ sin θ�eφ) · (θ̇�eθ + φ̇ sin θ�eφ)

= −1
c

(d θ̇2 + d φ̇2 sin2 θ)

= −1
c

(d µb
2 + d µl

2), [as µb = −θ̇, µl = φ̇ sin θ]

= −1
c

d µ2
T [as µT =

�
µ2

b + µ
2
l ]

= −1
c

v2
T

d
. [as µT = vT/d ] (2.30)

Eq. (2.30) is generally written as:

�
ḟ
f

�

ex,Shk
= −2.42925 × 10−21 dkpc µ

2
T,mas yr−1 s−1 , (2.31)

where µT,mas yr−1 is the total proper motion of the pulsar relative to the Sun, measured in

the unit of milliarcsecond per year. For most of the pulsars, this is the largest dynamical

contribution and easy to calculate if accurate enough values of the distance and the proper

motion of the pulsar are known.
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2.6 Analytical expression for the intrinsic second deriva-

tive of the frequency

Differentiating eq. (2.15) with respect to time, we get:

f̈int =

�
�̇ap ·�nsp + 2�ap · �̇nsp + �vp · �̈nsp

�

(c + �vs ·�nsp)
fobs −

(c + �vp ·�nsp)
(c + �vs ·�nsp)2

�
�̇as ·�nsp + 2�as · �̇nsp + �vs · �̈nsp

�
fobs

− 2

�
�ap ·�nsp + �vp · �̇nsp

� �
�as ·�nsp + �vs · �̇nsp

�

(c + �vs ·�nsp)2
fobs + 2

(c + �vp ·�nsp)
(c + �vs ·�nsp)3

�
�as ·�nsp + �vs · �̇nsp

�2
fobs

+ 2

�
�ap ·�nsp + �vp · �̇nsp

�

(c + �vs ·�nsp)
ḟobs − 2

(c + �vp ·�nsp)
(c + �vs ·�nsp)2

�
�as ·�nsp + �vs · �̇nsp

�
ḟobs +

(c + �vp ·�nsp)
(c + �vs ·�nsp)

f̈obs .

(2.32)

Dividing eq. (2.32) by eq. (2.14), we get:

f̈int

fint
=

�
�̇ap ·�nsp + 2�ap · �̇nsp + �vp · �̈nsp

�

(c + �vp ·�nsp)
−

�
�̇as ·�nsp + 2�as · �̇nsp + �vs · �̈nsp

�

(c + �vs ·�nsp)

− 2

�
�ap ·�nsp + �vp · �̇nsp

� �
�as ·�nsp + �vs · �̇nsp

�

(c + �vp ·�nsp)(c + �vs ·�nsp)
+ 2

�
�as ·�nsp + �vs · �̇nsp

�2

(c + �vs ·�nsp)2
+ 2

�
�ap ·�nsp + �vp · �̇nsp

�

(c + �vp ·�nsp)
ḟobs

fobs

− 2

�
�as ·�nsp + �vs · �̇nsp

�

(c + �vs ·�nsp)
ḟobs

fobs
+

f̈obs

fobs

=

�
�̇ap − �̇as

�
·�nsp

c
+ 2

�
�ap − �as

�
· �̇nsp

c
+

(�vp − �vs) · �̈nsp

c

− 2
�
(�ap − �as) ·�nsp

c
+

1
c

(�vp − �vs) · �̇nsp)
� 
�as ·�nsp

c
+
�vs · �̇nsp

c



+ 2
�
(�ap − �as) ·�nsp

c
+

1
c

(�vp − �vs) · �̇nsp)
�

ḟobs

fobs
+

f̈obs

fobs
, (2.33)

where in the second step we have again assumed 1+ �vs.�nsp

c ≈ 1 and 1+ �vp.�nsp

c ≈ 1. As already

mentioned, this assumption also enable us to write fint = fobs = f . The above equation is

simplified further with the help of eq. (2.17) as:

�
f̈
f

�

int
=

�
�̇ap − �̇as

�
·�nsp

c
+ 2

�
�ap − �as

�
· �̇nsp

c
+

(�vp − �vs) · �̈nsp

c
+ 2

�
ḟ
f

�

ex


�as ·�nsp

c
+
�vs · �̇nsp

c



− 2
�

ḟ
f

�

ex

�
ḟ
f

�

obs
+

�
f̈
f

�

obs
, (2.34)
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where
�

f̈
f

�
int
=

f̈int
f and

�
f̈
f

�
obs
=

f̈obs
f . Defining

�
f̈
f

�

ex
=

�
f̈
f

�

obs
−

�
f̈
f

�

int
, (2.35)

eq. (2.34) can be written as,

�
f̈
f

�

ex
= −



�
�̇ap − �̇as

�
·�nsp

c
+ 2

�
�ap − �as

�
· �̇nsp

c
+

(�vp − �vs) · �̈nsp

c
+ 2

�
ḟ
f

�

ex


�as ·�nsp

c
+
�vs · �̇nsp

c



−2
�

ḟ
f

�

ex

�
ḟ
f

�

obs

�
. (2.36)

In eq. (2.36), �̇ap is the jerk of the pulsar and �̇as is the jerk of the Sun. The unit vector �nsp

and its derivatives can be expressed in terms of other measurable parameters as discussed

earlier in section 2.3. Those expressions are used in simplifying various terms of eq.

(2.36) in the subsequent subsections. In particular, in section 2.6.1, we derive an expres-

sion for the second term
�
(�ap−�as)·�̇nsp

c

�
in terms of measurable parameters. We perform the

same task for the third term
�

(�vp−�vs)·�̈nsp

c

�
in section 2.6.2, for the fourth term

�
�as·�nsp

c +
�vs·�̇nsp

c

�
in

section 2.6.3, and then finally for the first term
�
(�̇ap−�̇as)·�nsp

c

�
in section 2.6.4. As the deriva-

tion of the first term is the lengthiest, we present it at the end. Using the expressions

derived in those subsections, eq. (2.36) can be written as:

for b > 0,
�

f̈
f

�

ex
= −

�
1
c

(ȧr − aTµT cosα)
�
−

�
2

�
µb

sin b
c

�
ap,pl

Rs

Rp�

�
d cos b

Rs
− cos l

�
+ as,pl cos l

�
− µb

cos b
c

ap,z

−µl
sin l

c

�
ap,pl

Rs

Rp�
− as,pl

��
+ 2

�
ḟ
f

�

ex

�
cos b cos l

as,pl

c
+ µb

vs,pl

c
sin b sin l − µl

vs,pl

c
cos l

��

−
�
1
c

�
µT aT cosα − 3 vr µT

2
��
+

�
2

�
ḟ
f

�

ex

�
ḟ
f

�

obs

�
, (2.37a)

for b < 0,
�

f̈
f

�

ex
= −

�
1
c

(ȧr − aTµT cosα)
�
−

�
2

�
µb

sin b
c

�
ap,pl

Rs

Rp�

�
d cos b

Rs
− cos l

�
+ as,pl cos l

�
+ µb

cos b
c

ap,z

−µl
sin l

c

�
ap,pl

Rs

Rp�
− as,pl

��
+ 2

�
ḟ
f

�

ex

�
cos b cos l

as,pl

c
+ µb

vs,pl

c
sin b sin l − µl

vs,pl

c
cos l

��

−
�
1
c

�
µT aT cosα − 3 vr µT

2
��
+

�
2

�
ḟ
f

�

ex

�
ḟ
f

�

obs

�
. (2.37b)
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In eq. (2.37), l is Galactic longitude, b is the Galactic latitude, d is the distance of the

pulsar from the Sun, µl is the proper motion in l, µb is the proper motion in b, µT is

the total transverse proper motion, Rs is the Galactocentric distance of the Sun, Rp� is

Galactocentric distance of the pulsar projection on the Galactic plane. Additionally, vs,pl,

as,pl, ap,pl, and ap,z are the components of velocities and accelerations as defined in section

2.4. aT is the transverse component of the relative acceleration of the pulsar with respect

to the Sun, and ȧr is the rate of change of the radial component of the relative acceleration

of the pulsar with respect to the Sun, vr is the radial component of the relative velocity of

the pulsar with respect to the Sun, and α is the angle between the transverse components

of the relative velocity and the relative acceleration of the pulsar with respect to the Sun.

Eqs. (2.19) and (2.37) will remain the same regardless whether we use the spin frequency

( fs) and its derivatives or the orbital frequency ( fb) and its derivatives.

However, if the pulsar is in an unmodeled binary, the expressions for
�

ḟs
fs

�
ex

and
�

f̈s
fs

�
ex

will

contain extra terms due to the line-of-sight component of the orbital acceleration and jerk.

There will be additional terms in all of
�

ḟs
fs

�
ex

,
�

f̈s
fs

�
ex

,
�

ḟb
fb

�
ex

, and
�

f̈b
fb

�
ex

if the pulsar is in a

globular cluster. We do not explore these effects in the present thesis, although discuss in

brief in section 2.10.

Expressions of ȧr and aT in terms of observables like l, b, µl, µb, d, and vr are derived in

the section 2.6.4. Expression of α in terms of these observables is derived in the section

2.6.3. Those expressions are used to obtain numerical values of
�

f̈
f

�
ex

as will be described

in chapter four.

We can now use the values of
�

f̈
f

�
ex

, f , and f̈obs to estimate the intrinsic value of the second

derivative of the frequency ( f̈int) by the following relation:

f̈int = f
��

f̈
f

�

obs
−

�
f̈
f

�

ex

�
= f̈obs − f

�
f̈
f

�

ex
. (2.38)
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2.6.1 Simplifying the second term on the right hand side of eq. (2.36)

Let us now focus on the second term on the right hand side of eq. (2.36):
�
�ap − �as

�
· �̇nsp

c
=

�
�ap − �as

�
· �̇er

c

=
1
c

�
�ap,pl + �ap,z − �as,pl − �as,z

�
·
�
θ̇�eθ + φ̇ sin θ�eφ

�
[used eq. (2.5)]

=
1
c

�
�ap,pl − �as,pl + �ap,z − �as,z

�
·
�
θ̇ cos θ cos φ�ex + θ̇ cos θ sin φ�ey − θ̇ sin θ�ez

−φ̇ sin θ sin φ�ex + φ̇ sin θ cos φ�ey

�
. [used eqs. (2.3) and (2.4)]

(2.39)

For the ease of calculation, we perform the multiplication shown in eq. (2.39) by sepa-

rating the parallel and perpendicular components of the acceleration. When we consider

only the parallel component, we get,

1
c

�
�ap,pl − �as,pl

�
·
�
θ̇ cos θ cos φ�ex + θ̇ cos θ sin φ�ey − θ̇ sin θ�ez − φ̇ sin θ sin φ�ex + φ̇ sin θ cos φ�ey

�

=
1
c

��
ap,pl cos(l + λ − π

2
)�ex + ap,pl sin(l + λ − π

2
)�ey − as,pl�ey

�
·
�
θ̇ cos θ cos φ�ex + θ̇ cos θ sin φ�ey

−θ̇ sin θ�ez − φ̇ sin θ sin φ�ex + φ̇ sin θ cos φ�ey

��
[see figs 2.1 and 2.3]

=
1
c

�
−θ̇ sin b {ap,pl cos λ + as,pl cos l} − φ̇ cos b {ap,pl sin λ − as,pl sin l}

�

= − θ̇ sin b
c

�
ap,pl cos λ + as,pl cos l

�
− φ̇ cos b

c

�
ap,pl

Rs sin l
Rp�

− as,pl sin l
�

[used sin λ =
Rs sin l

Rp�
, from sine law in �SP�C of Fig. 2.1(b)]

= − θ̇ sin b
c

�
ap,pl

Rs

Rp�

�
d cos b

Rs
− cos l

�
+ as,pl cos l

�
− φ̇ cos b sin l

c

�
ap,pl

Rs

Rp�
− as,pl

�
.

(2.40)
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Similarly, when we consider only the perpendicular component, we get,

1
c

�
�ap,z − �as,z

�
·
�
θ̇ cos θ cos φ�ex + θ̇ cos θ sin φ�ey − θ̇ sin θ�ez − φ̇ sin θ sin φ�ex + φ̇ sin θ cos φ�ey

�

=
1
c

�
�ap,z − �as,z

�
· (−θ̇ sin θ�ez)

= − θ̇ sin θ
c
�ap,z · �ez [as as,z = 0]

=



θ̇ cos b
c ap,z if b > 0 ,

−θ̇ cos b
c ap,z if b < 0 .

[used eq. (2.11) and sin θ = cos b as discussed in section 2.3]

(2.41)

Using eqs. (2.40) and (2.41), we can re-write eq. (2.39) as:

for b > 0,
�
�ap − �as

�
· �̇nsp

c
= − θ̇ sin b

c

�
ap,pl

Rs

Rp�

�
d cos b

Rs
− cos l

�
+ as,pl cos l

�
− φ̇ cos b sin l

c

�
ap,pl

Rs

Rp�
− as,pl

�

+
θ̇ cos b

c
ap,z

=µb
sin b

c

�
ap,pl

Rs

Rp�

�
d cos b

Rs
− cos l

�
+ as,pl cos l

�
− µb

cos b
c

ap,z − µl
sin l

c

�
ap,pl

Rs

Rp�
− as,pl

�
,

(2.42a)

for b < 0,
�
�ap − �as

�
· �̇nsp

c
= − θ̇ sin b

c

�
ap,pl

Rs

Rp�

�
d cos b

Rs
− cos l

�
+ as,pl cos l

�
− φ̇ cos b sin l

c

�
ap,pl

Rs

Rp�
− as,pl

�

− θ̇ cos b
c

ap,z

=µb
sin b

c

�
ap,pl

Rs

Rp�

�
d cos b

Rs
− cos l

�
+ as,pl cos l

�
+ µb

cos b
c

ap,z − µl
sin l

c

�
ap,pl

Rs

Rp�
− as,pl

�
.

(2.42b)

In the second step of the derivations of both of the eqs. (2.42a) and (2.42b), we have used

µb = −θ̇ and µl = −φ̇ cos b as mentioned in section 2.3.

We have used eq. (2.42) in eq. (2.36) to derive eq. (2.37) of section 2.6.
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2.6.2 Simplifying the third term on the right hand side of eq. (2.36)

In this section, we express the third term on the right hand side of eq. (2.36), i.e., (�vp−�vs)·�̈nsp

c

in terms of observable parameters. Using the expressions of �vp − �vs from eq. (2.29) and

�̈nsp from eq. (2.8), we get,

(�vp − �vs) · �̈nsp

c
=

1
c

�
ḋ�er + d θ̇�eθ + d φ̇ sin θ�eφ

�
·
��
θ̈ − φ̇2 sin θ cos θ

�
�eθ −

�
θ̇2 + φ̇2 sin2 θ

�
�er

+
�
2 θ̇ φ̇ cos θ + φ̈ sin θ

�
�eφ

�

=
1
c

�
d θ̇ (θ̈ − φ̇2 sin θ cos θ) − ḋ (θ̇2 + φ̇2 sin2 θ) + d φ̇ sin θ (2 θ̇ φ̇ cos θ + φ̈ sin θ)

�

=
1
c

�
d ḃ b̈ − ḋ ḃ2 − ḋ l̇2 cos2 b − d ḃ l̇2 cos b sin b + d l̇ cos b l̈ cos b

�

[as θ = 90◦ − b, sin θ = cos b, cos θ = sin b, θ̇ = −ḃ and φ̇ = l̇]

=
1
c

�
d ḃ b̈ − ḋ ḃ2 − ḋ l̇2 cos2 b − d ḃ l̇2 cos2 b tan b + d l̇ cos b l̈ cos b

�

=
1
c

�
d µb µ̇b − ḋ µb

2 − ḋ µl
2 − d µb µl

2 tan b + d µl l̈ cos b
�

[as µb = ḃ, µ̇b = b̈ and µl = φ̇ sin θ = l̇ cos b]

=
1
c

�
d µb µ̇b − ḋ µb

2 − ḋ µl
2 − d µb µl

2 tan b + d µl {µ̇l + µl µb tan b}
�

[as µ̇l = l̈ cos b − l̇ sin b ḃ = l̈ cos b − µl tan b µb]

=
1
c

�
d (µb µ̇b + µl µ̇l) − ḋ (µb

2 + µl
2)
�

=
1
c

�
d µT µ̇T − ḋ µT

2
�
. [as µ2

T = µ
2
l + µ

2
b] (2.43)

In eq. (2.43) µT, d, ḋ = vr are observable parameters, but not µ̇T. So, we need to express

µ̇T in terms of other observables like l, b, µl, µb, d, and vr. In order to do so, we start with

an alternative expression of the relative velocity:

�vp − �vs =
d
dt

(d�er) = ḋ�er + d�̇er = vr �er + vT �eT,v . [used eq. (2.10a)] (2.44)

Here, vr is the magnitude of the radial component and vT is the magnitude of the transverse

component of the relative velocity while �er and �eT,v are unit vectors in those directions.

Differentiating eq. (2.44) with respect to time, we get the expression of relative accelera-
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tion as,

�ap − �as = �̇vp − �̇vs

= v̇r �er + vr �̇er + v̇T �eT,v + vT �̇eT,v

= v̇r �er +
vr vT

d
�eT,v + v̇T �eT,v − vT

2

d
�er [used eqs. (2.10a) and (2.10b)]

=

�
v̇r − vT

2

d

�
�er +

�
v̇T +

vr vT

d

�
�eT,v . (2.45)

The relative acceleration can also be written as,

�ap − �as = ar�er + aT�eT,a , (2.46)

where ar is the magnitude of the radial component and aT is the magnitude of the trans-

verse component of the relative acceleration while �er and �eT,a are unit vectors in those

directions. The expression for aT in terms of other measurable quantities is derived in the

section 2.6.4 (eq. (2.65)).

An important point to note here is the distinction between the directions of the transverse

acceleration (�eT,a) and the transverse velocity (�eT,v). Consider a plane at the pulsar position

to which �er is a normal, i.e., both of the vectors �eT,a and �eT,v lie in that plane. We can

compare�eT,a and�eT,v using a set of orthogonal pair of coordinates, (�el,�eb), drawn on this

plane at the position of the pulsar (see Fig. 2.5). Here �el is the direction of positive µl

and �eb is the direction of positive µb. Thus the transverse velocity of the pulsar can be

decomposed as �vT = vl�el + vb�eb with vl = d µl and vb = d µb. From Fig. 2.5(b) we can see

that, the angle that�eT,v makes with the�el direction is given by αv = tan−1
�

vb
vl

�
= tan−1

�
µb
µl

�
,

whereas, the angle that�eT,a makes with the�el direction is given by αa = tan−1
�

aT,b

aT,l

�
, where

aT,l and aT,b are the components of �aT along �el and �eb respectively (refer eqs. (2.54) and

(2.56) for their derivation). Hence, as shown in Fig. 2.5(b), the angle (α) between�eT,a and

�eT,v is given by the absolute difference of these angles, i.e., α = |αa − αv|.

To understand the relationship between �eT,a and �eT,v, we try to understand the origins of
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Figure 2.5: a) A schematic 3D diagram showing the orthogonal coordinate frame (�el,�eb).
b) A schematic planar diagram showing the components of the transverse acceleration and
the transverse velocity in the orthogonal coordinate frame (�el,�eb), centred at the location
of the pulsar.

the transverse velocity and acceleration. We have assumed that the gravitational potential

of the Galaxy is the only cause of the transverse acceleration. The transverse velocity that

we considered till now is based on the observed total proper motion of the pulsar. But this

observed transverse velocity is a vector sum of the transverse velocity due to the Galactic

potential (in the direction of the transverse acceleration) and an extra transverse velocity

term caused by other factors like the initial supernova kick, etc. Hence, we can write,

vT�eT,v = vT,gal�eT,a + �vT,ext , (2.47)

where vT,gal is the magnitude of the transverse velocity due to the Galactic potential, �eT,a

is the unit vector in its direction, and �vT,ext is the extra transverse velocity term.

So,�eT,a can be written in terms of�eT,v as,

�eT,a =
vT�eT,v − �vT,ext

vT,gal
. (2.48)
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Taking the dot product with�eT,v on both sides of eq. (2.47), we get,

vT = vT,gal�eT,a ·�eT,v + �vT,ex ·�eT,v ,

= vT,gal cosα + �vT,ex ·�eT,v . [as α is the angle between�eT,a and�eT,v] (2.49)

Using the expression of�eT,a as given by eq. (2.48) in eq. (2.46), we get,

�ap − �as = ar�er + aT
vT�eT,v − �vT,ex

vT,gal

= ar�er + aT
(vT,gal cosα + �vT,ex ·�eT,v)�eT,v − �vT,ex

vT,gal
[substituted vT from eq. (2.49)]

= ar�er + aT

�
cosα�eT,v − {�vT,ex − (�vT,ex ·�eT,v)�eT,v}

vT,gal

�

= ar�er + aT cosα�eT,v − aT
{�vT,ex − (�vT,ex ·�eT,v)�eT,v}

vT,gal
. (2.50)

Now, let us define �η = (�vT,ex − (�vT,ex ·�eT,v)�eT,v). We can see that �η is perpendicular to�eT,v

as �η ·�eT,v = �vT,ex ·�eT,v − (�vT,ex ·�eT,v) (�eT,v ·�eT,v) = 0. Hence, the coefficient of �eT,v in eq.

(2.50) is just aT cosα.

Comparing the coefficients of�eT,v in eqs. (2.45) and (2.50), we get

aT cosα =
�
v̇T +

vr vT

d

�
. (2.51)

This expression would help us write µ̇T in terms of the other measurable parameters. To

do so, we start with differentiating both sides of the expression µT =
vT
d with respect to

time and write

µ̇T =
v̇T

d
− vT ḋ

d2

=
v̇T

d
− vT vr

d2 [as ḋ = vr]

=
1
d

�
aT cosα − vr vT

d

�
− vT vr

d2 [used eq. (2.51)]

=
aT cosα

d
− 2

vT vr

d2

=
aT cosα

d
− 2
µT vr

d
[as µT = vT/d]. (2.52)
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Using expression of µ̇T from eq. (2.52) in eq. (2.43), we obtain,

(�vp − �vs) · �̈nsp

c
=

1
c

�
d µT µ̇T − ḋ µT

2
�

=
1
c

�
d µT

�aT cosα
d

− 2
µT vr

d

�
− vr µT

2
�

=
1
c

�
µT aT cosα − 3 vr µT

2
�
. (2.53)

We have used eq. (2.53) in eq. (2.36) to derive eq. (2.37) of section 2.6.

Note that, to find the numerical value of the right hand side of eq. (2.53), we need to know

the value of α = |αa−αv|. For that, we need to know αa = tan−1
�

aT,b

aT,l

�
, and αv = tan−1

�
µb
µl

�
.

αv is already in terms of observable parameters µl and µb, but not αa. So, our next goal

is to find expressions for aT,l and aT,b in terms of observables or computable parameters.

For this purpose we proceed as follows.

From Fig. 2.6(a), we can write expression for aT,l as,

aT,l = �aT ·�el = aT�eT,a ·�el

= (�ap − �as − ar�er) ·�el [used eq. (2.46)]

= (�ap − �as) ·�el [as�er ⊥�el]

= (�ap,pl + �ap,z − �as,pl − �as,z) ·�el

= �ap,pl ·�el + �ap,z ·�el − �as,pl ·�el − �as,z ·�el

= �ap,pl ·�el − �as,pl ·�el [as�ez ⊥�el]

= ap,pl cos(π/2 + λ) − as,pl cos(3π/2 − l) [refer Fig. 2.6(a)]

= −ap,pl sin λ + as,pl sin l

= −(ap,pl sin λ − as,pl sin l) . (2.54)
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Figure 2.6: A schematic diagram showing the components of Solar and pulsar acceler-
ations, parallel and perpendicular to the Galactic plane. The same cartesian coordinate
system as in Fig. 2.1 has been used. (a) The Top panel (subfigure a) shows the top view
of the Galactic plane. S� and C� are the projections of the Sun (S) and the Galactic cen-
tre (C) on the plane containing the pulsar (P) and parallel to the Galactic plane. Various
acceleration vectors are shown with arrows. This figure is used to find the accelerations
projected along �el at P. Angles are measured from �el in the anti-clockwise direction. (b)
The bottom-left panel (subfigure b) shows the plane containing the Sun (S), the pulsar (P)
and its projection on the Galactic plane (P’) in the edge-on view of the Galactic plane.
Various acceleration vectors are shown with arrows. This figure is used to find the ac-
celerations projected along �eb at P. Angles are measured from �eb in the anti-clockwise
direction. Here the pulsar is shown above the Galactic plane (positive b). (c) The bottom-
right panel (subfigure c) is the same as the ‘subfigure a’ except here the pulsar is shown
below the Galactic plane (negative b).
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From Figs. 2.6(b) and 2.6(c), we can write expression for aT,b as,

aT,b = �aT ·�eb = aT�eT,a ·�eb

= (�ap − �as − ar�er) ·�eb [used eq. (2.46)]

= (�ap − �as) ·�eb [as�er ⊥�eb]

= (�ap,pl + �ap,z − �as,pl − �as,z) ·�eb

= �ap,pl ·�eb + �ap,z ·�eb − �as,pl ·�eb , [as �as,z ≈ 0]

for b > 0,

aT,b = ap,pl cos λ cos(π/2 − b) + ap,z cos(π − b) − as,pl cos l cos(3π/2 − b) [see Fig. 2.6(b)]

= −ap,z cos b + ap,pl cos λ sin b + as,pl cos l sin b (2.55)

for b < 0,

aT,b = ap,pl cos λ cos(π/2 − b) + ap,z cos b − as,pl cos l cos(3π/2 − b) [see Fig. 2.6(c)]

= ap,z cos b + ap,pl cos λ sin b + as,pl cos l sin b . (2.56)

In the above derivations, ap,pl cos λ is the component of �ap,pl along PS�. Using the expres-

sions of aT,l, and aT,b, we calculate αa, and subsequently, α. We then compute the value

of cosα that appear in eq. (2.37).

2.6.3 Simplifying the fourth term on the right hand side of eq. (2.36)

The fourth term on the right hand side of eq. (2.36) is 2
�

ḟ
f

�
ex

�
�as·�nsp

c +
�vs·�̇nsp

c

�
. We need

to focus on the part
�
�as·�nsp

c +
�vs·�̇nsp

c

�
, as we already know how to obtain the value of

�
ḟ
f

�
ex

(section 2.5).
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We first consider �as ·�nsp,

�as ·�nsp =
�
�as,pl + �as,z

�
·�nsp

=
�
as,pl�ey

�
·
�
cos b�nsp� + sin b�ez

�
[as as,z ≈ 0, and�nsp� is the unit vector along SP� in Fig. 2.1(a) ]

=
�
as,pl�ey

�
·
�
cos b�nsp� + sin b�ez

�

= as,pl cos b�ey ·�nsp� [as�ey ⊥�ez]

= cos b cos l as,pl . [as per Fig. 2.1(a), the angle between�nsp� and�ey is l]

(2.57)

Next we consider �vs · �̇nsp,

�vs · �̇nsp = (�vs,pl + �vs,z) · (θ̇�eθ + φ̇ sin θ�eφ) [used eq. (2.5) and the fact that�nsp =�er;�̇nsp = �̇er]

= (vs,pl�ex + vs,z�ez) · (θ̇�eθ + φ̇ sin θ�eφ) [as �vs,pl is along�ex, see sec. 2.4]

= (vs,pl�ex) · (θ̇�eθ + φ̇ sin θ�eφ) [as vs,z ≈ 0]

= (vs,pl�ex) · (−µb�eθ + µl�eφ) [as θ̇ = −ḃ = −µb, φ̇ sin θ = l̇ cos b = µl]

= (vs,pl�ex) · {−µb (cos θ cos φ�ex + cos θ sin φ�ey − sin θ�ez) + µl (− sin φ�ex + cos φ�ey)}

[used eqs. (2.3) and (2.4)]

= vs,pl (−µb cos θ cos φ − µl sin φ)

= µb vs,pl sin b sin l − µl vs,pl cos l .

�
as θ = 90◦ − b, φ = 90◦ + l giving cos θ = sin b, sin φ = cos l, cos φ = − sin l

�

(2.58)

Using eqs. 2.57 and 2.58, we can write

�as ·�nsp

c
+
�vs · �̇nsp

c

 = cos b cos l
as,pl

c
+ µb

vs,pl

c
sin b sin l − µl

vs,pl

c
cos l . (2.59)

We have used eq. (2.59) in eq. (2.36) to derive eq. (2.37) of section 2.5.
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2.6.4 Simplifying the first term on the right hand side of eq. (2.36)

Here, we write (�̇ap−�̇as)·�nsp

c of eq. (2.36) in terms of measurable quantities as follow.

1
c

�
�̇ap − �̇as

�
·�nsp =

1
c

�
d
dt

(�ap − �as)
�
·�er

=
1
c

�
d
dt

(ar�er + aT�eT,a)
�
·�er [used eq. (2.46)]

=
1
c

�
ȧr�er + ar �̇er + ȧT�eT,a + aT�̇eT,a

�
·�er

=
1
c

�
ȧr�er + arµT �eT,v + ȧT�eT,a + aT�̇eT,a

�
·�er [used eq. (2.10a)]

=
1
c

�
ȧr + aT�̇eT,a ·�er

�
. [as�eT,v ·�er = 0, �eT,a ·�er = 0] (2.60)

Let us now focus on the term �̇eT,a ·�er in eq. (2.60). Differentiating both sides of eq. (2.48)

with respect to time and multiplying by�er from the right, we get,

�̇eT,a ·�er =


v̇T�eT,v + vT�̇eT,v − �̇vT,ex

vT,gal
− vT�eT,v − �vT,ex

vT,gal
2 v̇T,gal

 ·�er

=


v̇T�eT,v + vT�̇eT,v − �̇vT,ex

vT,gal
− �eT,a

vT,gal
v̇T,gal

 ·�er [used eq. (2.48)]

=
(vT�̇eT,v ·�er − �̇vT,ex ·�er)

vT,gal
[as�eT,v ·�er = 0, �eT,a ·�er = 0]

=
(−vT µT�er ·�er − �̇vT,ex ·�er)

vT,gal
[used eq. (2.10b)]

=
(−vT µT − �̇vT,ex ·�er)

vT,gal

=
{−(vT,gal cosα + �vT,ex ·�eT,v) µT − �̇vT,ex ·�er}

vT,gal
[used eq. (2.49)]

= − cosα µT − (�vT,ex · (µT�eT,v) + �̇vT,ex ·�er)
vT,gal

= − cosα µT − (�vT,ex · �̇er + �̇vT,ex ·�er)
vT,gal

[used eq. (2.10a)]

= − cosα µT −
d
dt (�vT,ex ·�er)

vT,gal

(2.61)
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= − cosα µT −
d
dt ((vT�eT,v − vT,gal�eT,a) ·�er)

vT,gal
[used eq. (2.47)]

= − cosα µT . [∵�eT,v ·�er = 0, �eT,a ·�er = 0] (2.62)

Hence, on substituting the term �̇eT,a ·�er in eq. (2.60) by the final expression of eq. (2.62),

we write

1
c

�
�̇ap − �̇as

�
·�nsp =

1
c

(ȧr − aT µT cosα) . (2.63)

We now need to derive the expressions for ȧr and aT in terms of observable parameters

like l, b, µl, µb, d, and vr as well as calculable quantities like ap,pl, as,pl, and ap,z. The

method of expressing α in terms of observables has been already described in the section

2.6.2.

Eq. (2.46) gives (�ap −�as) · (�ap −�as) = a2
r + a2

T as �ar and �aT are perpendicular to each other.

So,

aT =
�
(�ap − �as) · (�ap − �as) − a2

r

�1/2

=
�
(�ap − �as) · (�ap − �as) − ((�ap − �as) ·�er)2

�1/2 �
used eq. (2.46)

�

=
�
(�ap,pl + �ap,z − �as,pl − �as,z) · (�ap,pl + �ap,z − �as,pl − �as,z) − ((�ap − �as) ·�nsp)2

�1/2

=
�
(�ap,pl − �as,pl + �ap,z − �as,z) · (�ap,pl − �as,pl + �ap,z − �as,z) − ((�ap − �as) ·�nsp)2

�1/2

=
�
(�ap,pl − �as,pl) · (�ap,pl − �as,pl) + (�ap,z − �as,z) · (�ap,z − �as,z) − ((�ap − �as) ·�nsp)2

�1/2

[as �ap,pl · �ap,z = �ap,pl · �as,z = �as,pl · �ap,z = �as,pl · �as,z = 0]

=

(�ap,pl − �as,pl) · (�ap,pl − �as,pl) + (�ap,z − �as,z) · (�ap,z − �as,z) − c2


�

ḟ
f

�

ex,Galpl
+

�
ḟ
f

�

ex,Galz


2

1/2

�
used eq. (2.22)

�

(2.64)
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=

a2
p,pl + a2

s,pl − 2 ap,pl as,pl cos(π − (l + λ)) + a2
p,z − c2


�

ḟ
f

�

ex,Galpl
+

�
ḟ
f

�

ex,Galz


2

1/2

[as as,z = 0 and the angle between �ap,pl and �as,pl is π − (l + λ), see Figs. 2.1(a) and 2.3]

=

a2
p,pl + a2

s,pl + 2 ap,pl as,pl cos(l + λ) + a2
p,z − c2


�

ḟ
f

�

ex,Galpl
+

�
ḟ
f

�

ex,Galz


2

1/2

. (2.65)

Among the non-observables in eq. (2.65), the methods to obtain the values of
�

ḟ
f

�
ex,Galpl

and
�

ḟ
f

�
ex,Galz

have been discussed in section 2.5.1. In order to find the value of the re-

maining non-observable λ, we use the sine law in � SP’C of Fig. 2.1 to get,

sin λ =
Rs sin l

Rp�
. (2.66)

Now we work on the other non-observable in eq. (2.63), i.e., ȧr. Multiplying both sides

of eq. (2.46) by�er from the right, we can write

ar = (�ap − �as) ·�er = (�ap − �as) ·�nsp . [as�eT,a ·�er = 0] (2.67)

Differentiating eq. (2.67) with respect to time, we get

ȧr =
d
dt

��
�ap − �as

�
·�nsp

�

=
d
dt

��
�ap,pl + �ap,z − �as,pl − �as,z

�
·�nsp

�

=
d
dt

��
�ap,pl − �as,pl

�
·�nsp + �ap,z ·�nsp

�
[as as,z = 0]

=
d
dt

�
− cos b

�
ap,pl cos λ + as,pl cos l

�
− (ap,z sin |b|)

�
[see derivations of eqs. (2.23) and (2.27)]

= − d
dt

�
cos b

�
ap,pl cos λ + as,pl cos l

�
+ ap,z sin |b|

�

= −
�
− sin b

�
ap,pl cos λ + as,pl cos l

�
ḃ + cos b

�
ȧp,pl cos λ − ap,pl sin λ λ̇ + ȧs,pl cos l − as,pl sin l l̇

�

+ȧp,z sin |b| + ap,z cos b ḃ
b
|b|

� �
as cos |b| = cos b, and

d
dt
|b| = ḃ

b
|b|

�

= sin b
�
ap,pl cos λ + as,pl cos l

�
µb − cos b

�
ȧp,pl cos λ + ȧs,pl cos l

�
− ȧp,z sin |b| + ap,pl cos b sin λ λ̇

+ as,pl sin l µl − ap,z cos b µb
b
|b| . [as µl = l̇ cos b; µb = ḃ] (2.68)

The non-observables in eq. (2.68) are λ, λ̇, ȧp,pl, ȧs,pl, and ȧp,z. The expression for λ is
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given in eq. (2.66). The time-derivative of this equation leads to an expression of λ̇ as

follows:

cos λλ̇ =
Rs cos l

Rp�
l̇ − Rs sin l

R2
p�

dRp�

dt
, (2.69)

giving

λ̇ =
Rs cos l

cos λRp�
l̇ − Rs sin l

cos λR2
p�

dRp�

dt

=
Rs cos l

cos λRp�

l̇ cos b
cos b

− Rs sin l
cos λR2

p�

dRp�

dt

=
Rs cos l

cos λRp�

µl

cos b
− Rs sin l

cos λR2
p�

dRp�

dt
. (2.70)

The expression for dRp�
dt in terms of observable quantities is obtained by differentiating

both sides of eq. (2.24a) with respect to time as:

dRp�

dt
=

1
Rp�

�
d cos2 bḋ − d2 cos b sin bḃ − Rs cos b cos lḋ + Rsd sin b cos lḃ + Rsd cos b sin ll̇

�

=
1

Rp�

�
(d cos2 b − Rs cos b cos l)vr + (Rsd sin b cos l − d2 cos b sin b)µb + Rsd sin l µl

�
.

(2.71)

We use eq. (2.71) in eq. (2.70), and eq. (2.70) in eq. (2.68). We compute the value of

aT using eq. (2.65) and the value of ȧr using eq. (2.68). However, there are still some

non-observable parameter remaining in eq. (2.68) that are ȧp,pl, ȧp,z, and ȧs,pl. A method

to obtain the values of these quantities has been described in section 2.9. The numerical

values of aT and ȧr are then used in eq. (2.63) which is the first term of eq. (2.36).
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2.7 Analytical expression for the intrinsic first derivative

of the period

As mentioned earlier, in a timing analysis, although the spin frequency and its derivatives

are fitted, it is the orbital period and its first derivative that are commonly fitted instead of

the orbital frequency and its derivative (unless higher-order derivatives are needed). Thus,

having expressions of dynamical terms both in the period and in the frequency domain are

useful. In this section, we present the expressions for the dynamical terms contributing to

the first derivative of the period.

As P = 1
f and Ṗ

P = − ḟ
f where f is the frequency and P is the period (either the spin or the

orbital), we can re-write the Doppler shift eqs. (2.14) and (2.17) as,

Pint = (c + �vs.�nsp)(c + �vp.�nsp)−1Pobs , (2.72)

where Pobs is the observed value of the period and Pint is the intrinsic value of the period,

and �
Ṗ
P

�

ex
=

�
Ṗ
P

�

obs
−

�
Ṗ
P

�

int
=

�
(�as − �ap) ·�nsp

c
+

1
c

(�vs − �vp) · d
dt

(�nsp)
�
, (2.73)

i.e., the expression of
�

Ṗ
P

�
ex

is negative of that of
�

ḟ
f

�
ex

. In eq. (2.73), Ṗobs is the observed

value of the first derivative of the period and Ṗint is the intrinsic value of the first derivative

of the period. With the assumption Pobs ∼ Pint = P (see section 2.5 for the reasoning), we

have written Ṗobs
Pobs
=

Ṗobs
P =

�
Ṗ
P

�
obs

and Ṗint
Pint
=

Ṗint
P =

�
Ṗ
P

�
int

. All the parameters appearing in

eqs. (2.72) and (2.73) bear the same meaning as explained earlier.

Similarly, eq. (2.18) changes to,

�
Ṗ
P

�

ex
=

�
Ṗ
P

�

ex,Gal
+

�
Ṗ
P

�

ex,Shk
=

�
Ṗ
P

�

ex,Galpl
+

�
Ṗ
P

�

ex,Galz
+

�
Ṗ
P

�

ex,Shk
. (2.74)

In eq. (2.74),
�

Ṗ
P

�
ex,Gal

=
�

Ṗ
P

�
ex,Galpl

+
�

Ṗ
P

�
ex,Galz

where
�

Ṗ
P

�
ex,Galpl

and
�

Ṗ
P

�
ex,Galz

are caused

respectively, by the parallel and the perpendicular (to the Galactic plane) components of
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the relative acceleration of the pulsar with respect to the Sun.

Again, because of Ṗ
P = − ḟ

f , the expressions for each of the excess terms in eq. (2.74) are

the negative of the corresponding terms in the frequency domain. Specifically, from eq.

(2.26), we can write,

�
Ṗ
P

�

ex,Galpl
= −cos b

c

�
ap,pl

Rs

Rp�

�
d cos b

Rs
− cos l

�
+ as,pl cos l

�
, (2.75)

from eq. (2.27), we can write,

�
Ṗ
P

�

ex,Galz
= −1

c
ap,z sin |b| , (2.76)

and from eq. (2.31), we can write,

�
Ṗ
P

�

ex,Shk
=

1
c

d µ2
T =

1
c

v2
T

d
= 2.42925 × 10−21 dkpc µ

2
T,mas yr−1 s−1 . (2.77)

Eq. (2.77) is the Shklovskii term in the period domain.

After computing
�

Ṗ
P

�
ex

in eq. (2.73), one can estimate the value of Ṗint using the relation:

Ṗint = P
��

Ṗ
P

�

obs
−

�
Ṗ
P

�

ex

�
= Ṗobs − P

�
Ṗ
P

�

ex
, (2.78)

if the values of P and Ṗobs are known.

The fractional dynamical terms shown in eq. (2.74) can be converted to the absolute

dynamical terms as:

ṖGalpl = P
�

Ṗ
P

�

ex,Galpl
, (2.79a)

ṖGalz = P
�

Ṗ
P

�

ex,Galz
, (2.79b)

ṖGal = P
�

Ṗ
P

�

ex,Gal
= ṖGalpl + ṖGalz , (2.79c)

ṖShk = P
�

Ṗ
P

�

ex,Shk
, (2.79d)

Ṗint = Ṗobs − ṖGal − ṖShk . (2.79e)

105



We have not shown the expressions of the excess terms in the second derivatives of the pe-

riods, as usually, the second or higher-order derivatives are fitted in the frequency domain.

If needed, one can convert the intrinsic value of the second derivative of the frequency to

the intrinsic value of the second derivative of the period using the relation P̈ = 2 ḟ 2

f 3 − f̈
f 2 .

2.8 Finding the parallel and perpendicular components

of accelerations

We have seen that the final expressions for the ‘excess’ or the dynamical terms both for

the first and the second derivative of the frequency (eqs. (2.19) and (2.37)) contain the

components of acceleration of the pulsar parallel and perpendicular to the Galactic plane

(ap,pl and ap,z respectively), as well as the acceleration of the Sun parallel to the Galactic

plane (as,pl). In this section, we describe the methods to obtain numerical values of ap,pl,

ap,z, and as,pl.

Conventionally, people adopt different approximations to find the values of ap,pl, ap,z, and

as,pl. As these approximations are still in practice, we first discuss these and point out their

limitations in section 2.8.1. Then in section 2.8.2, we discuss a method to overcome these

limitations using a model of the gravitational potential of the Galaxy. Finally, in sections

2.10 and 2.11, we discuss extra contributions in �ap that might arise in special situations.

2.8.1 Finding the parallel and perpendicular components of acceler-

ations: traditional methods

Here, we discuss the traditional methods to find the values of as,pl and ap,pl in section

2.8.1.1 and then the method to find the value of ap,z in section 2.8.1.2. For both of the

cases, we also discuss the excess terms in the first derivative of the period (or the fre-

quency).
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2.8.1.1 Components of the accelerations parallel to the Galactic plane and their

contributions to the excess term

We continue to use the labeling and nomenclature shown in Figs. 2.1 and 2.3 for refer-

ence in this section. As the Milky Way is in a stable configuration, as,pl and ap,pl in can

be identified with the magnitude of the equilibrium centripetal accelerations at S and P

respectively of Fig. 2.3. Similarly, the equilibrium centripetal acceleration at P’ can be

denoted by �ap�,pl whose magnitude is ap�,pl. So, we can write:

as,pl =
v2

s

Rs
, (2.80a)

ap,pl =
v2

p

Rp
, (2.80b)

ap�,pl =
v2

p�

Rp�
=

v2
p�

Rp
, (2.80c)

where vs is the Galactic rotational speed at the location of the Sun, vp is the Galactic

rotational speed at P, and vp� is the Galactic rotational speed at P�. We also know that

Rp = Rp� .

One can find the value of as,pl from eq. (2.80a) with known values of vs and Rs. It is of

wide practise to use vs = 240 ± 8 km s−1 and Rs = 8.34 ± 0.16 kpc (Reid et al., 2014;

Matthews et al., 2016).

From the above equations, it is obvious that the magnitude of �ap�,pl is constant at a fixed

value of Rp, but its direction depends on the value of l as it is always directed towards C.

Similarly, �ap,pl is always directed towards C�. Neglecting the height (perpendicular to the

Galactic plane) dependence of the Galactic rotation curve, one usually assumes vp = vp�

giving ap,pl = ap�,pl. Using these approximations, we can write eqs. (2.26) and (2.75) as,

�
Ṗ
P

�

ex,Galpl
= −

�
ḟ
f

�

ex,Galpl
= −cos b

c


v2

p�

Rp�

Rs

Rp�

�
d cos b

Rs
− cos l

�
+

v2
s

Rs
cos l

 . (2.81)
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Eq. (2.81) can be simplified as,

�
Ṗ
P

�

ex,Galpl
= −

�
ḟ
f

�

ex,Galpl
= −1

c
v2

s

Rs

cos l +
v2

p�

v2
s

β

(sin2 l + β2)

 cos b , (2.82)

where β = d cos b
Rs
− cos l and

R2
p�

R2
s
= sin2 l + β2. The second expression can be derived by

rewriting eq. (2.24a) as

R2
p�

R2
s
= 1 +

(d cos b)2

R2
s

− 2
d cos b

Rs
cos l

= 1 +
�
d cos b

Rs
− cos l

�2

− cos2 l [completed the square]

= sin2 l +
�
d cos b

Rs
− cos l

�2

= sin2 l + β2 [defining β =
d cos b

Rs
− cos l] (2.83)

It is obvious that the sign of
�

Ṗ
P

�
ex,Galpl

depends on the values of l, b, d as well as on the

form of the Galactic rotation curve. Eq. (2.82) is the expression of
�

Ṗ
P

�
ex,Galpl

provided the

assumption vp� = vp holds valid.

As the majority of known pulsars are located near the solar system (Rp ∼ Rs), it is a

common practice to use a linear form for the Galactic rotation curve, as:

vp� = vs +
dv
dR

�����
R=Rs

�
Rp − Rs

�
= vs

�
1 − b0

Rp − Rs

Rs

�
, (2.84)

where b0 = − Rs
vs

dv
dR

����
R=Rs

is known as the ‘slope parameter’. Damour & Taylor (1991) used

eq. (2.84) with a negligibly small value of b0 = 0.00 ± 0.03, i.e., vp� � vs and eq. (2.82)

with cos b = 1 (b � 0◦) to obtain

�
Ṗ
P

�

ex,Galpl,b=0
= −

�
ḟ
f

�

ex,Galpl,b=0
= −1

c
v2

s

Rs

�
cos l +

β

(sin2 l + β2)

�
. (2.85)

If we remove the assumption cos b = 1, but keep vp� � vs, we can write,

�
Ṗ
P

�

ex,Galpl
= −

�
ḟ
f

�

ex,Galpl
= −1

c
v2

s

Rs

�
cos l +

β

(sin2 l + β2)

�
cos b . (2.86)
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Often, people simply use eq. (2.86) with recently estimated values of the parameters, e.g.,

Rs = 8.34 ± 0.16 kpc and vs = 240 ± 8 km s−1 (Reid et al., 2014; Matthews et al., 2016).

However, Reid et al. (2014) also obtained dv
dR

���
R=Rs
= −0.2 ± 0.4 km s−1 kpc−1, i.e., b0 � 0.

So it would be more logical to use eq. (2.84) with these updated values of the parameters

to calculate vp� and then use that value in eq. (2.82) to estimate
�

Ṗ
P

�
ex,Galpl

.

Nonetheless, eq. (2.84) is not valid for pulsars with Rp < 4 kpc where the Galactic rotation

curve is not linear at all (Crosta et al., 2020). In such a case one can replace eq. (2.84) by

a more realistic rotation curve, say the one returned by ‘galpy’ (Bovy, 2015)2 . The value

of vp� from that rotation curve can be used in eq. (2.82) to estimate the value of
�

Ṗ
P

�
ex,Galpl

.

However, for high-latitude pulsars, the assumption of vp = vp� (or ap,pl = ap�,pl) resulting in

eq. (2.82) should not be used, and one should rather find a better way to estimate
�

Ṗ
P

�
ex,Galpl

or
�

ḟ
f

�
ex,Galpl

, which we discuss in section 2.8.2.

2.8.1.2 Components of the accelerations perpendicular to the Galactic plane and

their contributions to the excess term

We already know (eqs. (2.27) and (2.76)) that

�
Ṗ
P

�

ex,Galz
= −

�
ḟ
f

�

ex,Galz
= −1

c
ap,z sin |b| . (2.87)

There have been many efforts to evaluate this perpendicular component of the accelera-

tion, commonly known as Kz, due to the gravitational field of the Galaxy. In these tradi-

tional approaches, one usually first determines the densities of different components of the

Galaxy using observed positions, velocities, numbers and luminosities of different types

of stars (mainly K-giants), and then solves Poisson’s equation for each component to find

the value of Kz (Holmberg & Flynn, 2000, and references therein). Such works are usu-

ally done for ‘local’ stars, i.e., for stars very close to the Sun. Nice & Taylor (1995) used

2‘galpy’ is a python package publicly available at https://github.com/jobovy/galpy. It contains the model
of the gravitational potential of the Galaxy, which we have decided to use and will discuss later in details.
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one such work (Kuijken & Gilmore, 1989) when they were studying PSR J2019+2425

(Rp � 7.92 kpc, z � −0.13 kpc) and PSR J2322+2057 (Rp � 8.47 kpc, z � −0.61 kpc), as

both of these pulsars are close enough to the Sun. The analytical expression for ap,z/c (or

Kz/c) used by Nice & Taylor (1995) can be written (with the direction of the vectors for

better clarity) as:

ap,z

c
= 1.08101 × 10−19

0.58 +
1.25

(z2
kpc + 0.0324)1/2

 |zkpc| s−1 , (2.88)

where zkpc is the vertical height of the pulsar in the unit of kpc and the relation z = d sin b

leads to zkpc = dkpc sin b where dkpc is the distance of the pulsar from the Sun in the unit

of kpc.

Afterwards, this expression has been used for other pulsars, even for the ones that are

not that close to the Sun. However, Lazaridis et al. (2009) and Desvignes et al. (2016)

used revised values of Kz given by Holmberg & Flynn (2004). The z-dependence of Kz is

shown in the Figure 8 of Holmberg & Flynn (2004), which Lazaridis et al. (2009) fitted

as

ap,z = 0.30857 (2.27|zkpc| + 3.68(1.0 − e(−4.31|zkpc |))) km s−2pc−1 . (2.89)

We fit the same data with a different functional form as:

ap,z

c
= 1.08101 × 10−19

0.47 +
1.56

(z2
kpc + 0.1673)1/2

+
0.01

(z2
kpc + 0.0318)3/2

 |zkpc| s−1 for |zkpc| ≤ 1.5

= 1.08101 × 10−19

0.54 +
1.43

(z2
kpc + 0.0467)1/2

 |zkpc| s−1 for |zkpc| > 1.5 .

(2.90)

In both the eqs. (2.88) and (2.90), the multiplicative factor 1.08101 × 10−19 arises to

convert km2 s−2 pc−1/c to the unit of s−1.

In the left panel of Fig 2.7, we show our fit, i.e., eq. (2.90) with a dotted line and the earlier

fit by Lazaridis et al. (2009), i.e., eq. (2.89) with a dashed line with the data of Holmberg
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Figure 2.7: The vertical acceleration due to the gravitational potential of the Galaxy. In
both of the panels, the absolute value of the vertical height in kpc (|zkpc|) is shown along
the abscissa. The left panel (panel-a) compares our fit (the dotted line) as in eq. (2.90),
and the fit by Lazaridis et al. (2009) (the dashed line) as in eq. (2.89) with the data of
Holmberg & Flynn (2004) (dark circles plotted upto |zkpc| ∼ 5). We also show a zoomed
in (upto |zkpc| = 5) plot in the inset. The mixed unit along the ordinate that represents ap,z

should be noted. A multiplicative factor of 3.24078 × 10−11 will convert this into the SI
unit m s−2. The right panel (panel-b) compares our fit (eq. (2.90), the dashed line) with the
expression given by Nice & Taylor (1995) (eq. (2.88), the dotted line). A multiplicative
factor of 3.24078× 10−11/c = 1.08101× 10−19 has been used to obtain the values of ap,z/c
in s−1.

111



& Flynn (2004) (dark circles plotted upto |zkpc| ∼ 5). We also show a zoomed in (upto

|zkpc| = 5) plot in the inset. The discrepancy between the two fits for |z| > 5 kpc is clearly

visible. Moreover, even at low values of |z|, i.e., for |z| < 1.5 kpc, our fit matches the data

better than the fit by Lazaridis et al. (2009). In the right panel of Fig 2.7, we compare

eqs. (2.88) and (2.90). It is clear that for upto |z| ∼ 10 kpc, both of these equations give

almost the same results. However, even Holmberg & Flynn (2004) used only the stars

close to the Sun. So, it will not be accurate enough to even use eq. (2.90) for pulsars with

Rp significantly different than Rs and/or very high values of |z|. In such cases, it would

be preferable to adopt a better method to calculate the value of ap,z/c. More recently,

Bovy & Rix (2013, figure 17) gave a Kz(R) law for stars in somewhat larger range of the

Galactocentric radius (R), i.e., between 5 to 9 kpc, but keeping |z| = 1.1 kpc. So, even

this work is not suitable to use for pulsars in any arbitrary locations in the Galaxy, and we

decide to use the gravitational potential of the Galaxy provided by galpy to resolve this

issue.

Intuitively, at a very high value of |z|, a pulsar would experience less gravitational force,

hence ap,z/c should start decreasing with the increase of |z| after a certain value of |z|. Both

eqs. (2.88) and (2.90) fail to hint for this trend. The realistic potential used for the Galaxy

in galpy reveals this feature.

2.8.2 Finding the parallel and perpendicular components of accel-

erations: a new method based on a model of the gravitational

potential of the Galaxy

If we write the gravitational potential of the Galaxy as ΦMW(R, z), where R is the Galac-

tocentric cylindrical radius and z is the height along the z-axis taken perpendicular to the

Galactic plane, then �ap = −�∇ΦMW(Rp, z) = −�∇ΦMW(Rp� , z) and �as = −�∇ΦMW(Rs, z). Also,

asΦMW(R, z) is an attractive potential, it is a negative quantity, ∂ΦMW(R,z)
∂R is always positive,
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and ∂ΦMW(R,z)
∂ z is positive for positive z and negative for negative z. On the other hand, ap,pl,

ap,z, and as,pl are always positive as these are the magnitudes of the vectors �ap,pl, �ap,z, and

�as,pl respectively.

With these definitions, we get,

ap,pl =

�����
∂ΦMW(R, z)
∂R

�����
R=Rp

������ =
∂ΦMW(R, z)
∂R

�����
R=Rp

, (2.91)

as,pl =

�����
∂ΦMW(R, z)
∂R

�����
R=Rs

������ =
∂ΦMW(R, z)
∂R

�����
R=Rp

, (2.92)

and

ap,z =

�����
∂ΦMW(R, z)
∂ z

�����
R=Rp

������

=



∂ΦMW(R,z)
∂ z

���
R=Rp

if z > 0

− ∂ΦMW(R,z)
∂ z

���
R=Rp

if z < 0 .
(2.93)

The publicly available package ‘galpy’ (Bovy, 2011) has a wide collection of models

for ΦMW(R, z) and any of those can be used to estimate the values of ap,pl, ap,z and as,pl

using the known values of R and z and the above equations. One such potential is a

combination of three potentials, a Miyamoto-Nagai disc potential (Miyamoto & Nagai,

1975), a spherical power-law density with an exponential cut-off to model the potential

of the Galactic bulge, and a Navarro-Frenk-White potential (Navarro et al., 1997) for the

dark matter halo. The resulting potential ΦMW(R, z) is known as MWPotential2014 in

galpy. However, this default potential does not include the super-massive black hole at

the Galactic centre. It is suggested to include the effect of the supermassive black hole by

adding a Kepler potential in the form of KeplerPotential with a proper choice of the

mass of the black hole (e.g., 4 × 106 M�) to the original MWPotential2014. This new

potential can be called MWPotential2014BH. In this thesis, we mainly work with these

two potentials.
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Figure 2.8: The left panel shows the variation of |Rforce|/c with R for different fixed
values of |z|. The inset shows the low R region zoomed in. The right panel shows the
variation of |zforce|/c with |z| for different fixed values of R. The inset shows the low |z|
region zoomed in. For both of the panels, galpy’s default potential for the Galaxy without
the central super-massive black-hole MWPotential2014 has been used.

In galpy, two useful functions are Rforce = −∂ΦMW(R,z)
∂R and zforce = −∂ΦMW(R,z)

∂ z . With

these definitions, Rforce is always negative and zforce is negative for positive z and

positive for negative z. Then eqs. (2.91) and (2.92) give ap,pl = −Rforce at the location

of the pulsar and ap,pl = −Rforce at the location of the Sun. Similarly, eq. (2.92) give

ap,z = −zforce at the location of the pulsar if the pulsar is above the Galactic plane (z >

0) or ap,z = zforce at the location of the pulsar if the pulsar is below the Galactic plane

(z < 0). For the sake of simplicity, one can write ap,pl = |Rforce| and ap,z = |zforce|. We

now explore the preperties of |Rforce| and |zforce| with MWPotential2014.

By plotting |Rforce|/c against R for different fixed values of |z| (the left panel of Fig. 2.8),

we find that it first increases and then decreases with the increase of R. The slope of the

curve is steeper at smaller |z| in both the rising and the falling sides. For any fixed |z|, the

rise is much steeper than the fall. |Rforce|/c reaches its peak value at R < 1 kpc unless

|z| > 1 kpc. The value of |Rforce|/c is larger at smaller values of |z| for any particular

value of R. This difference is maximum near the peak value. At large R, curves are almost

flat.

Similarly, we plot |zforce|/c against |z| for different fixed values of R in the right panel
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of Fig. 2.8. We find that it first increases and then decreases with the increase of |z|.
The slope of the curve is steeper at smaller R in both the rising and the falling sides. For

each R, the rise is steeper than the fall. |zforce|/c reaches its peak value at |z| < 0.5

kpc. The value of |zforce|/c is larger at lower values of R for any particular value of

|z|. This difference is maximum near the peak value. At large |z|, curves are almost

flat. Comparison between Fig. 2.7 and Fig. 2.8(b) shows a clear difference between the

conventional and galpy produced values and |z| dependence of ap,z/c.

It should be noted that, the value of
�

Ṗ
P

�
ex,Galz

or
�

ḟ
f

�
ex,Galz

depends not only on ap,z, i.e.,

|zforce|, but also on sin |b| (eqs. (2.27) and (2.76)). So, at very low values of |b|, the

absolute value of
�

Ṗ
P

�
ex,Galz

or
�

ḟ
f

�
ex,Galz

is small even if ap,z is high (possible at very low

values of R). Similarly, eqs. (2.26) and (2.75) show that the value
�

Ṗ
P

�
ex,Galpl

or
�

ḟ
f

�
ex,Galpl

depends not only on ap,pl but also on as,pl, cos l, and cos λ.

We have already mentioned that galpy has the option of using the Galactic potential with-

out or with the black hole. However, the addition of the black hole does not make much

change, varying both R and z over the range of 0.01 − 10.0 kpc, we find that both the

ratio of the |Rforce| with the black hole to that without the black hole and the ratio of

the |zforce| with the black hole to that without the black hole remains less than 1.36.

However, as expected, these ratios can be large at very small values of R and |z|. As an

example, at R = z = 0.001 kpc, both of these ratios become 4.81. However, in the re-

gion so close to the Galactic centre, there will be additional sources of acceleration of

the pulsars, e.g., molecular gases (especially in the central molecular zone in l ranging

from −0.7◦ to 1.7◦, and b ranging from −0.2◦ to 0.2◦), nearby stars, etc. These effects will

depend on the exact location of the pulsar.

As expected, near the sun, the values of ap,z/c returned by various methods are very close.

As an example, for z = 0.5 kpc, R = 8 kpc, the values of ap,z/c as obtained using various

fits of Kz data, i.e., eqs. (2.88), (2.89) and (2.90) are −1.58× 10−19 s−1, −1.46× 10−19 s−1,

and −1.60× 10−19 s−1 respectively, while the value of zforce/c with MWPotential2014
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is −1.63 × 10−19 s−1.

As galpy works best in its natural units where all distances are in the units of Rs and ve-

locities are in the unit of vs, one needs to perform proper unit conversions to use galpy

functions. Another important point to remember is the fact that the default values of

the parameters in galpy are Rs = 8.0 kpc and vs = 220 km s−1 (defined under names

‘ro’ and ‘vo’ respectively in a file ‘$home/.galpyrc’), which have been used to fit var-

ious observational data (Bovy, 2015, section 3.5). These values agree with the recent

conclusion by Camarillo et al. (2018) that the best choice is Rs = 8.0 ± 0.17 kpc and

vs = 220 ± 7 km s−1 (both 1σ errors). One can in principle change these parameters by

editing the file ‘$home/.galpyrc’, but in such a case one must re-fit other parameters of

the potential MWPotential2014 too as explained in Bovy (2015).

2.9 Finding the parallel and perpendicular components

of jerks

In the derivation of eq. (2.68), we have seen that the terms ȧp,pl, ȧp,z, and ȧs,pl appear when

we take time derivatives of ap,pl, ap,z, and as,pl, respectively. So,

ȧp,pl =
d
dt

�
ap,pl(R, z)

������
(R=Rp)

=

�
∂

∂R
ap,pl(R, z)

dR
dt
+
∂

∂z
ap,pl(R, z)

dz
dt

�

(R=Rp)

=

�
∂2ΦMW(R, z)
∂R2

dR
dt
+
∂2ΦMW(R, z)
∂z∂R

dz
dt

�

(R=Rp)
[used eq. (2.91)] (2.94)
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ȧs,pl =
d
dt

�
as,pl(R, z)

������
(R=Rs)

=

�
∂

∂R
as,pl(R, z)

dR
dt
+
∂

∂z
as,pl(R, z)

dz
dt

�

(R=Rs)

=

�
∂2ΦMW(R, z)
∂R2

dR
dt
+
∂2ΦMW(R, z)
∂z∂R

dz
dt

�

(R=Rs)
[used eq. (2.92)] (2.95)

ȧp,z =
d
dt

�
ap,z(R, z)

������
(R=Rp)

=

�
∂

∂R
ap,z(R, z)

dR
dt
+
∂

∂z
ap,z(R, z)

dz
dt

�������
(R=Rp)

=



�
∂2ΦMW (R,z)
∂R∂z

dR
dt +

∂2ΦMW (R,z)
∂z2

dz
dt

�����
(R=Rp)

if z > 0; see eq. (2.93)

−
�
∂2ΦMW (R,z)
∂R∂z

dR
dt +

∂2ΦMW (R,z)
∂z2

dz
dt

�����
(R=Rp)

if z < 0; see eq. (2.93)
(2.96)

and we have assumed ȧs,z = 0.

For above eqs. (2.94), (2.95), and (2.96), we can use eq. (2.71) for the expression of

dR
dt

���
R=Rp

, and for the expression of dz
dt , we differentiate eq. (2.1) with respect to time to get,

dz
dt
= ḋ sin b + d cos b ḃ = vr sin b + µbd cos b . [As µb = ḃ, and vr = ḋ )] (2.97)

One can evaluate the partial derivatives of ΦMW(R, z) as appeared in eqs. (2.94), (2.95),

and (2.96) in various ways. One option is to use galpy that provides models of the po-

tential of the Galaxy as well as these derivatives. More specifically, functions ‘evalu-

ateR2derivs’, ‘evaluatez2derivs’, and ‘evaluateRzderivs’ in galpy evaluate ∂
2ΦMW (R,z)
∂R2 , ∂

2ΦMW (R,z)
∂z2 ,

and ∂
2ΦMW (R,z)
∂R∂z respectively.
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2.10 Additional dynamical contributions when the pul-

sar is located in a globular cluster

In the regions where the local gravitational potential is large enough, there will be extra

dynamical effects. Globular clusters are the best examples of such regions. For a pulsar

located in a globular cluster, there will be two additional terms, the first is the acceleration

(�ap,gc) of the pulsar due to the overall potential of the cluster and the second one is the

acceleration (�ap,stars) of the pulsar due to the gravitational potential of one or more very

close by stars in the same cluster (Blandford et al., 1987; Phinney, 1992, 1993). �ap,stars

is usually very small (Phinney, 1992; Prager et al., 2017) and its effect is likely to be

perceptible only in the higher-order derivatives of the frequency (Freire et al., 2017). �ap,gc

depends not only on the location of the pulsar inside the globular cluster but also on the

mass distribution of the cluster. One needs to evaluate this term with a well measured

location of the pulsar and a good model for the host globular cluster as recently done by

Freire et al. (2017) for pulsars in 47 Tucanae and by Prager et al. (2017) for pulsars in

Terzan 5.

Moreover, one needs to use the high precision proper motions of the pulsars measured

through timing analysis to estimate
�

Ṗ
P

�
ex,Shk

or
�

ḟ
f

�
ex,Shk

, as the overall proper motion of

the cluster as seen by optical astrometric instruments like Hipparcos or Gaia would be

different than the proper motions of the pulsars (Freire et al., 2017) in that cluster.

It should be noted that the higher-order (time derivative) dynamical effects involving

jounces, crackles, pops, etc., are also likely to be significant inside a globular cluster

as the gradient of the gravitational potential changes rapidly with the spatial coordinates

and a slight movement of the pulsar from one position to another, yields a change in its ac-

celeration. Moreover, in such dense stellar environments, the probability of close fly-bys

causing a change in the acceleration of the pulsar is also high.

Finally, if a pulsar is close to the centre of the cluster and orbits around the centre (or a
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massive object at the centre), and this orbital motion is unmodeled, then the pulsar will

experience another extra effect due to the line-of-sight component of the orbital accel-

eration, which we discuss in section 2.11. By modeling this effect, Perera et al. (2017)

concluded the existence of an intermediate-mass black hole at the centre of the globular

cluster NGC 6624.

2.11 Additional dynamical contribution from the orbital

motion

We have seen that the dynamical parameter of a pulsar due to the gravitational potential of

the Galaxy affects the first and the second derivatives of the frequency in a similar manner

regardless of whether it is the spin frequency or the orbital frequency. However, if the

pulsar is a member of an unmodeled binary (usually in a very wide orbit, so that a good

timing solution can be obtained even without fitting for binary parameters), there would

be an additional term due to the line-of-sight component of the orbital acceleration of the

pulsar: �
Ṗs

Ps

�

ex,orbit
= −

�
ḟs

fs

�

ex,orbit
=

1
c
�nsp · �ap,orbit =

1
c

apl,orbit . (2.98)

Higher-order derivatives that depend on the line-of-sight component of the orbital jerk,

jounce, crackle, pop, etc., might also be significant, depending on the properties of the

binary. Joshi and Rasio (1997) gave the simple expression:

1
Ps

dk Ps

dtk

������
ex,orbit

=
1
c

dk−1 apl,orbit

dtk−1 , k ≥ 2 . (2.99)

The values of apl,orbit and its derivatives depend on the properties of the binary not known

a priori, e.g., the masses of the components, the size of the orbit, the eccentricity, the

orientation of the orbit, etc. However, it is possible to constrain the allowed ranges of

the parameters using the values of 1
Ps

dk Ps
dtk

����
ex,orbit

. The expressions for the line of sight
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acceleration, jerk, jounce, and crackle, due to the orbital motion are given in Bagchi et al.

(2013) and Bassa et al. (2016). The expression for the line of sight pop due to the orbital

motion has been given for the first time in chapter 1 of this thesis.

2.12 Summary

The measured values of the first and the second derivatives of the frequency ( ḟobs and f̈obs

respectively) of a pulsar differ from the intrinsic values ( ḟint and f̈int respectively) due to

its velocity, acceleration, and jerk. These derivatives can be either of the spin frequency

or of the orbital frequency. In this chapter, we provide expressions for ḟint and f̈int in terms

of other measurable parameters with the assumption that the gravitational potential of the

Galaxy is the only cause of the acceleration and jerk of the pulsar. When we discuss

the first derivative, we do so both in the frequency and in the period domain as the first

derivative of the orbital period is fitted in a timing analysis, not the first derivative of the

orbital frequency.

We have also discussed the limitations of earlier approaches to find the values of ḟint and

proposed a new method to do so. Our method is very timely, as the recent advancement

of technology is leading to discoveries of many distant pulsars that are being followed by

precise timing analysis, and for these distant pulsars, earlier approximations are invalid.

Note that, although our work is not the first one studying dynamical contributions in the

second derivative of the frequency of a pulsar, this is the first time an accurate analytical

expression is given (see Liu et al. (2018) and references therein for earlier approximated

approaches to this issue). We have also presented detailed mathematical derivations which

might be useful for further exploration of the dynamics of pulsars in the Galaxy.

It should be noted that, ḟint and f̈int as given in eqs. (2.20) and (2.38) are the values of the

first and second time-derivatives of the frequency after eliminating contributions from the

velocity of the pulsar and its acceleration and jerk due to the gravitational potential of the
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Galaxy. There might be additional case-specific dynamical contributions, some of which

have been discussed in brief.

So, although we call these ‘intrinsic’, they might not be the true intrinsic values. If the

presence of additional dynamical terms is confirmed, then the value of the second deriva-

tive of the frequency obtained after eliminating the effects due to the velocity, acceleration

and jerk of the pulsar due to the Galactic potential, as given in eq. (2.38) should be rather

called the ‘residual’ value or f̈res. The same is true for the first derivative.
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Chapter 3

Dynamical Effects in First Derivative of

Period (Spin and Orbital): Methods of

Estimation and Introduction to

GalDynPsr

3.1 Introduction

We have seen in the previous chapter that the observed values of the rate of change of the

orbital and the spin periods (or frequencies) of pulsars are affected by different dynamical

parameters, for example, the line-of-sight acceleration and the proper motion of the pulsar

relative to the Sun. We have presented analytical expressions for the fractional excess or

dynamical terms (Ṗ/P)ex that involves various components of the accelerations and the

velocities. We discussed methods to estimate those excess terms, both in the traditional

way and in a new way proposed by us. We have pointed out the limitations of existing

methods and argued the need for improved methods. In this chapter, we demonstrate the

applications of all these methods for a few pulsars and point out the differences between
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results obtained in various methods.

We have created a package ‘GalDynPsr’ for this purpose. We discuss salient features

of GalDynPsr with some examples and the potential roles it can play while interpreting

the results of precise timing experiments. In fact, GalDynPsr has been already used by

Archibald et al. (2018) to place the best ever limit of the non-violation of the universality

of free fall. GalDynPsr can be used in many other similarly important studies, some of

which we discuss in this chapter.

Various symbols used in this chapter, i.e., l, b, d, z, µα, µδ, Rp, Rs, vs(= vs,pl), as,pl, ap,pl,

ap,z, etc. bear the same meaning as in chapter 2. We use Ps for the spin period and Pb

for the orbital period. As usual, a dot over any of these parameters represents the first

time-derivative.

In section 3.2, we introduce GalDynPsr and describe its various modules. In section 3.3,

we demonstrate the usage of GalDynPsr and compare the results obtained from the various

models of GalDynPsr. In section 3.4, we discuss some of the potential applications of the

package. In section 3.5, we summarize the results of this chapter.

3.2 Improvements in the methods of estimation of dy-

namical effects: introduction to GalDynPsr

In this section, we discuss our package GalDynPsr that can estimate various dynami-

cal terms more accurately than conventional methods. GalDynPsr depends on the pub-

licly available package ‘galpy’ (Bovy, 2015) for the model of the gravitational potential

of the Galaxy. As mentioned in Chapter 2 (section 2.8.2), we use the potential model

MWPotential2014 that does not incorporate the contribution of the central black hole

and MWPotential2014BH that incorporates the contribution of the central black hole, in

the form of KeplerPotential added to the original MWPotential2014. It should be
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noted that GalDynPsr does not calculate special dynamical terms, e.g., the one arising

due to a local potential, the one due to an unmodeled orbital motion, etc.

GalDynPsr computes the fractional excess terms
�

Ṗ
P

�
ex

which are the same regardless of

whether we are working with the spin period and its derivative or with the orbital period

and its derivative. However, as the absolute dynamical terms are calculated by multiplying

these fractional excess terms by values of the periods as shown in eqs. (2.79), the absolute

dynamical terms are different for the spin period and the orbital period. That is why when

we report the value of an absolute dynamical term, we either use the subscript ‘b’ to imply

‘orbital’ or the subscript ‘s’ to imply ‘spin’. The same notation is used when we report

the intrinsic or the observed values of the period derivatives.

Various models presently available in GalDynPsr are listed in Table 3.1. Some of the

models (A, B, C, D) follow the conventional approaches as discussed in sections 2.8.1.1

and 2.8.1.2, which would be fine for nearby (within 1 kpc distance from the Sun) pulsars.

Model-L estimates the values of ap,pl/c, as,pl/c and ap,z/c using galpy. There are some

semi-conventional models (G, I, K), where instead of eq. (2.84), GalDynPsr calculates

vp� using the rotation curve returned by galpy, and uses this value of vp� in eq. (2.82) to

estimate the value of
�

Ṗ
P

�
ex,Galpl

. However, at high |z| values vp � vp� and eq. (2.82) is not

valid (see the derivation of eq. (2.82) in section 2.8.1.1). So this method of calculating
�

Ṗ
P

�
ex,Galpl

is also inaccurate for high |z| pulsars. GalDynPsr also has a few mixed models

(E, F, H, J), where either one of
�

Ṗ
P

�
ex,Galpl

or
�

Ṗ
P

�
ex,Galz

is calculated using a conventional

method and the other one by using galpy. Each model involving galpy has two sub-

classes, denoted by ‘a’ and ‘b’. An ‘a’ in the name of the model means that the model

uses MWPotential2014 from galpy, while a ‘b’ in the name of the model means that

the model uses MWPotential2014BH from galpy. GalDynPsr can also calculate
�

Ṗ
P

�
ex,Shk

if the proper motion of the pulsar is known. It also has the option of calculating the

dynamical terms for pulsars in globular clusters using the cluster parameters provided in

a file made using the catalogue by W. Harris (Harris , 1996, 2010 edition available at
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http://physwww.physics.mcmaster.ca/∼harris/mwgc.dat) and assuming those

to be the values of the parameters of the pulsar itself. GaldynPsr has two versions, one is

a standalone script (GaldynPsrScript, available at

https://github.com/pathakdhruv/GalDynPsrScript_py3) where inputs are to be

given as command line arguments. The second version of GalDynPsr is designed to be

usable as a library (importable module) by other python programs which would provide

the values of the parameters needed. The second version is available at

https://github.com/pathakdhruv/GalDynPsr, and can even be installed using the

pip3 command of python. This version is also available at

http://doi.org/10.5281/zenodo.1461551. Both of these versions can return the

values of the fractional and the absolute dynamical terms for any model. The first version

is more useful when the user wants to estimate the dynamical terms for a single pulsar,

and the second version is more useful when the user wants to use these results as a part of

bigger calculations or simulations. Details of usage (including a number of examples) are

available in the package documentation. One needs basic python libraries, like ‘scipy’,

‘numpy’, ‘astropy’, and ‘galpy’ to be installed in the system to use GalDynPsr.

GalDynPsr returns uncertainties in dynamical terms except when it uses globular cluster

parameters from the Harris catalogue or when it uses galpy. It performs standard error

propagation calculations using user provided values of the uncertainties in l, b, d, µα, and

µδ. GalDynPsr also reads the uncertainties in Rs, vs, and dv
dR

���
R=Rs

(or b0, see eq. (2.84))

from a parameter file ‘parameters.in’ provided with the package. The user can change the

values in this file if they wish.

3.3 Demonstration of GalDynPsr

First, to check the efficiency of GalDynPsr, we confirm that it agrees with the results

available in the literature when we use models involving conventional methods. As an
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Table 3.1: Models available in GalDynPsr. The columns from the left to the right are
the name of the model, the method of estimating

�
Ṗ
P

�
ex,Galpl

, and the method of estimating
�

Ṗ
P

�
ex,Galz

. Each model involving galpy has two options: (a) without the super-massive
black hole (BH) and (b) with the BH. For each of the models, users have the freedom to
change the values of the parameters involved (see text for details).

Method of calculating
�

Ṗ
P

�
ex,Galpl

Method of calculating
�

Ṗ
P

�
ex,Galz

Model-A eq. (2.86) eq. (2.88)

Model-B eq. (2.86) eq. (2.90)

Model-C eqs. (2.24a, 2.84, 2.82) eq. (2.88)

Model-D eqs. (2.24a, 2.84, 2.82) eq. (2.90)

Model-Ea eq. (2.86) ‘zforce’ in galpy (without BH)

Model-Eb eq. (2.86) ‘zforce’ in galpy (with BH)

Model-Fa eqs. (2.24a, 2.84, 2.82) ‘zforce’ in galpy (without BH)

Model-Fb eqs. (2.24a, 2.84, 2.82) ‘zforce’ in galpy (with BH)

Model-Ga vp�/vs ‘galpy’ (without BH) + eq. (2.82) eq. (2.88)

Model-Gb vp�/vs ‘galpy’ (with BH) + eq. (2.82) eq. (2.88)

Model-Ha ‘Rforce’ in ‘galpy’ (without BH) eq. (2.88)

Model-Hb ‘Rforce’ in ‘galpy’ (with BH) eq. (2.88)

Model-Ia vp�/vs galpy (without BH) + eq. (2.82) eq. (2.90)

Model-Ib vp�/vs galpy (without BH) + eq. (2.82) eq. (2.90)

Model-Ja ‘Rforce’ in galpy (without BH) eq. (2.90)

Model-Jb ‘Rforce’ in galpy (with BH) eq. (2.90)

Model-Ka vp�/vs galpy (without BH) + eq. (2.82) ‘zforce’ in galpy (without BH)

Model-Kb vp�/vs galpy (with BH) + eq. (2.82) ‘zforce’ in galpy (with BH)

Model-La ‘Rforce’ in galpy (without BH) ‘zforce’ in galpy (without BH)

Model-Lb ‘Rforce’ in galpy (with BH) ‘zforce’ in galpy (with BH)
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example, Prager et al. (2017) reported (�ap − �as) ·�nsp = 5.1 × 10−10 m s−2 using l = 3.8◦,

b = 1.7◦, and d = 5.9 kpc for Terzan 5 (Rs = 8.34 kpc, vs = 240 km s−1). This value

matches with the value returned by model-A of GalDynPsr if we use the same values of

Rs, vs, d, l, and b. Model-A in GalDynPsr represents the traditional approach taken by

Prager et al. (2017). However, they used a more recently measured value of d, which is

smaller than the value quoted in the Harris catalogue, i.e., d = 6.9 kpc. We also obtain

Ṗb,Gal = −0.008 × 10−12 ss−1 for PSR B1913+16 using the latest parameters reported by

Deller et al. (2018) in both model-B and model-La. This value matches with the value

reported by them. As this pulsar is located at a low |z| value, i.e., at z = 0.15 kpc and

Rp = 6.21 kpc, the conventional method is sufficient. We also find that the difference

between the values of Ṗb,Gal obtained in models B and La is 7×10−17 ss−1 (calculated using

the best values of the parameters and ignoring the errors). This difference is ignorable in

the context of the present-day accuracy of Ṗb,obs = −2.423 ± 0.001 × 10−12 s s−1, but will

be of importance when the precision of Ṗb,obs measurement will improve by two or more

orders and the use of model-La will make more sense.

In Table 3.2, we report values of various fractional dynamical terms estimated for four

sample pulsars (the only ones for which Desvignes et al. (2016) could measure Ṗb,obs, see

their table 16) and two most pulsar populated globular clusters, Terzan 5 and 47 Tucanae,

using different models of GalDynPsr. The reason behind the choice of pulsars was to

be able to compare with existing estimates of dynamical terms. The parameters for the

globular clusters are taken from the Harris catalogue (Harris , 1996, 2010 edition, for

globular clusters). For the pulsars, l and b values are calculated using the SkyCoord

module of astropy from the reported values of the right ascension and the declination in

tables 3, 4, and 8 of Desvignes et al. (2016). The values of µα and µδ are taken from

the same tables. The values of d are taken from table 16 of Desvignes et al. (2016). For

the sake of simplicity, we do not report uncertainties in the table, although used while

running GalDynPsr. Moreover, we display the values of the dynamical terms up to the

fourth decimal place, just to compare between models. In reality, these values are precise
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only up to the second decimal place as the uncertainties in the values of d appear in the

second decimal place in Desvignes et al. (2016). We have used Rs = 8.00 ± 0.17 kpc

and vs = 220 ± 7 km s−1, which are used in galpy (without the uncertainties) to fit the

parameters of the Galactic potential to agree with observations. Our main findings are

summarized below.

1. We have already discussed in section 2.8.2 that the addition of the black hole does

not affect much in the values of the Rforce and zforce, and as a result, does

not affect much in the values of the dynamical terms. This fact is clear from the

closeness of the results obtained with model-La and model-Lb in Table 3.2. We

still keep both of the options available in GalDynPsr. However, we prefer model-

Lb, which is physically more realistic.

2. Our model-B is the closest to the method used by Desvignes et al. (2016). However,

we still see some discrepancies. The main reason is the fact that we used Rs =

8.0 ± 0.17 kpc and vs = 220 ± 7 km s−1 (Camarillo et al. , 2018) while Desvignes

et al. (2016) used Rs = 8.34 kpc and vs = 240 km s−1. Using the later set of

values of Rs and vs, we obtained similar values for
�

Ṗ
P

�
ex,Galpl

, i.e., 3.30 × 10−20 s−1,

5.48 × 10−20 s−1, 2.99 × 10−20 s−1, and 10.50 × 10−20 s−1 for pulsars J0613-0200,

J0751+1807, J1012+5307, and J1909−3744 respectively. However, the use of this

set of values of Rs and vs produces little (in the third decimal places) difference in

the values of
�

Ṗ
P

�
ex,Galz

than those reported in Table 3.2. We do not recommend the

use of model-B as it uses the traditional approach with drawbacks that have been

discussed in Chapter 2.

3. Our preferred model-Lb gives significantly different values of both
�

Ṗ
P

�
ex,Galpl

and
�

Ṗ
P

�
ex,Galz

from the values quoted in Desvignes et al. (2016) for PSR J1012−5307, as

this pulsar has a moderately high value of |z|. This happens because at high values

of |z| the assumption vp� = vp used to derive eq. (2.81) for
�

Ṗ
P

�
ex,Galpl

is invalid.

Similarly, at high values of |z|, neither of the fits shown in eqs. (2.88) and (2.90) is
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a true measure of ap,z that appears in the expression of
�

Ṗ
P

�
ex,Galz

.

For PSR J1909−3744, the values of
�

Ṗ
P

�
ex,Galz

as obtained by our model-Lb and re-

ported by Desvignes et al. (2016) are significantly different, because for this pulsar,

Rp is significantly smaller than Rs as well as |z| is not too small. This happens be-

cause the fits for ap,z as given in eqs. (2.88) and (2.90) used the data only for the

stars located near the Sun.

For PSR J0613−0200 and PSR J0751+1807, model-Lb gives the values for
�

Ṗ
P

�
ex,Galz

are not much different than the ones reported by Desvignes et al. (2016). The reason

is the fact that for both of these pulsars Rp ∼ Rs and |z| is not too high. Moreover,

the low |z| value of PSR J0613−0200 makes the value of
�

Ṗ
P

�
ex,Galpl

as obtained by

model-Lb to be very close to the one reported by Desvignes et al. (2016). On the

other hand, a larger value of |z| for PSR J0751+1807 produces a somewhat larger

disagreement between the value of
�

Ṗ
P

�
ex,Galpl

as obtained by model-Lb with the one

reported by Desvignes et al. (2016).

4. When Rp << Rs, zforce gives significantly different results than other methods.

This is the case for Terzan 5, where Rp = 1.21 kpc. Models involving eq. (2.88) give
�

Ṗ
P

�
ex,Galz

= −0.34 × 10−20 s−1, models involving eq. (2.90) give
�

Ṗ
P

�
ex,Galz

= −0.28 ×
10−20 s−1, but models involving zforce give

�
Ṗ
P

�
ex,Galz

= −4.65 × 10−20 s−1. The

discrepancies between different methods of calculating
�

Ṗ
P

�
ex,Galz

are not so severe

for any other examples chosen, as none of those have Rp so small.

In such a case (Rp << Rs), traditional methods also fail to give a correct value of
�

Ṗ
P

�
ex,Galpl

. This happens because when Rp � Rs, the use of a Galactic rotation curve

as given in eq. (2.84) is incorrect. Again, we can take Terzan 5 as an example,

and see that
�

Ṗ
P

�
ex,Galpl

= 322.29 × 10−20 s−1 for models involving eq. (2.86), and

as expected, the substitution of the perfect flat rotation curve of Damour & Tay-

lor (1991) by the rotation curve of Reid et al. (2014), i.e., the use of the models

involving eqs. (2.24a), (2.84), and (2.82) does not make much difference, gives
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�
Ṗ
P

�
ex,Galpl

= 327.08 × 10−20 s−1. On the other hand, instead of eq. (2.84), if we

use the rotation curve from galpy in eq. (2.82), we get a significantly different

value, i.e.,
�

Ṗ
P

�
ex,Galpl

= 119.78 × 10−20 s−1 (with the black hole as the theoretical

value of the Galactic rotation curve depends on the chosen potential), even though

one still uses the approximation vp� = vp. The use of Rforce option of galpy ac-

counts for the height dependence and hence improves the accuracy further. It gives
�

Ṗ
P

�
ex,Galpl

= 113.08 × 10−20 s−1.

The above-mentioned points establish the fact that for a pulsar with Rp << Rs, one

must abandon conventional methods to calculate the dynamical terms and opt for a

more modern method like model-La or model-Lb provided in GalDynPsr.

5. The role of a high value of |z| in these dynamical terms will be clear from a com-

parison between PSR J0613−0200 and PSR J1012+5307. These two pulsars have

almost the same value of Rp, i.e. 8.67 kpc and 8.69 kpc respectively, but somewhat

different values of |z|, 0.13 kpc and 0.89 kpc respectively. We see a larger difference

between the value of
�

Ṗ
P

�
ex,Galz

obtained using zforce and that obtained using con-

ventional methods for PSR J1012+5307 which has larger |z|. Similarly, this pulsar

shows a larger disagreement in the values of
�

Ṗb
Pb

�
ex,Galpl

obtained using Rforce and

that obtained using conventional methods.

6. In addition to the comparison between models as demonstrated in Table 3.2, we

have also explored the difference between the fractional dynamical contributions

from the Galactic potential, i.e.,
�

Ṗb
Pb

�
ex,Gal

as returned by the full conventional method

(model-A) and the full galpy based model (model-La) over the full range of l and b

for different values of d. The difference increases with the increase of d, and when

d ≥ 1 kpc, the absolute value of the difference becomes greater than 2 × 10−20 s−1

for most of the l − b phase space. As the value of
�

Ṗb
Pb

�
ex,Gal

is usually in the order of

10−20 s−1 (see Table 3.2 for some examples), we can conclude that the accuracy of

the model can impact the result if d ≥ 1 kpc.
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7. GalDynPsr does not return uncertainties in the fractional dynamical terms when it

uses models involving galpy, because galpy does not return uncertainties. However,

because of the modular structure of GalDynPsr, one can estimate uncertainties by

employing Monte-Carlo simulation. As an example, for PSR J0613−0200, model-

Lb returns
�

Ṗ
P

�
ex,Galpl

= 4.00 × 10−20 s−1 and
�

Ṗ
P

�
ex,Galz

= −9.29 × 10−21 s−1 using the

values of l, b, and d as given in Table 3.2. We then simulated 50000 instances of l,

b, and d following a Gaussian distribution. For l and b, as usual, we converted the

mean values and uncertainties in the right ascension and the declination from table

3 of Desvignes et al. (2016) using the SkyCoord module of the astropy package.

The mean value and the uncertainty in d are taken from table 16 of Desvignes et

al. (2016). We then randomly chose one value each from the distributions of l,

b, and d, and calculated the fractional dynamical terms using model-Lb for each

of such 50000 cases. We then calculated the mean and the standard deviation of

these 50000 values of
�

Ṗ
P

�
ex,Galpl

and
�

Ṗ
P

�
ex,Galz

. In this manner, we found
�

Ṗ
P

�
ex,Galpl

=

(4.00 ± 0.41) × 10−20 s−1 and
�

Ṗ
P

�
ex,Galz

= −(9.29 ± 0.63) × 10−21 s−1 respectively.

8.
�

Ṗ
P

�
ex,Shk

is usually order of magnitude larger than
�

Ṗ
P

�
ex,Gal

=
�

Ṗ
P

�
ex,Galpl

+
�

Ṗ
P

�
ex,Galz

.

3.4 Applicability of GalDynPsr

GalDynPsr has the potential to be used in various studies involving precise timing of

pulsars, we mention some of them below.

In section 3.3, we have seen that depending on the location of a pulsar, conventional meth-

ods can give wrong values of the dynamical terms leading to wrong values of
�

Ṗ
P

�
ex,Gal

. If

this
�

Ṗ
P

�
ex,Gal

is comparable to
�

Ṗ
P

�
ex,Shk

, which is usually larger, this will lead to a wrong

value of Ṗb,int or Ṗs,int. It is expected that the improved timing precision with SKA1-Mid

(Shao et al., 2014) will reveal higher order post-Newtonian terms, at least for relativistic

pulsars like the double pulsar or neutron star−black hole binaries (if discovered). VLBI
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Table 3.2: Comparison of the values of the fractional dynamical terms estimated using different
methods for the pulsars mentioned in table 16 of Desvignes et al. (2016) as well as for the two
most pulsar populated globular clusters, Terzan 5 and 47 Tucanae. The parameters for the globular
clusters are taken from the Harris catalogue. For the 4 pulsars, l, b values are calculated using the
SkyCoord module of astropy from the reported values of the right ascension and the declination
in tables 3, 4, and 8 of Desvignes et al. (2016). The values of µα and µδ can be found in the
same tables. The values of d are taken from table 16 of Desvignes et al. (2016). For the sake of
simplicity, we do not report uncertainties here, although used while running GalDynPsr. Moreover,
we display many significant digits for the sake of comparison between models. We have used
Rs = 8.00 ± 0.17 kpc and vs = 220 ± 7 km s−1, that are used in galpy to fit the parameters of the
Galactic potential to agree with the observational data.

Pulsars/Cluster PSR J0613−0200 PSR J0751+1807 PSR J1012+5307 PSR J1909−3744 Ter5 47Tuc
l (deg) 210.4131 202.7297 160.3471 359.7308 3.84 305.89
b (deg) −9.3049 21.0858 50.8578 −19.5958 1.69 −44.89
d (kpc) 0.78 1.07 1.15 1.15 6.9 4.5
µα (mas yr−1) 1.822 −2.73 2.609 −9.519 − −
µδ (mas yr−1) −10.355 −13.4 −25.482 −35.775 − −�

Ṗb
Pb

�
obs

(in 10−20 s−1) 46.3538 -153.9432 116.7604 379.6512 − −�
Ṗs
Ps

�
obs

(in 10−20 s−1) 313.2142 223.8549 325.8774 475.8964 − −
z (kpc) −0.13 0.38 0.89 −0.39 0.20 −3.18
Rp (kpc) 8.67 8.93 8.69 6.92 1.21 6.65�

Ṗ
P

�
ex,Shk

(in 10−20 s−1) 20.9463 48.6102 183.3013 382.8569 − −
Values of

�
Ṗ
P

�
ex,Galpl

(in 10−20 s−1) for different models:
A, B, Ea, Eb eq. (2.86) 3.0142 4.9912 2.7298 9.6504 322.2856 -14.5856

C, D, Fa, Fb eqs. (2.24a, 2.84, 2.82) 3.0786 5.0778 2.7750 9.7908 327.0843 -14.5547

Ga, Ia, Ka vp�/vs galpy 3.9031 6.1821 3.3532 11.5438 119.6713 -14.1771
(without BH) + eq. (2.82)

Gb, Ib, Kb vp�/vs galpy 3.9010 6.1800 3.3517 11.5482 119.7851 -14.1764
(with BH) + eq. (2.82)

Ha, Ja, La ‘Rforce’ in galpy 4.0004 6.8354 5.0696 9.9521 112.9790 -18.6831
(without BH)

Hb, Jb, Lb ‘Rforce’ in galpy 4.0007 6.8359 5.0699 9.9530 113.0853 -18.6838
(with BH)

table 16 of Desvignes et al. (2016) 3.28 5.50 3.01 10.49 − −
Values of

�
Ṗ
P

�
ex,Galz

(in 10−20 s−1) for different models:
A, C, Ga eq. (2.88) -1.3815 -5.2721 -14.6102 -4.9177 -0.3361 -23.5742
Gb, Ha, Hb

B, D, Ia eq. (2.90) -1.1081 -5.0601 -15.5418 -4.7219 -0.2835 -23.9731
Ib, Ja, Jb

Ea, Fa, Ka, La ‘zforce’ in galpy -0.9291 -4.0218 -12.6005 -6.9854 -4.6468 -26.7781
(without BH)

Eb, Fb, Kb, Lb ‘zforce’ in galpy -0.9291 -4.0218 -12.6007 -6.9855 -4.6474 -26.7792
(with BH)

table 16 of Desvignes et al. (2016) −1.28 −4.57 −14.55 −8.24 − −

135



using SKA1 (Paragi et al., 2015) will also give better parallaxes, i.e., better distance es-

timates as well as better proper motion measurements leading to accurate estimation of
�

Ṗ
P

�
ex,Shk

. This will be useful only if accompanied by accurate estimates of
�

Ṗ
P

�
ex,Gal

, and

GalDynPsr can play a crucial role in this. We discuss some potential areas where precise

values of Ṗb,int or Ṗs,int will be very important.

One such area would be the tests of theories of gravity. Although the most accepted

gravity theory, the general relativity (GR) has passed all the tests so far, it is expected to

get better limits on various alternative theories of gravity in the future, especially in the

strong-field regime with more precise timing solutions of pulsars. The most obvious test

will be the detection of a deviation of the value of Ṗb,int from that expected from GR. We

have already mentioned that for a clean binary system, the emission of the gravitational

waves is responsible for Ṗb,int and GR allows only quadrupolar gravitational waves. The

rate of change of the orbital period due to the emission of the quadrupolar gravitational

waves (ṖQ
b,GW) depends on the values of the orbital period, the orbital eccentricity, the

mass of the pulsar and the mass of the companion (see eq. (1.28)). Thus, under GR,

Ṗb,int = ṖQ
b,GW. However, there are various theories of gravity that allow other multipoles

(Bagchi & Torres , 2014, and references therein). The dipolar gravitational waves, if

exist, become the most significant source of radiation and hence the largest contributing

factor in the value of Ṗb,int. One can place limits on the parameter of the gravity theory by

equating Ṗb,int = ṖD
b,GW+ ṖQ

b,GW (neglecting other poles of the gravitational wave emission)

where ṖD
b,GW is the rate of change of the orbital period due to the emission of the dipolar

gravitational waves. Additionally, if the value of the gravitational constant G changes

with time, that will also lead to a change in the orbital period, and the rate of change of

the orbital period becomes Ṗb,int = ṖD
b,GW + ṖQ

b,GW + ṖĠ
b , where ṖĠ

b is the rate of change

of the orbital period due to the change in the value of G. The expressions for different

terms in the above equation depend on various parameters, including the orbital period,

the masses, the orbital eccentricity, the ‘sensitivity’ of the objects etc. These expressions

can be found in various literature, one example being Bagchi & Torres (2014). If one
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can calculate the value of ṖQ
b,GW from the knowledge of relevant parameters, then it will

be possible to obtain a value of ṖD
b,GW + ṖĠ

b . Recently, Zhu et al. (2019) placed a limit

on both Ġ/G and κD (a characteristic parameter of the gravity theory allowing the dipolar

gravitational wave emission). As such limits depend crucially on the value of Ṗb,int, one

needs to estimate and eliminate the dynamical terms as accurately as possible. GalDynPsr

will help in performing this task better, especially if such tests are done in the future with

pulsars at high |z| or at low Rp where conventional methods fail.

Another test of GR is the test of the Strong Equivalence Principle (SEP), which is one

of the main features of GR but is usually violated in alternative theories. One important

aspect of SEP is the universality of the free fall (UFF). The violation of UFF in the case

of a binary system can be parametrized by a dimensional parameter |Δ| that quantifies

the differential acceleration between the members (of different constituents) of the freely

falling binary. Damour & Schäfer (1991) showed that the UFF violation can manifest

into a ‘forced’ eccentricity that depends on the value of |Δ|, the masses of the members of

the binary, the orbital period of the binary, and the projection of the Galactic acceleration

vector at the location of the pulsar onto the orbital plane, i.e., ap,Gal,proj. Eqs. (1.35) and

(1.36) in Chapter 1 of this thesis described the expressions for the ‘forced’ eccentricity

and |Δ|. This ap,Gal,proj is related to �ap,Gal with a multiplicative function that depends on the

orientation of the orbit where �ap,Gal = �ap,pl+�ap,z. The measurement of the signature of this

‘forced’ eccentricity in the timing solution of a wide-orbit low-eccentricity binary pulsar

with a low-mass white-dwarf companion helps in placing an upper limit on |Δ| (Stairs et

al., 2005; Gonzalez et al., 2016; Zhu et al., 2019). In such efforts, GalDynPsr can also

be used to estimate the value of ap,Gal, which might be more precise than conventional

methods, depending on the location of the pulsar in the Galaxy. In fact, GalDynPsr has

been already used by Archibald et al. (2018) to place the best ever limit of the non-

violation of the strong equivalence principle using the pulsar PSR J0337+1715 in a triple

system.
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Even within the framework of GR, i.e., for the binaries for which ṖD
b,GW and ṖĠ

b can be ig-

nored and SEP test is not possible, e.g., for double neutron star binaries, a wrong estimate

of Ṗb,int will have detrimental consequences like erroneous estimates of the masses of the

pulsar and the companion, especially when one excludes the most accurately measurable

post-Keplerian parameter, i.e., the rate of the periastron advance, which is affected by the

Lense-Thirring effect that depends on the unknown values of the moment of inertia, the

orientation of spin axis, etc. (Bagchi, 2018, and references therein). To avoid such con-

sequences, one should use GalDynPsr, especially if the pulsar is located far from the Sun

where the conventional methods are inaccurate.

Similarly, there are many cases where it is very important to estimate the values of Ṗs,int

as precise as possible. One such case is to understand the emission of the continuous

gravitational waves from pulsars due to their rotationally induced quadrupole moments.

The value of Ṗs,int is needed to calculate the ‘spin-down’ limit of the strain (hsd
0 ) of the

gravitational waves emitted at a frequency of fgw = 2 fs. The expression for hsd
0 is derived

under the assumption that the total spin-down energy is being lost only in the form of

the gravitational waves, and the expression is hsd
0 = [2.5(G Is | ḟs,int|)/(c3 d2 fs)]0.5 where

G is the gravitational constant, Is is the moment of inertia of the pulsar along its spin

axis. In reality, especially in the cases of rotation powered radio pulsars, only a fraction

η of the spin-down energy is converted to the gravitational energy, and h0 = η
0.5 hsd

0 .

As η < 1 giving h0 < hsd
0 , one can confirm the detection of gravitational waves or can

place an upper limit on the value of h0 only when the detection sensitivity reaches below

hsd
0 . Although the last science run (O1) of the advanced-LIGO-Virgo did not detect any

continuous gravitational waves, it has placed the best so far 95% upper limit of h0, i.e.,

h95
0 for a number of pulsars and for eight of those, h95

0 < hsd (Abbott et al., 2017). It is

expected that in the future, the detector sensitivity will surpass the spin-down limit for

more pulsars, especially for the pulsars with large values of hsd
0 . The ongoing and future

pulsar surveys and follow-up timing will provide more pulsars with fgw in the LIGO

range as well as large enough values of hsd
0 . GalDynPsr will help us calculate the values
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of hsd
0 by providing precise values of ḟs,int for non-globular cluster pulsars, especially if the

pulsars are located in the regions where conventional methods to estimate and eliminate

the dynamical effects fail.

Another application of the precisely estimated value of Ṗs,int is in the study of the pulsar

‘deathline’ (Guillemot et al., 2016, and references therein), i.e., in the effort to understand

the radio emission mechanism. Pulsars close to the ‘deathline’ have small values of the

rate of loss of the spin down energy1 Ėrot = 4π2IsṖs,int/Ps. A larger population of low

Ėrot pulsars will improve our understanding of the ‘deathline’ better. On the other hand,

a larger population will increase the probability of some of such pulsars having large

enough values of |Ṗs,Gal| located in the regions where the use of the conventional methods

give inaccurate values of Ṗs,Gal resulting in inaccurate values of Ṗs,int and Ėrot.

GaldynPsr can be useful even when the timing solution is not good enough, especially

when the distance measurements are not as accurate as desired. In such cases, one can

use the expression Ṗb,obs − Ṗb,Gal − ṖQ
b,GW = Ṗb,Shk to obtain the value of Ṗb,Shk if at least

some of the post-Keplerian parameters are measured to give sufficiently accurate values

of the masses of the pulsar and the companion and hence a theoretical value of ṖQ
b,GW,

neglecting the manifestation of non-quadrupolar gravitational wave emission (if exists).

One can extract the value of the distance from the value of Ṗb,Shk if the proper motion is

known. The value of the distance obtained in such a manner can be compared with other

distance estimates (if available). Discrepancies between the values of distances estimated

in different methods have the potential to reveal inaccuracies either in the timing solution

or in the methods of distance estimation, or the presence of additional effects.

Finally, although we have confined our discussions to rotation powered pulsars only, Gal-

dynPsr can be used to estimate the value of
�

Ṗ
P

�
ex

for any object in the Galaxy provided

their distance, location, and the proper motion are known.

1The pulsar ‘deathline’ is a hypothetical line in the Ps − Ṗs,int plane defining a maximum potential drop
above which the radio emission turns off (Chen & Ruderman, 1993). This line is very close and almost
parallel to the Ėrot = 10−30 erg s−1 line (Ng et al., 2015).
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3.5 Summary

The values of the rate of change of the period (either the spin or the orbital) measured

through pulsar timing analysis are affected by the dynamics of the pulsars. In this chapter,

we presented GalDynPsr, a python package that evaluates different dynamical terms fol-

lowing the traditional as well as an improved method based on the model of the Galactic

potential provided in the package galpy. GalDynPsr is publicly available and open for

contributions.

With a number of examples, we demonstrated how for some pulsars, the new method

can result in significantly different values of the dynamical terms in comparison to those

obtained by conventional methods. We also explained the physical reasons for the new

method to be more accurate.

We emphasise the fact that although the existing approximate methods are often sufficient

for the present-day accuracy of timing solutions, one should be careful as this accuracy

is getting improved for a number of millisecond pulsars owing to the pulsar timing array

efforts. In particular, the improved method to estimate dynamical effects will be essential

for pulsars far away from the solar system (either horizontally, vertically, or both) with

precise timing solutions. Even for other pulsars, as the timing accuracy improves, one

should opt for a more accurate estimation of dynamical effects. We recommend the use

of model Lb, which calculates ap,pl/c and ap,z/c directly using galpy.
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Chapter 4

Dynamical Effects in Second Derivative

of Frequency (Spin and Orbital):

Methods of Estimation and

Introduction to GalDynPsrFreq

4.1 Introduction

We have already mentioned the fact that instead of the second derivatives of periods (both

of the spin and the orbital), one often fits for the second derivatives of frequencies while

doing a timing analysis. That is why in Chapter 2, we discussed the dynamical terms

affecting the second derivative of the spin and orbital frequencies of radio pulsars.

Looking at previous works, we find that some interesting results by modeling the higher-

order time derivatives of spin frequencies have come up in the past few years. One ex-

ample is the revelation of millisecond pulsars PSRs J1024−0719 and J1823-3021A being

members of very wide orbit binaries (Guillemot et al., 2016; Kaplan et al., 2016; Bassa
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et al., 2016; Perera et al., 2017). Although for the second pulsar, which is located in

the globular cluster NGC 6624, there is some controversy on the conclusion of the mass

modeling of the cluster (Gieles et al., 2016), the binary nature of the pulsar is still un-

challenged. Liu et al. (2018) also provided approximate analytical derivations for the

dynamical effects on the first and second derivatives of the pulsar spin frequency.

We have already derived complete analytical expressions for all dynamical terms in chap-

ter 2 and provided a way to calculate their individual contribution to the measured second

derivative of the frequency without any numerical fitting. However, given the difficulty in

the measurement of the second derivative of the spin frequency, the usefulness of these

expressions may come into question. In version 1.63 of the ATNF catalogue (Manchester

et al., 2005), there are only 434 pulsars in the Galactic field for which measured values of

the second derivative of the spin frequency have been reported out of a total of 2634 of

such pulsars. Moreover, this parameter has not been fitted in the timing solutions of any

of the pulsars in the second data release of the International Pulsar Timing Array (IPTA)

(Perera et al., 2019).

These facts do not make the study of dynamical contributions in the second derivative of

the frequency irrelevant. Liu et al. (2019) suggested that the timing solutions would be

more accurate if this parameter is fitted for at least some of the IPTA pulsars (e.g., PSRs

J1024−0719, J1939+2134, J0621+1002, J1022+1001, and B1821−24A). Moreover, in

the future, the square kilometre array (SKA) will detect many millisecond pulsars. The

simulations by Keane et al. (2014) showed that SKA1-MID would detect about 9000

normal pulsars and about 1400 millisecond pulsars while the numbers for SKA1-LOW

were about 7000 normal pulsars and about 900 millisecond pulsars. Out of this large

number of new pulsars, some will have measurably large values of the second derivative

of the spin frequency.

One difficulty of measuring the second derivative of the spin frequency is the fact that

there are other factors that might induce a wrong value in this parameter, some examples
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are the variation of the dispersion measure (DM) with time, the red noise in the timing

data etc. However, there are ongoing efforts to understand and model these effects, as an

example, the Indian Pulsar Timing Array can measure the variation of DM accurate up to

the fourth decimal place (Krishnakumar et al., 2021). There are many efforts to model the

red noise in pulsar timing data too. The implementation of these results and models in the

timing analysis will reduce the uncertainty in the measurement of the second derivative

of the spin frequency. With a larger sample of measured values of this parameter, a

good model to decouple the dynamical terms from the intrinsic term will help in better

understanding of pulsar properties like the braking index etc. The additional advantage

is that this same formalism can be applied to decouple the dynamical terms from the

intrinsic term in the second derivative of the orbital frequency.

We have created a python-package ‘GalDynPsrFreq’ based on our formalism, that is, it

can be used to extract dynamical contributions to the first and the second time-derivatives

of the frequencies and also obtain their intrinsic values.

In this chapter, we describe the numerical works done in order to estimate the contribu-

tions of dynamical terms to the second derivative of the frequency, both spin and orbital,

of pulsars. In section 4.2 particularly, we present the numerical exploration to understand

the relative importance of these dynamical terms in the cases of both synthetic as well as

real pulsars. In section 4.3, we present an introduction to our python package ‘GalDynPsr-

Freq’. In section 4.4, we present some applications of GalDynPsrFreq in correcting the

dynamical effects from the second derivatives of the frequencies. In particular, first, we

discuss the properties of PSR J1024−0719, then we investigate how dynamical terms can

affect the measured values of the braking index and finally we explore the contributions

from the dynamical terms to the second derivative of orbital frequencies. In section 4.5,

we describe the details of the simulation techniques adopted to generate the pulsar pa-

rameters based on observed values from the ATNF pulsar catalogue. In section 4.6, we

present the summary of the work.

147



4.2 Numerical exploration to understand relative impor-

tance of various terms in the expression of
�

f̈
f

�

ex

In chapter 2, we presented an expression for the fractional excess dynamical term for

the second derivative of the frequency, i.e.,
�

f̈
f

�
ex

in eq. (2.37) in terms of observable

parameters (e.g., l, b, d, µl, µb, etc) as well as computable parameters like as,pl, ap,pl, as,z,

ȧr, α, etc.

Among various terms in eq. (2.37), the last square bracket term contains the excess dy-

namical term for the first derivative of the frequency
�

ḟ
f

�
ex

as well as the observed first

derivative of the frequency and the frequency. So, this term can be converted to the pe-

riod domain and easily computed using GalDynPsr if all the relevant parameters like the

coordinates, the distance, the proper motion, the period and the period derivative of the

pulsar are known. Our new package GalDynPsrFreq computes this term directly in the

frequency domain within the framework of our new model (model Lb, as discussed in

Chapter3) to compute various acceleration terms. GalDynPsrFreq also computes other

terms in eq. (2.37), including the jerk terms. The computation of the jerk terms is in

harmony with the method of calculation of the acceleration terms, i.e., both use the same

model for the Galactic potential available in galpy.

However, most of the terms in eq. (2.37) contain parameters that might not be easily mea-

surable, especially the first square bracket term. So, it is worth investigating the relative

significance of various terms within the square brackets in eq. (2.37) to decide whether

any one of those can be ignored. As there are not many pulsars with all relevant param-

eters (appearing in the first three square bracket terms) known, we decided to perform

simulations, where a simulated pulsar is essentially a set of synthetic values of various

parameters, each of which is taken from values simulated following chosen distributions.

The details of our simulations and their results are described next.
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4.2.1 Pulsar population in the Galactic field

We use ‘PsrPopPy’ (Bates et al., 2014), a python based population synthesis package to

generate a population of pulsars in the Galactic field. Note that, PsrPopPy generates a

set of synthetic pulsars with simulated values of various parameters, e.g., the spin period,

the distance, the coordinates, etc. It also uses the NE2001 model of Galactic electron

density (Cordes and Lazio, 2002, 2003) to obtain values of the Dispersion Measure (DM)

that is needed to check whether the pulsar would be detected by a specific pulsar survey.

PsrPopPy does not put any constraint on the distances of the pulsars, so in some cases, it

returns such a high distance that in that direction, the maximum DM in NE2001 model

(DM∞, see Cordes and Lazio (2002) for details) is attained even at a smaller value of the

distance (dmax,ne2001). The values of DM returned by PsrPopPy are not accurate in such

cases, and it is better to remove such pulsars from further study.

The default distribution functions for various parameters are set in such a way that after

taking care of selection biases, the parameters of the underlying population of normal pul-

sars agree well with the observed sample (Ridley & Lorimer, 2010). These distribution

functions as well as the values of the underlying model parameters have been displayed

in Table 4.1. Among various known pulsar surveys, the Parkes Multibeam Pulsar Sur-

vey (Manchester et al., 2001), henceforth PMPS, has been modeled most rigorously in

PsrPopPy and hence in this thesis, we use only PMPS. Our simulation procedure and the

following analysis are described below.

In version 1.63 of the ATNF1 pulsar catalogue (Manchester et al., 2005), there are 1085

normal pulsars (spin period > 30 ms) that are detected by PMPS, with well defined dis-

tance values, obtained from their DM values using the NE2001 model of electron density.

This set excludes pulsars in globular clusters and both Large and Small Magellanic Clouds

as in these cases, there will be extra dynamical effects due to the local gravitational po-

1http://www.atnf.csiro.au/research/pulsar/psrcat/
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tentials. We used this number (1085) as the target number for detection in PsrPopPy with

default settings, i.e., the best model parameters, and survey set to PMPS. We found that

a population of 124310 pulsars is generated in order to detect 1085 cases by that survey.

However, 180 synthetic pulsars had to be discarded as they had d > dmax,ne2001. From the

remaining ones, we excluded 15 cases with spin period less than 30 ms. In this way, we

were left with a set of 124115 synthetic normal pulsars.

Similarly, there are 29 millisecond pulsars (spin period < 30 ms), as per the ATNF cat-

alogue, that are detected by the PMPS, and have well-defined NE2001 model-based dis-

tance values. Using this number as the target number for detection in PsrPopPy, with

survey set to PMPS and the spin period set to follow a log-normal distribution with the

mean as 1.45 and the standard deviation as 0.36, and all other distributions as the best

model of PsrPopPy, we generated a population of 5338 pulsars. Here, we first tried a log-

normal distribution with the mean as 1.5 and the standard deviation as 0.58 as suggested

by Lorimer et al. (2015). However, then we changed the values of the mean and the stan-

dard deviation a bit to ensure that, a) the minimum value of the simulated spin periods

(1.518 ms) does not go below the minimum observed value of the spin period (1.396 ms)

as reported in the ATNF catalogue and b) the range of the simulated values of the spin

periods remains as constrained as possible so that we have a substantial number of simu-

lated values of the spin period being less than 30 ms. Note that, the best fit distributions

of other parameters were obtained for normal pulsars (Faucher-Giguère & Kaspi, 2006;

Ridley & Lorimer, 2010). Although there would be some differences in the distributions

of various parameters for the populations of the normal and the millisecond pulsars, it

has been observed that moderately good statistical agreement between the synthetic and

the real millisecond pulsar populations could be found by using the distributions given

by Faucher-Giguère & Kaspi (2006) and Ridley & Lorimer (2010) except the one for the

spin period (Lorimer et al., 2015; Lorimer , 2013; Lorimer et al., 2006). In the present

work, we use this approach, as the main aim of the paper is not to study the population

properties of millisecond pulsars.
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Table 4.1: The input parameters for simulating pulsar populations using PsrPopPy for
both normal pulsars as well as millisecond pulsars are listed.

Parameter Normal Pulsar Millisecond Pulsar
Pulse period distribution log-normal log-normal
(mean, standard deviation ) (2.7, -0.34) (1.45, 0.36)
Luminosity distribution log-normal log-normal
(mean, standard deviation ) (-1.1, 0.9) (-1.1, 0.9)
Electron density model NE2001 NE2001
Radial distance distribution model as given by as given by

Lorimer et al. (2006) Lorimer et al. (2006)
z value distribution exponential exponential
(scale in kpc) (0.33) (0.33)
Spectral index distribution normal normal
(mean, standard deviation ) (-1.6, 0.35) (-1.6, 0.35)

Out of these 5338 synthetic pulsars, seven had d > dmax,ne2001. We excluded these cases

and got 5331 simulated pulsars. Out of these, we further excluded the cases with spin

period greater than 30 ms and worked with the remaining 2791 synthetic millisecond

pulsars.

From the population models generated by PsrPopPy, we extracted the values of the Galac-

tic longitude (l), the Galactic latitude (b), the spin period (Ps), and the distance (d) based

on NE2001 model in order to use in our calculations. We converted the values of the

spin period to that of the spin frequency ( fs). For the parameters that are not available

in PsrPopPy, e.g., the proper motion in the Galactic longitude (µl), the proper motion in

the Galactic latitude (µb), the observed value of the time-derivative of the spin frequency

( ḟs,obs), and the observed value of the second time-derivative of the spin frequency ( f̈s,obs),

we generated synthetic values based on the distribution followed by the values of each of

these parameters given in the ATNF catalogue, independently.

For this, we fitted the values of the parameter reported in the ATNF catalogue with an

Empirical Cumulative Distribution Function (ECDF) and then used the inverse CDF tech-

nique to generate the required number of synthetic values following the same ECDF. We

followed the same procedure whenever we fitted the parameters from the ATNF catalogue.
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We performed this task separately for the normal and millisecond pulsars, i.e., generated

124115 synthetic sets of parameters based on the distributions followed by the values of

the parameters for the normal pulsars and generated 2791 synthetic sets of parameters

based on the distributions followed by the values of the parameters for the millisecond

pulsars. This technique is described in detail in section 4.5 where we have demonstrated

the generation of synthetic millisecond pulsar parameters as an example. We followed the

same approach for generating such synthetic parameters for normal pulsars too.

As most of the binary pulsars are millisecond pulsars, we additionally generated 2791 syn-

thetic values of the orbital frequency ( fb), the observed value of the first time-derivative

of the orbital frequency ( ḟb,obs), and the observed value of the second time-derivative of

the orbital frequency ( f̈b,obs) for millisecond pulsars. The underlying assumption here is

that these parameters by themselves are not affected much by selection effects unlike the

parameters like the spin period, the coordinates and the distance of the pulsar. For radial

velocity, we took a uniform distribution between −200 and 200 km/s, same as the range

used by Liu et al. (2018).

We calculated all square bracket terms of eq. (2.37) separately as well as the sum of

the first three square bracket terms, which we call the ‘combined’ term. Each term can

have positive or negative values depending on the values of the parameters. However, the

absolute value or the magnitude of these terms are more useful for comparison.

We summarize these results in the histograms of Fig. 4.1 for synthetic millisecond pulsars

and Fig. 4.2 for synthetic normal pulsars. Additionally, Table 4.2 contains the statistical

summary for the synthetic millisecond pulsars while Table 4.3 contains the statistical

summary for the synthetic normal pulsars. From these, it is clear that all of the first

three square bracket terms contribute ‘almost’ equally to the observed value of the second

derivative of the frequency.

We next aimed to compare the combined term with the remaining one, i.e., the fourth

square bracket term of eq. (2.37). We can see from eq. (2.37) that the fourth square
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bracket term contains a factor
�

ḟ
f

�
obs

, i.e., the ratio of the observed frequency derivative

and the frequency. The spin frequency and its derivative and the orbital frequency and

its derivative are physically different entities. We can measure the values of the spin

frequency and its derivative even for isolated pulsars. Moreover, the magnitudes of these

parameters and the sign of the derivatives are usually different. The spin frequency deriva-

tive is intrinsically a result of the slow down of the pulsar spin as it loses its rotational

kinetic energy in the form of the electromagnetic energy and hence expected to be nega-

tive while the orbital frequency derivative is intrinsically a result of the shrinkage of the

orbit due to the emission of the gravitational waves and hence expected to be positive.

Although the dynamics affect the values of both the spin frequency derivative and the or-

bital frequency derivative, it alters the sign very rarely. Hence, the ratio of the observed

frequency derivative and the frequency, and consequently, the entire fourth square bracket

term will be different for the case when we consider the spin frequency and its derivative

as compared to when we consider the orbital frequency and its derivative.

We first calculated the values of the fourth square bracket using the spin frequency and

its derivative for both the millisecond pulsar and the normal pulsar populations. Then, for

the millisecond pulsar population, we calculated the value of this term using the orbital

frequency and its derivative. Figs. 4.1 and 4.2 as well as tables 4.2 and 4.3 contain results

for the fourth square bracket term too. We did not calculate this term using the orbital

frequency and its derivative for the normal pulsar population, as most of the real normal

pulsars are isolated, and the orbital frequency and its first derivative for the handful of

normal pulsars do not bear the characteristic of the population. To be more specific, the

ATNF catalogue (version 1.63) reports total 255 millisecond pulsars in the Galactic field;

out of which 189 have the value of the orbital frequency reported and 30 have the value of

the orbital frequency derivative measured. On the other hand, out of 2353 normal pulsars

in the Galactic field, only 48 have the value of the orbital frequency reported and only

9 have the value of the orbital frequency derivative measured. Also, this fourth square

bracket term is a part of the excess contribution (due to dynamics) to the second derivative
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of the orbital frequency as expressed in eq. (2.37), and so far no second derivative of

orbital frequency has ever been measured for any normal pulsar. On the other hand,

these parameters are measurable for millisecond pulsars as they are more stable and their

precise timing is possible. We notice that,

• The median of the absolute value of the combined term for millisecond pulsars is

within about an order of magnitude of the absolute value of their fourth square

bracket term for the orbital frequency.

• The median of the absolute value of the combined term for millisecond pulsars is

within about two orders of magnitude of the absolute value of their fourth square

bracket term for the spin frequency. Note that, due to their extreme stability, mil-

lisecond pulsars are timed better, so the second derivative of the spin frequency of

millisecond pulsars are likely to be measured more accurately than those for the

normal pulsars.

• The median of the absolute value of the combined term for normal pulsars is within

about an order of magnitude of the absolute value of their fourth square bracket

term for the spin frequency.

From the above results, we conclude that it is wise to retain all of the terms in eq. (2.37)

when accurate values are aimed for.

In order to assess whether our result could be affected by our choice of the Galactic

electron density model, i.e., the use of the NE2001 model instead of the YMW16 (Yao

et al., 2017) model, we explored both the models, though we report only the results based

on the NE2001 model.

To perform simulation based on the YMW16 model, we used PsrPopPy22. The use of dif-

ferent electron density models did not alter our conclusions, as over such a large number

2https://github.com/devanshkv/PsrPopPy2

154



Table 4.2: The top section of the table shows the statistical summary of all the square
bracket terms appearing in eq. (2.37) for the simulated millisecond pulsars. We compare
the absolute values of all the terms here. The middle section of the table shows the com-
parison of absolute values of the combined and the fourth square bracket (spin) terms for
the 140 real millisecond pulsars in ATNF catalogue for which all relevant parameters to
calculate

�
ḟ
f

�
ex

, for the spin frequency and its derivative, are available. The bottom sec-
tion of the table shows the comparison of absolute values of the combined and the fourth
square bracket (orbital) terms for the 31 millisecond pulsars in the ATNF catalogue for
which all relevant parameters to calculate

�
ḟ
f

�
ex

, for the orbital frequency and its deriva-
tive, are available.

Simulated Millisecond Pulsars
Term Minimum Mean Median Maximum

(s−2) (s−2) (s−2) (s−2)
First Square Bracket Term 3.49 × 10−37 2.34 × 10−33 1.15 × 10−33 5.80 × 10−32

Second Square Bracket Term 4.51 × 10−37 1.71 × 10−33 6.54 × 10−34 3.48 × 10−32

Third Square Bracket Term 3.78 × 10−37 1.34 × 10−32 2.20 × 10−33 5.90 × 10−31

Combined Term 2.38 × 10−37 1.38 × 10−32 2.53 × 10−33 5.77 × 10−31

Fourth Square Bracket Term (spin) 1.23 × 10−38 6.32 × 10−34 3.89 × 10−35 2.60 × 10−31

Fourth Square Bracket Term (orbital) 1.17 × 10−39 1.84 × 10−29 3.40 × 10−33 1.12 × 10−26

Real Millisecond Pulsars (spin)
Combined Term 9.51 × 10−37 8.95 × 10−33 1.36 × 10−33 2.36 × 10−31

Fourth Square Bracket Term (spin) 7.01 × 10−39 1.34 × 10−35 2.23 × 10−36 5.98 × 10−34

Real Millisecond Pulsars (orbital)
Combined Term 1.16 × 10−34 1.23 × 10−32 2.53 × 10−33 2.36 × 10−31

Fourth Square Bracket Term (orbital) 1.62 × 10−38 1.39 × 10−32 1.21 × 10−35 1.85 × 10−31
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Figure 4.1: Density distribution of the absolute values of various square bracket terms in
eq. (2.37) for simulated millisecond pulsars. The subplots are as follow: a) comparison of
line histograms for the first square bracket term, the second square bracket term, and the
third square bracket term, b) comparison of line histograms for the sum of the first three
terms and the fourth square bracket term using the spin frequency and its derivatives, and
c) comparison of line histograms for the sum of the first three terms and the fourth square
bracket term using the orbital frequency and its derivatives.
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Table 4.3: The top section of the table shows the statistical summary of all the square
bracket terms appearing in eq. (2.37) for the simulated normal pulsars. We compare
the absolute values of all the terms here. The bottom section of the table shows the
comparison of absolute values of the combined and the fourth square bracket (spin) terms
for the 238 real normal pulsars in the ATNF catalogue for which all relevant parameters
to calculate

�
ḟ
f

�
ex

, for the spin frequency and its derivative, are available.

Simulated Normal Pulsars
Term Minimum Mean Median Maximum

(s−2) (s−2) (s−2) (s−2)
First Square Bracket Term 6.22 × 10−39 4.54 × 10−33 1.98 × 10−33 3.57 × 10−31

Second Square Bracket Term 2.29 × 10−39 3.83 × 10−33 1.36 × 10−33 4.36 × 10−31

Third Square Bracket Term 2.68 × 10−38 5.57 × 10−32 9.38 × 10−33 6.73 × 10−30

Combined Term 1.01 × 10−37 5.59 × 10−32 9.62 × 10−33 7.07 × 10−30

Fourth Square Bracket Term (spin) 1.57 × 10−39 5.16 × 10−29 4.33 × 10−32 1.97 × 10−25

Real Normal Pulsars
Combined Term 1.17 × 10−35 3.68 × 10−32 5.19 × 10−33 1.65 × 10−30

Fourth Square Bracket Term (spin) 1.12 × 10−37 1.85 × 10−30 1.47 × 10−32 2.32 × 10−28

�� �� �� �� �� �� �� �� �� �� �� ��

��������������������������� ��

���

���

���

���

���

���

���

���

�
�
�
�
��
�

���������������������������

����������������������������

���������������������������

(a)

�� �� �� �� �� �� �� �� �� ��

��������������������������� ��

���

���

���

���

���

���

�
�
�
�
��
�

��������������������������

�����������������������������������

(b)

Figure 4.2: Density distribution of the absolute values of various square bracket terms in
eq. (2.37) for the simulated normal pulsars. The subplots are as follow: a) comparison of
line histograms for the first square bracket term, the second square bracket term, and the
third square bracket term, and b) comparison of line histograms for the sum of the first
three terms and the fourth square bracket term using the spin frequency and its derivatives.
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of samples, they provide almost the same statistics. Particularly, for MSPs (Table 4.2),

using the NE2001 model, the median of the combined term, the fourth square bracket

spin term, and the fourth square bracket orbital term are 2.53 × 10−33, 3.89 × 10−35, and

3.40 × 10−33 s−2 respectively while for the YMW16 model, these terms are 2.72 × 10−33,

3.79 × 10−35, and 3.48× 10−33 s−2. For normal pulsars (Table 4.3) the median of the com-

bined term and the fourth square bracket spin term are 9.62 × 10−33 and 4.33 × 10−32 s−2

respectively while for the YMW16 model, these terms are 9.51 × 10−33 and 4.22 × 10−32

s−2. Other statistics also do not differ much.

It should also be noted that even though YMW16 is newer, it is not necessarily better than

NE2001. In some directions, YMW16 is better, but in some other directions, NE2001 is

better. The following examples substantiate this claim. (i) For PSR J0034−0721, YMW16

agrees better with the independent distance measurement. For this pulsar, YMW16 dis-

tance, NE2001 distance, and the independent distance values are 1.00, 0.39, and 1.03

kpc respectively. (ii) For PSR J0751+1807, NE2001 agrees better with the independent

distance measurement. For this pulsar, YMW16 distance, NE2001 distance and the in-

dependent distance values are 0.43, 1.15, and 1.11 kpc respectively. (iii) Both the mod-

els are poor (i.e., they disagree with the independent distance measurement) for PSR

J2337+6151. For this pulsar, YMW16 distance, NE2001 distance, and the independent

distance values are 2.08, 3.15, and 0.70 kpc respectively. (iv) Both of the models are good

(i.e., they agree with the independent distance measurement) for PSR J1833−0827. For

this pulsar, YMW16 distance, NE2001 distance, and the independent distance values are

4.38, 4.66, 4.50 kpc respectively. There are more examples in each of these categories.

We have decided to keep only NE2001 results in this study as it will ease the comparison

with older literature.

For the sake of comparison, we also computed the values of various terms of eq. (2.37)

for real pulsars. The ATNF catalogue (version 1.63) has 378 pulsars for which all relevant

parameters to calculate the value of
�

ḟ
f

�
ex

, appearing in the fourth square bracket of eq.

158



(2.37) for the spin frequency and its derivative, are available. Out of these 378 pulsars,

140 are millisecond pulsars and the rest 238 are normal pulsars3. For these pulsars, all

parameters required to calculate the first three square bracket terms are also known, except

vr that appears in the first and the third square bracket terms. So, we needed to choose

reasonable values for vr, one such value is 50 km/s (Liu et al., 2019). However, for two

millisecond pulsars, PSRs J1024−0719 and J1903+0327, the values of vr are known to

be 185 km/s and 42 km/s respectively (Liu et al., 2018), and these values were used. We

performed our calculations separately for both the sets- normal and millisecond pulsars.

For millisecond pulsars, we found the maximum difference between the absolute value

of the combined and the fourth term for PSR J0437−4715, values being 2.36 × 10−31 s−2

and 1.55×10−34 s−2 respectively. Whereas we found the minimum difference between the

absolute value of the combined and the fourth term for PSR J1902−5105, values being

9.51 × 10−37 s−2 and 1.12 × 10−36 s−2 respectively.

Similarly, for the normal pulsars, we found the maximum difference between the absolute

value of the combined and the fourth term for PSR J1808−2024, values being 2.26 ×
10−34 s−2 and 2.32 × 10−28 s−2 respectively. Whereas we found the minimum difference

between the absolute value of the combined and the fourth term for PSR J2055+2209,

values being 5.42 × 10−34 s−2 and 5.50 × 10−34 s−2 respectively.

Additionally, we report the statistical summary of the absolute values of the combined

and the fourth square bracket term for the real millisecond pulsars in Table 4.2 and the

real normal pulsars in Table 4.3. We see that the median of the absolute values of the

combined term is within three orders of magnitude of the median of the absolute values

of the fourth square bracket term for both millisecond as well as normal pulsars.

We have also found that, for 63.03% of the normal pulsars, the absolute value of the

fourth square bracket term is larger than the absolute value of the combined term. Further,

3Note that earlier we mentioned that ATNF catalogue reports 2353 normal and 255 millisecond pulsars.
However, not for all of those, all the parameters needed to compute the dynamical terms have been reported,
hence, here we are working with less number of pulsars.
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31.33% of this particular set of pulsars (or 19.75% of the total normal pulsar population)

have the absolute value of the fourth square bracket term larger than the absolute value

of the combined term by more than one order of magnitude. In the case of the 140

millisecond pulsars, only 2 of them had the absolute value of the fourth square bracket

term greater than the absolute value of the combined term. Furthermore, for 95.71% of the

millisecond pulsars, the absolute value of the combined term was found to be larger than

the absolute value of the fourth square bracket term by more than one order of magnitude.

These facts again support our conclusion that the first three terms should not be ignored.

To complete our exploration with real pulsars, we find that the ATNF catalogue (version

1.63) has 31 millisecond pulsars for which all relevant parameters to calculate
�

ḟ
f

�
ex

for

the orbital frequency and its derivative are available. For these pulsars too, all parameters

required to calculate the first three square bracket terms are also known, except vr, and

we choose the same values of vr as discussed above. We found the maximum difference

between the absolute value of the combined and the fourth term for PSR J0437−4715,

values being 2.36 × 10−31 s−2 and 1.17 × 10−34 s−2 respectively. Whereas we found the

minimum difference between the absolute value of the combined and the fourth term for

PSR J1949+3106, values being 1.16 × 10−34 s−2 and 2.29 × 10−37 s−2 respectively.

We report the statistical summary of the absolute values of the combined and the fourth

square bracket term for the orbital frequency for these real millisecond pulsars in the

bottom part of Table 4.2. We see that the median of the absolute values of the combined

term is within three orders of magnitude of the absolute values of the fourth square bracket

term. We have also found that, for only 16.13% pulsars, the magnitude of the fourth

square bracket term is larger than the magnitude of the combined term. Further, 40%

of this particular set of pulsars (or 6.45% of the total population) have the magnitude of

the fourth square bracket term larger than the magnitude of the combined term by more

than one order of magnitude. These facts again support our conclusion that the first three

terms should not be ignored, even when we are concerned with the dynamical effects in
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the second derivative of the orbital frequency.

We also investigated the impact of the value of vr in the absolute value of the combined

term. It should be noted that the fourth term is independent of vr. Here we excluded the

pulsars with known values of vr, i.e., PSRs J1024−0719 and J1903+0327. We performed

our calculations for the remaining real pulsars, 238 normal pulsars and 138 millisecond

pulsars separately, for which all relevant parameters to calculate
�

ḟ
f

�
ex

for the spin fre-

quency and its derivative are available. We also performed calculations for the set of 31

millisecond pulsars for which all relevant parameters to calculate
�

ḟ
f

�
ex

for the orbital fre-

quency and its derivative are available. We chose some specific values of vr, i.e., -200,

-100, -50, 0, 50, 100, and 200 km/s (Liu et al., 2018). We identified the maximum (max)

and minimum (min) values of the absolute value of the combined term and calculated the

percentage difference as 100 × (max − min)/max, for each pulsar.

We found that among the set of normal pulsars, the variation of the combined term with

vr was maximum for PSR J1741−2054 (percentage difference of 99.99% with max at

vr = −200 km/s and min at vr = 0 km/s) and minimum for PSR J1741−0840 (percentage

difference of 86.46% with max at vr = 200 km/s and min at vr = −200 km/s). For the set

of millisecond pulsars where we worked with the spin frequency and its derivatives, the

variation with vr was maximum for PSR J1902−5105 (percentage difference of 99.97%

with max at vr = 200 km/s and min at vr = 50 km/s) and minimum for PSR J1747−4036

(percentage difference of 6.93% with max at vr = 200 km/s and min at vr = −200 km/s).

For the set of millisecond pulsars where we worked with the orbital frequency and its

derivatives, the variation with vr was maximum for PSR J1723−2837 (percentage differ-

ence of 99.90% with max at vr = 200 km/s and min at vr = 0 km/s) and minimum for PSR

J2055+3829 (percentage difference of 88.94% with max at vr = −200 km/s and min at

vr = 0 km/s). From all these, it is evident that depending upon other parameters, the value

of the combined term might be very sensitive to the value of vr, and hence the measure-

ment of the value of vr is desirable to estimate the effect of the dynamics in the second
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derivative of the frequency accurately.

However, measuring the radial velocity of a radio pulsar is a challenging task. The best

way is to measure the radial velocity of the companion star of a binary pulsar using optical

spectroscopy. This has been done so far only for five binary pulsars (see the references

in the caption of table 2 of Liu et al. (2018)). It should be noted that this radial velocity

is a combination of the radial velocity component of the orbital motion of the compan-

ion around the centre of mass of the binary and the radial velocity of the binary system

(i.e., the centre of mass of the binary) in the Galaxy. For very wide binaries (e.g., PSR

J1024−0719), the orbital part can be ignored as done by Bassa et al. (2016). For binaries

with shorter orbits, careful modeling is needed to decouple the orbital (periodical) part of

the radial velocity from the radial velocity of the system with respect to the local standard

of rest.

It is obvious that the above method cannot be applied to the isolated pulsars. Helfand

& Tademaru (1977) first suggested a solution that the apparent motion of slow pulsars

towards the Galactic disk as obtained from the measured proper motion might be the

result of unaccounted radial velocity. They suggested that such a motion might give a hint

of moderately large radial velocity. However, a part of this motion might arise due to the

perpendicular component of the acceleration of the pulsar due to the Galactic potential

(as we have discussed earlier, the perpendicular component of the pulsar acceleration

due to the gravitational potential is directed towards the Galactic plane). Sun & Han

(2004) found this significant. However, Hobbs et al. (2005) found this effect to be rarely

significant. This method has not been pursued much by pulsar astronomers but might be

worth exploring in the future.

Another potential method is to fit for a radial velocity when the transverse velocity is

known to find an association of young pulsars with nearby supernova remnants (Chmyreva

et al., 2017).
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4.2.2 Pulsar population near the Galactic centre

In chapter 3, we saw that at low values of R and z, both |∂Φ
∂R | and |∂Φ

∂z | peak, and hereΦ is the

gravitational potential of the Galaxy, R is the Galactocentric cylindrical radius, and z is the

vertical height from the Galactic disc. Moreover, the slopes of the |∂Φ
∂R | vs R and |∂Φ

∂R | vs z

curves are steepest near the peak. As −∂Φ
∂R and −∂Φ

∂z provide the acceleration of the pulsars

parallel and perpendicular to the Galactic disc, we expect that the magnitudes of both

of the acceleration and the jerk would be large for pulsars located in this region, which

corresponds to the region close to the Galactic centre. Unfortunately, no such pulsar is

known at present in this region, so we decided to work on a synthetic set of pulsars.

Like section 4.2.1, here too, we separately studied the millisecond pulsar population and

the normal pulsar population, and we took a uniform distribution between −200 and 200

km/s, for vr both of the populations. We constrained our simulations to the cases with l

varying uniformly between 0 and 5 degrees as well as between 355 and 360 degrees, b

varying uniformly between -5 and 5 degrees, and d varying uniformly between 7.8 and

8.2 kpc. Note that this region is somewhat large, extending up to a distance of 1.02 kpc

from the Galactic centre. There is one real pulsar in this region, PSR J1746-2856 at a

distance of 0.432 kpc from the Galactic centre. So, this is not the exact ‘Galactic centre

region’, which is defined to be the region within a few parsecs around the Galactic centre.

However, we choose this larger region to have a larger sample of synthetic pulsars. Our

aim is to understand the effect of the gravitational potential induced dynamics on the

observed values of frequency derivatives in this region in comparison to those in the outer

regions of the Galaxy.

For these parameters, we generated the same number of cases (124115) corresponding to

the normal pulsar population as those generated in the earlier subsection, so that we could

use the same sample of fs as obtained from PsrPopPy earlier. Similarly, we generated

the same number of cases (2791) corresponding to the millisecond pulsar population and

used the corresponding sample of fs as obtained from PsrPopPy earlier.
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Table 4.4: Statistical summary of all the square bracket terms appearing in eq. (2.37)
for the simulated millisecond pulsars near the Galactic centre. We compare the absolute
values of all the terms here.

Term Minimum Mean Median Maximum
(s−2) (s−2) (s−2) (s−2)

First Square Bracket Term 4.49 × 10−36 5.23 × 10−32 1.96 × 10−32 4.69 × 10−30

Second Square Bracket Term 1.23 × 10−35 1.17 × 10−32 6.65 × 10−33 1.58 × 10−31

Third Square Bracket Term 5.12 × 10−37 1.50 × 10−32 3.67 × 10−33 6.39 × 10−31

Combined Term 1.69 × 10−35 5.79 × 10−32 2.15 × 10−32 4.69 × 10−30

Fourth Square Bracket Term (spin) 5.43 × 10−40 5.16 × 10−34 4.00 × 10−35 1.65 × 10−31

Fourth Square Bracket Term (orbital) 7.00 × 10−40 2.02 × 10−29 3.17 × 10−33 1.89 × 10−26

For the rest of the parameters (µl, µb, ḟs,obs, f̈s,obs, fb, ḟb,obs, and f̈b,obs) we used the same

distributions as generated in section 4.2.1 for the millisecond pulsars. Similarly, for the

normal pulsars, we used the same distributions generated in section 4.2.1 for the remain-

ing corresponding parameters (µl, µb, ḟs,obs and, f̈s,obs). The underlying assumption here

is that the population of pulsars near the Galactic centre is not way too different than the

overall disk population. This assumption might not be perfectly valid, however our only

aim was to obtain a qualitative comparison between various terms in eq. (2.37).

Similar to section 4.2.1, here also, we calculate all square bracket terms of eq. (2.37)

separately. We summarize these results in the histograms of Fig. 4.3 for millisecond

pulsars and Fig. 4.4 for normal pulsars. Additionally, Table 4.4 contains the statistical

summary for the synthetic millisecond pulsars while Table 4.5 contains the statistical

summary for the synthetic normal pulsars.

Comparing the values reported in tables 4.2 and 4.4 for the millisecond pulsars, and the

values reported in tables 4.3 and 4.5 for the normal pulsars, we see that the median values

of the absolute values of the first three square bracket terms are about one order of magni-

tude larger for the pulsar population near the Galactic centre than the general population.

For the fourth square bracket term, we get almost the same median values for the two pop-

ulations as expected, as in the fourth square bracket term, the dynamics dependent
�

ḟ
f

�
ex

is multiplied by
�

ḟ
f

�
obs

which have been simulated with the help of the observed values of
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Figure 4.3: Density distribution of the absolute values of various square bracket terms in
eq. (2.37) for simulated millisecond pulsars near the Galactic centre. The subplots are
as follow: a) comparison of line histograms for the first square bracket term, the second
square bracket term, and the third square bracket term, b) comparison of line histograms
for the sum of the first three terms and the fourth square bracket term using the spin
frequency and its derivatives, and c) comparison of line histograms for the sum of the
first three terms and the fourth square bracket term using the orbital frequency and its
derivatives.
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Table 4.5: Statistical summary of all the square bracket terms appearing in eq. (2.37) for
the simulated normal pulsars near the Galactic centre. We compare the absolute values of
all the terms here.

Term Minimum Mean Median Maximum
(s−2) (s−2) (s−2) (s−2)

First Square Bracket Term 1.11 × 10−36 9.97 × 10−32 3.06 × 10−32 2.29 × 10−28

Second Square Bracket Term 3.53 × 10−38 2.38 × 10−32 1.39 × 10−32 8.33 × 10−31

Third Square Bracket Term 6.17 × 10−38 5.72 × 10−32 1.09 × 10−32 7.70 × 10−30

Combined Term 2.74 × 10−37 1.29 × 10−31 3.75 × 10−32 2.28 × 10−28

Fourth Square Bracket Term (spin) 1.28 × 10−39 4.10 × 10−29 3.94 × 10−32 1.78 × 10−25
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Figure 4.4: Density distribution of the absolute values of various square bracket terms
in eq. (2.37) for the simulated normal pulsars near the Galactic centre. The subplots
are as follow: a) comparison of line histograms for the first square bracket term, the
second square bracket term, and the third square bracket term, and b) comparison of line
histograms for the sum of the first three terms and the fourth square bracket term using
the spin frequency and its derivatives.
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the field pulsars.

From the above-mentioned facts, we conclude that the measured values (through timing

analysis) of the second derivative of the spin or orbital frequency of a pulsar near the

Galactic centre would likely be contaminated by the dynamical terms by a larger amount

than the pulsars away from the Galactic centre, especially if the distributions of frequen-

cies and its derivatives are not drastically different.

It should be noted that, although our formalism can be used for pulsars close to the Galac-

tic centre, it is not very accurate there, as the gravitational pulls of nearby stars on the

pulsars are likely to be significant. Nevertheless, if any pulsar close to the Galactic cen-

tre is discovered in the near future, our expressions can be used to obtain a first-order

correction.

4.3 Introduction to GalDynPsrFreq

We have created a python-package GalDynPsrFreq that estimates the dynamical terms in

the measured values of the first and the second time derivatives of the frequency. This

frequency can be either the spin or the orbital. It can even eliminate these dynamical

terms and directly give the intrinsic values of the frequency derivatives.

It is known that the accelerations and jerks of pulsars depend on the gravitational poten-

tial of the Galaxy. GalDynPsrFreq uses ‘galpy’ based potentials MWPotential2014 and

MWPotential2014BH that have been discussed in Chapter 3. The user has the freedom

to choose one of these two models. It is clear that to use GalDynPsrFreq, one needs to

install galpy first. Additionally, basic python libraries ‘scipy’, ‘numpy’, and ‘astropy’ are

needed.

GalDynPsrFreq is designed to be usable as a library (importable module) by other python

programs which would provide the values of the parameters needed. It is available at
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https://github.com/pathakdhruv/GalDynPsrFreq and can be even installed using

the pip3 command of python. This version is also available at

http://doi.org/10.5281/zenodo.4603803. The details of the usage and the de-

scription of various modules of GalDynPsrFreq with a number of examples are available

in the package documentation.

The user needs to provide observable pulsar parameters like the Galactic longitude, l,

in degrees, the Galactic latitude, b, in degrees, the distance of the pulsar from the solar

system barycenter, d, in kpc, the proper motion in the Galactic longitude, µl, in mas/yr,

the proper motion in the Galactic latitude, µb, in mas/yr, the radial component of the

relative velocity, vr, of the pulsar with respect to the solar system barycenter in km/s,

the frequency, f , in Hz, the observed frequency derivative, ḟobs, in s−2, and the observed

frequency second derivative, f̈obs, in s−3. The frequency and its derivatives can be either

the spin or the orbital.

GalDynPsrFreq does not return uncertainties in the results, because the models of the

Galactic potential given in galpy do not return uncertainties. However, since ours is a

modular package, if a Galactic potential model along with uncertainties becomes avail-

able in the future, it can be easily included in this package. Then, modules to calculate the

uncertainties in the dynamical terms can be incorporated using standard error propagation

techniques. Presently, uncertainties can be calculated by evaluating the same parameter

several times, and then by estimating the mean and standard deviation of all of these val-

ues. In the following sections, we report the results mostly using MWPotential2014BH

as the model potential of the Galaxy.

4.4 Applications

In this section, we discuss some practical applications of our formalism of correcting

dynamical effects in the second derivative of frequencies and explore whether parameters
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that depend on the second derivative can be affected significantly by the dynamics.

4.4.1 Properties of PSR J1024−0719

As mentioned previously, Kaplan et al. (2016) and Bassa et al. (2016) showed that PSR

J1024−0719 is a wide-orbit binary pulsar. Its orbit is so wide that a good timing solution

could be obtained even without fitting for orbital parameters. However, for this pulsar,

after eliminating the contributions of the velocity, acceleration and jerk due to the Galac-

tic potential from the measured first and second time derivative of the spin frequency,

additional dynamical effects due to the orbital motion would remain and hence, after us-

ing eqs. (2.20) and (2.38), what we obtain should be better called ‘residual’ (subscript

‘res’) instead of ‘intrinsic’ values of the frequency derivatives. Kaplan et al. (2016) re-

ported derivatives of spin periods instead of spin frequencies and used the values of Ṗs,res

and P̈s,obs to put some constraints on the orbit of the pulsar. They did not correct for

the dynamical effects in the second derivative as they correctly guessed that it would be

very small. Indeed, we see that P̈s,res = 1.10 × 10−31 s−1 while P̈s,obs = 1.1 × 10−31 s−1

as reported by Kaplan et al. (2016). Thus, for this particular pulsar, the contribution of

the acceleration and jerk due to the gravitational potential of the Galaxy to the measured

second derivative of the spin frequency is negligible. However, this might not be the

case always, as we will explore in the next subsection. It is to be noted that we obtain

Ṗs,res = −3.89 × 10−20 ss−1 while Kaplan et al. (2016) had Ṗs,res = −3.96 × 10−20 ss−1.

4.4.2 Intrinsic spin frequency second derivative and the braking in-

dex

Instead of exploring the effect of the dynamical terms in the second derivative of the spin

frequency alone, we decided to concentrate on the braking index n which is associated

with the basic emission model of rotation powered pulsars. As explained in Chapter 1 of
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the present thesis (in section 1.2), the expression for n can be written as:

n =
f̈s,int fs

ḟ 2
s,int

. (4.1)

We have also mentioned in section 1.8 the fact that although the value of n is expected to

be three under the perfect dipole model, the measured values often differ largely.

Here we first investigated whether those anomalous values of n are affected by the dynam-

ics or there are other physical reasons intrinsic to the pulsars. Hobbs et al. (2004) reported

measurements of n for 374 pulsars. They found that the reported values of n for a number

of pulsars lie in the range −2.6×108 to 2.5×108. These large deviations from the expected

value 3 cannot be due to the timing noise as they had taken care of it by whitening the

timing residuals. Although they calculated the values of n using the measured values of

the spin frequency and its derivatives instead of their intrinsic values, it is unlikely that

the dynamical effects would change the value of n from 3 to 108. Therefore, for pulsars

having such large values of n, the conclusion of Hobbs et al. (2004) that the measured

values of the second derivative of the spin frequency of the pulsars do not represent just

the braking due to magnetic dipole radiation, seems valid. However, we explored whether

for the pulsars with measured |n| < 10, dynamical terms play a significant role to shift

the values from 3. Using the values of l, b, fs, ḟs,obs, and f̈s,obs directly from Hobbs et al.

(2004), d, calculated using NE2001 model (Cordes and Lazio, 2002, 2003) based on the

DM values given in Hobbs et al. (2004), and µl and µb, calculated using the values of RA,

DEC and corresponding proper motion values given in Hobbs et al. (2004), we calculated

values of ḟint and f̈int. We took a nominal vr = 50 km/s, like Liu et al. (2019). For all

these pulsars, we didn’t see any significant change by correcting for the dynamical terms.

We repeated the above calculations for vr = 0 km/s and vr = −100 km/s without any

significant difference. Hence, we conclude that even for these pulsars, there are physical

reasons for n to differ from 3. Recently, Dang et al. (2020) reported measurements of n

for 73 pulsars. Out of these, they reported braking index values to be less than 10 for only

two pulsars, namely, PSR J0157+6212 (n = 4.8) and PSR J1743-3150 (n = 6.5). Using
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the values of d, fs, ḟs,obs, and f̈s,obs directly from Dang et al. (2020), l, b, µl, and µb, from

the values of RA and DEC and corresponding proper motion values given in Dang et al.

(2020), we found only a small change in the braking index value of PSR J0157+6212

(n = 5.0) and a little higher change in PSR J1743-3150 (n = 8.3), but still, in no case, n

gets closer to 3.

Now the question that arises is whether it is even possible for the dynamical effects to be

large enough to alter the value of n significantly. To answer this question, we performed

calculations on simulated millisecond pulsars. We concentrated only on millisecond pul-

sars, as these are more stable than normal pulsars, so less likely to have glitches, red

timing noises, etc., that might make the observed value of n deviate from 3 (Dang et al.,

2020). We aimed whether we could get a sufficient number of millisecond pulsars for

which n is close to three (theoretically expected), i.e., 2.5 < n < 3.5, and nobs < 0 or

nobs > 6, i.e., nobs is substantially different from n due to dynamical effects. Here, nobs

means the value of the braking index we get by using the observed values of the spin

frequency and its derivatives, and n is the true braking index that we get after eliminating

the dynamical contributions from the frequency derivatives. We used the same simulation

approach as described in section 4.2.1. We did not find any case where 2.5 < n < 3.5, but

nobs < 0 or nobs > 6. We even performed the investigation over a larger number of syn-

thetic pulsars (10000 instead of 2791 as in section 4.2.1), still did not find any favourable

case. We then generated 10000 pulsars near the Galactic centre where the distributions

of various parameters are the same as in section 4.2.2. But still, no favourable case was

found.

However, it is possible that there might exist unique pulsars whose parameters are missed

by the standard representation of the population (generated by ‘PsrPopPy’), and have

2.5 < n < 3.5, and nobs < 0 or nobs > 6. To take care of this possibility, we adopted a

different approach to simulate parameters for a synthetic set of millisecond pulsars. We

explored two populations of millisecond pulsars, one in the Galactic field and the other in
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the near-Galactic centre region, by using two approaches to simulate l, b, and d. For the

first population, we just fitted the distribution from the ATNF catalogue for the millisec-

ond pulsars (excluding the ones in globular clusters, the Large Magellanic Cloud, and

the Small Magellanic Cloud), i.e., we fitted the 142 values of a parameter, say, l reported

in the ATNF catalogue with an Empirical Cumulative Distribution Function (ECDF) and

then used the inverse CDF technique to generate 10000 synthetic values following the

same ECDF 4. For the second population, we used the approach as described in section

4.2.2. For both the populations, we generated 10000 values of these parameters. For µl

and µb too, we simulated 10000 values based on the distribution of values in the ATNF

catalogue for the millisecond pulsars. We also generated 10000 values of vr distributed

uniformly between -200 to 200 km/s. However, for fs, ḟs,obs, and f̈s,obs, we needed to take

a closer look at the ATNF catalogue values, again excluding the ones in globular clusters,

the Large Magellanic Cloud, and the Small Magellanic Cloud.

We found that the range of fs spans from 34.657 Hz to 641.928 Hz for millisecond pulsars.

We divided this range into three equal parts and generated 10000 uniformly distributed

values for each subrange. For ḟs,obs, the values span in the range of −1.0 × 10−13 s−2 and

−1.0 × 10−17 s−2 for millisecond pulsars. We divided this range into four parts with each

part spanning over one order of magnitude and generated uniform distributions of 10000

values for each subrange. Since the ATNF catalogue only gives eight measurements of

the f̈s,obs for millisecond pulsars, we decided to extend the ranges. More specifically, the

values of f̈s,obs for these 8 millisecond pulsars lie in the ranges of −1.0 × 10−24 s−3 to

−1.0×10−28 s−3 and 1.0×10−27 s−3 to 1.0×10−25 s−3, whereas, by fitting these values with

a distribution function and generating a synthetic values, we found that f̈s,obs vary between

−1.0 × 10−24 s−3 to −1.0 × 10−30 s−3 and 1.0 × 10−30 s−3 to 1.0 × 10−24 s−3. We used these

two sets and divided each set into 6 subranges, each of which span over one order of

magnitude and generated uniform distributions of 10000 values for each subrange.

In this way, we got 3 subranges of fs, 4 subranges of ḟs,obs, and 12 subranges of f̈s,obs, each
4See section 4.5 for the details of this procedure.
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having 10000 uniformly generated values. For the braking index calculations, we chose

one subrange corresponding to each of these three parameters, in addition to the 10000

values generated for the parameters l, b, d, µl, µb, and vr each. These 10000 values for each

parameter constitute the 10000 synthetic millisecond pulsars, concentrated in a specific

subrange of the multi-dimensional parameter space, out of the total 144 (3×4×12) of such

subranges. We computed the values of n and nobs for all 10000 synthetic pulsars in each

subrange and selected the favourable cases. In this approach, we implicitly assumed that

the total number of millisecond pulsars over the full parameter space is much larger than

10000, which might not be very realistic. However, our quest here was to find unique

combinations of parameters that could give large differences between the observed and

intrinsic values of the braking index.

The number of favourable cases for different combinations of fs, ḟs,obs, and f̈s,obs subranges

are summarized in Table 4.6. We display six examples from each set (pulsars in the field

and pulsars near the Galactic centre) in Table 4.7, such that three of the Galactic field

pulsars represent largest differences in n and nobs when nobs > 6 (Pulsar1GF, Pulsar2GF, and

Pulsar3GF) and the other three when nobs < 0 (Pulsar4GF, Pulsar5GF, and Pulsar6GF). We

also display six examples of the near-Galactic centre pulsars in Table 4.7, such that three

of them represent largest differences in n and nobs when nobs > 6 (Pulsar1GC, Pulsar2GC,

and Pulsar3GC) and the other three when nobs < 0 (Pulsar4GC, Pulsar5GC, and Pulsar6GC).

It should be noted that, even if we get large values of nobs for pulsars near the Galactic

centre, those values are never as large as 108 as reported for a number of field pulsars by

Hobbs et al. (2004).

We also see that the difference between the observed and intrinsic values of f̈s are much

larger than that for ḟs and the ratio of the observed and intrinsic values of braking index

depends on both of these ratios as nobs/n =
�

ḟs,int/ ḟs,obs

�2
.
�

f̈s,obs / f̈s,int

�
. This emphasizes

the fact that if one wants to use the value of the second derivative of the spin frequency to

get better insight into the properties of the pulsar, it is better to correct for the dynamical
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terms as accurately as possible, as this parameter can be affected significantly by the

dynamics.

Moreover, the difference in the results of the simulated millisecond pulsars in the Galactic

field and those near the Galactic centre in tables 4.6 and 4.7 are noticeable. For the pulsars

near the Galactic centre, a considerably larger number of favourable cases are generated

and there is also a larger change in the values of the braking index. In summary, these

simulations establish the fact that it is possible that the dynamical terms change the value

of n significantly from three, especially near the Galactic centre. However, the possibility

of having such a system is not very high as it needs a very unique combination of various

parameters.

Note that, there is nothing very special about these pulsars. They are not located in special

places in the Galaxy where the acceleration and/or the jerk due to the gravitational poten-

tial is very high. They also do not have anomalously large proper motions. In fact, there

are many pulsars with such large differences between the values of nobs and n. However,

in most of such cases, the values of n differ largely from three. One example is the real

millisecond pulsar PSR J1824−2452 that has nobs = −326.22 and n = −504.86 (we cal-

culated and eliminated the dynamical effects using the values of the relevant parameters

given in Hobbs et al. (2004)).
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Table 4.6: Number of favourable cases where 2.5 < n < 3.5, and nobs < 0 or nobs > 6,
for various ranges of fs, ḟs,obs, and f̈s,obs values. The fourth column displays the number of
favourable cases for pulsars in the Galactic field, whereas, the fifth column displays the
number of favourable cases for pulsars near the Galactic centre. We display fs rounded
off to 2 decimal places. Each row represents one simulation run of 10000 simulated
millisecond pulsars.

fs range ḟs,obs range f̈s,obs range Favourable Cases Favourable Cases

(Hz) (s−2) (s−3) (Galactic Field) (Near Galactic Centre)

34.66 to 273.08

−10−13 to −10−14

10−29 to 10−28 3 7

10−30 to 10−29 1 5

−10−28 to −10−29 1 9

−10−29 to −10−30 10 51

−10−14 to −10−15

10−29 to 10−28 0 3

10−30 to 10−29 19 56

−10−28 to −10−29 0 1

−10−29 to −10−30 13 48

−10−15 to −10−16 −10−29 to −10−30 0 1

273.08 to 439.50

−10−13 to −10−14

10−28 to 10−27 0 2

10−29 to 10−28 7 25

10−30 to 10−29 7 16

−10−27 to −10−28 1 0

−10−28 to −10−29 10 31

−10−29 to −10−30 53 162

−10−14 to −10−15

10−29 to 10−28 0 1

10−30 to 10−29 13 29

−10−28 to −10−29 0 3

−10−29 to −10−30 19 27

−10−15 to −10−16 10−30 to 10−29 0 2

Continued on the next page
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fs range ḟs,obs range f̈s,obs range Favourable Cases Favourable Case

439.50 to 641.93

−10−13 to −10−14

10−28 to 10−27 0 1

10−29 to 10−28 11 40

10−30 to 10−29 19 13

−10−27 to −10−28 0 1

−10−28 to −10−29 9 40

−10−29 to −10−30 64 249

−10−14 to −10−15

10−29 to 10−28 0 1

10−30 to 10−29 16 18

−10−28 to −10−29 0 2

−10−29 to −10−30 8 10
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Table 4.7: Parameters for simulated millisecond pulsars with 2.5 < n < 3.5, and nobs < 0 or
nobs > 6. Here, l is the Galactic longitude, b is the Galactic latitude, d is the distance between
the pulsar and the Solar system barycentre, µl is proper motion in l, µb is the proper motion in b,
fs is the spin frequency, vr is the radial velocity, Rp is the Galactocentric cylindrical distance of
the pulsar, z is the vertical coordinate of the pulsar, dGC is the distance between the pulsar and the
Galactic centre, ḟs,obs is the observed (simulated) value of the first derivative of the spin frequency,
ḟs,int is the intrinsic value of the first derivative of the spin frequency, f̈s,obs is the observed (simu-
lated) value of the second derivative of the spin frequency, f̈s,int is the intrinsic value of the second
derivative of the spin frequency, nobs is the braking index based on the observed values of the spin
frequency derivatives, and n is the braking index based on the intrinsic values of the spin frequency
derivatives. The top half displays the parameters of simulated millisecond pulsars in the Galactic
field (represented by the subscript ‘GF’). Pulsar1GF, Pulsar2GF, and Pulsar3GF represent the largest
differences in n and nobs when nobs > 6 whereas Pulsar4GF, Pulsar5GF, and Pulsar6GF represent the
largest differences in n and nobs when nobs < 0. The bottom half displays the parameters of simu-
lated millisecond pulsars near the Galactic centre (represented by the subscript ‘GC’). Pulsar1GC,
Pulsar2GC, and Pulsar3GC represent the largest differences in n and nobs when nobs > 6 whereas
Pulsar4GC, Pulsar5GC, and Pulsar6GC represent the largest differences in n and nobs when nobs < 0.
We display the results till the second decimal place.

Galactic Field pulsars

Parameters Pulsar1GF Pulsar2GF Pulsar3GF Pulsar4GF Pulsar5GF Pulsar6GF

l (deg) 37.94 61.77 319.51 111.40 338.79 27.47

b (deg) 19.15 -40.68 2.90 30.70 -21.22 -39.13

d (kpc) 1.15 0.63 0.62 1.42 0.77 0.73

µl (mas/yr) 18.18 -7.92 -12.80 17.64 7.82 -19.53

µb (mas/yr) 5.27 1.55 10.42 6.11 -31.79 3.18

vr (km/s) 122.99 147.92 112.89 -140.45 -84.09 -130.41

fs (Hz) 465.52 453.92 486.18 306.79 136.23 380.92

ḟs,obs (×10−15 s−2) -4.61 -2.15 -4.38 -1.48 -1.43 -4.08

f̈s,obs (×10−30 s−3) 5.83 1.28 4.00 -3.79 -2.52 -4.90

continued on the next page
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Parameters Pulsar1GF Pulsar2GF Pulsar3GF Pulsar4GF Pulsar5GF Pulsar6GF

Rp (kpc) 7.17 7.78 7.54 8.52 7.33 7.50

z (kpc) 0.38 -0.41 0.03 0.73 -0.28 -0.46

dGC (kpc) 7.18 7.80 7.54 8.55 7.34 7.52

ḟs,int (×10−15 s−2) -4.17 -2.16 -4.18 -1.15 -1.16 -3.85

f̈s,int (×10−32 s−3) 12.32 3.58 11.82 1.33 3.35 12.25

nobs 127.72 125.76 101.32 -530.67 -168.71 -112.20

n 3.31 3.47 3.29 3.10 3.42 3.14

( ḟs,int− ḟs,obs)×100
ḟs,obs

-9.65 0.56 -4.67 -22.48 -19.06 -5.53

( f̈s,int− f̈s,obs)×100
f̈s,obs

-97.89 -97.21 -97.05 -100.35 -101.33 -102.50

Near Galactic Centre pulsars

Parameters Pulsar1GC Pulsar2GC Pulsar3GC Pulsar4GC Pulsar5GC Pulsar6GC

l (deg) 358.30 3.83 359.32 356.68 0.23 358.99

b (deg) -3.54 -3.59 4.50 -0.11 -3.45 0.82

d (kpc) 7.99 8.08 8.09 8.09 7.81 7.99

µl (mas/yr) -0.55 -0.90 5.82 -6.91 -6.77 27.44

µb (mas/yr) -1.28 -0.37 2.48 0.19 6.81 -5.87

vr (km/s) 116.97 40.36 139.56 -180.66 -152.08 -99.60

fs (Hz) 407.56 288.69 419.49 218.05 544.35 286.99

continued on the next page
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Parameters Pulsar1GC Pulsar2GC Pulsar3GC Pulsar4GC Pulsar5GC Pulsar6GC

ḟs,obs (×10−15 s−2) -0.62 -0.58 -3.26 -0.52 -7.73 -9.38

f̈s,obs (×10−30 s−3) 7.91 1.16 7.72 -8.86 -31.51 -56.54

Rp (kpc) 0.24 0.54 0.12 0.47 0.21 0.14

z (kpc) -0.49 -0.51 0.64 -0.02 -0.47 0.11

dGC (kpc) 0.55 0.74 0.65 0.47 0.51 0.18

ḟs,int (×10−15 s−2) -0.93 -0.90 -3.43 -0.58 -6.72 -5.14

f̈s,int (×10−32 s−3) 0.61 0.93 8.24 0.47 26.40 27.38

nobs 8508.29 980.51 304.36 -7230.42 -286.94 -184.45

n 2.84 3.34 2.93 3.08 3.18 2.97

( ḟs,int− ḟs,obs)×100
ḟs,obs

51.71 53.63 5.24 12.02 -13.07 -45.16

( f̈s,int− f̈s,obs)×100
f̈s,obs

-99.92 -99.20 -98.93 -100.05 -100.84 -100.48
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In Table 4.7, the results are reported without any uncertainties. The main reason is the fact

that the model of the gravitational potential we use (borrowed from galpy) does not return

any uncertainties in the values of the accelerations and jerks. The lack of error estimation

does not alter the conclusions as these are simulated pulsars anyway. If one wants to apply

our formalism for a real pulsar for which uncertainties of all relevant observed parameters

are known, then they can use a simulation technique. To demonstrate this technique,

we took three Galactic field pulsars from Table 4.7, namely, Pulsar1GF, Pulsar2GF, and

Pulsar3GF. For each pulsar, we simulated 10000 values for each of the input parameters

(l, b, d, µl, µb, vr, fs, ḟs,obs, f̈s,obs) following normal distributions. The values reported

in Table 4.7 are taken as the mean and 5% of those as the standard deviation of these

normal distributions. A set of values of the parameters taken from the newly simulated

values form a new simulated pulsar, i.e., there are 10000 simulated pulsars corresponding

to each of the aforementioned three pulsars (simulated) of Table 4.7.

We computed the values of the dynamical terms for each of those pulsars and found values

of ḟs,int, f̈s,int, and n. We then calculated the mean and the standard deviations for these

results as well as the simulated values for the input parameters. These values are reported

in Table 4.8. Note that the mean and the standard deviations of the simulated values of

the input parameters differ slightly from the original values reported in Table 4.7.

However, it will be more accurate if a model of the Galactic potential that provides the

uncertainties in the acceleration and jerk terms, is employed. If any such potential model

is available in the future, then it will not be difficult to adopt the standard error propagation

technique on our analytical expressions and the following codes.
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Table 4.8: Demonstration of calculation of uncertainties in the values of ḟs,int, f̈s,int, and n using a
simulation technique for three pulsars of Table 4.7.

Parameters Pulsar1GF Pulsar2GF Pulsar3GF

l (deg) 37.93 ± 1.90 61.83 ± 3.11 319.84 ± 16.08

b (deg) 19.14 ± 0.96 -40.69 ± 2.03 2.90 ± 0.14

d (kpc) 1.15 ± 0.06 0.63 ± 0.03 0.62 ± 0.03

µl (mas/yr) 18.19 ± 0.91 -7.93 ± 0.39 -12.80 ± 0.64

µb (mas/yr) 5.27 ± 0.26 1.55 ± 0.08 10.41 ± 0.52

vr (km/s) 122.94 ± 6.16 147.93 ± 7.45 112.90 ± 5.67

fs (Hz) 465.56 ± 23.40 453.77 ± 22.89 486.64 ± 24.59

ḟs,obs (×10−15 s−2) -4.61 ± 0.23 -2.15 ± 0.11 -4.38 ± 0.22

f̈s,obs (×10−30 s−3) 5.83 ± 0.30 1.28 ± 0.06 4.0 ± 0.20

ḟs,int (×10−15 s−2) -4.16 ± 0.24 -2.16 ± 0.11 -4.18 ± 0.22

f̈s,int (×10−31 s−3) 1.06 ± 6.79 0.30 ± 1.50 1.37 ± 4.30

nobs 128.72 ± 15.94 126.64 ± 15.60 102.02 ± 12.75

n 2.12 ± 18.66 2.62 ± 14.69 3.51 ± 12.12
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4.4.3 Exploring the cases with the measured second derivative of the

orbital frequency

In this section, we study dynamical contributions in the observed values of the sec-

ond derivative of the orbital frequency, f̈b,obs. We find eight pulsars with reported val-

ues of f̈b,obs in the ATNF catalogue - PSRs J0023+0923, J1048+2339, J1731−1847,

J2339−0533, J0024−7204J, J0024−7204V, J0024−7204O, and J0024−7204W, and two

additional pulsars whose f̈b,obs value is not reported in the ATNF catalogue - PSRs J1723−2837

(Crawford et al., 2013), and J2051−0827 (Shaifullah et al., 2016). All these ten pulsars

are millisecond pulsars.

Among these pulsars, five are black-widows, which are PSRs J0023+0923 (Arzouma-

nian et al., 2018), J0024−7204J (Freire et al., 2017), J0024−7204O (Freire et al., 2017),

J1731−1847 (Ng et al., 2014), and J2051−0827 (Shaifullah et al., 2016) and four are

Red-Backs, which are PSRs J0024−7204W (Ridolfi et al., 2016), J1048+2339 (Deneva

et al., 2016), J1723−2837 (Crawford et al., 2013), and J2339−0533 (Pletsch and Clark,

2015)5. Additionally, pulsars PSRs J0024−7204J, J0024−7204V, J0024−7204O, and

J0024−7204W, belong to the Globular Cluster 47 Tucanae (Freire et al., 2017; Ridolfi

et al., 2016).

We calculated the intrinsic values of the first and second derivatives of the orbital fre-

quency, ḟb,int and f̈b,int respectively, for these pulsars. We took the parameters as given

in the ATNF catalogue except a few cases as mentioned below. The fb, ḟb,obs, and f̈b,obs

values for PSR J0023+0923 were taken from Arzoumanian et al. (2018). The f̈b,obs value

for PSR J1723−2837 was taken from Crawford et al. (2013), and for PSR J2051−0827

was taken from Shaifullah et al. (2016). The proper motion values for PSR J0024−7204V

5Both black widow and redback pulsars are binary millisecond pulsars with small values of the orbital
period (∼ 0.5 day), where the strong wind from the pulsar keeps on evaporating the companion. Black wid-
ows are identified by companions of mass of around 0.05 M� while redbacks are identified by companions
of mass of around 0.2 M�. Higher derivatives of the orbital frequencies of these systems are affected by the
pulsar wind and intra-binary matter. However, to understand the contributions of these, one will first need
to subtract the external dynamical effects, e.g., the effect of the gravitational potential of the Galaxy, etc.
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were taken from Ridolfi et al. (2016). For all of the pulsars, we used independent distance

estimates if available, otherwise NE2001 based distance. We took a nominal value for vr

as 50 km/s for all cases. We found that for all the cases, there is no perceptible differ-

ence between ḟb,obs and ḟb,int values, and f̈b,obs and f̈b,int values. It should be noted that,

for pulsars in globular clusters, additional correction is needed to account for the cluster

potential.

However, it is not wise to make any strong conclusion based on such a small number of

pulsars with measurements of the second derivatives of the orbital frequency. We again

used the simulated millisecond pulsar population generated in section 4.2.1, to study the

dynamical contributions in f̈b,obs. Here, we aimed if we could get a sufficient number of

millisecond pulsars for which the values of f̈b,obs and f̈b,int differ at least in the first decimal

place but we could not find such a case for this set of synthetic millisecond pulsars.

Even when we performed the investigation over a larger number of synthetic pulsars

(10000 instead of 2791 as in section 4.2.1), we did not find any favourable case. We

also generated 10000 pulsars near the Galactic centre where the distributions of various

parameters are the same as in section 4.2.2. But we still could not find any favourable

case.

Consequently, we adopted a different approach to simulate parameters for a synthetic set

of millisecond pulsars. Similar to the approach used in section 4.4.2, in order to explore

two populations of millisecond pulsars, one in the Galactic field and the other in the near

Galactic centre region, we used two approaches to simulate l, b, and d. For the first

population, we just fitted the distribution from the ATNF catalogue for the millisecond

pulsars (excluding the ones in the globular clusters, the Large Magellanic Cloud, and

the Small Magellanic Cloud), and for the second population, we used the approach as

described in section 4.2.2. For both the populations, we generated 10000 values of these

parameters. For µl and µb too, we simulated 10000 values based on the distribution of

values in the ATNF catalogue for the millisecond pulsars. We also generated 10000 values
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of vr distributed uniformly between -200 to 200 km/s.

For ḟb,obs and f̈b,obs, we generated uniform distributions in subranges, and the logic of

selection of the subranges is described as follows. From the ATNF catalogue, we see that

the observed values of ḟb,obs lie in the ranges of −1.0 × 10−17 s−2 to −1.0 × 10−25 s−2 and

1.0 × 10−25 s−2 to 1.0 × 10−17 s−2. We divided each set into subranges that span over one

order of magnitude and generated 10000 uniformly distributed values for each subrange.

Since the ATNF catalogue only gives four measurements of the f̈b,obs for millisecond

pulsars, we decided to extend its range. More specifically, the values of f̈s,obs for these

four millisecond pulsars lie in the ranges of −1.0 × 10−26 s−3 to −1.0 × 10−27 s−3 and

1.0×10−28 s−3 to 1.0×10−26 s−3, while, by fitting these values with a distribution function

and generating synthetic values in section 4.2.1, we found that f̈b,obs vary between −1.0 ×
10−25 s−3 to −1.0× 10−30 s−3 and 1.0× 10−30 s−3 to 1.0× 10−25 s−3. We used these two sets

and divided each set into 5 subranges each of which span over one order of magnitude

and generated uniform distributions of 10000 values for each subrange.

In this way, we got 16 subranges of ḟb,obs, and 10 subranges of f̈b,obs, each having 10000

uniformly generated values. Similar to the technique used for simulation and calculation

in section 4.4.2, we chose one subrange corresponding to ḟb,obs and f̈b,obs each, in addition

to the 10000 values generated for the parameters l, b, d, µl, µb, and vr each. These 10000

values for each parameter constitute the 10000 synthetic millisecond pulsars, concentrated

in the specific subrange in the multi-dimensional parameter space, out of the total 160

(16×10) such subranges. We computed the values of ḟb,int and f̈b,int for all 10000 synthetic

pulsars in each subrange and selected the favourable cases. In this approach, we implicitly

assumed that the total number of millisecond pulsars over the full parameter space is

much larger than 10000, which is a bit over-estimation. However, our quest here is to find

unique combinations of parameters that can give large differences between the observed

and intrinsic values of the second derivative of the orbital period.

Since we did not get any favourable result, we then used uniform distributions for µl
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and µb too. As per the ATNF catalogue, for millisecond pulsars, µl varies between -

52.8 mas/yr and 74.485 mas/yr, and µb varies between -103 mas/yr and 120.820 mas/yr.

We generated 10000 uniformly distributed values between these maximum and minimum

values of µl and µb, respectively. However, we did not get any favourable case, not even

for near-Galactic centre pulsars. We then checked the maximum and minimum values of

µl and µb from the ATNF catalogue for the set of all the pulsars and found that µl varies

between -336.73 mas/yr and 193.8 mas/yr, and µb varies between -314.1 mas/yr and 176

mas/yr. We then generated 10000 uniformly distributed values between these maximum

and minimum values of µl and µb, respectively. We found only one favourable case among

the simulated Galactic field pulsars but multiple for the simulated near-Galactic centre

pulsars. All of these pulsars have large values of |µl| and |µb|, and consequently of µT

leading to very high values of VT = d µT. Such unrealistically high values of VT make us

conclude that it is very unlikely that the second derivative of the orbital period would be

contaminated by the dynamical terms. We still display these simulated pulsars as we are

exploring the effect of various terms.

The number of favourable cases (where f̈b,obs and f̈b,int values differ at least in the first

decimal place) for different subranges of ḟb,obs and f̈b,obs are summarized in Table 4.9

for both the sets, i.e., the simulated Galactic field pulsars as well as the simulated near-

Galactic centre pulsars. There was no favourable case (either in the Galactic field or near

the Galactic centre) in various subranges of ḟb,obs and f̈b,obs, other than the ones reported

in Table 4.9. The subranges where we found favourable cases are marked as subrange

(i), (ii), (iii), and (iv). From Table 4.9, it is evident that the number of favourable cases

significantly increase when we consider simulated pulsars near the Galactic centre.

We display the one favourable case from the simulated Galactic field pulsar and five ex-

amples from the set of favourable simulated near-Galactic centre pulsars in Table 4.10

with maximum percentage change in f̈b,obs. These six pulsars belong to various subranges

of 4.9, except the subrange (i). Note that for the Galactic field pulsar and one of the
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Table 4.9: Number of favourable simulated millisecond pulsars in the Galactic field as
well as near the Galactic centre where f̈b,obs and f̈b,int values differ at least in the first
decimal place, for various ranges of ḟb,obs, and f̈b,obs values. One row represents single
simulation run of 10000 millisecond pulsars. These entries represent the simulation runs
when -336.73 < µl < 193.8 mas/yr and -314.1 < µb < 176 mas/yr. The third column shows
the number of the favourable cases for the Galactic field pulsars, and the fourth column
shows the number of the favourable cases for the pulsars near the Galactic centre.

subrange ḟb,obs range f̈b,obs range Favourable Cases Favourable Cases
no. (s−2) (s−3) (Galactic Field) (Near Galactic Centre)
(i) −10−17 to −10−18 −10−29 to −10−30 0 6
(ii) −10−17 to −10−18 10−30 to 10−29 0 10
(iii) 10−18 to 10−17 −10−29 to −10−30 0 6
(iv) 10−18 to 10−17 10−30 to 10−29 1 4

near-Galactic centre pulsar (Pulsar2GC), the values of ḟb,obs and ḟb,int differ in the second

decimal place, although when rounded off, the first decimal place shows the difference.

4.5 Details of simulation techniques adopted to generate

parameters of millisecond pulsars

As mentioned earlier, for millisecond pulsars, we needed to generate a synthetic set of

parameters from their observed distributions reported in version 1.63 of the ATNF cata-

logue. The number of pulsars with the measured values of a particular parameter is much

less than the number of synthetic values we wanted. To ensure that the parameter for the

synthetic and the real pulsars follow the same distribution, we first fitted an Empirical Cu-

mulative Distribution Function (ECDF) to the real distribution and then used the inverse

CDF technique to generate the intended number of synthetic values following the same

ECDF. We performed this task using the in-built functions in the ‘R’ statistical package

such as ‘ecdf()’, which calculates the ECDF of given data, and ‘approxfun()’, which is

an interpolation function. Using the function generated by ‘approxfun()’, we simulated

the required number of pulsars. Below we show a sample code to perform this procedure,
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Table 4.10: Parameters for simulated millisecond pulsars with f̈b,int being different from
f̈b,obs at least in the first decimal place. Meanings of l, b, d, µl, µb, vr, Rp, z, and dGC

are explained in the caption of Table 4.7. Additionally, µTot is the total transverse proper
motion, fb is the orbital frequency, ḟb,obs is the observed (simulated) value of the first
derivative of the orbital frequency, ḟb,int is the intrinsic value of the first derivative of
the orbital frequency, f̈b,obs is the observed (simulated) value of the second derivative
of the orbital frequency, and f̈b,int is the intrinsic value of the second derivative of the
orbital frequency. We also report which subrange of Table 4.9 these pulsars belong to.
The second column displays the parameters of the one favourable simulated Galactic
field pulsar (represented by PulsarGF), whereas, columns 3, 4, 5, 6, and 7, display the
parameters of the favourable simulated pulsars near the Galactic centre (represented by
the subscript ‘GC’). We display the results till the second decimal place.

Parameters PulsarGF Pulsar1GC Pulsar2GC Pulsar3GC Pulsar4GC Pulsar5GC

l (deg) 317.85 355.92 2.24 3.97 357.33 0.39
b (deg) -43.66 2.80 4.48 -4.20 0.52 -3.12

d (kpc) 7.61 8.19 7.98 7.88 7.82 7.87
dGC (kpc) 7.52 0.72 0.70 0.81 0.42 0.45

µl (mas/yr) -335.29 -336.10 -266.69 -266.29 -288.00 -336.07
µb (mas/yr) -304.39 -228.82 -254.38 -290.02 -298.10 -271.67
µTot (mas/yr) 452.85 406.60 368.55 393.73 414.50 432.14

vr (km/s) 30.77 -187.18 122.58 -23.85 160.44 35.67

fb (×10−5 Hz) 3.68 9.51 0.71 11.79 4.05 0.12

ḟb,obs (×10−18 s−2) 8.15 -8.63 9.80 -9.89 9.24 8.53

f̈b,obs (×10−30 s−3) 2.50 1.01 -1.15 1.60 2.00 -2.45

subrange of Table 4.9 (iv) (ii) (iii) (ii) (iv) (iii)

Rp (kpc) 5.39 0.60 0.32 0.57 0.41 0.15
z (kpc) -5.25 0.40 0.62 -0.58 0.07 -0.43

ḟb,int (×10−18 s−2) 8.29 -8.31 9.82 -9.54 9.38 8.54

f̈b,int (×10−30 s−3) 2.56 0.95 -1.10 1.54 2.06 -2.39

( ḟb,int− ḟb,obs)×100
ḟb,obs

1.71 -3.63 0.19 -3.54 1.43 0.05

( f̈b,int− f̈b,obs)×100
f̈b,obs

2.47 -5.57 -4.48 -3.66 3.00 -2.49
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where 10000 values are being generated from the ecdf created from the data stored in the

first column of the inputdatafile.txt, and those simulated values are being stored in another

file called outputdatafile.txt.

» N=10000

» d1 <- read.table("datafile.txt")

» par <- d1[,1]

» spar <- sort(par)

» y1 <- ecdf(spar)

» fy <- y1(spar)

» qf <- approxfun(fy,spar,rule=2)

» n=0

» while (n < N){

» val <- qf(runif(1,0,1))

» if(val < max(par) && val > min(par)){

» z <- as.data.frame(val)

» write.table(z,file="outputdatafile.txt",append = TRUE, sep =

" ", dec = ".", row.names=FALSE, col.names=FALSE)

» n <- n+1}

» }

The parameters for which we use this technique are l, b, d, µl, µb, fs, ḟs,obs, f̈s,obs, fb,

ḟb,obs, and f̈b,obs. It should be noted that, since binary parameters are not reported for all

millisecond pulsars, we did the above procedures for two sets of real millisecond pulsars.

The first set consisted of the millisecond pulsars for which all relevant spin parameters

are known and the second set consisted of the millisecond pulsars for which all relevant

orbital parameters are known.

Comparisons between the histograms of the values of various parameters for real pulsars

with those of the synthetic ones are demonstrated in Figs. 4.5 and 4.6. We see good
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agreements between the two sets for all of the parameters.

Moreover, for each case, we also fit analytical functions to the ECDFs that might be used

for future simulations. In Figs. 4.7 and 4.8, we show the ECDFs of the catalogued pa-

rameters (black circles) and the corresponding fitted analytical functions (magenta line).

The analytical functions fitted for the ECDFs are given next.

A) For millisecond pulsars for which we study the spin period and its derivatives:

For l,

f (x) = a1 + b1x + c1x2 + d1x3 + e1x4 + f1x5 + g1x6 + h1x7 + i1x0.5, (4.2)

where x is l in degrees, a1 = −0.0529731, b1 = −0.0177131, c1 = 4.90899 × 10−4,

d1 = −6.36035×10−6, e1 = 4.21318×10−8, f1 = −1.50626×10−10, g1 = 2.76759×10−13,

h1 = −2.04602 × 10−16, and i1 = 0.0824625.

For b,

f (x) = a1 + b1x + c1x3 + d1 tan−1(e1x + f1), (4.3)

where x is b in degrees, a1 = 0.503818, b1 = 5.94973 × 10−3, c1 = −3.82843 × 10−7,

d1 = 0.13707, e1 = 0.177927, and f1 = 0.0123772.

For d,

f (x) =



a1 + b1x + c1x2 + d1x3 + e1x4 + f1x5 + g1x6 + h1 cos(i1x + j1) for 0.16 ≤ x < 6.52

a2 + b2x + c2x2 for 6.52 ≤ x ≤ 9.57,

(4.4)

where x is d in kpc, a1 = −0.183758, b1 = 0.727475, c1 = 1.882, d1 = −1.38698,

e1 = 0.330001, f1 = −0.0325109, g1 = 0.00114405, h1 = 1.33382, i1 = 1.03336,

j1 = 1.3714, a2 = 0.880219, b2 = 0.0241095, and c2 = −0.00121142.
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For µl,

f (x) = a1 + b1x + c1x3 + d1x4 + e1x5 + f1x6 + g1 tan−1(h1x + i1), (4.5)

where x is µl in mas/yr, a1 = 0.50758, b1 = −4.95419 × 10−3, c1 = 1.28996 × 10−6,

d1 = −3.36161 × 10−9, e1 = −1.6026 × 10−10, f1 = −8.5719 × 10−13, g1 = 0.447531,

h1 = 0.117067, and i1 = 0.132973.

For µb,

f (x) =



a1 + b1 tan−1(c1x + d1) for − 103.0 ≤ x < −10.88

a2 + b2x + c2x2 + d2x3 + e2x4 + f2x5 + g2x6 + h2 tan−1(i2x + j2) for − 10.88 ≤ x < 33.0

a3 + b3 tan−1(c3x + d3) for 33.0 ≤ x ≤ 120.82,

(4.6)

where x is µb in mas/yr, a1 = 0.0599331, b1 = 0.0338245, c1 = 0.104666, d1 = 1.57861,

a2 = 0.45342, b2 = −4.69699 × 10−3, c2 = 5.24825 × 10−5, d2 = 5.8858 × 10−7, e2 =

−9.48048 × 10−9, f2 = −2.87306 × 10−11, g2 = 4.54409 × 10−13, h2 = 0.433273, i2 =

0.149375, j2 = 0.0493088, a3 = −0.232011, b3 = 0.789204, c3 = 0.751781, and d3 =

−7.03388.

For fs,

f (x) = a1 + b1x + c1x3 + d1x4 + e1x5 + f1x6 + g1x7 + h1 ln(i1x + j1), (4.7)

where x is fs in Hz, a1 = −2.43949, b1 = −0.0106382, c1 = 3.17806 × 10−7, d1 =

−1.42841 × 10−9, e1 = 2.74707 × 10−12, f1 = −2.5095 × 10−15, g1 = 8.92214 × 10−19,

h1 = 0.853209, i1 = 0.429942, and j1 = 11.9449.
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For ḟs,

f (x) =



a1 + b1x + c1 tan−1(d1x + e1) for − 4.331143 × 10−14 ≤ x < −2.805 × 10−15

a2 + b2x + c2x3 + d2x4 + e2x5 + f2x6 + g2 tan−1(h2x + i2)

for x − 2.805 × 10−15 ≤ x ≤ 8.001 × 10−19,

(4.8)

where x is ḟs in s−2, a1 = 0.125467, b1 = 2.43942 × 1011, c1 = −0.0729254, d1 =

−5.59244 × 1014, e1 = −1.81661, a2 = 0.739498, b2 = 4.24045 × 1013, c2 = −6.67543 ×
1041, d2 = −6.0641 × 1055, e2 = −1.98126 × 1069, f2 = −2.13864 × 1082, g2 = 0.341357,

h2 = 2.89221 × 1015, and i2 = 1.03125.

For f̈s,

f (x) =



a1 + b1x for − 1.8 × 10−25 ≤ x < −1.04 × 10−25

a2 + b2x for − 1.04 × 10−25 ≤ x < −3.5 × 10−27

a3 + b3x for − 3.5 × 10−27 ≤ x < −5.9 × 10−28

a4 + b4x for − 5.9 × 10−28 ≤ x < 8. × 10−27

a5 + b5x for 8. × 10−27 ≤ x < 2.8 × 10−26

a6 + b6x for 2.8 × 10−26 ≤ x < 5.5 × 10−26

a7 + b7x for 5.5 × 10−26 ≤ x ≤ 6.1001 × 10−26,

(4.9)

where x is f̈s in s−3, a1 = 0.421053, b1 = 1.64474 × 1024, a2 = 0.379353, b2 = 1.24378 ×
1024, a3 = 0.525344, b3 = 4.29553 × 1025, a4 = 0.508586, b4 = 1.45518 × 1025, a5 =

0.575, b5 = 6.25 × 1024, a6 = 0.62037, b6 = 4.62963 × 1024, a7 = −0.270833, and

b7 = 2.08333 × 1025.

B) For millisecond pulsars for which we study the orbital period and its derivatives:
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For l,

f (x) = a1 + b1x + c1x2 + d1x3 + e1x4 + f1x5 + g1x6 + h1x7 + i1x0.5, (4.10)

where x is l in degrees, a1 = −0.0485927, b1 = −0.0218928, c1 = 6.77443 × 10−4,

d1 = −9.25316 × 10−6, e1 = 6.36726 × 10−8, f1 = −2.3393 × 10−10, g1 = 4.3803 × 10−13,

h1 = −3.28094 × 10−16, and i1 = 0.0776432.

For b,

f (x) = a1 + b1x + c1x2 + d1x3 + e1x4 + f1x5 + g1x6 + h1x7 + i1 tan−1( j1x + k1), (4.11)

where x is b in degrees, a1 = 0.477823, b1 = 0.0117684, c1 = 4.71953 × 10−5, d1 =

−3.83345 × 10−6, e1 = −2.09694 × 10−8, f1 = 8.93978 × 10−10, g1 = 2.55224 × 10−12,

h1 = −7.85373 × 10−14, i1 = 0.0833227, j1 = 0.412748, and k1 = 0.151804.

For d,

f (x) =



a1 + b1x + c1x2 + d1x3 + e1x4 + f1x5 for 0.16 ≤ x < 0.70

a2 tan−1(b2x + c2) for 0.70 ≤ x ≤ 10.37,
(4.12)

where x is d in kpc, a1 = 0.24179, b1 = −4.01779, c1 = 24.8668, d1 = −69.7158,

e1 = 91.1958, f1 = −44.6237, a2 = 0.703997, b2 = 0.738592, and c2 = −0.319079.

For µl,

f (x) = a1 + b1x + c1x2 + d1x3 + e1x4 + f1x5 + g1x6 + h1x7 + i1 tan−1( j1x + k1), (4.13)

where x is µl in mas/yr, a1 = 0.505004, b1 = −6.6135 × 10−3, c1 = 4.72798 × 10−6,

d1 = 2.22105×10−6, e1 = −5.01809×10−9, f1 = −4.64163×10−10, g1 = 8.91905×10−13,

h1 = 3.29716 × 10−14, i1 = 0.474632, j1 = 0.113521, and k1 = 0.130561.
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For µb,

f (x) =



a1 + b1 tan−1(c1x + d1) for − 103.0 ≤ x < −10.88

a2 + b2x + c2x2 + d2x3 + e2x4 + f2x5 + h2x7 + i2 tan−1( j2x + k2) for − 10.88 ≤ x < 24.0

a3 + b3 tan−1(c3x + d3) for 24.0 ≤ x ≤ 120.82,

(4.14)

where x is µb in mas/yr, a1 = 0.0599331, b1 = 0.0338245, c1 = 0.104666, d1 = 1.57861,

a2 = 0.463032, b2 = −5.72758 × 103, c2 = 2.28548 × 105, d2 = 1.34693 × 10−6, e2 =

−2.16677×10−9, f2 = −1.6908×10−10, h2 = 7.06577×10−15, i2 = 0.447546, j2 = 0.14614,

k2 = 0.0217994, a3 = −0.232011, b3 = 0.789204, c3 = 0.751781, and d3 = −7.03388.

For fb,

f (x) =



a1 + b1x + c1x3 for 1.730 × 10−28 ≤ x < 1.513 × 10−7

a2 + b2x + c2x2 + d2x3 + e2x4 + f2x5 + g2x6 + h2x7 + i2x0.5 for 1.513 × 10−7 ≤ x ≤ 1.778 × 10−4,

(4.15)

where x is fb in Hz, a1 = 1.95698 × 10−3, b1 = 2.09868 × 105, c1 = 1.81457 × 1019,

a2 = −0.103612, b2 = −1.24620 × 105, c2 = 2.79517 × 109, d2 = −5.17979 × 1013,

e2 = 5.90848 × 1017, f2 = −3.92399 × 1021, g2 = 1.38707 × 1025, h2 = −2.01098 × 1028,

and i2 = 566.13.
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For ḟb,

f (x) =



a1 + b1x for − 8.3 × 10−18 ≤ x < −4.4 × 10−19

a2 + b2x + c2 tan−1(d2x + e2) for − 4.4 × 10−19 ≤ x < −2.96 × 10−23

a3 + b3x for − 2.96 × 10−23 ≤ x < −5.0 × 10−24

a4 + b4 tan−1(c4x + d4) for − 5.0 × 10−24 ≤ x < 1.13 × 10−22

a5 + b5x for 1.13 × 10−22 ≤ x < 1.82 × 10−22

a6 + b6x + c6x2 for 1.82 × 10−22 ≤ x < 2.15 × 10−20

a7 + b7x + c7x2 + d7 tan−1(e7x + f7) for 2.15 × 10−20 ≤ x ≤ 1.9763 × 10−18,

(4.16)

where x is ḟb in s−2, a1 = 0.0708958, b1 = 4.38712×1015, a2 = 0.176865, b2 = 5.69998×
1016, c2 = 0.0543125, d2 = 5.08556×1019, e2 = 0.618662, a3 = 0.336052, b3 = 4.35315×
1021, a4 = 0.417954, b4 = 0.113064, c4 = 3.71689 × 1023, d4 = −0.433861, a5 = 0.5761,

b5 = 1.48633×1020, a6 = 0.602375, b6 = 4.68001×1018, c6 = 5.04×1037, a7 = 0.787153,

b7 = 2.43602 × 1016, c7 = 1.74204 × 1034, d7 = 0.0645722, e7 = 1.28703 × 1019, and

f7 = −1.64509.

For f̈b,

f (x) =



a1 + b1x for − 1.6 × 10−26 ≤ x < −5. × 10−27

a2 + b2x for − 5. × 10−27 ≤ x < 2.4 × 10−28

a3 + b3x for 2.4 × 10−28 ≤ x ≤ 1.77 × 10−26,

(4.17)

where x is f̈b in s−3, a1 = 0.613636, b1 = 2.27273 × 1025, a2 = 0.73855, b2 = 4.77099 ×
1025, a3 = 0.746564, and b3 = 1.43184 × 1025.
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10−15 s−2 (real)

−40 −30 −20 −10 0

0
.0

0
.1

0
.2

0
.3

0
.4

−40 −20 0

(n) distribution of ḟs in
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Figure 4.5: Comparison of the observed and simulated density distributions of parameters
of millisecond pulsars in the Galactic field for which we study the spin frequency and its
derivatives.
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Figure 4.6: Comparison of the observed and simulated density distributions of parameters
of millisecond pulsars in the Galactic field for which we study the orbital frequency and
its derivatives.
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Figure 4.7: Plots showing the Empirical Cumulative Distribution Functions of various
parameters of millisecond pulsars as reported in the ATNF catalogue along with corre-
sponding fitted functions for (a) l,( b) b, (c) d, (d) µl, (e) µb, (f) fs, (g) ḟs,obs, and (h) f̈s,obs.
This is for the case when we study the spin frequency and its derivatives.
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Figure 4.8: Plots showing the Empirical Cumulative Distribution Functions of various
parameters of millisecond pulsars as reported in the ATNF catalogue along with corre-
sponding fitted functions for (a) l,( b) b, (c) d, (d) µl, (e) µb, (f) fs, (g) ḟb,obs, and (h) f̈b,obs.
This is for the case when we study the orbital frequency and its derivatives.
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4.6 Summary

As the expression of
�

f̈
f

�
ex

in eq. (2.37) is quite long, consisting of multiple terms, which

by themselves are not very simple, we first explored whether any one or more of the terms

can be ignored. Our simulations established the fact that all terms are of nearly equal im-

portance, and should be kept. We also found that the total dynamical contribution would

be much larger for pulsars located near the Galactic centre, so when such pulsars will be

discovered and timed, one should not forget to correct for dynamical contributions from

the first and second derivatives of the frequencies. However, we emphasize that the values

reported in this work for the Galactic centre are not very accurate, as the gravitational po-

tential of the Galaxy in that region is not very well modeled. If such a model is available

in the future, one can easily implement that in a code based on our analytical expressions.

We have created a python package GalDynPsrFreq that estimates the contribution of the

dynamical terms to the measured values of the first and the second time derivatives of the

frequency. Using GalDynPsrFreq, we investigated potential cases where the dynamical

contributions might lead to confusing results if not accounted for. As our expression is

valid for the second derivatives of the spin frequency as well as the second derivatives

of the orbital frequency, we studied both. We paid special attention to the pulsars with

reported values of the braking index being different from 3 (Hobbs et al., 2004; Dang

et al., 2020). Although for these real pulsars, we did not see any significant contribution

of the dynamical terms to the value of the braking index, our simulations resulted in a few

such cases. We also saw that it is very unlikely to have the second derivative of the orbital

frequency contaminated by the dynamical terms.

We have reported the values of the dynamical terms contributing to the second derivative

of frequencies without any uncertainties, as we calculated the accelerations and jerks

of pulsars using a model of the Galactic potential that does not report errors. The lack

of error estimation does not alter the conclusions of this work, because, first, most of

the results we report are for simulated pulsars, second, dynamical effects are not that
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large for the second derivative of the frequencies for the real pulsars we have. However,

we have seen that these effects will be large for pulsars near the Galactic centre. For

such pulsars, it will be necessary to have an improved model of the Galactic potential

including uncertainties on various parameters. In that case, it will not be difficult to adopt

the standard error propagation technique on our analytical expressions which are the main

results of the present thesis. Presently, if needed, one can use a simulation technique to

find the uncertainties. We have demonstrated the use of such a technique.
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Chapter 5

Conclusion

We have seen that it is important to do correction for the dynamical terms in the first

as well as in the second derivatives of the spin frequency, as they can drastically affect

the braking index values, which might lead to inaccurate conclusions on the true physics

behind the spin-down of such pulsars. Similarly, the dynamical terms can impact the

values of the first and second derivatives of orbital frequencies of binary pulsars signifi-

cantly that might have consequences in applications of these measurements in the study

of gravitational physics.

Previous studies on estimation of the dynamical terms have resorted to approximate meth-

ods that fail to provide an accurate picture of the intrinsic frequency derivatives (either

the spin or the orbital) of all the pulsars spread across the Galactic field. They might have

been sufficient to estimate parameters for some pulsars for the accuracy of the timing

solutions existing in the past. However, improvements in the timing precision demand

improvements in methods of estimation of dynamical terms.

In the present thesis, we have provided a formalism to calculate analytical expressions

of the dynamical terms in the first and the second derivatives of the frequency with the

assumption that the gravitational potential of the Galaxy is the only cause of the accelera-

tion and the jerk of the pulsar. These expressions involve various measurable parameters
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and are equally valid for the spin and the orbital frequencies.

We have created two python packages, ‘GalDynPsr’ and ‘GalDynPsrFreq’, both of which

are publicly available. ‘GalDynPsr’ evaluates the contribution of dynamical effect-terms

to the first derivative of the period following the traditional as well as improved methods

based on a model of the Galactic potential provided in a public package called ‘galpy’.

GalDynPsrFreq estimates the dynamical terms in the measured values of the first and the

second derivatives of the frequency, based on the improved model, as investigations with

GalDynPsr already established the superiority of this model over the conventional ones.

It should also be noted that even after eliminating the dynamical contributions from the

observed derivatives of the frequencies, there might exist additional external contributions

due to the error while modeling the time-dependent change in the dispersion measure

(Prager et al., 2017). So, care should be taken regarding this. Additionally, for a pulsar

very close to the Galactic centre, extra contributions due to the nearby stars or the potential

of the nuclear cluster (if the pulsar is in such a cluster) will be significant. So care should

be taken to extract these effects in addition to other effects calculable by GalDynPsr or

GalDynPsrFreq. Similarly, for pulsars in globular clusters, the cluster potential is to be

modeled out of GalDynPsr or GalDynPsrFreq.

Since galpy as well as GalDynPsr and GalDynPsrFreq are being improved continuously,

potential users are requested to check for new versions on the source repositories of these

packages. It is important to note that the model of the Galactic potential as done in galpy

is not the only one, many different models exist in the literature, e.g., McMillan (2017);

Pouliasis et al. (2017), etc. The modular structures of GalDynPsr and GalDynPsrFreq

make sure that the interested users can incorporate new models without much difficulty.

The work presented in this thesis has potential applications in probing the structural prop-

erties of pulsars as well as in studies of fundamental physics. In fact, Archibald et al.

(2018) used GalDynPsr when they placed the best ever limit of the non-violation of the

universality of free fall using data of the pulsar PSR J0337+1715, which is a part of a
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three-body system. Moreover, using GalDynPsrFreq, one can get more accurate mea-

surements of the values of the braking index that are gateways to study the structural

properties of pulsars by being indicators of the true spin-down nature of pulsars. With

both GalDynPsr and GalDynPsrFreq, we can get intrinsic values of the derivatives of the

orbital period or frequency, which can be used in tests of gravity theories and measure-

ments of masses of both components of binary pulsars. We can also obtain intrinsic spin

frequency derivatives, which can be used in calculating the spin-down limit of the ampli-

tude of the strain of continuous gravitational waves. This can be helpful in constraining

continuous gravitational waves from rotationally deformed pulsars.
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