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1.1 Linearized gravity 33

Figure 1.1. Upper panel shows a monochromatic GW, h(t), propagating along the ẑ direction. Lower
panel shows the e↵ect of the plus and the cross polarization on ring of test particles [218].

for geodesic deviation, which is given by,

D2⇠µ

D⌧2 = �Rµ⌫⇢�⇠
⇢dx⌫

d⌧
dx�

d⌧
, (1.1.11)

where D denotes the directional derivative and Rµ⌫⇢� is the Riemann tensor. After a few algebraic

manipulations (see [226] for details), the equation of geodesic deviation, Eq. (1.1.11), at the lin-

earized order, can be written as a function of GW amplitude, which is,

⇠̈i =
1
2

ḧTT
i j ⇠

j, (1.1.12)

where ḧTT
i j denotes the second time derivative of hi j. Using Eq. (1.1.12), one can easily conclude

that when a GW passes through a set of test particles, the relative distance between the test masses

stretches and squeezes.
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Figure 1.2. The upper panel shows a typical gravitational waveform during the various phases of a
binary evolution whereas the lower panel shows the change in the BH velocity and their separation as a
function of time (Image credit [18]).

pact binary systems can be produced by a pair of BHs, or a BH and NS, or a pair of NSs. In

the case of BH-NS or NS-NS systems, the NS might get tidally disrupted and might produce new

features in the waveform, carrying information about the NS’s internal structure [12].

In the remainder of this thesis, we focus on GWs from compact binary inspirals to study GWs in

the MPM-PN formalism and study the implications of observing these systems for fundamental

physics and astrophysics.

1.3 Gravitational waves detectors

E↵orts to detect GWs from celestial bodies started in 1960, pioneered by J. Weber. The idea for

detection of GWs in this method is to use giant metal cylinders (bar detectors) to measure the

vibrations excited in the material due to the passage of gravitational waves. But the bar-detectors

did not reach the sensitivity required to detect GWs from astrophysical sources, and a detection

claimed by Weber [292] could not be established by other detectors.

In parallel, attempts to construct the interferometric detectors were pursued. Here one uses the
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Figure 1.3. Simplified schematic diagram of a LIGO detector (Credit: Caltech/MIT/LIGO Lab).

principle of interferometry to detect GWs where a beam of monochromatic light (laser beam) is

first split into two and travels through two di↵erent optical cavities at an angle with each other.

These two beams get reflected by the freely suspended mirrors at the ends of the cavities and

recombine to produce an interference pattern (see fig. 1.3 for a schematic diagram). Due to the

passage of GWs, the arm length of the cavities changes, which corresponds to the dimensionless

strain with an amplitude of about h = �L
L ⇠ 10�20. This relative change varies over time depending

on the intensity of the passing GWs and causes changes in the interference pattern which are

monitored through the photo detector and extracts information about the GWs. Unlike the narrow-

band bar detectors, interferometric detectors have broad-band responses, which facilitates searches

for di↵erent types of GW sources.

1.3.1 Currently operational gravitational wave detectors

The two LIGO (Laser Interferometer Gravitational-Wave Observatory) detectors are located in

Livingston, Louisiana and Hanford, Washington, two largely separated locations in the USA. These

are L-shaped detectors with each arm of length 4 km. Along with these two, Advanced VIRGO is
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Figure 1.4. simplified schematic diagram of triangular ET [189] .

another detector, located near Pisa in Europe. This is also an L-shaped interferometric detector but

with a 3 km arm length, has comparable sensitivity to that of the two LIGO detectors.

1.3.2 Future gravitational wave detectors

1.3.2.1 Future second generation detectors

With improved sensitivities of Advanced LIGO and Virgo in the upcoming observing runs, there

are a few more upcoming second generation GW detectors. The Japanese cryogenic detector

KAGRA [69] is likely to be operational soon. LIGO-India [201] is also expected to join the world-

wide network of GW detectors by mid-2020s. A worldwide network of five GW detectors will

increase the expected event rates as well as boost the detection confidence. The source localizations

of the GW sources will also improve tremendously [164, 209].
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Figure 1.5. The orbital configuration of the LISA mission concept [198]

1.3.2.2 Future third generation detectors

There are ongoing research and developments, including science case studies for third-generation

detectors such as the Einstein Telescope (ET) [11] and Cosmic Explorer (CE) [24]. Among the

third generation detectors, CE is an L-shaped interferometric detector but with much larger arm

length(⇠40 km) compared to the second generations ones, whereas ET is a triangular shaped de-

tector with each arm of length 10 km (a simplified diagram of ET is given in fig. 1.4). Due to

their improved sensitivity in the low frequency regime (till ⇠1Hz) and the leap in the sensitivity

compared to the second generation detectors, they are unique probes of the high redshift universe.

Roughly around 106 of BNS mergers [39] are expected to be detected by the 3G detector network,

which will help to test astrophysical models of the formation and evolution of double neutron stars.

In addition to stellar-mass compact binaries, ET and CE can detect intermediate-mass BHs with

a total mass of several hundreds of solar masses, which will last longer (compared to the equal-

mass binaries) in the detector sensitivity band and hence are accurate probes of the compact binary

dynamics and the BH nature of the compact objects [118, 265].
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where f is in units of Hz. For the Japanese detector KAGRA we use the noise PSD given in

Ref. [3].

Third generation ground based detectors : In case of third generation ground based detectors,

we use the noise PSD given in Ref. [11] for ET-D. For CE we use the following fit,

S h( f ) = 5.62 ⇥ 10�51 + 6.69 ⇥ 10�50 f �0.125 +
7.80 ⇥ 10�31

f 20

+
4.35 ⇥ 10�43

f 6 + 1.63 ⇥ 10�53 f + 2.44 ⇥ 10�56 f 2

+ 5.45 ⇥ 10�66 f 5 Hz�1 , (1.4.7)

where f is in units of Hz .

Space based detector LISA : We quote the noise PSD for LISA here which we have used in fur-

ther computations following Ref. [70]. The analytical form of the sky-averaged detector sensitivity
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Figure 1.7. Orbital decay caused by the loss of energy by gravitational radiation [293].

tion [40, 174, 197, 241].

After two decades of development, a combination of the initial interferometric detectors including

TAMA 300 in Japan, GEO 600 in Germany, LIGO in the United States, and Virgo in Italy operated

between 2002 and 2010. These observations did not lead to the detection of GWs, which was

consistent with the expected event rates of the GW sources. However, these observations put the

first observational upper limits on the rate of mergers of BBH, BNS and NS-BH systems [5,6,8,38].

Between 2010-2015 initial LIGO was upgraded, and in 2015 it started the first observation run

with a sensitivity much better than the initial LIGO. With this sensitivity, on 14 September 2015,

the two LIGO detectors, Livingstone and Hanford, jointly detected the GWs from a BBH merger

with a statistical confidence > 5� [13,18] . The duration of the signal detected was ⇠ 0.2 sec. The

individual BHs of masses 36+5
�4M�and 29+4

�4M� at a distance of 410+160
�180 Mpc, merged to form a final
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Figure 2.1. Regime of validity of various approximation schemes and numerical methods in the plane
defined by the two perturbation parameters rc2/Gm and m1/m2. Figure courtesy [123].

e↵ects of back-reaction are consistently taken into account within the gravitational self-force for-

malism [75,76,151–153,254]. In contrast, numerical relativity provides a description of the merger

of two compact objects at high velocity [256] and is valid for any mass ratio in principle. However,

this method is computationally very expensive.

Apart from the above described methods, a semi-analytical description, namely the E↵ective One

Body (EOB) approach of compact binary dynamics and emission of GW radiation is proposed in

refs. [119,120,139,144] to include the post-inspiral e↵ects. Assuming a comparable mass compact

binary system is a smooth deformation of that of the test particle limit, the EOB approach uses

three ingredients; the conserved Hamiltonian of the two body system in GR, the radiation-reaction

force, and the gravitational waveform. Each of these ingredients is estimated using the higher order

PN-expanded results in a resummed form to incorporate non-perturbative and strong-field e↵ects.

After the remarkable progress in developing analytical as well as numerical techniques to solve

the two body dynamics in GR over more than a hundred years, we now can predict highly accu-

rate gravitational waveforms from compact binary mergers. The dynamics of a compact binary

system is conventionally divided into the adiabatic inspiral, merger, and ringdown phases. Dur-

ing the inspiral phase the orbital time scale is much smaller than the radiation backreaction time
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Figure 2.2. Various scales used in PN approximation. Figure courtesy Ref. [123].
.

near zone where r << �GW. Though slow motion is one of the main criteria of this scheme, the

characteristic speed for a compact binary inspiral could be as high as 50% of the speed of light

in their last orbit, which demands the computation of higher PN order corrections. On the other

hand, in the weak field limit, post-Minkowskian (PM) formalism is valid outside the source in

the region where r >> �GW spanned till r ! 1 denoted as wave zone. In addition to the PM

expansion, multipolar expansion of the complete non-linear theory [84,94] provides the full MPM

scheme which is valid over all the regions outside the compact source. In principle, this scheme is

valid for all kinds of sources but for PN sources there exists a bu↵er/matching zone where both the

approximation schemes are valid, which gives rise to the complete wave generation formalism.
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PN order frequency dependences Multipole coe�cients

0 PN f �5/3 µ2

1 PN f �1 µ2, µ3, ✏2

1.5 PN f �2/3 µ2

2 PN f �1/3 µ2, µ3, µ4, ✏2, ✏3

2.5 PN log log f µ2, µ3, ✏2

3 PN f 1/3 µ2, µ3, µ4, µ5, ✏2, ✏3, ✏4

3 PN log f 1/3 log f µ2

3.5 PN f 2/3 µ2, µ3, µ4, ✏2, ✏3

Table 3.1. Summary of the multipolar structure of the PN phasing formula. The contributions of various
multipoles to di↵erent phasing coe�cients and their frequency dependences are tabulated. Following
the definitions introduced in this thesis, µl are associated to the deformations of mass-type multipole
moments and ✏l refer to the deformations of current-type multipole moments.

simultaneously certain PN coe�cients1.

3.3 Parameter estimation of the multipole coefficients

In this section, we set up the parameter estimation problem to measure the multipolar coe�cients

and present our forecasts for Advanced LIGO, the Einstein Telescope, Cosmic Explorer and LISA.

Using the frequency-domain gravitational waveform, we study how well the current and future

generations of GW detectors can probe the multipolar structure of GR. We derive the projected

accuracies with which various multipole moments may be measured, in case of various detector

configurations by using standard parameter estimation techniques. Following the philosophy of

Refs. [44, 66, 237], while computing the errors, we consider the deviation of only one multipole

at a time. An ideal test would have been where all the coe�cients are varied at the same time, but

this would lead to almost no meaningful constraints due to the strong degeneracies among di↵erent

coe�cients. However, this would not a↵ect our ability to detect a potential deviation because in

the multipole structure, a deviation of more than one multipole coe�cient would invariably show

up in the set of tests performed by varying one coe�cient at a time [44, 221, 231, 237].
1We thank Archisman Ghosh for pointing out this possibility to us.
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Figure 3.1. Projected 1� errors on µ2, µ3 and ✏2 as functions of the total mass for the aLIGO noise PSD.
Results from Bayesian analysis using MCMC sampling are given as dots showing good agreement. All
the sources are considered to be at a fixed luminosity distance of 100 Mpc.

estimated.

3.4 Results and Discussion

In this section, we report the 1�measurement errors on the multipole coe�cients introduced in the

previous section, obtained using the Fisher matrix as well as Bayesian analysis and discuss their

implications.

Our results for the four di↵erent detector configurations are presented in figs. 3.1, 3.3 and 3.5,

which show the errors on the various multipole coe�cients µl, ✏l for aLIGO, ET-D, CE-wb and

LISA, respectively. For all the estimates we consider the sources to be at fixed distances. In

addition to the intrinsic parameters there are four more (angular) parameters that are needed to

completely specify the gravitational waveform. More precisely, one needs two angles to define the

location of the source on the sky and another two angles to specify the orientation of the orbital

plane with respect to the detector plane and the polarization of the wave [268]. Since we are using

a pattern-averaged waveform [143] (i.e., a waveform averaged over all four angles), the luminosity

distance can be thought of as an e↵ective distance which we assume to be 100 Mpc for aLIGO, ET-

D and CE-wb and 3 Gpc for LISA. For aLIGO, ET-D and CE-wb, we explore the bounds for the

binaries with total masses in the range [1,70] M� and for LISA detections, in the range [105, 107]

M�.
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Figure 3.2. The posterior distributions of all six parameters {lnA, tc, �c,Mc, ⌘, µ3} and their correspond-
ing contour plots obtained from the MCMC experiments (see section 1.4.2 for details) for a compact
binary system at a distance of 100 Mpc with q = 2, m = 5 M� using the noise PSD of aLIGO. The
darker shaded regions in the posterior distributions as well as in the contour plots show the 1� bounds
on the respective parameters.

3.4.1 Advanced LIGO

In fig. 3.1, we demonstrate the projected 1-� errors on the three leading multipole coe�cients,

µ2, µ3 and ✏2, as a function of the total mass of the binary for the aLIGO noise PSD using the

Fisher matrix. Di↵erent curves are for di↵erent mass ratios, q = m1/m2 = 1.2 (red), 2 (cyan)

and 5 (blue). For the multipole coe�cients considered, low-mass systems obtain the smallest

errors and hence the tightest constraints. This is expected as low-mass systems live longer in the

detector band and have larger number of cycles, thereby allowing us to measure the parameters

very well. The bounds on µ3 and ✏2, associated with the mass octupole and current quadrupole,
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Figure 3.3. Dark shaded curves correspond to the projected 1� error bars on µ2, µ3, µ4 and ✏2 using the
proposed CE-wb noise PSD as a function of the total mass, where as lighter shades denote the bounds
obtained using the ET-D noise PSD. All the sources are considered to be at a fixed luminosity distance
of 100 Mpc. The higher-order multipole moments such as µ4 and ✏2 cannot be measured well using
aLIGO and hence it may be a unique science goal of the third-generation detectors.

in the corner plots in fig. 3.2. In fig. 3.1 we see that the 1� errors in µ3 from the Fisher analysis

agree very well with the MCMC results for q = 2 and 5. We did not find such an agreement for

q = 1.2. We suspect that this is because for comparable-mass systems the likelihood function,

defined in chapter 1, Eq. (1.4.16), becomes shallow and it is computationally very di�cult to find

its maximum given a finite number of iterations. As a result, the MCMC chains did not converge

and 1� bounds cannot be trusted for such cases. We find the nonconvergence of MCMC chains

for all of the cases for µ2 and ✏2. Hence we do not show those results in fig. 3.1. In a nutshell,

our findings indicate only µ2 and µ3 can be measured with a good enough accuracy using aLIGO

detectors.

3.4.2 Third-generation detectors

Third-generation detectors such as CE-wb (and ET-D) can put much better bounds on µ2, µ3 and ✏2

compared to aLIGO. Additionally, they can also measure µ4 with reasonable accuracy, as shown by
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Figure 3.4. The posterior distributions of all six parameters {lnA, tc, �c,Mc, ⌘, µ3} and their correspond-
ing contour plots obtained from the MCMC experiments (see Sec. 1.4.2 for details) for a compact binary
system at a distance of 100 Mpc with q = 2, m = 10 M� using the noise PSD of CE-wb. The darker
shaded region in the posterior distributions as well as in the contour plots show the 1� bounds on the
respective parameters.

the darker (and lighter) shaded curves in fig. 3.3. The bounds on µ2, µ3 and ✏2 show similar trends

as in the case of aLIGO except the overall accuracy of the parameter estimation is much better.

For a few cases in low-mass regime, µ2 and µ4 are better estimated for comparable-mass binaries

(i.e., q = 1.2). We also find that the bounds (denoted by the lighter shaded curves in fig. 3.3)

obtained by using the ET-D noise PSD are even better than the bounds from CE-wb, though the

other features are more or less similar for both of the detectors. This improvement in the precision

of measurements is due to two reasons. The triangular shape of ET-D enhances the sensitivity

roughly by a factor of 1.5 and its sensitivity is much better than CE-wb in the low-frequency
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Figure 3.5. Projected constraints on various multipole coe�cients using LISA sensitivity, as a function
of the total mass of the binary. All the sources are considered to be at a fixed luminosity distance of 3
Gpc. LISA can measure all seven multipoles which contribute to the phasing and hence will be able to
place extremely stringent bounds on the multipoles of the compact binary gravitational field.

regime.

For a few representative cases, we compute the errors in µ2, ✏2 and µ3 using Bayesian analysis

and the results are shown as dots with the same color in fig. 3.3. The MCMC results are in good

agreement with the Fisher matrix results. Unlike the aLIGO PSD, for CE-wb the MCMC chains

converge quickly in the case of µ2 and ✏2 because of the high signal-to-noise-ratios, which naturally

lead to high likelihood values. As a result, it becomes relatively easier for the sampler to find the

global maximum of the likelihood function in relatively fewer iterations. Moreover, we show an

example of corner plot for the CE-wb PSD with q = 2, m = 10 M� in fig. 3.4.
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PN order frequency dependences Multipole coe�cients

0 PN f �5/3 µ2

1 PN f �1 µ2, µ3, ✏2

1.5 PN f �2/3 µ2, ✏2

2 PN f �1/3 µ2, µ3, µ4, ✏2, ✏3

2.5 PN log log f µ2, µ3, ✏2, ✏3

3 PN f 1/3 µ2, µ3, µ4, µ5, ✏2, ✏3, ✏4

3 PN log f 1/3 log f µ2

3.5 PN f 2/3 µ2, µ3, µ4, ✏2, ✏3, ✏4

Table 4.1. Update of the summary given in table 3.1 of chapter 3 for the multipolar structure of the PN
phasing formula. Contribution of various multipoles to di↵erent phasing coe�cients and their frequency
dependences are tabulated. The additional multipole coe�cients appearing due to spin are underlined.
Following the definitions introduced in chapter 3 [204], µl refer to mass-type multipole moments and ✏l
refer to current-type multipole moments.

The cross-terms of the multipole coe�cients with ± showcase the degeneracy between BBHs in

alternative theories and non-BHs in GR. As one can see from Eq. (4.3.10), µ2, µ3 and ✏2 are the

multipole coe�cients which are sensitive to the non-BH nature (vis-a-vis the above mentioned

parametrization). As can be seen from the phasing formula, these imprints will be higher order

corrections to the multipole coe�cients and may not influence their estimates unless the values of

± are su�ciently high.

4.4 Methodology for numerical analysis

We have discussed the the semi-analytical Fisher information matrix based parameter estimation

scheme [67,133,136,258] in section 1.4. We follow the same prescription to discuss the projected

bounds on the multipolar deviation coe�cients for the spinning binaries. We also discuss the

leading order bounds on the systematics of the estimated parameters due to the di↵erence between

the spinning and non-spinning waveforms in the Appendix A for LISA.

For ~✓ being the set of parameters defining the GW signal h̃( f ;~✓), the Fisher information matrix

is defined in Eq. (1.4.18). In the large signal-to-noise ratio (SNR) limit, the distribution of the
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Figure 4.1. Projected 1� errors on the multipole and the energy coe�cients as a function of total mass
for two di↵erent mass ratios q = m1/m2 = 1.2, 5 and two spin configurations, �1 = 0.9, �2 = 0.8 and
�1 = 0.3, �2 = 0.2 for the second generation detector network. All the sources are at a fixed luminosity
distance of 100 Mpc with the angular position and orientations to be ✓ = ⇡/6, � = ⇡/3, = ⇡/6, ◆ = ⇡/5.
To obtain the numerical estimates showed in this plot, we also consider a prior distribution on �c. To
be precise, we assume the prior on �c for each detector in the network to follow a Gaussian distribution
with a zero mean and a variance of 1/⇡2.

4.5.1 Ground-based second generation detector network

As a representative case, we consider a world-wide network of five second-generation ground

based detectors: LIGO-Hanford, LIGO-Livingston, Virgo, KAGRA [69], and LIGO-India [201].

We assume the noise PSD for LIGO-Hanford, LIGO-Livingstone and LIGO-India to be the ana-

lytical fit given in Ref. [46] whereas the fit given in Eq. (1.4.6) is used for Virgo PSD. We consider

the lower cut o↵ frequency, flow = 10 Hz for these detectors. For the Japanese detector, KAGRA,

we use the noise PSD given in Ref. [3] with flow = 1 Hz. For all the detectors, fhigh is taken to be

the frequency at the last stable orbit, fLSO = 1/(⇡m 63/2). As opposed to the single detector Fisher

matrix analysis, for a network of detectors, Fisher matrix is evaluated for each detector and then

added to obtain the network-Fisher-matrix. To estimate the individual Fisher matrices we use a

waveform that is weighted with the correct antenna pattern functions F+/⇥(✓, �, ) of the detectors,

where ✓, � and  are the declination, the right ascension and the polarization angle of the source in



104 Testing the multipole structure and conservative dynamics : The spinning case [205]

2 5 10 20 40 70

10�2

10�1

�µ
2

c1 = 0.9,c2 = 0.8,q = 1.2 c1 = 0.3,c2 = 0.2,q = 1.2 c1 = 0.9,c2 = 0.8,q = 5 c1 = 0.3,c2 = 0.2,q = 5

2 5 10 20 40 70

10�2

10�1

100

�µ
3

2 5 10 20 40 70
10�1

100

�µ
4

2 5 10 20 40 70

100

101

�e
2

2 5 10 20 40 70

10�2

4�10�3

6�10�3�a
0

2 5 10 20 40 70

0.01

6�10�3

2�10�2

�a
2

2 5 10 20 40 70

0.10

1.00

�a
3

2 5 10 20 40 70

2�10�2

3�10�2

4�10�2

�a
4

Total Mass (M�)

Figure 4.2. Projected 1� errors on the multipole and the energy coe�cients as a function of total mass
for two di↵erent mass ratios q = m1/m2 = 1.2, 5 and two spin configurations, �1 = 0.9, �2 = 0.8 and
�1 = 0.3, �2 = 0.2 for the third generation detector network. All the sources are at a fixed luminosity
distance of 100 Mpc with the angular position and orientations to be ✓ = ⇡/5, � = ⇡/6, = ⇡/4, ◆ = ⇡/4.
To obtain the numerical estimates showed in this plot, we also consider a prior distribution on �c. To
be precise, we assume the prior on �c for each detector in the network to follow a Gaussian distribution
with a zero mean and a variance of 1/⇡2.

the sky. More precisely we use the following waveform

h̃( f ) =
1 + cos2 ◆

2
F+(✓, �, ) h̃+( f ) + cos ◆ F⇥(✓, �, ) h̃⇥( f ) (4.5.1)

with

h̃+( f ) = A µ2 f �7/6e�i s , (4.5.2)

h̃⇥( f ) = �i h̃+( f ) . (4.5.3)

The individual F+/⇥(✓, �, ) for each detector are estimated incorporating the location of the detec-

tors on Earth as well as Earth’s rotation as given in Ref. [4]. We calculate the Fisher matrix for each

detector considering an eight dimensional parameter space, {tc, �c, logA, logMc, log ⌘, �s, �a, µ`

or ✏` or ↵m}, which specifies the true GW signal. Here we fix the four angles, ✓, �, , ◆ to be

⇡/6, ⇡/3, ⇡/6, ⇡/5 respectively and do not treat them as parameters in the Fisher matrix estimation.

These four angles, being the extrinsic parameters, have negligible correlations with the intrinsic
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Figure 4.3. Projected 1� errors on the multipole coe�cients as a function of total mass for three di↵erent
mass ratios q = m1/m2 = 1.2, 5 and 10 in case of LISA noise PSD. We assume �1 = 0.9, �2 = 0.8.
All the sources are considered to be at a fixed luminosity distance of 3 Gpc. To obtain the numerical
estimates showed in this plot, we also consider a prior distribution on �c. To be precise, we assume �c
to follow a Gaussian distribution with a zero mean and a variance of 1/⇡2.

above.

4.6 Results

Our results for the ground-based detectors are depicted in Figs. 4.1 for second generation and 4.2

for third generation and those for the space-based LISA detector are presented in Figs. 4.3, 4.4, 4.5,

4.6 and 4.7. For the second and third generation ground-based detectors configurations, we choose

the binary systems with two di↵erent mass ratios q = 1.2, 5 for two sets of spin configurations:

high spin case with �1 = 0.9, �2 = 0.8 and low spin case with �1 = 0.3, �2 = 0.2. We also assume

the luminosity distance to all these prototypical sources to be 100 Mpc. We consider these sources

are detected with a network of second or third generation detectors as detailed in the last section.

For LISA, we consider our prototypical supermassive BHs to be at the luminosity distance of 3

Gpc with three di↵erent mass ratios of q = 1.2, 5, 10. For these mass ratios, we investigate both

high spin (�1 = 0.9, �2 = 0.8) and low spin (�1 = 0.3, �2 = 0.2) scenarios.
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Figure 4.4. Projected 1� errors on the multipole coe�cients as a function of total mass for three di↵erent
mass ratios q = m1/m2 = 1.2, 5 and 10 in case of LISA noise PSD. We assume �1 = 0.3, �2 = 0.2.
All the sources are considered to be at a fixed luminosity distance of 3 Gpc. To obtain the numerical
estimates showed in this plot, we also consider a prior distribution on �c. To be precise, we assume �c
to follow a Gaussian distribution with a zero mean and a variance of 1/⇡2.

First we discuss the qualitative features in the plots. As expected, the third generation detec-

tor network which has better bandwidth and sensitivity does better than the second generation

detectors. On the other hand LISA and third generation detectors perform comparably, though

for totally di↵erent source configurations. The bounds on the multipole coe�cients describing

the dissipative dynamics broadly follow the trends seen in the non-spinning study carried out in

chapter 3 [204]. The mass-type multipole moments are measured with better accuracies than the

current-type ones appearing at the same PN order. Among all the coe�cients, µ2 (corresponding

to the mass quadrupole) yields the best constraint as it is the dominant multipole contributing to

the flux and the phasing. Due to the interplay between the sensitivity and mass dependent upper

cut-o↵ frequency, the errors increase as a function of mass in the regions of the parameter space we

explore. The errors improve as the mass ratio increases for all cases except µ2. As argued in chap-

ter 3 [204], µ2 is the only multipole parameter which appears both in the amplitude and the phase

of the waveform and hence shows trends di↵erent from the other multipole coe�cients. Inclusion

of spins, on the whole, worsens the estimation of the multipole coe�cients compared to the non-
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Figure 4.5. Projected 1� errors on the energy coe�cients as a function of total mass for three di↵erent
mass ratios q = m1/m2 = 1.2, 5 and 10 in case of LISA noise PSD. We assume �1 = 0.9, �2 = 0.8.
All the sources are considered to be at a fixed luminosity distance of 3 Gpc. To obtain the numerical
estimates showed in this plot, we also consider a prior distribution on �c. To be precise, we assume the
prior on �c to follow a Gaussian distribution with a zero mean and a variance of 1/⇡2.

spinning case. This is expected as the spins increase the dimensionality of the parameter space but

do not give rise to any new features which may help the estimation. E↵ects such as spin-induced

precession, which brings in a new time scale and associated modulations, may help counter this

degradation in the parameter estimation. But this will be a topic for a future investigation. We also

explore the bounds on the multipole coe�cients as a function of the spin magnitudes in case of

LISA (see fig. 4.7). Here we consider two mass ratio cases q = 10, 20 but fix the total mass of the

system to be 2⇥105M�and plot the bounds as a function of primary spin �1. Since we vary the sec-

ondary spin, �2 as well, we get a spread on the bounds at each �1 along the y-axis due to di↵erent

values of �2 in the limit [�1, 1]. We find that the parameter estimation improves with the spin mag-
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Figure 4.6. Projected 1� errors on the energy coe�cients as a function of total mass for three di↵erent
mass ratios q = m1/m2 = 1.2, 5 and 10 in case of LISA noise PSD. We have considered �1 = 0.3, �2 =

0.2. All the sources are considered to be at a fixed luminosity distance of 3 Gpc. To obtain the numerical
estimates showed in this plot, we also consider a prior distribution on �c. To be precise, we assume the
prior on �c to follow a Gaussian distribution with a zero mean and a variance of 1/⇡2.

nitudes and hence highly spinning systems would yield stronger constraints on these coe�cients.

The estimations of various ↵k, parametrizing the conservative dynamics, also broadly follow these

trends. However, there is an important exception. The bounds on ↵3 is consistently worse than

those of ↵4. This may be attributed to the important di↵erence between them. ↵3 parametrizes the

1.5PN term in the conserved energy which has only spin-dependent terms whereas the 2PN term

contains both non-spinning and spinning contributions. Hence though ↵4 is sub-leading in the PN

counting, the bounds on it are better.

We now discuss the quantitative results from these plots. One of the most interesting results is the

projected constraints on coe�cients that parametrize conservative dynamics. For third generation
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Figure 4.7. Projected 1� errors on multipole coe�cients as a function of the spin of the heavier black
hole, �1, for LISA noise PSD. All the sources are considered to be at a fixed luminosity distance of 3
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[�1, 1].To obtain the numerical estimates showed in this plot, we also consider a prior distribution on
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variance of 1/⇡2.

ground-based detectors and the prototypical source configurations, the bounds on 2PN conserva-

tive dynamics can be⇠ 10�2 which is comparable to or even better than the corresponding bounds

expected from LISA. On the multipole coe�cients side, the quadrupole coe�cient µ2 may be con-

strained to  10�1(10�2) for second (third) generation detector network while the bounds from

LISA are ⇠ 10�2. The best bounds on µ3 are ⇠ 10�1, 10�2, 10�2 for second generation, third gener-

ation and LISA, respectively, corresponding to highly spinning binaries. The projected bounds on

the higher multipole coe�cients from third generation detector network and LISA are comparable

in all these cases, though one should keep in mind the specifications of the sources we consider for
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Linear momentum flux from compact binaries in quasi-elliptical orbits at second

post-Newtonian order

Figure 5.1. p is a unit vector along a reference axis. x is the relative separation vector joining the focus
of the ellipse to the position of the reduced mass making an angle � with p and an angle v with the
semi-major axis of the ellipse. Eccentric anomaly u is the angle between the semi-major axis and the
line drawn from the center to a point on the auxiliary circle, i.e. the point on the circle made by extended
perpendicular line drawn from the semi-major axis to the reduced mass. Figure courtesy ref. [239]

The above expression for linear momentum flux is given in terms of generic dynamical variables

r, ṙ, � and �̇. While specializing to the case of quasi-elliptical orbits, it is usually convenient to

express these dynamical variables in terms of the parameters associated with quasi-elliptical orbits,

namely the generalized quasi-Keplerian representation (QKR) of the orbital dynamics. One needs

2PN QKR to compute the 2PN LMF in terms of the orbital parameters. In the next section we

briefly start with the description of the parametrization of Keplerian orbits followed by its PN

generalization, the quasi-Keplerian (QK) representation.

5.5 Keplerian and Quasi-Keplerian parametrization

The Keplerian parametrization for the Newtonian motion of a compact binary system is widely

used in describing celestial mechanics. In polar coordinates and in the center of mass frame, the
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Figure 6.1. Figure on the left panel shows the evolution of co-moving merger rate density with red-
shift for four di↵erent models, M0 stands for the constant comoving merger rate, MWP represents the
model for rate density evolution obtained by Wandermann & Piran [291], MHB and MWilkins denote the
merger rate models obtained in Ref. [259, 284] following the star formation rates given in ref. [195]
and [295] respectively. The figure on the right most panel contains the corresponding normalized SNR
distributions.

Given that z is a function of co-moving distance, D (Eq. 6.2.5), it is clear from Eq. 6.2.4 that the simple

scaling relation for SNR (⇢ / 1/D) would no longer hold. Hence it is obvious that the universal SNR

distribution, given in Eq. 6.1.1, does not apply any more. In the next section we discuss the e↵ect of redshift

evolution of the DNS merger rate on the SNR distribution.

6.3 Imprints of co-moving merger rate density evolution

of DNS systems on the SNR distribution

Usually it is assumed that the DNS formation rate follows the star formation rate, whereas their merger rate

will depend also on the delay time distribution, i.e. the distribution of the time delay between the formation

and the merger. Hence, following Ref. [259], the binary merger rate density can be written as

R(z) /
Z
1

tmin
d

⇢̇⇤(z f (z, td))
1 + z f (z, td)

P(td) dtd, (6.3.1)

where ⇢̇⇤ is the star formation rate, td is the delay time and tmin
d is the minimum delay time for a binary to

merge since its formation. The redshift z describes the epoch at which the compact binary merges and z f is
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Figure 6.2. Weighted p-values (P̄w(M|N)) from Anderson-Darling test performed on the data obtained
from the four models as functions of the number of detections. The first argument in each legend
represents the data generated by following a particular model M (denoted as dataM in the main text),
whereas the second argument is the theoretical model with which the data is compared to. We put a gray
horizontal line in every panel corresponding to the threshold on P̄w(M|N) (see main text for details).

6.4.3 Weighted p-values

As mentioned earlier (in section 6.4.1), we have used Rice distribution to model the errors in SNR. The

presence of these errors in the data will a↵ect the p values which in turn can lead to false detection or false

rejection. For example, the median of the p value distribution resulting from AD test of dataM with the

model M, in principle, should be 0.5. But due to the errors, the test may return a lower median which may

even lead to the rejection of the null hypothesis when it is actually true. In our case, we have multiple

models {N} to be tested against the dataM and p value for each model (P̄(M|N)) will decrease due to the

errors thereby reducing the ability to distinguish between various models.

In order to quantify the distinguishability between the data and a model along the lines described earlier, we

introduce the notion of weighted p values. For a given dataM, we define a weighting functionW as

W =
1

P̄(M|M)
. (6.4.1)
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Figure A.1. Numerical estimates of systematic biases on the two leading multipole coe�cients µ2 and
µ3 as a function of �1 = �2 = � for LISA noise PSD. We consider systems with three di↵erent total
masses, m = 105, 106, 107M� having mass ratio q = 10. All the sources are considered to be at a fixed
luminosity distance of 3 Gpc.

M�, 106 M�, 107 M� and mass ratio q = 10 as a function of individual spin parameter �1 = �2 = � for LISA.

Due to a smaller total mass (M = 105M�) a large number of inspiral cycles reside in the LISA band. Hence

even with very small spin values � ⇠ O(10�3), the systematic errors become larger than the statistical errors,

which demands a parametrized spinning waveform model. In contrast, for larger total masses of about 106

M� or 107 M�, the systematics a↵ect the parameter estimation when the spin magnitude is slightly larger

⇠ O(10�1), as expected. Hence it is very crucial to incorporate the spin corrections in the waveform to reduce

the e↵ects of systematics when extracting the information about the multipole coe�cients. We also find that

as the total mass of binary increases the slope of the systematic bias curves changes from positive to negative

for µ2 and vice-versa for µ3. This could be due to the nature of the correlation (positive or negative) between

these multipole coe�cients and the binary parameters (such as masses and spins) with increasing total mass.

We quote the leading order estimates for the systematic biases in case of LISA only. Since the Fisher matrix-

based leading order estimation of systematic biases for network configuration demands reformulation of the

prescription, we postpone these for future study in a more rigorous and accurate Bayesian framework.



SUMMARY

The first two observation runs of advanced Laser Interferometer Gravitational-Wave Observatory

(LIGO) and Virgo interferometers have led to the detections of gravitational waves (GWs) from

ten binary black hole (BBH) mergers and a binary neutron star (BNS) merger. Among other

things, GWs from these compact binary mergers can be used to probe the behavior of gravity in

highly non-linear and dynamical regime and gain insights about the astrophysics associated with

the formation of these binaries. In this thesis, we explore the dynamics of the compact binary

system within the post-Newtonian (PN) framework in the context of GW astronomy and develop

tests of general relativity (GR) in the strong field regime.

We propose a new model-independent test of GR by parametrizing the gravitational waveform in

terms of the multipole moments of the compact binary using the PN framework. We derive the

parametrized multipolar GW phase evolution for compact binaries (CBs) in quasi-circular orbit

including spin e↵ects in the inspiral dynamics at 3.5PN order and deviations to the PN coe�cients

in the 3.5PN conserved energy. We assume that the companion spins are either aligned or anti-

aligned with respect to the orbital angular momentum and compute spin-orbit corrections that are

accurate up to the next-to-next-to-leading order (3.5PN order) and the quadratic-in-spin e↵ects up

to 3PN order in the GW flux and the PN phase. We find that third generation detector such as

Cosmic Explorer (CE) and space based Laser Interferometer Space Antenna (LISA) mission have

the similar ability and can measure the first 4 leading order multipole coe�cients with reasonable

accuracies.

Asymmetric emission of GWs from a compact binary can lead to a flux of linear momentum from

the system. As a result, depending on the system configuration, the center of mass (CM) of a

binary system recoils. In this thesis we compute 2PN accurate LMF from various mass and current

type multipole moments for an inspiralling, non-spinning compact binary system in quasi-elliptical

orbit. 2PN Quasi-Keplarian representation (QKR) of the parametric solution to the PN equation of

motion is employed to obtain the LMF at 2PN.
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We also propose a new method to track the redshift evolution of the double neutron star mergers.

Proposed third generation detectors such as CE will have the sensitivity to observe double neutron

star (DNS) mergers up to a redshift of ⇠ 5 with good signal to noise ratios (SNRs). We argue

that the co-moving spatial distribution of DNS mergers leaves a unique imprint on the statistical

distribution of SNRs of the detected DNS mergers. Hence the SNR distribution of DNS mergers

can be used as a novel probe of their redshift evolution. We consider detections of DNS mergers

by CE and study the SNR distributions for di↵erent possible redshift evolution models of DNSs

and employ Anderson Darling p-value statistic to demonstrate the distinguishability between these

di↵erent models. We find that a few hundreds of DNS mergers in the CE era will allow us to

distinguish between di↵erent models of redshift evolution.
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1 Introduction

Einstein’s general relativity (GR) is a relativistic description of gravity based on fundamental prin-

ciples such as the Equivalence principle, local Lorenz invariance, and minimal coupling [159]. GR

has passed all the observational tests so far with flying colors [299]. One of the most important

predictions of GR is the existence of gravitational waves (GWs). From a geometrical perspective,

GWs may be thought of as ripples in the curvature of space time, that travel at the speed of light,

produced due to accelerating objects.

According to GR, gravity is a property of space-time itself. The Einstein field equations, which

relate the curvature of the space-time to the stress-energy tensor of the mass-energy that produces

it, can be written as [161],

Gµ⌫ =
8⇡G
c4 Tµ⌫, (1.0.1)

where on the left hand side Gµ⌫ is the Einstein tensor, constructed out of the metric tensor gµ⌫ which

carries all the properties of the space-time including its curvature. On the right hand side Tµ⌫ is

the total energy momentum tensor of all mass-energy field. The above equations are ten coupled

partial di↵erential equations for the metric tensor, gµ⌫. Due to di↵eomorphism invariance, only six

of them are independent.

29
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1.1 Linearized gravity

In order to understand GWs, we first study the expansion of the Einstein’s field equations, Eq. (1.0.1),

around the flat space-time metric ⌘µ⌫, where we write the space-time metric, gµ⌫ = ⌘µ⌫ + hµ⌫ with

|hµ⌫| << 1 and signature for ⌘µ⌫ is (�,+,+,+). Retaining terms only at linear order in hµ⌫, Einstein’s

equations can be re-cast as,

⇤h̄µ⌫ + ⌘µ⌫@⇢@�h̄⇢� � @⇢@⌫h̄µ⇢ � @⇢@µh̄⌫⇢ = �
16⇡G

c4 Tµ⌫, (1.1.1)

with h̄µ⌫ = hµ⌫ � 1
2⌘µ⌫h and the flat space-time d’Alembertian, ⇤ = ⌘µ⌫@µ@⌫. In the harmonic gauge

(Lorenz gauge), @µh̄µ⌫ = 0, we can write the linearized Einstein’s equations (1.1.1) as,

⇤h̄µ⌫ = �
16⇡G

c4 Tµ⌫, (1.1.2)

which precisely denotes the (GW) equation at the linearized order where the background metric is

assumed to be the flat Minkowski metric, ⌘µ⌫. Physically what it means is that the source of GWs

is modeled within Newtonian gravity but the e↵ect of GWs on the test masses is computed using

the linear perturbation, hµ⌫, to ⌘µ⌫. These equations can be solved by using the method of Green’s

function and the resulting solution may be written as,

h̄µ⌫ =
4G
c4

Z
d3x0

1
|x � x0|

Tµ⌫(t �
|x � x0|

c
, x0). (1.1.3)

In case of compact sources of size ⇠ R, moving with a speed v ⇠ !R << c, the solution given in

Eq. (1.1.3) in the far zone (the distance from the source |x| = r >> c/!) can be written in terms of

the time varying quadrupole moment as,

h̄i j =
2G
c4r

Ïi j(t � r/c), (1.1.4)
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where Ii j =
R

d3xT00
c2 (xix j

�
1
3r2�i j) is the quadrupole moment and Ïi j denotes the second time

derivative of the quadrupole moment. One can conclude from the above equation that the GWs

are generated from the sources having a time-varying quadrupole moment. We also quote the

corresponding total radiated power or the flux of GWs at the quadrupolar order, which is,

Fquad =
c3r2

32⇡G

Z
d⌦hḣi jḣi ji

=
G

5c5 h
...
I i j

...
I i ji, (1.1.5)

where d⌦ = dA/r2 is the solid angle subtended by a surface element dA,
...
I i j denotes the triple

time derivative of the quadrupole moment and "h· · · i" denotes averaging over several gravitational

wavelengths.

1.1.1 Propagation of gravitational waves

Having discussed the generation of GWs at the leading order, we now focus on the solution of the

linearized field equations in the vacuum. In vacuum, Tµ⌫ = 0 which further reduces Eq. (1.1.2) to

⇤h̄µ⌫ = 0. (1.1.6)

To understand the Lorenz gauge and to obtain the independent physical degrees of freedom of the

GWs, we consider the infinitesimal coordinate transformation, xµ ! xµ0 = xµ + ⇠µ. Under this

transformation the metric perturbation transforms as,

h̄µ⌫ ! h0µ⌫ = h̄µ⌫ � (@µ⇠⌫ + @⌫⇠µ � ⌘µ⌫@⇢⇠⇢). (1.1.7)

with @⌫h0µ⌫ = @⌫h̄µ⌫ � ⇤⇠µ. To preserve the Lorenz gauge, the coordinate transform has to be such

that @⌫h̄µ⌫ = ⇤⇠µ. To be noted here, the harmonic gauge condition assumed earlier, can further be

preserved by assuming ⇤⇠µ = 0. Yet, it does not completely specify the gauge. Hence to reduce

the residual degrees of freedom, we first choose ⇠0 so that h̄0 = 0. In this traceless gauge we have
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h̄µ⌫ = hµ⌫. Secondly, we choose ⇠i such that h0i = 0; Having fixed h0i, using the Lorenz gauge

condition, we choose h00 = 0. To summarize, in the transverse traceless gauge (TT) we set,

h0µ = 0, hi
i = 0, @ jhi j = 0. (1.1.8)

In this gauge, the wavelike solution to Einstein’s equation can be written as (we have chosen the

propagation direction to be +ẑ and the x̂, ŷ are the two transverse directions),

hTT
µ⌫ =

0
BBBBBBBBBBBBBBBBBBBBBBBBBBB@

0 0 0 0

0 h+ h⇥ 0

0 h⇥ �h+ 0

0 0 0 0

1
CCCCCCCCCCCCCCCCCCCCCCCCCCCA
µ⌫

sin[!(t � z/c)], (1.1.9)

where h+ and h⇥ are the amplitudes of the two independent polarizations of GWs. This means a

general GW is any real combination of these two polarization states.

1.1.2 Properties of gravitational waves

GWs interact very weakly with intervening matter. In order to understand the e↵ects of these on

the matter, we use the geodesic equation governing the trajectory of a test mass, m, in the curved

background described by the metric gµ⌫, which is,

d2xµ

d⌧2 + �
µ
⌫⇢

dx⌫

d⌧
dx⇢

d⌧
= 0, (1.1.10)

where ⌧ denotes the particle’s proper time. In order to obtain the equation of geodesic deviation,

we consider two trajectories xµ(⌧) and xµ(⌧) + ⇠µ(⌧), which satisfy the geodesic equation (1.1.10).

Re-writing the geodesic equation in terms of their relative separation, ⇠µ(⌧), we find the equation
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Figure 1.1. Upper panel shows a monochromatic GW, h(t), propagating along the ẑ direction. Lower
panel shows the e↵ect of the plus and the cross polarization on ring of test particles [218].

for geodesic deviation, which is given by,

D2⇠µ

D⌧2 = �Rµ⌫⇢�⇠
⇢dx⌫

d⌧
dx�

d⌧
, (1.1.11)

where D denotes the directional derivative and Rµ⌫⇢� is the Riemann tensor. After a few algebraic

manipulations (see [226] for details), the equation of geodesic deviation, Eq. (1.1.11), at the lin-

earized order, can be written as a function of GW amplitude, which is,

⇠̈i =
1
2

ḧTT
i j ⇠

j, (1.1.12)

where ḧTT
i j denotes the second time derivative of hi j. Using Eq. (1.1.12), one can easily conclude

that when a GW passes through a set of test particles, the relative distance between the test masses

stretches and squeezes.
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Now we use the geodesic deviation equation (1.1.12), to obtain the observational e↵ects of a pass-

ing GWs on a ring of test particles in the (x, y)-plane. We treat the plus and cross polarizations of

GWs separately. We also assume that the GW is moving in +ẑ direction. Hence at t=0, z=0, the

two polarizations in Eq. (1.1.9) reduce to,

hTT
i j =

0
BBBBBBBBB@
1 0

0 �1

1
CCCCCCCCCA

h+ sin!t, hTT
i j =

0
BBBBBBBBB@
0 1

1 0

1
CCCCCCCCCA

h⇥ sin!t (1.1.13)

We consider the center of the ring (see fig. 1.1) to be the origin of our coordinate system with

(x0, y0) being the unperturbed position of a single particle in the ring. If the displacement of each

particle from its unperturbed position is (�x, �y), using the geodesic equations (1.1.12), we obtain,

�x(t) =
h+
2

x0 sin!t, (1.1.14)

�y(t) = �
h+
2

y0 sin!t, (1.1.15)

and similarly for the cross polarization,

�x(t) =
h⇥
2

y0 sin!t, (1.1.16)

�y(t) =
h⇥
2

x0 sin!t. (1.1.17)

As evident from the above equations, the distance of each particle from the center changes over

time depending on the GW strain giving rise to the deformation of the whole ring. The pictorial de-

scription of the displacements given in the above equations as the GW passes by are also sketched

in fig. 1.1 at di↵erent phases of the wave, where T = 2⇡/!. As is evident from the above equation,

the relative changes in the position of the particles are proportional to the GW amplitude.
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1.2 Sources of gravitational waves

From the quadrupole formula, quoted in Eq. (1.1.4), it is clear that any object with time varying

quadrupole moment is a source of GWs. Suppose a mass M moves in a circular trajectory of radius

R with an angular speed of !. Its quadrupole moment can be written as ⇠ MR2. Since the GW

energy flux is proportional to the square of the triple time derivative of quadrupole moment, that

brings in a factor of !6. Furthermore, using Kepler’s law we replace ! with
p

M/R3. Finally one

can approximately write the GW luminosity as,

F ⇠
L0

r

 
M
R

!5

, (1.2.1)

where L0 =
c5

G ⇠ 3.6 ⇥ 1052 W and r is distance to the source. Though L0 is a huge number and

the factor M/R is extremely small for any terrestrial object. Hence, in order to generate detectable

GWs, we need compact objects like black holes (BHs) or neutron stars (NS) etc., for which M/R ⇠

O(1).

From the viewpoint of observation, based on the duration of the signals, GW sources can broadly

be classified into four categories.

Gravitational Wave Burst: Signals of short duration in the detector band are characterized as

GW bursts. Searches for these signals rely on identifying the excess power in the detector data.

The typical sources for this type of GWs can be core-collapse supernovae [243], the late stages of

merging compact binaries [9], cosmic strings [225] etc. In a typical supernova, simulations suggest

that the gravitational wave frequency might lie in the range of ⇠200 -1000 Hz. Since very little is

known about the sources of this type of GWs, search algorithms are built with little assumptions

on the source models. One of the widely used search methods is the coincident methods, which

first identify events in individual detectors by using an excess power statistic [52, 170] and then

require coincidence between detectors. Other than coincident method there are coherent search

algorithms [208] that search for these types of GWs in the detector data stream.
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Continuous GWs: Continuous gravitational waves (CWs) are the nearly monochromatic signals

whose frequencies can be assumed to be constant for a long period of time. Hence the signal builds

up in a narrow frequency bin. CWs may be produced by various non-axisymmetric processes, such

as single spinning of neutron stars [196, 210] and are expected to be comparatively weak. There

are various methods to search for this type of GWs. For example, the targeted searches, where the

various source parameters like sky location, frequency and frequency derivatives are assumed to be

known as with known sources like the Crab pulsar [10]. There are also all sky searches [158, 163]

for unknown sources.

Stochastic Gravitational Waves: A stochastic Gravitational Wave background (SGWB) is pro-

duced by the superimposition of GWs from various astrophysical phenomena. The sources for

this type of GW signals could be primordial cosmological processes or the incoherent addition

of individually unresolvable astrophysical sources, such as compact binary coalescences or ex-

otic topological defects. These types of GW signals are parametrized in terms of their e↵ective

energy-density spectrum (⌦GW). The latest constraint on this parameter is ⌦GW < 1.7 ⇥ 10�7 [33].

Compact binary mergers: These types of GWs are produced by two orbiting compact objects

such as BHs or NSs. These systems have time varying quadrupole moments, leading to emis-

sion of GWs. As the system loses energy through GWs, their orbit shrinks. The frequency of

the emitted GWs changes over time and can be modeled in GR, either analytically in the initial

times or numerically in the later stages of its evolution. The waveform from these objects can

be obtained in terms of the various source parameters such as masses, spins, etc. When the two

inspiralling objects in the binary are far apart, GWs from these systems can accurately be modeled

by the perturbative solution of Einstein’s equation within the post-Newtonian (PN) formalism. But

close to the merger, the waveform is modeled by numerical relativity simulations where Einstein’s

equations are "exactly" solved in a computer. Finally in the ring down, the merger remnant settles

into a Kerr BH by radiating a spectrum of quasi-normal modes. These three stages are stitched

together to construct the complete hybrid phenomenological gravitational waveforms. A typical

gravitational waveform in the various stages of the system’s evolution is shown in fig. 1.2. Com-
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Figure 1.2. The upper panel shows a typical gravitational waveform during the various phases of a
binary evolution whereas the lower panel shows the change in the BH velocity and their separation as a
function of time (Image credit [18]).

pact binary systems can be produced by a pair of BHs, or a BH and NS, or a pair of NSs. In

the case of BH-NS or NS-NS systems, the NS might get tidally disrupted and might produce new

features in the waveform, carrying information about the NS’s internal structure [12].

In the remainder of this thesis, we focus on GWs from compact binary inspirals to study GWs in

the MPM-PN formalism and study the implications of observing these systems for fundamental

physics and astrophysics.

1.3 Gravitational waves detectors

E↵orts to detect GWs from celestial bodies started in 1960, pioneered by J. Weber. The idea for

detection of GWs in this method is to use giant metal cylinders (bar detectors) to measure the

vibrations excited in the material due to the passage of gravitational waves. But the bar-detectors

did not reach the sensitivity required to detect GWs from astrophysical sources, and a detection

claimed by Weber [292] could not be established by other detectors.

In parallel, attempts to construct the interferometric detectors were pursued. Here one uses the
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Figure 1.3. Simplified schematic diagram of a LIGO detector (Credit: Caltech/MIT/LIGO Lab).

principle of interferometry to detect GWs where a beam of monochromatic light (laser beam) is

first split into two and travels through two di↵erent optical cavities at an angle with each other.

These two beams get reflected by the freely suspended mirrors at the ends of the cavities and

recombine to produce an interference pattern (see fig. 1.3 for a schematic diagram). Due to the

passage of GWs, the arm length of the cavities changes, which corresponds to the dimensionless

strain with an amplitude of about h = �L
L ⇠ 10�20. This relative change varies over time depending

on the intensity of the passing GWs and causes changes in the interference pattern which are

monitored through the photo detector and extracts information about the GWs. Unlike the narrow-

band bar detectors, interferometric detectors have broad-band responses, which facilitates searches

for di↵erent types of GW sources.

1.3.1 Currently operational gravitational wave detectors

The two LIGO (Laser Interferometer Gravitational-Wave Observatory) detectors are located in

Livingston, Louisiana and Hanford, Washington, two largely separated locations in the USA. These

are L-shaped detectors with each arm of length 4 km. Along with these two, Advanced VIRGO is
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Figure 1.4. simplified schematic diagram of triangular ET [189] .

another detector, located near Pisa in Europe. This is also an L-shaped interferometric detector but

with a 3 km arm length, has comparable sensitivity to that of the two LIGO detectors.

1.3.2 Future gravitational wave detectors

1.3.2.1 Future second generation detectors

With improved sensitivities of Advanced LIGO and Virgo in the upcoming observing runs, there

are a few more upcoming second generation GW detectors. The Japanese cryogenic detector

KAGRA [69] is likely to be operational soon. LIGO-India [201] is also expected to join the world-

wide network of GW detectors by mid-2020s. A worldwide network of five GW detectors will

increase the expected event rates as well as boost the detection confidence. The source localizations

of the GW sources will also improve tremendously [164, 209].
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Figure 1.5. The orbital configuration of the LISA mission concept [198]

1.3.2.2 Future third generation detectors

There are ongoing research and developments, including science case studies for third-generation

detectors such as the Einstein Telescope (ET) [11] and Cosmic Explorer (CE) [24]. Among the

third generation detectors, CE is an L-shaped interferometric detector but with much larger arm

length(⇠40 km) compared to the second generations ones, whereas ET is a triangular shaped de-

tector with each arm of length 10 km (a simplified diagram of ET is given in fig. 1.4). Due to

their improved sensitivity in the low frequency regime (till ⇠1Hz) and the leap in the sensitivity

compared to the second generation detectors, they are unique probes of the high redshift universe.

Roughly around 106 of BNS mergers [39] are expected to be detected by the 3G detector network,

which will help to test astrophysical models of the formation and evolution of double neutron stars.

In addition to stellar-mass compact binaries, ET and CE can detect intermediate-mass BHs with

a total mass of several hundreds of solar masses, which will last longer (compared to the equal-

mass binaries) in the detector sensitivity band and hence are accurate probes of the compact binary

dynamics and the BH nature of the compact objects [118, 265].
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1.3.2.3 Space-based Laser Interferometer Space Antenna mission

The space-based Laser Interferometer Space Antenna (LISA) mission consists of three spacecraft

that are separated by 2.5 million miles. These three satellites comprising the interferometer are in

a heliocentric orbit which trails the Earth by 22�. The schematic structure of the orbital motion

of LISA is shown in fig. 1.5. The funding for the space-based mission LISA [2] has already

been approved. LISA will be sensitive to millihertz GWs produced by the inspirals and merger of

supermassive BH binaries in the mass range ⇠ 104
� 107M�. These sources may also have a large

diversity in their mass ratios, ranging from comparable mass (mass ratio 10) and intermediate

mass ratios (mass ratio �100), to extreme mass ratios (mass ratio � 106) where a stellar mass

BH spirals into the central supermassive BH. This diversity, together with the sensitivity in the

low-frequency window, makes LISA a very e�cient probe of possible deviations from general

relativity (GR) in di↵erent regimes of dynamics [68, 82, 173, 268].

1.3.2.4 Pulsar timing array

Millisecond pulsars are expected to send pulses in equal time intervals. But the gravitational waves

cause the time of arrival of the pulses to vary slightly. By measuring the time-of-arrival of the

electromagnetic pulses from an array of pulsars one can model the GWs a↵ecting the arrival time

of those pulses. Nearly 100 millisecond pulsars can be monitored for the timing calculations. The

distances to these pulsars are thousands of light years from the Earth, which can be thought o↵ as

the e↵ective "arm length" of this type of detector. Since the GW frequency is proportional to the

arm length of the detector, the accurate measurement of the arrival time of the pulses from these

are sensitive to the GWs in the frequency band of 10�9
� 10�8 Hertz [192]. Pulsar Timing Array

(PTA) can probe a completely di↵erent spectrum of GWs and are hence sensitive to a di↵erent

category of GW sources such as supermassive BH binaries or stochastic backgrounds.
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1.4 Gravitational waves data analysis for compact binary

coalescence

Since various implications of GWs from compact binary coalescence (CBC) are the theme of this

thesis, we now focus on GWs emitted by CBCs only and discuss the techniques employed in the

data analysis of CBCs. The data analysis of a CBC addresses two basic aspects, the detection

problem and the parameter estimation (PE) problem.

1.4.1 Detection problem

The GW data or the detector output is a time series describing the phase shift of the light due to

the total travel inside the detector arms, which consists of the detector noise, n(t) and a GW signal,

h(t),

s(t) = n(t) + h(t). (1.4.1)

The first challenge one faces is to identify the weak signal buried in the detector noise. This prob-

lem requires accurate noise characterizations and a prior knowledge of the expected gravitational

waveform. In case of stationary noise, the di↵erent Fourier components are uncorrelated, hence,

hñ⇤( f )ñ( f 0)i = �( f � f 0)
1
2

S n( f ), (1.4.2)

where ñ( f ) is the Fourier transform of n(t) and S n( f ) is the detector’s power spectral density (PSD)

(see fig. 1.6 for the various noise PSDs used in this thesis) and h· · · i denotes the ensemble average

over noise realizations. The detection and the subsequent parameter estimation process in case of

GWs from compact binaries, rely on the data analysis technique of matched filtering [186, 290].

For detecting a GW signal, the precomputed theoretical waveforms (also known as templates) are

cross correlated with the data and the signal to noise ratio (S/N) (SNR) is maximized over the set

of templates. SNR for a true signal h(t) with a filter function K(t) is denoted as the matched filtered
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SNR and is given by
S
N
=

R
1

�1
d f h̃( f )K̃⇤( f )

h R
1

�1
d f (1/2)S n( f )|K̃( f )|2

i1/2 , (1.4.3)

where h̃( f ) and K̃( f ) are the Fourier components of h(t) and K(t) respectively. When this SNR

is maximized over all the templates, and if the resulting SNR crosses a certain pre-determined

threshold, it is called a detection. This particular template is referred to as the optimal template

and the corresponding signal to noise ratio is called the optimal SNR (See, for instance, Sec. (5.1)

of [268] for details), which is defined as

⇢ =

s

4
Z
1

0

|h̃( f )|2

S n( f )
d f , (1.4.4)

where we have replaced the limits [�1,1], as used in Eq. (1.4.3), by [0,1] and S n( f ) is the one

sided noise PSD. In practice, we replace the lower and the upper limits of the integration by the

lower cut o↵ frequency flow imposed by the seismic cut o↵ of the detector and an upper cuto↵ fhigh.

The matched filtered SNR for various templates follow the Rice distribution of the following form:

f (x, ⇢) = x exp
 
�

x2 + ⇢2

2

!
I0(⇢x), (1.4.5)

where x is the matched filtered SNR and I0 is the zeroth-order modified Bessel function of the first

kind (see [240] for a discussion about the Rice distribution in the context of GW data analysis).

In this thesis we use various noise PSDs to asses the PE problem in various contexts. They are

given below.

Second generation ground based detectors: As representatives of second generation ground

based detectors, we use three di↵erent noise PSDs for advanced LIGO, advanced VIRGO and the

Japanese detector KAGRA. For advanced LIGO we use the analytical fits to the PSD given in

Refs. [46] where as the following fit is used for VIRGO PSD,

S virgo
h ( f ) = 1.5344 ⇥ 10�47

"
1 + 1871 ⇥

 
16
f

!10

+ 11.72 ⇥
 
30
f

!6
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Figure 1.6. Various noise PSDs of the ground based and space-based GW detectors used in this thesis
for various studies.
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Hz�1 , (1.4.6)

where f is in units of Hz. For the Japanese detector KAGRA we use the noise PSD given in

Ref. [3].

Third generation ground based detectors : In case of third generation ground based detectors,

we use the noise PSD given in Ref. [11] for ET-D. For CE we use the following fit,

S h( f ) = 5.62 ⇥ 10�51 + 6.69 ⇥ 10�50 f �0.125 +
7.80 ⇥ 10�31

f 20

+
4.35 ⇥ 10�43

f 6 + 1.63 ⇥ 10�53 f + 2.44 ⇥ 10�56 f 2

+ 5.45 ⇥ 10�66 f 5 Hz�1 , (1.4.7)

where f is in units of Hz .

Space based detector LISA : We quote the noise PSD for LISA here which we have used in fur-

ther computations following Ref. [70]. The analytical form of the sky-averaged detector sensitivity
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can be written as

S n( f ) =
20
3

4S acc
n ( f ) + 2S loc

n + S sn
n + S omn

n

L2

⇥

2
666641 +

 
2L f

0.41c

!2377775 , (1.4.8)

where L is the arm length and the noise contributions S acc
n ( f ), S loc

n , S sn
n and S omn

n are due to low-

frequency acceleration, local interferometer noise, shot noise and other measurement noise respec-

tively. The acceleration noise, S acc
n ( f ), has been fitted to the level successfully demonstrated by the

LISA Pathfinder [57], which is given as,

S acc
n ( f ) =

8>><
>>:9 ⇥ 10�30 + 3.24 ⇥ 10�28

2
666664

 
3 ⇥ 10�5 Hz

f

!10

+

 
10�4 Hz

f

!23777775

9>>=
>>;

1
(2⇡ f )4 m2 Hz�1

, (1.4.9)

whereas, the other contributions are the following,

S loc
n = 2.89 ⇥ 10�24 m2 Hz�1,

S sn
n = 7.92 ⇥ 10�23 m2 Hz�1,

S omn
n = 4.00 ⇥ 10�24 m2 Hz�1.

(1.4.10)

Besides the above described instrumental noise in Eq. (1.4.8), a galactic confusion noise compo-

nent is also added, which is modeled by the fit given below,

S gal = Agal

 
f

1 Hz

!�7/3

exp
"
�

 
f
s1

!↵#

⇥
1
2

"
1 + tanh

 
�

f � f0

s2

!#
. (1.4.11)

The overall amplitude of the background Agal = 3.266 ⇥ 10�44 Hz�1 depends on the astrophysi-

cal model for the population of white dwarf binaries in the Galaxy, which is modeled following

ref. [50]. The power law f �7/3 is what is expected from a population of almost monochromatic
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binaries. Assuming two-year observation period, the fitting parameters appearing in the above ex-

pression for S gal have the values: ↵ = 1.183, s1 = 1.426 mHz, f0 = 2.412 mHz, s2 = 4.835 mHz.

The various noise PSDs, discussed above, are shown as a function of the frequency in fig. 1.6.

1.4.2 Parameter estimation

Parameter estimation (PE) is the process of extracting the source parameters of the compact binary

that is detected. Recovering of the most probable values for the source parameters also requires the

prior knowledge of the accurate functional dependence of h(t) on these parameters (✓1, ✓2...✓n) such

as masses, spins etc., for CBC. This question is addressed by constructing the likelihood function

followed by posterior probability. For simplicity the detector noise is assumed to be stationary and

Gaussian. Hence the probability distribution for noise can be written as,

p(n) / exp [�hn, ni/2] (1.4.12)

/ exp
h
�

1
2

D
s � h(✓i), s � h(✓i)

Ei
, (1.4.13)

where the angular bracket, h..., ...i, denotes the noise-weighted inner product given by,

ha, bi = 2
Z fhigh

flow

a( f ) b⇤( f ) + a⇤( f ) b( f )
S h( f )

d f , (1.4.14)

where S h( f ) is the one sided noise PSD discussed in the previous section. The posterior probability

of the parameters can be obtained using Bayes’ theorem. Bayes’ rule states that the probability

distribution for a set of parameters ~✓ given data s is,

p(~✓|s) =
p(s|~✓) p(~✓)

p(s)
, (1.4.15)
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where p(s|~✓) is called the likelihood function, which gives the probability of observing data s given

the model parameter ~✓ and is defined as

p(s|~✓) = exp
"
�

1
2

Z fhigh

flow

|s̃( f ) � h̃( f ;~✓)|2

S n( f )
d f

#
, (1.4.16)

where s̃( f ) and h̃( f ;~✓) are the Fourier transforms of s(t) and h(t), respectively. In Eq. (1.4.15), p(~✓)

is the prior probability distribution of parameters ~✓ and p(s) is known as the evidence and defined

as,

p(s) =
Z

p(s|~✓) p(~✓) d~✓ . (1.4.17)

Hence by estimating the likelihood as stated in Eq. (1.4.16), the posterior probability is obtained

using Eq. (1.4.15) assuming a prior distribution if available or one may use a flat distribution on

the parameters as the prior.

Fisher information matrix technique: The Fisher matrix is a useful semi-analytic method which

uses a quadratic fit to the log-likelihood (logarithm of Eq. (1.4.16)) function to derive the 1� error

bars on the parameters of the signal [67, 133, 136, 258]. To be precise, the inverse of the Fisher

matrix provides the lower bound for the error covariance of the true source parameters, which

is known as Cramér-Rao bound [258]. This method provides a reasonably good bounds on the

source parameters (~✓) in a high SNR limit where the quadratic approximation to the log-likelihood

holds [136, 253, 283]. Given a GW signal h̃( f ;~✓) the Fisher information matrix is defined as

�mn = hh̃m, h̃ni, (1.4.18)

where h̃m = @h̃( f ;~✓)/@✓m evaluated at the true value of the parameters, ~✓0. The variance-covariance

matrix is defined by the inverse of the Fisher matrix,

Cmn = (��1)mn (1.4.19)
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where the diagonal components, Cmm, are the variances of ✓m. The 1� errors on ✓m are, therefore,

given by,

�m =
p

Cmm . (1.4.20)

Markov chain Monte Carlo (MCMC): As discussed in ref. [283], the above discussed Fisher in-

formation matrix (FIM) technique is valid in the large SNR limit. Also FIM assumes that the like-

lihood is peaked at the true values of the parameters, which might not happen due to the presence

of noise except in the large SNR limit. Since in practice, the realistic waveform templates are gen-

erated from a high dimensional parameter space, FIM becomes ill-conditioned in those cases. The

solution to address this problem is to sample the likelihood surface numerically using algorithms

such as Markov-Chain Monte Carlo (MCMC) [285,286] or Nested sampling [273,287]. When the

parameter space is of higher dimensions, these are computationally challenging. However, MCMC

allows for multimodal, non-Gaussian posterior probability distributions of the estimated parame-

ters. This method also allows inclusion of non-Gaussian prior probability on the parameters. In

this thesis, apart from using FIM techniques, we also did some spot checks by MCMC sampling

of the likelihood function using the emcee [171] algorithm.

1.5 Towards the direct detections of gravitational waves

As discussed in section 1.3, in the mid-seventies several attempts by Weber, as well as by some

improved versions of Weber’s original designs, were unable to claim a firm detection of grav-

itational waves. However, in 1974, Hulse and Taylor detected pulsed radio emissions from a

pulsar. By measuring the variation in the arrival time of the pulses they concluded the source to

be a binary pulsar [199]. After the detection, continuous monitoring of the system was used to

model the orbital decay over time, accurately fitting the GR predictions if the orbital decay was

due to gravitational radiation [276]. Though not a direct detection of GWs, this provides a solid

proof for the existence of GWs. This sped up further development of interferometric detection

techniques. The discussion about the interferometric detectors for GW got the much needed atten-
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Figure 1.7. Orbital decay caused by the loss of energy by gravitational radiation [293].

tion [40, 174, 197, 241].

After two decades of development, a combination of the initial interferometric detectors including

TAMA 300 in Japan, GEO 600 in Germany, LIGO in the United States, and Virgo in Italy operated

between 2002 and 2010. These observations did not lead to the detection of GWs, which was

consistent with the expected event rates of the GW sources. However, these observations put the

first observational upper limits on the rate of mergers of BBH, BNS and NS-BH systems [5,6,8,38].

Between 2010-2015 initial LIGO was upgraded, and in 2015 it started the first observation run

with a sensitivity much better than the initial LIGO. With this sensitivity, on 14 September 2015,

the two LIGO detectors, Livingstone and Hanford, jointly detected the GWs from a BBH merger

with a statistical confidence > 5� [13,18] . The duration of the signal detected was ⇠ 0.2 sec. The

individual BHs of masses 36+5
�4M�and 29+4

�4M� at a distance of 410+160
�180 Mpc, merged to form a final
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BH of mass 62+4
�4M�. The second detection, GW151226 (14.2+8.3

�3.7+7.5+2.3
�2.3M�) [17] also happened

in the same year. Apart from these two, the first two observation runs of advanced LIGO and Virgo

interferometers have led to the detections of eight more binary black hole mergers [15, 26–28, 34,

36].

Another breakthrough in the context of GW detections, happened in 2017. During the second

observation run a binary neutron star merger [12] was detected. The short Gamma ray bursts fol-

lowed by the binary neutron star merger was also observed in various bands of the electromagnetic

spectrum from gamma rays to the radio [29, 148, 177, 217, 224, 227, 260, 264, 280, 282]. The joint

detection of GWs as well as the EM counter part opens the new era of multi-messenger astronomy.

1.6 Topics addressed in this thesis

The detections of the compact binaries by advanced LIGO and Virgo have given us unique insights

about fundamental physics [17,20,23,25,26,30–32,35,37,49], astrophysics [14,19,21,23,25,30,

31,37,49], and cosmology [22]. Among the most important aspects of these discoveries, is the un-

precedented opportunity they have provided to study the behavior of gravity in the highly nonlinear

and dynamical regime associated with the merger of two BHs or two NSs (see Refs. [268,303] for

reviews). GW observations have put stringent constraints on the allowed parameter space of al-

ternative theories of gravity by di↵erent methods [16, 20, 26]. At present, there are no theories of

gravity other than GR which can predict a complete waveform model which can be used as an al-

ternative to the GR templates. Hence we proceed with the various null tests of GR. This is achieved

by parametrizing the gravitational waveforms about GR and introduce deformation parameters in

the waveform. These deformation parameters are 0 in GR. Given the gravitational detections, we

ask the question if the data is consistent with the GR predictions and set bounds on any possible

deformations. These tests are called parameterized tests. There are proposals for the parametrized

tests of post-Newtonian theory [44, 65, 66, 221, 231, 237, 302], where parametric deviations are

introduced at di↵erent post-Newtonian orders of the GW phasing, and the GW data is compared
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against this modified phasing to put bounds on the deviation parameters. Furthermore, the bounds

obtained from these generic tests have also been translated into bounds on the free parameters of

certain specific theories of gravity [304]. All the bounds we obtain using GW detections are con-

sistent with the predictions of GR within the statistical uncertainties. Several more of such events

are expected to be detected in future observing runs. Hence, developing e�cient methods to carry

out such tests will play a central role in extracting the best science from these observations.

Though the parametrized tests of PN theory are very e↵ective, they have an important drawback.

The bounds we set are on the phasing coe�cients, which can not be mapped uniquely to any

fundamental quantities of the compact binary. In this thesis, in order to overcome this problem,

we propose a novel test to measure the multipolar structure of the gravitational field produced by

CBC. We pose this as a null test of GR and ask the question if the multipolar structure of a compact

binary space-time predicted by GR is consistent with the data. Detailed discussion along this line

is given in chapters 3 and 4.

Gravitational recoil, associated to the anisotropic GW radiation, has potential astrophysical con-

sequences. The anisotropic GW radiation from compact binary merger leads to a flux of linear

momentum. As a result of this, the system recoils. Massive black hole formation, following suc-

cessive mergers, may lead to large enough recoils to eject coalescing BHs from dwarf galaxies

or globular clusters, resulting in termination of the merger process. This is the key motivation to

estimate the recoil velocity of coalescing black hole binaries. Various analytic or semi-analytic

studies [108, 141, 167] of recoil for non-spinning BBH mergers in quasi-circular orbits reveal a

typical estimate of the kick to be a few hundreds km/s. More accurate estimates for the kick are

provided by the numerical relativity calculations in Refs. [179, 180]. In contrast, compact binaries

with spinning component masses may receive a very high kick (see refs. [188, 212]) ⇠ O(500)

km/s. These recoil estimates rely on the accurate estimation of the linear momentum flux (LMF).

However, LMF and associated recoil in case of the CB moving in quasi-elliptical orbits are much

less studied. The first leading order (Newtonian order) estimates are quoted in ref. [168]. In this

thesis we explore the computation of LMF at higher PN order, to be specific the second PN order.
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Another astrophysical implication of the recent GW detections is to track the redshift evolution

of the compact binary mergers. On very general grounds, Schutz argued [272] that the SNRs

of detected GW events would follow a universal distribution which is inversely proportional to

the forth power of the SNRs. This universal distribution is also used in ref [21] as an ingredient

to derive a bound on the rate of the binary black hole mergers from the first observation run of

LIGO [17]. Following ref. [129] we show that the universal SNR distribution breaks down for

sources at arbitrary redshifts due to cosmological evolution of the universe and the change in the

properties of the sources as a function of redshift. Motivated by this, we show how the observed

distribution of SNRs for the detected GWs from BNS mergers are a↵ected by the redshift evolution

of their rate density in the context of third generation GW detector, CE [24]. This provides a novel

method to track the BNS merger rate distribution as a function of redshift. The novelty of this

method lies in the fact that it does not directly depend on parameter estimation of these systems

and uses only the SNR estimates obtained from the detection problem.

The various chapters of this thesis are organized as follows. In chapter 2 we briefly discuss the

multipola post Minkowskian post Newtonian (MPM-PN) formalism used in various contexts of

CBC. In chapters 3 and 4 we develop the prameterized tests of multipolar structure of the CB

space-time in the case of non-spinning as well as spinning component masses. In chapter 5, using

the MPM-PN framework, we compute the LMF from CB moving in quasi-elliptical orbits. Finally

we discuss the implications of SNR distributions of the binary NS systems detected at arbitrary

redshifts in the context of a third generation detector, Cosmic Explorer (CE), in chapter 6. We also

explore how these distributions can be used to probe the evolution of the BNS merger rate as a

function of redshift.
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2.1 Various analytical approximations of general relativity

As discussed in the last chapter, the detection and parameter estimation of compact binaries require

a reliable waveform model accounting for all the physical e↵ects. For a generic source, solving

Einstein’s equations leads to di↵erent levels of di�culties. Hence, various approximation methods

have been developed to tackle the two-body problem in GR. These include the multipolar post-

Minkowskian (MPM) formalism and post-Newtonian (PN) approximation scheme, perturbation

theory [54, 135, 137, 251, 275], gravitational self-force formalism [75, 76, 151–153, 254] and the

E↵ective One Body (EOB) approach [119, 120, 139, 144] etc. As opposed to these approxima-

tion methods, in numerical relativity (NR) [72, 125, 255], numerical algorithms are used to solve

Einstein’s equations to obtain the full gravitational waveforms which include the highly nonlinear

merger phase of the binary evolution.

In fig. 2.1 di↵erent regions of validity for di↵erent methods are shown in a two parameter-space

spanned by the inverse of PN expansion parameter ((c/v)2
⇠ rc2/Gm) and the mass ratio (m1/m2),

where r is the typical separation of the two bodies, m1,m2 are the component masses, m = m1 +m2

is the total mass and v is the characteristic velocity of the system. As is evident from the figure,

the PN formalism is valid for any mass ratio, in principle, but for slowly moving systems. In

BH perturbation theory, Einstein’s Equation is solved in a perturbative manner with the perturba-

tion parameter being the mass ratio of the component masses. At the leading order the smaller

mass moves along its geodesic governed solely by the bigger mass, whereas, at higher order, the

53
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Figure 2.1. Regime of validity of various approximation schemes and numerical methods in the plane
defined by the two perturbation parameters rc2/Gm and m1/m2. Figure courtesy [123].

e↵ects of back-reaction are consistently taken into account within the gravitational self-force for-

malism [75,76,151–153,254]. In contrast, numerical relativity provides a description of the merger

of two compact objects at high velocity [256] and is valid for any mass ratio in principle. However,

this method is computationally very expensive.

Apart from the above described methods, a semi-analytical description, namely the E↵ective One

Body (EOB) approach of compact binary dynamics and emission of GW radiation is proposed in

refs. [119,120,139,144] to include the post-inspiral e↵ects. Assuming a comparable mass compact

binary system is a smooth deformation of that of the test particle limit, the EOB approach uses

three ingredients; the conserved Hamiltonian of the two body system in GR, the radiation-reaction

force, and the gravitational waveform. Each of these ingredients is estimated using the higher order

PN-expanded results in a resummed form to incorporate non-perturbative and strong-field e↵ects.

After the remarkable progress in developing analytical as well as numerical techniques to solve

the two body dynamics in GR over more than a hundred years, we now can predict highly accu-

rate gravitational waveforms from compact binary mergers. The dynamics of a compact binary

system is conventionally divided into the adiabatic inspiral, merger, and ringdown phases. Dur-

ing the inspiral phase the orbital time scale is much smaller than the radiation backreaction time
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scale. The post-Newtonian (PN) approximation to GR has proved to be a very e↵ective method

to describe the inspiral phase of a compact binary of comparable masses [89]. A description of

the highly nonlinear phase of the merger of two compact objects is modeled by NR. The ringdown

radiation of GWs from the merger remnant, can be modeled within the framework of BH per-

turbation theory [256, 267]. More recently, there are developments of various phenomenological

models where analytically modeled inspirals are stitched smoothly with the numerically generated

merger and ring down; this allows us to generate the complete GW signals from compact binary

mergers [47, 48].

In this chapter, we briefly describe the general MPM-PN scheme for a generic PN source, followed

by the specific formulation of the same in case of inspiralling compact binary (ICB).

2.2 Multipolar post-Minkowskian and post-Newtonian for-

malism

This formalism has given us several useful insights about various facets of the two-body dynamics

and the resulting gravitational radiation [90]. The complete wave generation formalism within

the MPM-PN framework is based on consistently matching the various approximation methods:

post-Newtonian method (or non-linear 1/c-expansion), the post-Minkowskian (PM) method or

non-linear iteration in orders of G, and the multipole decomposition of the gravitational fields [84,

85,93–95,97,98,100,101,106,145,277]. The PM formalism is valid in the zone far from a weakly

gravitating source whereas the PN approximation is applicable for a slowly moving and weakly

gravitating source in the near zone. On the other hand, the multipole expansion of the gravitational

field is valid over the entire region exterior to the source. A cocktail of these approximations plays

a central role in the analytical treatment of the two-body problem in GR.

We follow the prescription developed by Blanchet, Damour, Iyer, and co-workers, also known as

the BDI formalism to study the PN approach to solve Einstein’s equations. In the next section we
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briefly summarize the scheme.

2.2.1 Einstein’s field equations

Variation of the space-time metric g↵� in the Einstein-Hilbert action,

IEH =
c3

16⇡G

Z
d4x
p
�gR + Imat[ , g↵�], (2.2.1)

leads to the set of ten second-order partial di↵erential equations, namely Einstein’s equations,

R↵� �
1
2

Rg↵� =
8⇡G
c4 T↵�[ , g],

where g↵� is the covariant metric with a determinant g and  denotes matter fields. In harmonic

coordinates (or de Donder coordinates ) (where @µh↵µ = 0), with a redefinition of the gravitational

field amplitude of the form h↵� =
p
�gg↵� � ⌘↵�, Einstein’s equations can be recast as follows:

⇤h↵� =
16⇡G

c4 ⌧↵�. (2.2.2)

In Eq. 2.2.2, ⇤ is the flat d’Alembertian ⇤⌘ = ⌘µ⌫@µ@⌫ and ⌧↵� is the stress-energy pseudo tensor

composed of matter field T↵� and the gravitational source term ⇤↵�,

⌧↵� = |g|T↵� +
c4

16⇡G
⇤↵�. (2.2.3)

In harmonic coordinates, ⇤↵� is given by

⇤↵� = �hµ⌫@2
µ⌫h

↵� + @µh↵⌫@⌫h�µ +
1
2

g↵�gµ⌫@�hµ⌧@⌧h⌫�

� g↵µg⌫⌧@�h�⌧@µh⌫� � g�µg⌫⌧@�h↵⌧@µh⌫� + gµ⌫g�⌧@�h↵µ@⌧h�⌫

+
1
8
�
2g↵µg�⌫ � g↵�gµ⌫

��
2g�⌧g✏⇡ � g⌧✏g�⇡

�
@µh�⇡@⌫h⌧✏ . (2.2.4)
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Considering the matter stress energy tensor to be of spatially compact support with a smooth distri-

bution of matter inside the source and imposing the "no incoming radiation" condition, Eq. (2.2.2)

can be solved using the retarded Green function

h↵�(r, t) ⌘ �4G
c4

Z
d3r0

|r � r0|
⌧↵�

�
r0, t � |r � r0|/c

�
. (2.2.5)

At the linear order in h↵�, the solution given in Eq. (2.2.5) is straight forward and is obtained in

Eq. (1.1.4) of chapter 1. However, in higher orders, the RHS of Eq. (2.2.5) is a functional with

respect to h↵�. Hence, in order to solve this, a consistent approximation scheme is required.

2.2.2 Validity regions of various approximation schemes

Due to di↵erent characteristics of gravitational field in di↵erent regions from the source, a mixture

of di↵erent approximation schemes, valid in these di↵erent regions, has been adopted to obtain

a successful wave generation formalism. The wave generation formalism at the lowest order (the

quadrupolar formalism) is first prescribed by Einstein [160] and then by Landau and Lifshitz. Later

the corrections to this leading order estimation was obtained by Damour and Blanchet [84, 94, 97]

in a more mathematically consistent way. This is known as the multipolar post-Minkowskian -

post-Newtonian (MPM-PN) formalism.

In fig. 2.2 the di↵erent regions applicable for di↵erent approximation schemes (discussed below)

are schematically shown for a compact binary merger. The region at a distance r >> d, (d is

the typical size of the source) extended till R << �GW from the source, is denoted as the near

zone, where the post-Newtonian approximation is valid. Within this approximation the source is

assumed to be slowly moving and weakly stressed. For post-Newtonian sources, the perturbation

parameter, defined by the components of the matter stress-energy tensor T↵� and the source’s

Newtonian potential U is ✏ ⇠ |T 0i/T 00
| ⇠

p
|T i j/T 00| ⇠

p
U/c2 << 1 which is essentially v/c.

In other words, the gravitational wavelength can approximately be written as �GW ⇠ (c/v)d and

expanding di↵erent quantities in terms of v/c restricts the validity of this approximation to the
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Figure 2.2. Various scales used in PN approximation. Figure courtesy Ref. [123].
.

near zone where r << �GW. Though slow motion is one of the main criteria of this scheme, the

characteristic speed for a compact binary inspiral could be as high as 50% of the speed of light

in their last orbit, which demands the computation of higher PN order corrections. On the other

hand, in the weak field limit, post-Minkowskian (PM) formalism is valid outside the source in

the region where r >> �GW spanned till r ! 1 denoted as wave zone. In addition to the PM

expansion, multipolar expansion of the complete non-linear theory [84,94] provides the full MPM

scheme which is valid over all the regions outside the compact source. In principle, this scheme is

valid for all kinds of sources but for PN sources there exists a bu↵er/matching zone where both the

approximation schemes are valid, which gives rise to the complete wave generation formalism.
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2.2.3 MPM approximation in the wave zone

In the MPM formalism the vacuum Einstein’s equation ( where ⌧↵� is simply the source term ⇤↵�

in Eq. (2.2.2)) is solved iteratively in powers of Newton’s constant G considering the field variable

h↵� as a non-linear metric perturbation of Minkowski space-time. With the post-Minkowskian

ansatz as

h↵� =
X

n=1

Gnh↵�n , (2.2.6)

the vacuum Einstein’s equation (Eq. (2.2.2) reads,

⇤h↵� = ⇤↵� = ⇤↵�2 (h, h) + ⇤↵�3 (h, h, h) + O(h4) . (2.2.7)

Above equation is solved at each successive order in G knowing the previous order solution. At

the leading order, the solution can be written in terms of the symmetric trace free tensors (STF)

i.e. h↵�1 =
P
`=0 @L

 
K↵�

L (t�r/c)
r

!
, where L = i1, i2...i` and K↵�

L ⌘ K↵�
i1,i2...i` are the multi-index tensors

which are symmetric and trace free with respect to all its indices. Furthermore, using the harmonic

gauge condition (@↵h↵�1 = 0), the general solution is h↵�1 = k↵�1 + @
↵'�1 + @

�'↵1 � ⌘
↵�@⇢'

⇢
1, where

k↵�1 and '↵1 can be expressed in terms of two source moments {IL, JL} and four gauge moments

{WL, XL,YL,ZL}, or equivalently two canonical moments {ML, S L}. At the nth order in G, we need to

solve ⇤h↵�n = ⇤
↵�
n (h1, h2, ..., hn�1) and so on. Since the wave equation is valid only outside the source

and the source term, ⇤↵�n (h1, h2, ..., hn�1), is composed of the product of many multipole expansions,

which are singular at r = 0, a retarded Green’s function method is not directly applicable. Thus

one regularizes the multipolar expansion to the source term ⇤↵�n (h1, h2, ..., hn�1) by multiplying by

rB and use as the retarded Green’s Function to solve [84, 90, 94, 97]. Eventually extracting the

coe�cient of the zeroth power of r, the final solution is obtained, which schematically reads,

u↵�n = FPB=0

n
⇤�1

ret [r
B⇤↵�n ]

o
, (2.2.8)
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where FP stands for finite part. Moreover, to satisfy the harmonic gauge condition, this solution

is added to a homogeneous solution, say, v↵�n to obtain the complete general solution. It can be

shown that this most general solution to Einstein’s vacuum equation at any order depends on only

two types of canonical moments {ML, S L}.

In the above mentioned scheme, there appear logarithmic terms in the wave zone expansion of the

metric in harmonic-coordinate. The study of the "asymptotic" structure of space-time at future null

infinity by Bondi et al. [117], Sachs [266], and Penrose [245,246] has shown the existence of other

coordinate systems– namely radiative coordinates– in which the far-zone expansion of the metric

can be written in simple powers of the inverse radial distance. Hence using the coordinate trans-

formation between the harmonic coordinate to the radiative ones provides the relation between the

canonical moments {ML, S L} and the radiative moments {UL,VL} and removes all the logarithmic

divergences due to the usage of harmonic coordinates.

2.2.4 Near-zone post-Newtonian approximation

As opposed to the far zone, the near zone solution is obtained by using a multipolar post-Newtonian

(PN) approach where h↵� and ⌧↵� are expanded in powers of 1/c, that is h↵� =
P

n=2
(n)h↵�/cn and

⌧↵� =
P

n=�2
(n)⌧↵�/cn. Due to non-compact-support terms at higher PN order, the solution faces the

convergence issue at large r instead of r = 0. Hence one uses the similar regularization procedure

applied in case of the wave-zone treatment except the fact that the exponent of r, B, is negative here.

Following the same prescription afterwards, the near zone solution can be written in terms of STF

tensors. These tensors can be fixed by matching with the far zone multipolar-post-Minkowskian

results in the bu↵er region d < r < R where both the multipolar PN and post-Minkowskian

series are valid. This matching provides the complete solution to the metric perturbation in the

range 0 < r < +1 and provides the relation between the far zone radiative moments UL and VL

and the canonical multipole moments ML and S L or equivalently the source multipole moments

{IL, JL,WL, XL,YL,ZL}, and finally in terms of various source integrals (composed of the stress

energy tensor of matter and the gravitational field). At the lowest order, the radiative moments are
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same as the canonical moments, whereas, starting from 1.5PN order, there appear the nonlinear

interactions between the various moments denoted as tails [96, 101, 111], tails-of tails [87], tail-

square [88], memory [59, 131, 165, 278] etc. The dominant tail e↵ects on the radiative multipole

moments first appear at 1.5PN and are caused by the multipolar waves getting scattered o↵ the

Schwarzschild curvature generated by the total mass of the source. The complete expressions of

these relations between the radiative and source moments are quoted in ref. [90] at 3.5PN, which

has been used in further calculations provided in this thesis.

2.3 Compact binary sources

In the previous sections we have briefly discussed the general scheme of perturbative (MPM-

PN) solution to Einstein’s equation. In this section we will briefly review how to employ this

prescription in case of compact binary dynamics in GR within the PN-framework. The e↵ects due

to the finite size of the compact objects being a higher order one, the inspiralling compact binary

is modeled by two structureless point-like masses (and spins) orbiting each other in the first order

approximation. To date, the time evolution of the GW phase and the amplitude corrections for ICB

have been computed at 3.5PN and 3.5PN order respectively. There are ongoing e↵orts to obtain

higher order corrections from di↵erent groups also. While the component masses are spinning,

the complete linear in spin e↵ects (spin-orbit coupling [SO]) are known at 3.5PN order and the

spin-spin couplings (SS) at 3PN order.

The GW phase evolution for compact binary mergers, can be obtained from the energy flux of the

emitted GW radiation and the conserved orbital energy of the binary orbits by using the energy

balance argument, which equates the GW energy flux F to the decrease in the binding energy Eorb

of the binary [101],

F = �
d
dt

Eorb. (2.3.1)

Due to the clean separation between conservative (Eorb) and dissipative terms (F ), the phase evo-

lution is obtained simply in two steps – (a) calculating the conserved energy or the equation of
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motion (b) Computation of the flux. At higher order, such as 4PN, 4.5PN, 5PN etc., there will be

a mixture of conservative and dissipative e↵ects and one needs a more careful treatment in order

to obtain the conserved energy and GW flux. In order to compute the conserved energy or the

equation of motion at 3.5PN, we first need to obtain the metric at the desired accuracy. The 3.5PN

metric can be written in terms of some particular retarded type potentials V , Vi, Wi j , ... , which

are constructed out of the pseudo-stress-energy tensor (⌧i j) of an extended regular PN source. For

the compact binary sources, since the stress tensor is composed of delta functions (because of the

point-mass approximation), these terms can be computed by means of the Hadamard regularization

and dimensional regularization techniques to avoid the self-field divergences. After computing the

metric, using the following equations we obtain the equation of motion,

dPi

dt
= Fi, (2.3.2)

where the linear momentum density Pi and the force density Fi is given by

P
i = c

giµvµ
p
�g⇢�v⇢v�

, (2.3.3)

Fi =
c
2
@igµ⌫vµv⌫
p
�g⇢�v⇢v�

. (2.3.4)

Finally retaining the corrections at the 1PN, 2PN and 3PN orders of the equation of motion and

neglecting the radiation reaction terms at 2.5PN and 3.5PN, the conserved orbital energy is com-

puted.

On the other hand, computation of energy flux F needs the the radiative multipole moments UL

and VL in terms of the canonical multipole moments ML and S L of the compact binary system and

the non-linear interactions between them. Computation of the source moments involves the similar

techniques used to obtain the equation of motion. First the multipole moments are expressed as a

function of some general source densities (function of stress tensor of a general PN fluid system) by

means of PN expansion and eventually using the various regularization schemes they are reduced

to the case of point particles. All the multipole moments for nonspinning compact binaries in
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quasi circular orbits at 3.5PN order, used in further calculations, are quoted in Eqs. (300)-(305b)

of ref [90]. We do not provide the explicit expressions here.

2.3.1 Compact binary sources with spins

Astrophysical evidence indicates that stellar-mass BHs and supermassive BHs (see Ref. [262] for

a review) can be very close to maximally spinning. Having discussed the complete formalism of

modeling the GW phase for the non-spinning compact binaries, we now focus on its extension to

the spinning case. The spins of the component masses a↵ect the gravitational waveform through

a modulation of their amplitude, phase, and frequency. If the spins are not aligned or anti-aligned

with respect to the orbital angular momentum, the orbital plane of the binary precesses. The

leading order terms consist of spins of the component masses and start appearing at 1.5PN order.

These contributions are linear in spin magnitude and hence termed as spin-orbit (SO) e↵ects. At

2PN, quadratic in spin terms appear; these are known as spin-spin (SS) contributions. In this thesis

we consider SO contributions at 3.5PN and SS contributions to 3PN. The very same prescription of

computing orbital energy, flux etc. in the case of non-spinning binaries has been adopted in order

to estimate various GW observables for compact binary systems with spinning component masses.

The only modification is the computation of the spin e↵ects on the pseudo-tensor ⌧↵� (or simply

the matter tensor T↵� at the leading order) which is obtained in the framework of the pole-dipole

approximation and is suitable for both SO and SS couplings. The details about the computation of

GW flux accounting for these e↵ects are revisited in chapter 4 of this thesis.

2.3.2 Compact binary sources in eccentric orbit

Though astrophysical binaries may have large eccentricity during birth, gravitational radiation re-

action circularizes the orbit towards the late stages of inspiral. Especially when the compact binary

merger enters the Adv. LIGO detector band, they are likely to have zero eccentricity. Hence mod-

eling of compact binaries in quasi-circular orbits is quite well motivated. But there are various
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astrophysical scenarios where binaries may have non-zero eccentricity in the gravitational-wave

detector bandwidth, especially for the space-based detector LISA. In case of a major fraction of

hierarchical triplets, inner binaries undergoing Kozai oscillations could have non-negligible eccen-

tricities when they enter the sensitivity band of advanced ground based interferometers. Moreover,

the population of stellar mass binaries in globular clusters may have a thermal distribution of ec-

centricities. Hence, this necessitates the exploration of compact binaries in quasi-eccentric orbit.

In case of compact binaries in elliptical orbits, the orbital revolution as well as the periastron ad-

vance per orbital revolution leads to the so-called "doubly periodic" motion of the binary. The GW

flux and angular momentum for these binaries are first computed by Peters and Mathews at Newto-

nian order [250]. Later it is extended till 3PN in ref. [59–63,181]. Here, the various quantities (such

as the rate of change of orbital separation, ṙ, orbital velocity v = ṙ2+ r2�̇2) are first written in terms

of orbital separation r, conserved energy (E) and angular momentum (J). Eventually parametrizing

the binary dynamics by using the quasi-Keplerian representation (QKR) [140, 142, 147, 270, 294],

various observables such as GW flux or the waveforms are expressed in terms of quasi-Keplerian

parameters such as three types of eccentricities (et, er, e�), mean anomaly (u), mean motion (n), etc.

The detailed discussion along this line is given in Chapter 5 while discussing the linear momentum

flux (LMF) emission in this context.



3 Testing the multipole structure of

compact binaries : Non-spinning

case [204]

3.1 Introduction

Setting stringent limits on possible departures from GR as well as constraining the parameter space

of exotic compact objects that can mimic the properties of BHs [127, 128, 130, 154, 176, 202, 214,

215], are among the principal science goals of the next-generation detectors. They should also be

able to detect any new physics, or modifications to GR, if present. Formulating new methods to

carry out such tests is crucial in order to e�ciently extract the physics from GW observations. In

alternative theories of gravity, the dynamics of the compact binary during its inspiral merger and

ringdown phases of evolution could be di↵erent from that predicted by GR. Hence GWs can be

used to probe the presence of non-GR physics.

One of the most generic tests of the binary dynamics has been the measurement of the PN coef-

ficients of the GW phasing formula [44, 65, 66, 109, 110, 237, 302]. This test captures a possible

departure from GR by measuring the PN coe�cients in the GW signal. In addition to the source

physics, the di↵erent PN terms in the phase evolution contain information about di↵erent nonlin-

ear interactions the wave undergoes as it propagates from the source to the detector. Hence the

predictions for these e↵ects in an alternative theory of gravity could be very di↵erent from that of

65
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GR, which is what is being tested using the parametrized tests of PN theory.

In this chapter, we go one step further by proposing a novel way to test the multipolar structure of

the gravitational field of a compact binary as it evolves through the adiabatic inspiral phase. The

multipole moments of the compact binary and their interactions among themselves, are responsible

for the various physical e↵ects we see at di↵erent PN orders. By measuring these e↵ects we can

constrain the multipolar structure of the system. As discussed in chapter 2, the GW phase and

frequency evolution is obtained from the energy flux of GWs and the conserved orbital energy by

using the energy balance argument, which equates the GW energy flux F to the decrease in the

binding energy Eorb of the binary [101]

F = �
d
dt

Eorb. (3.1.1)

In an alternative theory of gravity, one or more multipole moments of a binary system may be dif-

ferent from those as described in GR. For instance, in Ref. [162], the authors discuss how e↵ective

field theory-based approach can be used to go beyond Einstein’s gravity by introducing additional

terms to the GR Lagrangian which are higher-order operators constructed out of the Riemann ten-

sor, but suppressed by appropriate scales comparable to the curvature of the compact binaries.

They find that such generic modifications will lead to multipole moments of compact binaries that

are di↵erent from GR. Our proposed method aims to constrain such generic extensions of GR by

directly measuring the multipole moments of the compact binaries through GW observations.

Here we consider that the conserved orbital energy of the binary is the same as in GR and modify

the gravitational wave flux by deforming the multipole moments which contribute to it by employ-

ing the multipolar post-Minkowskian formalism [89,101] discussed in chapter 2. We then rederive

the GW phase and its frequency evolution (sometimes referred to as the phasing formula) explic-

itly in terms of the various deformed multipole moments (In chapter 4 we provide a more general

expression for the phasing where the conserved energy is also deformed at di↵erent PN orders, in

addition to the multipole moments of the source.). We use this parametrized multipolar phasing
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formula to measure possible deviations from GR and discuss the level of bounds we can expect

from the current and next-generation ground-based GW detectors, as well as the space-based LISA

detector. We obtain the measurement accuracy of the system’s physical parameters and the defor-

mation of the multipole moments using the semianalytical Fisher information matrix [133, 258].

These results are validated for several configurations of the binary system by Markov chain Monte

Carlo (MCMC) sampling of the likelihood function using the emcee [171] algorithm.

We find that Advanced LIGO-like detectors can constrain at most two of the leading multipoles,

while a third-generation detector, such as ET or CE, can set constraints on as many as four of the

leading multipoles. The space-based LISA detector will have the ability to set bounds on all seven

multipole moments that contribute to the 3.5PN phasing formula.

The organization of this chapter is as follows. In Sec. 3.2 we describe the basic formalism to

obtain the parametrized multipolar GW phasing formula. In Sec. 3.3 we briefly explain the two

parameter estimation schemes (Fisher information matrix and Bayesian inference) used in our

analysis, followed by Sec. 3.4 where we discuss the results we obtain for various ground-based

and space-based detectors. Section 3.5 summarizes the various estimates and lists some of the

follow-ups we are pursuing.

3.2 Parametrized multipolar gravitational wave phasing

For quasi-circular inspirals, the PN terms in the phasing formula explicitly encode the information

about the multipolar structure of the gravitational field of the two-body dynamics. In this chapter,

we separately keep track of the contributions from various radiative multipole moments to the GW

flux allowing us to derive a parametrized multipolar gravitational wave flux and phasing formula,

thereby permitting tests of the multipolar structure of the PN approximation to GR.

We first rederive the phasing formula for nonspinning compact binaries moving in quasi-circular

orbits up to 3.5 PN order. The computation is described in the next section. Before we proceed,

we clarify that in our notation the first post-Newtonian (1PN) correction would refer to the relative
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corrections to the leading of order v2/c2, where v = (⇡m f )1/3 is the characteristic orbital velocity

of the binary, m is the total mass of the binary and f is the orbital frequency.

3.2.1 The multipolar structure of the energy flux

The multipole expansion of the energy flux within the MPM formalism, schematically reads

as [101, 277]

F =
X

l

 ↵l

cl�2 U (1)
L U (1)

L +
�l

cl V (1)
L V (1)

L

�
, (3.2.1)

where ↵l, �l are known real numbers and UL,VL, introduced in chapter 2, are the mass- and current-

type radiative multipole moments with l indices respectively; the superscript (1) denotes the first

time derivative of the multipoles. Following the basic MPM-PN scheme discussed in chapter 2,

the UL and VL can be rewritten in terms of the canonical multipole moments as

UL = M(l)
L + Nonlinear interaction terms, (3.2.2)

VL = S (l)
L + Nonlinear interaction terms, (3.2.3)

where the right-hand side involves lth time derivative of the mass- and current-type source multipole

moments and nonlinear interactions between the various multipoles due to the propagation of the

wave in the curved spacetime of the source. (see Refs. [87, 88, 98, 106] for details). The various

types of interactions can be decomposed as follows [101, 106]

F = Finst + Ftail + Ftail2 + Ftail(tail). (3.2.4)

As opposed to Finst (a contribution that depends on the dynamics of the binary solely at the retarded

instant of time, referred to as instantaneous terms), the last three contributions Ftail, Ftail2 and

Ftail(tail) contain nonlinear multipolar interactions in the flux [87] that depend on the dynamical

history of the system and referred to as hereditary contributions.

In an alternative theory of gravity, the multipole moments may not be the same as in GR; if the
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mass- and current-type radiative multipole moments deviate from their GR values by a fractional

amount �UL and �VL, i.e., UL ! UGR
L + �UL and VL ! VGR

L + �VL, then we can parametrize such

deviations in the multipoles by considering the scalings

UL ! µl UL,

VL ! ✏l VL, (3.2.5)

where the parameters µl = 1 + �UL/UGR
L and ✏l = 1 + �VL/VGR

L are equal to unity in GR.

We first recompute the GW flux from nonspinning binaries moving in quasi-circular orbit at 3.5PN

order with the above scaling using the prescription outlined in chapter 2 [85, 100, 101, 106]. With

the parametrizations introduced above, the computation of the energy flux would proceed similarly

to that in GR [106] but contributions from every radiative multipole are now separately kept track

of.

In order to calculate the fluxes up to the required PN order, we need to compute the time derivatives

of the multipole moments as can be seen from Eqs. (3.2.1)-(3.2.3). These are computed by using

the equations of motion of the compact binary for quasi-circular orbits given by [104, 106],

dv
dt
= �!2 x, (3.2.6)

where the expression for !, the angular frequency of the binary, up to 3PN order is given by [99,

102, 104, 145, 146, 149, 200]

!2 =
Gm
r3
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where � = Gm/rc2 is the PN expansion parameter, r00 is a gauge-dependent length scale which does
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not appear when observables, such as the energy flux, are expressed in terms of gauge-independent

variables.

The hereditary terms are calculated using the prescriptions given in Refs. [86, 101, 106, 111] for

tails, Ref. [87] for tails of tails and Ref. [88] for tail square. The complete expression for the

energy flux F in terms of the scaled multipoles is given as
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where µ̂` = µ`/µ2, ✏̂` = ✏`/µ2, Euler constant, �E = 0.577216 and ⌘ is the symmetric mass ratio

defined as the ratio of reduced mass µ to the total mass m. As an algebraic check of the result, we

recover the GR results of Ref. [106] in the limit µl ! 1, ✏l ! 1.
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3.2.2 Conservative dynamics of the binary

A model for the conservative dynamics of the binary is also required to compute the phase evo-

lution of the system. This a↵ects the phasing formula in two ways. First, the equation of motion

of the binary [104] in the center-of-mass frame is required to compute the derivatives of the mul-

tipole moments while calculating the energy flux. Second, the expression for the 3PN orbital

energy [102, 104] is necessary to obtain the phase evolution [see Eqs. (3.2.13)–(3.2.14) below].

As the computation of the radiative multipole moments requires two or more derivative operations

w.r.t. time, they are implicitly sensitive to the equation of motion. Hence, formally, a constraint on

the deformation of the radiative multipole moment does take into account a potential deviation in

the equation of motion from the predictions of GR.

The assumption about the conserved energy being the same as in GR , is motivated by practical

considerations. We could have taken a more generic approach by deforming the PN coe�cients

in the equation of motion and conserved energy as well. As the former is degenerate with the

definition of radiative multipole moments, one would need to consider a parametrized expression

for the conserved energy which will give us a phasing formula with four additional parameters

corresponding to the di↵erent PN orders in the expression for conserved energy. A simultaneous

estimation of these parameters with the multipole coe�cients would significantly degrade the re-

sulting bounds and may not yield meaningful constraints. However, in chapter 4, we present a

parametrized phasing formula where in addition to the multipole coe�cients, various PN-order

terms in the conserved 3PN energy expression are also deformed [see Eq. (4.3.4)]. Interestingly,

as can be seen from Eq. (4.3.4), if there is a modification to the conservative dynamics, they will

be fully degenerate with at least one of the multipole coe�cients appearing at the same order.

Due to this degeneracy, such modifications will be detected by this test as modifications to “e↵ec-

tive" multipole moments. We are, therefore, confident that the power of the proposed test is not

diminished by this assumption. The conserved energy (per unit mass) up to 3PN order is given
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by [99, 102, 104, 145, 146, 149, 200]
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Using the expressions for the modified flux and the orbital energy we next proceed to compute the

phase evolution of the compact binary.

3.2.3 Computation of the parametrized multipolar phasing formula

With the parametrized multipolar flux and the energy expressions, we compute the 3.5PN, frequency-

domain phasing formula following the standard prescription [122,143] by employing the stationary

phase approximation (SPA) [269]. Consider a GW signal of the form

h(t) = A(t) cos �(t). (3.2.10)

The Fourier transform of the signal will involve an integrand whose amplitude is slowly varying

and whose phase is rapidly oscillating. In the SPA, the dominant contributions to this integral

come from the vicinity of the stationary points of its phase [143]. As a result the frequency-domain

gravitational waveform may be expressed as

h̃SPA( f ) =
A(t f )q

Ḟ(t f )
ei[ f (t f )�⇡/4] , (3.2.11)

 f (t) = 2⇡ f t � �(t), (3.2.12)

where t f can be obtained by solving d f (t)/dt
���
t f
= 0, F(t) is the gravitational wave frequency and

at t = t f the GW frequency coincides with the Fourier variable f . More explicitly,

t f = tref + m
Z vre f

v f

E0(v)
F (v)

dv , (3.2.13)
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 f (t f ) = 2⇡ f tref � �ref + 2
Z vre f

v f

(v3
f � v3)

E0(v)
F (v)

dv, (3.2.14)

where E0(v) is the derivative of the binding energy of the system expressed in terms of the PN

expansion parameter v. Expanding the factor in the integrand in Eq. (3.2.14) as a PN series and

truncating up to 3.5PN order, we obtain the 3.5PN accurate TaylorF2 phasing formula.

Following the very same procedure, but using Eq. (3.2.8) to be the parametrized flux, F , together

with the leading quadrupolar order amplitude (related to the Newtonian GW polarizations), we

derive the standard restricted PN waveform in the frequency domain, which reads as

h̃( f ) = A µ2 f �7/6ei ( f ), (3.2.15)

where  ( f ) is the parametrized multipolar phasing, amplitude, A = M5/6
c /
p

30⇡2/3DL; Mc =

(m1m2)3/5/(m1+m2)1/5 and DL are the chirp mass and luminosity distance, respectively, and m1,m2

denote the component masses of the binary. To be noted here, that µ2 is also present in the GW

amplitude. This is due to the mass quadrupole that contributes to the amplitude at the leading

PN order. If we incorporate the higher-order PN terms in the GW polarizations [59, 103, 107],

higher-order multipoles will enter the GW amplitude also.

Finally the expression for the 3.5PN frequency-domain phasing formula,  ( f ) is given by,

 ( f ) = 2⇡ f tc �
⇡
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This parametrized multipolar phasing formula is one of the most important results of this chapter

and is the basis for the analysis which follows.
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3.2.4 Multipole structure of the post-Newtonian phasing formula

We summarize the multipole structure of the PN phasing formula, based on Eq. (3.2.16), in ta-

ble 3.1. The main features are as follows. As we go to higher PN orders, in addition to the

higher-order multipoles making their appearances, higher-order PN corrections to the lower-order

multipoles also contribute. For example, the mass quadrupole and its corrections (terms propor-

tional to µ2) appear at every PN order starting from 0PN. The 1.5PN and 3PN log terms are due to

the leading-order tail e↵ect [111] and tails-of-tails e↵ect [87], respectively, hence contain only µ2.

The 3PN nonlogarithmic term contains all seven multipole coe�cients.

Due to the aforementioned structure, it is evident that if one of the multipole moments is di↵erent

from GR, it is likely to a↵ect the phasing coe�cients at more than one PN order. For instance,

a deviation in µ2 could result in a dephasing of each of the PN phasing coe�cients. There are

total seven independent multipole coe�cients which determine eight PN coe�cients. The eight

equations which relate the phasing terms to the multipoles are inadequate to extract all seven

multipoles. This is because three of the eight equations relate the PN coe�cients only to µ2, and

another two relate the 1PN and 2.5PN logarithmic terms to a set of three multipole coe�cients

{µ2, µ3, ✏2}. It turns out that, in principle, by independently measuring the eight PN coe�cients,

we can measure all the multipoles except two, µ5 and ✏4. It is well known that measuring all eight

phasing coe�cients together provides very bad bounds [65, 66]. The version of the parametrized

tests of post-Newtonian theory, where we vary only one parameter at a time [44, 65], cannot be

mapped to the multipole coe�cients, as varying multipole moments will cause more than one PN

order to change, which conflicts with the original assumption.

Though mapping the space of PN coe�cients to that of the multipole coe�cients is not possible, it

is possible to relate the multipole deformations to that of the parametrized test. If, for instance, µ2

is di↵erent from GR, it can lead to dephasing in one or more of the PN phasing terms depending

on what the correction is to the mass quadrupole at di↵erent PN orders. Based on the multipolar

structure, this provides a motivation to perform parametrized tests of PN theory while varying
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PN order frequency dependences Multipole coe�cients

0 PN f �5/3 µ2

1 PN f �1 µ2, µ3, ✏2

1.5 PN f �2/3 µ2

2 PN f �1/3 µ2, µ3, µ4, ✏2, ✏3

2.5 PN log log f µ2, µ3, ✏2

3 PN f 1/3 µ2, µ3, µ4, µ5, ✏2, ✏3, ✏4

3 PN log f 1/3 log f µ2

3.5 PN f 2/3 µ2, µ3, µ4, ✏2, ✏3

Table 3.1. Summary of the multipolar structure of the PN phasing formula. The contributions of various
multipoles to di↵erent phasing coe�cients and their frequency dependences are tabulated. Following
the definitions introduced in this thesis, µl are associated to the deformations of mass-type multipole
moments and ✏l refer to the deformations of current-type multipole moments.

simultaneously certain PN coe�cients1.

3.3 Parameter estimation of the multipole coefficients

In this section, we set up the parameter estimation problem to measure the multipolar coe�cients

and present our forecasts for Advanced LIGO, the Einstein Telescope, Cosmic Explorer and LISA.

Using the frequency-domain gravitational waveform, we study how well the current and future

generations of GW detectors can probe the multipolar structure of GR. We derive the projected

accuracies with which various multipole moments may be measured, in case of various detector

configurations by using standard parameter estimation techniques. Following the philosophy of

Refs. [44, 66, 237], while computing the errors, we consider the deviation of only one multipole

at a time. An ideal test would have been where all the coe�cients are varied at the same time, but

this would lead to almost no meaningful constraints due to the strong degeneracies among di↵erent

coe�cients. However, this would not a↵ect our ability to detect a potential deviation because in

the multipole structure, a deviation of more than one multipole coe�cient would invariably show

up in the set of tests performed by varying one coe�cient at a time [44, 221, 231, 237].
1We thank Archisman Ghosh for pointing out this possibility to us.
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We first use the Fisher information matrix approach discussed in chapter 1 to derive the 1�� error

bars (see Eq. (1.4.20)) on the multipole coe�cients. Since Fisher-matrix-based estimates are only

reliable in the high signal-to-noise ratio limit [74, 136, 283], we spot check representative cases

for consistency, with the estimates based on a Bayesian inference algorithm that uses an MCMC

method to sample the likelihood function, which is also discussed in chapter 1. This method is not

limited by the quadratic approximation to the log-likelihood and hence is considered to be a more

reliable estimate of measurement accuracies one might have in a real experiment (see section 1.4

of chapter 1 for detailed discussion). In this thesis, we use uniform prior on all the parameters we

are interested in and used python-based MCMC sampler, emcee [171] to sample the likelihood

surface and get the posterior distribution for all the parameters.

We compute the Fisher matrix assuming the noise PSDs of various detectors given in section 1.3.2

of chapter 1. Furthermore, we consider that the signal can be described by the set of parameters

{lnA, lnMc, ln⌘, tc, �c} and any one of the seven additional parameters µl or ✏l. In order to compute

the inner product using Eq. (1.4.14), we assume flow to be 20, 1, 5 and 10�4 Hz for the aLIGO, ET-

D, CE-wb and LISA noise PSDs respectively. We choose fhigh to be the frequency at the last stable

circular orbit (LSO) of a Schwarzschild BH with a total mass m equal to the sum of the binary’s

component masses, given by fLSO = 1/(⇡m 63/2) for the aLIGO, ET-D and CE-wb noise PSDs.

For LISA, we choose the upper cut o↵ frequency to be the minimum of [0.1, fLSO]. Additionally,

LISA being a triangular shaped detector, we multiply our gravitational waveform by a factor of
p

3/2 while calculating the Fisher matrix for LISA.

All of the parameter estimations for aLIGO, CE-wb and LISA carried out here, assume detections

of the signals with a single detector, whereas for ET-D, due to its triangular shape, we consider

the noise PSD to be enhanced roughly by a factor of 1.5. As our aim is to estimate the intrinsic

parameters of the injected GW waveform, which directly a↵ect the binary dynamics, the single

detector estimates are good enough for our purposes and a network of detectors may improve it

by the square root of the number of detectors. Hence the reported errors are likely to give rough,

but conservative bounds on the expected accuracies with which the multipole coe�cients may be
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Figure 3.1. Projected 1� errors on µ2, µ3 and ✏2 as functions of the total mass for the aLIGO noise PSD.
Results from Bayesian analysis using MCMC sampling are given as dots showing good agreement. All
the sources are considered to be at a fixed luminosity distance of 100 Mpc.

estimated.

3.4 Results and Discussion

In this section, we report the 1� measurement errors on the multipole coe�cients introduced in the

previous section, obtained using the Fisher matrix as well as Bayesian analysis and discuss their

implications.

Our results for the four di↵erent detector configurations are presented in figs. 3.1, 3.3 and 3.5,

which show the errors on the various multipole coe�cients µl, ✏l for aLIGO, ET-D, CE-wb and

LISA, respectively. For all the estimates we consider the sources to be at fixed distances. In

addition to the intrinsic parameters there are four more (angular) parameters that are needed to

completely specify the gravitational waveform. More precisely, one needs two angles to define the

location of the source on the sky and another two angles to specify the orientation of the orbital

plane with respect to the detector plane and the polarization of the wave [268]. Since we are using

a pattern-averaged waveform [143] (i.e., a waveform averaged over all four angles), the luminosity

distance can be thought of as an e↵ective distance which we assume to be 100 Mpc for aLIGO, ET-

D and CE-wb and 3 Gpc for LISA. For aLIGO, ET-D and CE-wb, we explore the bounds for the

binaries with total masses in the range [1,70] M� and for LISA detections, in the range [105, 107]

M�.



3.4 Results and Discussion 79

Figure 3.2. The posterior distributions of all six parameters {lnA, tc, �c,Mc, ⌘, µ3} and their correspond-
ing contour plots obtained from the MCMC experiments (see section 1.4.2 for details) for a compact
binary system at a distance of 100 Mpc with q = 2, m = 5 M� using the noise PSD of aLIGO. The
darker shaded regions in the posterior distributions as well as in the contour plots show the 1� bounds
on the respective parameters.

3.4.1 Advanced LIGO

In fig. 3.1, we demonstrate the projected 1-� errors on the three leading multipole coe�cients,

µ2, µ3 and ✏2, as a function of the total mass of the binary for the aLIGO noise PSD using the

Fisher matrix. Di↵erent curves are for di↵erent mass ratios, q = m1/m2 = 1.2 (red), 2 (cyan)

and 5 (blue). For the multipole coe�cients considered, low-mass systems obtain the smallest

errors and hence the tightest constraints. This is expected as low-mass systems live longer in the

detector band and have larger number of cycles, thereby allowing us to measure the parameters

very well. The bounds on µ3 and ✏2, associated with the mass octupole and current quadrupole,
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increase monotonically with the total mass of the system for a given mass ratio. However, the

bounds on µ2 show a local minimum in the intermediate-mass regime for smaller mass ratios. This

is because, unlike other multipole parameters, µ2 appears both in the amplitude and the phase of

the signal.Schematically, the Fisher matrix element is given by

�µ2µ2 ⇠

Z fhigh

flow

A
2 f �7/3

S h( f )

⇣
1 + µ2

2 
02
⌘

d f , (3.4.1)

where  0 = @ /@µ2. As the inverse of this term dominantly determines the error on µ2, the local

minimum is a result of the trade-o↵ between the contributions from the amplitude and the phase

of the waveform. Interestingly, as we go to higher mass ratios, this feature disappears resulting in

a monotonically increasing curve (such as for q = 5).

We find that the mass multipole moments µ2 and µ3 are much better estimated as compared to the

current multipole moment ✏2. Another important feature is that the bounds µ3 and ✏2 are worse for

equal mass binaries. The mass-octupole and current-quadrupole are odd-parity multipole moments

(unlike, say, the mass quadrupole which is even)2. Every odd-parity multipole moment comes with

a mass asymmetry factor
p

1 � 4⌘ that vanishes in the equal-mass limit and as a consequence the

errors diverge. Consequently, the Fisher matrix becomes badly conditioned and the precision with

which we recover these parameters appears to become very poor, but this is an artifact of the Fisher

matrix.

In order to cross-check the validity of the Fisher-matrix-based estimates, we perform a Bayesian

analysis to find the posterior distribution of the three multipole parameters, for the same systems

as in the Fisher matrix analysis. Moreover we considered a flat prior probability distribution for all

six parameters {lnA,Mc, ⌘, tc, �c, µ` or ✏`} in a large enough range around their respective injection

values. Given the large number of iterations, once the MCMC chains are stabilized, we find good

agreements with the Fisher estimates as in the case of µ3 for q = 2 and 5, shown in Fig. 3.1. As

an example, we present our results from the MCMC analysis for µ3 with m = 5 M� and q = 2,

2Mass-type multipoles with even l and current-type moments with odd l are considered ‘even’ and odd l mass
multipoles and even l current moments are ‘odd’.
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Figure 3.3. Dark shaded curves correspond to the projected 1� error bars on µ2, µ3, µ4 and ✏2 using the
proposed CE-wb noise PSD as a function of the total mass, where as lighter shades denote the bounds
obtained using the ET-D noise PSD. All the sources are considered to be at a fixed luminosity distance
of 100 Mpc. The higher-order multipole moments such as µ4 and ✏2 cannot be measured well using
aLIGO and hence it may be a unique science goal of the third-generation detectors.

in the corner plots in fig. 3.2. In fig. 3.1 we see that the 1� errors in µ3 from the Fisher analysis

agree very well with the MCMC results for q = 2 and 5. We did not find such an agreement for

q = 1.2. We suspect that this is because for comparable-mass systems the likelihood function,

defined in chapter 1, Eq. (1.4.16), becomes shallow and it is computationally very di�cult to find

its maximum given a finite number of iterations. As a result, the MCMC chains did not converge

and 1� bounds cannot be trusted for such cases. We find the nonconvergence of MCMC chains

for all of the cases for µ2 and ✏2. Hence we do not show those results in fig. 3.1. In a nutshell,

our findings indicate only µ2 and µ3 can be measured with a good enough accuracy using aLIGO

detectors.

3.4.2 Third-generation detectors

Third-generation detectors such as CE-wb (and ET-D) can put much better bounds on µ2, µ3 and ✏2

compared to aLIGO. Additionally, they can also measure µ4 with reasonable accuracy, as shown by
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Figure 3.4. The posterior distributions of all six parameters {lnA, tc, �c,Mc, ⌘, µ3} and their correspond-
ing contour plots obtained from the MCMC experiments (see Sec. 1.4.2 for details) for a compact binary
system at a distance of 100 Mpc with q = 2, m = 10 M� using the noise PSD of CE-wb. The darker
shaded region in the posterior distributions as well as in the contour plots show the 1� bounds on the
respective parameters.

the darker (and lighter) shaded curves in fig. 3.3. The bounds on µ2, µ3 and ✏2 show similar trends

as in the case of aLIGO except the overall accuracy of the parameter estimation is much better.

For a few cases in low-mass regime, µ2 and µ4 are better estimated for comparable-mass binaries

(i.e., q = 1.2). We also find that the bounds (denoted by the lighter shaded curves in fig. 3.3)

obtained by using the ET-D noise PSD are even better than the bounds from CE-wb, though the

other features are more or less similar for both of the detectors. This improvement in the precision

of measurements is due to two reasons. The triangular shape of ET-D enhances the sensitivity

roughly by a factor of 1.5 and its sensitivity is much better than CE-wb in the low-frequency
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Figure 3.5. Projected constraints on various multipole coe�cients using LISA sensitivity, as a function
of the total mass of the binary. All the sources are considered to be at a fixed luminosity distance of 3
Gpc. LISA can measure all seven multipoles which contribute to the phasing and hence will be able to
place extremely stringent bounds on the multipoles of the compact binary gravitational field.

regime.

For a few representative cases, we compute the errors in µ2, ✏2 and µ3 using Bayesian analysis

and the results are shown as dots with the same color in fig. 3.3. The MCMC results are in good

agreement with the Fisher matrix results. Unlike the aLIGO PSD, for CE-wb the MCMC chains

converge quickly in the case of µ2 and ✏2 because of the high signal-to-noise-ratios, which naturally

lead to high likelihood values. As a result, it becomes relatively easier for the sampler to find the

global maximum of the likelihood function in relatively fewer iterations. Moreover, we show an

example of corner plot for the CE-wb PSD with q = 2, m = 10 M� in fig. 3.4.
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3.4.3 Laser Interferometer Space Antenna

In this section, we discuss the projected bounds on various multipole coe�cients for the LISA

detector. Here we consider four mass ratios, q = 1.2 (red), 2 (cyan), 10 (blue) and 50 (green). The

first three are representatives of comparable-mass systems, while q = 50 refers to the intermediate-

mass ratio systems. Here we do not consider the extreme-mass-ratio-systems. The analysis of these

systems needs phasing information at much higher PN orders such as in Ref. [172] which is beyond

the scope of the present work. Moreover, in such systems, the motion of the smaller BH around

the central compact object is expected to help us understand the multipolar structure of the central

object and test its BH nature [265]. This is quite di↵erent from our objective here which is to use

GW observations to understand the multipole structure of the gravitational field of the two-body

problem in GR. The q = 50 case, in fact, falls in between these two classes and hence has a cleaner

interpretation in our framework.

In fig. 3.5 we show the projected errors from the observations of supermassive BH mergers, de-

tectable by the space-based LISA observatory. The error estimates for multipole moments with

LISA are similar to that of CE-wb for mass ratios q = 1.2, 2. For q = 10 all the parameters except

✏4 are estimated very well. For q = 50, we find that LISA will be able to measure all seven multi-

pole coe�cients with good precession. It is not completely clear if PN model is accurate enough

for the detections and parameter estimations of supermassive binary BHs with q = 50, for which

the number of GW cycles could be an order of magnitude higher than that of equal-mass config-

urations. However, our findings carry important information, as they point to the huge potential

such systems have for fundamental physics.

To summarize, we find, in general, that even-parity multipoles (i.e., µ2 and µ4) are better measured

when the binary constituents are of equal or comparable masses, whereas the odd multipoles (i.e.,

µ3, µ5, ✏2 and ✏3) are better measured when the binary has mass asymmetry. This happens because

the even multipoles are proportional to the symmetric mass ratio ⌘, whereas the odd ones are

proportional to the mass asymmetry factor,
p

1 � 4⌘, which vanishes in the equal-mass limit of the
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systems (see, e.g., Eq. (4.4) of Ref. [101]).

3.5 Summary and Future directions

We propose a novel way to search for possible deviations from GR using GW observations from

compact binaries, by probing the multipolar structure of the GW phasing in any alternative theories

of gravity. We compute a parametrized multipolar GW phasing formula which can be used to probe

potential deviations from the multipolar structure of compact binary space-time in GR. Using

the Fisher information matrix and Bayesian parameter estimation, we predict the accuracies with

which the multipole coe�cients could be measured from GW observations with present and future

detectors. We find that the space mission LISA, currently under development, can measure all

the multipoles of the compact binary system. Hence this will be among the unique fundamental

science goals LISA can achieve.

In deriving the parametrized multipolar phasing formula, we assume that the conservative dynam-

ics of the binary follow the predictions of GR. In the next chapter, we provide a phasing formula

where we also deform the PN terms in the orbital energy of the binary. This might be seen as a first

step towards a more generic parametrization of the phasing, where we separate the conservative

and dissipative contributions to it. A systematic revisit of the problem, starting from the founda-

tions of PN theory while applying to the compact binary, is needed to obtain a complete phasing

formula parametrizing uniquely the conservative and dissipative sectors.

The present results using nonspinning waveforms should be considered to be a proof-of-principle

demonstration, which will be followed up with a more realistic waveform that accounts for spin

e↵ects (the extension to the spinning case, we discuss in next chapter 4), e↵ects of orbital eccen-

tricity and higher modes. The incorporation of the proposed test in the framework of the e↵ective

one-body formalism [119] is also among the future directions we plan to pursue.



4 Testing the multipole structure and

conservative dynamics : The spinning

case [205]

4.1 Introduction

The parametrized multipolar waveform developed in the previous chapter facilitates tests of GR in

a model independent way with GW observations [204]. However, there are strong astrophysical

evidences that stellar mass BH binaries [41, 182] as well as super-massive BH binaries [261] may

have highly spinning component masses. The spins of the compact binary components a↵ect

the binary dynamics and give rise to di↵erent radiation profile as compared to their non-spinning

counterparts. Hence a physically realistic waveform model should account for the spin dynamics

of compact binaries. Within the PN formalism, the gravitational waveform has been calculated

considering the point masses with arbitrary spins up to a very high accuracy [55, 64, 90–92, 114–

116, 121, 184, 185, 206, 207, 219, 220, 228–230, 234, 252, 296]. In this chapter, we extend our

parametrized multipolar GW energy flux as well as PN waveform model considering spin-orbit

(SO) and spin-spin (SS) contributions from binary constituents. We assume that the component

spins are either aligned or anti-aligned with respect to the orbital angular momentum of the binary,

inspiraling in quasi-circular orbits. Here, in addition to the multipolar structure, we present the

phasing formula which also parametrizes the conservative dynamics of the binary.

87
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As done in chapter 3, in this chapter also we use Fisher information matrix based parameter es-

timation scheme, discussed in chapter 1, to compute projected bounds on the various multipolar

coe�cients. Along with the study on the bounds of the multipolar parameters, we also provide the

bounds on the parameters associated to the conservative sector in this chapter. We consider GW

observation through networks of the various second and third generation ground-based detectors

as well the proposed space-based LISA mission [50]. Inclusion of spin e↵ects not only increases

the dimension of the parameter space but also degrades the measurement accuracy of parameters.

We find that a network of third-generation ground-based detectors and the space-based LISA mis-

sion would have comparable sensitivity to detect potential deviations in the multipolar structure of

compact binaries.

This chapter is organized as follows. In section 4.2 we discuss our computational scheme for the

multipolar parametrized gravitational wave energy flux. In section 4.3 we explore the modifications

in the parametrized frequency domain (TaylorF2) waveform due to the various contributions from

spins. Thereafter, in section 4.4 we briefly describe the parameter estimation techniques we use

here. Section 4.5 provides a detailed description about the various GW detector configurations used

for our analysis. In section 4.6 we discuss the bounds on the multipole coe�cients for various GW

detectors with our concluding remarks in section 4.7.

4.2 Parametrized gravitational wave energy flux

During the inspiral phase of the compact binary dynamics, the radiation reaction time scale is much

longer than the time scale for orbital motion. Due to this separation of time scales, as discussed in

chapters 2 and 3 also, two vital ingredients for computing the phase evolution are the conserved

orbital energy of the binary and the gravitational wave energy flux from the system. While the

former characterizes the conservative dynamics of the binary, the latter describes the dissipative

dynamics.

The computation of the multipolar parametrized flux formula makes use of the entire machinery
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of the MPM-PN formalism discussed in chapter 2 [85, 91, 94, 96, 100, 101, 106, 112, 146] (see [89]

for a review). We follow the same scheme developed in chapter 3 [204], i.e. GW energy flux

parametrized in terms of the various radiative multipole moments of the compact binary while

including contributions from the spins of the binary components in quasi-circular orbits. More

explicitly, we use the same parametrizations introduced in Eq. (3.2.5) of chapter 3 at the level of

mass-type (UL) and current-type (VL) radiative multipole moments. In this chapter we focus on the

contributions to the flux from spin angular momentum of the binary components and hence quote

only the spin-dependent part of the parametrized GW energy flux which may be added to the non-

spinning results of chapter 3 [204] to get the complete phasing. Among the di↵erent approaches

of considering spin corrections to the conservative dynamics as well as gravitational radiation

from a compact binary system, we adopt the PN iteration scheme in harmonic coordinates [90] to

obtain spin contributions to the radiative moments in GR which we further rescale as depicted in

Eqs. (3.2.5).

We closely follow the prescription given in Refs. [90–92,115,116] to account for the contributions

to the conservative and dissipative sectors of the compact binary dynamics from the individual

spins of the component masses. In our notation, the individual spins of the component masses,

m1 and m2 are S1 and S2 with quadrupolar polarisabilities 1 and 2, respectively, which are unity

for Kerr black holes. We denote the total mass for the system to be m = m1 + m2, relative mass

di↵erence to be � = (m1 � m2)/m and the symmetric mass ratio being ⌘ = m1m2/m2. Furthermore,

following the usual notation used in the literature, we present our results in terms of the symmetric

combination of the quadrupolar polarisabilities, + = 1 + 2 and the anti-symmetric combination,

� = 1 � 2. Our results are expressed in the center of mass (CM) frame where the spin variables

S and ⌃ have the following relations with the spins of each of the constituent masses of the binary,

S = S1 + S2 , (4.2.1)

⌃ = m
 
⌃2

m2
�
⌃1

m1

!
, (4.2.2)

and S L = S · L and ⌃L = ⌃ · L are the projections along the direction of orbital angular momentum.
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Depending on the order of spin corrections, the GW flux schematically has the following structure,

F = FNS + FSO + FSS + FSSS + ...., (4.2.3)

where FNS is the non-spinning contribution quoted in Eq. (3.2.8) of chapter chapter 3 and does not

depend on the spin parameters, FSO is the SO contribution which depends linearly on the spins and

FSS is quadratic in spins arising due to the SS interactions. Similarly FSSS denotes the cubic-in-

spin e↵ects on the GW energy flux. Here we report the parametrized multipolar flux accounting for

SO e↵ects up to 3.5PN order and SS contributions up to 3PN order. We do not provide the cubic

spin and the partial quadratic-in-spin contribution at 3.5PN order. The non-spinning flux and the

parameterized phasing formula computed in chapter 3 should be added to the corresponding ones

computed in this chapter to obtain the total flux and the phasing. We provide explicit expressions

for the spin-orbit and quadratic-in-spin contributions to multipolar parametrized GW fluxes in the

following subsections.

4.2.1 Spin-orbit contributions

Considering the leading order spin corrections to the multipole moments as well as in the equation

of motion (EOM) and following the same technique as prescribed in Refs. [91, 92, 115], we re-

compute the parametrized SO part of the energy flux, which is given as,

FSO =
32
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SO corrections start appearing in the flux for compact objects from 1.5PN order due to spin-

dependent terms in mass quadrupole moments at 1.5PN order and current quadrupole moment at

0.5PN order. Hence the leading order SO corrections make µ2 and ✏2 to appear in the parametrized

GW flux at 1.5PN. As clearly stated in Ref. [91], at 2.5PN order the SO contributions come from

mass- and current-type quadrupole and octupole moments, which is evident from Eq. (4.2.4) since

only µ2, µ3, ✏2 and ✏3 are present up to 2.5PN order. At 3PN order, the spin dependences come from

the 1.5PN tail integral performed on mass quadrupole moment and the 2.5PN tail integral per-

formed on current quadrupole moment [92]. Hence at 3PN only µ2 and ✏2 are present. As we go to

higher order we find that at 3.5PN, µ4 and ✏4 are also present along with the lower order coe�cients.

As a check on the calculation, in the limit where all the coe�cients, {µ2, µ3, µ4, µ5, ✏2, ✏3, ✏4} ! 1,

Eq. (4.2.4) reduces to Eq. (4) of Ref. [91].

4.2.2 Spin-spin contribution

Quadratic-in-spin corrections first appear at 2PN of the GW flux and the waveform (see Refs. [206,

207, 234, 257, 296] for details). Next to leading order contributions from SS terms appear at 3PN

and are first calculated in Ref. [116].

Along with the terms quadratic-in-spin in the EOM, the complete SS contributions to the flux

are generated from the four leading multipole moments, Ii j, Ii jk, Ji j and Ji jk. Hence FSS is com-

pletely parametrized by µ2, µ3, ✏2 and ✏3 (see Eq. (4.2.5)). We have also written the SS contribution

at 3.5PN order arising from the two leading order tail integrals performed on mass and current

quadrupole moments. However, at 3.5PN SS contributions are partial. Hence these contributions

are neglected for the waveform computations. The closed form expression for SS contributions to
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the GW flux is given by,
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As an algebraic check, in the limit, µ2 = µ3 = µ4 = µ5 = ✏2 = ✏3 = ✏4 = 1 in Eq. (4.2.5),

we confirm the correct expression for SS contribution to GW flux in GR reported in Eq. (4.14) of

Ref. [116].

4.3 Parametrized multipolar gravitational wave phasing

The GW phase and its frequency evolution are obtained by using the energy conservation law,

Eq. (2.3.1), which essentially balances the rate of change of conserved orbital energy E and the

emitted GW flux. Hence an accurate model for conserved orbital energy is needed to obtain the

GW phasing formula.

In GR, for a non-spinning compact binary inspiraling in quasi-circular orbits, the expression for the
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conserved energy per unit mass is given in Refs. [99,102,104,145,146,149,200], whereas the SO

corrections up to 3.5PN and the SS corrections up to 3PN are reported in Refs. [91, 92, 115, 116].

In alternative theories of gravity, along with the deformations at the level of multipole moments,

we expect the conserved orbital energy to be di↵erent as well. In order to incorporate theses ef-

fects, we introduce free parameters, ↵k, characterizing the deviations at di↵erent PN orders in the

conserved energy defined in GR for compact binaries in aligned (or anti-aligned)-spin configura-

tion. For spin contributions to the conservative dynamics we consider SO corrections up to 3.5PN

and SS corrections at 3PN to the energy. The 3.5PN closed-form expression for the parametrized

conserved energy reads as,
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(4.3.1)

with ↵̂i = ↵i/↵0. To obtain the gravitational waveform in frequency domain under the SPA [269],

we use the standard prescription outlined in Refs. [122,143] as assumed in chapter 3 also. The im-

portant di↵erence here is that we use the parametrized expressions for the GW flux and conserved

energy given by Eq. (4.2.3) and (4.3.1) respectively. Further we consider the amplitude to be at the

leading quadrupolar order following chapter 3. The standard restricted PN waveform in frequency

domain, thus, reads as

h̃S ( f ) = A µ2 f �7/6ei S ( f ), (4.3.2)
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with the amplitude A = M5/6
c /
p

30⇡2/3DL; Chirp mass, Mc = (m1m2)3/5/(m1 + m2)1/5 and the

luminosity distance to be DL. In the case of LISA, to account for its triangular geometry, we

multiply the gravitational waveform by a factor of
p

3/2 while calculating the Fisher matrix for

LISA [134]. The parametrized multipolar phasing,  S ( f ), has the same structure as that of the

energy flux (see Eq. (4.2.3)). Schematically the parametrized phasing formula can be written as,
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where the parametrized non-spinning part,  NS( f ) is given by,
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Now to obtain the additional contribution to the parametrized TaylorF2 phasing for aligned spin

binaries, we use the conventional notations for the spin variables (�1,�2), with the following

re-definitions,

�1 = Gm2
1S1, (4.3.5)

�2 = Gm2
2S2. (4.3.6)

Furthermore, we use �s = (�1+�2)/2 and �a = (�1��2)/2 to present the phasing formula, where �1

and �2 are the projections of �1 and �2 along the orbital angular momentum, respectively. These

spin variables have the following relations,

S L = Gm2[��a + (1 � 2⌘)�s] , (4.3.7)

⌃L = �Gm2[��s + �a] . (4.3.8)

As mentioned earlier, we do not account for the partial contribution due to the spin-spin interactions

to the phasing formula at the 3.5PN order. Finally we write down the expressions for  SO and  SS

below,
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As a consistency check, we confirm the recovery of the corresponding expression for the TaylorF2

phasing in GR for aligned spin binaries (see Refs. [64,238,289]) in the limit, µ2 = µ3 = µ4 = µ5 =

✏2 = ✏3 = ✏4 = ↵0 = ↵2 = ↵3 = ↵4 = ↵5 = ↵6 = ↵7 = 1. We also update table 3.1 given in chapter 3

(or Table I of Ref. [204]) to explicitly show the appearances of the parameters µl and ✏l at various

PN order of the phasing formula (see Table 4.1).

One of the salient features of the parametrized multipolar phasing for spinning binaries derived

here is the presence of ✏2 at 1.5PN order and ✏3 at 2.5PN order (logarithmic) due to the SO in-

teractions and hence not present in the non-spinning phasing. At 2PN and 3PN, due to the spin-

spin interactions, no additional multipole moments compared to the non-spinning systems appear.

These are the orders at which ± appear. This has interesting interpretation as ± can parametrize

the potential deviations from BH nature [214, 215] as binaries comprising of non-BHs will have

± to be di↵erent from 2 and 0, respectively, which are the unique values corresponding to BBHs.
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PN order frequency dependences Multipole coe�cients

0 PN f �5/3 µ2

1 PN f �1 µ2, µ3, ✏2

1.5 PN f �2/3 µ2, ✏2

2 PN f �1/3 µ2, µ3, µ4, ✏2, ✏3

2.5 PN log log f µ2, µ3, ✏2, ✏3

3 PN f 1/3 µ2, µ3, µ4, µ5, ✏2, ✏3, ✏4

3 PN log f 1/3 log f µ2

3.5 PN f 2/3 µ2, µ3, µ4, ✏2, ✏3, ✏4

Table 4.1. Update of the summary given in table 3.1 of chapter 3 for the multipolar structure of the PN
phasing formula. Contribution of various multipoles to di↵erent phasing coe�cients and their frequency
dependences are tabulated. The additional multipole coe�cients appearing due to spin are underlined.
Following the definitions introduced in chapter 3 [204], µl refer to mass-type multipole moments and ✏l
refer to current-type multipole moments.

The cross-terms of the multipole coe�cients with ± showcase the degeneracy between BBHs in

alternative theories and non-BHs in GR. As one can see from Eq. (4.3.10), µ2, µ3 and ✏2 are the

multipole coe�cients which are sensitive to the non-BH nature (vis-a-vis the above mentioned

parametrization). As can be seen from the phasing formula, these imprints will be higher order

corrections to the multipole coe�cients and may not influence their estimates unless the values of

± are su�ciently high.

4.4 Methodology for numerical analysis

We have discussed the the semi-analytical Fisher information matrix based parameter estimation

scheme [67,133,136,258] in section 1.4. We follow the same prescription to discuss the projected

bounds on the multipolar deviation coe�cients for the spinning binaries. We also discuss the

leading order bounds on the systematics of the estimated parameters due to the di↵erence between

the spinning and non-spinning waveforms in the Appendix A for LISA.

For ~✓ being the set of parameters defining the GW signal h̃( f ;~✓), the Fisher information matrix

is defined in Eq. (1.4.18). In the large signal-to-noise ratio (SNR) limit, the distribution of the
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inferred parameters follow a Gaussian distribution around their respective true values for which

the variance-covariance matrix of the errors on the parameters is given in Eq. (1.4.19) and the 1�

statistical error bars on various parameters are given in Eq. (1.4.20).

Fisher information matrix method, by default, assumes a flat prior distribution in the range [�1,1]

on all the parameters to be estimated [136,283]. In contrast, in the large SNR limit, a Gaussian prior

can also be implemented on the desired parameter as described in Ref. [136]. For our purpose, we

employ a Gaussian prior on �c centered around �c = 0 with a variance of about ⇡2. This choice is

somewhat ad-hoc but ensures that the prior distribution is not a too narrow Gaussian to significantly

influence the result but helps us dealing with the ill-conditionedness of the Fisher matrix. This also

restricts the prior range to exceed to the unphysical domain beyond ±⇡. Hence our modified Fisher

matrix has the following form,

�0 = � + �(0), (4.4.1)

where �(0) is a diagonal matrix with only one non-zero element corresponding to �(0)
�c�c

component.

We use this modified Fisher matrix (�0) for the estimation of 1� upper bounds on any mulitpolar

deviation of the coe�cients from GR value.

We estimate the statistical errors on various multipole coe�cients while considering an eight di-

mensional parameter space, {tc, �c, logA, logMc, log ⌘, �s, �a, µ` or ✏` or ↵m} to describe the true

GW signal.

4.5 Detector configurations

We describe here the various detector configurations we considered in the present study.
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Figure 4.1. Projected 1� errors on the multipole and the energy coe�cients as a function of total mass
for two di↵erent mass ratios q = m1/m2 = 1.2, 5 and two spin configurations, �1 = 0.9, �2 = 0.8 and
�1 = 0.3, �2 = 0.2 for the second generation detector network. All the sources are at a fixed luminosity
distance of 100 Mpc with the angular position and orientations to be ✓ = ⇡/6, � = ⇡/3, = ⇡/6, ◆ = ⇡/5.
To obtain the numerical estimates showed in this plot, we also consider a prior distribution on �c. To
be precise, we assume the prior on �c for each detector in the network to follow a Gaussian distribution
with a zero mean and a variance of 1/⇡2.

4.5.1 Ground-based second generation detector network

As a representative case, we consider a world-wide network of five second-generation ground

based detectors: LIGO-Hanford, LIGO-Livingston, Virgo, KAGRA [69], and LIGO-India [201].

We assume the noise PSD for LIGO-Hanford, LIGO-Livingstone and LIGO-India to be the ana-

lytical fit given in Ref. [46] whereas the fit given in Eq. (1.4.6) is used for Virgo PSD. We consider

the lower cut o↵ frequency, flow = 10 Hz for these detectors. For the Japanese detector, KAGRA,

we use the noise PSD given in Ref. [3] with flow = 1 Hz. For all the detectors, fhigh is taken to be

the frequency at the last stable orbit, fLSO = 1/(⇡m 63/2). As opposed to the single detector Fisher

matrix analysis, for a network of detectors, Fisher matrix is evaluated for each detector and then

added to obtain the network-Fisher-matrix. To estimate the individual Fisher matrices we use a

waveform that is weighted with the correct antenna pattern functions F+/⇥(✓, �, ) of the detectors,

where ✓, � and  are the declination, the right ascension and the polarization angle of the source in
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Figure 4.2. Projected 1� errors on the multipole and the energy coe�cients as a function of total mass
for two di↵erent mass ratios q = m1/m2 = 1.2, 5 and two spin configurations, �1 = 0.9, �2 = 0.8 and
�1 = 0.3, �2 = 0.2 for the third generation detector network. All the sources are at a fixed luminosity
distance of 100 Mpc with the angular position and orientations to be ✓ = ⇡/5, � = ⇡/6, = ⇡/4, ◆ = ⇡/4.
To obtain the numerical estimates showed in this plot, we also consider a prior distribution on �c. To
be precise, we assume the prior on �c for each detector in the network to follow a Gaussian distribution
with a zero mean and a variance of 1/⇡2.

the sky. More precisely we use the following waveform

h̃( f ) =
1 + cos2 ◆

2
F+(✓, �, ) h̃+( f ) + cos ◆ F⇥(✓, �, ) h̃⇥( f ) (4.5.1)

with

h̃+( f ) = A µ2 f �7/6e�i s , (4.5.2)

h̃⇥( f ) = �i h̃+( f ) . (4.5.3)

The individual F+/⇥(✓, �, ) for each detector are estimated incorporating the location of the detec-

tors on Earth as well as Earth’s rotation as given in Ref. [4]. We calculate the Fisher matrix for each

detector considering an eight dimensional parameter space, {tc, �c, logA, logMc, log ⌘, �s, �a, µ`

or ✏` or ↵m}, which specifies the true GW signal. Here we fix the four angles, ✓, �, , ◆ to be

⇡/6, ⇡/3, ⇡/6, ⇡/5 respectively and do not treat them as parameters in the Fisher matrix estimation.

These four angles, being the extrinsic parameters, have negligible correlations with the intrinsic



4.5 Detector configurations 105

ones, especially with the multipole or the energy coe�cients, which are our primary interest.

4.5.2 Ground-based third generation detector network

As a representative case for the third generation ground-based detector network, we consider three

detectors: one Cosmic Explorer-wide band (CE-wb) [24] in Australia, one CE-wb in Utah-USA

and one Einstein Telescope-D (ET-D) [11] in Europe. We use the noise PSD given in Ref. [11] for

ET-D and the analytical fit given in Eq. (1.4.7) for the CE-wb. We assume flow to be 1 and 5 Hz for

the ET-D and CE-wb, respectively. To evaluate the Fisher matrix for this network configuration we

use the same waveform as given in Eq. (4.5.1) except for the estimation of Fisher matrix in case of

ET-D, we multiply the waveform by sin(⇡/3) because of its triangular shape. We follow the same

scheme as described in Sec. 4.5.1 to estimate the 1� bounds on µ2, µ3, µ4, ✏2 and ↵0,↵2,↵3,↵4.

4.5.3 Space-based LISA detector

For the space based detector, LISA, we use analytical fit given in [70] and choose flow in such a

way that the signal stays in the detector band for one year or less depending on the frequency at

the last stable orbit. More specifically, we assume flow to be [83, 134]

flow = max
"
10�5, 4.149 ⇥ 10�5

 
Mc

106M�

!�5/8 Tobs

1yr

!�3/8#
, (4.5.4)

where Tobs is the observation time which we consider to be one year. We assume the upper cut

o↵ frequency, fhigh, to be the minimum of [0.1, fLSO]. The waveform we employ for LISA is

given in Eq. (4.3.2) except we multiply it by an additional factor of
p

3/2 in order to account

for the triangular shape of the detector. We do not account for the orbital motion of LISA in our

calculations and consider LISA to be a single detector.

We next discuss the Fisher matrix projections of the various deformation coe�cients parametrizing

the conservative and dissipative sectors in the context of the detector configurations described
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Figure 4.3. Projected 1� errors on the multipole coe�cients as a function of total mass for three di↵erent
mass ratios q = m1/m2 = 1.2, 5 and 10 in case of LISA noise PSD. We assume �1 = 0.9, �2 = 0.8.
All the sources are considered to be at a fixed luminosity distance of 3 Gpc. To obtain the numerical
estimates showed in this plot, we also consider a prior distribution on �c. To be precise, we assume �c
to follow a Gaussian distribution with a zero mean and a variance of 1/⇡2.

above.

4.6 Results

Our results for the ground-based detectors are depicted in Figs. 4.1 for second generation and 4.2

for third generation and those for the space-based LISA detector are presented in Figs. 4.3, 4.4, 4.5,

4.6 and 4.7. For the second and third generation ground-based detectors configurations, we choose

the binary systems with two di↵erent mass ratios q = 1.2, 5 for two sets of spin configurations:

high spin case with �1 = 0.9, �2 = 0.8 and low spin case with �1 = 0.3, �2 = 0.2. We also assume

the luminosity distance to all these prototypical sources to be 100 Mpc. We consider these sources

are detected with a network of second or third generation detectors as detailed in the last section.

For LISA, we consider our prototypical supermassive BHs to be at the luminosity distance of 3

Gpc with three di↵erent mass ratios of q = 1.2, 5, 10. For these mass ratios, we investigate both

high spin (�1 = 0.9, �2 = 0.8) and low spin (�1 = 0.3, �2 = 0.2) scenarios.
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Figure 4.4. Projected 1� errors on the multipole coe�cients as a function of total mass for three di↵erent
mass ratios q = m1/m2 = 1.2, 5 and 10 in case of LISA noise PSD. We assume �1 = 0.3, �2 = 0.2.
All the sources are considered to be at a fixed luminosity distance of 3 Gpc. To obtain the numerical
estimates showed in this plot, we also consider a prior distribution on �c. To be precise, we assume �c
to follow a Gaussian distribution with a zero mean and a variance of 1/⇡2.

First we discuss the qualitative features in the plots. As expected, the third generation detec-

tor network which has better bandwidth and sensitivity does better than the second generation

detectors. On the other hand LISA and third generation detectors perform comparably, though

for totally di↵erent source configurations. The bounds on the multipole coe�cients describing

the dissipative dynamics broadly follow the trends seen in the non-spinning study carried out in

chapter 3 [204]. The mass-type multipole moments are measured with better accuracies than the

current-type ones appearing at the same PN order. Among all the coe�cients, µ2 (corresponding

to the mass quadrupole) yields the best constraint as it is the dominant multipole contributing to

the flux and the phasing. Due to the interplay between the sensitivity and mass dependent upper

cut-o↵ frequency, the errors increase as a function of mass in the regions of the parameter space we

explore. The errors improve as the mass ratio increases for all cases except µ2. As argued in chap-

ter 3 [204], µ2 is the only multipole parameter which appears both in the amplitude and the phase

of the waveform and hence shows trends di↵erent from the other multipole coe�cients. Inclusion

of spins, on the whole, worsens the estimation of the multipole coe�cients compared to the non-
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Figure 4.5. Projected 1� errors on the energy coe�cients as a function of total mass for three di↵erent
mass ratios q = m1/m2 = 1.2, 5 and 10 in case of LISA noise PSD. We assume �1 = 0.9, �2 = 0.8.
All the sources are considered to be at a fixed luminosity distance of 3 Gpc. To obtain the numerical
estimates showed in this plot, we also consider a prior distribution on �c. To be precise, we assume the
prior on �c to follow a Gaussian distribution with a zero mean and a variance of 1/⇡2.

spinning case. This is expected as the spins increase the dimensionality of the parameter space but

do not give rise to any new features which may help the estimation. E↵ects such as spin-induced

precession, which brings in a new time scale and associated modulations, may help counter this

degradation in the parameter estimation. But this will be a topic for a future investigation. We also

explore the bounds on the multipole coe�cients as a function of the spin magnitudes in case of

LISA (see fig. 4.7). Here we consider two mass ratio cases q = 10, 20 but fix the total mass of the

system to be 2⇥105M�and plot the bounds as a function of primary spin �1. Since we vary the sec-

ondary spin, �2 as well, we get a spread on the bounds at each �1 along the y-axis due to di↵erent

values of �2 in the limit [�1, 1]. We find that the parameter estimation improves with the spin mag-
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Figure 4.6. Projected 1� errors on the energy coe�cients as a function of total mass for three di↵erent
mass ratios q = m1/m2 = 1.2, 5 and 10 in case of LISA noise PSD. We have considered �1 = 0.3, �2 =

0.2. All the sources are considered to be at a fixed luminosity distance of 3 Gpc. To obtain the numerical
estimates showed in this plot, we also consider a prior distribution on �c. To be precise, we assume the
prior on �c to follow a Gaussian distribution with a zero mean and a variance of 1/⇡2.

nitudes and hence highly spinning systems would yield stronger constraints on these coe�cients.

The estimations of various ↵k, parametrizing the conservative dynamics, also broadly follow these

trends. However, there is an important exception. The bounds on ↵3 is consistently worse than

those of ↵4. This may be attributed to the important di↵erence between them. ↵3 parametrizes the

1.5PN term in the conserved energy which has only spin-dependent terms whereas the 2PN term

contains both non-spinning and spinning contributions. Hence though ↵4 is sub-leading in the PN

counting, the bounds on it are better.

We now discuss the quantitative results from these plots. One of the most interesting results is the

projected constraints on coe�cients that parametrize conservative dynamics. For third generation
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ground-based detectors and the prototypical source configurations, the bounds on 2PN conserva-

tive dynamics can be⇠ 10�2 which is comparable to or even better than the corresponding bounds

expected from LISA. On the multipole coe�cients side, the quadrupole coe�cient µ2 may be con-

strained to  10�1(10�2) for second (third) generation detector network while the bounds from

LISA are ⇠ 10�2. The best bounds on µ3 are ⇠ 10�1, 10�2, 10�2 for second generation, third gener-

ation and LISA, respectively, corresponding to highly spinning binaries. The projected bounds on

the higher multipole coe�cients from third generation detector network and LISA are comparable

in all these cases, though one should keep in mind the specifications of the sources we consider for
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these two cases are very di↵erent.

4.7 Conclusion

We extend our parametrized tests of multipolar structure and conservative dynamics of CBC, de-

veloped in chapter 3, by including spin e↵ects in the inspiral dynamics for non-precessing compact

binaries in quasi-circular orbits. The SO contributions are computed up to 3.5PN order while the

SS contributions are obtained up to 3PN order. We also provide the projected 1� bounds on the

multipole coe�cients as well as the PN deviation parameters in the conserved energy for the sec-

ond generation ground based detector network, the third generation ground based detector network

and the space-based detector LISA, using the Fisher matrix approach. We find that the four lead-

ing order multipole coe�cients and the four leading order PN conserved energy coe�cients are

measured with reasonable accuracies using these GW detectors.

As a follow-up, it will be interesting to compute the parametrized waveform within the e↵ective-

one-body formalism and investigate the possible bounds on these coe�cients. Inclusion of higher

modes of the gravitational waveforms, which contain these multipole coe�cients in the amplitude

of the waveform, will also be an interesting follow-up in the future.



5 Linear momentum flux from

compact binaries in quasi-elliptical orbits

at second post-Newtonian order

Asymmetric gravitational wave emission by a compact binary system leads to a flux of linear

momentum from the system [244,247]. In order to conserve the total linear momentum, the system

recoils. The direction of recoil changes continuously over an orbit. As a result, for a perfectly

circular trajectory, no net recoil builds up over an orbit. On the contrary, for inspiralling compact

binaries, the recoil accumulates over the inspiralling orbits and imparts a kick to the merger.

A reasonably high kick imparted to the merger could be of great importance in understanding the

structure formation of globular clusters. If the kick is greater than the escape velocity of the host

galaxy, the remnant BH may even be ejected [211] from the galaxy. Even if the kick is not high

enough to eject the merged BH from the galaxy, it might cause important dynamical changes at

the core of the galaxy. A detailed discussion on various astrophysical aspects of BH kicks can be

found in ref [233].

Although a compact binary merger may have significant eccentricity at the birth, due to the GW

radiation, it gets circularized [249, 250]. By the time their GW frequency enters the sensitivity

bands of the ground based interferometric GW detectors, they may have negligible eccentricity.

On the contrary, there may be astrophysical processes which may retain their eccentricity even in

the late stages of their dynamics. For example, in dense stellar clusters, interactions between pairs

113
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of binary black hole systems may eject one of the black holes leading to the formation of a stable

hierarchical triple system. If the two orbital planes are tilted with respect to each other, the third

body can increase the eccentricity of the inner binary via Kozai mechanism [213]. Binaries in

such hierarchical triple systems may retain their eccentricities even towards the late stages of the

inspiral. Further, binary neutron star systems in globular clusters may have a thermal distribution

of eccentricities [80] if formed by exchange interactions as opposed to the scenario where the for-

mation happens through the common envelope. Similarly, there have been mechanisms proposed

for binaries consisting of supermassive BHs in the LISA band [183, 190, 191] which may have

detectable eccentricities. Motivated by these scenarios, we study the gravitational recoils in the

case of non-spinning compact binary systems in quasi-elliptical orbits.

The first formal treatment of GW recoil for a general self-gravitating system in linearized gravity

is explored in refs. [77, 247]. It is valid for any kind of motion (rotational, vibrational or any

other kind) given the source is localized within a finite volume. Later, within the post-Newtonian

formalism, the leading order contribution (Newtonian) to the LMF and recoil of a compact binary

system is discussed by Fitchett in refs. [168, 169]. The first PN correction of this was computed

by Wiseman [300] and the circular orbit case was discussed as a special case. Much later, a

closed form expression for the recoil in case of compact binary in quasi-circular orbit is quoted

in [108] at the second post-Newtonian (PN) order. Its extension to 2.5PN order, accounting for the

radiation reaction e↵ects, is discussed in ref. [236]. According to these studies, the BH recoil for

nonspinning systems could be in the range 74-250 km s�1. Using the EOB approach, the recoil

estimates for BBH is obtained considering the contributions from inspiral, plunge and ringdown

phases in ref. [141]. The typical estimate obtained here, lies in the range 49-172 km s�1. In

ref. [167], BH perturbation theory is used to estimate the accumulated recoil up to the innermost

stable circular orbit (ISCO) (10-100 km s�1) for a system where a test particle inspirals into a BH.

In principle, these estimates are valid for extreme mass ratio inspirals but they have extrapolated

the results till mass ratio of about ⇠ 0.4.

Along with the various analytical and semi-analytical studies, the recent progress in NR has led to
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more accurate estimates for the recoil of the remnant BH. As quoted in refs. [73, 124, 179, 187],

the recoil velocity can reach up to a few hundreds of km s�1 while the component masses are

nonspinning. But for the spinning case [178, 188, 212], the recoil velocity can be of the order

of few thousands km s�1. In case of maximally spinning BHs, it could be as high as 4000 km

s�1 [126]. Such a large recoil velocity may lead to ejection of the merged binary from its host

galaxy. A detailed study on multipolar analysis of the gravitational recoil is also discussed in

ref. [271]. They have explored the build up of the recoil through the di↵erent phases of the binary

evolution, (inspiral+merger+ringdown) due to the relative amplitude and the phases of various

modes of the GWs.

Using the MPM-PN formalism, discussed in chapter 2, the leading order Newtonian contribu-

tion to the LMF and the associated recoil of a compact binary system is explored by Fitchett in

refs. [168, 169]. They assumed the inspiralling binary to be composed of two point particles mov-

ing in a Keplerian orbit. A rough estimate of maximum BH recoil quoted in these studies are

⇠ 1500km/s. Assuming the periastron advance to be small, a crude estimate of the recoil at 1PN

is also quoted. The first formal extension of these estimates at 1PN for binaries moving in generic

orbits is explored by Wiseman [300] and concluded that higher order correction reduces the net

momentum ejection. As a special case, they also studied BNS systems moving in quasi-circular or-

bits. They found the upper bound on the velocity of the center of mass very near to the coalescence

to be 1 km s�1. In another study [274], the authors showed a 10% increase in the recoil estimate

compared to the quasi-circular case for small eccentricities (e < 0.1) using close limit approxi-

mation. They also claimed that the maximum recoil takes place at the symmetric mass ratio of

around ⌘ ⇠ 0.19 and the magnitude could be as high as 216� 242 km/s. Here we extend the above

studies to 2PN and compute the linear momentum flux for the case of compact binaries moving

in quasi-elliptical orbits. We first provide the instantaneous contribution to the LMF in terms of

the dynamical variables for the compact binaries moving in a generic orbit. We then compute the

1.5PN hereditary contribution to the LMF assuming the quasi-Keplerian (QK) representation of

the orbital dynamics. In order to obtain the complete closed form expression for 2PN LMF we add

both the contributions. We further restrict in the small eccentricity regime (et << 1) by expanding
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the complete expression in series of et and truncate at O(e2
t ). We finally quote the results in terms

of the various QK parameters defining the quasi-elliptical orbits by the end of this chapter.

This chapter is organized as follows. In section 5.1 we discuss the multipolar decomposition of

LMF in terms of the various source type multipole moments and their non-linear interactions. In

sections 5.2 and 5.3, we describe the orbital dynamics and quote all the source multipole moments

as functions of orbital parameters up to the accuracy needed for the present calculation of LMF at

2PN. In section 5.4 we quote the instantaneous contribution to the LMF. Furthermore, in section 5.5

we summarize the generalized quasi-keplerian representations (QKR) of the orbital dynamics and

re-express the LMF in terms of the QK parameters. Finally in section 5.7 we derive the hereditary

contributions and quote the complete LMF at 2PN.

5.1 Multipole decomposition of Linear momentum flux

For an isolated source, gravitational wave generation is well studied under the framework of multi-

polar decomposition [279]. Following [279], we explicitly write down the multipolar decomposi-

tion of far-zone linear momentum flux (LMF) for an isolated source at the second post-Newtonian

order in terms symmetric trace-free (STF) radiative mass type and current type multipole moments

as,
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where U (p)
K and V (p)

K

⇣
K = i1i2 · · · ik represents the multi-index structure of the tensors of order k

in three dimension
⌘

are the pth time derivative of mass-type and current-type radiative multipole

moments respectively. "i jk is the usual three dimensional Levi-Civita tensor, with a value +1 in

case of all even permutations and �1 for all the odd ones. The multipole moments in the formula,
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are functions of retarded time (t� (r/c)) in radiative coordinates, where r and t denote the distance

of the source from the observer and the time of observation in radiative coordinates, respectively.

Using the MPM formalism [84,85,93–95,97,98,100,101,106,145,277] the two types of radiative

moments can be expressed in terms of two types of canonical moments (ML, S L) and eventually

as a function of all the source multipole moments (IL, JL, XL,WL,YL,ZL) [103] at the 2PN order.

All the radiative moments have two types of contributions. One of them is only a function of

retarded time and hence called the instantaneous part. The other one depends on the dynamical

behavior of the system throughout its entire past and referred to as the hereditary contributions.

These contributions contain information about various multipolar interactions the wave undergoes

as it propagates from the source to the detector.

Here, we explicitly quote all the radiative moments in terms of the source moments accurate up to

the order necessary for the present calculation. Since the leading order term in the LMF expression

(see Eq. 5.1.1) consists of the mass quadrupole moment (Ui j), the desired accuracy of (Ui j) is 2PN.

Furthermore, the decomposition of mass quadrupole into instantaneous and hereditary parts is as

follows,

Ui j = U inst
i j + Uhered

i j , (5.1.2)

where the instantaneous and the hereditary parts explicitly reads
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In the above expression, m represents the Arnowitt, Deser and Misner (ADM) mass of the source.

The constant ⌧0 is related to an arbitrary length scale r0 by ⌧0 = r0/c and was originally introduced

in the MPM formalism.
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The required accuracy of mass octupole moment is 1.5PN which is,

Ui jk = U inst
i jk + Uhered

i jk , (5.1.4)

and both the parts separately read
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As the other two mass type moments Ui jkl and Ui jklm appear in the LMF at 1PN and 2PN re-

spectively, the desired accuracy for these two are 1PN and Newtonian respectively and have only

instantaneous contributions, which read,

U inst
i jkl(TR) = I(4)

i jkl(TR) + O
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(5.1.6)
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Among the current type moments, current quadrupole moment is needed to be evaluated at 2PN

order.

Vi j = V inst
i j + Vhered

i j , (5.1.8)

The instantaneous and the hereditary parts in terms of the current quadrupole moments read
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For all the other current type moments (Vi jk,Vi jkl), we need only the instantaneous parts to obtain
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LMF at 2PN.
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Using Eqs. (5.1.2)-(5.1.11) we obtain the closed form expression for LMF at 2PN in terms of the

source multipole moments. The LMF also admits a decomposition into instantaneous and hered-

itary parts like the radiative moments. The instantaneous and the hereditary parts indicate two

distinct physical processes and their evaluations need separate treatments. Thus, for our conve-

nience, we explicitly write the two types of contributions ( instantaneous and hereditary) to linear

momentum flux separately as follows,

Fi = F
inst

i + F hered
i , (5.1.12)

where the instantaneous part up to 2PN in terms of the source multipole moments is [236]
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and the hereditary contribution at 1.5PN is
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5.2 Orbital dynamics of the compact binary source

In the previous section, we have provided an explicit closed form expression of the far-zone linear

momentum flux from a compact binary system in terms of various source multipole moments.

Here we specialize to the case of a non-spinning compact binary system in quasi-elliptical orbits,

with the component masses m1 and m2 respectively with m1 � m2, the total mass m = m1 +m2, and

the symmetric mass ratio, ⌘ = m1m2/m2. Since the binary constituents are nonspinning, its motion

is completely confined in a plane with a relative separation,

x = x1 � x2 = r n̂, (5.2.1)

with r = |x|, x1 and x2 are the position vectors of the component masses, and n̂ is the unit vector

along the relative separation vector. In polar coordinates,

n̂ = x
r
= cos � êx + sin � êy , (5.2.2)

where � is the orbital phase of the binary, and êx and êy are the unit vectors along x and y axes.

The relative velocity and acceleration for the system are the following,

v = dx
dt
, (5.2.3)

a = dv
dt
=

d2x
d2t
. (5.2.4)

To calculate the 2PN accurate LMF, we need the time derivative of the source multipole moments.

Hence we need 2PN accurate equations of motion for the compact binary system in the center of
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mass frame, which is quoted below [104]:
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ṙ4
 
79⌘ �

69⌘2

2
� 30⌘3

!
+ ṙ6
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where the ṙ and r̈ denote the first and the second time derivatives of the orbital separation r

respectively. Furthermore, the above equation of motion can be used to write down the following

expressions in order to obtain the derivatives of the multipole moments,

v̇ =
a · v

v
, (5.2.7)

r̈ =
1
r

h⇣
v2
� ṙ2

⌘
+ a · x

i
, (5.2.8)
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with the magnitude of the orbital velocity being, v = |v|.

5.3 Source multipole moments

To evaluate the instantaneous and the hereditary contributions to the LMF, we need the explicit

expressions for the various multipole moments for compact binaries moving in quasi-elliptical

orbits. These are obtained from the long algebraic computations (see ref. [106] for details) using

MPM-PN formalism, briefly described in chapter 2. In this section, we explicitly quote all the

source multipole moments in terms of dynamical variables (r, ṙ, x, v) at second Post-Newtonian

(PN) order [61,105]. The mass-quadrupole moment is first computed in ref. [105] and also quoted

in ref. [61] in the center of mass frame in harmonic coordinates. At 2PN accuracy this reads,
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Mass octupole moment, Ii jk, at 2PN, the higher order mass-type moment Ii jkl at 1PN and Ii jklm at

Newtonian order, are as follows [61]:
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The accuracy of the current quadrupole moment needed for present purpose is 2PN, whereas Ji jk

is needed at 1PN and Ji jkl at Newtonian order. They are quoted below [61]:
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In the above expressions, xi jk... = xix jxk . . . , vi jk... = viv jvk . . . and hi denotes that the terms are

symmetric and trace-free w.r.t the indices listed inside the brackets.

5.4 Instantaneous contribution to the Linear momentum flux

With all the ingredients provided in the previous sections we now compute the instantaneous contri-

bution to the LMF using Eq. (5.1.13). First we calculate all the time derivatives of the source multi-
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pole moments given in Eqs. (5.3.1)-(5.3.9b) using 2PN equation of motion as quoted in Eq. (5.2.5).

Next we perform all the contractions in Eq. (5.1.13) and the resulting instantaneous linear momen-

tum flux in terms of dynamical variables (r, ṙ, v, v, x) is given by,
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Eq. (5.4.1) reduces to the instantaneous part of Eq. (1) of [108] in the circular orbit limit where

ṙ ! 0. One may notice here that the component of the linear momentum flux along the radial

direction (i.e. the term associated to the radial direction, x) depends on ṙ and hence in case of

circular orbit contributions from these terms are 0 and the emission of linear momentum is along

the direction of the relative velocity vector, v only.
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Figure 5.1. p is a unit vector along a reference axis. x is the relative separation vector joining the focus
of the ellipse to the position of the reduced mass making an angle � with p and an angle v with the
semi-major axis of the ellipse. Eccentric anomaly u is the angle between the semi-major axis and the
line drawn from the center to a point on the auxiliary circle, i.e. the point on the circle made by extended
perpendicular line drawn from the semi-major axis to the reduced mass. Figure courtesy ref. [239]

The above expression for linear momentum flux is given in terms of generic dynamical variables

r, ṙ, � and �̇. While specializing to the case of quasi-elliptical orbits, it is usually convenient to

express these dynamical variables in terms of the parameters associated with quasi-elliptical orbits,

namely the generalized quasi-Keplerian representation (QKR) of the orbital dynamics. One needs

2PN QKR to compute the 2PN LMF in terms of the orbital parameters. In the next section we

briefly start with the description of the parametrization of Keplerian orbits followed by its PN

generalization, the quasi-Keplerian (QK) representation.

5.5 Keplerian and Quasi-Keplerian parametrization

The Keplerian parametrization for the Newtonian motion of a compact binary system is widely

used in describing celestial mechanics. In polar coordinates and in the center of mass frame, the
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parametrization is given by,

rN = a(1 � e cos u) , (5.5.1a)

�N = VN , (5.5.1b)

lN = n(t � t0) = u � e sin u , (5.5.1c)

v = VN(u) ⌘ 2 arctan
2
66664
 
1 + e
1 � e

!2

tan
⇣u
2

⌘377775 , (5.5.1d)

where subscript N denotes the Newtonian quantities. rN and �N together define the relative separa-

tion vector, rN = rN(cos �n, sin �n, 0). The semi-major axis of the orbit is a with an eccentricity e.

Both of these can be written in terms of the conserved orbital energy and angular momentum which

completely define the orbits. Here u, v, l are the eccentric, true, and mean anomalies and n is the

mean motion, n = 2⇡/P, where P is the radial orbital (periastron to periastron) period. Geometrical

interpretation of various angles are given in fig. 5.1. To describe the complete parametrization, a

circle has been drawn circumscribing the ellipse with a radius the same as the semi-major axis.

This is called the auxiliary circle. The eccentric anomaly is defined w.r.t. the auxiliary circle.

Having discussed the Keplerian representation (KR), we now describe the PN extension of the

KR, the quasi-Keplerian representation at 2PN. In 1985, Damour and Deruelle generalized this

parametrization up to 1PN [140] and proposed a "Keplerian like parametrization". Later in refs. [147,

270,294] the 2PN extension of the parametric solution has been quoted. QK parametrization is ob-

tained considering 2PN conservative contributions to the binary motion and it admits very similar

expressions as the Keplerian one but with more complex structure. The extension of Eq. (5.5.1) to

2PN has the following form,

r = ar(1 � er cos u) , (5.5.2a)

� = � +W(l; n, et) , (5.5.2b)

� = (1 + k)n(t � t0) + c� , (5.5.2c)

W(l; n, et) = (1 + k)(v � l) +
f4�

c4 sin 2v +
g4�

c4 sin 3v , (5.5.2d)
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l = n(t � t0) + cl = u � et sin u +
g4t

c4 (v � u) +
f4t

c4 sin v , (5.5.2e)
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The expressions of the functions f4t, g4t, f4�, f6� and g4� are given in ref. [232]. ar is some 2PN

equivalent "semi-major axis". Unlike the KR, in QKR, there appear three eccentricities er, et and

e� instead of one to completely parameterize the motion. These eccentricities can also be written

in terms of the 2PN conserved energy and the angular momentum. We find it convenient to use et

and the mean motion n as the constants of motion and express all the dynamical variables in terms

of these two. We have used a combination of total mass and n given by ⇠ = Gmn/c3, as a PN

expansion parameter. Here we quote all the dynamical variables correct up to 2PN in terms of et,

eccentric anomaly u, and the post-Newtonian expansion parameter ⇠ [239].
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We have quoted the above expressions in terms the radial frequency !r = n = ⇠/m (related to the

time to return to the periastron), convenient for the binary motion in quasi-elliptical orbits at 2PN.

In contrast to this, the convenient choice for a binary moving in circular orbit would be to use the

azimuthal frequency !� ⌘ ⇠�/m (which is related to the time to come back to the same azimuthal

angular position in the orbit). The relation between these two variables can easily be obtained by

taking the orbital average of the quantity �̇,
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Inverting the above equation we obtain ⇠� in terms of ⇠, which has been used in further calculations,
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In the previous chapters of this thesis, we have used x or v to express the PN quantities. For

convenience, in this chapter we use azimuthal frequency, ⇠� as the expansion parameter. ⇠�/m, is

directly related to the usual PN expansion parameter x or v by the following relation,

⇠� = M!� = x3/2 = v3 . (5.5.6)
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5.6 Instantaneous LMF for compact binaries in terms of quasi-

Keplerian parameters in the small eccentricity limit

We have provided all the necessary ingredients to compute LMF from a compact binary moving in

quasi-elliptical orbit in terms of its orbital elements. As a next step, we re-express the instantaneous

contribution to the LMF in terms of QK parameters. To be precise, we use Eqs. (5.5.3) to re-express

Eq. (5.4.1) in terms of {⇠�, et, u}. To re-write a closed form expression of the flux in terms of the

orbital phase �, we invert Eq. (5.5.3c), which further requires a re-expansion of the same in a

series w.r.t. et. We keep the terms only up to O(e2
t ) to obtain u in terms of �. Finally, we give

the instantaneous contribution to the LMF emitted by a non-spinning compact binary system in an

quasi-elliptical orbit in Eqs. (5.6.1a) and (5.6.1b) in the small eccentricity limit. The emission of

linear momentum is more towards the merger of the binary where the eccentricity is expected to

be small. Hence we provide all our results here, retaining the terms only up to O(e2
t ).
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Next, we cross check various limiting cases of these results. In the Newtonian limit, Eq. (5.6.1a) & (5.6.1b)

represent Eq. (2.23) of ref. [168]. Furthermore Eqs. (5.6.1a) & (5.6.1b) reduce to the instantaneous part of

LMF from a compact binary in circular orbit, in the limit et ! 0 (see Eq.(1) of ref. [108]). In contrast to

the circular orbit case, instantaneous contribution to the LMF consists of aperiodic terms, having linear or

quadratic dependence on � along with all the periodic terms in �. Only the periodic terms in � contributes

to the expression of the recoil for circular orbits, as the other contributions are functions of eccentricity,

hence 0. The aperiodic terms arise due to the fact that along with the mass asymmetry that gives rise to

the emission of LMF in the first place, in case of elliptical orbits there is another asymmetry in the orbital

motion along the y-axis. Since the origin of the reference frame is at one of the foci of the ellipse, the

velocity at the pericenter is not the same as the velocity at the apocenter. As a result, there is a flux of

linear momenta emitted along the y-direction. This e↵ect is there starting from the Newtonian order (see

Eq. (2.23) of ref. [168]). In the next section we focus on the hereditary contribution at 1.5PN.

5.7 Hereditary contribution to the linear momentum flux

Giving a detailed prescription to calculate the instantaneous contribution to LMF in the previous section,

we now focus on the hereditary contribution. Due to non-linearity of the Einstein’s field equations, the time

varying source moments couple to themselves and to others giving rise to the hereditary contributions which

depend on the entire history of the system [98]. The leading order hereditary interaction between the mass

quadrupole moment (Ii j) and mass monopole (M or the ADM mass) appears at relative 1.5PN order. In

order to estimate the 2PN accurate LMF, we need to calculate the 1.5PN hereditary contribution to it.

We adopt a semi-analytical method in the frequency domain to calculate the hereditary contribution as

proposed in ref. [62]. It is based on the Fourier decomposition of Keplerian motion [248]. Though the

general prescription of this decomposition at arbitrary order is quoted in [62], to obtain the 1.5 PN hereditary
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contribution to the LMF, we need the Fourier decomposition of the multipole moments at Newtonian order

only, which simply read,

IL(U) =
1X

p=�1
ILeip`, (5.7.1)

JL�1(U) =
1X

p=�1
JL�1eip`, (5.7.2)

with the inverse relation to be
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d`IL(U)e�ip` (5.7.3)

JL�1 =
1

2⇡

Z 2⇡

0
d`JL�1(U)e�ip`. (5.7.4)

All the Fourier coe�cients in Eqs. (5.7.3) & (5.7.4) can easily be obtained as combinations of Bessel func-

tions. With the correct normalization factors depicted in Eqs (5.1a) & (5.1b) of ref. [62], these coe�cients

are quoted in Appendix A of the same.

The closed form expressions of the 1.5 PN hereditary contributions, given in Eq. (5.1.14), consist of four

integrations on the various combinations of the source moments over time starting from the remote past to

the current retarded time. All four terms are evaluated following a similar semi-analytical scheme. Using

the Fourier decomposition introduced in Eq. (5.7.1) & (5.7.2) we rewrite the first integral as a sum over all

the Fourier indices multiplied with an integration (see Eq. 5.7.7) on a quantity, independent of the Fourier

coe�cients as well as any other parameters defining the orbital motion, over time. Furthermore we also use

the fact that if `(t) = n(t� t0) at the current time t, then at a retarded time (t� ⌧), `(t� ⌧) is simply (`(t)� n⌧)

where n is the mean motion.

For convenience, we explicitly write the complete expression in Eq. (5.1.14) in terms of the four integrals

as defined below,
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Now each of the above terms on the right hand side of Eq. (5.7.5), can be written as an infinite sum on the
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indices of the Bessel functions given by,
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where �E is the Euler constant, p, q are the Bessel function indices running from 0 to 1 and the function

S ign(qn) = ±1. To evaluate the time integration in the above expression we use the standard integral quoted

below,
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Following the very similar method we obtain the other integrals in Eq. (5.7.5) as well.
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Finally explicitly expressing all the Fourier components (IL,JL) (quoted in Appendix A of ref. [62]) in

Eqs. (5.7.6-5.7.10) in terms of the Bessel functions and performing the summation, one can obtain the total

hereditary contribution. In principle, one can keep adding the infinite number of terms to get a more accurate

result, but since we are interested in the small eccentricity limit, the infinite sum boils down to a finite closed

form expression. The two non-zero components of the hereditary contributions to the linear momentum flux
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in the small eccentricity limit read as,
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where
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It should be noted here that, a simple redefinition of phase variable by,  = �� 2Gm
c3 �̇ log

⇣
n
!0

⌘
, absorbs all the

terms involving the logarithm of the mean motion (log[n]) in Eq. (5.7.11a) & (5.7.11b), which practically in-

troduces only a very small modulation in the phase. As a result of this redefinition, Eq. (5.7.11a) & (5.7.11b)

together with the instantaneous parts in Eqs. (5.6.1b) & (5.6.1b) give rise to the total LMF from the system,

given in Eq. (5.7.12) & (5.7.13) below:
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As a consistency check, in the limit et ! 0, above expression reduces to the estimate of LMF from a binary

moving in a quasi-circular orbit (see Eq. (1) of ref. [108]).

5.8 Summary

In this chapter we extended the LMF computation presented in ref. [168] at 2PN for a non-spinning compact

binary system moving in a quasi-elliptical orbit. We first discuss the instantaneous contribution and quote

the 2PN equivalent of the same in terms of orbital elements r, ṙ, �, �̇. We then use the 2PN QK parametriza-

tion to obtain the hereditary contribution at 1.5PN and re-express the complete LMF in terms of the QK

parameters of the compact binary inspiral. This 2PN LMF expression can further be used to compute the

recoil of the system. To be noted here, along with all the periodic terms appearing in the LMF expressions,
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aperiodic terms also appear with explicit dependences on eccentricity. These features start appearing from

the Newtonian order itself and are discussed in ref. [168]. These terms give rise to a continuous drift of

the center of mass over an orbit. At 2PN, the complete closed form expression of the LMF, retaining the

terms only up to O(e2
t ), is obtained in Eqs. (5.7.12) & (5.7.13). These flux components can further be used

to estimate the associated recoil of the compact binary system at 2PN. However, all the aperiodic terms in

the orbital phase,  , explicitly depend on the eccentricity parameter et. Hence, in order to obtain realistic

estimates for the complete accumulated recoil of the binary over its inspiralling orbits, one needs to consider

the evolution of the orbital parameters (et, and ⇠�). This we postpone for the future.



6 Imprints of the redshift evolution of

the double neutron star merger rate on

their signal to noise ratio distribution

6.1 Introduction

We have already seen how useful the parameter estimation of gravitational signals are for understanding

source properties and performing tests of strong-field gravity. In this chapter we consider how the SNR

distribution of compact binaries carries a wealth of astrophysical information and how this may facilitate

unique probes of the evolution of the star formation rate as a function of redshift. Recently, on very general

grounds, Schutz [272] pointed out that the observed SNRs of the GW events detected by GW detectors

should follow a universal distribution if the underlying source population is uniform within the volume

accessible to the detectors. This distribution is independent of the type of the sources and hence referred

to as universal. As argued by Schutz [272], the universality lies in the fact that the SNR of the GW events

are inversely proportional to the luminosity distance (⇢ / 1
DL

) and at relatively low redshifts (say, z . 0.1)

the luminosity distance and co-moving distance are roughly the same. More precisely, following Chen

and Holz [129], for a source population following a constant co-moving number density, the probability

density function, fD, of the source (say a compact binary merger) distribution at a co-moving distance of

D, is proportional to D2, i.e. fDdD / D2 dD. Since ⇢ / 1
D , the distribution of SNR corresponding to the

particular source distribution, can easily be shown to follow p(⇢) = fD
��� dD

d⇢

��� / 1
⇢4 . After normalization, we

139
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obtain

p(⇢) =
3⇢3

th

⇢4 , (6.1.1)

where ⇢th is the SNR threshold used for detection. The above derivation crucially assumes that the properties

of the source population (such as the mass distribution) do not evolve with redshift. Chen and Holz [129]

explored various implications of this universal distribution for the sources detectable by second generation

detectors such as advanced LIGO/Virgo. This universal distribution is also an ingredient used in [21] to

derive a bound on the rate of the binary black hole mergers from the first observation run of LIGO [17].

Motivated by [272] and [129], in this chapter we study the SNR distribution of compact binary mergers

for cosmological sources. In the case of BBH mergers, their mass distribution is likely to influence the

SNR distribution as much as the cosmological evolution (see for instance [288]) which makes it di�cult to

disentangle the two e↵ects. However, that is not the case with DNS mergers as the masses are expected to

vary over a relatively smaller range compared to BBH mergers.

The proposed third generation GW detector, Cosmic Explorer (CE) will have the sensitivity to observe DNS

mergers up to a redshift of ⇠ 5 with high SNRs. Hence considering CE’s sensitivity as representative of a

third generation GW detector, in this chapter we study how the SNR distribution of DNS mergers observed

by CE gets a↵ected by the redshift evolution of their rate density and hence use the detected SNR distribution

to probe the underlying redshift evolution of DNS mergers. Considering astrophysically motivated models

for the redshift evolution of the DNS merger rate density, we study how distinguishable the resulting SNR

distributions are from each other. The novelty of the proposed method is that it does not rely on the direct

measurement of distance or redshift but requires only the SNRs. We find that detections of the order of a

few hundreds of DNS mergers are su�cient to distinguish between di↵erent redshift evolution models. As

the projected detection rate of DNS mergers per year by the third generation GW detectors is of the order a

few hundreds to thousands [39], one year of observation by CE may itself be su�cient to track the redshift

evolution of DNS using this method.

This chapter is organized in the following way. In section 6.2 we consider the cosmological e↵ects on the

optimal SNR of compact binary sources. In section 6.3 we explore how the di↵erent DNS merger rate

densities a↵ect the SNR distributions. In section 6.4 we discuss whether the distributions corresponding to

all the merger rate densities are distinguishable from each other.
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6.2 Effects of cosmological expansion on the signal to noise

ratio of compact binaries

The optimal SNR, discussed in detail in chapter 1, is defined as

⇢ =

s

4
Z
1

0

|h̃( f )|2

S h( f )
d f , (6.2.1)

where S h( f ) is the detector’s power spectral density (PSD) and h̃( f ) is the frequency domain gravitational

waveform (for instance, Sec. (5.1) of [268] for details) or the optimal template. We employ the restricted

post-Newtonian (PN) waveform (RWF) here, h̃( f ) = A f �7/6ei ( f ), whereA is the amplitude and  ( f ) is the

frequency domain GW phase. In RWF, the PN corrections to the amplitude of the gravitational waveform

are ignored but the phase is accounted for to the maximum available accuracy. Using the RWF, the optimal

SNR for GW events of compact binary systems can be expressed as [136]

⇢(m1,m2,DL, ✓, �, , ◆) =

s

4
A2

D2
L

h
F2
+(✓, �, )(1 + cos2 ◆)2 + 4F2

⇥(✓, �, ) cos2 ◆
i

I(M), (6.2.2)

where F+,⇥(✓, �, ) are the antenna pattern functions for the ‘plus’ and ‘cross’ polarizations of gravitational

waves, A =
p

5/96⇡�2/3
M

5/6,M is the chirp mass, which is related to the total mass M byM = M ⌘3/5,

where ⌘ = m1m2
M2 is the symmetric mass ratio of the system and m1, m2 are the component masses. The four

angles {✓, �, , ◆} describe the location and orientation of the source with respect to the detector. I(M) is the

frequency integral defined as

I(M) =
Z
1

0

f �7/3

S h( f )
d f '

Z fLSO

flow

f �7/3

S h( f )
d f . (6.2.3)

In the last step, we have replaced the lower and upper limit of the integral by the seismic cut o↵, flow, of the

detector and the frequency at the last stable orbit. The GW frequency at the last stable orbit (LSO) up to

which the PN approximation is validis, fLSO =
1

63/2 ⇡M . This is the expression for the frequency at the LSO

of a Schwarzschild BH with total mass M.

As we use CE as a proxy for third generation detectors in this chapter, the SNR computation uses the
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analytical fit given in section 1.3.2 of chapter 1 as the Cosmic Explorer wide band (CE-wb) sensitivity

curve [24]. Next we discuss the e↵ect of cosmology on the gravitational waveform and hence the expression

for SNR.

6.2.1 Effects of cosmological expansion

Assuming a flat ⇤-CDM cosmological model [43, 45] of the universe, we explore the modification to the

SNR for compact binary systems at cosmological distances. Cosmological expansion of the universe a↵ects

the gravitational waveforms in two ways. GW amplitude is inversely proportional to the co-moving distance

D, which is related to the luminosity distance DL by DL = D (1 + z), where z is the redshift to the source.

Secondly, due to the cosmological expansion, the GW frequency gets redshifted. This results in redefining

the chirp mass in such a way that the observed chirp mass (M) is related to the corresponding chirp mass

in the source frame (Msource), byM = Msource (1 + z). In order to explicitly incorporate these e↵ects, we

re-write the expression for SNR in Eq. 6.2.2 as

⇢ =
M

5/6
source

D(1 + z)1/6 g(✓, �, , ◆)
p

I(M), (6.2.4)

where all the angular dependencies in the waveform are captured into the definition of g(✓, �, , ◆) and all

other variables have their usual meanings.

In a flat FLRW cosmology, the comoving distance (following c = G = 1 units), corresponding to a redshift

z (Ref. [193, 301]) is given by

D(z) =
1

H0

Z z

0

dz0

E(z0)
, (6.2.5)

where H0 is the Hubble constant and

E(z) =
p
⌦m(1 + z)3 + ⌦⇤, (6.2.6)

with the total density parameter (⌦) consisting of matter (dark and baryonic) density (⌦m) and cosmological

constant (⌦⇤). Throughout this chapter, we consider a cosmology with ⌦⇤ = 0.7 and ⌦m = 0.3 and

H0 = 72km/Mpc/sec [43, 45].
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Figure 6.1. Figure on the left panel shows the evolution of co-moving merger rate density with red-
shift for four di↵erent models, M0 stands for the constant comoving merger rate, MWP represents the
model for rate density evolution obtained by Wandermann & Piran [291], MHB and MWilkins denote the
merger rate models obtained in Ref. [259, 284] following the star formation rates given in ref. [195]
and [295] respectively. The figure on the right most panel contains the corresponding normalized SNR
distributions.

Given that z is a function of co-moving distance, D (Eq. 6.2.5), it is clear from Eq. 6.2.4 that the simple

scaling relation for SNR (⇢ / 1/D) would no longer hold. Hence it is obvious that the universal SNR

distribution, given in Eq. 6.1.1, does not apply any more. In the next section we discuss the e↵ect of redshift

evolution of the DNS merger rate on the SNR distribution.

6.3 Imprints of co-moving merger rate density evolution

of DNS systems on the SNR distribution

Usually it is assumed that the DNS formation rate follows the star formation rate, whereas their merger rate

will depend also on the delay time distribution, i.e. the distribution of the time delay between the formation

and the merger. Hence, following Ref. [259], the binary merger rate density can be written as

R(z) /
Z
1

tmin
d

⇢̇⇤(z f (z, td))
1 + z f (z, td)

P(td) dtd, (6.3.1)

where ⇢̇⇤ is the star formation rate, td is the delay time and tmin
d is the minimum delay time for a binary to

merge since its formation. The redshift z describes the epoch at which the compact binary merges and z f is
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the redshift at which its progenitor binary forms and they are related by a delay time td. The factor P(td) is the

distribution of the delay time. According to various population synthesis models [53,79,150,222,242,281],

the delay time follows a power-law distribution, P(td) / 1/td, with td > tmin
d . The factor (1 + z f )�1 in

Eq. (6.3.1) takes into account the cosmological time dilation between the star formation and the merger.

For our analysis in this chapter, we use two merger rate models, following the two star formation rate

models proposed in refs. [195] and [295], and denote them as MHB and MWilkins, respectively. In both cases

we consider [78, 79] tmin
d ⇠ 20Myr. As discussed in Ref. [155], the redshift evolution of the host galaxy

a↵ects the merger rate of DNS binaries (see their top panel of Figures 3 and 4). For higher metallicities,

the peak of the merger rate density shifts towards lower redshifts. From this perspective, our MWilkins is

representative of the case where the DNS mergers primarily happen in high metallicity environments. We

also consider another model of rate density evolution, obtained in ref. [291],

RWP(z) = 45Mpc�3Gyr�1.

8>>>><
>>>>:

e(z�0.9)/0.39 z  0.9

e�(z�0.9)/0.26 z > 0.9.

This is a model (denoted as MWP) derived based on the short Gamma-Ray Bursts (GRBs) observed by the

Gamma-Ray satellites accounting for the e↵ect of beaming. Though some what indirect, we use this model

to have enough diversity in the set of models we compare against.

Along with these models, we also consider a case with constant comoving rate density, M0, characterized

by R(z) = R0 = 1Mpc�3Myr�1. The left panel of Fig. 6.1 shows the normalized merger rate density models

discussed above.

Given the merger rate density R(z) (in units of Mpc�3Myr�1), the total number of sources (in units of Myr�1)

in a co-moving volume of radius D is,

N(D) /
Z D

0

R(z(D0))
1 + z(D0)

D02dD0, (6.3.2)

where z can be numerically inverted to obtain the corresponding co-moving distance D. The (1 + z) factor

in the denominator accounts for the time dilation between the source-frame and the observer-frame.

Considering the above proposed models to be the underlying source distribution within the co-moving vol-

ume and assuming isotropy, we obtain the optimal SNR distribution of DNS mergers for CE (right panel of
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Fig. 6.1). To generate the source population in order to obtain the optimal SNR distributions corresponding

to di↵erent R(z) (left panel of Fig 6.1), first the sources are assumed to be uniformly located and oriented on

the sphere parametrized by the comoving distance. This is achieved by making sure that the azimuth angles

�, are drawn from a distribution uniform in the limit [0, 2⇡] and the polar angles ✓, ◆ are chosen such that

their cosines are uniformly distributed between [�1, 1]. These choices ensure that at any radius, the source

population is uniformly located and oriented on the surface of the sphere. Further, we need to distribute

the sources within the detection volume specified by the maximum radius Dmax(⇢th,M) (or zmax(⇢th,M)),

which depends on the SNR threshold (⇢th = 12 considered here). Hence we choose N(D) to be uniformly

distributed between N(1) and N(Dmax) and for each realization we numerically solve Eq (6.3.2) to obtain

the corresponding D value from N(D).

Using the procedure outlined above, we compute the optimal SNR distributions for the di↵erent models by

imposing the SNR threshold of 12 which is shown in the right panel of Fig 6.1. Next we discuss how many

detections are required for these models to be statistically distinguishable from each other.

6.4 Statistical tests of distinguishability of various models

In this section, we demonstrate the distinguishability of the SNR distributions corresponding to all the

merger rate density models discussed in the previous section. First of all, we discuss how to account for

the uncertainty on the SNRs associated with GW detections and then we discuss the distinguishability of

di↵erent models.

6.4.1 Uncertainties on the SNRs

In reality, GW detections are made applying a certain pre-determined detection threshold on the matched

filtered SNRs which are calculated by matching the observed data and a template bank of precomputed GW

waveforms. However, the SNR distributions in the right panel of Fig. 6.1 are produced using optimal SNRs

for each source, where optimal SNR is a point estimate (SNR of the best fit template from matched filtering).

Therefore it is important to fold in the uncertainties to the point estimates of SNRs to account for the usage

of matched-filtering in the process of GW detections.
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Under the assumption of zero mean Gaussian random noise in the detectors, the matched filter SNR (�)

follows the Rice distribution [263] (see Eq. (1.4.5)) discussed in chapter 1. In order to account for the errors

on SNRs in our distributions, we first calculate the optimal SNR (say ⇢i) for each source and then replace it

with a number chosen at random from the distribution f (�, ⇢i) ( Eq. 1.4.5).

6.4.2 Statistical tests

Now we quantify the distinguishability of the di↵erent SNR distributions by employing the Anderson-

Darling (AD) [51] test. The AD test is a well-known tool used to assess whether a sample data belongs

to a reference distribution. The test returns a probability value (p value) for the “null" hypothesis that the

sample belongs to the reference distribution. If the null hypothesis is true, the p value distribution obtained

by performing the experiment multiple times is uniform between 0 and 1 with a median p value of 0.5. If

the sample does not belong to the reference distribution, the p value distribution will sharply peak around 0.

A p value distribution weighted more towards 0, implies a stronger evidence of rejecting the null hypothesis

or ability to distinguish the two distributions.

In order to quantify the distinguishability between two arbitrary merger rate density models M and N, we

follow the procedure below. First we synthesize a fiducial data of SNR distribution of size n (number

of detections) assuming that the model M is the true merger rate distribution. We will account for the

uncertainties on each of the SNRs in the synthesized data along the lines mentioned earlier in section 6.4.1.

This noisy data is labeled as dataM, where the subscript refers to the underlying merger rate model. Then,

we carry out the AD test between dataM and the reference distribution pN(⇢) which is the predicted SNR

distribution corresponding to the merger rate model N. In the above step, since pN(⇢) is the theoretical

prediction, it is always free of errors which is ensured by using a su�ciently large number of samples

consisting of optimal SNRs to generate that.

The test returns a p value which is denoted as P(M|N). Due to the limited number (n) of synthesized

samples, the dataM may not capture the essence of the model M and hence a↵ects the p value. To account

for this, we repeat the p value estimation 100 times, each time synthesizing the dataM randomly and then

computing the median of the resulting p value distribution. The median of p values is denoted as P̄(M|N).
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Figure 6.2. Weighted p-values (P̄w(M|N)) from Anderson-Darling test performed on the data obtained
from the four models as functions of the number of detections. The first argument in each legend
represents the data generated by following a particular model M (denoted as dataM in the main text),
whereas the second argument is the theoretical model with which the data is compared to. We put a gray
horizontal line in every panel corresponding to the threshold on P̄w(M|N) (see main text for details).

6.4.3 Weighted p-values

As mentioned earlier (in section 6.4.1), we have used Rice distribution to model the errors in SNR. The

presence of these errors in the data will a↵ect the p values which in turn can lead to false detection or false

rejection. For example, the median of the p value distribution resulting from AD test of dataM with the

model M, in principle, should be 0.5. But due to the errors, the test may return a lower median which may

even lead to the rejection of the null hypothesis when it is actually true. In our case, we have multiple

models {N} to be tested against the dataM and p value for each model (P̄(M|N)) will decrease due to the

errors thereby reducing the ability to distinguish between various models.

In order to quantify the distinguishability between the data and a model along the lines described earlier, we

introduce the notion of weighted p values. For a given dataM, we define a weighting functionW as

W =
1

P̄(M|M)
. (6.4.1)
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where P̄(M|M) is the median of p values between dataM and the underlying model M (which, in the absence

of noise, is 0.5). We now define the weighted p value between models dataM and N as

P̄w(M|N) =W ⇥ P̄(M|N). (6.4.2)

The weighting factor W is chosen in such a way that the weighted p value for dataM with the model M

itself always returns unity ((i.e, P̄w(M|M) = 1)). Weighted p values have been extensively discussed in the

literature in the context of testing multiple hypotheses (for example, see the references [81, 156, 194]). The

definition we use here may be thought of as an adaptation of this generic definition to our problem.

Based on our previous discussion, it is clear that if two distributions are distinguishable, P̄w(M|N) will

always be smaller than 1. Using a threshold on the median of the p-value distribution of 0.05 while perform-

ing the AD test (i.e. 95% of the time the model is rejected), we set a rejection threshold on P̄w(M|N) to be

0.05/0.5=0.1.

6.4.4 Results and discussion

We present our results in Fig. 6.2 where, in the x-axis, we show the number of detections n (for n= 20, 50,

100, 200, 500, 1000, 2000, 5000, 10000 etc.) and in the y-axis, we show the distinguishability of each of the

four rate models (M0,MHB,MWilkins,MWP) from each other by computing the weighted p values P̄w(M|N)

among them. Each panel corresponds to a particular model for the data and the di↵erent curves in each panel

correspond to P̄w(M|N) estimated for all the four models. For example, in the top-left panel of Fig. 6.2 we

synthesize the data following constant co-moving rate density and compare against the theoretical distribu-

tions of all four models. By construction, the weighted p value P̄w(M0|M0), when the data containing M0

is compared with model M0 itself, represented by the cyan line, is constant and is 1. As opposed to this

scenario, all the other ratio falls o↵ as a function of the number of detections. Hence the data can be distin-

guished from the other models. In the top-left panel, we also see that a low number of detections (⇠ 500) is

su�cient to distinguish between dataM0 and the model MWP or MWilkins whereas we need at least thousands

of detections to distinguish between the dataM0 and the model MHB.

In the remaining three panels, we perform the same exercise for the rest of the three models. In the
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top right panel the data (dataMWP) is generated from the merger rate density model, MWP. As expected,

P̄w(MWP|MWP) is unity (red curve). The cyan, blue and the black curves represent the comparison with

models M0, MHB, MWilkins respectively. We find that for a few hundreds of detections, all three models are

distinguishable from MWP. This is not surprising given how di↵erent this distribution is from others in the

left panel of Fig. 6.1.

Similarly in the bottom left panel the data is generated following the merger rate density model, MHB and

in the bottom right panel the data is generated following the merger rate density model, MWilkins. In case

of data containing MHB (bottom left panel) we find that a larger number of detections (⇠ few thousands) of

DNS mergers are needed in order to distinguish this model especially from M0. As opposed to this scenario,

in the bottom right panel, MWilkins is distinguishable from other models given a few hundreds of detections.

Therefore it is evident that MWP and MWilkins can be distinguished from all other models with high con-

fidence with a few hundreds of detections, whereas MHB is di�cult to distinguish from the M0 using this

method with low number of detections. However, with a large number of detections (say 5,000) MHB is

distinguishable from the other models. Given a su�ciently large number of detections, we expect P̄w(M|N)

to be either 0 or 1 given the two distributions are di↵erent or the same respectively. Hence we do not show

any P̄w(M|N) < 10�4 in Figure 6.2 and treat them as a scenario where the two distributions are completely

distinguishable.

As shown in [39] and the most recent work in [71], the fore-casted DNS detection rates by the third gen-

eration detectors ET-B and CE ranges from one thousand to tens of thousands per year. Given this rate, it

is clear that the SNR data collected from less than a year of observation will be su�cient to test various

merger rate density models. As discussed before, the proposed method does not rely on the measurements

of distance or redshift measurements which are usually obtained using computationally expensive parameter

estimation algorithms. Instead, this method requires only the signal-to-noise ratios which are outcomes of

the detection (or search) algorithms. Hence, the test based on SNR distributions o↵ers a novel and compu-

tationally cheaper method to distinguish between various predicted merger rate density models in the era of

third generation gravitational wave detectors.



A Systematic bias estimates for LISA

The use of inaccurate waveform model may lead to systematic biases in the parameter estimation [138,166].

For a detector data stream, s, consisting of a true waveform h̃T( f ;~✓T) and recovered with an approxi-

mate waveform h̃AP( f ;~✓best fit), the systematic errors on various parameters can be obtained by minimizing
D
[h̃T( f ;~✓T) � h̃AP( f ;~✓best fit)], [h̃T( f ;~✓T) � h̃AP( f ;~✓best fit)]

E
[138]. Since we are interested in quantifying the

systematics due to the di↵erence between the spinning and non-spinning waveforms, we adopt the min-

imization scheme developed in Ref. [138]. The basic assumption behind this scheme is to define a one

parameter family of waveform models (h̃�( f ; ✓)) that interpolate between both h̃T( f ;~✓T) ⌘ h̃�=1( f ; ✓) and

h̃AP( f ;~✓) ⌘ h̃�=0( f ; ✓). As it turns out, after a set of approximations, the linearized estimate for the system-

atic error is (see Eq. (29) in Ref. [138])

�sys✓m =
⇣
��1

AP

⌘
mk

D
iAµ2 f �7/6� ei 

����
✓=✓best fit

,
@h̃AP( f ;~✓best fit)

@✓k

E
, (A.0.1)

where (�AP)mk is the Fisher matrix obtained from the approximate waveform h̃AP( f ;~✓) and � =  T �  AP.

All the quantities are evaluated at the best fit values of the parameters which coincide with the true values in

the large SNR limit.

To quantify the systematic bias, we consider a six dimensional parameter space consists of {tc, �c, lnA, lnMc,

ln⌘, µ` or ✏`} to completely specify the approximate waveform h̃AP( f ;~✓best fit), for our purpose the parametrized

non-spinning TaylorF2 waveform. We use the same approximate waveform to estimate the six dimensional

Fisher matrix, �AP. On the other hand, we consider the parametrized non-precessing TaylorF2 waveform to

be our true waveform model.

In Fig. A.1 we show the systematic biases on µ2 and µ3 for binaries with three di↵erent total masses, M = 105
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Figure A.1. Numerical estimates of systematic biases on the two leading multipole coe�cients µ2 and
µ3 as a function of �1 = �2 = � for LISA noise PSD. We consider systems with three di↵erent total
masses, m = 105, 106, 107M� having mass ratio q = 10. All the sources are considered to be at a fixed
luminosity distance of 3 Gpc.

M�, 106 M�, 107 M� and mass ratio q = 10 as a function of individual spin parameter �1 = �2 = � for LISA.

Due to a smaller total mass (M = 105M�) a large number of inspiral cycles reside in the LISA band. Hence

even with very small spin values � ⇠ O(10�3), the systematic errors become larger than the statistical errors,

which demands a parametrized spinning waveform model. In contrast, for larger total masses of about 106

M� or 107 M�, the systematics a↵ect the parameter estimation when the spin magnitude is slightly larger

⇠ O(10�1), as expected. Hence it is very crucial to incorporate the spin corrections in the waveform to reduce

the e↵ects of systematics when extracting the information about the multipole coe�cients. We also find that

as the total mass of binary increases the slope of the systematic bias curves changes from positive to negative

for µ2 and vice-versa for µ3. This could be due to the nature of the correlation (positive or negative) between

these multipole coe�cients and the binary parameters (such as masses and spins) with increasing total mass.

We quote the leading order estimates for the systematic biases in case of LISA only. Since the Fisher matrix-

based leading order estimation of systematic biases for network configuration demands reformulation of the

prescription, we postpone these for future study in a more rigorous and accurate Bayesian framework.
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