
Entropy driven phase transition in hard
core lattice gas models in three

dimensions
By

N Vigneshwar
PHYS10201404002

The Institute of Mathematical Sciences, Chennai

A thesis submitted to the

Board of Studies in Physical Sciences

In partial fulfillment of requirements

For the Degree of

DOCTOR OF PHILOSOPHY

of

HOMI BHABHA NATIONAL INSTITUTE

June, 2019





Homi Bhabha National Institute
Recommendations of the Viva Voce Committee

As members of the Viva Voce Committee, we certify that we have read the dissertation
prepared by N Vigneshwar entitled “Entropy driven phase transition in hard core lattice
gas models in three dimensions" and recommend that it maybe accepted as fulfilling the
thesis requirement for the award of Degree of Doctor of Philosophy.

Date:

Chairman: Purusattam Ray

Date:

Guide/Convener: Rajesh Ravindran

Date:

Member 1: Gautam I Menon

Date:

Member 2: Pinaki Chaudari

Date:

Member 3: Sanatan Digal

Date:

External Examiner:

Final approval and acceptance of this dissertation is contingent upon the candidate’s
submission of the final copies of the dissertation to HBNI.

I hereby certify that I have read this dissertation prepared under my direction and
recommend that it may be accepted as fulfilling the dissertation requirement.

Date:

Place: Guide

Kabir Ramola

3/7/2020

3/7/2020

3/7/2020

3/7/2020

3/7/2020

3/7/2020

3/7/2020

Chennai





STATEMENT BY AUTHOR

This dissertation has been submitted in partial fulfilllment of requirements for an advanced

degree at Homi Bhabha National Institute (HBNI) and is deposited in the Library to be

made available to borrowers under rules of the HBNI.

Brief quotations from this dissertation are allowable without special permission, provided

that accurate acknowledgement of source is made. Requests for permission for extended

quotation from or reproduction of this manuscript in whole or in part may be granted by

the Competent Authority of HBNI when in his or her judgement the proposed use of the

material is in the interests of scholarship. In all other instances, however, permission must

be obtained from the author.

N Vigneshwar





DECLARATION

I, hereby declare that the investigation presented in the thesis has been carried out by me.

The work is original and has not been submitted earlier as a whole or in part for a degree

/ diploma at this or any other Institution /University.

N Vigneshwar





List of Publications arising from the thesis

• Journal

1. Different phases of a system of hard rods on three dimensional cubic lat-

tice

N Vigneshwar, D Dhar and R Rajesh

Journal of Statistical Mechanics: Theory and Experiment, 113304 (2017)

2. Phase diagram of a system of hard cubes on the cubic lattice

N Vigneshwar, D Mandal, K Damle, D Dhar and R.Rajesh

Physical Review E 99, 052129 (2019)

N Vigneshwar





List of presentations and participations at conferences

• Contributed presentations

1. Presented poster on Phase diagram of a system of hard cubes on the cubic

lattice in the 5th Indian Statistical Physics Communuty Meeting 2018 in ICTS,

Bangalore

2. Presented poster on Phase diagram of a system of hard rods on the cubic

lattice in the 4th Indian Statistical Physics Community Meeting 2017, in ICTS,

Bangalore

• Conferences attended

1. One Day Soft Matter Symposium held at Indian Institute of Technology, Madras

(25th January, 2019)

2. Indian Statistical Physics Community Meeting 2018 (ISPCM 2018) held at In-

ternational Centre for Theoretical Sciences, Bangalore (16-18 February, 2018)

3. Indian Statistical Physics Community Meeting 2017 (ISPCM 2017) held at In-

ternational Centre for Theoretical Sciences, Bangalore (17-19 February, 2017)

4. Bangalore School on Statistical Physics - VII held at International Centre for

Theoretical Sciences, Bangalore (01-15 July, 2016)

https://www.icts.res.in/event/page/13370
https://www.icts.res.in/event/page/10446
https://owncloud.iitm.ac.in/index.php/s/fxLBHCugXcsvTIx
https://www.icts.res.in/discussion-meeting/ispcm2018
https://www.icts.res.in/discussion-meeting/ISPC2017
https://www.icts.res.in/program/bssp2016




To

My Parents





ACKNOWLEDGEMENTS

I would like to express my sincere gratitude and my thanks to my supervisor Prof. R.

Rajesh for his constant support and encouragement during my PhD life for the last five

years. His ability to guide me by making me comfortable and to answer all my queries

and his approachable nature at all times has been a godsend to me. It was a privilege to

work with him during my PhD years.

I am thankful to my collaborators Prof. Deepak Dhar, Prof. Kedar Damle and Dipanjan

Mandal for sharing their knowledge and expertise with me and I am helpful for their

advice during the course of their collaboration.

I am thankful to my Doctoral Committee members, Prof. Gautam I Menon, Prof. Pu-

rusattam Ray, Prof. Pinaki Chaudari and Prof. Sanatan Digal for their valuable advice

and suggestions about my thesis work.

I would like to thank IMSc for the High-Performance computing facilities and library,

especially System administrators Mangal Pandi and G Srinivasan for their expertise and

their patience whenever I encountered any problem. Most of the numerical simulations in

this thesis have been carried out on the supercomputing machines Nandadevi cluster

I would like to thank my friends Prashant R, Jilmy Joy, Madhusudhan Raman, Chan-

drasekhar K, Devanand N S, Ria Sain and others. Finally, I would like to express my

love and gratitude to my parents for their continuous support and their faith in me without

whom, it would not have been possible to reach this far.





Contents

Contents i

Synopsis 1

List of Figures 9

List of Tables 17

1 Introduction 19

1.1 Entropy-driven phase transitions . . . . . . . . . . . . . . . . . . . . . . 21

1.1.1 Hard-Core models . . . . . . . . . . . . . . . . . . . . . . . . . 22

1.1.2 Hard-core lattice gas models . . . . . . . . . . . . . . . . . . . . 24

1.2 Hard rods in two dimensions . . . . . . . . . . . . . . . . . . . . . . . . 26

1.3 Hard rods in three dimensions . . . . . . . . . . . . . . . . . . . . . . . 33

1.4 Hard cubes in three dimensions . . . . . . . . . . . . . . . . . . . . . . . 38

1.5 Overview of the thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

2 Computational Methods 43

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

2.2 Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

2.3 Need for a cluster algorithm . . . . . . . . . . . . . . . . . . . . . . . . 44

2.4 Description of the algorithm . . . . . . . . . . . . . . . . . . . . . . . . 46

2.5 Extension to hard rods in three dimensions . . . . . . . . . . . . . . . . . 48

2.6 Extension to hard cubes in three dimensions . . . . . . . . . . . . . . . . 50

i



3 Different phases of a system of hard rods on three dimensional cubic lattice 53

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

3.2 Model Description and Monte-Carlo Algorithm . . . . . . . . . . . . . . 54

3.3 Different phases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

3.4 The instability of the layered-nematic phase . . . . . . . . . . . . . . . . 60

3.5 Phase diagram and critical behavior . . . . . . . . . . . . . . . . . . . . 66

3.5.1 kmin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

3.5.2 k = 5, 6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

3.5.3 k = 7 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

3.6 Summary and discussion . . . . . . . . . . . . . . . . . . . . . . . . . . 73

4 Phase diagram of a system of hard cubes on the cubic lattice 77

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

4.2 Model & Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

4.3 Different Phases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

4.4 Landau theory for 2 × 2 × 2 cubes . . . . . . . . . . . . . . . . . . . . . 87

4.5 Disordered-Layered Transition . . . . . . . . . . . . . . . . . . . . . . . 95

4.6 Layered-Sublattice Transition . . . . . . . . . . . . . . . . . . . . . . . . 98

4.7 Sublattice-Columnar Transition . . . . . . . . . . . . . . . . . . . . . . . 99

4.8 Stability of Columnar Phase . . . . . . . . . . . . . . . . . . . . . . . . 101

4.9 Summary and conclusions . . . . . . . . . . . . . . . . . . . . . . . . . 106

5 Conclusion 111

Bibliography 113

ii



8



List of Figures

1 The lattice is divided into eight sublattices 0, 1, . . . , 7 depending on whether

the x-, y- and z- coordinates are even or odd. Labelling of sublattices cor-

responding to yz-planes whose x-coordinate is (a) even, or (b) odd. (c) A

2 × 2 × 2 cube with all of its vertices labelled with appropriate sublattices

to show the relative positions of the planes shown in (a) and (b). . . . . . 6

2 Numerically obtained phase diagram for 2×2×2 hard cubes. The red dot

represents a continuous transition and the dotted lines represent regions

of coexistence. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.1 Schematic diagram of ellipsoidal rods as a function of increasing den-

sity. (a) Disordered phase where there is no translational and orientational

order (b) Nematic phase where there is orientational order, but no trans-

lational order (c) Smectic phase where there is orientational and partial

translational order. The density increases from left to right. The transla-

tional invariance is broken parallel to the nematic director. . . . . . . . . 23

1.2 Entropy as a function of ε from Eq. (1.20) and Eq. (1.17) for k = 8. . . . . 32

2.1 A snapshot of hard rods of length k in a square lattice. . . . . . . . . . . . 44

2.2 A schematic diagram illustrating the flip move in the Monte Carlo algo-

rithm. If there is a k × k square, that is fully covered by k parallel k-mers

as shown in (a), then the orientations of the k-mers within the square are

flipped to the configuration shown in (b). . . . . . . . . . . . . . . . . . 48

9



2.3 Temporal evolution of the packing fraction ρ for a hard rod system in a

square lattice of size L = 336 with µ = 6.5 and ρ ≈ 0.94. The addi-

tion of flip move reduces the equilibration time by almost two orders of

magnitude. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

2.4 The temporal evolution of the density ρ in a system with k = 7, when the

system is evolved using the evaporation-deposition algorithm with and

without the flip move. The initial configuration has nematic order while

the equilibrium configuration has layered order. The data are for system

size L = 112 and µ = 6.0. . . . . . . . . . . . . . . . . . . . . . . . . . 50

3.1 (a) Time evolution of the densities of rods along the three orientations in

the nematic phase when µ = 0.3 and ρ ≈ 0.63 for k = 7 and L = 56. The

initial configuration is disordered. (b) Snapshot of a randomly chosen xy

plane after equilibration. The majority of rods are x-mers. The green solid

circles represent z-mers passing through the given xy-plane. . . . . . . . . 56

3.2 (a) Time evolution of the densities of rods along the three orientations in

the layered-nematic phase when µ = 5.55 and ρ ≈ 0.914 for k = 7 and L =

112. The initial configuration has nematic order, where most of the rods

are in x-direction. (b)–(d) Snapshots of three randomly chosen xy planes

after equilibration. In each of the planes, either horizontal or vertical rods

are in majority. (e) Time evolution of nx(z) − ny(z), where nx(z) and ny(z)

are the densities of x-mers and y-mers in layer z, for z = 0, 24, 49, 74. The

nematic order in each plane keeps switching between majority x-mers and

majority y-mers. (d) The probability distribution P(nx(z)−ny(z)), averaged

over time and all planes, exhibits two symmetric peaks. . . . . . . . . . . 58

10



3.3 (a) Time evolution of the densities of rods along the three orientations

in the layered-disordered phase when µ = 6.0 and ρ ≈ 0.928 for k = 7

and L = 112. The initial configuration has nematic order, where most of

the rods are in x-direction. (b)–(d) Snapshots of three randomly chosen

xy planes after equilibration. In each of the planes, there are roughly

equal number of x-mers and y-mers. (e) Time evolution of nx(z) − ny(z),

where nx(z) and ny(z) are the densities of x-mers and y-mers in layer z,

for z = 0, 24, 49, 74. It fluctuates about zero for all z. d) The probability

distribution P(nx(z) − ny(z)), averaged over time and all planes, is peaked

about 0. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

3.4 (a) The variation of 〈ρ′〉, the minimum of the densities of the rods of differ-

ent orientations, with µ for L = 112 and k = 7 in the vicinity of transition

from nematic phase to a layered-nematic phase. ρ′ has a discontinuity as

µ changes from µ = 5.42 to µ = 5.43, representing the onset of a layered

phase. The lower values of 〈ρ′〉 stabilizes the layered-nematic phase for

finite system sizes. (b) Corresponding probability distribution P(QN) near

the vicinity of nematic-layered transition. The peak of P(QN) jumps as µ

changes from µ = 5.42 to µ = 5.43. . . . . . . . . . . . . . . . . . . . . . 62

3.5 The variation of g(R, ε) [see Eq. (3.15)] with R for k = 7 and ε = 0.02.

Inset: The behaviour for small R, where the period of the oscillations are

seen more clearly. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

3.6 The order parameters (a) QN [see Eq. (3.2)] and (b) P2 [see Eq. (3.3)] as

a function of mean density 〈ρ〉 for k = 2, . . . , 7. The data are for systems

with L = 10k. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

3.7 The order parameters (a) QN and (b) P2 for k = 5 as a function of µ for two

different system sizes. The data is very weakly dependent on the system

size. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

11



3.8 The time evolution of |Q| when the phase at time t = 0 is nematic or

isotropic. IC in the legends is an acronym for initial conditions. The data

are for L = 70, k = 5, and µ = 6.0 and ρ ≈ 0.944. The system loses

memory of its initial state within 105 Monte Carlo steps, and equilibrates

into a layered phase characterized by 〈|Q|〉 ≈ ρ/2. . . . . . . . . . . . . . 69

3.9 (a) The probability distribution P(|Q|) near the isotropic-layered transition

for L = 50 and k = 5. (b)–(e) The two dimensional color plots for P(Q)

for different values of µ near the isotropic layered transition for L = 50

and k = 5. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

3.10 The variation of the Binder cumulant UN [see Eq. (3.19)] with µ for two

different system sizes. The data are for k = 5 near the isotropic-layered

transition. UN becoming negative is suggestive of a first order transition. . 71

3.11 The variation of the (a) order parameter QN and (b) Binder cumulant UN

with µ for three different system sizes. The curves for the Binder cumu-

lants cross at µ ≈ −0.23. . . . . . . . . . . . . . . . . . . . . . . . . . . 72

3.12 Probability distribution P(QN) for k = 7 and L = 112 near the I-N transi-

tion. P(QN) is unimodal and the peak position shifts continuously to the

right with increasing µ. . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

3.13 The behaviour of the order parameters QN near the isotropic-nematic tran-

sition for k = 8, 9, 10. The data are for L = 10k. . . . . . . . . . . . . . . 75

4.1 The lattice is divided into eight sublattices 0, 1, . . . , 7 depending on whether

the x-, y- and z- coordinates are even or odd. Labelling of sublattices cor-

responding to yz-planes whose x-coordinate is (a) even, or (b) odd. (c) A

2 × 2 × 2 cube with all of its vertices labelled with appropriate sublattices

to show the relative positions of the planes shown in (a) and (b). . . . . . 79

4.2 Variation of q1, q2, q3, as defined in Eqs. (4.4)–(4.6), with density ρ. The

data are for system size L = 70. Discontinuities in density are not visible

at this resolution. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

12



4.3 Snapshots of cross sections of equilibrated configurations in the layered

phase, with layering vector pointing in the z-direction. The cross sec-

tions shown are of randomly chosen adjacent pairs of (a) even yz-, (b)

odd yz-, (c) even xz-, (d) odd xz-, (e) even xy- and (f) odd xy-planes.

The eight colours represent cubes with heads on different sublattices. The

projections of cubes which protrude onto the plane from nearby planes

are coloured in grey. (a)-(d) look statistically similar, while (e) is mostly

coloured and (f) is mostly grey, showing a layering in the z-direction. The

data are for system size L = 150, chemical potential µ = 2.4, and density

ρ ≈ 0.762. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

4.4 Temporal evolution of (a) eight sublattice densities ρi, i = 0, . . . , 7 and

(b) |Lx|, |Ly|, |Lz| when the system is in a layered phase (layering in the

z-direction). The data are for µ = 2.4, ρ ≈ 0.762, and system size L = 150. 85

4.5 Snapshot of cross sections of equilibrated sublattice phase, where the

cross sections are of randomly chosen adjacent pairs of (a) even yz-, (b)

odd yz-, (c) even xz-, (d) odd xz-, (e) even xy- and (f) odd xy-plane. The

eight colours represent cubes with heads on different sublattices. The

projections of cubes which protrude onto the plane from nearby planes

are coloured in grey. (a), (d) and (e) are mostly coloured by deep-green,

while (b), (c) and (f) are mostly grey, showing the preferential occupancy

of cubes in sublattice 2. The data are for system size L = 150 with chem-

ical potential µ = 3.5, and density ρ ≈ 0.864. . . . . . . . . . . . . . . . . 86

4.6 Temporal evolution of (a) eight sublattice densities ρi, i = 0, . . . , 7 and (b)

|Lx|, |Ly|, |Lz| when the system is in a sublattice phase. The data are for

µ = 3.5, ρ ≈ 0.864, and system size L = 150. . . . . . . . . . . . . . . . . 87

13



4.7 Snapshot of cross sections of an equilibrated columnar phase, where the

columns are aligned in the x-direction and y- and z- coordinates are both

mostly even. The cross sections are of randomly chosen adjacent pairs of

(a) even yz-, (b) odd yz-, (c) even xz-, (d) odd xz-, (e) even xy-, and (f)

odd xy-plane. The eight colours represent cubes with heads on different

sublattices. The projections of cubes which protrude onto the plane from

neighbouring planes are coloured in gray. Since (d) and (f) are mostly

gray, the heads of most of the cubes have even y- and z- coordinates.

Since (a) and (b) have roughly equal number of coloured squares, the

heads of the cubes could have, with equal probability, either even or odd

x-coordinates. The data are for system size L = 150, chemical potential

µ = 5.5, and density ρ ≈ 0.958. . . . . . . . . . . . . . . . . . . . . . . . 88

4.8 Temporal evolution of (a) the eight sublattice densities ρi, i = 0, . . . , 7 and

(b) |Lx|, |Ly|, |Lz| when the system is in a columnar phase. The data are for

µ = 5.5, ρ ≈ 0.958, and system size L = 150. . . . . . . . . . . . . . . . . 89

4.9 Phase diagram in the λL-aL plane for the Landau theory of Eq. (4.7). The

thick red and blue lines represent lines of continuous transition, whereas

the dotted brown line is a first order transition line. The three phases meet

at the multicritical point (0, 0). . . . . . . . . . . . . . . . . . . . . . . . 92

4.10 The schematic phase diagram in the λL-λc plane for the Landau free en-

ergy functional in Eq. (4.19) for the case aL < 0, ac > 0. The other

parameters are bL = bc = 8, µ = 2. The line λL = 0 is a first order line,

separating the layered phase and the sublattice phase. . . . . . . . . . . . 95

4.11 The schematic phase diagram in the λL-λc plane for the Landau free enrgy

functional in Eq. (4.19) for the case aL < 0, ac < 0. The other parameters

are bL = bc = 8, µ = 2. The dotted lines which are lines of first order

transition, separate the columnar phase and the sublattice phase. . . . . . 96

14



4.12 (a) The variation of Binder cumulant U1 with chemical potential µ for

different system sizes. The data for (b) Binder cumulant U1, (c) order

parameter q1 and (d) χ1 for different system sizes collapse onto a single

curve when scaled as in Eqs. (4.24)-(4.26) with the critical exponents of

the three dimensional Heisenberg model: ν = 0.704, β = 0.362, and

γ = 1.389. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

4.13 The time evolution of (a) density ρ and (b) q3 when µ = 2.67 and L = 100.

We have superimposed a running average of density, where each point has

been averaged over 40 consecutive data points. The probability density

function for (c) ρ and (d) q3 for different values of µ near the transition

point for a system of size L = 100. The probability density function for

(e) ρ and (f) q3 for different values of L at the transition point [µ = 2.670

for L = 80, and L = 100, and µ = 2.669 for L = 120]. . . . . . . . . . . . 100

4.14 The time evolution of (a) density ρ and (b) order parameter q3 when µ =

5.395 and L = 60. We have superimposed a running average of density,

where each point has been averaged over 10 consecutive data points. The

probability density function for (c) ρ and (d) q3 for different values of µ

near the transition point for a system of size L = 60. The probability

density function for (e) ∆ρ = ρ − ρc(L), where ρc(L) is midpoint between

the two peaks in the distribution, and (f) q3, for different values of L at

the transition point [µc = 5.26, ρc ≈ 0.9522 for L = 50, µc = 5.395, ρc ≈

0.9553 for L = 60 and µc = 5.48, ρc ≈ 0.9572 for L = 70]. . . . . . . . . . 102

4.15 Variation of (a) Qz and (b) θz [see Eq. (4.27) for definition] with even

z-planes. In the odd planes, there are very few cubes. The data are for

L = 100 and µ = 6.0 at t = 107 Monte Carlo steps. . . . . . . . . . . . . . 103

4.16 Numerically obtained phase diagram for 2×2×2 hard cubes. The red dot

represents a continuous transition and the dotted lines represent regions

of coexistence. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

15



16



List of Tables

3.1 A summary of the phases and nature of the phase transitions observed for

the values of k that have been studied. . . . . . . . . . . . . . . . . . . . 75

17



18



Chapter 5

Conclusion

In this thesis we have studied, in detail, the phase diagram of system of particles in three-

dimensions by Monte Carlo simulations using a grand canonical cluster algorithm. These

models are: (1) hard rods of length k on a cubic lattice and (2) hard 2 × 2 × 2 cubes on a

cubic lattice.

In Chapter 1, we have described a historical overview of entropy-driven phase transitions

and introduced hard-core exclusion models both in the continuum and on lattices to study

such transitions.

In Chapter 2, we have described a cluster grand canonical algorithm and have explained

its implementation on a system of hard rods of length k on a square lattice. It has been

also shown that this algorithm can equilibrate densities close to full-packing and its gen-

eralization to three-dimensional systems has also been explained.

In Chapter 3, we have obtained the phase diagram of a system of hard rods of length k

on a cubic lattice using the cluster grand canonical algorithm. We showed that for k ≤ 4,

the system is in a disordered isotropic phase at all densities ρ, and there are no phase

transitions. For k = 5, 6, the system undergoes a single transition into a high density

layered-disordered phase, where the system breaks up into two dimensional layers, but
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disordered within a layer. For k = 7, we find that as density is increased, the system

makes a transition into a nematic phase. Further increase of density results in a layered-

disordered phase. We also observe a layered-nematic phase between the nematic and

layered-disordered phases, which we argued is a finite-size effect. For k > 7, we expect

that the phase diagram to remain qualitatively similar and we have shown the onset of

nematic phase for k = 8, 9, 10. The generalization of the hard rods in three-dimensions

would be hard cuboids, presumably of the type m ×m ×mk. This system would exhibit a

rich phase diagram and obtaining it as a function of both m and k would be a challenging

task.

In Chapter 4, we find that this system of cubes goes through four distinct phases as the

density of cubes is increased: disordered, layered, sublattice ordered, and columnar or-

dered. By studying systems of different sizes, we argue that the disordered-layered phase

transition is continuous, while the layered-sublattice and sublattice-columnar transitions

are discontinuous. We construct a Landau theory written in terms of the layering order pa-

rameter L and columnar order parameter C which is able to describe the different phases

that are observed in the simulations and the order of the transitions. Additionally, our

results near the disordered-layered transition are consistent with the Landau theory pre-

diction of scaling behaviour in the O(3) universality class perturbed by cubic anisotropy.

The generalization of this model could be k × k × k cubes on a cubic lattice. Preliminary

simulations for 3 × 3 × 3 cubes suggest that the sublattice phase does not exist, but the

layered and columnar phases exist. One could also revisit the continuum problem by ex-

trapolating the lattice problem by taking k → ∞ to check what the high-density phase of

the continuum model could be.
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Synopsis

A phase transition or a transformation is a sudden change from one phase to another

when some thermodynamic parameter is varied. Typically, as temperature is increased,

systems undergo a phase transition from an energetically favoured low-temperature or-

dered state to an entropically favoured high temperature disordered state. This typically

involves a gain in entropy which competes with the rise in internal energy. This compe-

tition between the internal energy and entropy drives the phase transition. Examples of

such energy-driven transitions are ferromagnetic transitions in spin systems, liquid-gas

transition of water, etc. However there exists systems for which the ordered phase has

more entropy than the disordered phase with no appreciable difference in internal energy.

These transitions are primarily driven by entropy and thus called entropy driven transi-

tions. Example systems in which entropy-driven phase transitions occur include freezing

transition of hard spheres [1], phase separation in binary hard-core mixtures [2], gas ad-

sorption on metallic surfaces [3], transitions between nematic, smectic and cholesteric

phases in liquid crystals [4], nanotube gels [5], transitions to a nematic phase in aqueous

solutions of tobacco mosaic viruses [6], emergence of cholesteric phases in fd viruses [7],

isotropic-nematic transitions in rod-like boehmite particles [8], nematic phases in rodlike

silica particles with varying aspect ratio [9], emergence of biaxial nematic and smectic

phases in banana shaped liquid crystals under pressure [10] and emergence of geometri-

cal frustration in triangular cells under biaxial compression [11].

Minimal models for studying entropy driven phase transitions are models with only ex-
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cluded volume interactions. In such systems, all allowed configurations have equal en-

ergy, and therefore any phase transitions are driven purely by gain in entropy. Hard-core

lattice gas (HCLG) models are discrete versions of the hard-core exclusion models in the

continuum where the particles are placed on the underlying lattice sites. Well studied

models include two dimensional systems of dimers, trimers, squares, rods, tetrominos,

rectangles, discretized discs, Y-shaped molecules, mixtures of hard objects. The only ex-

actly solvable model is the hard hexagon model (nearest neighbour exclusion model on

the triangular lattice). The other models have been studied using approximate methods

such as density functional theories, high and low density expansions, mean field theories,

etc., or through extensive Monte Carlo simulations. Being able to predict the macroscopic

material behaviour from knowing its constituent building blocks would help to engineer

the synthesis of materials with prescribed properties. However, despite a long history of

study, a general understanding of the dependence of the nature of the emergent phases on

the shapes of the particles, as well as the order of appearance of the phases with increas-

ing density, is lacking. Thus, it is important to determine the detailed phase diagram of

differently shaped particles, as the first step to a more general understanding.

In three dimensions, the understanding is much less. Detailed phase diagrams are known

for very few systems. This is primarily due the fact that Monte Carlo simulations with

local moves are often inefficient in equilibrating the system, when either the excluded

volume per particle is large or when the density is close to the full packing.

In this thesis we study two problems on a cubic lattice: (1) hard rods of length k and (2)

hard cubes of size 2 × 2 × 2. We obtain the detailed phase diagram and characterize the

nature of the phase transitions for both these models. The results that we have obtained

are summarized below.

2



Hard rods of length k on a cubic lattice

Consider a cubic lattice of size L × L × L with periodic boundary conditions. The lattice

sites may be occupied by rods that occupy k consecutive lattices sites in any one of the

three mutually orthogonal directions. The rods interact only through excluded volume

interactions, i.e., a lattice site may be occupied by at most one rod. We associate a weight

eµ with each rod, where µ is the chemical potential rescaled by temperature. We will call

a rod oriented in the x-, y- and z-directions as x-mer, y-mer, and z-mer respectively. The

site of a rod with the smallest x-, y-, and z-coordinates will be called its head.

Early work based on virial expansion [12], high density expansions [13] and the Guggen-

heim approximation [14], predicted a transition from the low-density disordered phase

to a nematic-ordered phase, as the density is increased. Exact solution for the problem

for any k on the random layered tree like lattice shows the presence of a single isotropic-

nematic transition for k ≥ 4 when the coordination number is q = 6 [15]. It is however

clear that at densities near full packing, nematic order will not survive, as there are expo-

nentially many disordered configurations. But, the nature of the high-density disordered

phase is not well-understood [4, 16]. In two dimensions, it is known that the system of

rods for k ≥ 7 undergoes two transitions as density is increased: first from a isotropic

phase to a nematic phase and the second from the nematic phase to a high density disor-

dered phase [16]. For k < 7, there are no phase transitions.

We use grand canonical Monte Carlo simulations to determine the different phases in the

hard rod model as a function of the density, for different rod-lengths k. Conventional

algorithms with local evaporation and deposition moves fail to equilibrate the system

(within available computer time) at large densities because the system gets stuck in long-

lived metastable states. Instead, we implement a Monte Carlo algorithm with cluster

moves [17, 18] that has recently proved useful in equilibrating systems of hard particles

with large excluded volume interactions at densities close to one [17, 18] and even at full

packing [19].
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The main results in this thesis are:

• There are no phase transitions when k ≤ 4.

• For k = 5, 6, the system undergoes a single transition from a disordered phase to a

layered-disordered phase. In the layered-disordered phase, the fractional number of

rods of two orientations are roughly equal, whereas the number of rods in the third

orientation is suppressed.

• A nematic phase is observed for k ≥ 7.

• There exists four phases for k ≥ 7 as a function of density: disordered, nematic,

layered-nematic and layered-disordered.

• In the layered-nematic phase, each plane has two dimensional nematic order, but

there is no overall bulk nematic order.

• We argue that the layered-nematic phase is a finite-size artefact which is observed in

simulations and will be unstable in the thermodynamic limit. This can be explained

using a perturbative expansion about a pure bulk nematic phase at small defect

densities.

• The disordered to layered-disordered transition in rods of size k = 5, 6 is shown to

be first order.

• The critical values for the disordered-layered transition are: µc(5) ≈ 3.82 and

ρc(5) ≈ 0.874 and µc(6) ≈ 1.0 and ρc(6) ≈ 0.68.

• The disordered-nematic transition for k = 7 is expected to be very weakly first order

from symmetry considerations, but no signature of first-order nature was seen as it

requires simulations of large system sizes.

• The critical values for the disordered-nematic transition for k = 7 is µc ≈ −0.23,

corresponding to ρc ≈ 0.556.
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Hard 2 × 2 × 2 cubes on a cubic lattice

Consider a L × L × L cubic lattice with periodic boundary conditions and even L. The

lattice may be occupied by cubes of size 2 × 2 × 2 (i.e having side-length of 2 lattice

spacings). We associate a weight z = eµ with each cube, where z is the activity and µ is

the chemical potential. The cubes interact through only excluded volume interaction, i.e.

no two cubes can overlap in volume. For a cube, we identify the vertex with minimum

x-, y-, and z-coordinates as its head. The configuration of the system can thus be fully

specified by the spatial coordinates of the heads of all the cubes in the system.

We study the model using grand canonical Monte Carlo simulations by implementing a

generalization of the algorithm as described in Refs. [17, 18].

Earlier Monte Carlo studies of the discrete problem [20] found no phase transitions for

densities up to full packing. On the other hand, for cubes with sides of length two, the

approximate density functional theory predicts that there should be a transition from a dis-

ordered phase to a layered phase at low densities and from a layered phase to a columnar

phase at higher densities. When the length of a side is six, the theory predicts a transi-

tion from a disordered phase to a solid, and then to two types of columnar phases [21].

Simulations of a mixture of cubes of sizes two, and four or six, show a demixing tran-

sition [22] in contradiction to predictions from density functional theory [23]. However,

the prediction for a pure system of cubes have not, to our knowledge, been tested in large

scale simulations.

The main results in this thesis are:

• The system of cubes shows four distinct phases as the density of cubes is increased:

disordered, layered, sublattice ordered, and columnar ordered.

• Disordered Phase: All sublattices are equally occupied i.e., ρi ≈ ρ/8 for i =

1, · · · , 8. The sublattices are shown in Fig. 1.
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Figure 1: The lattice is divided into eight sublattices 0, 1, . . . , 7 depending on whether
the x-, y- and z- coordinates are even or odd. Labelling of sublattices corresponding to
yz-planes whose x-coordinate is (a) even, or (b) odd. (c) A 2 × 2 × 2 cube with all of its
vertices labelled with appropriate sublattices to show the relative positions of the planes
shown in (a) and (b).

disordered layered sublattice columnar

Figure 2: Numerically obtained phase diagram for 2 × 2 × 2 hard cubes. The red dot
represents a continuous transition and the dotted lines represent regions of coexistence.

• Layered Phase: The system spontaneously breaks up into parallel slabs of size 2 ×

L×L which are preferentially occupied by cubes. Four sublattices are preferentially

occupied and translation symmetry is thus broken along exactly one principal axis.

The layered phase is six-fold degenerate.

• Sublattice Phase: One sublattice is preferentially occupied, breaking translational

symmetry along all three principal directions. The sublattice phase is eight-fold

degenerate.

• Columnar Phase: Two sublattices are preferentially occupied and the system spon-

taneously breaks up into weakly interacting parallel columns of size 2×2×L which

are preferentially occupied by cubes, breaking translational symmetry along two

principal directions. The columnar phase is twelve-fold degenerate.

• The disordered-layered phase transition is continuous in nature and finite size scal-

ing is consistent with the universality class of the O(3) model with cubic anisotropy.

• Both the layered-sublattice and sublattice-columnar transitions are discontinuous.

A schematic of the phase diagram in the density ρ line is shown in Fig. 4.16.
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• A Landau theory written in terms of the layering order parameter and columnar

order parameter is constructed, which is able to describe the different phases that

are observed in the simulations and the order of the transitions.
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Chapter 1

Introduction

Matter exists in macroscopic states, called phases, which have qualitatively and quantita-

tively different mechanical and chemical properties. A phase transition or a transforma-

tion is a sudden change from one phase to another when some thermodynamic parameter

is varied. This manifests itself as singularities in the thermodynamic functions. These

singularities can occur only in an infinite system. Examples of phase transitions include

boiling of liquids, magnetic transitions in spin systems, structural transitions in crystals

etc.

Phase transitions can be classified into two types: discontinuous or first order transitions

and continuous transitions. In discontinuous transitions, the first derivative of free energy

with respect to some thermodynamic parameter has a discontinuity. In case of the liquid-

gas transition in three-dimensions, the internal energy, which is the first derivative of

free energy with temperature is discontinuous across the phase-boundary. The size of

the discontinuity is the latent heat. In continuous transitions, the first derivatives of free

energy are continuous, but the second or higher order derivatives of free energy diverge

at the critical point.

In these transitions, near the critical point, huge fluctuations in thermodynamic parameters

occur. The typical length scale of the fluctuations in space is called the correlation length
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ξ. In discontinuous transitions, ξ remains finite, whereas in continuous transitions, ξ

diverges. This divergence of ξ has huge implications in the study of phase transitions.

A quite elegant way of looking at phases of matter is to associate them as manifestations

of some broken symmetries. In this approach, a phase transition involves a breaking of

some symmetry of the Hamiltonian. A phase transition can be usually characterized by a

local order parameter m(x), which is not invariant under some symmetry group G of the

Hamiltonian. The expectation value of the order parameter is zero in the fully symmetric

phase i.e., 〈m(x)〉 = 0 and non-zero in the broken symmetric phase i.e., 〈m(x)〉 , 0. A

phase transition involves a spontaneous breaking of the symmetry group G of the Hamil-

tonian into N , which is a subgroup of G.

Ginzburg and Landau proposed a theory in which the free energy, F[m(x)] is a integral in

space over smooth polynomial functions of the order parameter m(x), whose coefficients

are analytic functions of temperature and other external fields [24].

F[m(x)] =

∫
ddx

[
a0(T )|∇m(x)|2 + a1(T )m(x) + a2(T )m(x)2 + a4(T )m(x)4 + · · ·

]
.

(1.1)

The functional F[m(x)] should be invariant under the operations of the symmetry group

G. The equilibrium states of the system are found by minimizing the free energy and the

equilibrium value for the order parameter is simply the value which minimizes the free

energy. This formulation of phase transitions was very elegant as it introduced ideas of

universality, in which the free energy can be written depending only on the symmetry of

the system regardless of other system-specific parameters and use of a single parameter

i.e., order parameter to characterize the system near the critical point.

The divergence of ξ and the singular nature of many thermodynamic quantities, mainly

second derivatives of free energy near the critical points are power law functions of tem-

perature and the exponents are called critical exponents. These exponents only depend

on the symmetry and dimensionality of the system under consideration, and not on the
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microscopic details of the system. Thus, near the critical point because of this universal

behaviour, any model however contrived in construction becomes real near the critical

point and can be used as analogues to study actual real-life systems.

It is also possible to have a line of critical points along which exponents vary continuously.

A realisation of this is the well-studied Ashkin-Teller model. The model consists of two

Ising spins S i andσi sitting on a site i on a bipartite lattice, interacting via this Hamiltonian

H ,

H = J1

∑
〈i, j〉

S iS j + J2

∑
〈i, j〉

σiσ j + µ
∑
〈i, j〉

S iS jσiσ j, (1.2)

where the 〈· · · 〉 implies summation over the nearest neighbours. If µ = 0, the system

behaves like two independent Ising systems with two different critical temperatures if

J1 , J2 and the model reduces to a 4-state Potts model if J1 = J2 = µ [25]. More details

about the Ashkin-Teller model can be found in Refs. [26, 27, 28]. Within the context

of study of hard-core lattice gas models, Ashkin-Teller behaviour is observed in many

models, of which a few examples are given in the sections below.

1.1 Entropy-driven phase transitions

The free energy F of a system is:

F = U − TS , (1.3)

where U is the internal energy of the system, S is the entropy and T is the temperature. In

the low temperature regime, the free energy is lowered by those states which have lower

internal energy, typically the ordered phases. Whereas, in the high temperature regime,

the free energy is lowered by increasing the entropy in which case, typically the disordered

phase is favoured. These transitions are primarily driven by temperature and are called

energy-driven phase transitions. Typical examples of such transitions are ferromagnetic
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transitions in spin systems, liquid-gas transition of water, etc.

However there exists systems for which the ordered phase has more entropy than the dis-

ordered phase with no appreciable difference in internal energy. These transitions are

primarily driven by entropy and thus called entropy-driven transitions. Example sys-

tems in which entropy-driven phase transitions occur include freezing transition of hard

spheres [1], phase separation in binary hard-core mixtures [2], phase transitions on ad-

sorbed surfaces [3], transitions between nematic, smectic and cholesteric phases in liquid

crystals [4], nanotube gels [5], transitions to a nematic phase in aqueous solutions of

tobacco mosaic viruses [6], emergence of cholesteric phases in fd viruses [7], isotropic-

nematic transitions in rod-like boehmite particles [8], nematic phases in rodlike silica

particles with varying aspect ratio [9], emergence of biaxial nematic and smectic phases

in banana shaped liquid crystals under pressure [10] and emergence of geometrical frus-

tration in triangular cells under biaxial compression [11].

1.1.1 Hard-Core models

The minimal models for studying entropy driven phase transitions are models with only

excluded volume interactions, in which the energy of overlap is set to infinity and thus

temperature plays no role as there is no relevant energy scale. Therefore, all phase transi-

tions are driven purely by gain in entropy.

The first demonstration of the entropy-driven transition in a model system was shown in

a system of long hard rods in three dimensional continuum by L Onsager in 1948 [29].

It undergoes a phase transition from a disordered isotropic phase to an orientationally

ordered nematic phase with increasing density. In this case, it was shown that loss of

orientational entropy in the nematic phase is more than compensated by the gain in the

translational entropy due to the alignment of the rods and the ordered state gains overall

entropy to become the most preferred state. The phases of this system of hard ellipsoidal
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(a) (b) (c)

Figure 1.1: Schematic diagram of ellipsoidal rods as a function of increasing density. (a)
Disordered phase where there is no translational and orientational order (b) Nematic phase
where there is orientational order, but no translational order (c) Smectic phase where there
is orientational and partial translational order. The density increases from left to right. The
translational invariance is broken parallel to the nematic director.

rods is shown in Fig. 1.1 as a function of increasing density, in which the system goes

from a low density disordered fluid phase, where there is no orientational or translational

order to an intermediate density nematic phase, which exhibits orientational ordering, but

no translational order [29] and a higher density smectic phase which exhibits orientational

order and partial breaking of translational invariance [30, 31].

Another earlier example of entropy-driven phase transition is a freezing transition in a

system of hard spheres in the three-dimensional continuum, which was theoretically pre-

dicted in 1950 [32]. This seemed fairly counter-intuitive as it was commonly thought

that a freezing transition would require an attractive potential and in this case, only hard-

core repulsion potential was enough to be able to form a solid phase. This was subse-

quently confirmed by numerical studies in which the system of hard spheres in the three-

dimensional continuum showed a first order freezing transition from a fluid phase to a

solid phase [33, 34].

These hard-core models are able to explain phases seen in physical systems with more

complicated interactions. The nematic transitions in liquid crystals can be analysed by

modelling them as hard rods in the continuum [4]. A freezing transition is seen in hard
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spheres of polymethyl methacrylate (PMMA) colloids suspended in poly-12-hydroxystearic

acid [1]. The adsorption of gas molecules on metallic surfaces can be mapped on hard-

core lattice gas models and these can be used to study the phase behaviour of monolayer

adsorption. Chlorine gas adsorbed on Ag(100) planes forms a c(2 × 2) structure at 650K

which can be mapped to a hard square model [35]. Disordered phases, c(2×2) and p(2×2)

phases can be seen on system of selenium adsorption on Ni(100) planes and it has been

found that these transitions are of Ashkin-Teller universality class [36]. Other systems

include adsorption of oxygen on Mo(110) [37] or Pd(100) [38] and order-disorder transi-

tions of bromide adsorption on Ag(100) surfaces [39]. These models can be mapped to

lattice models if the gas-gas interaction is negligible when compared to lowest mode of

the surface corrugation potential [3]. Crystal-crystal transition in Brownian particles can

be mapped to hard rectangle models [40, 41].

Various shapes of hard particles have been used as templates to study entropy-driven phase

transitions by use of numerical simulations and approximate methods. Isotropic-Nematic

phase transition has been studied in hard helices by Monte-Carlo simulations [42] and

pentagonal particle in two-dimensional continuum undergo a transition from a disordered

fluid phase to an intermediate rotator solid phase to a striped crystalline phase as a func-

tion of density [43]. Simulations of various particles like ellipsoids, truncated cylinders,

platelets etc. have been studied and their phase diagrams are described in Ref. [44]. Other

exotic shapes include banana-shaped particles [10], hard dumbbells [45, 46], bent-shaped

hard needles [47], hard oblate mesogens [48], non-convex platelets [49] and so on.

1.1.2 Hard-core lattice gas models

Hard-core lattice gas (HCLG) models are discrete versions of the hard-core exclusion

models in the continuum where the particles are placed on the underlying lattice sites.

These models have a rich history in the study of phase transitions and anisotropic parti-

cles of various shapes and sizes have been studied on different lattices. In addition to their
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interest of being the simplest models to show phase transitions, they are also of interest in

many other systems such as enumeration of directed animals in three dimensions [50, 51],

Yang-Lee singularities [52], frustrated quantum spin systems [53, 54], thermodynamics

and transport of linear adsorbates [55], jamming in granular media [56] etc. HCLG mod-

els also provide interesting examples of entropy-driven phase transitions, and like in the

continuum, have rich phase diagrams.

One of the earliest HCLG models was used to study melting in discretized lattice discs in

1958 [57]. The study of hard rods on lattices have had a lot of historical significance and

earlier work were concerned with calculating entropy in limiting cases of full-packing,

especially dimers. A dimer is a rod which occupies two consecutive lattice sites either in

the horizontal or vertical direction. In two dimensions, for dimers, it may be shown rigor-

ously that the system is disordered at all densities [58], while at full packing, there exists

an exact solution [59, 60] and the system is power-law correlated [61, 62]. One of the few

solved models is the hard hexagon gas on a triangular lattice which undergoes a continu-

ous transition from a disordered fluid phase to a solid phase [63]. Other rigorous results

are known for hard triangles at full packing [64], long rods of length k on a square lat-

tice [65] and hard plates in three dimensions of size 1×kα×k, where α ∈ [0, 1] [66]. Other

well studied models include trimers [67], squares [68, 69, 70, 71, 72, 73], rods [16, 74, 18],

pentamers [75], tetrominos [76], rectangles [77, 78, 79, 72, 80], discretized discs [81, 82],

Y-shaped molecules [83], mixtures [19, 84, 85, 86] of hard objects.

In three dimensions, the results are much fewer and the complete phase diagram is not

known for any system. Monte Carlo studies of discretized lattice spheres on a cubic lattice

were carried out for different radii and the phase diagrams were obtained for different

sizes of the spheres [20]. Simulations of a mixture of cubes of sizes two, and four or six,

show a demixing transition [22] in contradiction to predictions from density functional

theory [23].

Despite the long history of study of such systems, there is no general framework which
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relates the dependence of shape of the particles to its emergent phases. Being able to

predict the macroscopic material behaviour from knowing its constituent building blocks

would help to engineer the synthesis of materials with prescribed properties [87, 88]. This

leaves us with approximate theories and numerical simulations. It is generally hoped that

numerical simulations would help to build the phenomenology of these systems. But,

Monte Carlo simulations with local moves are often inefficient in equilibrating the system

when the excluded volume is large or packing fraction is high. This puts a restriction on

the kind of systems one can study. So, the development of efficient algorithms which can

simulate particles at high densities or high exclusion volumes in higher dimensions serves

as the prime motivation of this thesis.

In this thesis, we analyse two HCLG models on lattices. Secs 1.2 – 1.3 analyse the hard

rods of length k in two and three dimensional lattices and also address the questions raised.

In Sec. 1.4, we study about hard cubes in a cubic lattice.

1.2 Hard rods in two dimensions

In two dimensional continuum, a system of hard rods of infinitesimal thickness with re-

stricted orientations in two directions undergoes a continuous transition from a disordered

phase to a nematic phase in the Ising universality class as a function of density [89]. If

one were to relax the restriction on the orientations and allow the rods to freely rotate

in the plane, there is no nematic phase as the rotational symmetry cannot be broken in

two dimensions [90], but the system undergoes a Kosterlitz-Thouless type transition into

a high density phase with power law correlations [91, 92, 93, 94].

On lattices, we take hard rods of length k, which occupies k adjacent lattice sites, either

in the horizontal or vertical directions. These rods interact purely via hard-core repulsion

or in other words, each lattice site is either empty or occupied by a single rod. For dimers

(k = 2), the system has no transition for any non-zero vacancy density [58, 95, 96].
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A dimer model with additional nearest neighbour exclusion undergoes a discontinuous

transition [97] and with other attractive interactions may also lead ordered phases [98, 99,

100]. The fully packed limit admits an analytic solution using Pfaffians [59, 60] and the

correlations between two vacancies have a power lay decay on square lattice [101]. A

height representation exists in the fully-packed limit [102] that breaks down for a non-

zero vacancy density. A vector-field height representation is available for a fully-packed

system of rods of length k [67, 103]. The fully-packed limit for rods of k ≥ 2 was argued

to be disordered in Refs. [16, 4]. For some time, it was unclear whether a pure lattice

model can exhibit a nematic phase even for a large k [4].

Recently it was rigorously proven that a nematic phase exists for k � 1 [65]. This

approach relies on coarse-graining the lattice on the length-scale comparable to the rod

length k. The lattice is divided into square plaquettes of length ` ∼ k/2 to ensure that

rods of the same orientations have their centres fully inside this square plaquette. The

plaquettes which enclose the horizontal rods are given value +1 and vertical rods −1.

The plaquettes that enclose no rods (exceedingly rare) are given value 0. Therefore, the

problem now reduces to that a three-state spin system with short-ranged interaction and

spin-blocks of horizontal rods (those with values +1), that have a repulsive interaction

with those of spin-blocks of vertical rods (those with values -1). Typical spin configura-

tions involve large clusters of +1(−1) typically separated by a boundary of 0s or those of

opposite spins. These contours are studied by Pirogov-Sinai theory (details can be found

in Ref. [104]). With this, an orientationally ordered state that does not break translational

symmetry is most preferred at intermediate densities has been be shown in Ref. [65].

The isotropic-nematic transition can be studied on a Bethe-like lattice. In a traditional

Bethe lattice of coordination number q ≥ 6, nematic order is destroyed by interchange

of the bonds with respect to a tree-node as it is similar to interchange of the rod-label,

which is an invariant operation [15]. So, a new lattice is constructed in Ref. [15], called

random locally treelike layered (RLTL) lattice, in which exact equations for entropy can
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be derived . A nematic phase is present for k ≥ 4 in a RLTL of q = 4.

The exact entropy S(ηx, ηy) of two types of rods, where ηx is the number density of rods

of type x of length k and ηy is the number density of rods of type y of length k on a RLTL

lattice for q = 4 case [15] is:

S(ηx, ηy) = [1 − (k − 1)ηx] ln [1 − (k − 1)ηx] + [1 − (k − 1)ηy] ln [1 − (k − 1)ηy]

−(1 − kη) ln (1 − kη) − ηx ln ηx − ηy ln ηy, (1.4)

where η = ηx +ηy. To study the isotropic-nematic transition at constant η, define the order

parameter ε to be

ε =
ηx − ηy

η
, (1.5)

and for small ε-expansion, we obtain

S(ε, η) = A(η) + B(η)ε2 + C(η)ε4 + · · · , (1.6)

where C(η) < 0 to ensure stability of the entropy functional and it can be shown that B(η)

changes sign only for k ≥ 4 and ηc ∼ k−2 for large k.

In two-dimensional lattices, Monte Carlo simulations show that the system is disordered

at all densities for k ≤ 6 [16] and for k ≥ 7, the system undergoes a transition from a

low-density disordered phase to an intermediate density nematic phase [16, 18, 105]. This

transition belongs to the Ising and 3-state Potts universality classes on square [74, 106, 89]

and triangular lattices [106, 107] respectively.

As argued previously, the high-density phase is unlikely to be nematic due to the fact that

the nematic phase has a lower entropy than the disordered phase. A lower bound on the

entropy can be found by arguing that the fully packed phase is populated with plaquettes

of size k × k which can be filled completely with k horizontal or vertical rods. These

plaquettes are independent. So, the number of configurations ΩFP of the plaquettes is
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given by:

ΩFP(L, k) ≥ 2L2/k2
, (1.7)

and the entropy per site S FP is:

S FP ≥
1
L2 ln ΩFP(L, k) =

1
k2 ln 2. (1.8)

A better estimate of entropy for the fully packed phase can be arrived by dividing the L×L

into strips of size L × k [16]. Let FL be the number of ways to fill up strip with rods of

length k. A recursion relation for FL can be written as:

FL = FL−1 + FL−k. (1.9)

For FL ≈ λ
L for large L, we obtain

λk − λk−1 − 1 = 0. (1.10)

Now, we want to know the asymptotic form of λ as k → ∞. We define f (λ) = λk−λk−1−1.

• If λ < 1 and k � 1 ⇒ λk → 0 and f (λ) = −1,

• If λ ≥ 1 and k � 1 ⇒ λk ≈ λk−1 ⇒ λ = 1 and f (λ) = −1.

This implies λ = λ(k) and λ→ 1 as k → ∞.

Ansatz: λ(k) = exp
(
c k−α

)
.

f (λ) = exp (c k1−α) − exp (c k1−α) exp (c k−α) − 1. (1.11)
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It is obvious from the above equation that α = 1 and c = c(k). Therefore,

f (λ) = exp (c) − exp (c) exp (−ck−1) − 1 = 0. (1.12)

Rearranging the terms and taking log on both sides to yield,

c(k) = ln k − ln c(k). (1.13)

This is a transcendental equation. But from the previous ansatz, we demand that c(k)/k →

0 as k → ∞. This means that ln c(k) < c(k) in this limit and c(k) = ln k [1 + ε1(k)] where

ε1(k) is a small parameter. Putting it in Eq. (1.13) and we obtain the following:

ε1 ln k = − ln (ln k) − ε1,

⇒ ε1 = −
ln (ln k)

ln k
.

Evaluating up to second order we obtain,

c(k) = ln k
[
1 −

ln (ln k)
ln k

+
ln (ln k)
(ln k)2 + · · ·

]
. (1.14)

Therefore,

λ = 1 +
1
k

ln
(

k
ln k

)
+

ln (ln k)
k ln k

+ · · · . (1.15)

Therefore, the total number of ways to fill up the entire lattice is FL/k
L . The entropy per

site of this fully packed state, for k � 1 is

S D(ρ = 1) =
1
k

ln λ =
1
k2 ln k. (1.16)

For densities away from the packed state, the state is obtained by evaporating a fraction

of the rods from the fully packed state. Let ε be the fraction of rods evaporated and

assuming that the entropy arising from the delocalised vacancies contribute to lower order
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corrections, the entropy of a high density state is

S D(ρ = 1 − ε) ≈ S D(ρ = 1) +
1
k

[−ε ln ε − (1 − ε) ln(1 − ε)]. (1.17)

An estimate of the entropy of the nematic phase in a square lattice of size L × L can also

be made [16]. In this case, it was assumed the system was comprised of only one type

of rods (say in the horizontal direction) and vacancies. The act of filling up each row is

independent of other rows, so the problem is effectively one dimensional. A particular

row is comprised of ρL/k rods and L(1 − ρ) vacancies where ρ is the packing fraction.

Therefore, the number of configurations of the rods and vacancies in a row is given by:

ΩN(ρ) =
[L(1 − ρ) +

ρL
k ]!

[ρL
k ]![L(1 − ρ)]!

, (1.18)

and for the entire system, the number of configurations would be ΩL
N . From this, it is

easily seen that entropy per site S N in the thermodynamic limit L → ∞ in this reference

nematic state is given by:

S N(ρ) =
1
L

ln ΩN(ρ) =

(
1 − ρ +

ρ

k

)
ln

(
1 − ρ +

ρ

k

)
− (1 − ρ) ln(1 − ρ) −

ρ

k
ln

(
ρ

k

)
. (1.19)

For high densities, ρ = 1 − ε where ε is very small. Therefore, the entropy is

S N(ε) = ε ln
(

1
kε

)
+ ε + O(ε2). (1.20)

From Fig. 1.2, at high densities, the nematic phase has lower entropy than the disordered

phase and both the curves meet at ε ∼ A/k2 [16].

The simple evaporation-deposition algorithm used in Ref. [16] fails to equilibrate the

system at densities beyond ρ ≤ 0.85 due to the presence of long-lived metastable states.

In addition to single update move, diffusion and rotational moves were also added to

decrease the equilibration times. In a diffusion move, a horizontal or vertical rod is shifted
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Figure 1.2: Entropy as a function of ε from Eq. (1.20) and Eq. (1.17) for k = 8.

one lattice site in a random direction, subject to the hard-core constraint. In a rotational

move, a randomly chosen horizontal (vertical) rod is flipped to a vertical (horizontal)

direction, also subject to the hard-core constraint. These moves helped to show that the

nematic order parameter decreases with increasing density beyond 0.86 [108]. These

optimizations were still not enough to show the existence of the high density disordered

phase as it could not destabilize the metastable phases.

Newer results using Monte Carlo simulations with an improved cluster algorithm [17] in

systems of hard rods shows a second transition from a intermediate nematic phase to a

high-density disordered phase for k ≥ 7 on two-dimensional lattices [18]. The universality

class of the second transition has been difficult to resolve due to the presence of large

correlations in square lattices, though it has been claimed that crossover to Ising exponents

can happen for larger system sizes [18]. Addition of repulsive interactions to hard rods

on a RLTL lattice also shows the existence of a high-density re-entrant disordered phase

for k ≥ 4 [105].

The generalization of rods on lattice are hard rectangles of size m×mk. The phase diagram

is difficult to study for m > 1 for arbitrary k due to the inefficiency of Monte Carlo
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algorithms at high densities and large exclusion volumes. Putting k = 1 gives rise to the

hard square model. The m = 2 hard square model has been extensively simulated and

found to undergo a continuous transition from a disordered phase to a columnar phase

under the Ashkin-Teller universality class [68, 69, 70, 71, 72, 73, 109] and squares of m =

3 undergo a first-order transition from a disordered phase to a columnar phase [81, 109].

With an efficient Monte Carlo algorithm, it has been possible to obtain the phase diagram

of hard rectangles for m = 2, 3 [77]. For m = 2 and k = 2, 3, the system undergoes a

continuous transition from a disordered phase to a solid phase within the Ashkin-Teller

universality class. For k = 4, 5, 6, the system undergoes two continuous transition from a

disordered to a columnar phase to a solid phase. Both transitions belong to Ashkin-Teller

universality class. For k ≥ 7, there are four phases: disordered, nematic, columnar and

solid phase. The disordered-nematic transition is continuous, but the universality class

in unclear [77]. The nematic-columnar transition is continuous and falls under the Ising

universality class.

For m = 3 and for 2 ≤ k ≤ 6, the system undergoes two discontinuous transitions from

a disordered phase to a columnar phase and from a columnar phase to a solid phase as

a function of density. Nematic order is present for k ≥ 7 and there is a discontinuous

transition from a disordered phase to a nematic phase for m = 3. The nematic transition

occurs at density ρc ∼ 4.80k−1 for large k, independent of m [79]. Studies have also been

conducted where k is not an integer [78].

1.3 Hard rods in three dimensions

A system of long hard rods in three dimensional continuum is known to undergo a phase

transition from a disordered isotropic phase to an orientationally ordered nematic phase

with increasing density, was shown by L Onsager [29]. At even higher densities, a system

of spherocylinders will show a smectic/columnar phases with partial translational order
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along with orientational order [30, 31] and solid-like phases [110].

The Onsager approach relies on the fact that free energy of a system, Ftot of spherocylin-

ders with length l and diameter d can be split like

Ftot = Fideal + Fexc, (1.21)

where Fideal is the ideal gas component and Fexc is the excess free energy due to the

exclusion effects, which is treated by virial expansions. The simplicity of this approach is

that, under the limit l/d → ∞, only the second virial coefficient B2 contributes and other

coefficients become zero and the free energy functional can be written exactly [29].

Ftot = ln η +

∫
dΩ f (Ω) ln f (Ω) + ηl2d

∫
dΩ1

∫
dΩ2 f (Ω1) f (Ω2)| sin γ|, (1.22)

where η = N/V is the concentration, f (Ω) is the orientational distribution function and

γ is the angle subtended by two intersecting spherocylinders. The minimization of the

free energy functional with respect to the orientational distribution function cannot be

analytically solved. The first term in the integral of Eq. (1.22) represents the entropy of

demixing or orientational entropy component, which comes from the ideal gas component.

The second term in the integral represents the exclusion effects.

Onsager used a counter-intuitive ansatz f (θ), where θ is the azimuthal angle in spherical

coordinates.

f (θ, α) =
α cosh (α cos θ)

4π sinhα
, (1.23)

and numerically minimized Eq. (1.22) with respect to α [111]. Other ansatz for f (Ω) have

been used to obtain essentially the same results. An overview on different methods used

to minimize Eq. (1.22) can be found in Ref. [111]

The three-dimensional Zwanzig gas in the continuum contains long rods in the form of

cuboids of dimensions l × d × d, which can orient itself in the three mutually orthogonal
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directions. In a system of N rods which can point in either in the x-, y- or z- in a region of

volume in a three-dimensional space V . The configuration integral QN is given by:

QN =
1

N!
1

3N

3∑
u=1

∫
d3R exp [−βU(R)], (1.24)

where U(R) is the potential between the rods. The excess free-energy can be written as:

exp [−βΦN(u)] =
1

VN

∫
d3R exp [−βU(R)], (1.25)

where ΦN(u) depends upon the number of rods in each of the orientations where Ni is the

number of rods in the ith direction, such that ΦN(u) = ΦN(N1,N2,N3) with a combinatorial

factor
N!

N1! N2! N3!
. Therefore, we obtain

QN =
VN

3N

N∑
N1,N2,N3=0

1
N1! N2! N3!

exp [−βΦN(N1,N2,N3)] δN1+N2+N3,N . (1.26)

Under the thermodynamic limit, the summation in Eq. (1.26) can be replaced by the max-

imum summand, called Φmax
N . We define Ni = xiN and N/V = η. Therefore, the free

energy F (η, xi) can be written down as [12]

F (η, xi) = ln η +

3∑
i=1

xi ln xi +
βΦmax

N

N
, (1.27)

and the excess free energy is given by:

−
βΦmax

N

N
=

∞∑
m,n,p=1

B(m, n, p) Fmnp(x1, x2, x3) ηm+n+p−1, (1.28)

where Fmnp(x1, x2, x3) = xm
1 xn

2xp
3 . The integrals can be decomposed into 3 directions and
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can be solved separately. As an example, for parallel rods

B(2, 0, 0) =
1

2!0!0!

∫
dr12 f12,

= −4ld2, (1.29)

and for perpendicular rods

B(1, 1, 0) = −2(l + d)2d. (1.30)

Taking the limit l→ ∞ and d → 0 such that l2d is finite, we obtain B(1, 1, 0) = −2l2d[1 +

O(d/l)] and B(2, 0, 0) = 0. The above limit ensures that only planar graphs contribute as it

can be seen as a set of intersecting rods and two intersecting rods always lie in a plane and

B(m, n, 0) = B(n,m, 0) = B(m, 0, n) = B(n, 0,m) = B(0, n,m) = B(0,m, n) and Eq. (1.28)

can be simplified by settting x1 = x2 = x and x3 = 1−2x to estimate the isotropic-nematic

transition:

−
βΦmax

N

N
=

∑
m,n

B(m, n, 0)θm+n−1Fmn(x), (1.31)

where Fmn(x) = xm+n + xm(1 − 2x)n + xn(1 − 2x)m and Eq. (1.27) simplifies as:

F (η, x) = ln η + 2x ln x + (1 − 2x) ln(1 − 2x) + 2l2d η [x2 + 2x(1 − 2x)]. (1.32)

Setting x = 1/3 − ε and l = k and d = 1, Eq. (1.32) simplifies to

F (η, x) = (9 − 6k2 η)ε2 − 9ε3 +
81
2
ε4 + O(ε5). (1.33)

The isotropic-nematic transition is a first order transition and the critical density ρc =

kηc ∼ k−1, which has been verified in cubic lattices [112].

The corresponding problem on lattices where the orientation of rods are restricted to the

lattice directions has also been studied in parallel. Consider a system of monodispersed

rods of length k that occupy k consecutive lattice sites along any one of the lattice direc-

tions. Monodispersed refers to the fact that all the rods have the same length k. Two rods
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cannot overlap. Early work based on virial expansion [12], high density expansions [13]

and the Guggenheim approximation [14], predicted a transition from the low-density dis-

ordered phase to a nematic-ordered phase, as the density is increased.

In three dimensions, dimer models at full packing on bipartite lattices are known to show

a Coulomb phase, with algebraic decay of orientational correlations [62], while for non-

bipartite lattices, the correlations decay faster, and in some exactly solved cases, correla-

tions are strictly zero beyond a finite range [113]. Not much is known for larger values

of k. It would be expected that, like in the continuum, there will be an isotropic-nematic

transition as the density is increased above zero. Theories based on Bethe approxima-

tion [14], density functional theory [114], and exact solutions on tree-like lattices [15]

predict a first order isotropic-nematic transition for k ≥ 4. However, the topological struc-

ture of Bethe or tree-like lattices does not allow for the possibility of having flippable

squares of size k × k. This is unlike the case of hypercubic lattices where the possibility

of flippable squares of size k× k leads to a finite entropy per rod at full packing, and leads

to a high-density disordered phase, which does not occur on tree-like lattices. Also, the

minimum value of k for such a transition to occur in three dimensions is not known.

Questions addressed

Unlike in two dimensions, the phase diagram of monodispersed rods on a three dimen-

sional cubic lattice is not known. It is not clear what the high density phase will be. Also,

are there phases different from a nematic phases. The questions addressed in the thesis

are:

What is the minimum value of k for which nematic order is present in three-dimensions?

In two-dimensions, it was found that nematic order is present for k ≥ 7. Is it the same

in three-dimensions or different. Are there phase transitions possible for k less than this

minimum value?
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What is the high density phase for hard rods in three-dimensions?

Would the high density phase be qualitatively similar to the low density phase, as in two-

dimensions or would it be different.

Is it possible to obtain the entire phase diagram of hard rods as a function of k and ρ

where k is the length of the rod and ρ is the density? What is the nature of the phase

transitions?

1.4 Hard cubes in three dimensions

Of the non-spherical shapes, the simplest is a cube, which has the additional feature that

cubes can be packed to fill all space. Studies in complicated shapes such as rhombo-

hedra [115] or in general three dimensional regular polyhedra or corner-rounded poly-

hedra [116, 117, 118] have been studied as more realistic models for experimental self-

assembling systems [119, 120, 121], applications to drug delivery where shape of the

carrier may decide its effectiveness [122], biological material like immunoglobulin [123],

molecular logic gates [124, 125, 126], etc.

Theoretical studies in the continuum have focused on two cases: unoriented cubes whose

faces are free to orient in any direction, and parallel hard cubes whose faces are parallel to

the coordinate axes. The system of unoriented cubes was shown, using Monte Carlo and

event driven molecular dynamics simulations, to undergo a first order freezing transition

from a fluid to a solid phase at a critical packing fraction η ≈ 0.51 [127]. Other simu-

lations, however, found a cubatic phase that is sandwiched between the fluid and solid

phases for packing fractions in the range 0.52 < η < 0.57 [87]. It has been claimed in

Ref. [127] that the cubatic phase is a finite-size artefact. The solid phase in this case is

stabilized by an anomalously large concentration of vacancies [127].

In the case of parallel hard cubes, early work focused on finding the equation of state using
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high-density expansions [128], and low-density virial expansion up to the seventh virial

coefficient [129, 130]. Monte Carlo simulations show that the system of parallel hard

cubes undergoes a continuous freezing transition from a disordered fluid phase to a solid

phase at density ρ ≈ 0.48 [131, 132]. The data near the critical point are consistent with

the three-dimensional Heisenberg universality class [132]. These results are consistent

with theoretical predictions using density functional theory [133]. Within this theory, the

columnar phase is found to be not a stable phase at high densities [132, 133]. Thus, it

would appear that parallel hard cubes in the continuum show only one phase transition

and the high density phase is crystalline.

Earlier Monte Carlo studies of the discrete problem [20] found no phase transitions for

densities up to full packing (in Ref. [20], the problem of cubes correspond to σ = 2).

On the other hand, for cubes with sides of length two, the approximate density functional

theory predicts that there should be a transition from a disordered phase to a layered phase

at low densities and from a layered phase to a columnar phase at higher densities. When

the length of a side is six, the theory predicts a transition from a disordered phase to a

solid, and then to two types of columnar phases [21]. Simulations of a mixture of cubes of

sizes two, and four or six, show a demixing transition [22] in contradiction to predictions

from density functional theory [23]. However, the prediction for a pure system of cubes

have not, to our knowledge, been tested in large scale simulations.

Questions Addressed

Lattice density functional theory predicts that hard cubes of edge-length two has three

phases-disordered, layered and columnar [21], whereas Monte Carlo simulations of hard

cubes of edge-length two in a cubic lattice, albeit for small system sizes find no signature

of any phase transition [20].
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What is the phase diagram of 2 × 2 × 2 cubes on a cubic lattice? What are the nature of

the phase transitions.

1.5 Overview of the thesis

The remainder of the thesis is organized as follows

In Chapter 2, a Monte Carlo algorithm with cluster moves is described and the imple-

mentation on a reference system of hard rods of length k in a square lattice of size L × L

is discussed. Additional moves have been added to reduce the equilibration times at high

densities are described. This algorithm does not suffer from jamming, like the single rod

update algorithms and densities close to full packing can be probed. The generalization

of this algorithm to three-dimensional systems is also discussed.

In Chapter 3, hard rods of size k is studied on a cubic lattice. For rods of length k =

5, 6, we find a transition from a low density disordered phase to a layered-disordered

phase in which the fractional number of one orientation becomes very small, and system

develops a layer-like structure, where each layer is a plane with most of the rods being

of two orientations lying within the plane, and very weak correlations between different

layers. When k ≥ 7, at intermediate densities, we numerically observe two other phases:

a nematic phase, and a new phase that we call the layered-nematic phase. In the layered-

nematic phase, each plane has two dimensional nematic order, but there is no overall bulk

nematic order. We also show that the layered-nematic phase is an finite size effect and

give an estimate for the cross-over length scale to destabilize the layered-nematic phase.

At even higher densities, the nematic order within a layer is also lost.

In Chapter 4, a system of 2×2×2 hard cubes is studied on the cubic lattice. We find that

this system of cubes goes through four distinct phases as the density of cubes is increased:

disordered, layered, sublattice ordered, and columnar ordered. The disordered-layered

phase transition is continuous, while the layered-sublattice and sublattice-columnar tran-
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sitions are discontinuous. A Landau theory is written in terms of the layering order param-

eter L and columnar order parameter C which is able to describe the different phases that

are observed in the simulations and the order of the transitions. Additionally, our results

near the disordered-layered transition are consistent with the Landau theory prediction of

scaling behaviour in the O(3) universality class perturbed by cubic anisotropy.

In Chapter 5, we summarize our results and list some interesting open problems.
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Chapter 2

Computational Methods

2.1 Introduction

In this chapter, we discuss a Monte Carlo algorithm with cluster moves which we have

used in this thesis. The necessity of this algorithm is due to the fact that conventional

Monte Carlo algorithm involving only evaporation and deposition of single particles have

large relaxation times at high densities. In Sec. 2.2, we describe a system of hard rods in

a square lattice. In Sec. 2.3, we discuss the need for a cluster algorithm. In Sec. 2.4, we

describe the implementation of the algorithm for a system of hard rods in a square lattice.

We extend this algorithm for hard rods in three-dimensions in Sec. 2.5 and hard cubes in

three dimensions in Sec. 2.6

2.2 Model

In this section, we describe a monodispersed system of hard rods of length k in a square

lattice of size L × L. The rods primarily interact only via hard core exclusion and they

are not allowed to intersect. Each rod occupies k consecutive sites either in the horizontal
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Figure 2.1: A snapshot of hard rods of length k in a square lattice.

or vertical direction, as shown in Fig. 2.1. We associate a weight z = eµ with each rod,

where z is the fugacity and µ is the chemical potential rescaled by temperature. The grand

canonical partition function L(z) is given by:

L(z) =
∑
nh,nv

C(nh, nv) znh+nv , (2.1)

where nh and nv are the number of the horizontal and vertical rods respectively and

C(nh, nv) is the number of configurations for nh horizontal rods and nv vertical rods. The

horizontal rods are called x-mers and vertical ones are called y-mers. Earlier work done in

the system of hard rods in two dimensions used a Monte Carlo algorithm involving only

evaporation and deposition of single rods and found that the nematic phase exists for rods

of length k ≥ 7 [16]. For k = 7, this algorithm is able to equilibrate the system only when

density was less than 0.85. At these densities, the phase is nematic.

2.3 Need for a cluster algorithm

The failure of algorithms with single-rod moves at high densities necessitates us to look

for other approaches for simulating hard core lattice gas systems. The natural generaliza-
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tion are cluster algorithms, which might solve the equilibration problem at high densities.

Cluster algorithms have been used in spin systems for a long time, like the Swendsen-

Wang algorithm for Ising spin systems [134] which uses the Fortuin-Kastelyn represen-

tation to map the Ising model to a random cluster model [135]. In this algorithm, a bond

is formed between nearest neighbour spins that have the same sign with a probability

p = 1 − exp (−2βJ) where J is the coupling constant. This assignment is used to identify

spins that are connected by bonds as clusters. Within a cluster, the spins are flipped with

probability 1/2. This happens for all the clusters and bond assignment starts again. The

algorithm works because it is rejection-free as each cluster can be flipped independent of

each other. This reduces the critical slowing down at the critical point that local update

algorithm suffers from. A single cluster variant of the Swendsen-Wang algorithm, called

the Wolff cluster algorithm was developed, which has a lower dynamical exponent than

the former [136]. These have been generalized to other spin systems also.

In case of systems of hard particles, a cluster algorithm, called pivot cluster algorithm was

developed for a hard sphere system in the continuum, which can be implemented in any

dimension by C Dress and W Krauth [137]. In this, an arbitrary configuration T is rotated

by π around an arbitrary point p, called a pivot which leads to a transformed configuration

T̄ . Both T and T̄ are superimposed to identify the clusters of overlapping spheres. The

particles in each cluster is interchanged, independent of other clusters. The algorithm

satisfies detailed balance trivially, as the probability of choosing a new configuration is

proportional to its Boltzmann weight, and is independent of the current configuration.

In case of hard core lattice gas models, a cluster algorithm called a pocket algorithm was

developed for a system of hard dimers on a square lattice [138] which is equivalent to the

above mentioned pivot cluster algorithm. In this, for a given configuration of dimers and

vacancies, a random symmetry axis is chosen and a dimer is reflected about the axis. If it

overlaps with other dimers, they are also reflected and the move continues until there are

no remaining overlapping dimers. This method is fairly fast and has minimal overhead,
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but extension to other rods with higher lengths has proven to be difficult.

2.4 Description of the algorithm

We describe below a grand canonical Monte Carlo algorithm with cluster moves [17, 18,

19, 81] that help in equilibrating systems of hard particles with large excluded volume

at densities close to full packing [17, 18] or at full packing [19]. A row is chosen at

random and all the x-mers in that row are removed. The row consists of empty intervals,

separated from one another by untouched y-mers. The row is now re-occupied by x-mers

with the correct equilibrium probabilities. The calculation of these probabilities reduces

to a one dimensional problem which may be solved exactly, and is described below. The

evaporation and deposition move satisfies detailed balance as the transition rates depend

only on the equilibrium probabilities of the new configuration.

The relevant probabilities are calculated as follows. Let Ωo(z; `) be the grand partition

function for an open chain of length `. It follows a simple recursion

Ωo(z; `) = Ωo(z; ` − 1)︸        ︷︷        ︸
1st site is unoccupied

+ zΩo(z; ` − k)︸         ︷︷         ︸
1st site is occupied by head of k-mer

, (2.2)

subject to initial conditions Ωo(z; `) = 1 for ` = 0 · · · k − 1.

Eq. (2.2) is a linear homogeneous recursion relation. So, the solutions will be of the form

Ωo(z; `) = λ`. Substituting this in Eq. (2.2) would yield

λk − λk−1 − z = 0, (2.3)

which is called the characteristic equation. The roots {λi} can be obtained numerically

and the most general form for Ωo(z; `) is Ωo(z; `) =

k∑
i=1

aiλ
`
i .
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To solve for {ai}, we set up the equations from the initial conditions



1 1 · · · 1

λ1 λ2 · · · λk

...
. . .

. . .
...

λk−1
1 λk−1

2 · · · λk−1
k

︸                        ︷︷                        ︸
Vandermonde Matrix

×



a1

a2

...

ak


=



1

1
...

1


. (2.4)

We then obtain an =

k∏
m=1
m,n

1
(λn − λm)

.

The probability p` of the first site of an open chain of size ` to be occupied by a x-mer is:

p` = z
Ωo(z; ` − k)

Ωo(z; `)
. (2.5)

If the occupation is successful, we repeat the same with the interval length reduced to `−k

and if it is not successful, it is repeated with interval length ` − 1.

For periodic boundary conditions, the partition function Ωp(z; `) of a periodic ring of size

of ` is given by:

Ωp(z; `) = Ωo(z; ` − 1) + kz Ωo(z; ` − k). (2.6)

This recursion relation may be explained as follows. Choose a first site. This site may

either be empty (first term in Eq. (2.6)) or occupied by any monomer of a rod of length k

(second term in Eq. (2.6)). The factor k in the second term in Eq. (2.6) is due to the fact

that the k-mer can be placed in k different ways. The probability of an empty periodic

ring of size L is

pL = kz
Ωo(z; ` − k)

Ωp(z; `)
. (2.7)

The probabilities {p`} for ` = 0, · · · , L−1 can be stored to reduce computational overhead.

Each row can be independently updated and therefore the algorithm is easily parallelized.

After all the rows are updated, the same is done for columns.
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(a) (b)

Figure 2.2: A schematic diagram illustrating the flip move in the Monte Carlo algorithm.
If there is a k × k square, that is fully covered by k parallel k-mers as shown in (a), then
the orientations of the k-mers within the square are flipped to the configuration shown in
(b).

One of the ways to reduce the equilibration times at higher densities is to add additional

local moves, which we call flip moves. If there is a k × k square, that is fully covered by

k parallel k-mers, then we can flip the orientation of k-mers, within this square, without

affecting any other rods, as shown in the schematic diagram in Fig. 2.2. Clearly, the flip

move does not violate the hard-core constraint and satisfies detailed balance. A single

Monte Carlo move involves 2L rows and column updates and L2 flips for small system

sizes or L2/k2 flips for a larger system size.

To get an estimate of the efficiency of the flip move, we plot the temporal evolution of

the packing fraction ρ for high density in Fig. 2.3. Clearly, the addition of the flip move

reduces the equilibration time by almost two orders of magnitude in the high density

regime.

2.5 Extension to hard rods in three dimensions

Consider a cubic lattice of size L × L × L with periodic boundary conditions. The lattice

sites may be occupied by rods that occupy k consecutive lattices sites in any one of the

three mutually orthogonal directions. We will call a rod oriented in the x-, y- and z-

directions as x-mer, y-mer, and z-mer respectively. The site of a rod with the smallest x-,

y-, and z-coordinates will be called its head.
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Figure 2.3: Temporal evolution of the packing fraction ρ for a hard rod system in a square
lattice of size L = 336 with µ = 6.5 and ρ ≈ 0.94. The addition of flip move reduces the
equilibration time by almost two orders of magnitude.

The Monte Carlo algorithm that we use is the following: remove all the x-mers, leaving all

y-mers and z-mers undisturbed. The empty intervals in each row in the x-direction, sepa-

rated from each other by y-mers or z-mers, is now re-occupied by x-mers with the correct

equilibrium probabilities. The calculation of these probabilities are given in Sec. 2.4. Fol-

lowing evaporation and deposition of x-mers, we repeat the set of steps with y-mers, and

then with z-mers.

To reduce equilibration and auto-correlation times at high densities, we also implement a

flip move. We define one Monte Carlo time step as updating every row in the x-, y- and

z- directions (total of 3L2 rows), and L3(in case of small system sizes) or L3/k2(in case of

large system sizes) flip moves.

The flip move is crucial for equilibrating the system at densities close to full packing.

Figure 2.4 shows the time evolution of density ρ for a system with k = 7, starting

from nematic initial conditions in which most of the rods lie in the x-direction, using

the evaporation-deposition algorithm with and without the flip move. The value of µ is

such that the equilibrium configuration does not have nematic order (see Sec. 3.5 for de-
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Figure 2.4: The temporal evolution of the density ρ in a system with k = 7, when the
system is evolved using the evaporation-deposition algorithm with and without the flip
move. The initial configuration has nematic order while the equilibrium configuration has
layered order. The data are for system size L = 112 and µ = 6.0.

tails). When the flip move is present, ρ reaches its equilibrium value in about 3 × 105

Monte Carlo steps. On the other hand, when the flip move is absent, the system does not

reach equilibrium even after 107 Monte Carlo steps.

The algorithm is easily parallelized as all the rows can be updated simultaneously. The

flip move may also be parallelized by choosing a plane and then choosing one of the

k2 sublattices randomly. All k × k squares with their left bottom corner lying in this

sublattice may be updated simultaneously. The left bottom corner here signifies to the

point with the minimum horizontal coordinate in either the xy−, yz− and zx−plane. All

the data presented in Chapter 3 is obtained through a parallelized implementation of the

algorithm.

2.6 Extension to hard cubes in three dimensions

Consider a L × L × L cubic lattice with periodic boundary conditions and even L. The

lattice may be occupied by cubes of size 2 × 2 × 2 (i.e having side-length of 2 lattice
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spacings) whose positions are in registry with the lattice sites. For a cube, we identify

the vertex with minimum x-, y-, and z-coordinates as its head. The configuration of the

system can thus be fully specified by the spatial coordinates of the heads of all the cubes

in the system.

Choose at random one of the 3L2 rows, where each row consists of L consecutive sites in

any one direction. Evaporate all the cubes whose “heads” that lie on this row. The row

now consists of empty intervals separated from each other by sites that cannot be occupied

by the head of a cube due to the hard constraints arising from cubes in neighbouring rows.

The empty intervals are reoccupied by new configurations of cubes with the correct equi-

librium probabilities. The calculation of these probabilities reduces to a one dimensional

problem which may be solved in Sec. 2.4. This evaporation and deposition move satisfies

detailed balance as the transition rates depend only on the equilibrium probabilities of the

new configuration. We use a parallelized version of the algorithm described above, which

exploits the fact that the rows separated from each other by a distance two can be updated

independently and concurrently. We check for equilibration by taking different initial

configurations of the system that correspond to different phases and confirming that the

results are independent of the initial configuration. We find that the algorithm is able to

equilibrate systems with density upto ≈ 0.95 for L & 100, though slightly larger densities

may be attained for smaller systems.
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Chapter 3

Different phases of a system of hard

rods on three dimensional cubic lattice

3.1 Introduction

In this chapter, we study the problem of a monodispersed system of rods of length k using

grand canonical Monte Carlo simulations that is implemented through an algorithm with

cluster moves. For k ≤ 4, we find that the system remains disordered and is in the isotropic

phase at all densities. When k = 5, 6, we observe a single transition from a low density

disordered phase in which the the fractional number with different orientations is nearly

equal, to a layered-disordered phase in which the fractional number of one orientation

becomes very small, and system develops a layer-like structure, where each layer is a

plane with most of the rods being of two orientations lying within the plane, and very

weak correlations between different layers. When k ≥ 7, at intermediate densities, we

numerically observe two other phases: a nematic phase, and a new phase that we call

the layered-nematic phase. In the layered-nematic phase, each plane has two dimensional

nematic order, but there is no overall bulk nematic order. At even higher densities, the

nematic order within a layer is also lost. This transition is essentially a 2-d transition,
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as different layers are nearly independent. We argue that the observation of the layered-

nematic phase in our simulations is a finite size effect, and in the thermodynamic limit,

when there is nematic order within a layer, aligning the orientation of different layers is

entropically favoured, and the nematically-ordered phase will have higher entropy than

the layered-nematic phase.

The rest of the chapter is organized as follows. In Sec. 3.2, we define the model precisely

and describe the grand canonical Monte Carlo scheme that is used to simulate the sys-

tem. Section 3.3 describes the different phases – isotropic, nematic, layered-nematic and

layered-disordered – that we observe in our simulations. In Sec. 3.4, we use perturbation

theory to argue that the layered-nematic phase observed in simulations is an artefact of

finite system sizes, and the observed behaviour should cross over to nematic order for

length-scales greater that some crossover scale L∗(ρ), where ρ is the density of covered

sites. Section 3.5 contains results of detailed simulations for systems with k = 2, 3, . . . , 7.

The minimum length of rods that is needed for each of the phases to exist is determined.

The critical densities and chemical potentials, and other critical parameters are determined

for k = 5, 6, 7. We end with a summary and discussion of results in Sec. 3.6.

The contents of this chapter has been published in Ref. [139].

3.2 Model Description and Monte-Carlo Algorithm

Consider a cubic lattice of size L × L × L with periodic boundary conditions. The lattice

sites may be occupied by rods that occupy k consecutive lattices sites in any one of the

three mutually orthogonal directions. The rods interact only through excluded volume

interactions, i.e., a lattice site may be occupied by at most one rod. We associate a weight

z = eµ with each rod, where z is the fugacity and µ is the chemical potential rescaled by

temperature. We will call a rod oriented in the x-, y- and z-directions as x-mer, y-mer, and

z-mer respectively. The site of a rod with the smallest x-, y-, and z-coordinates will be
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called its head.

We use grand canonical Monte Carlo simulations to determine the different phases in the

hard rod model as a function of the density, for different rod-lengths k, as described in

Sec. 2.5.

3.3 Different phases

In this section, we describe and define the different phases that we observe in our Monte

Carlo simulations. Let ρx, ρy and ρz be the density of sites occupied by x-mers, y-mers

and z-mers respectively, and ρ = ρx + ρy + ρz is the total fraction of sites occupied by

k-mers. We define the vectorial order parameter

Q = |Q|eiθ = ρx + ρy e
2πi
3 + ρz e

4πi
3 . (3.1)

We define the bulk nematic order parameters as

QN = 〈|Q|〉, (3.2)

P2 = 〈cos (3θ)〉, (3.3)

where 〈· · · 〉 denotes average over the equilibrium probabilities. θ is the polar angle sub-

tended by the vector order parameter Q. θ takes values 0, 2π/3, 4π/3 in the nematic

phase, and values π/3, π, 5π/3 in both the layered-nematic and layered-disoeredered

phases.

Isotropic phase: In the isotropic phase, the system is disordered with ρx ≈ ρy ≈ ρz. The

probability distribution of Q is centred about the origin and the order parameters take the

value QN ≈ 0 and P2 ≈ 0.

Nematic phase: In the nematic phase, a majority of the rods are of one orientation, while

55



 0

 0.1

 0.2

 0.3

 0.4

 0.5

0  4x10
7
 8x10

7
 1x10

8

ρ
x
, 
ρ

y
, 
ρ

z

t

ρx
ρy
ρz

(a) (b)

Figure 3.1: (a) Time evolution of the densities of rods along the three orientations in the
nematic phase when µ = 0.3 and ρ ≈ 0.63 for k = 7 and L = 56. The initial configuration
is disordered. (b) Snapshot of a randomly chosen xy plane after equilibration. The major-
ity of rods are x-mers. The green solid circles represent z-mers passing through the given
xy-plane.

the rods of the other two orientations have smaller, roughly equal densities. If x- is the

preferred direction, then ρx � ρy ≈ ρz, as can be seen in the temporal evolution of three

densities shown in Fig. 3.1(a). A snapshot of a randomly chosen xy plane, as shown in

Fig. 3.1(b), clearly shows that most rods are x-mers. In the nematic phase, QN ≈ ρ and

P2 ≈ 1.

Layered-Nematic phase: In the layered-nematic phase, there is spontaneous symmetry

breaking, and one of the xy, yz or zx planes is selected, and the density of rods that are

oriented perpendicular to this plane is suppressed [see Fig. 3.2(a)], making the system

layered. If the chosen plane is the xy plane, then ρx ≈ ρy � ρz. In the layered-nematic

phase, within a xy-plane, the rods have two-dimensional nematic order. This may seen in

the snapshots, shown in Fig. 3.2(b)–(d), of three randomly chosen xy planes. Each of the

planes has two-dimensional nematic order, but could be majority x-mers or y-mers. Also,

the majority orientation within a plane changes frequently with time in our simulations.

This is demonstrated in Fig. 3.2(e), where the time evolution of the local nematic order

parameter nx(z)− ny(z) is shown for four xy planes, where nx(z) and ny(z) are the densities

of sites occupied by x-mers and y-mers in layer z. There are roughly equal number of
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planes with majority x-mers and majority y-mers, as may be seen from the double-peaked

probability distribution function P(nx − ny), shown in Fig. 3.2(f), which is obtained by

averaging over the different xy planes and over time. If the system has layered-nematic

phase, QN ≈ ρ/2 and P2 ≈ −1.

Layered-Disordered phase: In the layered-disordered phase, like in the layered-nematic

phase, majority of the rods lie in one of the xy, yz or zx planes [see Fig. 3.3(a)]. Let the

chosen plane be the xy plane, i.e., ρx ≈ ρy � ρz. In the layered-disordered phase, unlike

the layered-nematic phase, the rods within a xy plane do not have nematic order, i.e.,

nx(z) ≈ ny(z) for each layer z. This may seen in the snapshots, shown in Fig. 3.3(b)–(d),

of three randomly chosen xy planes, where in each of the planes, there are roughly equal

number of x-mers and y-mers present. The nematic order in each plane fluctuates about

zero, as may be seen from the time evolution of the nematic order of four planes as shown

in Fig. 3.3(e)] as well as probability distribution [see Fig. 3.3(f)] of the local nematic order

parameter nx(z) − ny(z). In the layered-disordered phase, QN ≈ ρ/2 and P2 ≈ −1.

We find that onset of the layered disordered phase in 3-d for k = 7 occurs at approximately

ρ2,3d ≈ 0.914 ± 0.01 [Fig. 4(d)], which is not very different from the corresponding value

in two dimensions (ρ2,2d ≈ 0.917 ± .005) [18]. This is consistent with the picture that at

high densities, the layers are only very weakly coupled, the transition from nematic (or

layered nematic) to the layered disordered phase is essentially driven by the 2-dimensional

transition within a layer.

The bulk order parameters QN and P2 do not distinguish between the layered-nematic and

layered-disordered phases and take the values QN ≈ ρ/2 and P2 ≈ −1 for both phases.

Though we observe both these phases in our simulations, we argue in the next section that

the layered-nematic phase has lower entropy per site than the nematic phase, and is thus

a metastable phase.
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Figure 3.2: (a) Time evolution of the densities of rods along the three orientations in the
layered-nematic phase when µ = 5.55 and ρ ≈ 0.914 for k = 7 and L = 112. The
initial configuration has nematic order, where most of the rods are in x-direction. (b)–(d)
Snapshots of three randomly chosen xy planes after equilibration. In each of the planes,
either horizontal or vertical rods are in majority. (e) Time evolution of nx(z)−ny(z), where
nx(z) and ny(z) are the densities of x-mers and y-mers in layer z, for z = 0, 24, 49, 74.
The nematic order in each plane keeps switching between majority x-mers and majority
y-mers. (d) The probability distribution P(nx(z)−ny(z)), averaged over time and all planes,
exhibits two symmetric peaks.
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Figure 3.3: (a) Time evolution of the densities of rods along the three orientations in
the layered-disordered phase when µ = 6.0 and ρ ≈ 0.928 for k = 7 and L = 112. The
initial configuration has nematic order, where most of the rods are in x-direction. (b)–(d)
Snapshots of three randomly chosen xy planes after equilibration. In each of the planes,
there are roughly equal number of x-mers and y-mers. (e) Time evolution of nx(z)− ny(z),
where nx(z) and ny(z) are the densities of x-mers and y-mers in layer z, for z = 0, 24, 49, 74.
It fluctuates about zero for all z. d) The probability distribution P(nx(z) − ny(z)), averaged
over time and all planes, is peaked about 0.
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3.4 The instability of the layered-nematic phase

In this section, we discuss the instability of the layered-nematic phase. We argue that the

layered-nematic phase seen in our simulations is the result of finite size of our samples,

and different layers would be expected to develop alignment and hence the usual nematic

order if we could study samples of much larger sizes. This is done using a perturbative

expansion similar to the high density expansion developed for hard squares and rectan-

gles [69, 70, 80, 81, 72].

We start by considering a system in which the activities of rods in different directions are

different: in the x- and y-directions, it is z, but in the z-direction it is z′. When z′ = 0,

the different z-layers decouple, and the problem reduces to the problem of k-mers on

a two dimensional square lattice. We assume that z is such that in each layer there is

nematic ordering, but in different layers, it may be in different directions. We consider the

spontaneous-symmetry broken state {σ}, where the ordering direction in the layer z = i is

σi, taking values ±1, depending on the mean orientation being in the x- or y-directions.

There are 2L such states, for the L × L × L lattice, say with fixed boundary conditions that

enforce the specified layered order.

When z′ = 0, the states with different {σ} are degenerate. We now develop a perturbation

theory for the partition function L{σ}(z, z′) in powers of z′ = exp(µ′) [70, 80]:

L{σ}(z, z′) = L{σ}(z, 0)
[
1 + A{σ}(z)z′ + B{σ}(z)z′2 + . . .

]
. (3.4)

Define η(~R) as the indicator variable that takes a value 1 in a configuration, iff one can

place the head of a z-mer at ~R, and zero otherwise. Then it is easy to see that

A{σ} =
∑
~R

〈η(~R)〉{σ} (3.5)
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and

B{σ} =
∑
~R1,~R2

〈η(~R1)η(~R2)〉{σ}, (3.6)

where the sum over ~R1 and ~R2 is over all position of 2 non-overlapping z-mers. The

expectation values of products of η(~R)’s factorize into terms that depend on correlations

of unoccupied sites within a layer. Clearly, we get A = L3εk, independent of {σ}, where

ε = 1 − ρ is the density of holes in the problem. Hence any difference between different

layer-orderings only shows up in the B.

Let us denote the probability that in a 2-d layer, both sites (x, y) and (x+∆1, y+∆2) are un-

occupied as α(~∆) or β(~∆), when the nematic ordering in the plane in x- or y- respectively,

with ~∆ = (∆1,∆2). Then, B{σ}(z) is a sum of terms of the form α(~∆)rβ(~∆)s, where r is

the number of planes with x-ordering that intersect both rods, and s is the corresponding

number of planes with y-ordering. By symmetry in the x and y directions, there will also

be a term αsβr for the same {σ} corresponding to separation ~r′ = (∆2,∆1) between the

rods. But we notice that, for all α, β ≥ 0, and integers r, s ≥ 0,

αrβs + αsβr ≤ αr+s + βr+s. (3.7)

This can be shown as following. Let us assume with no loss of generality that α ≥ β.

Then for any r, s ≥ 0, (αr −βr)(αs−βs) ≥ 0. Equation (3.7) follows from this observation.

This implies that the second correction term, when all in-plane nematic orientations are

parallel is greater than the term when they are not. Thus, the concentration of z-rods

induces an effective aligning interaction between nearby layers. Note that this interaction

term is proportional to the volume of the system, and would dominate over the degeneracy

2L term coming from the number of different states {σ}. This is an order-by-disorder

mechanism, where the degeneracy between different equal-weight states {σ} is lifted, once

the perturbation z′ is introduced.

However, the excess free energy in the ordered nematic state per unit volume is only of
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Figure 3.4: (a) The variation of 〈ρ′〉, the minimum of the densities of the rods of different
orientations, with µ for L = 112 and k = 7 in the vicinity of transition from nematic phase
to a layered-nematic phase. ρ′ has a discontinuity as µ changes from µ = 5.42 to µ = 5.43,
representing the onset of a layered phase. The lower values of 〈ρ′〉 stabilizes the layered-
nematic phase for finite system sizes. (b) Corresponding probability distribution P(QN)
near the vicinity of nematic-layered transition. The peak of P(QN) jumps as µ changes
from µ = 5.42 to µ = 5.43.

O([ρ′/k]2), where ρ′/k is the number density of z-mers. In our simulations, for larger

values of µ, ρ′ becomes very small, for instance in L = 112 and k = 7, from Fig. 3.4, we

see that ρ′(µ = 5.42) = 0.023 and ρ′(µ = 5.43) = 0.0009, just beyond onset of the layered

nematic phase, representing an order of magnitude decrease in ρ′ as µ is increased, so that

one expects to see configurations with non-parallel nematic order between layers with

significant weight if the disordering term L ln 2 is of same order as the the ordering term

L3(ρ′/k)2. Hence, we expect that for L > L∗ ∼ k/ρ′, the ordering term will win, and

nematic ordered state will dominate. However, in our simulations, for µ = 5.42, k = 7,

ρ′ ≈ 0.023, and so, L∗ is of order 300. For lower values of µ, ρ′ is larger, and we do see

the nematic order. In the other case of µ = 5.43, L∗(ρ′ = 0.0009) ∼ 7000. This is much

higher than the system size L = 112, implying that the layered-nematic phase is favoured

for µ = 5.43.

We now estimate L∗ for large k by estimating the the free-energy cost of changing the

orientation of one z-layer (say, the layer z = 0), to be along y-axis, while the remaining

layers are all aligned in the x-direction. Let S a be the state of fixed chemical potential

z, where all the k-mers are aligned in the x-direction. We denote by S b the state where
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the z = 0 layer has orientation along the y-direction, and all other rods are oriented in the

x-direction. Let L(a)(z, z′) and L(b)(z, z′) denote the grand partition function of these two

cases, where z and z′ are the activities of the rods in the xy plane and those perpendicular

to it respectively. Then ∆Fb,a = − lnL(b)(z, z′) + lnL(a)(z, z′) is the free energy cost of

creating a mis-aligned layer in the nematically ordered state S a. These partition functions

have a perturbation expansion in powers of z′ as defined in Eq. (3.4). As explained above,

we get Aa = Ab. Then, it is easy to see that to second order in z′2, we obtain

∆Fb,a = [Bb(z) − Ba(z)] z′2. (3.8)

As noted above, this calculation requires the knowledge of the vacancy-vacancy correla-

tions within a layer as a function of density. This is non-trivial, but we note that typically,

the nematic order is near 1, and to a good approximation, the qualitative behaviour of

vacancy-vacancy correlations is the same as that in the problem where the all the rods are

constrained to lie in the same direction within a plane. Then the problem reduces to a one

dimensional problem, for which the behaviour of correlations is known. Let g(R, ε) be the

vacancy-vacancy pair correlation function of a gas of hard k-mers in one dimension:

g(R, ε) = ε−2 [
Prob (site x and x + R are both unoccupied)

]
, (3.9)

where ε = 1 − ρ is the density of empty sites.

The calculation of g(R, ε) is straightforward. Given a configuration of k-mers on a line, we

construct another configuration, where the gaps between rods are the same as the first con-

figuration, but the size of each rod is only 1. In this gas, different sites are uncorrelated,

and the fractional density of unoccupied sites is ε′ = εk/[1 + (k − 1)ε].

This can be shown as follows. Let Co(L,N) and Cp(L,N) be the number of ways to put N

rods in a segment of length L with open and periodic boundary conditions respectively. It
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is clear that

Co(L,N) =

(
L − Nk + N

L − Nk

)
, (3.10)

Cp(L,N) = Co(L − 1,N) + kCo(L − k,N − 1),

= L
(L − 1 − Nk + N)!

(N)!(L − Nk)!
(3.11)

We put m rods in segment of R − 1 and N − m rods in segment L − R − 1.

Prob (site x and x + R are both unoccupied) =

b(R−1)/kc∑
m=0

Co(R − 1,m)Co(L − R − 1,N − m)
Cp(L,N)

.

(3.12)

Under the limit R � L, this yields,

Co(L − R − 1,N − m)
Cp(L,N)

= ε(L − Nk)R−mk Nm 1
(L − Nk + N)R−mk+m ,

= εε′R−mk(1 − ε′)m. (3.13)

Therefore,

Prob (site x and x + R are both unoccupied) =

b(R−1)/kc∑
m=0

Co(R − 1,m)εε′R−mk(1 − ε′)m

(3.14)

Then, it is easy to obtain

g(R, ε) = ε−1
b(R−1)/kc∑

m=0

(
R − 1 − mk + m

R − 1 − mk

)
ε′R−mk(1 − ε′)m. (3.15)

In particular, for r ≤ k, we have g(r, ε) = ε−1ε′r. Also, it is straightforward to obtain

g(mk + 1, ε) ≈ ε−1ε′ exp (−mε′), where m is an integer smaller than ε′−1, and fixed ε′ � 1,

corresponding to the limit εk � 1. We note that g(mk + 2, ε) is smaller than g(mk + 1, ε)

by a factor ε′ for small m. Thus, g(R, ε) will show prominent oscillations of period k for

R � kε′−1. These oscillations may be seen in Fig. 3.5, where g(R, ε) has been numerically
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Figure 3.5: The variation of g(R, ε) [see Eq. (3.15)] with R for k = 7 and ε = 0.02. Inset:
The behaviour for small R, where the period of the oscillations are seen more clearly.

evaluated for k = 7 and ε = 0.02. It shows oscillations of period 7 before converging to 1

for large R.

To compute ∆Fb,a, it is easily seen that the most dominant contribution, when two rods

are present in the z-direction, arises when both rods have heads in the same plane with

same y-coordinates, and intersect the plane z = 0. The calculation is straightforward and

gives

∆Fb,a = kL2z′2ε2k
∞∑

R=1

[g(R, ε) − 1][g(R, ε)]k−1, (3.16)

= kL2z′2ε2kS (k, ε). (3.17)

In the sum in Eq. (3.16), the main contribution is from terms with R = mk + 1, where

m = 0, 1, . . . (ε′k)−1. All these terms have roughly the same contribution (ε′/ε)k. Thus,

we expect that the sum S (k, ε) ∼ (ε′/ε)k(ε′k)−1. However, ε′/ε ∼ k exp(−εk). Hence, we

conclude that within second order perturbation theory

∆Fb,a ∼ L2ε′−1kke−k2ε(z′εk)2. (3.18)
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The transition from the nematic to layered-disordered phase occurs at vacancy density

ε ∼ k−2 [18], corresponding to ε′ ∼ k−1. If we put z′ = z ∼ kk, and ∆Fb,a = ln 2 due to the

fact that there are 2L possible states, we obtain L∗ ∼ k
k−1

2 for large k. For k = 7, L∗ ∼ 340,

in fair agreement with our earlier estimate. However, L∗ increases rapidly with k. For

example, it is L∗ ∼ 2 × 1012 for k = 20. Thus, in simulations, while the layered nematic

phase is thermodynamically unfavoured, it will always be observed in simulations due to

the limitations in system sizes that can be simulated within available computer time.

3.5 Phase diagram and critical behavior

We numerically determined the order parameters QN [see Eq. (3.2)] and P2 [see Eq. (3.3)]

as function of ρ for different k as shown in Fig. 3.6. We first determine kmin, the minimum

value of k required for each of the phases to appear.

3.5.1 kmin

From Fig. 3.6, it is evident that for k ≤ 4, both QN and P2 are zero for all values of ρ.

There are no phase transitions and the system is in the disordered isotropic phase for all

densities.

For k = 5 and k = 6, QN increases from 0 to 0.5 at high densities, while P2 simultaneously

decreases from 0 to −1. These values are indicative of the layered phase, and show that

the system undergoes a single transition from an isotropic phase to a layered phase. Thus,

for observing a layered phase, k ≥ klayered
min = 5. We note that there is no nematic phase

when k = 5, 6. The critical values for the isotropic-layered transition are: µc(5) ≈ 3.82

and ρc(5) ≈ 0.874 and µc(6) ≈ 1.0 and ρc(6) ≈ 0.68.

When k = 7, it may be seen from Fig. 3.6 that QN increases from zero to ≈ ρ and then

decreases to QN ≈ ρ/2. Simultaneously, P2 increases to 1 and then drops sharply to −1.
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Figure 3.6: The order parameters (a) QN [see Eq. (3.2)] and (b) P2 [see Eq. (3.3)] as a
function of mean density 〈ρ〉 for k = 2, . . . , 7. The data are for systems with L = 10k.

67



 0.1

 0.2

 0.3

 0.4

 0  1  2  3  4  5  6

Q
N

µ

L=50
L=70

-1

-0.8

-0.6

-0.4

-0.2

 0

 0.2

 0  1  2  3  4  5  6

P
2

µ

L=50
L=70

 (a)  (b)

Figure 3.7: The order parameters (a) QN and (b) P2 for k = 5 as a function of µ for two
different system sizes. The data is very weakly dependent on the system size.

These values are indicative of nematic and layered phases. We conclude that a nematic

phase exists for k ≥ knematic
min = 7. In our simulations, we find that the layered phase may

be further divided into layered-nematic and layered-disordered phases, but is presumably

an artefact of the small sizes of our system, as discussed in Sec. 4.8.

3.5.2 k = 5, 6

Rods of length k = 5 are the smallest to show the layered-disordered phase at high densi-

ties. We first show that this phase is stable and that the Monte Carlo algorithm equilibrates

the system at these densities. To show the stability, we compare the order parameters QN

and P2 for two different system size in Fig. 3.7. The data has only a very weak depen-

dence on the system size, showing that the finite size effects are not important and that the

layered phase is stable in the thermodynamic limit. The critical values for the transition

is µc(5) ≈ 3.82 and ρc(5) ≈ 0.874, estimated by determining the value of µ for which the

probability distribution for QN shows a double-peaked structure.

To check that at the high values of µ and densities ρ, our simulations do not suffer from

slow down due to jamming problems, we observed the evolution with two different ini-

tial conditions: one corresponding to a nematic phase and the other corresponding to an

isotropic phase and check that the final state is independent of the initial conditions. The

time evolution of |Q| is shown in Fig. 3.8 for both of these initial conditions. Clearly,
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Figure 3.8: The time evolution of |Q| when the phase at time t = 0 is nematic or isotropic.
IC in the legends is an acronym for initial conditions. The data are for L = 70, k = 5, and
µ = 6.0 and ρ ≈ 0.944. The system loses memory of its initial state within 105 Monte
Carlo steps, and equilibrates into a layered phase characterized by 〈|Q|〉 ≈ ρ/2.

the system loses memory of the initial conditions quite rapidly, and the order parameter

reaches a value close to 0.5, indicative of the layered phase.

We now study of the isotropic to layered-disordered transition. In the symmetry-broken

state, there are three possible choices of the layering orientation. By analogy to the three

state Potts model, we expect that this transition should be first order. The numerical data

is consistent with a first order transition. First, we show in Fig. 3.9(a) the probability

distribution of the order parameter QN near the transition point. The distribution has two

peaks for values of µ close to the transition point, one near QN ≈ 0, corresponding to

the isotropic phase and the other close to QN ≈ 0.25, corresponding to the layered phase.

Double peaked distribution are a signature of first order transitions and co-existence. This

can be further confirmed by looking at two-dimensional density plots of P(Q), as shown

in Fig 3.9(b)–(e), where as µ is increased, the simultaneous presence of peaks at the origin

and and at π/3, π and 5π/3 can be seen in Fig 3.9(c) and (d).

Further evidence of the first order nature may be obtained by studying the Binder cumu-
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becoming negative is suggestive of a first order transition.

lant for a vector order parameter.

UN = 1 −
〈|Q|4〉

2 〈|Q|2〉2
. (3.19)

In a continuous transition, the value of the Binder cumulant at the critical point is inde-

pendent of the system size, providing a convenient tool to obtain the critical point [140].

UN is zero in the isotropic phase and 1/2 in the completely ordered phase. The variation

of UN with µ is shown in Fig. 3.10. The Binder cumulant becomes negative near the tran-

sition point, with its minimum decreasing with system size. Binder cumulant becoming

negative is a strong signature of the transition being first order [141].

The results for k = 6 are very similar to those of k = 5. The system undergoes a single

transition from isotropic to layered phase with critical parameters µc(6) ≈ 1.0 and ρc(6) ≈

0.68. We note that the critical values are smaller than that for k = 5.
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Figure 3.11: The variation of the (a) order parameter QN and (b) Binder cumulant UN with
µ for three different system sizes. The curves for the Binder cumulants cross at µ ≈ −0.23.

3.5.3 k = 7

When k = 7, the system undergoes a transition from an isotropic phase to a nematic

phase at low densities and from nematic phase to a layered phase at high densities (see

Fig. 3.6). Here, we analyse the nature of the transitions as well as the nature of the layered

phase. We first discuss the isotropic-nematic transition. As in the case of k = 5, 6, there

are three symmetric nematic phases corresponding to the three different orientations. By

analogy with the three state Potts model, we expect that the transition will be first order

in nature. The dependence of the order parameter QN and the Binder cumulant UN on

µ for different system sizes are shown in Fig. 3.11. QN does not show any sign of a

discontinuity, nor does the Binder cumulant become negative, both being signatures of

a first order transition. Likewise, the probability distribution for QN , shown in Fig. 3.12

does not show a bimodal distribution for any values of µ near the critical point. In the

absence of signatures for a first order transition, we estimate the critical parameters to be

µc ≈ −0.23 corresponding to ρc ≈ 0.556, from the crossing of the Binder cumulants for

different system sizes. The three state Potts model in 3-dimensions has a very weak first

order transition that is difficult to detect in numerical simulations and we expect that the

same difficulty holds for the problem of rods. Our simulations do not find a clear evidence

of the nature of this phase transition.

We now examine the transition from nematic to layered phase. For k = 7 and L = 112,
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we find a range of µ (5.43 < µ < 5.60) for which the system finds itself in the layered-

nematic phase. We check that this phase is stable for the finite systems we have studied, by

simulating with initial condition that is isotropic, nematic and layered-disordered. Also,

we notice that the transition from nematic to layered nematic is accompanied by a sharp

decrease in ρ′. However, as we do not expect this to be a thermodynamic phase transition,

we did not undertake a detailed study of the layered-nematic phase.

3.6 Summary and discussion

To summarize, we studied the problem of monodispersed hard rods on a three dimensional

cubic lattice using grand canonical Monte Carlo simulations and theoretical methods to

obtain the phases for rods of length k. We showed that for k ≤ 4, the system is in a

disordered isotropic phase at all densities ρ, and there are no phase transitions. For k =

5, 6, the system undergoes a single transition into a high density layered-disordered phase,

where the system breaks up into two dimensional layers, but disordered within a layer. For

k = 7, we find that as density is increased, the system makes a transition into a nematic
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phase. Further increase of density results in a layered-disordered phase.

We also observe a layered-nematic phase between the nematic and layered-disordered

phases, which we argued is a finite-size effect. By developing a perturbation expansion in

terms of number of z-mers, we estimated the system size that is required for the layered-

nematic phase to be destabilized into a nematic phase to be L∗ ∼ k(k−1)/2. Thus, L∗ in-

creases rapidly with k with L∗ ∼ 340 for k = 7. Therefore, in simulations of systems with

larger k, we expect that there will be a range of densities for which the layered nematic

phase will be observed.

For values of k > 7, we expect that the phase diagram remains qualitatively the same

as that for k = 7. We expect the critical density for the isotropic-nematic transition to

decrease with increasing k, as is confirmed by Monte Carlo simulations of systems with

k = 8, 9, 10. As seen from Fig. 3.13, ρc decreases from 0.556 for k = 7 to 0.364 for

k = 10. Near the isotropic-nematic transition, the O(ρ2) term in the expansion of pressure

as a function of density should be approximately of same magnitude as the first term of

O(ρ). Since the second virial coefficient for hard rods of length k varies as k2 in all di-

mensions (for large k), the critical number density of rods scales as k−2 or equivalently

the critical density ρI−N
c ∼ k−1, consistent with the estimate given in Ref. [112], where

the numerical data for k = 7, 8, 16, 25 in three dimensions obey ρI−N
c ∼ k−1. The tabular

form of the various cases studied and the phases and nature of transitions are mentioned

in Table 3.1. On the other hand, the nematic-layered transition is essentially a two di-

mensional transition, as different layers are nearly independent. Thus, we expect that the

critical density for this transition varies as 1− a/k2 for large k, as in two dimensions [16].

These arguments are easily extended to higher dimensions. For large enough k, we will

expect a isotropic-nematic transition at a critical density that scales as k−1. A nematic

phase may be thought of a union of parallel lines, with hard core constraint along a line,

and the problem becomes essentially one dimensional, with weak correlations between

74



Cases Studied Phases Nature of transition
k ≤ 4 Disordered No transitions
k = 5, 6 Disordered → Layered-

Disordered
First-order

k ≥ 7 Disordered
→Nematic→Layered-
Nematic→Layered-
Disordered

The disordered-nematic
transition is expected to be
weakly first order and the
nematic-layered transition is
first-order.

Table 3.1: A summary of the phases and nature of the phase transitions observed for the
values of k that have been studied.
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different lines. In the high-density phase, we expect that the system will break to two-

dimensional layers, with only weak interaction between different layers. The critical

density will be nearly independent of d for d � k. This critical density will vary as

1 − a/k2 for large k. Preliminary simulations in four dimensions are consistent with the

above observations.

From the results of this chapter, it is clear that for k ≥ 5, the fully packed phase shows

spontaneous symmetry breaking by selecting the layering plane. It is thus qualitatively

different from the k ≤ 4. Extending the problem of rods to cuboids would result in a much

richer phase diagram, as expected from the corresponding case of hard rectangles in two

dimensions. However, simulations of such systems is a challenging task.

Note added

Recently, a study on the same system was published in Ref. [112]. There, the sys-

tem is studied using grand canonical Monte Carlo simulations using local evaporation-

deposition moves. Similar results are obtained. However, the algorithm is not able to

efficiently equilibrate at high densities and thus could not access the isotropic-layered

transition for k = 5 and the nematic-layered transition for k = 7. By studying larger

system sizes, some numerical evidence for the first order nature of the isotropic-nematic

transition could be found.
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Chapter 4

Phase diagram of a system of hard

cubes on the cubic lattice

4.1 Introduction

In this chapter, we study a system of 2 × 2 × 2 hard cubes on the cubic lattice using grand

canonical Monte Carlo simulations that implements an algorithm with cluster moves. The

positions of cubes are discrete.

Here, we find that this system of cubes goes through four distinct phases as the density of

cubes is increased: disordered, layered, sublattice ordered, and columnar ordered. In the

layered phase, the system spontaneously breaks up into parallel slabs of size 2 × L × L

which are preferentially occupied by cubes, in which the density oscillates along the di-

rection perpendicular to the slabs with period two. Within each slab, the cubes are disor-

dered; translation symmetry is thus broken along exactly one principal axis. In the solid-

like sublattice ordered phase, the hard cubes preferentially occupy one of eight sublattices

of the cubic lattice, breaking translational symmetry along all three principal directions.

In the columnar phase, the system spontaneously breaks up into weakly interacting par-
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allel columns of size 2 × 2 × L which are preferentially occupied by cubes, in which

the density oscillates along the two directions perpendicular to the columns with period

two. Within each column, the system is disordered, and the columns break translational

symmetry along two principal directions. By studying systems of different sizes, we argue

that the disordered-layered phase transition is continuous, while the layered-sublattice and

sublattice-columnar transitions are discontinuous. We construct a Landau theory written

in terms of the layering order parameter L and columnar order parameter C which is able

to describe the different phases that are observed in the simulations and the order of the

transitions. Additionally, our results near the disordered-layered transition are consis-

tent with the Landau theory prediction of scaling behaviour in the O(3) universality class

perturbed by cubic anisotropy.

The remainder of this chapter is organized as follows. Section 4.2 defines the model pre-

cisely and describes the grand canonical Monte Carlo scheme that is used to simulate

the system. Section 4.3 describes the different phases – disordered, layered, sublattice

ordered and columnar ordered– that we observe in our simulations. In Sec. 4.4, we un-

derstand our simulation results in terms of a Landau theory approach. Sections 4.5 - 4.7

characterize the different phase transitions that occur in this system. Section 4.8 discusses

the long lived metastable states that we observe at densities close to full packing. This

section also presents a perturbation expansion that allows us to argue that the high density

phase will be columnar. Finally, Sec. 4.9 contains a discussion of our results.

The contents of this chapter has been published in Ref. [142].

4.2 Model & Algorithm

Consider a L × L × L cubic lattice with periodic boundary conditions and even L. The

lattice may be occupied by cubes of size 2 × 2 × 2 (i.e having side-length of 2 lattice

spacings) whose positions are in registry with the lattice sites. We associate a weight
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Figure 4.1: The lattice is divided into eight sublattices 0, 1, . . . , 7 depending on whether
the x-, y- and z- coordinates are even or odd. Labelling of sublattices corresponding to
yz-planes whose x-coordinate is (a) even, or (b) odd. (c) A 2 × 2 × 2 cube with all of its
vertices labelled with appropriate sublattices to show the relative positions of the planes
shown in (a) and (b).

z = eµ with each cube, where z is the fugacity and µ is the chemical potential. The

cubes interact through only excluded volume interaction, i.e. no two cubes can overlap

in volume. For a cube, we identify the vertex with minimum x-, y-, and z-coordinates

as its head. The configuration of the system can thus be fully specified by the spatial

coordinates of the heads of all the cubes in the system.

We study the model using grand canonical Monte Carlo simulations implementing an

algorithm as described in Sec. 2.6.

4.3 Different Phases

We first define and describe the phases that we observe in our simulations. To do so, it is

convenient to divide the lattice into 8 sublattices, depending on whether each x-, y-, and z-

coordinates are odd or even. A site with coordinates (x, y, z) belongs to sublattice whose

binary representation is (x mod 2) (y mod 2) (z mod 2), as shown in Fig. 4.1. We define ρi

to be the fraction of lattice sites occupied by the cubes whose heads lie on the sublattice

i. The total density of the system ρ is then

ρ =

7∑
i=0

ρi. (4.1)
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Further, let η(x, y, z) be equal to 1 if (x, y, z) is occupied by a head of the cube, and be

equal to 0 otherwise. Here, η(x, y, z) acts as an indicator function. Consider the Fourier

transform

η̃(kx, ky, kz) =
8
L3

∑
x,y,z

η(x, y, z) ei(kx x+kyy+kzz). (4.2)

We define the order parameter L as

L = (Lx, Ly, Lz), (4.3)

where Lx = η̃(π, 0, 0), Ly = η̃(0, π, 0) and Lz = η̃(0, 0, π). A non-zero value in Lx will imply

that there is translational order of period two in x direction. Similar interpretations hold

for Ly and Lz. The L vector is thus a measure of the layering tendency of the system in

each Cartesian direction, and we shall refer to it as the layering vector. In a layered phase,

only one Cartesian component of L is expected to be non-zero in the thermodynamic limit.

In contrast, a columnar-ordered phase is characterized by a layering vector with two non-

zero Cartesian components. Finally, a solid-like sublattice-ordered phase is characterized

by a layering vector with all three components non-zero.

Note that L serves as a “faithful” order parameter for each of these three phases: In the

layered case, it correctly distinguishes between the six symmetry-related states of the sys-

tem (corresponding to the two possible layered states for layering along each of the three

Cartesian directions) by taking on the six symmetry related values (±|L|, 0, 0), (0,±|L|, 0),

and (0, 0,±|L|). In the columnar-ordered case, it correctly distinguishes between the

twelve symmetry-related columnar states by taking on the twelve symmetry-related val-

ues (±|L|,±|L|, 0), (0,±|L|,±|L|), and (±|L|, 0,±|L|). Finally, the eight symmetry-related

sublattice ordered states are correctly described by the eight symmetry-related values

(±|L|,±|L|,±|L|).

To characterize these phases, it is also useful to define two other measures of spon-

taneously broken symmetry: the columnar vector C whose components are given by
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Cx = η̃(0, π, π), Cy = η̃(π, 0, π) and Cz = η̃(π, π, 0), and the sublattice scalar φ = η̃(π, π, π).

In contrast to L, neither C nor φ fully distinguish between the broken symmetry states in

which they are non-zero in the thermodynamic limit. This is clear since C is expected

to be non-zero in the columnar ordered phase and the sublattice ordered phase, but does

not fully distinguish between the twelve symmetry-related columnar states or the eight

symmetry-related sublattice ordered states of the system. Similarly, φ is expected to be

non-zero in the sublattice ordered phase, but does not fully distinguish between the eight

symmetry-related sublattice ordered states.

The underlying reason for this distinction between L on the one hand, and C and φ on

the other, is clarified considerably if we pass from the globally defined quantities L, C

and φ, to the corresponding local fields L(~r), C(~r) and φ(~r). These local fields should

be thought of as being the coarse-grained variables (coarse-grained over a linear scale

of a few lattice spacings) whose sum over the entire volume gives the corresponding

global variables. Thinking in terms of these local fields, we see that Cx(~r) ∼ Ly(~r)Lz(~r)

(and similarly for the other components). This is related to the fact that the composite

variable LyLz acts as a field that couples linearly to Cx in a Landau-type description of

spontaneous symmetry breaking. Likewise, φ(~r) ∼ Lx(~r)Ly(~r)Lz(~r). Thus, C(~r) and φ(~r)

take on mean values set by composite variables formed from the components of the local

layering vector, which emerges as the fundamental quantity for describing the broken

symmetries of the system. It is therefore not surprising that the corresponding global

variables C and φ do not fully distinguish between different symmetry-related states with

spontaneous columnar or sublattice order. This also suggests that a Landau theory for all

three broken symmetry phases should involve L as the key variable, although we shall

see below that the symmetry-allowed couplings between L and C and φ can also play a

crucial role in determining the structure of the phase diagram.
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are for system size L = 70. Discontinuities in density are not visible at this resolution.

In our simulations, we measure the magnitudes of the global variables L, C and φ:

q1 =

√
L2

x + L2
y + L2

z , (4.4)

q2 =

√
C2

x + C2
y + C2

z , (4.5)

q3 = |φ|. (4.6)

In addition, we monitor the joint probability distribution (histogram) of Lx, Ly and Lz in

order to visualize the nature of the symmetry breaking present in various ordered states.

The variation of qi with density ρ is shown in Fig. 4.2. For low densities qi → 0 in

the thermodynamic limit for i = 1, 2, 3 and the system is in a disordered phase. As the

density is increased, q1 becomes non-zero in the thermodynamic limit when the density

crosses ρ ≈ 0.718, signalling the onset of spontaneous layering, while q2 and q3 continue

to be zero in the thermodynamic limit. Upon further increasing the density, both q2 and q3

become non-zero in the thermodynamic limit when the density increases beyond ρ ≈ 0.79.

This corresponds to the onset of a crystalline phase with spontaneous sublattice ordering.

Finally, when the density goes beyond ρ ≈ 0.957, q3 becomes zero, while q2 and q1

remain non-zero, corresponding to columnar order. Below, we describe the behaviour of
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the system in each of these phases in some more detail.

Disordered Phase: At low densities, the cubes are in a disordered phase in which the

cubes are far apart and there is no ordering. All the mean sublattice densities are equal,

i.e., ρi ≈ ρ/8, for i = 0, . . . , 7. In the disordered phase, all components of L tend to zero

in the limit of large system sizes [see Eq. (4.3) for definition] and the system retains all

the symmetries of the underlying cubic lattice.

Layered Phase: In the layered phase, translational symmetry is broken in only one direc-

tion. The cubes preferentially occupy either odd or even planes normal to this direction.

This may be seen by examining snapshots of randomly chosen pairs of even and odd

planes in the three directions as shown in Fig. 4.3, where the eight different colours repre-

sent cubes whose heads lie on a particular sublattice. Grey colour represents sites that are

occupied by cubes whose heads are on neighbouring planes. In Fig. 4.3(a)-(d), showing

the snapshots of randomly chosen even and odd yz and xz planes, there are approximately

equal numbers of coloured cubes and grey cubes, showing both odd and even yz- and xz-

planes are equally occupied. On the other hand, it can be seen that Fig. 4.3(e), showing

a snapshot of a randomly chosen even xy plane, having much larger number of coloured

squares than grey squares, while Fig. 4.3(f), shows snapshot of a randomly chosen odd xy

plane, is mostly grey, showing that in this configuration, the heads of cubes preferentially

occupy even xy-planes.

The breaking of translational invariance is also quantitatively reflected from the time evo-

lution of the eight sublattice densities and Lx, Ly, Lz, as shown in Fig. 4.4(a) and (b) re-

spectively. From Fig. 4.4(a), we see that four sublattices are preferentially occupied. From

Fig. 4.4(b), we also see that one of the components of L is larger than the other two, i.e.,

|Lz| � |Lx| ≈ |Ly|, confirming that the system is layered in the z-direction.

Sublattice Phase: In the sublattice phase, translational symmetry is broken in all three

principal directions of the cubic lattice. In this phase, the cubes preferentially occupy one

of the eight sublattices. This may be seen by examining the snapshots of randomly chosen
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(a) (b)

(c) (d)

(e) (f)

Figure 4.3: Snapshots of cross sections of equilibrated configurations in the layered
phase, with layering vector pointing in the z-direction. The cross sections shown are of
randomly chosen adjacent pairs of (a) even yz-, (b) odd yz-, (c) even xz-, (d) odd xz-, (e)
even xy- and (f) odd xy-planes. The eight colours represent cubes with heads on different
sublattices. The projections of cubes which protrude onto the plane from nearby planes
are coloured in grey. (a)-(d) look statistically similar, while (e) is mostly coloured and
(f) is mostly grey, showing a layering in the z-direction. The data are for system size
L = 150, chemical potential µ = 2.4, and density ρ ≈ 0.762.
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Figure 4.4: Temporal evolution of (a) eight sublattice densities ρi, i = 0, . . . , 7 and (b)
|Lx|, |Ly|, |Lz| when the system is in a layered phase (layering in the z-direction). The data
are for µ = 2.4, ρ ≈ 0.762, and system size L = 150.

pairs of even and odd planes in the three directions as shown in Fig. 4.5. It may be seen

that in each of the directions, one of the planes has a larger number of cubes, compared to

the grey squares. We see that in this case the cubes preferentially occupies simultaneously

even yz, odd xz and even xy-planes, which implies most of the cubes occupy sublattice 2.

The breaking of translational symmetry is reflected in the time evolution of the eight

sublattice densities and |Lx|, |Ly|, |Lz| as shown in Fig. 4.6(a) and (b) respectively. In

Fig. 4.6(a), sublattice 2 is preferentially occupied over the other seven sublattices. From

Fig. 4.6(b), we also see that |Lx|, |Ly|, |Lz| are non-zero and equal, i.e., |Lx| ≈ |Ly| ≈ |Lz| �

0, confirming that the system has sublattice order.

Columnar Phase: The system is in a columnar phase at large densities. In the columnar

phase, the system breaks translational symmetry along two directions and the heads of the

cubes preferentially occupy two sublattices. This may be seen by examining the snapshots

of the planes in the three directions, as shown in Fig. 4.7. From Figs. 4.7(d) and (f),

corresponding to snapshots of odd xz-plane and odd xy-plane respectively, it may be seen

that these planes contain very few heads of cubes. Thus, most cubes have heads with even

y-coordinate and even z-coordinate. If now the x-coordinate has no definite parity, then the

phase will be columnar, else it will be a sublattice phase. From the snapshots of even and

odd yz-planes, shown in Figs. 4.7(a) and (b), it can be seen that both planes have roughly
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(a) (b)

(c) (d)

(e) (f)

Figure 4.5: Snapshot of cross sections of equilibrated sublattice phase, where the cross
sections are of randomly chosen adjacent pairs of (a) even yz-, (b) odd yz-, (c) even xz-,
(d) odd xz-, (e) even xy- and (f) odd xy-plane. The eight colours represent cubes with
heads on different sublattices. The projections of cubes which protrude onto the plane
from nearby planes are coloured in grey. (a), (d) and (e) are mostly coloured by deep-
green, while (b), (c) and (f) are mostly grey, showing the preferential occupancy of cubes
in sublattice 2. The data are for system size L = 150 with chemical potential µ = 3.5, and
density ρ ≈ 0.864.
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Figure 4.6: Temporal evolution of (a) eight sublattice densities ρi, i = 0, . . . , 7 and (b)
|Lx|, |Ly|, |Lz| when the system is in a sublattice phase. The data are for µ = 3.5, ρ ≈ 0.864,
and system size L = 150.

equal number of heads of cubes, showing that the x-coordinate has no definite parity. This

feature may also be observed from the snapshots shown in Figs. 4.7(c) and (e) of even xz-

and even xy- planes, where two colours are seen in each snapshot corresponding to even

x and odd x.

From Fig. 4.8(a), we see that the sublattice 0 and 4 are preferentially occupied over

the six sublattices corresponding to the heads of most of the cubes having odd y and

z-coordinates. From Fig. 4.8(b), we see that two order parameters are large compared to

one, i.e., |Ly| ≈ |Lz| � |Lx|, this implies that translation symmetry is broken in both the y-

and z-directions. The columnar phase can be visualized as a set of tubes extending along

the x-direction, in which the cubes can slide along.

4.4 Landau theory for 2 × 2 × 2 cubes

In this section, we formulate a Landau-type theoretical description of the phases found

in Sec. 4.3. As noted earlier, spontaneous layering, sublattice ordering and columnar or-

dering are faithfully described by the layering vector L, defined in Eq. (4.3), with the

columnar vector C and the sublattice scalar φ more naturally thought of as composite

objects constructed from the local layering order parameter field. It is therefore natural

87



(a)

(c)

(b)

(d)

(e) (f)

Figure 4.7: Snapshot of cross sections of an equilibrated columnar phase, where the
columns are aligned in the x-direction and y- and z- coordinates are both mostly even.
The cross sections are of randomly chosen adjacent pairs of (a) even yz-, (b) odd yz-, (c)
even xz-, (d) odd xz-, (e) even xy-, and (f) odd xy-plane. The eight colours represent
cubes with heads on different sublattices. The projections of cubes which protrude onto
the plane from neighbouring planes are coloured in gray. Since (d) and (f) are mostly
gray, the heads of most of the cubes have even y- and z- coordinates. Since (a) and (b)
have roughly equal number of coloured squares, the heads of the cubes could have, with
equal probability, either even or odd x-coordinates. The data are for system size L = 150,
chemical potential µ = 5.5, and density ρ ≈ 0.958.
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Figure 4.8: Temporal evolution of (a) the eight sublattice densities ρi, i = 0, . . . , 7 and (b)
|Lx|, |Ly|, |Lz| when the system is in a columnar phase. The data are for µ = 5.5, ρ ≈ 0.958,
and system size L = 150.

to try to construct the Landau theory in terms of the order parameter vector L. Here,

we demonstrate that while such a Landau theory correctly captures the low density dis-

ordered phase, the layered phase, and the sublattice phase, as well as phase transitions

between them, it does not allow for the possibility of a columnar phase. To account for

the columnar phase, we include the symmetry-allowed couplings to the columnar vector

C and write down a coupled theory for L and C. This augmented Landau theory correctly

predicts the existence of a columnar phase, as well as the nature of the transition to the

columnar phase.

We start by constructing the functional only in terms of L. The symmetries of the Landau

functional F ({Lα}) are that it is invariant under {Lα ↔ −Lα} for α = (x, y, z) and cyclical

permutations of the indices (x, y, z). With these constraints, the most general functional is

F = aL|L|2 + bL|L|4 + 2λL(L2
xL2

y + L2
z L2

y + L2
xL2

z ), (4.7)

where we have truncated the expansion upto fourth order. To make sure that F goes to

+∞ when |L| → ∞, we require that bL > 0 and λL > −3bL/2. The Landau theory in

Eq. (4.7) is that of O(3) model with a cubic anisotropy.

The equilibrium phase is obtained from the global minimum of F , and is obtained from
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the solutions of ∇LF = 0. In component form, these equations are

2aLLx + 4bLL3
x + 4Lx(bL + λL)(L2

y + L2
z ) = 0, (4.8)

2aLLy + 4bLL3
y + 4Ly(bL + λL)(L2

x + L2
z ) = 0, (4.9)

2aLLz + 4bLL3
z + 4Lz(bL + λL)(L2

y + L2
x) = 0. (4.10)

The solutions to Eqs. (4.8)–(4.10) may be found in closed form. We find that the so-

lutions are of the form (0, 0, 0), (l, 0, 0), (s, s, s) and (c, c, 0) or its cyclic permutations.

Substituting into Eqs. (4.8)–(4.10), the equations satisfied by l, s, c are

2bLl2 + aL = 0, (4.11)

(6bL + 4λL)s2 + aL = 0, (4.12)

(4bL + 2λL)c2 + aL = 0. (4.13)

The stability of the phases is determined by examining the HessianH(L0) defined as

H(L0)αβ =
∂2F

∂Lα∂Lβ

∣∣∣∣∣∣
L=L0

, (4.14)

where α and β run over the indices (x, y, z). For L0 to be local minimum or locally stable,

we require that the three eigenvalues of the Hessian, calculated at L0, are all positive.

For the disordered phase (0, 0, 0), the Hessian is

H(0, 0, 0) =


2aL 0 0

0 2aL 0

0 0 2aL

 , (4.15)

whose three eigenvalues are all equal to 2aL. For the eigenvalues to be positive, we require

that aL > 0.
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For the layered solution (l, 0, 0), the Hessian is

H(l, 0, 0) =



−4aL 0 0

0 −
2aLλL

bL
0

0 0 −
2aLλL

bL


, (4.16)

whose eigenvalues are the diagonal entries in Eq. (4.16). For the eigenvalues to be posi-

tive, we require that aL < 0 and λL > 0.

For the sublattice solution (s, s, s), the Hessian is

H(s, s, s)=



−
4aLbL

3bL+2λL
−

4aL(bL+λL)
3bL+2λL

−
4aL(bL+λL)

3bL+2λL

−
4aL(bL+λL)

3bL+2λL
−

4aLbL
3bL+2λL

−
4aL(bL+λL)

3bL+2λL

−
4aL(bL+λL)

3bL+2λL
−

4aL(bL+λL)
3bL+2λL

−
4aLbL

3bL+2λL


, (4.17)

whose eigenvalues are −4aL, 4aLλL/(3bL + 2λL), and 4aLλL/(3bL + 2λL). For the eigen-

values to be positive, we require that aL < 0 and λL < 0.

For columnar solution (c, c, 0), the Hessian is

H(c, c, 0) =



−
4aLbL

2bL+λL
−

4aL(bL+λL)
2bL+λL

0

−
4aL(bL+λL)

2bL+λL
−

4aLbL
2bL+λL

0

0 0 −
2aLλL

2bL+λL


, (4.18)

whose eigenvalues are −4aL, 4aLλL/(2bL + λL), and −2aLλL/(2bL + λL). The ratio of the

second and third eigenvalues is −2. This implies that the three eigenvalues cannot be
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Disordered

LayeredSublattice

Figure 4.9: Phase diagram in the λL-aL plane for the Landau theory of Eq. (4.7). The thick
red and blue lines represent lines of continuous transition, whereas the dotted brown line
is a first order transition line. The three phases meet at the multicritical point (0, 0).

made simultaneously positive. Thus, the columnar solution is not a stable solution.

From the above analysis, we find that there exists a unique stable solution for each choice

of aL and λL. For aL > 0 and any λL, the only stable phase is the disordered phase where

L = 0. For aL < 0 and λL > 0, we find that stable solution is a layered phase, where L is

a one-component vector of the form (l, 0, 0). For the case where aL < 0 and λL < 0, the

stable solution is a sublattice phase, where L is vector of the form (s, s, s).

These observations are summarized in the phase diagram shown in Fig. 4.9. The disordered-

layered transition and disordered-sublattice transitions are both continuous and, within

Landau theory, belong to the universality class of the O(3) model with cubic anisotropy.

On the other hand, the sublattice-layered transition is discontinuous, as the orientation

of the L vector changes abruptly from along one of the axes to (1, 1, 1) or an equivalent

direction.

The simplest Landau-type theory described in Eq. (4.7) predicts disordered, layered and

sublattice phases, but disallows a columnar phase. To construct a minimal theory that pre-
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dicts all the phases that are seen in the simulations, we extend the functional in Eq. (4.7)

to explicitly depend on the columnar vector C(~r) defined earlier. Here, C(~r) should be

thought of as an independent coarse-grained vector field since, 〈Cx(~r)〉 =
〈
Ly(~r)Lz(~r)

〉
, can-

not be fully determined in terms of 〈Ly(~r)〉 and 〈Lz(~r)〉. The Landau functional F ({Lα,Cα})

should be invariant under Lα ↔ −Lα, and Cα ↔ −Cα for α = (x, y, z) and under cycli-

cal permutations of the indices (x, y, z). The augmented functional, truncated upto fourth

order is:

F = aL|L|2 + bL|L|4 + 2λL(L2
xL2

y + L2
z L2

y + L2
xL2

z )

+ac|C|2 + bc|C|4 + 2λc(C2
xC

2
y + C2

z C2
y + C2

xC
2
z )

−µ(CxLyLz + CyLxLz + CzLxLy), (4.19)

where µ couples the L and C vectors. This functional is similar to that proposed for study-

ing spin-flop transitions in perovskites, where the anisotropic version was studied [143].

We restrict ourselves to µ > 0 since this correctly describes the situation in a columnar

ordered configuration of our system of cubes (with our definitions of these vectors, it is

easy to see that Cx has the same sign as the product LyLz in a columnar ordered state with

columnar vector pointing in the x direction, and similarly for columnar vectors pointing in

the other Cartesian directions). As we demonstrate below, this augmented Landau theory

now accounts for the presence of a stable columnar phase in addition to the other stable

phases already obtained by thinking entirely in terms of L

The extended functional in Eq. (4.19) has seven independent parameters and six variables.

Deriving analytic equations of the phase boundary is not possible as that would require

us to simultaneously solve six coupled equations. Rather, we focus on showing that there

are parameter regimes for which the columnar phase, as well as the other phases exist and

are stable. This is achieved by assigning numerical values to the parameters values and

solving the coupled equations for equilibrium numerically. The stability is checked using
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the HessianH(L,C):

H(L0,C0)αβ =
∂2F

∂φα∂φβ

∣∣∣∣∣∣
L=L0,C=C0

, (4.20)

where φ runs over the components of the vectors L and C, is now a 6 × 6 matrix.

For analysing the functional in Eq. (4.19) to determine its global minima, we consider the

four different cases discussed below. For each of these cases, we set µ = 2 and fix the

parameters bL and bc to be large and positive (bL = bc = 8).

Case 1. aL > 0, ac > 0: In this case, in the absence of the coupling (µ = 0), both L = 0,

and C = 0. For small positive µ, we expect the system to be still in the disordered phase.

We confirm this by setting aL = ac = 1.2, and treating λL and λc as free parameters. For

this case, whatever be the values and sign of λL and λc, we find that the disordered phase

is the only stable phase.

Case 2. aL > 0, ac < 0: In this case, we expect that L = 0, and C , 0. Such solutions are

unphysical, and we expect that the mapping from the microscopic variables of the model

to the parameters of the Landau theory is such that, this regime is never reached.

Case 3. aL < 0, ac > 0: In this case, in the absence of coupling (µ = 0), the L shows both

layered and sublattice phases depending on the sign of λL. When µ , 0, for these phases to

be valid, C should be zero in the layered phase and have three non-zero components in the

sublattice phase. We confirm that this is indeed the case by determining numerically the

phase diagram for aL = −1.2, ac = 1.2. We find that the system is layered when λL > 0,

and has sublattice order when λL < 0, irrespective of the sign of λc. The schematic λL-λc

phase diagram for this case, obtained by minimizing the free energy at different sample

phase points, is summarized in Fig. 4.10.

Case 4. aL < 0, ac < 0: In this case, we expect that when λc > 0, then the minimum

of the free energy could occur for non-zero C. We determine the phase diagram for

aL = ac = −1.2. We find that for λc > 0 and λL > 0, there is a regime where the system

is in a columnar phase. For large λc and λL, there are spurious unphysical solutions. For
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Layered

Sublattice

Figure 4.10: The schematic phase diagram in the λL-λc plane for the Landau free energy
functional in Eq. (4.19) for the case aL < 0, ac > 0. The other parameters are bL =

bc = 8, µ = 2. The line λL = 0 is a first order line, separating the layered phase and the
sublattice phase.

the other cases, the system is in a sublattice phase. The schematic λL-λc phase diagram

for this case, obtained by minimizing the free energy at different sample phase points, is

summarized in Fig. 4.11.

4.5 Disordered-Layered Transition

In this section, we describe the phase transition from disordered phase to layered phase.

To do so, we first define susceptibility χi, and Binder cumulant Ui associated with the

order parameter qi [see Eq. (4.4)–(4.6) for definition] as

χi = L3(〈q2
i 〉 − 〈qi〉

2), (4.21)

Ui = 1 −
ci〈q4

i 〉

〈q2
i 〉

2
, (4.22)
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ColumnarSublattice

Figure 4.11: The schematic phase diagram in the λL-λc plane for the Landau free enrgy
functional in Eq. (4.19) for the case aL < 0, ac < 0. The other parameters are bL = bc =

8, µ = 2. The dotted lines which are lines of first order transition, separate the columnar
phase and the sublattice phase.

where c1 = c2 = 9/15 and c3 = 1/3. The values of ci are chosen so that the Binder

cumulant is zero in the disordered phase. We also define the deviation from the critical

point as

ε = µ − µc, (4.23)

where µc is the critical value of the chemical potential.

We find that the disordered-layered transition is continuous. A suitable order parameter

to study this transition is q1 which is zero in the disordered phase and non-zero in layered

phase. The critical behaviour may be obtained by studying the non-analytic behaviour of

the different physical quantities, which, near the transition, is captured by the finite size
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scaling behaviour:

q1(ε, L) ' L−β/ν fq(εL1/ν), (4.24)

χ1(ε, L) ' Lγ/ν fχ(εL1/ν), (4.25)

U1(ε, L) ' fU(εL1/ν). (4.26)

where fq, fχ and fU are scaling functions, and ν, β, γ and α are the usual critical exponents.

From the Landau theory presented in Sec. 4.4, we expect that the transition belongs to the

universality class of three dimensional O(3) model with cubic anisotropy. In O(N) models

with cubic anisotropy, the phase transition is in the symmetric O(N) universality class if

N < Nc and is in the cubic anisotropic universality class if N > Nc. Early work, using

perturbative renormalisation group theory [144, 145, 146, 147, 148], high temperature

series expansion [149] and non-perturbative RG calculations [150] suggests that 3 < Nc <

4. Further work using RG calculations upto three loops [151, 152], four loops [153, 154],

five loops [155, 156, 157, 158] find Nc . 3, while six loop RG calculations suggest

Nc ≈ 2.89 [159], while recent calculations using six loop ε-expansion suggest that Nc =

3 [160]. Monte Carlo simulations are consistent with Nc = 3 [161]. However, in three

dimensions, the exponents for the model with cubic anisotropic critical are very close to

the exponents for the Heisenberg model [159]. Therefore, we use the exponents for the

three-dimensional Heisenberg model to analyze the data. In the following, we check that

the data near the critical point are consistent with these exponents.

The critical point may be determined by the crossing point of the data for Binder cumu-

lant for different system sizes. From this criterion, we find that the critical parameters are

µ ≈ 2.063 corresponding to ρ ≈ 0.718 [see Fig. 4.12(a)]. The data for Binder cumulant,

susceptibility, and order parameter for different system sizes collapse onto one curve when

scaled as in Eqs. (4.24)-(4.26) with the critical exponents for Heisenberg model in three

dimensions, as shown in Fig. 4.12. We use the numerical estimates for the critical expo-
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Figure 4.12: (a) The variation of Binder cumulant U1 with chemical potential µ for dif-
ferent system sizes. The data for (b) Binder cumulant U1, (c) order parameter q1 and (d)
χ1 for different system sizes collapse onto a single curve when scaled as in Eqs. (4.24)-
(4.26) with the critical exponents of the three dimensional Heisenberg model: ν = 0.704,
β = 0.362, and γ = 1.389.

nents ν = 0.704, β = 0.362 and γ = 1.389 [162]. We conclude that the disordered-layered

transition is consistent with the universality class of the O(3) model.

4.6 Layered-Sublattice Transition

In this section, we study the the nature of the layered-sublattice phase transition. We

analyze the transition using the order parameter q3, defined in Eq. (4.6), which is zero in

the layered phase and non-zero in the sublattice phase.

Figures 4.13(a) and (b), show the time evolution of density and q3 after equilibration. For

clarity, we have also superimposed a running average of density, where each point has

been averaged over 40 consecutive data points. Both ρ and q3 exhibit two states, one
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in which density is higher and q3 is non-zero and another where density is lower and q3

is approximately zero. The system fluctuates in time between these two states. This is

characteristic of a first order transition where both the sublattice and layered phases have

the same free energy at the transition point.

The probability distribution for density, P(ρ), and q3, P(q3) for three different values of µ,

close to the transition point, are shown in Figs. 4.13(c) and (d) respectively. Note that we

have used the coarse-grained density averaged over a fixed rolling window to obtain the

distribution. As the transition point is crossed, it can be seen that the distribution changes

from having more area at the lower density to having more area at the higher density.

From the value of µ for which P(ρ) has roughly same height, we conclude that the critical

chemical potential is µ ≈ 2.67. Similar features may be seen for P(q3). Finally, the effect

of system size on the distributions at the critical activity are studied in Figs. 4.13(e) and

(f). It can be seen that the peaks become higher and sharper with increasing system size.

The jump in density at the transition is ≈ 0.001. These are again characteristic of a first

order transition, and we conclude that the layered-sublattice transition is discontinuous.

4.7 Sublattice-Columnar Transition

In this section, we study the the nature of the layered-sublattice phase transition. We

analyze the transition using the order parameter q3, as defined in Eq. (4.6). q3 is zero in

the columnar phase and non-zero in the sublattice phase.

Figures 4.14(a) and (b), show the time evolution of density and q3 after equilibration. For

clarity, we have also superimposed a running average of density, where each point has

been averaged over 10 consecutive data points. Both ρ and q3 exhibit two states, one

in which density is higher and q3 is non-zero and another where density is lower and

q3 is approximately zero. The system fluctuates in time between these two states. This

is characteristic of a first order transition or co-existence, where both the sublattice and
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Figure 4.13: The time evolution of (a) density ρ and (b) q3 when µ = 2.67 and L = 100.
We have superimposed a running average of density, where each point has been averaged
over 40 consecutive data points. The probability density function for (c) ρ and (d) q3

for different values of µ near the transition point for a system of size L = 100. The
probability density function for (e) ρ and (f) q3 for different values of L at the transition
point [µ = 2.670 for L = 80, and L = 100, and µ = 2.669 for L = 120].
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columnar phases have the same free energy at the transition point. The jump in density

across the transition is ≈ 0.0025.

The probability distribution for density, P(ρ), and q3, P(q3) for three different values of

µ, close to the transition point, are shown in Figs. 4.14(c) and (d) respectively. Note that

we have used the smoothened density to obtain the distribution. As the transition point is

crossed, it can be seen that the distribution changes from having more area at the lower

density to having more area at the higher density. From the value of µ for which P(ρ)

has roughly same height, we conclude that the critical chemical potential is µ ≈ 5.395

for L = 60. Similar features may be seen for P(q3). Finally, the effect of system size on

the distributions at the critical activity are studied in Figs. 4.14(e) and (f). We find that

the critical point has a strong finite size dependence. For instance, if the critical density

ρc(L) is defined as the midpoint between the two peaks in the distribution P(ρ), then we

find ρc(50) ≈ 0.9522, ρc(60) ≈ 0.9553, and ρc(70) ≈ 0.9572. Since the difference in

ρc(L) are of the order of the jump in ρ (approximately 0.0025), we plot the the probability

distribution of ∆ρ where ∆ρ = ρ − ρc(L). From Fig. 4.14(e), we find that, with increasing

system size, the peaks become higher and sharper. The same features are seen for P(q3)

[see Fig. 4.14(f)]. These are characteristics of a first order transition, and we conclude

that the sublattice-columnar transition is weakly first order.

4.8 Stability of Columnar Phase

In our Monte Carlo simulations, we are unable to equilibrate the system efficiently in

the high density phase for densities larger than ρ ≈ 0.96 for system sizes larger than

L ≥ 100. For these densities, we find that the system often gets stuck in very long-

lived metastable states, which consist of layers of size 2 × L × L, each layer having a

two dimensional columnar order. However, columnar order in consecutive layers may

have different orientations. We illustrate with a typical example that was obtained in
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Figure 4.14: The time evolution of (a) density ρ and (b) order parameter q3 when µ =

5.395 and L = 60. We have superimposed a running average of density, where each point
has been averaged over 10 consecutive data points. The probability density function for
(c) ρ and (d) q3 for different values of µ near the transition point for a system of size
L = 60. The probability density function for (e) ∆ρ = ρ − ρc(L), where ρc(L) is midpoint
between the two peaks in the distribution, and (f) q3, for different values of L at the
transition point [µc = 5.26, ρc ≈ 0.9522 for L = 50, µc = 5.395, ρc ≈ 0.9553 for L = 60
and µc = 5.48, ρc ≈ 0.9572 for L = 70].
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simulations. Consider a system that is layered in the z-direction. We define the columnar

order parameter for layer n, Qz(n) = Qz(n)eiθz(n), as

Qz(n) eiθz(n) = φz
er(n) − φz

or(n) + i
[
φz

ec(n) − φz
oc(n)

]
, (4.27)

where φz
er(n) and φz

or(n) are the packing fraction of the cubes with heads lying on even

and odd rows of the n-th plane respectively, while φz
ec(n) and φz

oc(n) are the corresponding

packing fractions on even and odd columns. For a layer with perfect columnar order, θz

takes one of four values 0, π/2, π, 3π/2. Similar definitions hold for Qx(n) and Qy(n).

In Fig. 4.15, we show the variation of Qz(n) and θz(n) of a configuration that is layered

in the z-direction (even planes are occupied), obtained after equilibrating for 107 Monte

Carlo steps. It can be see that while the magnitude remains constant across the even

layers, θz(n) = 0 or θz(n) = π/2, showing that the columnar order in different planes have

different orientations. We find that the system remains stuck in this meta stable phase for

upto and beyond 107 Monte Carlo steps.

Though such metastable states exist, we will show below that the true equilibrium state

is one with the same columnar order in all the layers. The presence of cubes that com-

mon to adjacent layers tend to create an aligning interaction. This may be demonstrated

though a perturbative calculation. This calculation is similar to the high density expansion
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developed for hard squares and rectangles [69, 70, 80, 81, 72].

We start by assuming that the system is layered in the z-direction (even planes), and

that z is large enough so that there is perfect columnar order in each layer. We set up a

perturbation expansion based on number of cubes with heads in odd planes. To do so, we

introduce two activities, z for cubes with heads on even planes and z′ for cubes with heads

on odd planes. When z′ = 0, the layers are independent, and the problem reduces to that

of 2 × 2 hard square lattice gas model. We will determine, to first order in perturbation

theory, the difference in free energy between a state in which all planes have even-row

order and states in which one plane is misaligned with either odd-row order or column-

ordered. We will denote these states by S α, whose partition function Lα(z, z′) and the

free-energy Fα(z, z′) = − lnLα(z, z′), where we have set kBT = 1, can be formally written

as

Lα(z, z′) = Lα0 (z) + z′Lα1 (z) + O(z′2), (4.28)

Fα(z, z′) = Fα
0 (z) − z′

Lα1 (z)
Lα0 (z)

+ O(z′2). (4.29)

For S ||, for which all planes have even-row order, the partition function, when there are

no defect cubes (cubes with heads on odd planes), is

L
||

0(z) = [Ωp(L)L/2]L/2, (4.30)

where Ωp(L) is the partition function of a periodic column of size 2 × 2 × L. Consider

a single defect cube that is placed in any of the L/2 odd planes. Within a plane, it can

choose any one of L2 sites. The partition function for S || in the presence of one defect

cube is

L
||

1(z) =
L3

4
[Ωp(L)]

L2
4

[Ωo(L−2)
Ωp(L)

]2

+

[
Ωo(L−2)

Ωp(L)

]4 , (4.31)

where Ωo(L − 2) is the partition function of an open column of size 2 × 2 × (L − 2).

In Eq. (4.31), the first term represents the correction coming when the head of the defect
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cube is placed on an even row and second term corresponds to when the head of the defect

cube is placed on an odd row.

Consider now a state S ro in which one of the planes (say z = 0) is odd-row ordered. Since

the partition function with no defect is identical to that for S ||, the difference in partition

function appears only in the first-order correction term:

Lro
1 (z) = [Ωp(L)L/2]

L
2−2

[ (L
2
− 2

) L2

2
×{

[Ωo(L − 2)Ωp(L)
L
2−1]2 + [Ωo(L − 2)2Ωp(L)

L
2−2]2

}
+ 2L2Ωo(L − 2)3Ωp(L)L−3

]
. (4.32)

The difference in free-energies, ∆F ||,ro(z, z′), may be written as

∆F ||,ro(z, z′) = Fro(z, z′) − F ||(z, z′),

= z′
L||1(z) − Lro

1 (z)

L
||

0(z)

 . (4.33)

Simplifying Eq. (4.33), we obtain

∆F ||,ro(z, z′) = L2z′
[Ωo(L − 2)

Ωp(L)

]2

−

[
Ωo(L − 2)

Ωp(L)

]2

. (4.34)

Since the right hand side is a perfect square, ∆F ||,ro(z, z′) > 0 for any L. Thus, the state

with one misaligned row-ordered state has higher free energy, and we conclude that intro-

duction of defect cubes results in an effective aligning interaction that tends to make all

the planes have columnar order with the same orientation.

The large z behaviour of ∆F ||,ro(z, z′) may be determined by noting that for large L,

Ωp(L) = apλ
L and Ωo(L − 2) = aoλ

L−2 where λ is the largest root of the equation

x2− x−z = 0. From Ref. [72], we obtain ap = 1, ao = λ/(2λ−1) and λ = (1+
√

1 + 4z)/2.
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Setting z′ = z and evaluating in the limit of z � 1, we obtain

∆F ||,ro(z) =
L2

4z
+ O(z−3/2). (4.35)

It is straightforward to generalize this calculation to the state S ce in which one of the

planes has column-order. We omit the calculation, but we obtain a similar increase in free

energy when a layer is misaligned.

We now ask whether metastable states, as seen in Fig. 4.15, are due to finite size effects

or due to the algorithm being unable to equilibrate the system at high densities within

available computer time. Though a misaligned plane results in a rise in free energy as

Eq. (4.35), there is a gain in entropy ln 2 per column when there are no defect cubes.

Thus, we can identify a crossover length L∗ at which the free energy gained by alignment

of a plane is balanced by the entropy lost due to alignment of such a plane. Equating the

two free energies, ∆F ||,ro(z, z′) ∼ ln 2, we obtain

L∗ =
√

4z ln 2. (4.36)

For the metastable state shown in Fig. 4.15, z = 403.43 for the state , we obtain L∗ ≈ 33.

For system sizes smaller than this length, the misaligned phases are favoured, but are a

finite size effect. However, since the system lengths that we have simulated are much

larger than L∗, we conclude that the presence of such metastable states are due to an

inability of the Monte Carlo algorithm to equilibrate states with misaligned planes for

large z, due to large entropic barriers.

4.9 Summary and conclusions

In this chapter we studied the phases and the phase transitions in a system of 2×2×2 hard

cubes on a three dimensional cubic lattice. We show the existence of four different phases.
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disordered layered sublattice columnar

Figure 4.16: Numerically obtained phase diagram for 2 × 2 × 2 hard cubes. The red dot
represents a continuous transition and the dotted lines represent regions of coexistence.

In order of increasing density, these are a disordered phase, a layered phase in which the

system breaks up into L/2 interacting slabs of size 2 × L × L each having fluid-like order,

a solid-like sublattice phase, where the cubes preferentially occupy one sublattice, and a

columnar phase in which the system breaks up into L2/4 columns of dimension 2 × 2 × L

with a fluid-like order within a column. The disordered-layered transition is shown to be a

continuous transition that is consistent with the universality class of the three dimensional

O(3) model with cubic anisotropy. The other two transitions – layered-sublattice and

sublattice-columnar – are shown to be discontinuous. The phase diagram is summarized

in Fig. 4.16.

We formulated a Landau theory, consistent with the symmetries of the system, that is

able to describe all the phases seen in the Monte Carlo simulations. Within the minimal

functional, as described in Eq. (4.7), based only on the layering vector L, we find that

the columnar phase is unstable for the full range of the parameters, while it predicts the

existence and stability of disordered, layered and sublattice phases. It also predicts the

disordered-layered and disordered-sublattice transitions to be continuous and belong to

the universality class of the three-dimensional O(3) model with cubic anisotropy. The

layered-sublattice transition is predicted to be first order. To obtain a stable columnar

phase, we extended the free energy functional to explicitly depend on the columnar vector

C [see Eq. (4.19)]. Within this extended functional, it is possible to show the existence

and stability of all the different phases observed in simulations.

The results in this paper are not consistent with the theoretical predictions of density

functional theory. Density functional theory predicts that 2 × 2 × 2 hard cubes cubes

undergo transitions from a disordered phase to layered phase to a columnar phase at high

densities [21]. However, it does not predict the sublattice phase, that is seen in our Monte
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Carlo simulations. Understanding why the theory fails, and how it should be modified to

give the correct predictions is a promising area for future study. For 6 × 6 × 6 cubes, the

theory predicts a transition from a disordered to solid to two types of columnar phase [21].

Testing these predictions in simulations would also be of interest.

The results in this paper are also in contradiction to earlier Monte Carlo simulations [20],

wherein no phase transitions were found even though the simulations were performed

close to full packing (in Ref. [20], the problem of cubes correspond to σ = 2). This

discrepancy could be due to small system sizes that were studied (L = 18, 24) in Ref. [20]

compared to the systems sizes studied in the current paper (L upto 200).

The existence of a sublattice phase is quite surprising. It would appear that as you in-

troduce vacancies at full packing, the sublattice phase gets destabilised in favour of the

columnar phase. However, a larger number of vacancies somehow stabilizes the sublattice

phase. This feature is also seen in the system of freely-rotating cubes in the continuum,

whereby a large concentration of vacancies stabilise the crystalline phase at anomalously

low densities [117, 127]. Also, it implies that the interactions between the different layers

in the layered phase are not weak. If they were weak, then we would expect that once the

system becomes layered, the problem becomes effectively a problem of hard squares in

two dimensions. This lower dimensional system does not exhibit a sublattice phase.

In the continuum, the system of parallel hard cubes undergoes a continuous freezing tran-

sition from a disordered fluid phase to a solid phase as density is increased [131, 132],

consistent with theoretical predictions using density functional theory [133]. The con-

tinuum limit may be reached by determining the phase diagram for k × k × k cubes and

extrapolating for large k. Preliminary simulations for 3× 3× 3 cubes suggest that the sub-

lattice phase does not exist, but the layered and columnar phases exist. Thus, for larger

k, the layered-columnar transition would appear to be similar to the disordered-columnar

transition in k × k hard squares. For this model, high density expansions suggest that the

critical density tends to an asymptotic value that is less than one for large k [80]. If this
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were true, the continuum problem should have two transitions. Re-examining the problem

of parallel hard cubes in the continuum is a promising area for future study.
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There is a class of phase transitions where the transition to the ordered state is driven by a gain in entropy. These 

transitions are manifested in experimental systems like freezing in hard-spheres of PMMA colloids, nematic 

transitions in liquid crystals, etc. The minimal models for studying these transitions are volume exclusion models, in 

which the constituent particles are not allowed to intersect. When placed on lattices, these models are called hard-

core lattice gas models(HCLGs). These models serve as nice abstractions for actual experimental systems and 

understanding their phase diagram on lattice is helpful in general understanding of entropy-driven phase transitions. 

In three-dimensions, it is more complicated to study them because of the

lack of efficient algorithms to simulate such systems. Traditional

evaporation-deposition algorithms fail to equilibrate at high densities or for

large exclusion volumes. So, an adapted version of grand canonical Monte

Carlo algorithm with cluster moves thas been implemented with certain

optimisations to study such systems. This algorithm has been useful in

equilibrating systems at densities close to full-packing or at full-packing.

The algorithm can also be easily parallelised.

Here we study two problems on a cubic lattice: (1) hard rods of length k

and (2) hard cubes of size 2 × 2 × 2. We obtain the detailed phase diagram

and characterize the nature of the phase transitions for both these models.

                                                                                                                                                 

For hard cubes of size 2 × 2 × 2 on a cubic lattice, the phases are:

disordered,  layered, sublattice and columnar in the increasing order of

density. In the layered phase, the system breaks up into two dimensional

slabs in which the density of the cubes are periodic with period 2 along the

direction perpendicular to the slabs. The disordered-layered transition is

continuous and was found to be consistent with Heisenberg universality class with cubic anisotropy. The next phase is

the sublattice phase, in which the density of cubes is periodic in all the three perpendicular directions with a period 2.

And the high density phase is the columnar phase in which the system breaks up into a set of columns and the 

density of cubes is periodic along the two mutually perpendicular directions with a period 2. Both the layered-

sublattice and the sublattice-columnar transitions are first order. 

Fig 1 : Snapshot of a sublattice 

phase seen in a system of hard 

cubes of size 2 × 2 × 2
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