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Chapter 5

Conclusion and outlook

In this thesis based on [47, 48] we extended the amplituhedron program to a large class
of scalar field theories. We have shown that there are a class of convex polytopes (ac-
cordiohedra) which can be embedded in kinematic space. We provided a prescription to
get the tree-level planar amplitude as a weighted sum of canonical functions associated
with all the accordiohedra of a given level n for ¢” theories. We introduced the notion
of primitive accordiohedra to simplify our computations and provided a formula for the
number of primitives at arbitrary level n. We provided the results of the implementation

of our prescription to compute weights.

The thesis contains the following results:

e Planar amplitudes from accordiohedra : We provide an embedding of the ac-
cordiohedron ﬂCﬁ;n into kinematic space and show that a weighted sum of the

canonical functions of all the primitive accordiohedra of a given dimension n does

indeed produce the right planar p + n(p — 2) amplitude for ¢” interactions .

e Formula for counting primitives: We prove a formula to count the number of
primitive accordiohedra of a given dimension n and classify them for n < 3 for any

¢” interactions.
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o Computation of weights: We provide a prescription to find the weights for accor-
diohedra of any dimension n and demonstrate our prescription to compute weights

forn <3 andall p < 12.

o Factorisation: We prove that the accordiohedra AC zlj,n factorise geometrically i.e.
on any facet X;; = 0, the accordiohedron ﬂC[’in factorises into product of lower
dimensional accordiohedra

P — P P
AC,, = AC,,, X AC, .,
X;j =0
where Py and P, are such that Py U P, U (ij) = P.
P is the p-angulation of the polygon {i, i + 1,..., j} and P, is the p-angulation of

oj+1,...,n,...,i.

Re-formulating scattering amplitudes as differential forms on positive geometries (suc-
cinctly called the Amplituhedron program) has had profound impact on how we under-
stand Quantum field theories and how properties like unitarity and locality are a natural
consequence of the positive geometries. In theories like N' = 4 Super Yang Mills theory,
the Amplituhedron program offers conceptual as well as striking technical advancements
in the understanding of planar S-matrix. In the non super-symmetric world, these ideas
were extended to bi-adjoint scalar theory in [43] where it was shown that the correspond-
ing amplituhedron is an associahedron in Kinematic space and the canonical form on this

associahedron was proportional to the scattering amplitude.

These ideas were extended from cubic to quartic interactions in [47] where the underlying
positive geometry was Stokes polytope. However unlike Associahedron, which is unique
(in a given dimension), there are several Stokes polytopes in any given dimension and
it was shown that one had to sum over canonical forms of all such polytopes to obtain
scattering amplitude of ¢* theory. Not all Stokes polytopes contributed equally but one

had to assign different weights to each Stokes polytope. In [47] it was argued that these
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weights were not assigned to a given Stokes polytope but to an equivalence class of such
polytopes which were related to each other by cyclic permutations and that in each such
class, one could choose a representative that we called primitive. Whence the computation
of scattering amplitude reduced to the problem of finding all the primitives and assigning

weights to them.

In this thesis, continuing along the lines of [43] we extended the Amplituhedron program
to (tree-level) planar amplitudes for massless scalar field theories with ¢” interactions.
We have shown that the positive geometry underlying scattering amplitudes in this theory
is a class of polytopes called accordiohedron. Accordiahedron is a family of polytopes

whose members include associahedron and Stokes Polytope.

Just as in the case of quartic interactions there exists no single accordiohedron of a given
dimension n and a weighted sum of canonical forms of all the accordiohedra of a given di-
mension n does indeed produce the full planar amplitude. This re-affirms and generalises

the result we had obtained in in the case of quartic interactions.

We gave an enumeration of the number of primitives at arbitrary dimension n and a com-
plete classification of primitive diagrams for n < 3. We then gave a prescription to com-
pute the weights and provided the results for the weights obtained by using our prescrip-

tion for all p > 4inn = 1,2 dimensions and p < 12 forn = 3.

Accordioheron is a very general polytope and one may wonder if they can be used to
extend the Amplituhedron program to Scalar theories with mixed-vertices (e.g. theories
with cubic as well as quartic interactions). It turns out that this is indeed the case [104].
Our work thus shows that the positive geometry underlying planar amplitudes in any

scalar field theory is an Accordioheron.

There are several outstanding questions that arise out of our analysis. In [45] it was shown
that the 1-loop integrand of ¢* theory also corresponds to canonical form on a polytope

which is well known in mathematical literature called Halohedron [105]. Whether this
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idea can be extended to 1-loop integrand of ¢” theories remains to be seen.

One of the most striking results obtained in [43] was the derivation of CHY formula for
bi-adjoint scalar ¢ interactions from the canonical form on kinematic space associahe-
dron. Although CHY integrands exist for ¢” interactions for p > 3 they do not admit any
such geometric interactions . Our hope is that understanding of kinematic space Accor-

diohedron is the first step in “geometrizing” the CHY formula for ¢” theories.

There is also an obvious question of how to go beyond planar amplitudes and is there a
polytope realisation for full tree-level scattering amplitude of ¢” theory. In the massless ¢°
case, certain progress in this direction was already reported in [99,106,107]. It was shown
that a wider class of amplitudes than simply planar ones could be computed with the cor-
responding polytopes being generalisation of associahedra known as Cayley polytopes,
which is a member of a “complimentary" family of polytopes known as graph associahe-
dra which also had deep connections with geometry of scattering amplitudes [99, 100]. In
contrast to accordiohedron, graph associahedra can not always be obtained by considering
dissections of polygons. Graph associahedra is a set of polytopes which includes, associ-
ahedron, permutahedron , halohedron etc. Many of these members, e.g. Permutahedron
and Halohedron are associated to amplitudes in bi-adjoint scalar theory with non-planar
and 1-loop amplitudes respectively. It is intriguing that one class of polytopes helps one
to move beyond tree-level and planarity in bi-adjoint ¢ theories and the other class helps
one move beyond cubic vertices. It will be interesting to see if by generalising accordio-
hedra (to more general polytopes associated with p-angulations) we can go beyond planar

diagrams in ¢” theory.
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Synopsis

Scattering amplitudes are at the heart of high energy physics. They lie at the intersection
between quantum field theory and collider experiments. The usual method of computing
scattering amplitudes using a Lagrangian and evaluating Feynman diagrams give us a nice
physical picture and makes locality manifest [1]. It has been known for quite sometime
now that the method of Feynman diagrams is not very efficient in computing amplitudes,
as the number of diagrams grows rapidly with external particles though due to various
seemingly miraculous cancellations the final answer obtained by summing over all the
diagrams can be remarkably simple [2]. Feynman diagrams are also not very useful for
revealing hidden symmetries/structures like the dual conformal invariance of planar N =
4 SYM or the BCJ Double copy relations which relate Yang Mills and gravity amplitudes
[3-14].

Over the years various on-shell methods have been developed to compute scattering
amplitudes for various theories without using the Lagrangian which have been collec-
tively called the amplitudes program [15—19]. The amplitudes program consists of var-
ious different methods like Unitarity cuts [20-28], BCFW recursion relations [29-34],
CHY [35-38] etc it is not yet understood how these different methods are manifestly re-
lated though they all compute the same scattering amplitude. One of the major goals of
the amplitudes program is to unify these seemingly different methods into a single frame-

work.

One such possible candidate framework was proposed in [39-42] for planar N = 4 SYM



where scattering amplitudes were re-formulated in a space-time independent way as dif-
ferential forms on a positive geometry living in an auxiliary grassmanian space the Am-
plituhedron. In this remarkable new picture scattering amplitudes are to be thought of
more fundamentally as differential forms rather than functions, unitarity and locality of
the theory emerged from the geometric properties of the amplituhedron rather than being

inputs to the theory. It also made manifest the dual conformal invariance of N' =4 SYM.

In the non-supersymmetric world this picture was also shown to be valid for tree level am-
plitudes for bi-adjoint ¢* theory [43] where a precise connection was established between
scattering forms and a polytope called the associahedron living in kinematic space. It was
further shown that various properties like soft limits, recursion relations follow from the
geometric properties of the asociahedron. Another beautiful result was established in [43]
that gave a new understanding of the CHY formulae for tree-level scattering amplitudes.
It was shown that the CHY integrand for ¢* theory is a pushforward of the canonical scat-
tering form on the associahedron. The program was further extended to 1-loop amplitudes

in ¢* theory [44,45].

It is quite natural to ask for what class of theories does such a formulation exist. In
particular since tree level CHY formulae exist for amplitudes in a wide class of quantum
field theories including tree-level planar diagrams in scalar field theories with ¢” (p > 3)
interactions [46]. Thus it is a natural to see if the Amplituhedron program can be extended

for all ¢” (p > 3) theories.

In this thesis we answer this question in the affirmative by showing that there exists a
precise connection between scattering forms and a polytope called the Accordiohedron

living in kinematic space for all scalar ¢” interactions [47,48].

The kinematic space K, of n massless momenta is the @ dimensional space spanned by
the independent Mandelstram variables s;; = (p; + p j)z. A more natural basis for particles

with a fixed ordering is given by the planar kinematic variables X;; = (p;+pici+...+pj- D2



We can translate from s;; to the X;; basis using the following relation
Sij = Xist j+ Xi jor = Xi j = Xigr jar- (1)

The planar kinematic variables have a nice interpretation as the diagonal of polygon with
sides p;,...,pj-1. There exists a one to one correspondence between planar tree level
Feynman diagrams in ¢” theory with p + n(p — 2) external legs and p-angulations of a
p + n(p — 2)-gon. We can define a planar scattering form 2, for each Feynman diagram
with p + n(p — 2) legs as the n-form with simple poles when each of the n propagators
Xi ji»--» Xi, j, goes on shell with residue +1. The full planar scattering form is obtained by

summing over all Feynman diagrams and is not unique.

The accordiohedron .?lC’;n is a combinatorial polytope associated with p-angulations of
polygons [49, 50]. It is obtained by starting with any complete p-angulation P of a p +
n(p — 2)-gon and performing recursively a series of Q-flips till no new p-angulations are
generated. There is an embedding of the accordiohedron in kinematic space K,. The
accordiohedra ﬂC;n of a given dimension 7 is not unique for n > 2 and depends on
the reference p-angulation P (unless p = 3). When restricted to the subset of Feynman
diagrams that are vertices of one of the accordiohedra AC ;n then we can define a unique
planar scattering form Q" by demanding that any two diagrams related to each other by
replacing a diagonal with its Q-flip have opposite residues. This unique planar scattering
form turns out to be the canonical form w! , associated with the AC ﬁ,n. The canonical
function mi , can be obtained from the canonical form wi , once we factor out the top

form.

The weighted sum of the canonical functions m, , of all the accordiohedra .?lC;n of a
given dimension n corresponding to all possible p-angulations P with appropriate weights

ap when pulled back onto the accordionedra embedded in kinematic space gives the right



scattering amplitude M,

P
M, = Z ap m;,),
P

We can simplify this procedure by introducing the notion of primitive p-angulations
which are the subset of rotationally inequivalent p-angulations from which all other p-

angulations can be obtained via rotations .

The thesis contains the following results:

e Planar amplitudes from accordiohedra : We provide an embedding of the ac-
cordiohedron ﬂC‘;n into kinematic space and show that a weighted sum of the

canonical functions of all the primitive accordiohedra of a given dimension n does

indeed produce the right planar p + n(p — 2) amplitude for ¢” interactions .

e Formula for counting primitives: We prove a formula to count the number of
primitive accordiohedra of a given dimension » and classify them for n < 3 for any

¢? interactions.

o Computation of weights: We provide a prescription to find the weights for accor-
diohedra of any dimension n and demonstrate our prescription to compute weights

forn <3 andall p < 12.

e Factorisation: We prove that the accordiohedra ﬂCﬁ’n factorise geometrically i.e.
on any facet X;; = 0, the accordiohedron AC, , factorises into product of lower
dimensional accordiohedra

P _ P P
AC, , = AC,,, X AC\ .,
X,‘j =0
where P, and P, are such that P; U P, U (ij) = P.
P is the p-angulation of the polygon {i, i + 1,..., j} and P, is the p-angulation of

hj+1...,n,... i}



We shall now provide a few technical definitions that will useful for elaborating our re-

sults.

Positive geometry

A positive geometry A is a closed geometry [51] with boundaries of all co-dimensions

with a unique differential form Q(A) called its canonical form that satisfies:

1. It has simple poles on the boundary A and only on the boundary of ‘A.

2. Atevery boundary B, the residue of the canonical form is the canonical form of the

boundary
Resp Q(A) = Q(B).
3. If Ais a point then 2(A) = =1 depending on the orientation.
4. For any pair of positive geometries A and B
QA X B) = Q(A) A QAB).
Polytopes and grassmanians are examples of positive geometries.

The Amplituhedron program can be summarised as follows:

For a given theory there is some putative positive geometry living in kinematic space

and when the canonical form is pulled back onto the geometry it gives the scattering

Positive Canonical Scattering
Geometry Form — Amplitude

amplitude.




Accordiohedron

Let A be a convex polygon. Let us consider the division of A into identical p-gons which
we call p-angulation of A. We can represent A as a set of points on the unit circle oriented
clockwise where the arcs represent edges of A and chords represent diagonals of A. The
simplest example is the case where we divide (2p — 2)-gon A into two p-gons. There are
(p — 1) possible p-angulations which correspond to having the diagonals {(1, p), (2, p +
D, (p-1.2p-2)}

2p2 1 5 2p2 1

p+l p p-1 p+i p p-1

Figure 1: The (p-1) different p-angulations of A

We define a notion of Q-flip for each diagonal (i, j) as:

@pn — (kD 2

with (k1) = (Mod(i+p—-2,2p—2),Mod(j+p—2,2p—2)).

The diagonal (i, j) is said to be Q-compatbile with the diagonal (k, /). Q-compatability
is not an equivalence relation. We can use Q-flips to define accordion lattices &Z(Lgn of

dimension n associated with a reference p -angulation P as follows:
We can start with any p-angulation P of a convex polygon with n diagonals,

e In the first step, for each of the n diagonals, we go to the unique (2p — 2)-gon which

contains it and replace it with its Q-compatible diagonal.

o In the second step, for each of the n p-angulations at the end of step one we choose one

of the original (n — 1) diagonals and replace it with its Q-compatible diagonal as in step

6



one.

o We repeat this till none of the original n diagonals remain in step n.

8@

7

6
8@
7

6
8

’ ' @
6

4
3
4

2
1 19 3765 1
1
8 2 8 2 9 \ 2
8 4 3
7 a Y 3 ; 9
A 6 8 4
5 4
5 4 5
1
1 1
8 2 2 11 >
10
7 3 3
4
6 4 8
5 4
5 755
1 1
8 2 2 2 1l e
10 10 .
7 3 3 9 N 9
8 4 8
6 4 4
5
5 1 755
1
8 2 2 11 5
10
7 3 9
8
6
5 4 5 4 et

Figure 2: accordiohedra for the n=2 case. The red circles indicate the reference p-
angulations.

This generates a graph which is the 1-skeleton of a convex polytope called the Accordio-
hedron [49,50], which we shall denote by ﬂCl’,’,n. The correspondence between the faces

of the accordiohedron and p-angulations is as follows

Vertices < Complete p-angulations
Edges < Q-Flips between them

k-Faces < k-partial p-angulations.

By a k-partial p-angulation we mean a dissection of the polygon that contains exactly k

p-gons. A complete p-angulation contains maximal number of p-gons.

In the case of cubic interactions (p = 3), equation (3.1) reduces to (i, j)) — (Mod(i +

1,4), Mod(j + 1,4)) which is the usual mutation rule and the resulting accordiohedron

7



ACY, is the associahedron [43]

We shall now elaborate our results.

Planar scattering form for ¢” interactions

We would like to define a planar scattering form for ¢” interactions. We can associate to

each planar graph g with propagators X; | ,X; % .-+, X, ascattering form

o(g) dx,

T X i NdXy g, N NdX;
k=1 Jk

nJn?

where o(g) = 1.

Thus, when we sum over all planar graphs we have several possible scattering forms 2.
We choose a particular reference graph g (equivalently a p-angulation P) and look at only
those subset of graphs which are related to this graph by a sequence of Q-flips namely all
the vertices of the accordiohedron. If a graph g’ is related to g by an odd (even) number
of O-flips we can associate — (+) sign to it. Thus, we can define a P dependent planar

scattering form QF

_1)o(Q-fiip)
o= COT 7k

n o x, . i dXijy A - NdX,j,.
O—flips k=1 ik Jk

Since the Q-compatible p-angulations corresponding to any reference P does not exhaust

all the p-angulations, we need to define such a planar scattering form for each P.

2We do not have a notion of projectivity except in the case of p = 3 which helps us fix a unique
scattering form [43]



Accordiohedron as positive geometry of ¢”

In the thesis we show that the accordiohedron ﬂCgf,f is the positive geometry associated
to ¢” interactions. We shall do this by first embedding the accordiohedron into kinematic
space and then showing that the canonical form of the accordiohedron when pulled back

gives the right planar scattering amplitude for ¢” interactions.

Locating the accordiohedron inside kinematic space

We locate the accordiohedron ﬂCﬁfz inside the positive region of kinematic space X;; > 0

forall 1 <i< j< p+ (p—2)nbyimposing the following constraints

Sij = —Cij; forlSi<jSp—1+(p—2)n, |l—]|22

X5, = dps; s.t. PUL, {(r;, 5;)} is a complete triangulation, 3)

where ¢;j, d,,,, are positive constants.

Physically we choose the above set of constraints as they do not appear as propagators of
any ¢” graph. The first constraint above is the famous associahedron embedding [43]. We
have thus embedded the accordiohedron inside the associahedron. The positivity of X;;’s,
the above constraints along with the equation ( 1 ) are a set of inequalities satisfied by the

X;; which makes the convexity of the accodiohedron manifest.

The full planar amplitude can be obtained as a weighted sum of canonical functions mf, »of
all accordiohedra AC 5’,1 of dimension n which is obtained by pulling the planar scattering

form ©QF back onto (3.2) to get win and factoring out the top form

P
M, = Z ap m;,),
P



Primitives and Weights

We simplify our computation by considering a subset of p-angulations {P,, - - - , P;} called

primitive p-angulations for which :
(a) no two members of the set are related to each other by cyclic permutations and

(b) all the other p-angulations can be obtained by a (sequence of) cyclic permutations of

one of the P’s belonging to the set.

The primitives are a class of rotationally inequivalent diagrams. Since, a rotation does
not change the relative configuration of diagonals it is clear that accordiohedra remain the
same for all the diagrams that belong to a primitive class and that the weights depend only

on primitives

M= ), ), apmih. 0)

rotations primitives
o P

In the thesis we shall provide a formula for the number of primitives at arbitrary level n

and also provide complete classification of primitives unto n = 3:
For n = 1 there is only one primitive.

For n = 2 there are I_”T_QJ primitives which we label as (p — 2 — i, i).

p2p-1)

For n = 3 there are 3

primitives which can be divided into two types which are

denoted as [i, j] and (ky, k2, k3).

Counting Primitives for ¢” case

The number of primitives p-angulations of an p + (p — 2)n-gon is the same as the number

of orbits of the cyclic group Z,,,-2), When it acts on the set of all p-angulations. In the
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thesis we provide a counting for the number of such orbits. The total number of such

p-angulations is

1 1 1 e i i
T Fnp + 2F s, + 5 2acednp) X Fnjappia if nis odd

_ (p=2)n+p
Pn =
l 1 ~ . .
T Frp + 5 Zacednp) XD Fnjap.pa; if nis even,
where, F,; . = (b_;)a — ((b_za)””) , F,;1 = F,; and ¢(d) is the Euler totient function.

Determination of the weights

We need to determine the weights as these form part of the data to determine the full
amplitude. We shall provide a prescription to do this. As we had emphasised before the
weights depend only on the primitive class to which a particular p-angulation belongs
thus it is sufficient to determine the weights for the primitive p-angulations. We do this

by demanding that

!
i i . .
anafp =1 for each primitive 1 <i <1,
i=1

where n; is number of times primitive i appears in the vertices of all accodiohedra.

We shall now state the results for the weights obtained by implementing our prescription

corresponding to primitives for all n < 3:

e For any p with n = 1 there is only one primitive whose weight is

a =

1
>

e For any p with n = 2 and the results are the following

11



For p = 2k

é ,1even
A(p-2-ii) =
1
3,iodd.
and For p =2k + 1
k+1+1i
QA (p-2-ii) = 3p—4

withi=0,...,k—-1.

The a’s for n = 3 case with p < 12 are given below (for the sake of brevity we shall

call @’s corresponding to [i, j], (ki, ka, k3) as [i, jl, (ki, k2, k3))

If p is even then :

[0l = 550 2 5gs w5 (LIl = 2 g 25 [2,0] = 2 20 2,5 [300] = 2550 250

24° 24° 24° 24° 24>
.

(k1, ko, k3) = (ko, ky,k3) = 3 (k1,0,ky) = (0, ki, ky) = 0,0,p=3) = 53

24’24’24"' 24’

If p is odd then the results for the first few cases are :

pP=5:[i,i] = 55, 5 withi = 1,2;[1,2] = 5: (1,1,0) = 5: (0,0,2) = 5 .

p=7: [i,il = 2, 4. & withi = 1,2,3; [1,j] = &, &, with j =2,3; [2,3] =
a (L1.2)=¢,

0,1,3) =(1,0,3) = £:(2,0,2) = &; (0,0,4)= &

p=9: [ll]_ﬂ 484 e 44,w1thz—1234 [1,j] = 44,434 44,w1th]—234
s 12, )] = 4,44,w1th]_3 413,41=2; (2,2, =25 (LL4=£;(1,2,3) =
(2,1,3) = 44,(303)

12



—11- [ii] = 10 2L 9 17 13 - 1= 7 1L 5
p—ll [lal] ~ T12° 112° 112° 112° 112 with i 1 2 3 4 5 [1’]] 1120 112° 112° 1122

with j = 2,3,4,5;

[2,/1 = £3. 15, 5, with j = 3,4,5; [3,/] = 12,45, with j = 4,5; [4,5] =
=, (1,1,6):%;

(2,2,4) = 12:(3,3,2) = 15: (0,4,4) = 7% (1,0,7) = (0,1,7) = 1%; (2,0,6) =
(0,2,6):%;

(3,0,5) =(0,3,5) =

S
12 °

(1,2,5 =(2,1,5) = 4£:(1,3,4) = (3,1,4) = £, (0,0,8) =

112’ 112’ 112’

Factorisation

One of the remarkable consequences of relating tree level scattering amplitudes to positive
geometries like associahedron, Stokes polytope is the fact that geometric factorisation
implied physical factorisation of scattering amplitude. This in turn implied that tree-level
unitarity and locality are emergent properties of the positive geometry [43]. In the thesis
we show that this is indeed the case even for planar amplitudes in massless ¢” theory. We
shall first argue that the geometric factorisation of accordiohedron holds and then show

that this leads to the factorisation of the amplitude.

Conclusion

This synopsis contains a brief summary of our work [47, 48] which extends the ampli-
tuhedron program to a large class of scalar field theories. We have shown that there are
a class of convex polytopes (accordiohedra) which can be embedded in kinematic space.

We provided a prescription to get the tree-level planar amplitude as a weighted sum of

13



canonical functions associated with all the accordiohedra of a given level n for ¢” theo-
ries. We introduced the notion of primitive accordiohedra to simplify our computations
and provided a formula for the number of primitives at arbitrary level n. We provided the

results of the implementation of our prescription to compute weights.

Plan of the thesis:

1. The first chapter will contain some mathematical preliminaries and a brief review

of the amplituhedron program and the cubic case .

2. The second chapter will contain details of the quartic case namely the Stokes poly-
tope, our prescription for computing the planar amplitude using primitives and
weights,a formula for the number of primitives and proof of factorisation of Stokes

polytopes.

3. The third chapter will contain details of the accordiohedron, our prescription for
computing the planar amplitude using primitives and weights, a formula for the

number of primitive accordiohedra and proof of factorisation of accordiohedra.

4. The fourth chapter will contain a classification of all primitives for n < 3 for arbi-
trary p and implementation of our prescription to compute the weights for p < 12

and n < 3.

5. The fifth chapter will contain a discussion of the results, open problems and general

outlook.
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Chapter 1

Introduction

Scattering amplitudes are arguably the most important observables in high energy physics.
They describe the probability for a specific scattering process to happen. The probability
can in turn be measured in a high energy experiment like the detectors at the LHC. To
test a theory, we check whether the scattering amplitudes computed from it match the
measured probabilities. This makes scattering amplitudes the link between theory and
experiment. Therefore computing scattering amplitudes has a very practical purpose and

computing them efficiently is important.

The usual method for computing amplitudes is using a Lagrangian and computing Feyn-
man diagrams [1]. It is a very useful and as of now the only way we understand Quantum
field theories (QFT’s). Though this method provides a nice physical picture and makes
locality manifest, it is not a very efficient approach for computing amplitudes. The La-
grangian formulation contains a lot of off-shell information which is not really needed to
compute the on-shell amplitudes which we are interested in. The Lagrangian formulation
is also plagued by redundancies due to field redefinitions and gauge invariances. By us-
ing field redefinitions we can map an action into an infinite set of different actions that
describe identical physics. But this equivalence is not manifest at the level of Feynman di-

agrams and the Feynman diagrams corresponding to a field redefinition can be immensely
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complicated though the final result for the amplitude after tedious computations remains
the same due to various seemingly miraculous cancellations. The Lagrangian for Yang-
Mills (YM) has both cubic and quartic interaction vertices. It turns out that the cubic
vertex has all the information needed to compute any n-point amplitude. The quartic ver-
tex 1s only needed to ensure gauge invariance off-shell. Thus a poor choice of field basis
or a gauge can make computations extremely tedious and complicated. A Lagrangian for-
mulation can also obscure or conceal underlying structures in theories. For example the
dual conformal invariance of planar N' = 4 SYM [3-8], colour kinematics duality [9, 10]

or the KLT relations that relate the Yang-Mills and Gravity amplitudes [11-14] .

Over the years various on-shell methods have been developed that compute amplitudes
without using the Lagrangian that have broadly been called the “Amplitudes program”

[15-19]. The plan is to build an S-matrix from a series of postulates [52] :

1. Poincare Invariance: We try to describe scattering in flat Minkowski space whose

isometries form the Poincare group.

2. Existence of asymptotic one-particle states: They describe the particles we scat-
ter and are in one to one correspondence with irreducible representations of the

Poincare group.

3. Analyticity: We shall require that the S-matrix is analytic in the external momenta,
as we shall continue them to complex values and use their properties to constrain

the S-matrix.

4. Cluster decomposition: It is a weak notion of locality, by which we mean that all

the singularities of the S-matrix come from propagators.

The program attempts to build an S-matrix starting from these postulates. This approach
is not new and was taken by the S-matrix program in the 60’s, the modern amplitudes

methods use new tools to address this line of thinking. We shall briefly review this and
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discuss its formal properties in the next few sections. For more details the reader can

see [1,52,53].

We start with some notations and conventions. We work in D + 1 dimensional Minkowski
space-time with metric 17, = diag(+1,—1,---,—1). The isometries are given by Poincare
group R'“? = § O(1, D) which is the semi-direct product of the group of translations and
the Lorentz group. The generators of translations and Lorentz boosts are denoted by P

and J*” respectively which satisfy:

[P,u’Pv] =0 (1.1)
[P,u, Jpo’] = _i(nupPa' - 77/10'Pp) (1.2)
[«]pv, Jpa‘] = _i(nppjvo' - T]pa']vp + nvo"],up - nvayO')- (13)

We also assume that one-particle states exist, and that they form the basis of our Hilbert

in
out

space. We denote them by | p,a where p and a denote (D + 1)-momenta and a set of

quantum labels respectively.

We choose to normalise one particle states as (p’,d’ |p, ay = (2n)P2p°6P(F — p’) which
is needed for Lorentz invariance. The one particle states satisfy :

(1) They are eigenstates of the translation generators
P p,a)=plpa). (1.4)

(2) Under Lorentz transformations they transform as
U p,a)= Z DA, p)awl Ap,a’), A €RP* < SO(1,D), (1.5)

where the D(A, p),» form a representation of the Poincare group. A basis for the full
Hilbert space of physical states is called the Fock space and is built by combining single

particle states |p,a ) into multi-particle states |@) = |pay,aqy ) ® *+* ® |Py)s Any) ) =
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|{P(i),a(i)} ).

The normalisation of these states follows

(@'l) = 8y 7P (=15 [T, 206D (B = P iWayar, = Sk,

where p, = 3%, pio-

The identity can be represented in the basis of multi particle states as

D 0.
I=10X01+ X, - W fl—[?il dzp{:)_(;) 2ay, {Pwys ai} X{pas ap} | = fadala)(al.

It is obvious how these states should transform under a Poincare transformation charac-

terised by a translation z and a Lorentz transformation A

U(A, Z)l{p(l‘), Cl(,')} > = e—iz,,p‘; Z“fl)"" a o D(A, p(l))a(l)aél) e D(A’ p(na))a(,,a)az"(y)|{Ap(i)a azi)} >

al,
When the representation D(A, p),. is irreducible we talk about an elementary particle.
Thus, the unitary irreducible representations of RP*! = S O(1, D) are in correspondence
with elementary particles. We shall briefly review the irreducible representations of

RP*1 < S O(1, D) which were classified by Wigner [1, 54].

1.1 Irreducible representations of Poincare group

We want to determine all possible matrices D(A, k). Since we know that the translations
A Xt — x* + Z¢ form an Abelian subgroup of the full Poincare group and they act on

one-particle states as a phase
Ul p.a)=e™"|p,a). (1.6)

We just need to find the action of Lorentz transformations. We can do this by fixing a
reference momentum k and finding its orbit under the action of the Lorentz group. We

can write any other vector p in this orbit as p = A(p, k)k, where A(p, k) is a Lorentz
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transformation that takes k to p. For instance we can choose

(m,0,---,0), for massive particles
k=

(E,E,---,0), for massless particles.

We can then define

| A(p,k)p.a) = U(A(p, k) p,a ). (1.7)

and use (1.5) to find D(A, p).». But this transformation A(p, k) is not unique as we can
include any other Lorentz transformation Ay in the stability group of p i.e. the set of
transformations which leave the momentum p fixed Agp = p. This set of transformations

is called the little group LG,,.

IS O(D — 1), for massive particles
LG,

IR

S O(D), for massless particles.

The idea now is that any unitary irreducible representation of the little group induces a

unitary representation of the Lorentz group. Given a unitary representation D of the little

group,
DDl k,a ) = Z D(Dawl k,a" ), (1.8)

we choose a specific Ag(p, k) for each p in the orbit of k. Under an arbitrary Lorentz

transformation the oneparticle states | p, a ) transform as

U, p)l p.a) UA(p", pHU(Ao(p, k)l k,a ) (1.9)

UAo(p' 1) (U(Ao(p’, ) UG, p)U(Ao(p. k) | k. a ).
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Since, the bracketed term in the above equation is a transformation that takes k to p to p’

and back to £ it is an element [ of the little group.

UA', p)l p,a) UAo(p', k) Z D(D)aa k,a" ) (1.10)

> DUl prd’ ). (111)

Thus, the unitary irreducible representations of the Lorentz group are in correspondence
with the unitary irreducible representations of the little group. In the massive case, the
representations of the S O(D) are well known and a is called the spin index. In the mass-
less case the group IS O(D — 1) = RP~! = SO(D — 1) is a non-compact group and we shall

only consider the S O(D — 1) part and a is called the helicity index.

Little group in four dimensions
The Lorentz group in 4d has six generators J*”. The little group LG, is generated by
the independent components of the Pauli-Lubanski vector W+ = %e“Vp‘TPVJW given by

P - W = 0. From the Poincare algebra it follows that
[WE, W] = i W, P,. (1.12)

For massive particles we choose p = (m,0,0,0) and thus W = m(0, J*, J3', J'?) which
form an S O(3).

For massless particles we choose p = (E, E, 0,0) and thus W¥ = —p*R + e’{‘ T, + 5‘2‘ T, with
€12.p = 0 which form an 1S O(2) with T, T, acting as translations.

If we assume that the non-compact part acts trivially'then the little group is Abelian
SOQ2) = U(1) and all irreducible representations are one-dimensional charecterized by a

half integer / called helicity [1]. It is an integer for bosons and half-integer for fermions.

D(A, p)a,a’ = eihe(A’p)(sa,a’ .

'If the non compact part is allowed to act non-trivially then we can have continuous spin particles
[55,56].
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1.2 The S-matrix

We have two bases to describe the Hilbert space of physical states namely in states | )

and out states | ). The matrix which takes in-states to out-states is called the S -matrix

Spa = Bla)", (1.13)

S f dala)™ {al. (1.14)

The inverse is given by the Hermitian conjugate S '

Spa = "Bla)™, (1.15)

st = f dala)™ ™. (1.16)

The S-matrix is unitary by construction

SST = fda fdﬁla >mout<a'|ﬁ>outm<ﬁl = fda|a>min<a| =I= STS
« B

a

The matrix elements S,z of the §-matrix are the transition amplitudes for the in states
@) = l{p@-aw) ) withi = 1,---,n, to evolve into the out states [8) = |{p{;,,a(,,} ) with

=1, ,ng

Figure 1.1: The S-matrix elements Sg, and S Tw.

If we were given a Hamiltonian H = H, + V we could write a formal expression for the
operator § = U(—o0, 00), where U(t, 1) = e'f07e H(T=T0)=iHoT0 Then we can use time de-

pendent perturbation theory to derive a Feynman diagrammatic expansion of the S -matrix.
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However, as emphasised earlier we want to follow a different approach and determine the

S -matrix from its analytic properties and symmetries without using a Lagrangian.

1.3 Symmetries and the S-matrix

A unitary transformation that acts the same way on the in and out states imposes con-

straints on the S -matrix: *“(Bla)" = ““(UB|Ua)™. Let us look at a few examples:

e For translations, U = ¢~ then
S po = €40 PS4, (1.17)

which implies that S g, o P+ (pg) — piay)-

e Any U(1) symmetry U = ¢~%¢ would work like translations. If we assume the state

|p@)» a)) has a charge g; then we get charge conservation condition
g Ny
=1 i=1

e For Lorentz transformations we get the condition

"B (s
[ [ p j))) (]—[ D(A, p(l-))]sﬁa = S g (1.19)
i=1

j=1

1.4 Analyticity properties of the S-matrix

We shall now describe the analyticity properties of the S-matrix and constraints arising
from them. Although we will only consider massless scalars in this thesis for which
there are various subtleties in the definition of the §-matrix due to infrared issues and

understanding the loop level analytic structure of amplitudes. We shall not be concerned
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with these issues since we shall only consider tree level amplitudes in this thesis for which

neither of these issues are relevant.

e Connectedness and Cluster decomposition

When the interaction is trivial, we have Sz, = 6(a — ). When it is not Sg, still
contains a o(« — ) term as there is a non-zero probability that the particles will
not interact. We are more interested in the non-trivial part of the §-matrix so we
remove this term from the S -matrix and define the connected part S € which we do

recursively starting with:

Sge = O(B—a) when S and a are 1 — particle states (1.20)
Spa = S+ Y (<1785, S5, (1.21)
P
where, P stands for partition of the initial @ and final g sets of particles into @, - - - , @,
and By, -, B, respectively and S p = 1 if rearranging @ — a1 ---,, 8 — B1 -5,

involves rearranging an odd number of fermions and zero otherwise.

Figure 1.2: The connectedness for two-two scattering.

The cluster decomposition principle is the statement that S fﬁa = 0 when at least one
of the particles is far from the others. It is a weak form of locality and is formulated

in position space by a Fourier-transform,

Na, Ng

1 _iyna o2 i B oo o
S)Cc:ﬁa = Ao l_l de?i)de?j)e DY 6 X(,)+12j 146) X(j)Sga' (122)
(27T) " i,j=1

We see that the above statement imposes constraints on smoothness of S ﬁca.
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In particular, it implies that Sﬁca should not contain any other o-functions than

8PV (pe) — pw)-

Thus we can define the scattering amplitude Mg, for the process a — S by

S fo = 120)P6P D (pg) — p(ay) Mo

Figure 1.3: The Scattering amplitudes Mg, and Mg(l.

As with any other QFT observable, we shall think of amplitudes perturbatively. If
the theory has a dimensionless coupling constant g, then the scattering amplitude
for n external legs M, admits a perturbative expansion:

M, (g) = g MI"ee + ghi-ioor Moor o

The exponents 7., n1-100p €tc depend on the theory. For theories with a cubic

Vertex ny_jp = g" %

and tree level is understood as L = 0 loops. So loop order
is defined by the power of coupling constant that accompanies the amplitude. Since
each loop order has a different singularity structure there is no need to think of the

loop as a real loop in a Feynman diagram.

Unitarity and Factorisation

Unitarity determines the factorisation properties of the amplitude. When several
particles combine kinematically to produce another particle, the amplitude is sin-

gular. The singularity is a simple pole captured by the propagator of the internal
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particle. Unitarity also determines the residue to be the product of lower amplitudes

with fewer external legs.
Consider a scattering process @ = [{pu), ap}) — B = {p. agh-

2
If the physical momenta are such that (Z Aca PGy — 2Bcp P( j)) = m? where m is the
mass of one of the physical 1-particle states |p, a) produced by the interaction of A

and B then the following is possible
A—B+P,P+A— B, whereA=a\A, B=\B.

Unitarity of the S-matrix determines that the amplitude has a simple pole when

particle P goes on-shell and also determines its residue :

regular terms

). (1.23)

pr-m2+ie

Mﬁa:ZM(A—>B+Pa)2+M(Pa+A—>B)+( in p? =

e Crossing Symmetry

The existence of anti-particles can be inferred from the S-matrix perspective as

well.

Let, us consider the scattering process @« — . We consider the division of @ into
A, A and B into B, B with a intermediate particle P with momentum k = p) — p(s)

and mass m as shown in the figure below.

B (C) A

Figure 1.4: A graphical representation of the two complimentary processes that could
contribute to the factorisation of the amplitude.

In the physical region of kinematic space: { pg real ,p, > 0,pg = mg } we

interpret the pole in (1.23) as the process A — P+ B, A+ P — Bif kK > 0 as in this
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case we have:

2 2 2 2
\/‘1’<A> 2 \/—p(3)+m, \/_pu‘z) = \/_p<A)+m'

If k% < 0 then we interpret this as the process A + P — B, A — B + P:

\/—pfA) = \/‘P(23> +m, \/—pr) < \/_P(ZA) +m.

Where, P has mass m and satisfies k> = m? with k = —k and with quantum num-

bers opposite to those of P. Thus, P is the antiparticle of P. Even though both
the processes described above can never simultaneously occur and one of them is
necessarily outside the physical region, we deal with this by analytically continuing

the amplitude outside the physical region.

The factorisation of the amplitude is uniquely determined by (1.23) and since we

have two possible interpretations we must have:

M(A > P+BMA+P— B)=MA+P— BMA - P+ B).

Since, the above equation is valid for any process we must have

MA+P— B)={(M@A - P+B), MA— P+B)=("MA+P - B).

We can now use the Hermitian analyticity property which states that the matrix
elements of S and S are conjugate to each other and using this property we see
that |{| = 1. We can choose { = 1 by appropriately choosing the phase of the one

particle states |p, a). We then get

M(A — P+ B)=M(A+P - B). (1.24)

Thus, using crossing symmetry we can consider processes where all particles are
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in going and denote the process by @ — 0 or just a for simplicity. This puts
all particles on an equal footing and we follow this convention for the rest of this

thesis.

The factorisation (1.23) of scattering amplitudes can now be re-expressed as

1 L

M,(a) = Z M, 1 (A + Pa)Tszlm(A + Pa). (1.25)
a (4)

where P; is the antiparticle of P, and A = « \ A. This is the form of unitarity we

shall be using later in this thesis.

Soft Factorisation

Consider a scattering process involving massless particles. If we parametrize the
momentum of a massless particle P as 7p* and let the momentum of P go to zero by
taking 7 — 0 then we call this the soft limit. Since, (p(; +p)* = p; +2p(j)-p — m(;,

for any j then factorisation (1.25) implies that the amplitude must have a pole in the

soft limit

n

My (P Py, P =)
=1

S (P> a, py) | Mu(Py, - -+, Py) + O(p°). (1.26)

P)-P

The S (;(p,a, p;)) are called the soft factors. The soft factors S, can be deter-
mined by their Lorentz tensor properties. This was originally done by Weinberg
for massless scalars, photons and gravitons [57, 58]. See [59-62] for more recent

developments.

Scattering amplitudes have also nice factorisation properties under multi-particle

and collinear limits [23,63—65] which are not relevant for this thesis.
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1.5 Amplitudes without Lagrangians

Having formally defined the S-matrix we would now like to see if we can reconstruct
scattering amplitudes from its analytic structure. For our purposes we shall restrict to only
tree level amplitudes for which the only singularities are simple poles coming from the
factorisation channels and soft limits. The tree level amplitude is therefore a meromorphic
function, in fact it is a rational function. There are several modern amplitude methods
which build the amplitude without using a Lagrangian [15-19]. We shall describe three

modern amplitude methods which will be most relevant for our purposes.

BCFW on-shell recursion relations

In this approach we would like to see if we can construct the amplitude which is a rational
function from its singularities and residues. It is known that for functions of a single
complex variable this is possible if the function vanishes at infinity. If the function does
not vanish at infinity then we also need the values of the function at a few points to
determine it. These points can be chosen to be some of the zeroes of the function. But
the n-point amplitude is a rational function of n(D + 1) variables. The trick of mapping
this problem in multi-variable complex analysis to a problem in a single complex variable

was invented by Britto, Cachazo, Feng and Witten (BCFW) [30,31].

We pick two particles P; and P; and deform their momenta p; — pi — zg and p;) —
pj)+2q where z € C and g is a momentum to be determined below. We leave the momenta
of the other particles pu(z) = pw for all k # i, j untouched. This is called the BCFW

deformation or shift.

To interpret the process as scattering process after the deformation we need the following

two conditions:

1. Momentum conservation: »}; p;(z) = 0, which is clearly still satisfied.
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2. On-shellness of deformed momenta: p(2)* = —mgy, p(y(2)* = —m(;
which is equivalent to 72¢* — 2zq.p; = 0 and z°¢*> + 2zq.p;) = 0 and can only be

satisfied if :

=0, q.pi=q.pg=0. (1.27)

We need to find a g satisfying the above conditions. We can then consider the on-shell
amplitude which is a rational function of z, M,(f’j)(z) = M,({pw(2), aw}) with simple poles.
Since the amplitude is a rational function there must be an integer v such that M,(,i’j )(z) ~ 7

when 7z — oo,

The exponent v depends on the choice of particles (i, j) as well as the choice of g for the
deformation. When a deformation generates an amplitude that vanishes at infinity we call
it a good BCFW shift, and if v > 0 we call it a bad shift. When v < 0 no zeroes are needed
and we get the celebrated BCFW recursion relation [34]. If v > O then the amplitude has
a non-zero “boundary” contribution and we need the zeroes to get the generalised BCFW

recursion relations [66].

T A

|

=S ~
=
==
S
3

%o

~i
|

i j

Figure 1.5: A graphical representation of the generalised BCFW recursion relations.

The result is as follows :

(0.))

_ () A (5]
Mo = 0 0 MM (128
- 1 if v<O0
jw) _ . (1.29)
v+l _ " .
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where, {zg)}lfl1 is a set of v + 1 zeroes of the deformed amplitude Mm% )(z).

Starting with the smallest building block which is the smallest known non-zero amplitude
in the theory as the initial value we can then determine all other higher point amplitudes.
This has been realised for a few theories and is computationally more superior than Feyn-
man diagrams [32,33]. For n-point MHV amplitudes in YM whose BCFW representation
remarkably contains only one term for any n (as opposed to o(e") Feynman diagrams )

and gives a straightforward proof of the celebrated Parke-Taylor formula [2].

The major obstacles to this approach are the lack of a generic procedure to find the expo-

nent v and the zeroes zg) for an arbitrary theory.

CHY representatation

In this formalism the singularities of scattering amplitudes involving massless particles
in kinematic space are mapped onto an auxiliary space namely the moduli space of n-
punctured Riemann sphere M,. Let {k|,k},--ky} of n massless particles in D + 1 di-

mensions forming the kinematic space defined as:

K = (K Ky K) | Sy ks = 0,42 = 0,Ya € {1,2,-++ ,n}}/SO(1, D)

1°72°

The kinematic space K is a @ dimensional and spanned by the Mandelstram variables

sij:ki-kjf0r1£i<j<n.

We consider {0, 07, - - - , 0} to be holomorphic coordinates the moduli space M, which
also specify the locations of punctures on the Riemann sphere. The moduli space of n-
punctured Riemann sphere My, is an (n — 3)-dimensional complex space and is invariant

under SLL(2, C) transformations given by:

ac;+b
coi+d’

o = Y(o;) = a,b,c,deC, ad—-bc=1 (1.30)

The real part M, ,(R) is the open string moduli space consisting of all distinct points o
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on the extended real line (with infinity) modulo S L(2,R). This allows us to fix any three
of the punctures to a fixed value using which one usually sets oy =0, 0,-; = 1, 0, = o0,

which we will use later in this thesis. In this section the choice of punctures is not relevant.

The mapping of singularities in kinematic space to the moduli space of Riemann sphere

is given by [67]:

J ()
K = d7| =—=————
l 27” é oil=€ [Z (Z - 0-])] 27” £—0i|=6 Z[HZ:](Z - O-a)]

The function f*(z) is a polynomial of degree (n — 2) as the coeflicient of the leading term

vanishes by momentum conservation.

Since, the momenta kf‘ are null we must have f(o;)> = 0 for all i. But, as f(z)* has degree
(2n—4) and we need to know (n — 3) additional conditions as we only know # of its roots.
The extra conditions imposed are that f*(z) remain null for all z i.e. f(z)*> = 0 which
in turn imply that f(z) - f(z) = 0. When we evaluate this condition on the n puncture

locations o; we get the scattering equations [35,68]:

= Sl'] = | = . o
E,-_ZT_O, i=1,---.n (1.31)

It can be easily checked that only (n — 3) of the scattering equations are independent as
2.:07"E; =0form =0, 1,2. By Bezout’s lemma [69] the scattering equations have (n—3)!

solutions.

The Cachazo-He- Yuan formalism provides an integral representation of the tree amplitude

M,, of massless particles over the moduli space of n-punctured Riemann sphere as follows:

M, 5| > — |1k, du, I 132
fvolSL(ZC) Z( o —0)) n( 60'})_f:“nn (1.32)

S JFi
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d"

o
where, 5=

=(oi—o)oj—o)or—opdoyA---dGiN---dGjN---dby--- Ndoy, is
the measure on My, the hats indicate the corresponding coordinates have been removed

for any three i, j, k.

Due to the presence of delta functions imposing the scattering equations as arguments the
integral localises onto the solutions of the scattering equations and due SL(2, C) redun-
dancies we need only (n — 3) delta functions to localise the integrals. The primed product

is defined as:

' kik; "
1_[5 : :(O'k—O'l)(O'z—O'm)(O'm—o-k)né _mh
i (7177 (oi—0))

i J i#k,l,m

for any k, [, m.

The integrand /I, contains the information about the particular theory being considered.
Cachazo, He and Yuan have constructed the integrands for a wide class of massless the-
ories including bi-adjoint scalars, YM and gravity [36,38]. We shall briefly review only

the scalar example as we shall need it in later sections.

Bi-adjoint cubic scalar theory : A field theory involving scalar fields ¢ = ¢*“' T, T), that
transform in the adjoint representation of two unitary groups U(N) x U(N) where T, and

T/, are generators of the two factors respectively with Lagrangian given by [36]:
¢? 1 aa’ A 4 aa’ 1 bb' ycc’
LY = an¢aa’aﬂ¢ - gfabcfa’b’c’(ﬁ ¢ ¢ (133)

where f,,. and fa/b/d are the structure constants of U(N) and U(N) respectively. Tree level

scattering amplitudes for this theory can be decomposed in a double colour expansion as:

M, = Z Z T (T T%C . . . T (T T% . . . Thm) m,(a|B) (1.34)
a€S ,/Z, BES n/Zy

The m,(a | B)’s are called double colour amplitudes. The double colour amplitude m,,(a|B)

is given by the sum of all cubic diagrams that are compatible with both @ and S orderings
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with an overall sign coming from (1.34).

If 7 (@) and 7 (B) denote « and S coloured trivalent graphs (i.e. collection of graphs with

a and S orderings) respectively then

m(alp) = (-1ymen S L (135)

2T ()NT (B) ecE(g) Se

where s, = P? for momentum P, flowing along the edge e in the set of edges E(g) for the

Feynman diagram g and n;,(a|B) is the number of ordering flips. (see [36] for details)

For a = 3 the double color amplitude is the sum over all cubic graphs and when a # Sitis
sum over a smaller subset of cubic graphs that are consistent with both @ and 8 orderings.

In particular for 7 (@) N 7(B) = 0, m,(«|B8) = 0. The CHY integrand If i for this theory is

1% @1B) = Co(@)Co(B), m@@=f@ﬁ3 (136)

The C,(a)’s are called the Parke-Taylor factors and are defined as:

1
Cula) = (1.37)
(Ta) = Ta@)(Ta@) = Ta3) ** * (Tamy = Ta1))

For YM and gravity the corresponding integrands are given by replacing one of the Parke-

Taylor factors C,(a) by the reduced Pfaffian Pf’ ¥,({k, €, 0}):

LM(@) = Cla)Pf Py(tk, €, 0}, I (@) = (Pf ¥k, €,07)) (1.38)
A | -CT
where ¥, is the 2n X 2n antisymmetric matrix ¥, = consisting of n X n
cT B

matrices A, B and C defined as:

ky.k . k
ﬂ_h, a+b ﬂ’ a+b 5,,_;,’ a+b
A _ Oa=0p B _ 0a—0p C _ Oa=0p
ab — ab — ab —
— _ €,.kc _
0, a=b 0, a=b —2itagogs a=D
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The Pfaffian Pf(¥) is the square root of the determinant Pf(¥) = +/Det(¥,) and the
reduced Pfaffian Pf’(¥,) is given by :

(_1)a+h

O, =0

Pf'¥, =- Pfl¥las (1.39)

with [¥,], ; being the minor of ¥, obtained after removing the a-th row and b-th column

suchthat1 < a,b < n.

Notice that from (1.36), (1.38) CHY representation makes the double copy relations man-

ifest — often stated as pure gravity amplitudes are “square” of Yang-Mills amplitudes

Yang—Mills®

——=<——__ which are difficult to see in the La-
bi—ad joint scalar

and schematically shown as Gravity =

grangian formulation [70, 71].

Amplituhedron framework

In this framework the amplitude is thought of more fundamentally as a differential form as
opposed to a function living in kinematic space. The differential form is naturally associ-
ated to a geometric object living in kinematic space which is called the Amplituhedron of
the theory. A remarkable feature of this framework is that unitarity and locality emerge as
natural consequences of the geometric properties of Amplituhedron as opposed to being

inputs as we had outlined earlier for the S-matrix program.

The amplituhedron framework [39-41,72] was originally formulated for tree and all loop
N¥-MHV amplitudes in N' = 4 SYM and subsequently extended to tree level planar and

1-loop amplitudes in bi-adjoint ¢ theory [43—45].

In this thesis we extend this framework to an infinite class of scalar theories namely tree
level planar amplitudes in ¢” theories for all p > 4. In the rest of this chapter we shall first
develop a few mathematical preliminaries that are needed to explain the amplituhedron

framework and then we shall review the ¢ case.
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1.6 Positive geometries and Canonical forms

We begin by introducing the notion of positive geometry which is a geometry with bound-

aries of all co-dimensions [51,73].

1.6.1 Positive Geometries

Let PV denote the N dimensional complex projective space, X be complex projective al-
gebraic variety, which is a solution set of a finite number of homogenous polynomial
equations with real coefficients in PY. We denote by X(R) the solution set of the same set

of equations in the real projective space P (R).

A semialgebraic set in PY(R) is a finite union of subsets of solutions of homogeneous
real polynomial equations {x € P¥(R) | p(x) = 0} and homogeneous real polynomial
inequalities {x € PY(R) | g(x) > 0} (Since the inequality does not make sense in PV (R) we
first solve g(x) > 0 in R¥*! \ {0} and then project down to PY(R)).

Residue operator

Let w be a meromorphic form on X, C is an irreducible subvariety of X and z is a holo-
mophic coordinate whose zero set z = 0 locally parametrizes C and u are the rest of the
collective holomorphic coordinates. Around the simple pole at C we can then expand w

as
w(u, 2) :a)’(u)/\%+--~ , (1.40)
Z

where w (1) is a non-zero meromorphic form defined locally on the boundary component.

Around such a simple pole we define the residue operator Res locally as :

Rescw = o'. (1.41)
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If there is no such simple pole then we define the residue to be zero.

We define a D-dimensional positive geometry to be a pair (X, X5¢) of irreducible complex
projective variety X of complex dimension D and a nonempty oriented closed semialge-

braic set X>( of real dimension D together with the following:

e For D = 0: X is a single point and we must have X5, = X. We define the O-form

Q(X, X50) on X to be +1 depending on the orientation of X.
e For D > 0: we have

1. Every boundary component (C, Cs) of (X, X5¢) is a positive geometry of di-

mension D — 1.

2. There exists a unique nonzero rational D-form Q(X, X5) on X constrained by
the residue realtion RescQ(X, X>o) = Q(C, Csp) along every boundary compo-

nent C and nowhere else.

X is called the embedding space and D is the dimension of the positive geometry. The
form Q(X, X5¢) is the canonical form of the positive geometry (X, X>¢). The codimension d
boundary components of a positive geometry (X, X5) are the positive geometries obtained
by recursively taking the boundary components d times.

Examples

o If (X, X50) is a zero dimensional positive geometry, then both X and X5, are points

and we have Q(X, X5o) = *1.

e If (X, X50) is a one dimensional positive geometry then X is isomorphic to P! and
X is isomorphic to a closed subset of P!(R) = S! which is a union of closed
intervals. A generic closed interval [a,b] C P'(R) is the set of points {(1,x) | x €

[a,b]} € P'(R), where a < b. The canonical form in this case is given by:

dx dx b—-a
la.bD) = x—a x-b - (b—x)(x—a)dx

(1.42)
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which is the unique 1-form whose leading residues are Res,-,([a,b]) = 1 and

Res,—,2([a, b]) = —1.

e Some examples of two dimensional positive geometries in X = P?(R) are shown in

the figure below :

(c)

(d)

Figure 1.6: A few two dimensional positive geometries.

(a) A triangle 7~ = (X, X50) with X = P2(R) and Xs¢ = {(1,x,y) € P’R) | q; =y >

O’ qzzl—x—yZO, q3:l—y+x20}

(b) A square S = (X, X50) with X = P2(R) and X0 = {(1,x,y) € PPR) | ¢q; = y >
-LLgp=x=2-1,¢3=-y2>2-1, g =-x=-1}

(c) A half disk D = (X, Xs¢) with X = P2(R) and X>9 = {(1,x,y) e PP(R) | ¢1 = y >
0, go=1-x*-y*>0}.

(d) A pizza slice P = (X, Xso) with X = P?>(R) and X5 = {(1,x,y) € P)(R) | ¢; =
—3>0,g=1-y-x>0,g3=1-y+x>0,q4=1-x*>-y*>0}.
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e In higher dimensions polytopes [74,75] which are generalisations of polygons to
general dimensions are examples of positive geometries with non-curved bound-
aries. They are class of positive geometries that are relevant for this thesis and we

shall discuss more about them in this section.

Let Z,Z,, -+ ,Z, € R™! and denote by Z the n x (m + 1) matrix whose rows are
given by Z;. We define a convex projective polytope A = A(Z) c P"(R) as the

convex hull

n

A = Conv(Z) = {Z CiZ e P"(R)| C; 2 0 Vi) (1.43)

i=1

We call Z,,7,,--- ,Z, the vertices of A. More generally we define a Face F of A
to be the intersection F = AN H with a liner hyperplane H ¢ R™*! such that A lies
completely on one side of H. If H is defined as v - @ = 0 for some & € R™*! then

wemusthave Z;-a >0orZ;-a <0.

If dim(F) = k then we call F a k-face of ‘A. The 0-faces, 1-faces and (n— 1)-faces of
A are called vertices, edges and facets respectively. It is clear from this definition
that faces of a convex polytope which are co-dimension (n — k) boundaries of A
are also convex polytopes thus showing that convex polytopes are indeed positive

geometries.

A polytope A € P™ is called simple if each facet is adjacent to exactly m vertices
say Z;,,--- ,Z; 1.e. the facets are {(W| W -Z; =0 fori = 1,...,m} and in such a case

the facets have a very simple representation in terms of the vertices namely:

W, = anp. 1,2 - Z" (1.44)

m-1y Im

We can also define the corresponding dual polytope A} at a point Y living in the
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dual projective space of P"(R) (also P"(R)) to be the convex hull of the facets W;:

Ay = Conv(Wi, Wa, ., W) = { D CW, € P"(R) | G2 0,i = 1,-++ ,n} (1.45)

i=1

In the above definition we choose the signs of W; such that W; - Y > 0, the relative
signs of W; is important in the sum above (1.45). The signs indicate the position of

Y with respect to the facets which we indicate with the subscript Y for the dual.

When Y € Int(A) then W; - Y > 0O for all i and we can forget the Y dependence and
simply call this the dual A* of A defined as:

A* = {W eP"(R)|W-Y 2 0forall ¥ € A} (1.46)

To visualise a polytope it is better to look at the Euclidean version defined as fol-

lows:

We let Z = (1,Z’) where Z’ € R™ and the Euclidean polytope A is the convex

combination:

A= Conv(Z) ={ ) CiZj e R"(R)| C; > 0Viand )" C; =1 (1.47)

i=1 i=1
Simplexes A are the simplest polytopes with vertices being the Euclidean basis vec-
tors Z| = ;. An n-simplex is convex polytope with n + 1 vertices. The first few
simplexes are a point, a line, a triangle and a tetrahedron. An equivalent definition

of the simplex in terms of its facets is:

A={YeP"R)|Y -W;>20 fori=1,..m+ 1} (1.48)

Every convex polytope can be triangulated by simplexes (i.e. divided into simplexes
with disjoint interiors). This is a very useful fact as we can translate every result

about simplexes to the corresponding result for convex polytopes straightforwardly
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[75].

Grassmann polytopes: Let M, ,(R) be the set of kXn matrices of rank k (with k < n).
The Grassmannian manifold G(k, n)(R) is defined as G(k, n)(R) = M, ,(R)/GL(k,R)
i.e. for any A;,A, € M;,(R) are equivalent if there is a A € GL(k,R) such that

A] = AAz.

The positive Grassmannian G.o(k,n)(R) is the set of points in G(k,n)(R) all of
whose k X k minors called Plucker coordinates are positive. We call the closure
of this set Gso(k,n)(R). The collection (G(k, n)(R), Gso(k,n)(R)) is a positive ge-

ometry.

LetZ,,Z,,- -+ ,Z, € R¥™ be a collection of vertices. The linear map Z : R* — R
induces a map Z : G(k,n) — G(k,k + m) whose image we define as the tree level

Grassmann polytope Z(Gso(k,n)) = {C - Z | C € Gxo(k,n)} [76-78].

We can also define an L-loop Grassmanian G(k,n; k) where k = (k;,--- ,k.) to be

a set of points which are a collection of linear subspaces Vg c C" indexed by S =

{s1,---, s C{l,2,---,L}satisfying kg = k;, +---+k;, < n—kalong with dimV
k+ks and Vg C Vg for S c S’ [76-78]. The collection (G(k, n; k), G>o(k, n; k)) is

conjectured to be a positive geometry.

We can analogously define the non-negative part Gso(k, n; k) of G(k, n; k) and use
it to define the loop level Grassmann polytope. As before we have a linear map
Z : R" — R*" which induces a map Z : G(k,n; k) — G(k, k + m; k) whose image

Z(Gxo(k, n; k)) we define as the loop level Grassmann polytope.

The image of the L-loop Grassmanian polytope G(k, n; I*) where I* denotes L-tuple

(.,1,--- , 1) under the linear map defines the L-loop Amplituhedron.

Ak, n, m; IF) = Z(Gso(k, n; 1)) (1.49)

In particular the O-loop Amplituhedron is called the tree amplituhedron and simply
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denoted as A(k,n,m) = Z(Gso(k,n)). As we shall see later (1.49) with m = 4 and
[ = 2 will play an important role for computing planar scattering amplitudes in

N =4 SYM.

We shall shortly describe how to obtain the canonical forms corresponding to the above
examples, but first let us describe a few more properties satisfied by the canonical forms

which will prove pivotal in determining the canonical forms.

We could try to construct new positive geometries from old ones by taking disjoint unions,
direct products and morphisms etc. The union of positive geometries however is not nec-
essarily a positive a geometry, the classic example being union of two half disks giving
a disk which doesn’t have any 0-dimensional boundaries and hence is a not positive ge-
ometry. But if we allow some of the X, to be empty as well then we get what is called a

pseudo-positive geometry whose disjoint union continues to be a pseudo-positive geome-
try.

The canonical form satisfies the following properties:

1. Triangulation: If (X, X;5o) are pseudo-positive geometries whose interiors are
disjoint X;.0 N Xj50 = O Vi # j then the union is a pseudo-positive geometry

(X, X>0 = U;Xi>0) and the collection {X; ¢} is called a triangulation of X5,
QX,UiXiz0) = ) QX X; 20). (1.50)

The boundaries of X; ., which are also boundaries of X5 are called physical bound-

aries and the other boundaries are called spurious boundaries.

The poles corresponding to these boundaries are called physical and spurious poles
respectively. The spurious poles cancel when we sum over all triangulations and

the final result contains only physical poles.

2. Direct Product: If (X, X.() and (Y, Y5() are positive geometries then the cartesian
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product (Z, Z-o) = (X X Y, X509 X Y5¢) is a positive geometry and

QZ,Z0) = QAX, X>0) A (Y, Yxo). (1.51)

3. Morphisms: Given a morphism @ : (X, X50) — (¥, Y>¢) of positive geometries

D (X, X50)) = (Y, Yx0) (1.52)

We could construct the canonical form (X, X5¢) of a positive geometry by applying the

axiomatic definition or by using the above properties in the following ways:

e Direct construction from poles and zeros

We propose an ansatz for the canonical form as a rational function and impose

residue constraints to determine the rational function.

Suppose, (X, X5¢) is a positive geometry of dimension m for which there is a mor-
phism @ : (P", A) — (X, X5o) for some positive geometry A in projective space
defined by the homogenous inequalities ¢;(Y) > O for Y € P"(R). Then we can

make an ansatz for the canonical form

q(Y){Yd"Y)

0O =
7 [T q:(Y)

= Q(ANYd"Y) (1.53)

for some homogenous polynomial g(Y) which has degree deg g = >, q; —m — 1
so that the form is invariant under local GL(1) action ¥ — «a(Y)Y. The angular
brackets denote the determinant (Yd"Y) = €,1,..i, Y(’)dY fl ---dY,f;" and we call the

quantity 2(A) the canonical rational function.

As we shall see later the canonical rational function plays a crucial role in the am-
plituhedron framework as they turn out to be scattering amplitudes. We can now
impose residue constraints and determine ¢(Y), this is called the method of unde-

termined numerator.
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(a) Consider the triangle 7 shown in figure (1.6a), we begin by making an ansatz

Ndxdy
yl-x-y(l+x-y)

QT) = (1.54)

Applying the residue constraints we get,

Resyzo’x:IQ(T) = % = 1
Resy—o-12(T) = % =1

Resy—i - o2(T) = % = 1.

Thus N = 2 and the canonical form is

2dxdy
Y1 =x=y)(1+x-y)

QAT) =

(b) Consider the square S shown in figure (1.6b) , we begin by making an ansatz

(Ax + By + C)dxdy

A9 = =i -

Applying the residue constraints we get,

A+C+B

Res);:],x:I‘Q(S)

Il
I
p—

Resyzl,x:_lQ(S) = B-A+C _ 1

Resy=_1,x=1Q(S) = A+C-B _ 1

Resy- 11 QAS) =254 = 1.

Solving we get A = 0, B = 0 and C = 4 which gives

4dxdy

=T
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(c) For the half-disk D (1.6c)

2dxdy
Q =
O e
(d) For the pizza slice  (1.6c)
(4 — 4y)dxdy

QP) =

(I=x=y+x-y1-x*-y?)

In the example (d) we see that the canonical form vanished at y = 1. We call the
class of positive geometries (X, X>¢) whose canonical form does not vanish any-
where as a generalised simplex or simplex-like. The canonical form Q(X, X5() for
simplex like positive geometries can be readily written down as it is determined di-

rectly from its poles without any condition on its residues up to an overall constant.

To see this consider 2, and £, be two rational forms on X with the same simple
poles and no zeroes. Since the ratio £,/€2, is a holomorphic function on X which

is projective and irreducible this ratio must be a constant Q; = c£,.

This simplifies the determination of canonical forms of generalised simplexes sig-
nificantly. For example let us consider the simplest generalised simplex which is a
projective simplex (P"(R), A) defined in terms of its facets W; by (1.48). Then since
it has simple poles corresponding to Y.W; = 0 we can write down the canonical

form as:

o) = (WiWy. W) (Yd™Y)

S ml (Y -W) (Y- Wo).. (Y - W, (1.55)

We have used the fact the form is projective and should be invariant under the

scaling W; — a(W)W,; to determine the overall constant directly without using any
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residue constraints. We can rewrite this in terms of vertices Z; using (1.44) as :

3 (212y..2,0)" (Yd"Y)
o) = m\(YZy..Z0) (Y Zp. 71 ) A Y 2y . Tt (1.56)

Triangulations: We triangulate the positive geometry and find the canonical form
by summing over the canonical forms of the individual pieces using (1.50). Let us

give a couple of examples.

(1) Consider a triangulation of a line segment [a, b] by a sequence of connected

segments:

[a’ b] = U:l:] [Ci—l9ci]’ (157)

wherea=cyp<c; <---<c¢, =b.

‘We can see that

(b a)dx — Ci- 1)dx =
Qla,bh = F—r= Ezm—mu—ao kam@qn (1.58)

Here x = a, b are physical poles and x = ¢; forall 1 <i < (n—1) are spurious poles.

(2) For the pizza slice $ we could have also found the canonical form by triangu-
lating it into a triangle 7: X;50 = {(1,x,y) e P’R) | ¢ =y 20, g =1 —x—y >
0, g3 =1 —y+x > 0}and a half disk O': X,50 = {(1,x,) € P2X(R) | ¢; = -y >

0, gp=1-x*-y>>0}

QP) = QA7)+ Q29D
B 2dxdy B 2dxdy
1 -x-pd+x-y y1-x2-y)
(4 — 4y)dxdy

(I-—x=»+x-y1-x2-y>)

The spurious pole is at y = 0. The poles at y + x = 1 and x> + y?> = 1 correspond to

physical poles.
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We can obtain the canonical form of any convex polytope using (1.50) and (1.56)

as it can be triangulated by simplexes.
Direct products: Whenever a positive geometry is a product of two lower dimen-
sional positive geometries we can find the canonical form using (1.51).

The square (P*(R), S) is the direct product of line segments (P! (R), X; o) and (P'(R), X5 50)
where X, 50 = {(1,x)lg1 = x> 1land ¢ = —x > —1}and X550 = {(1,Y)Iq1 =y >

1 and ¢, = -y > —1}.

The canonical form of S can thus be obtained as

Q2AS)

QX1 20) A Q(X250)
—2dx —2dy
A
I-x) 1=y
4dxdy
(1 =21 =y

Push-forwards: We find morphisms from simpler positive geometries to more

complicated positive geometries and find the canonical form using (1.52).

We can find the canonical form for the half disk O by using the mapping @ : T — D
of the triangle 7~ onto it defined as @(1, x,y) = (1, x, /2y — y?).

We can see that @ takes boundary and interior of 7~ to boundary and interior of
D respectively. By setting &(1,x,y) = (1,x’,y") and solving we get x = x’ and

ye =1+ /1 -y2

We find the canonical form of D as the pushforward :

2dx,dy,
D, (Q =
A2 Z Yol = Xo = Ya) (1 + Xo = Vo)
2y’ -1 1
— Y + dx'dy’
/1 _y/2 (1 + /1 _yfz (1 _ x/2 _y/2) (1 _ /1 _y/2)(1 _ x/z _y/2)
2
- yl(l — x2 _y/2)'

50



o Integral representations: For convex polytopes there is simple connection be-
tween the canonical rational function and volume of the dual polytope. We can use
this connection to find the canonical form by using various integral representations

of the volume.

For a convex polytope (P"'(R), A) and a point Y in its interior, the canonical rational

function Q(A) at Y is given by the volume of the dual polytope A}, i.e.,

1

Vol(7}) = QANY) = — f (Wa"W)
Wi

m!

In the integral expression above we have used the fact that since it is an integral on
projective space, the integrand must be invariant under local scaling transformation
W — a(W)W. Since we are integrating over all points inside A} it is clear that this
is indeed the volume of the A}, thus establishing the equivalence of the first and
third statement. We shall argue that the second and third statements are equivalent

for simplexes as the extension to any convex polytope is straightforward.

Let Y € Int(4) for some simplex. The dual simplex 47} has vertices Wy, -+, W,
with YW; > Oforall 1 <i < m+ 1. For any W we can write W = oW +--- +
i1 Wy for suitable @; > 0. Since, the integral (1.59) is scale invariant we can
always set one of the @’s to unity (say @; = 1 ) and we can then replace the integral

over W’s by an integral over all a’s.

Vol(A3)

1 d"a(W; - W,i1)

m! «fvvm*y (Y W) + aa(YW2) + - -+ + @yt (Y. W)
1 Wi W)

m! (Y.W1) - (Y Wi1)

In going from the second to the third line we have used the Feynman parametri-
sation to evaluate the integral over the a’s. Since, every convex polytope can be
triangulated by simplexes the above result (1.59) extends straightforwardly to all

convex polytopes A.
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In this thesis we shall restrict to the simplest class of positive geometries (with straight
boundaries) namely convex polytopes. For later purposes we would like to emphasise
the difference between the convex polytopes we have defined in this section and a more

general class of polytopes called abstract polytopes [75,79].

1.7 Abstract polytopes

We would like to call the polytopes we have discussed till now as geometric polytopes.
There is a more general class of polytopes which are called abstract polytopes that cap-
ture only combinatorial properties such as connections and incidences between various
structural elements of the geometric polytope but not any geometric properties such as
lengths and angles [79]. A geometric polytope is a realisation of the abstract polytope in
Euclidean or projective space. The same abstract polytope can have several inequivalent
realisations as Euclidean polytopes as can be seen for the case of the triangles in the figure

below [79]:
Figure 1.7: A few geometric triangles corresponding to an abstract triangle

In an abstract polytope each structural element like vertex, edge, facet etc is associated
with corresponding member of the set. The term face refers to any such element of the set.
The faces are ranked according to their real dimension: vertices have rank 0, edges have
rank 1, facets have rank (n-1) etc. Faces of different rank can be ordered by the relation

F < G if F is a subface of G.

The faces of the polytope thus form a lattice with partial ordering determined by contain-

ment of faces. Since both the polytope itself and the empty set are faces, every pair of
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faces has a unique supremum and infimum. The whole polytope is the unique maximal
element of the lattice and the empty set (the —1 dimensional face) is the unique minimal

element of the lattice.

An abstract polytope (P, <) is a partially ordered set, whose elements we call faces that

satisfy the following:

1. It has a least face and a greatest face which are the null face @ and P respectively.

2. All maximal chains of totally ordered faces (0, F’,--- , F) called a Flag have an

equal number of faces.

3. For any pair of faces F and G of P with F' < G there is a sequence of proper faces

H1,~~-,HksuchthatF:H1 <H2<."'<Hk:G.

4. If ranks of two faces b < a differ by 2, then there are exactly 2 faces that lie strictly

between a and b.

A polytope of rank n is called an n-polytope. An abstract polytope is completely specified
by its face lattice, and any two polytopes having the same face lattices are isomorphic to

each other.

A simple way to visualize a polytope is using the concept of k-skeleton. A k-skeleton
of an n-polytope is the collection of all faces of dimension up to k. For example the O-
skeleton is a discrete collection of vertices, 1-skeleton is the set of vertices and edges of
the polytope which are graphs, and so on. To specify a generic polytope completely we
would need to specify its n-skeleton. But for simple polytopes the 1-skeleton completely

determines its face lattice [80, 81].

This is a crucial fact which we shall use throughout this thesis as all the polytopes we
consider are simple polytopes. As we shall see later we define polytopes throughout this

thesis by using their 1-skeleton which is in turn defined using a flip graph.
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CD C

Figure 1.8: Hasse diagram of a quadrilateral

An abstract polytope can also be visualised using a Hasse diagram. The Hasse diagram is
drawn by placing all faces of the same rank at the same vertical level and drawing edges

to indicate containment of faces as shown for the the quadrilateral in figure (1.8).

The Hasse diagram defines a unique poset and therefore fully captures the structure of the

polytope. Isomorphic polytopes give rise to isomorphic Hasse diagrams and vice versa.

1.8 The Amplituhedron

Having discussed the concept of positive geometries we can now summarise the Ampli-
tuhedron framework as follows:

For a given theory there are some putative class of positive geometries of any dimen-
sion n living in kinematic space and when the canonical form is pulled back onto these

geometries it gives the scattering amplitude of n particles.
Positive Geometry — Canonical Form — Scattering amplitude

This remarkable program began with planar N = 4 SYM [39-41, 72] where a complete
geometric formulation of planar N' = 4 SYM amplitudes was given as:
the n-point tree level N* MHV amplitude = Q(A(n, k, 4))

the integrand of n-point L-loop N* MHV amplitude = Q(A(n, k, 4;2%))
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The required super amplitude can be obtained from canonical form which is purely “bosonic”
quantity using a straightforward prescription that involves integrating out auxiliary Grass-

mann variables. The amplituhedron lives in the momentum twistor space.

Furthermore, universal properties of the amplitude such as locality and unitarity emerge
readily from the geometry. This is due to the fact that the singularities of the amplitude
are encoded in the boundaries of the geometry and the remarkable property that each
boundary of the amplituhedron is the product of lower dimensional amplituhedra which

immediately implies the factorisation of the scattering amplitudes.

This geometric formulation of planar N = 4 SYM also makes the hidden dual super
conformal symmetry manifest [82]. This picture also gives infinitely many BCFW rep-
resentations of the scattering amplitude which correspond to different triangulations of
the amplituhedron and thus provides a more intuitive understanding of the many different
possible BCFW expansions in terms of the cancellation of spurious poles [76,77,83, 84].
It has been shown recently that this formulation can also be used to compute planar N = 4

amplitudes efficiently [42, 85].

In [43] it was shown that remarkably such a picture exists for a non-supersymmetric the-
ory too by providing an explicit connection between tree-level amplitudes in bi-adjoint
¢* theory and a polytope called the associahedron. As in the case of amplituhedron uni-
tarity and locality emerged from geometric properties of the associahedron. Furthermore
various properties such as colour kinematic duality and soft limits were directly deduced
from the geometry of the associahedron. It was also argued that the CHY integrand for bi-
adjoint ¢* theory was just a push forward of the canonical form of the associahedron thus
providing a simple “proof” of the CHY formula for bi-adjoint ¢* theory. The program

was further extended recently to 1-loop amplitudes in bi-adjoint ¢ theory [44,45].

It is therefore quite natural to wonder for what class of theories does such a geometric
formulation exist. In particular since tree level CHY formulae exist for amplitudes in a

wide class of quantum field theories including tree-level planar amplitudes in scalar field
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theories with ¢” (p > 3) interactions [46], it is a essential to ask if the amplituhedron

program can be extended for all ¢” (p > 3) theories.

In this thesis we answer this question in the affirmative by showing that there exists a
precise connection between scattering forms and a polytope called the Accordiohedron
living in kinematic space for all scalar ¢” interactions [47,48]. We shall first briefly review

some aspects of [43] which we shall need to understand the extension to ¢” interactions.

1.9 Planar scattering form and associahedron

In this section, we summarise the key results of [43]. We review the construction of
planar scattering form and kinematic associahedron for tree-level amplitudes m,(« | §) in
bi-adjoint ¢* theory. For simplicity we shall consider only the canonical ordering & = 8 =
(1,2,---,n), for which m,(a | B) is the sum over all planar cubic Feynman diagrams? as
we had seen in (1.5). The generalisation to other orderings is straightforward. For further

details, we refer the reader to [43].

1.9.1 Kinematic space

Kinematic space (K,) of n-massless momenta p; where i = 1,2,...,n is spanned by (;)

Mandelstam variables,
sij = (pi+py)’ =2pi- p. (1.60)

We shall only consider spacetime dimensions d > (n — 1), for which all s;;’s are not

linearly independent and satisfy

n

D si=0, i=12..n (1.61)

Jj=1;j#i

2By planar diagrams we mean diagrams with no crossing.
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If d < (n—1) there are additional conditions that s;;’s need to satisfy and thus the number
of independent variables is lower. Thus the dimensionality of the kinematic space K, of

n massless particles reduces to

(1.62)

dim(K,) = (”) 23

2 2

For any set of particle labels I c {1,2,...n} one can define Mandelstam variables as

follows,

S; = (Z:p,-)2 = Z Sij (1.63)

i€l i,jel; i<j
For cyclically ordered particles it is useful to define planar kinematic variables,
X[’j = S{iitl,..j-1}5 1<i< ] <n. (164)

From the definition it is easy to see that X;;,; = 0 and X;,, = 0. The variables X; ; can
be visualized as the diagonal between i and j” vertices of the corresponding n-gon (see
figure (1.9)). In other words X; ; are dual to @ diagonals of n-gon made up of edges

with momenta py, p,... p,.

6

Figure 1.9: Planar variables.
These variables are related to Mandelstam variables via the following relation

Sij = Xijer + Xivrj — Xijj — Xiv ju1. (1.65)
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There exists an one-to-one correspondence between cuts of cubic graphs and complete
triangulations of a n-gon. Each side of the n-gon corresponds to an external particle in
the Feynman diagram and each diagonal i.e X; ; cuts the internal propagator of a Feynman

diagram once (see figure (1.10)).

Figure 1.10: A planar variable cuts an internal propagator of the Feynman diagram once.

A partial triangulation of regular n-gon is a set of non-crossing diagonals which do not di-

vide the n-gon into (n—2) triangles. Here is an example of partial triangulation for a 5-gon.

DO O

Figure 1.11: Partial triangulations of a pentagon.

We define a notion of flip diagonal for any given diagonal in a complete triangulation as
the replacement of the diagonal by the conjugate diagonal inside the unique quadrilateral
that contains it. For example in the figure (1.10) above the flip of diagonal (2,4) is (1, 3)
and vice versa. We can use this rule to define the associahedron (A, of dimension (n — 3)

as follows:
We can start with any complete triangulation P of a convex polygon with (n—3) diagonals,

o In the first step for each of the (n—3) diagonals, we go to the unique quadrilateral which

contains it and replace it with the conjugate diagonal.
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o In the second step for each of the (n — 3) triangulations at the end of step one we choose

one of the original (n—4) diagonals and replace it with its flipped diagonal as in step one.
o We repeat this till none of the original (n — 3) diagonals remain in step (n — 3).

This generates a flip graph which is the 1-skeleton of a convex polytope called the As-
sociahedron [86—88], which we shall also call A,. Since the associahedron is a simple
polytope we can reconstruct the face lattice from its 1-skeleton. The associahedron of
dimension (n — 3) is a polytope whose co-dimension d boundaries are in one-to-one cor-

respondence with the partial triangulation by d diagonals (see figure (1.12)).

Figure 1.12: Two dimensional associahedron As : 5 partial triangulations are represented
by 5 diagonals. 5 complete triangulations are represented by 5 vertices.

We can sumarize the correspondence between faces of the associahedron and triangula-

tions as

Vertices < complete triangulations
Edges < Flips between them

k-Faces < Kk-partial triangulations.
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The total number of ways to triangulate a convex n-gon by non-intersecting diagonals is
the (n—2)-th Catalan number [89], C,_, = nl—l(z:__;) (see Appendix (B) for a simpler proof

). The dimension of the associahedron corresponding to a n-gon is (n — 3).

1.9.2 Planar scattering form

We now introduce the planar scattering form, a differential form on the space of kinematic
variables X; ; that encodes information about on-shell tree-level scattering amplitudes of

the scalar ¢* theory. Let g denote a (tree) cubic graph with propagators X; ; for a =

(l’.j(l
1,...,(n=3). The ordering is important here. For each ordering of these propagators, one
assigns a value sign(g) € {£1} to the graph with the property that flipping two propagators

flips the sign. The form must have logarithmic singularities at X;, ; = 0. Therefore one

assigns to the graph a d log form and thus defines the planar scattering form of rank (n—3)

n-3

Q3 .= Z sign(g)/\dlogXia,ja, (1.66)
a=1

planar g

where the sum is over each planar cubic graph g. It’s important to note that there are
two sign choices® for each graph. Due to this fact there are potentially many different
scattering forms. But one can fix the scattering form uniquely” if one demands projectivity
of the differential form i.e. if one requires the form should be invariant under local GL(1)
transformations X; ; — A(X)X; ;, for any index pair (i, j). We use this projectivity property
to define a useful operation called mutation. Two planar graphs g and g’ are related by
a mutation if we can obtain one from the other just by exchanging four-point sub-graph
channel (see figure (1.13)). In the figure (1.13), X; ; and X; ; are the mutated propagators
of the graphs g and g’, respectively. Let’s denote the rest of the (common) propagators as
X

withb = 1,2,...n—4. Under a local GL(1) transformation, the A(x) dependence of

bsJb

3For ‘clockwise’ or ‘anticlockwise’ ordering of propagators g = +1 or —1, respectively.
4 Actually the requirement of projectivity fixes the scattering form up to an overall sign which one ig-
nores.
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g g’
Figure 1.13: Two 5-point graphs related by mutation : X; ; — X; ;.

the scattering form becomes,

n—4

(sign(g) + sign(g’)) dlog A A /\ dlogX;, ;, +.... (1.67)

a=1

But since we demand projectivity the form shouldn’t have any A(x) dependent piece and

therefore,

sign(g’) = —sign(g). (1.68)

Note that projectivity ensures that the form should be ratios of Mandelstam variables.

Here are few examples of (n — 3)-forms in kinematic space of n particle scattering.

X
Qv = dlog(f) - dlog(ﬁ), (1.69)
" t X4
X X X X
QP = dlog =2 Adlog =2 + dlog =2 Adlog 222 (1.70)
- Xo4 Xi4 X35 2,4

and so on.
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1.9.3 The kinematic associahedron

In the previous section we described how one gets an associahedron (A, in the kinematic
space K, nonetheless it is not evident how it should be embedded in K, as K, and A,

are of different dimensionality

n(n—3)
2

dim(A,) = (n = 3). (1.72)

dim(K,) = (1.71)

Ergo, one must to impose constraints to embed A, inside K,. A natural choice is to

demand all planar kinematic variables to be positive,

X;;j20;, 1<i<j<n (1.73)

n(n 3)

These are ===

inequalities and thus cutout a big simplex 4, inside /K, which is still "(”2_ 3)

dimensional. Therefore, one needs ”(” D _(n-3) = W more constraints to embed

the A, inside K,,. To that end, one imposes the following constraints [43,90],
sij=—cij; for 1<i<j<n-1,]i—jl>2, (1.74)

where c;; are positive constants.

These constraints give a space H, of dimensions (n — 3) which is precisely the dimension
of A,. The kinematic associahedron ‘A, now can be embedded in %K, as the intersection

of the simplex 4, and the subspace H, as follows

A, =H,N4,. (1.75)

It was conjectured in [43] that the convex polytope carved out by these conditions is a
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realization of the abstarct associahedron we had defined in the previous section. The

conjecture was proved recently [90].

Once one has embedded the associahedron in %,, all one needs to do is to obtain its
canonical form Q(A,). Since associahedron is a simple polytope, one can directly write

down its canonical form as follows [51]

n-3
QAA)= . sign(2) [\ dlogX;,,, (1.76)
vertex Z a=1
where for each vertex Z, X;, ;, = 0 denotes its adjacent facets® fora = 1,...,n-3.

It was argued in [43] that the above differential form (1.76) is identical to the pullback
of scattering form (1.66) in %, to the subspace A,. We can justify this statement by

identifying: g & Z and sign(g) < sign(Z) which follows from:

e There is a one-to-one correspondence between vertices Z and planar cubic graphs

g. Also g and its corresponding vertex Z has same propagators X; ;. .

e et Z and Z’' be two vertices related by mutation. Note that mutation can also
be framed in the language of triangulation. Two triangulations are related by a
mutation if one can be obtained from the other by exchanging exactly one diagonal

(see figure (1.14)).

/

Z Z

Figure 1.14: Two triangulations related by mutation : X;; — X;;.

3One should be careful about the orientations of the facets. Depending on the ordering of the facets, we
assign a sign(Z) € {£1}.
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Thus for Z and Z’ vertices we have

K dXipjo =~ K dX;., (1.77)
a=1 a=1

which leads to sign-flip rule identical to g i.e. sign(Z) = — sign(Z’).

Therefore one can construct the following quantity (an (n—3)-form) which is independent

of g on pullback.
n-3

"X = sign(g) /\ dX,,,, (1.78)

a=1

Substituting this in (1.76) one gets,

Q(ﬂ,,):( D H+X

planar g 1 la=1 “ia.ja

d"3X, (1.79)

my,

where m,, is the expected tree level planar n-point amplitude for scalar cubic theory.

1.10 Factorisation and Soft limits

In this section we show two important properties of bi-adjoint amplitude follow readily

from the geometric properties of the associahedron viz

1. The amplitude factorises on physical poles.

2. The amplitude vanishes in a soft limit.

Factorisation

We want to show that the bi-adjoint amplitude factorises as (1.25) directly from the ge-
ometry of the associahedron. We do this by first showing that the associahedron factorises
combinatorially i.e. each facet is combinatorially identical to a product of lower dimen-

sional associahedra.
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On a facet X;; = 0 we have

Anlx, =0 = Ar X Ag, (1.80)

ij=

where A; = AG,i+1,---,j—1,1) and A = A, --,i—1,1,j,---,j— 1,n) for an
intermediate particle /. Then by (1.51) we get

Resx, ~0Q2(A,) = Q(AL) N Q(Ag), (1.81)

L™

which implies the factorisation of the amplitude (1.25).

To prove (1.80) we begin by constructing a “left associahedron” A; and a “right asso-
ciahedron” Ay living in independent kinematic spaces. The left and right associahedra
have a kinematic basis consisting of left variables L,; and right variables R, , respectively
which correspond to some triangulation of the left and right sub-polygon obtained by

omitting the diagonal (i, j)

A Loy fori<a<b<j

Ar R,p forl <a<b<nexcepti<a<b<j

We also assume that the two associahedra come with non-adjacent positive constants /,,
withi < a <b < jandr, withl <a < b < nexcepti < a < b < j. Since the
triangulations of the left and right sub polygons combine to form a partial triangulation
of the n-gon with the diagonal (i, j)) removed. These variables provide a basis for the

subspace Wﬂlxij:o' By letting the non-adjacent constants match c,, = I for all /,, and

Cap = Tap for all a,b # I we can write an obvious map Ay X Ar — H,lx, o

Xab L, for all left variables L,

Xub R, for all right variables R,
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As such a map can first be defined for the left and right basis variables. But, since any
left or right variables can be written as a linear combination of the basis variables and

non-adjacent constants, the map can be extended to all left or right variables.

We now argue that the image of the embedding lies in the facet A,lx,,-o by showing
that all planar variables apart from X; ; = 0 are positive. It is sufficient to show this for
diagonals (k, [) that cross (i, j) with 1 < i < k < j <[ < n since all the others are positive

by construction. By considering the following identity with X; ; = 0

Xk,l + Xi,j = Xk,j + Xi,l + Z Cab- (182)

i<a<k
Jj<b<l

We see that X;; is positive since the right hand is positive term by term as (k, j) and (i, /)
are diagonals of the left and right sub-polygons the corresponding planar variables and
the non-adjacent constants c,;’s are all positive. Thus, proving that the map is one-one
and thereby guaranteeing (1.80).

Soft limit

Let us consider the soft limit where we send momentum p; — 01ie. ¢;; — 0 for j #
i — 1, i + 1 for the associahedron A, which lives in the subspace H, defined by non-

adjacent structure constants ¢;;, it follows from kinematic constraints that

Xiivo + Xicriv1 = Siin1 + Sic1 i = — § Sij = § cij— 0

jEi-1, i+1 jEi=1, i+1

Since X ;42, Xi—1+1 = 0 inside the associahedron this limit implies that X; ;> = X;—j 41 =
0. Thus the soft limit “squashes” the polytope to a lower dimensional one whose canonical

form vanishes identically on H,, implying that the amplitude m, is identically zero.

The vanishing of the amplitude m,, in the soft limit is a non-trivial fact that is not manifest

from Feynman diagrams.
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1.11 Worldsheet associahedron and CHY

We have seen that scattering amplitudes can be obtained from geometry of the associahe-
dron. This however is not the first instance where the associahedron appears in physics. It
has been known for a long time that the open string moduli space when suitably compacti-
fied has an associahedron associated to it. The canonical form associated with worldsheet
associahedron turns out to be the famous worldsheet Parke-Taylor form. Recall that the

Parke-Taylor form was associated to the CHY integrand for bi-adjoint ¢* theory.

It was conjectured in [43] that the worldsheet associahedron and the kinematic associahe-
dron are diffeomrphic to each other with the diffeomorphism being provided by the scat-
tering equations. The conjecture was then verified numerically for a substantial amount
of data. The canonical form of the kinematic associahedron can then be obtained as push
forward of the worldsheet associahedron there by giving beautiful meaning to the scat-
tering equations and a elegant geometric derivation of the CHY formula for bi-adjoint ¢°

theory.

The positive moduli space Mg, = {0 < 03 < -++ < 0,2 < 1} is a positive subspace
of the open string moduli space M, ,(R). This is just one of the ("_Tl)' distinct regions
given by ordering o7; variables [91]. The positive moduli space Mg, corresponds to the
standard ordering oy < 0 < --- < 0, where the S L(2,R) redundancy has been used to
setoy =0,0,-1 =1 and o, = 0. Mg’n does not contain boundaries of all co-dimensions
and hence is not a positive geometry. But, it can be made into one by compactifying it.
This is done by introducing the variables u;; for 1 <i < j—1 < n which are constrained

to lie in the region 0 < u;; < 1, subject to the non-crossing identity [92,93]

wy=1- ] (1.83)
(k.De(, j)°

The u; ;’s are analogous to the planar kinematic variables X; ; and can also be visualised
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as the diagonal (i, j) of a convex n-gon with cyclically ordering. The above constraints
imply that the u-space is (n—3)-dimensional. We can construct a map from the the positive

moduli space M to the interior of the u-space

(i = Tj1)(Ti-10) _ @j-DGE-1))
(o — O'j)(O'i—lo'j—1) @pa-1j- 1)'

(1.84)

l/li’j =

We can take the closure in the u-space thereby compactifying the positive moduli space
/\_/lg’n [94,95]. This is called the u-space compactification and it produces the same bound-
ary structure as that of the associahedron. This was proved by noticing that on every
boundary u; ; = O for some i, j factors geometrically into the product of lower dimen-

sional worldsheets
B pMg, = Mg, X Mg, (1.85)

where Mg, = Mg G-+, j—1L,Dand M, =M, (1,---,i= 1,1 j,--- ,n).

The canonical form of the worldsheet associahedron can be found by a systematic blow-
up procedure wherein the boundaries of the simplex are blown up to get an associahedron

and it turns out be the Prake-Taylor form

WS

1 L do,
= X 1.86
volS L(2) la;[ Oy — Oasl ( )

The scattering equations E; relate points in moduli space My, to points in kinematic
space K, the key observation made in [43] is that the scattering equations also act as

diffeomorphism between the two associahedra /\7(5 o A

This was argued by first rewriting the planar variables X, interms of the u-coordinates
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and non-adjacent Mandelstram variables which have been set to constants s;; = —¢;; :

o @pin o Gnib-1D o GmGmab-1)
b = Z G pan ™ ZaGipb-1m" Z G Namb-1m "

which provides a map from (P"(R),A,) — (P"(R), /\_/(g’n) space that takes boundaries
u;; = 0 of /\7(3,” to boundaries of X;; = 0 of A,. It was further checked numerically for
a substantial amount of data, that for every point in the interior of the kinematic associa-
hedron exactly one of the (n — 3)! solutions of the scattering equations lies on the interior
of the worldsheet associahedron. It was conjectured based on this strong evidence that

scattering equations form a diffeomorphism.

Furthermore on using (1.52) we can write

> W) =md X, (1.87)

sol.o

For a more general ordering a, § this generalises to

> w)¥la] = m,[alpld" X, (1.88)

sol.o

Thus providing a simple and elegant “proof™ of the CHY formula for bi-adjoint ¢* ampli-

tude.

Having reviewed the nessecary mathematical prelimaries and relevant details of the am-
plituhedron program for N' = 4 SYM and bi-adjoint ¢ theory we are now ready to descibe
the “amplituhedron” of ¢” interactions for all p > 4. We shall first consider the case of ¢*

interactions and subsequently generalize to all p.

The rest of the thesis is organised as follows. In chapter 2, we discuss the positive geome-
try of quartic interactions, namely, the Stokes polytope, our prescription for computing the
planar amplitude using primitives and weights, a formula for the number of primitives and

proof of factorisation of Stokes polytopes. In chapter 3, we discuss the positive geometry
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of ¢ interactions the accordiohedron, our prescription for computing the planar ampli-
tude using primitives and weights, a formula for the number of primitive accordiohedra
and proof of factorisation of accordiohedra. The chapter 4 contains a classification of all
primitives for n < 3 for arbitrary p and implementation of our prescription to compute the
weights for p < 12 and n < 3. We provide a discussion of our results and open questions
in chapter 5. The appendices contain a collection of relevant mathematical results used in

the thesis.
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Chapter 2

Positive geometry for (/54 interactions

As reviewed in the previous chapter, the relationship between (planar) Feynman graphs
in ¢* theory and positive geometry (namely associahedron) encapsulates a few intriguing

features:

(1) There is a one to one correspondence between Feynman graphs with complete trian-

gulations of a polygon.

(2) Dimension of the kinematic associahedron is the same as number of propagators in an

n-particle scattering.

(3) Each co-dimension k-face of the associahedron is in one to one correspondence with

a (n — 3 — k)-partial triangulation of the n sided polygon.

At first sight, it is tempting to consider a generalisation of these inter-relationships be-

tween polygons and planar (tree-level) amplitudes in ¢* theory.

One immediately notices the following. Precisely as in the case of ¢’ theory and the
triangulations of polygon, there is a one-to-one correspondence between planar tree-level

diagrams of ¢* theory and complete quadrangulations' of a polygon (see figure (2.1)).

By complete Quadrangulation we just means decomposing a polygon into maximum number of quadri-
laterals. We will refer to any subset of the diagonals which do not constitute a complete quadrangulation as
partial quadrangulation.
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Figure 2.1: A one-to-one correspondence between Feynman graphs of ¢* theory and
quadrangulations of an even polygon.

1 2 1 2 1 2
6 ® 3 6 @ 3 6 @ 3
5 4 5 4 5 4
Figure 2.2: The 3 different planar channels for 6-point scattering.

A few facts about the quadrangulations are well known [96]. The total number of quad-

rangulations of ann = (2N + 4)-gon is given by the Fuss-Catalan number,

We can thus ask the following question. Is there a polytope S, whose vertices are in 1 — 1
correspondence with all quadrangulations of a polygon and whose dimension is same as
the number of propagators in a single channel as in the associahedron case. Since, each

quartic graph with n = 2N + 4 external legs has precisely N propagators,

dim(S,) = N.

We can now ask if there is a polytope whose dimension is N and number of vertices are
same as Fy. Here we immediately run into an obstacle due to the fact that for the six-
point scattering (i.e. N = 1) we should get a one dimensional polytope, which can only
be a line segment with two boundaries but since there are in fact three planar scattering
channels (see figure (2.2)) for the six-point diagram we cannot find such a polytope with

boundaries which correspond to all three propagators going onshell. So, the only way to
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define a polytope is to exclude one of the channels using some systematic rule. This idea

was precisely encapsulated in [97] in a different context and used to construct the Stokes

polytope.

2.0.1 Stokes polytope

In order to introduce Stokes polytope, we first need to define a notion of Q-compatibility
which selects, among the set of all (complete) quadrangulations of a polygon, a subset

which will be in one-to-one correspondence with vertices of Stokes polytope.

Consider, a pair of quadrangulations Q and Q' of a regular (2N+4)-gon which we call
red and blue respectively with diagonals directed from odd to even vertices (see figure
(2.3)). We rotate Q' anti-clockwise and then superimpose it over Q so that the vertices
now get interlaced. We then say Q' is Q-compatible with Q if and only if at each crossing

of diagonals the pair (red,blue) in that order are oriented clockwise.

6 3
5 4
1 2

6 3
5 4

Figure 2.3: The above figure shows 36 is Q-compatible with 14 but 25 is not.

We must emphasise that Q-compatability is not an equivalence relation and is very much
dependent on the reference quadrangulation Q, as can be easily checked that 14 is com-

patible with 36, 25 with 14 and 36 with 25 2,

2 A simple way to remember this rule is that every diagonal is Q-compatible with every alternate diago-
nal when we move clockwise(14 with 36 , 25 with 41 and 36 with 52).
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We can now define a flip as the replacement of a diagonal of any hexagon inside the quad-
rangulation of the polygon with its Q-compatible diagonal, this corresponds to changing
to a compatible channel for any 6-point diagram inside our (2N + 4)-point diagram. This

is the analogue of mutation for quartic case (see eqn. (1.77)).

We can now use the notion of flip to define the Stokes polytope S9, by starting with a
particular complete quadrangulation Q with diagonals (i; ji, ..., iy jn), and by performing
flips on each diagonal i, j; by going to the unique hexagon that contains iy j; and replacing
it with its Q-compatible diagonal iteratively.

o In the first step for each of the N diagonals, we go to the unique hexagon which contains

it and replace it with the Q-flipped diagonal.

o In the second step for each of the (N — 1) quadrangulations at the end of step one we
choose one of the original (N — 1) diagonals and replace it with its Q-flipped diagonal as

in step one.
o We repeat this till none of the original N diagonals remain in step N.
We illustrate this for the N = 2 (8-point scattering) below.

We start with the Q = {14, 58} and flip either 14 to 38 in {1,2,3,4,5,8} or 58 to 47 in
{1,4,5,6,7,8} and to get Q; = {36,58} or O, = {14,47} respectively, then a further flip
of either 14 to 38 in {1,2,3,4,7,8} or 58 to 47 in {3, 4,5, 6,7, 8} both give O, = {16,47}.
Further flips do not give us any new quadrangulations. Thus the corresponding Stokes

Polytope in this case has 4 vertices. This is shown in the left half of n = 8 in figure (2.4).

If we start with Q = {14, 16} and flip either 14 to 36 in {1,2,3,4,5,6} or 16 to 58 in
{1,4,5,6,7,8} to get O = {36, 16} or O, = {14, 58} respectively, then further flips of 16 to
38in{1,2,3,6,7,8} and 14 to 38 in {1, 2, 3,4, 5, 8} give Q4 = {36,38} and Qs = {36, 58}.
Further flips do not give us any new quadrangulations. Thus the corresponding Stokes

polytope in this case has 5 vertices. This is shown in the right half of n = 8 in figure (2.4).
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6 5

Figure 2.4: The first few Stokes polytopes. Note that for n = 8 there are two kinds of
polytopes. This is one of the key features of the quartic case.
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It can be checked that if we start with any of the F, = 12 quadrangulations then the
Stokes polytope we get is either a square or a pentagon. This is easily seen if we notice
that the other 10 quadrangulations can be obtained from {14, 16} and {14,58} by cyclic
permutations and thus just amount to relabeling of the vertices.

We can proceed along these lines to obtain Stokes polytopes for any n = 2N + 4, and
there will be several Stokes polytopes depending on the reference quadrangulation Q we
start with. Some of them do turn out be associahedra and we will say more about this in
appendix (B). We can thus summarize the Stokes polytope in analogy with associahedron

as follows:

Vertices «< Q-compatible quadrangulations
Edges < Flips between them

k-Faces < k-partial quadrangulations

As we see, there are two key differences in the relationship of the Stokes polytope with

quadrangulations from that of the associahedron and triangulations. First being, defini-
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tion of Stokes polytope depends on the reference quadrangulation Q, and for each Q one
has a Stokes polytope S¢. Secondly vertices of S¢ are not in 1-1 correspondence with
all the quadrangulations of the polygon but only with a specific sub-set of them, namely
Q-compatible quadrangulations. As all (planar) diagrams of a ¢* theory are in 1-1 corre-
spondence with set of all quadrangulations of a polygon, it is clear that a single S? can

not be the amplituhedron for planar ¢* theory.

However a rather enticing feature of definition of S is a notion of the flip, which is
analogous to mutation in the case of triangulations. As it was the mutation which was
responsible for defining a unique scattering form in %, in the ¢° case, there is a possibility
that the flip may do the same in this case. In the next section we propose just such a
definition of planar scattering form for ¢* theory in kinematic space, which however will

depend on the reference quadrangulation Q.

2.1 Planar scattering form for ¢* interactions

We consider tree level scattering amplitudes in a massless scalar field theory with quartic
interactions. Given a specific ordering of external particles, we consider contribution of
only planar diagrams which are consistent with this ordering. We refer to such amplitudes
as planar amplitudes of massless ¢* theory. These amplitudes can be thought of as analogs
of the partial amplitudes M, (a|a) in the context of bi-adjoint scalar ¢* theory® which was

considered in [43].

We would like to extend the idea of defining planar scattering form to planar amplitudes in
massless ¢* theory. However a quick look at the simplest example of six point amplitude

shows us that such a form can not be projective. In general, for an n particle amplitude

31t is conceivable that the amplitudes we analyse can be considered as basic building blocks of ampli-
tudes of a bi-adjoint scalar field theory with quartic interaction of the type Tr [[q}, ¢]2] where [¢, ¢] is the
bi-adoijnt Lie bracket given by /¥ f/'/¥ ¢ /7' However as bi-adjoint scalar theory with quartic interaction
has not been considered in literature so far, we will not refrain from exploring this point of view further.
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in quartic theory, the number of planar diagrams can be even or odd and there is no sense
in which projectivity can be employed to fix a unique scattering form. In the absence of
projectivity, it is a priori not clear how do we define a planar scattering form for planar
amplitudes in ¢* theory. The hint in our case (that we alluded to in the previous section)
comes from one of the key observations made in [43]. Namely, defining a scattering
form projectively is equivalent to choosing the relative signs among various terms via
mutation, which is in turn equivalent to flipping one of the diagonals in the triangulation

of the n-gon.

For ¢* interaction, even though mutation or projectivity do not appear to be relevant con-
cepts, as we saw above, there is an analog. Given a reference quadrangulation Q, there is
a set Q-compatible quadrangulations for which a notion of flip is well defined. Whence
given a Q and its corresponding set of Q-compatible quadrangulations, we can define a

planar scattering form on the kinematic space %K, as follows:

Let Q be a quadrangulation of an n-gon which is associated to an planar Feynman di-
agram and let {X; ;,..., X} denote Q-compatible quadrangulations with diagonals
{i1j1,- -+ ,injn}, which are vertices of S,?. Then we define the (Q-dependent) planar scat-

tering form as,

Q¢ = Y (~1™dInX,; A...dInX,, @2.1)
flips
where o(flip) = *1 depending on whether the quadrangulation {Xj ;,..., X, .} can be

obtained from Q by even or odd number of flips.

As the set of Q-compatible quadrangulations (for a given Q) does not exhaust all quadran-
gulations or equivalently, all the planar Feynman diagrams, the set of terms which appear
in the planar scattering form in eqn. (2.1) does not correspond to all the diagrams of the
theory. As an example consider n = 6 case and let Q = 14. Then the set of Q compatible
quadrangulations are { (14, +), (36, —)}. We have attached a sign to each of the quad-

rangulation which measures the number of flips needed to reach it starting from reference
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Q = 14. Whence the form Q6Q on the kinematic space is given by,

Q%M = (@InX,4 — dInXs). (2.2)

It is clear that this form does not capture singularity associated to X,s channel for the 6
particle amplitude. Hence it may appear that eventually we may not recover full planar
scattering amplitude from such a form. However there are two more Qs we need to
consider. For Q = 36 the Q-compatible set is {(36, +), (25, —)} and for Q = 25 the
Q-compatible set is {(25, +), (14, —)}. The corresponding forms on Kinematic space are
given by

Q2% = (dInXss — dlnXas)

(2.3)

QP = (dInXys — dInXyy).

Hence we see that unlike the planar scattering form in the case of ¢* interaction which is
uniquely determined by requirement of projectivity, we have Fy planar scattering forms,

one for each quadrangulation.

It can be easily checked that for all Q, Q,;Q in eqn. (2.1) factorises correctly when any one

of the channels goes on-shell. Fori < j,

Q2 = 0% G+l yoa i, oo ' ..., 2.4
e T |Hﬂl(l,l+ seees J) A <. A n+27|j7i+1|(],...,n, s ), (2.4)
ij = 1
where Q,, O, are quadrangulations associated to the polygons {(i, i+1,..., j), (j,...,n,1,...
respectively.

A happy fact about 22 will emerge in the next section, paralleling the construction of
[43] we will see how these forms naturally descends to the canonical form on a S,?. As
Stokes polytope is a positive geometry, it has a canonical form associated to it which has

(logarithmic) singularities on all the facets, such that the residue of restriction of this form
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on any of the facet equals the canonical form on the facet.

For Simple polytopes one can write down an explicit formula for the canonical form by
embedding the polytope in projective space. Such an explicit formula for canonical form
on 82 does not seem to be available in the literature. The planar scattering form defined
above however gives us precisely such a form on S?. That is, we will take a cue from
ideas of [43] and start with a definition of planar scattering form for ¢* theory and show
that it descends to a form on SZ which satisfies all the properties required of the canonical

form.

2.2 Locating the Stokes polytope in kinematic space

In this section we define kinematic Stokes polytopes {86Q | O € (14,25,36)} for 6 par-
ticle amplitude and show how the planar scattering form Q2 defined above descends to
the canonical form on Sg. We begin by fixing a reference quadrangulation Q in terms of
kinematic data (i.e. a set of X s) and get a Stokes polytope S? in K, which sits inside the
positive region of kinematic space 4, = {X;; > 0,V i, j}. In fact, our definition of this
kinematic Stokes polytope will be such that it is located inside the kinematic associahe-

dron A,, thus ensuring that it lies in the positive region 4,,.

For Q, = (14) the QO compatible set is given by {(14, +), (36, —)}. The corresponding
Stokes polytope is one dimensional with two vertices. We locate this Stokes polytope

inside the kinematic space via the following constraints

sii = —¢ij V1l<i<j<n—-1=35,i—jl=22
/ ’ (2.5)
X3 = diz, X5 = dis,withd,3, dis > 0.

The first line of constraints are precisely the ones which define the three dimensional

kinematic associahedron Ag inside K. We have motivated the remaining two constraints

79



as follows. We can adjoin, to the diagonal (14) any one out of the following pairs.

I = {(13, 15), (24, 15), (13, 46), (24,46)} to form a complete triangulation of the
hexagon. We pick any one of these pairs to impose further constraints on the kinematic
data. From the perspective of Feynman diagrams, these constraints are rather natural as

planar variables from this set can never occur in Feynman diagrams of ¢* theory.

Using the above constraints, it can be easily checked that the planar kinematic variables

satisfy,

X3 = =Xy +tciu + cutcis + 5 20
(2.6)

X25 d15 + Ciq4 — d13 + C13 > 0.

We thus see that we have a (one dimensional) Stokes polytope 83:04) whose vertices are
given by Xi4 = 0 and X3¢ = O (whichis when X4 = ¢4 + ¢ + c¢15 + ¢25) which
correspond to the two Q-compatible quadrangulations. It can be readily verified that the
kinematic Stokes polytope is insensitive to which of the pairs of diagonals in 7 above we

choose to constrain . We can now pull back the form given in eqn. (2.2) on S¢

wg‘ = (XLM + XL%)dXM =! ms(S?)de, 2.7

where mg(Q)) 1s the canonical rational function associated to the Stokes polytope Sg'.

As a one dimensional Stokes polytope is also an associahedron (see appendix (B)), and as

the form in eqn.(2.7) is the canonical form on associahedron, we have a canonical form

on S6Q:(14).

The canonical rational function me(Q;) > is

“This is true only for Stokes polytopes which are hypercubes (B), however we claim that you can always
find atleast one choice of diagonals which will carve out the Stokes polytope in kinematic space.
5 . . . .
For the sake of pedagogy, we are not differentiating between reference quadrangulation Q that we
fix which is in rotated (blue) polygon and quadrangulations which generate stokes polytope which are
quadrangulations of the red polygon [98].
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1 1
me(Q1) = (E + X—%) (2.8)

We can now repeat the analysis with O, = (25) and Q3 = (36) analogously and it can be

shown that the corresponding canonical forms on the Stokes polytopes are,

0 _ (1 1

w62 = (X_zs + X—]4)dX25 (29)
0 _ (_1 1

of = (% + %)X

We now define a function Mn on the kinematic space which is a weighted sum of the mg

over all S,? . In the n = 6 case this function is defined as,

M. = 1 I 1 1 1 1

Mg = Q, (X_14 + X—%) + g, (X_Zi + X_14) + g, (X_%ﬁ + X_zs) (2.10)
Here a, are positive constants. It is immediately evident that if and only if @p, = ag, =
Qo;, = %, M6 = M6.

2.2.1 Eight particle scattering

Let us now consider the n = 8 case.

Our analysis will proceed along the same lines as in the previous section. Namely we
first define planar scattering form on 7(8Q for all the quadrangulations. We will then show
how all the kinematic Stokes polytopes Sg sit inside the 5 dimensional associahedron Ag
and then show how a weighted sum of canonical rational functions over all the polytopes

leads to the planar scattering amplitude.

This computation can be made much easier by realising that all the quadrangulations of
an octagon (and in general any polygon) can be obtained from cyclic permutations of a

subset of quadrangulations. We call this set, set of primitive quadrangulations. More

81



precisely,

Given a n sided polygon with labelled vertices, we call a set of quadrangulations {Q;, ..., O}
primitive if,

(a) no two members of the set are related to each other by cylic permutations and

(b) all the other quadrangulations can be obtained by a (sequence of) cyclic permutations

of one of the Qs belonging to the set.

We note that, choice of which quadrangulations are called primitive is not unique but the
cardinality of the set of primitive quadrangulations is uniquely fixed by n. In the n = 6

case, there is only one primitive Q and can be chosen to be Q = (14).

As shown in section (2.0.1), there are two primitive Q’s in this case. With out loss of

generality we can take them to be {Q; = (14,58), O, = (14,16)}.

As we have shown in figure (2.4),

Q, compatible quadrangulations are given by S| = {(14,58; +), (14,47; -), (83,58; —), (83,47; +)},

O, compatible quadrangulations are S, = {(14,16;+), (14,58;-), (36, 16; —), (36, 83;+), (58,83;-)}.
The signs associated to each quandrangulation is obtained by measuring the number of

relative flips from the reference Q.°
Using eqn. (2.1), for each of the two sets S, S, we can define two distinct planar 2-forms

on Ky as,

.QSQl (dinX4 AdInXs53 +dInX33 A dInXy7 —dIn X4 A dInXy7 — dIn X33 A d1n Xsg)

.QSQZ = (dinXiuA"dInXi1g—dInXi4 AdInXs553 —dInX356 AdIn X6+ dIn X35 A dIn Xg3 — dIn X553 A dIn Xg3).

One can write down scattering forms for all other quadrangulations exactly analogously.

The Stokes polytopes associated to S, S, are two dimensional positive geometries with

It is important to maintain the order of the diagonals when a flip is taken as these denote the ordering
of the wedge product ((14,58) — dIn X 4 A d1n Xsg etc.) and since this also contributes to the overall sign
of the term when the Scattering form is written down.
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four and five vertices respectively.

We now locate the two Stokes polytopes S o, and S ¢, inside the Kinematic space (in fact,
inside the five dimensional associahedron (Ajg) precisely in analogy with n = 6 case. Let
T, and T, be any two sets of diagonals which are such that 7, U {14, 58} and T, U {14, 16}
are complete triangulations of the octagon (with labelled vertices). We choose T'; and T,

to be {13,48,57} and {13, 46, 86} respectively.

The constraints defining S o, and S , inside the kinematic space are respectively given by

sii= —c;¥1<i< j<Twithli-j =2
! ! 2.11)
X3 = diz, Xug = dag , Xs7 = ds7.
s = —cp¥1<i<j<Twithli—jl =2
! / (2.12)

X3 = diz, X4s = das , Xes = des.

These constraints locate both the Stokes polytopes inside the five dimensional associa-
hedron Az and hence ensure that all the X;;’s are positive in the interior of the Stokes

polytopes.

Using these constraints it is simple algebraic exercise to show that on SgQ' , SSQZ one has

the following top forms obtained from £, on K.

O _ ( 1 1 1 1 )
Wg = X14Xs8 + X38X47 + X14X47 + X38Xs8 dX14 A dXSS (2 13)
0 _ ( 1 1 1 1 1 )
Wg = X14X16 + X14Xs8 + X36X16 + X36Xs83 + Xs58Xs3 dX14 A dX16'
The corresponding canonical functions mg are given by
_ 1 1 1 1
mg(Ql) - (X14X58 + X38X47 + X14X47 + X38X58) (2 14)

1 1 1 1 1
m = + + + + ) :
S(QZ) (X14X1() X14Xs8 X36X16 X36Xs3 Xs53Xs3
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As all the other quadrangulations can be obtained by cyclic permutations of (labels of) O
and Q,, we can easily write down the functions f associated to all the Stokes polytopes

and substitute them in Mg

Mg = Z Aey.0, mg(oy - Q1) + Z ey, Mg(02 + O2), (2.15)
[ g2
where 0,0, range over all the cyclic permutations which map Q; and Q, to distinct
quadrangulations respectively.

Upon substituting the residues in eqn. (2.15), it can be easily checked that there is a
unique choice of a s , namely a,,.9, = % Vo and ag,.0, = % Yo, for which Mg = My

(see appendix (2.4)).

2.3 Computing M, from the canonical forms

As we saw in the previous section, in both the n = 6 and n = 8 cases the scattering ampli-
tude can be obtained from a weighted sum of rational functions (associated to canonical
forms) over all the Stokes polytopes. A curious fact about the weights @ was that the a s
for which Mn equals M, were parametrized only by the primitive quadrangulations. In

other words, in both the cases considered above,

@ = gV o (2.16)

We also formalize this observation into a constraint on the weights as

ag = ag if Q' = o - Q for acyclic permutation o 2.17)

That is if two quadrangulations are related by a cylic permutation of vertices of the poly-
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gon, then the corresponding « s should be equal.

The underlying motivation for the constraint in (2.17) is the following. Consider two
quadrangulations Q and Q" which are cyclically related. From the perspective of kine-
matic Stokes polytope this means that the difference between Sy and Sy is simply in
how they are embedded in the kinematic space. Our constraints are based on our intuition
(based on n = 6, 8 cases) that ap only depend on the intrinsic (combinatorial) property of
S¢ and not on how it is embedded in K,,. This dependence of a’s on certain equivalence
class of quadrangulations can be encapsulated by the notion of primitive quadrangula-

tions.

We now propose a formula for evaluating the function Mn for arbitrary n.

M, = > D agmic-0). (2.18)

Q primitive o

The proposal (for computing the planar scattering amplitude M,,) can thus be summarised

as follows

For any n we first compute m, (o - Q) and substitute in eqn.(2.18). We conjecture that
there is a unique choice of a’s which should be computed purely from combinatorics of Q
s such that for these @’ s, Mn = M,. That s, there is a unique choice of @ V primitive Q

such that contribution of all the poles to Mn with residue unity.

We should emphasize that to compute the scattering amplitude M, from residues of the
Stokes polytopes, we need an independent formula for @y which is consistent with eqn.
(2.17), and such that all the kinematic channels give equal contribution of order unity.
Computing a’s at any given level N requires a complete list primitives and vertices of the
Stokes polytopes of dimension N corresponding to them. Since, the number of Stokes
polytopes proliferates very quickly with increasing N this seems to be computationally
intractable (B). However, later in this thesis we shall derive a formula for the number

of primitives py at any given level N and propose a iterative method to classify all the
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primitives. We do not have a formula for a’s so far.

We shall shortly describe the computation of a’s for n = 10 case and verify that our
proposal leads to the correct scattering amplitude. But, first we shall describe a more

convinient form of (2.18) that will help us in this regard.

M, = ) agm(Q), (2.19)
0

where one sums over all the Stokes polytopes (parametrized by Q), with the proviso that

@ are same for any two quadrangulations which are related by cyclic permutation.

2.4 Some details : For n = 8, 10

Some details of the n = 8 case

We provide the details of the computation of the a factors for n = 8 case here. The
functions mg corresponding to all F, = 12 quadrangulations are given below. There are 4

Stokes polytopes with 4 vertices and 8 Stokes polytopes with 5 vertices.

1 1 1 1
m = + + + )
s(Q1) (X1 +Xss X33X47 X14Xa7 X33Xs3
1 1 1 1
m = ( + + + )
8(Q2) Xo5X16 X25X58 X14Xs8 X14X16
mg(Q3) = ( % t Tk t ¥ T % )
: X36X27 X36X16 X25X16 Xa5X27
_ 1 1 1 1
m8(Q4) - (X47X33 + Xu7X27 + X36X27 + X36X38 )
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mS(Qll) = ( X14X16 + X14X58 + X36X16 + X36X83 + Xs58X38 )
mS(Qiz) = ( X251X27 + X251X16 + Xl4lX]6 + X471X14 + X471X27 )
mS(Q%) = ( X361X38 + X361X27 + X251X27 + X581X25 + X581X38 )
mg(Q:‘) = ( X471X14 + X471X38 + X361X38 + XI61X36 + X161X14 )
mS(Q;) = ( X581X25 + X141X58 + X141X47 + X271X47 + X251Xz7 )
mS(Q%) = ( Xlolxso + X161X25 + X251X58 + X381X58 + X361X38 )
mS(Q;) = ( X271X47 + X271X36 + X|61X35 + X141X|6 + X141X47 )
mS(Qé) = ( X381X58 + X381X47 + X271X47 + X251X27 + X251X58 )

Every term in the above sum has either X;;,3X;;,3 or Xj;,3X;,s in its denominator. We
can see that each Xj;,3X;;,3 term appears twice in the first list and twice in the second
list. Similarly, each X;;,3X;;,5s term appears only once in the first list and four times in the

second list. Thus, we have

2C¥0-.Q + 2ao”.Q’ =1

Cl’o-.Q + 4a’o".Q’ =1

which gives ¢y = 2V oand ap.g = § Vo

Scattering form and Stokes polytopes for the n = 10 case

We would like to provide the details of how to obtain the Scattering amplitude M
by summing over the kinematic Stokes polytopes here. There are a total of F3 = 55
quadrangulations the sum over all of them can equivalently be replaced with a sum over
just the 7 primitive Stokes polytopes corresponding to the quartic graphs shown below
(2.5) with appropriate coefficients. The reference quadrangulations for these primitves
are 0; = (14,510,69), O, = (14,16,18), O3 = (14,16,69), O, = (14,49,69), Qs =
(14,47,710), Q¢ = (14,510,710), Q7 = (14,16,710).
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Figure 2.5: The primitive quartic graphs (in clockwise order) with corresponding Stokes
polytopes being Cube, Associahedron(2-4), Lucas and Mixed Classes(6 and 7)

We first provide the details of these Stokes polytopes and demonstrate how to get the
planar scattering form, which when pulled back gives the scattering amplitude.

We always impose the associahedron condtions

sij=—ciforl <i<j<2n+1, li—jl>2 (2.20)

and together with this we need to impose 4 additional conditions which carve out the
Stokes polytope inside the associahedron. As explained in section (2.2) we consider the
reference quadrangulation Q corresponding to each Stokes polytope and find a set of 4
other diagonals T that complete the triangulation of Q. We then set the X;;’s corresponding
to this set to positive constants d;;’s, since these X;;’s can never correspond to propagators
of any quartic graph. This particular choice of additional contraints provides a particular
embedding of the Stokes polytope into the associahedron. We illustrate this for all the

four cases below.

1. Cube type : The corresponding Polytope is a cube with 8 vertices as shown in the

figure (2.6).The set of Q; compatible quadrangulations are given by:
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S1=1{(14,510,69, +), (310,510,69,-), (14,49,69,-), (14,510, 58, -),

(14, 49,58, +),(310,510, 58, +), (310,49, 69, +), (310,49, 58, -)}.

One set of diagonals which triangulate Q, are 7 = {13,410, 59, 68} which we set

Figure 2.6: The Polytope is a cube as can been seen above each quadrangulation is a
vertex and the lines joining them represent edges, each closed loop represents a face. The
set of common diagonals which complete the triangulation are shown in grey.

to positive constants to get an embedding

Xi3 =di3, X410 = daio, Xso = dso, Xeg = des. (2.21)
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The planar scattering form for this case is given by:

.QlQol = dinXu AdIn X510 AdInXg9 —dIn X310 AdIn X510 AdInXg9 — dIn X4 A dIn Xg9 A dIn Xeg
—dIn X310 AdIn X510 AdInXsg + dIn X4 AdIn Xy AdInXsg + dIn X310 A dIn X519 A dIn Xsg

+dIn X310 AdInXy9 A dlnXgo — dIn X310 A dInXy9 A dln Xsg).

When pulled back onto the space of constraints ((2.20), (2.21)) gives the canonical

form for the cube :

0 1 1 1 1 1
o= + + + +
X14Xs510X60  X310X510X60  X1aX490Xeo  X1aXs510Xs58  X14X49Xsg

1 1 1
+ + +
X310X510X58  X310X40X60  X310X40X53

)dX14 A dXs10 A dX69.

. Snake type : The corresponding polytope is an associahedron A with 14 vertices
(see figure (2.7)). As Explained above there are three quadrangulations that corre-
spond to this case namely Q, = (14,16, 18), O3 = (14,16,69), O, = (14,49, 69).

We show how to get the planar scattering form and canonical form for Q, below:

The set of O, compatible quadrangulations are given by:

S, =1{(14, 16,18, +), (36, 16, 18, -), (14,58, 18, ), (14, 16,710, ), (36, 16,710, +), (36, 38, 18, +)
,(14,58,510, +), (38, 58, 18, +), (14,510, 710, +), (36, 310, 710, -), (36, 38, 310, -), (310, 58, 510, —)

,(38,58,310,-), (310,510,710, -)}.

One set of diagonals which triangulates the reference quadrangulation Q; is T, =

{13,46, 68, 810} which we set to positive constants to get an embedding:

X3 =di3, X4 = dss , Xeg = deg , Xgi0 = dgjo- (2.22)
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Figure 2.7: In the Snake case the corresponding Stokes polytope is an associahedron Ag.
The planar scattering form for this case is given by,

QIQOZ =dlnXyANdInX;g AdInX ;3 —dIn X3¢ Adln X6 A dln X3

—dInXy, AdInXss AdInX;g—dIn X4 AdIn X6 AdIn X719+ dIn X3 A dIn X6 A d1n X719
+dInX36 AdIn X33 AdInX ;s +dIn X4 AdInXsg AdInXs510+dIn X33 AdlnXsg Adln Xg
+dIn Xy AdIn X510 AdIn X710 —dIn X3 AdIn X310 AdIn X719 — d1In X3¢ A dIn X3z A dIn X34

—dIn X310 AdInXs3 AdIn X510 — dIn X33 AdIn X553 AdIn X319 — d1In X310 A dIn X510 A d1n Xqqp.

When pulled back onto the space of constraints eqn. (2.20) and eqn. (2.22) we get
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the canonical form:

1 1 1 1 1
w% = ( + + + +
X14X16X18  X36X16X1s  XiaXssXis  XiaXi6X710  X36X16X710
1 1 1 1 1
+ + + + +
X36X33X18  X1uXsgXsi0  X3sXssXis  X1aXs510X710  X36X310X710
1 1 1 1

+ + + + dXi4 AdXig A dXg.
X36X33X310  X310X58 X510 X33Xs53X310  X310X510X710

Similarly,
0 1 1 1 1 1
Wiy = + + + +
X14X40Xe0  X310X40Xg0  X14Xi16Xeo  X14X40Xs3  X36X310X69
1 1 1 1 1
+ + + + +
X310X40Xs3  Xi16X36Xe0 X1aXi6X1s  X1aXi3Xss  X36X38X310
1 1 1 1

+ + + + dXi4 N dXie A dXig.
X33X310Xs55  Xi6X18X36  Xi18X33Xss  X13X36X33

C()Q4 _ ( 1 " 1 + 1 + 1 + 1
10 X14X16Xeo  Xi6X36X60 X1aXs510X60 X14X16X1s  Xi16Xi18X36
1 1 1 1 1
+ + + + +
X36X310X60  X310X510X60  X1aXs58Xs510 X14X18Xss X 18X36X33
1 1 1 1

+ + + + )dX14 AN dX16 A dX]g.
X36X33X310  X310X58Xs510  XigX38Xss  X38X310Xs3

3. Lucas type : In this the corresponding Stokes Polytope has Lucas number L; = 12

vertices (see figure (2.8)). The set of Qs compatible quadrangulations are given by:

S5 ={(14,47,710,+), (310,47,710, -), (14, 16,710, -), (14,47,49, -), (310,49,47, +), (36,310,710, +)

,(36,16,710,+), (14,16, 69, +), (14,49, 69, +), (310, 49, 69, —), (310, 36, 69, —), (36, 16, 69, —)}.

One set of diagonals which triangulates the reference quadrangulation Qs is T3 =

{13,46,79,410} which we set to positive constants to get an embedding:

X3 =di3, Xag =das , X79 = d79, Xa10 = daio- (2.23)
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Figure 2.8: In the Lucas case the corresponding polytope has 12 vertices, 18 edges and 8
faces.

The planar scattering form for this case is given by,

QIQS =dInXiu ANdInXy7 AdIn X719 — dIn X310 A dIn X47 A dln X719
—dIn Xy AdInXig AdIn X710 —dIn Xia AdIn X479 AdIn X9 + dIn X310 AdIn Xy A dln X4y
+dInXz6 AdIn X510 AdIn X710 + dIn X36 AdIn X16 AdIn X719 + dIn X4 A dIn X6 A d1n Xgo
+dIn X4 AdInX49 AdInXgo — dIn X310 AdInXy9 A dInXgo — dIn X319 A d1In X35 A d1n X

—d 11'1X36 A dlIlX16 A dlnX69.

When pulled back onto the space of constraints eqn. (2.20) and eqn. (2.23) we get

the canonical form:

1 1 1 1 1
a)% = + + + +
X14X7 X710 X310X47 X710 X1aXi6X710  X1aXa7Xs0  X310X49X47
1 1 1 1 1
+ + + + +
X36X310X710  X36X16X710  X14X16Xe0  X14Xs90Xeo  X310X49Xe9
1 1

dX14 A dX47 A dX71().

+ +
X310X36X60  X36X16X69
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4. Mixed type : In this case the stokes polytope is just product of lower dimensional
stokes polytopes S| X S, hence has 10 vertices (see figure (2.9)). As Explained
above there are two quadrangulations that correspond to this case namely Qq =
(14,510,710), Q7 = (14,16,710). We show how to get the planar scattering form

and canonical form for Qg below:

The set of Qg compatible quadrangulations are given by:

Se¢ ={(14,510,710,+),(310,510,710, -), (14,47,710, -), (14,510, 69, -), (310,47,710, +),

(310,510,69,+),(14,47,49, +), (14,49, 69, +), (310,49, 69, -), (310,47,49, -)}

. One set of diagonals which triangulates the reference quadrangulation Q¢ is T =

{13,410,79, 57} which we set to positive constants to get an embedding:

X13 = d13 s X410 = d410 P X79 = d79 b X57 = d57- (224)

The planar scattering form for this case is,

Q]QOG = (dll’lX14 A dll’lelo A dll’lXﬂo - dll’lX310 A dll’lXSl() A dll’lXﬂ()
—dll'lX14 A dlnX47 A dlIlX710 - dlIlX14 A dll’lXSlo A dll’lX69 + dlIlX31() VAN dlIlX47 A dlnX710
+dIn X510 AdIn X510 AdInXgo +dIn X14s AdInXy7 AdIn X9 + dIn X14 AdInXy9 A dln Xgo

—dlllX3]0 A dlnX49 A dlnX69 - dh’lX310 A dll’lX47 A dlIlX49).

When pulled back onto the space of constraints (2.20,2.24) we get the canonical

form:
o 1 1 1 1 1
Wiy = + + + +
Xi14Xs510X710  X310X510X710  X14X47X710  X1aXs510Xe0  X310X47X710

1 1 1 1 1
+ + + + +
X310X510X60  X14X47X49  X14X49Xeo  X310Xa9Xe0  X310X47X49

dX14 A dX510 A dX710
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Figure 2.9: In the mixed case the corresponding polytope has 10 vertices, 15 edges and 7
faces.

Similarly,
o 1 1 1 1 1
Wyo = + + + +
X4 X16X710  X16X36X710  X1aXs510X710  X1aXi16Xeo  X36X310X710

1 1 1 1 1
+ + + + +
Xi6X36X60  X310X510X710  X14X510X60  X36X310X60  X310X510X69

dXi4 N dXi6 A dXq10.

Upon substituting the corresponding m in eqn.(8), it can be checked that for @y, = 25—4,
@, = @g, = @, = 3, @p; = = and ag, = @p, = 5 the sum over all the residues give

Ml().
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2.5 Factorisation

One of the remarkable consequences of relating tree level scattering amplitudes to positive
geometries like associahedron is the fact that geometric factorisation of the associahedron
implied physical factorisation of scattering amplitude (1.10). In this section we will try
to argue that this is indeed the case even for planar amplitudes in massless ¢* theory.
Namely that, there is a combinatorial factorisation of Stokes polytope and that exactly as

in the case of associahedron, it implies amplitude factorisation.

Our first assertion is the following. Given any diagonal (i j), consider all Q which contains
i j and the consider all the corresponding kinematic Stokes polytopes S2. We contend that
for each of these Stokes polytopes, the corresponding facet X;; = 0 is a product of lower

dimensional Stokes polytopes
(2.25)

where Q; and Q, are such that Q; U Q, U (ij) = Q. Q is the quadrangulation of
the polygon {i, i + 1,..., j} and Q, is the quadrangulation of {j, j+ 1,...,n,...,i}. Now
we know that, on S,? any planar scattering variable X}, is a linear combination of X;; and
remaining X’s which constitute Q. Hence in order to prove this assertion we need to show
that any X; with i < k <[ < j can be written as a linear combination of X;; and elements
of Q; and similarly any variable in the complimentary set can be written in terms of X;;

and elements of Q.

However this is immediate since we know from the factorisation property of associahe-
dron proven in (1.10) that any X, = X;; + Z X,un. some of these X, € Q; and
i<m<n<j

the others are constrained via X,,, = d,,,. This proves our assertion. Thus X;; = 0 facet

factorises into two lower dimensional Stokes polytopes.

Our second assertion is that the geometric factorisation implies amplitude factorisation of
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quartic theory. This assertion is based on the following two facts
(1) As Stokes polytope is a positive geometry , we know that it’s canonical form satisfies

the following properties satisfed by canonical form on any positive geometry A

Resgpwq = wg, (2.26)

where we think of w4 as defined on the embedding space and H is any subspace in the

embedding space which contains the face 8. It is also known that if 8 = B; X B, then

w(B) = w(B)) N w(By). (2.27)
Thus we immediately see that
Resy, -0 w(S?) = w2 A 0%, VO, (2.28)

wherem = j—i+1.

We thus see that residue over each Stokes polytope which contains a boundary X;; — 0
factorises into residues over lower dimensional Stokes polytopes. This factorisation prop-
erty naturally implies factorisation of amplitudes as follows. Consider the n-gon with a
diagonal (i j) (with i, j such that this diagonal can be part of a quadrangulation). This diag-
onal subdivides the n-gon into a two polygons with vertices {i,..., j}and {j,...,n, 1,...i}
respectively. By considering all the kinematic Stokes polytopes associated to these poly-
gons, we can evaluate A71| =it 1] Mn+2—(| j-i+1) Which correspond to left and right sub-amplitudes

respectively. This immediately implies that

Mn = ML

1
X;j=0 X;;

Mp. (2.29)

This proves physical factorisation. We also note that, eqns. (5.1) and (3.12) imply follow-
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ing constraints on « s

Z ag = Z o, Aop (2.30)

Q containing(i j) Or,0r

where QO and Qg range over all the quadrangulations of the two polygons to the left and

right of diagonal (i) respectively.

It can be verified that in the case of n = 6,8, and 10 particles ay’s do indeed satisfy

these constraints.

2.6 Relationship with planar scattering form for cubic

coupling

Planar tree-level diagrams of massless ¢* theory can be obtained from diagrams of a
theory with cubic interactions /¢*> which contains two scalar fields ¢ and ¢, where ¢
is massless and ¢ is massive. Consider an (ordered) n-point amplitude in this theory
M¢’2‘”(p1, ..., pn) In which all the external particles are ¢-particles. The super-script on
the amplitudes indicates the coupling we are considering. It is easy to see that in all the
Feynman graphs associated to such an amplitude, the ¢-propagators precisely correspond
to the ¢-propagators in the corresponding diagrams in ¢* theory. Remaining propagators
are propagators associated to ¢ field and hence upon integrating out this massive field,

one recovers planar amplitudes in massless ¢* theory.

Whence one may wonder if the canonical form we obtained on Stokes polytopes, S¢ could
be obtained from the planar scattering form associated to the theory with y¢? interaction.

7 We show below that this is not the case.

"We are indebted to Nemani Suryanarayana and Suresh Govindarajan for raising this question. We also
note that this issue was already raised in [43].
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We can postulate a planar scattering form in the kinematic space associated to ¥¢* cou-
pling, in which all the log singularities associated to ¢ fields are absent®. On restricting

this form to S2, we can observe that the corresponding form is not the canonical form on

SY.

Let us illustrate this idea in the simplest of examples, namely n = 6 case. We thus consider

planar scattering form on K which is obtained by summing over 12 planar graphs’.

This form is given by

v _
Qn:6 -
dX24 A dlI’IX14 A [dX15 - dX46] + dX26 A dll’lX36 A [dX4(, - dX35] (2 31)
—dXi3ANdInXzs A dXye —dXz5] — dXog AdInXos A dXoy — dXzs |
+ dX15 A dlIlX25 A [dX24 - dX35 ] - dX]3 A dlnX14 A [dX15 - dX46 ],
where singularities associated to i propagators are absent.
On restricting this form to S6Q:(14) using eqn. (2.5), we get
Q =2 ! + ! + ! dX\; AdXu AdX (2.32)
N=6 -0 = Xs Xos X 13 14 15- .

14) . . .
U9 is not the same as its canonical form.

We thus see that projection of foé onto S6Q:
This is because the form in eqn.(2.32) has an additional singularity at X,s — 0. Thus
from the perspective of positive geometry there does not seem to be a direct relationship

between quartic interactions and cubic interactions with two scalar fields. Of course in

hindsight, this is not too surprising as integrating out the y field reproduces all (planar)

8This is how we implement “integrating out the -field" in language of scattering forms.

°In the case of ¢> coupling, one has to sum over 14 graphs, however two of these do not arise if we
instead consider y¢? coupling. Whence the corresponding form on %K is not projective! In the context of
triangulation, what this means is that we consider only those triangulations which has at least one partial
triangulation which can be part of a quadrangulation.
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diagrams in ¢* theory and this is precisely reflected in the presence of XLZS in eqn. (2.32)
above. However as the X,s — 0 singularity is not on one of the vertices of the Stokes

polytope, this form is not the canonical form on the Stokes polytope.

In summary we have shown that given any quadrangulation Q of an n-sided polygon,
one can define a unique planar scattering form on the kinematic space K,. We then
showed how this form naturally descends to the canonical form on the Stokes polytope
S? such that the corresponding canonical rational function m, gives a partial contribution
to planar scattering amplitude in ¢* theory. Thus an individual Stokes polytope is not quite
the same as an amplituhedron which as a single geometric object contained information
about complete scattering amplitude. However the families of all Stokes polytope does
contain complete information about M,. We proposed a formula for obtaining M, as a
weighted sum over m,(Q) of all the primitve Stokes polytopes and have shown it to be
valid for 6, 8 and 10 particle amplitudes. We finally showed that the Stokes polytope
factorises geometrically and just as in the associahedron case this immedeately implies

factorisation of the amplitude.

We would now like to address the general ¢” for p > 4 case in the next chapter for which
all these features continue to persist. Infact we shall see that the class of polytopes which
we shall consider reduce to associahedra and Stokes polytopes for p = 3,4 respectively

and thus allow us to treat ¢” ¥Vp > 3 in a unified manner.
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Chapter 3

Positive geometry of ¢” interactions

We shall begin by defining an object called the accordiohedron [49, 50] associated with
general dissections of polygons. We shall then show how this reduces to the associahedron
and Stokes polytopes for cubic and quartic interactions respectively. We shall then argue
that the accordiohedron is thus the natural candidate for the positive geometry of all ¢”

interactions.

3.1 Accordion lattices and Accordiohedra

Let A be a convex polygon. Let us consider the division of A into p-gons which we
call p-angulation of A. We can represent A as a set of points on the unit circle oriented
clockwise where the arcs represent edges of A and chords represent diagonals of A. The
simplest example is the case where we divide (2p — 2)-gon A into two p-gons (see figure

(3.1)). We define a notion of Q-compatible diagonal as '

(i, ) = Mod(i+p—-2,2p—-2),Mod(j+ p—2,2p —2)). 3.1

n [49, 50] there is different definition of compatability, but these two definitions can be shown to be
equivalent to each other and we shall use the definition (3.1) as its most suited for our purposes. We thank
Alok Laddha for explaining this fact to us.
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2p2 1 5

p-1 p-1

p+1 p p+1 p

Figure 3.1: The (p-1) different p-angulations of A

We can use this rule to define accordion lattices ﬂLgﬂ of dimension 7 associated with a

reference p-angulation P 2 as follows:
We can start with any p-angulation P of a convex polygon with n diagonals,

e [n the first step for each of the n diagonals, we go to the unique (2p — 2)-gon which

contains it and replace it with its Q-compatible diagonal.

o In the second step for each of the n p-angulations at the end of step one we choose one
of the original (n — 1) diagonals and replace it with its Q-compatible diagonal as in step

one.
o We repeat this till none of the original n diagonals remain in step n.

This generates a flip graph which is the 1-skeleton of a convex polytope called the Accor-

diohedron [49,50], which we shall also call AC ﬁ’n.

The correspondence between k-faces of the accordiohedron and p-angulations is

Vertices < Q-compatible p-angulations
Edges < Flips between them

k-Faces < Kk-partial p-angulations.

2We consider only the case where we divide the polygon into p-gons in this thesis, but accordion lattices
are defined for arbitrary dissections.
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Figure 3.2: accordiohedra for the n=2 case. The red circles indicate the reference p-
angulations.

In the case of cubic interactions (p = 3), (3.1) reduces to (i, j)) = (Mod(i + 1,4), Mod(j +
1,4)) which is the mutation rule and the resulting accordiohedron ﬂCi , 1s the associahe-

dron [43].

In the case of quartic interactions (p = 4), (3.1) reduces to (i, j)) — (Mod(i+2,6), Mod(j+
2,6)) which was the Q—compatibility rule defined in [97] and the accordiohedron AC f; i

was shown to be the Stokes polytope [47].

Thus the Accordiohedra ﬂCf;n are a general class of polytopes which contain both asso-
ciahedron and Stokes polytopes as special cases when the p-angulations corresponds to
triangulations and quadrangulations respectively. The accordiohedra AC ;n with p > 4
also retains many of the features of the Stokes polytopes we had discussed earlier in ??
including the fact that the accordiohedron AC 11:,n of a given dimension 7 is not unique and
depends on the reference p-angulation P. This is due to the fact that (3.1) is not an equiv-
alence relation as (1,p) —» (p—1,2p=2),but (p - 1,2p-2) - (p-2,2p-3) # (1, p)

except when p = 3.
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The case p = 3 is special in this sense as for ﬂCi , 18 independent of P, as every diagonal
is Q-compatible with every other diagonal and thus we could start with any triangulation

P and we would generate all possible triangulations.

The accordiohedron obtained by starting with a particular p-angulation is also completely

determined by the relative configuration of diagonals. *

The n = 1 accordiohedron ﬂCgf ) are lines with vertices (i,p + i) and Mod(i + p —

2,2p —2),Mod(i +2p —2,2p —2)) fori=1,..,p— 1.

The n = 2 case the accordiohedron can be either pentagons or squares depending on
whether the two diagonals meet or don’t meet respectively (see fig(3.2)) just as in the
case of Stokes polytopes. In other words ﬂij 2) = ﬂCi%) for all p provided both P and
QO have the same configuration of diagonals, we shall prove this in a later section (4.1)
by establishing the precise maps between vertices of the Stokes polytope and that of the

accordiohedron.

The n = 3 case the accordiohedra continue to be one of the four n = 3 Stokes polytopes
with different multiplicities i.e. ﬂCﬁg = ﬂCi%) for all p provided P and Q have the
same configuration of diagonals. We elaborate on this in section (4.2). At higher n new

polytopes which are not one of the Stokes polytopes will be eventually generated.

3.2 Positive geometry for ¢” interactions

We would like to show that the accordiohedron ﬂCﬁf ) is the positive geometry associated

to ¢” interactions. We shall do this by first embedding the accordiohedron into kinematic
space and then showing that the canonical form of the accordiohedron when pulled back
gives the right planar scattering amplitude for ¢” interactions. We start by noting the

following facts:

3From the perspective of Feynman graphs this is equivalent to saying that there is an accordiohedron for
each topological class of graphs.
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e The only tree level amplitudes consistent with ¢” interactions have p + (p — 2)n

external legs for n + 1 vertices.

e Analogously to the cubic and quartic cases there is a 1-1 correspondence between

planar tree level Feynman graphs and dissections of p + (p — 2)n- gon into p-gons.

e We also require the accordiohedron ?ICE,{J » to have dimension n, which is the number

of propagators. *

3.3 Planar scattering form for ¢” interactions

We would like to define a planar scattering form for ¢” interactions. We can associate to

each planar graph g with propagators X; ;,, X;,;, - - - X, j, a scattering form

o(g)
k=1 Xi

kJk

dX; j, NdXi,j, N NdX;

nJn?

11

where o(g) = =1

Thus, when we sum over all planar graphs g we have several possible scattering forms.
Since we do not have a notion of projectivity except in the case of p = 3 which helps us fix
a unique scattering form [43]. We can choose a particular reference graph g (equivalently
a p-angulation P) and look at only those subset of graphs which are related to this graph
by a sequence of Q-flips namely all the vertices of the accordiohedron. If a graph g’ is
related to g by an odd (even) number of Q-flips we can associate —(+) sign to it. Thus,

we can define a p-angulation P dependent planar scattering form Q7

_1)\o(lip)

p_ 0 (=17
‘Qn - n .
flips k=1 “* ik Jk

dX; j NdX,j, N--- NdX;

nJn*

Since, the Q-compatible p-angulations corresponding to any reference p-angulation P

“This is because we require the top-form on the positive geometry, once embedded in kinematic space
to produce the right scattering amplitude.
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does not exhaust all the p-angulations, we need to define such a planar scattering form for

each P.

In the n = 1 case the set of Q-compatible p-angulations are {(1 p;+),(p — 1 2p —
29042 p+ L+),(p2p = ;=) {(p = 1 2p = 2;4),(p = 2 2p = 3; )} the pla-

nar scattering forms for which are

Q) =dInX; j—dInXisp s jepo,

wherei,j=1,---,(p—1)Mod 2p - 2) with |i — jl = (p — 1)

We now turn to embedding the accordiohedron in kinematic space and showing that when
the planar scattering form is pulled back onto the accordiohedron it gives the canonical

form of the accordiohedron.

3.4 Locating the accordiohedron inside kinematic space

We now define the kinematic accordiohedron ﬂCEf ). We locate the accordiohedron inside
the positive region of kinematic space X;; > O forall 1 <i < j < p+(p—2)n by imposing

the following constraints:

sij = —¢cjy for 1<i<j<p-1+(p-2n,li—jl=2

X5, = dps 3 st PUL {(r;, 51} is a complete triangulation, (3.2)

where c;j, d,,,, are positive constants. 6

Physically we choose the above set of constraints as they do not appear as propagators of

SHere the signs denote (—1)7V/%P)_ when we have multiple diagonals we need to carefully maintain the
order of diagonals when we flip as it contibutes to the sign.

®In the case when p = 4 that is when the accordiohedron is a Stokes polytope, there is a canonical choice
for the additional constraints if the stokes polytope is itself not an associahedron [47]. However for p > 4
we do not have any canonical choice of these constraints. As we show in this section, there is at least one
choice which consistently embeds the Accordiohedron in the Kinematic space.
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any ¢” graph. The first constraint above is the famous associahedron embedding [43]. We
have thus embedded the accordiohedron inside the associahedron. The positivity of X;;’s,
the above constraints along with the equation (1) are a set of inequalities satisfied by the

X;; which makes the convexity of the accodiohedron manifest.

We first consider the n = 1 case with reference p-angulations to be P = {(1, p)} for

p=235,6.

For p = 5,6 we can choose U{r; s;} to be {24,25,17,57} and {35, 36,26, 17, 19,79} re-

spectively. The above constraints then translate to:
p=5: Xy = Zle ci5 + cig + ci7 — X15 which a line with boundaries at X5, X453 = 0

provided the following are satisfied ’

3 5
e <di <Y ¢
7 7 7
Diims(Coi+¢31) S dos < Yz cii + Xis(Coi + €3:)
0< d24 < d25 + Cp4

0< d57 < C46

p=6: Xs50= Z?:l Cie + Ci7 + Cig + Ci9 — X16 Which a line with boundaries at X6, X510 = 0
provided the following are satisfied

Me 1M 1Me 1M
Cﬁ Cﬁ C;
IA IA IA
& & &
f=2} ~ =}
IA IN IN
M- IM- 1M
Me M- €
o o
+ +
Me &

o

4

i=2 j: i=2 j=6 i=3
4

Z cij < dsg < coq + 25 + dog
i=3 j=6

(=]
IA

6

d7g < ZciS +dy
i=1

0 < dss<c35+dse.

"since we are slicing the associahedron using some hyperplanes X,.;, = d,.;, to get the accordiohedron

these constraints tell us how the slicing should be made. For higher n we shall not state these constraints
for brevity but we shall assume that they are satisfied.

107



The above equations define lines with Q-compatible vertices {15,48} and {16,510} for
p = 5 and p = 6 respectively. We can trivially repeat this exercise for any other reference
p-angulation P = {i, i + p}, the results of which can be obtained by taking k — k+i—11in
the above equations. We can now pull back the scattering form onto the accordiohedron

ACP as

pin

1 1
P .
w = + dIn X,y :=m’ (AC,)dIn X, 1,
" Xiivp-1 Xivp-2 ix2p-3 -l P, +p-1

withi=1,..,p— L.

As before to get the full amplitude M, we consider a weighted sum M, of mlf,n over all P

p-1
M, a,-( ! + ! ) (3.3)

Xiivp-1 Xisp-2 is2p-3

It is clear that M, = M, if and only if @; = % foralli=0,..,p—1.

Thus, we can simplify our computation by considering a subset of p-angulations {P;, ..., P;}

called primitive p-angulations for which :
(a) no two members of the set are related to each other by cyclic permutations and

(b) all the other p-angulations can be obtained by a (sequence of) cyclic permutations of

one of the Ps belonging to the set.

The primitives are the class of rotationally inequivalent diagrams. Since, a rotation does
not change the relative configuration of diagonals it is clear that accodiohedra remain the
same for all the diagrams that belong to a primitive class and that the weights depend only

on primitives. We shall say more about primitives in section (3.5).

Mi= > > apmfP. (3.4)

rotations primitives
o P
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For now let us look at a couple of examples to see how finding primitive accordiohedra

and their weights help us in getting the scattering amplitude.
In the n = 1 case above there was only one primitive P = {(1, p)}.

We consider the n = 2 case for p = 5,6 for which we now have the set of primitives as
(see figure(3.2)) {(15,610), (15, 18)} and {(16,914), (16, 110), (16, 813)} respectively. The

set of Q-compatible p-angulations for these are

p=5: S = {(15,711;+),(411,711;-),(15,610; -), (411,610; +)},

S: = {(15,18;+),(18,48;-),(15,711;-),(411,711; +), (411,48; +)}

p=6: S, = {(16,914;+),(514,914;-),(16,813;-), (514, 813; +)},
S¢ = {(16,813;+),(514,813;-),(16,712; -)(514,712; +)},

Sg = {(16,110;+),(16,914;-),(110,510; -), (510,514; +),(514,914; +)}.

The embedding constraints (3.2) can be solved to obtain:

p=5: For P=(15,711), with U;{r; s;} to be {13,35,17,57,810, 710}

3
Xann = Z Z cij— Xis

1 j=5

Xeio = chij+c610_d17+d710_X711-

i=1 j=7

The positivity of Xg9, X411 carves out a square region in the X;s, X;71; space. The accor-

diohedron in this case is also a square as we had emphasised in section (3.1).
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For P=(15,18), with U;{r; s;} to be {13,35, 16, 68, 810, 110}

307
Xy = ZZCif_X15+X18
i=1 j=5
3010
X4 = ZE cij — Xis
i=1 j=5
6 10
X = Z Cij_X18-

i

~.
i
oo

Similarly, for the p = 6 case we get ,

p=6: For P=(16,914), with U;{r; 5;} to be {13, 35,15,911,912,913,814, 17,714}

4 13
ZZCU - Xis

i=1 j=6
Xoi0 = 313 +dgia + doiz — Xoy4.

X514

For P=(16,813), with U{r; s;} to be {13,35,15,713,912,911, 812, 17,714}

%
|
|'M
|'M
k2
|
<

X712 = ¢ +dyiz +dsin — Xgis.

For P=(16,110), with U,{r; s;} to be {13,35,15,17,18,19,113,1113, 111}

cij — Xi6 + X110

o
Il
3D

4 13
X514 = ZZCij—Xlé
i=1 j=6
8 13
Xoiy = Z c¢ij — Xio.

1l
—_
~.
1l
—_
(=]

When pulled back onto constraints the corresponding m]f’n’s are
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1 1 1 1
méz = ( + + + )Xms /\X61()
’ Xi5Xes10  Xan1 Xeto Xis X711 Xan1 X7u

1 1 1 1 1
mi, = ( + + + +
’ XISXIS XlS X48 X15 X7ll X4ll X711 X48 X411

)dX15 A Xig.

Plugging the above forms into equation (3.4) with weights 5, = &, f% = & (see section
(4.3) for details).
p=©6:
1 1 1 1 1
Mme, = + + + dX16 A Xoi4
’ X16Xo14 X514 Xoa  Xie Xs13 Xs14 Xs13
, | | 1 1
Mg, = + + + dX]6 AN X813
’ Xi6Xg13  Xsia Xgiz  Xig X712 Xs14 X712
. 1 1 1 1 1
Mg, = + + + + dX16 A XllO
’ Xi6X110  Xie Xo1s  Xji0 X510 Xs10 X514 X514 Xois

Plugging the above forms into equation (3.4) with weights a¢, = 1, @f% = 1, o4} = 1

(see section (4.3) for details).

3.5 Analysing the combinatorics of Accordiohedra

A complete computation of the amplitude from the geometry of the polytope requires
determination of all the primitives of a given dimension n and computation of the corre-
sponding weights. We shall address the problem in this section. We emphasise that this
a purely combinatorial problem and hence does not depend on the construction of kine-
matic space accordiohedron. In sections (3.5.1) ,(3.5.2) we shall first derive formulae to
count the number of primitive accordiohedra of a given dimension n. Then in sections
(4.1) ,(4.2) we provide a complete classification of primitive accordiohedra for n < 3

and compute the corresponding weights for any ¢” interactions. Let us first consider the
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quartic case.

3.5.1 Counting primitives for the quartic case

In this section we shall address the quartic case first and provide a formula for the number
of primitive Stokes polytopes p, of a given dimension n. The main result of this section

1S :

ﬁFn+1+%F%, n=2k+1
Po =91 Fyy + Ly, n = 2k with k odd
| 1 _
Zealnet + 3y, n= 4k
_ 1 3n - 2 3n+1
Where F,, = 2n+1(n)anan_ 2n+2( n )

We shall now prove this result.

27

We shall consider a (4 +2n)-gon as equally spaced points g; on the circle i.e. a; = exp ;55-

withi =0, ...,2n + 3. The edges of the polygon correspond to arcs a;a;,; on the circle and

the diagonals of a quadrangulation correspond to chords.

There is a natural action of the dihedral group D,,,4 on any given quadrangulation which
is generated by rotation and reflections about a given diagonal. We are interested in count-
ing primitive quadrangulations, no two of which are related to each other by a cyclic per-
mutation, which corresponds to a rotation on the circle. Thus, it is sufficient to consider
only the cyclic group Z,, 4 for our purposes. The problem of counting primitive quadran-
gulations 1s thus equivalent to finding the number orbits of the set of all quadrangulations

of a (4 + 2n)-gon under the action of the cyclic group Z;,,,4.

We shall do this by using the celebrated Burnside’s lemma [101], which is the standard
way to count the number of orbits G/Gy for the action of any finite group G on a set X.

It states that the number of orbits is equal to the average number of points that remain
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invariant when acted on by elements of G.

1
G/Gxl = g ), lle e Xlgee = ell (3.5)

g€eG

Thus, to count the number of primitive quadrangulations we just need to find the subset of
quadrangulations that are invariant under some rotation. This problem has been addressed
by [102] using the method of generating functions, but we shall take a simpler approach

here following [103].

We can consider the division of (2n + 4)-gon into n + 1 quadrilaterals. We first note that
the centre of the circle is left invariant by the action of the cyclic group Z,,.4. The centre

of the circle can lie on :

(1) A diameter. This can only happen when 7 is odd since, the relative angle between the

end points a;, a; of this diameter has to .

(2) The midpoint of an invariant cell i.e. on the point of intersection of the diagonals of a

centre square which remains invariant.

In case (1) the diameter forms an axis of symmetry and has to be left invariant by rotations
and it is clear that the only possible rotation which does this is by 7 and the quadrangula-
tion Q consists of a left and a right part where the left part is a rotation of the right one.(

see figure(3.3) ).

In case (2) the diagonals can either be rotated to themselves or into each other. This can
only be accomplished by rotations of 7, +7 and the corresponding quadrangulations are

shown in the figure (3.3).

The number of quadrangualtions of (2n + 4)-gon into n + 1 quadrangles is given by the

Fuss-Catalan number F, = 2n1+ : (3:) [89] (which we also derive in appendix B). The

number of quadrangulations of type (1) is nF n1, a3 We can choose a diameter in n + 2

ways and for each choice of the diameter there F nst sub-quadrangulations A.
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[ (v

N N

Figure 3.3: All the quadrangulations invariant under some rotation

The number of quadrantulations of type (2) depends on whether n is divisible by 2 or 4
and is given by @F s and (n+2)F» respectively. In the case where n = 2k we can divide
k into k;, k, which we call A and B in the third figure of (3.3) and the number of such

quadrangulations would correspond to Fj, and F;_;, respectively. The total number of

n+2

such quadrangulations would then be Z’,; —o Fi, Fr—r,and since there are = ways we can

relabel the invariant square. Using the following combinatorial identity (see appendix C).

o 2 (3n+1
F,=) F Fo = —— .
2, P 2n+2( n )

k=0
We have ("%2)17“ » Invariant quadrangulations under a rotation by 7.

When n = 4k we have Fz subquadrangulations A as shown in figure (3.3). There are
also (n + 2) ways to relabel the invariant cell and thus there are a total of (n + 2)F:
quadrangulations that are invariant under a rotation by +5 . Thus, after also including
the identity rotation which leaves all the elements invariant we get the total number of

primitive quadrangulations p, is given by:

1 1
an+1+§F%, n=2k+1

Pn =3 52 Foy + 1Fy, n = 2k with k odd

2n+4

1 1
mF}HI + EF%’ n = 4k.
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We can easily check the above formula for n = 1,2, 3 cases by using F,, = 1,3, 12,55 and

F, =1,2,7,30 forn = 1,2,3,4. The set of invariant quadrangulations is shown in the

figure (3.4) below.

~
N

10 4 10 2

Figure 3.4: invariant quadrangulations for n=1,2,3

n=1: We have 3 quadrangulations {14, 25,36} which remain invariant under rotation by

TT.
_1(3 3)_1
p1 = + =

n=2: There are 4 quadrangulations {(1+i4+i,5+i 8 +1i))} withi = 0, .., 3 which remain

invariant under rotation by +7.
1
P2 = §(12+4) =2

n=3: There are 15 quadrangulations {(1 +i4 +i,5+i10+,6+i9+i),(1+id4+i 1+

i6+i,6+i9+10),(1+i4+i,4+i9+i,6+i9+0)}withi=0,....,4

1
=—0B5+5+5+5) =7
pP3 10( )
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3.5.2 Counting primitives for ¢” case

We shall now extend our analysis for the quartic case to any general p and provide a for-
mula for the number of primitive accordiohedra of dimension n. The number of primitives
p-angulations of an (p—2)n+ p-gon is the same as the number of orbits of the cyclic group
Z(p-2n+p When it acts on the set of all p-angulations. There number of such orbits can be
straightforwardly computed from Burnside’s lemma just as we had done in (3.5.1). We
proceed analogously to the quartic case (3.5.1) by noting that the centre of the circle is

invariant under any rotation and can lie:

(1) On a diameter, this happens only when 7 is odd and leaves the p-angulation invariant

under a rotation by 7 (see figure (3.5)).

(2) Inside an invariant cell, in this case we have p-angulations for every d | Ged(p, n)

which is invariant under rotation by 27” (see figure (3.5) ).

The total number of p-angulations of an (p — 2)n + p-gon into (n + 1) p-gons is given by

the Fuss Catalan number F,,, = — ((” ~Ln

(p—2)n+p n

) [89] (see appendix B for a proof of this).

(p=2n+p
2

In case (1) there are choices for the diameter and F, (,.+1)> choices for A. Thus,

there are a total of WF »

(n+1)/2 Invariant p-angulations under a rotation by .

In case (2) there is an invariant cell and the remaining » cells can be divided into i = 5
parts for every d | Ged(p,n) in Fy, p, Fi, p...Fr,p Ways s.t. ky +ky + ... + k; = g which
we call A, B, C etc. For each such d there are ¢(d) p-angulations which remain invariant
under a %” rotation, where ¢(d) is the Euler totient function which counts positive integers

up to d which are relatively prime to it.

Forifd = pﬁ’l p5...py" is the prime factorisation of d then ¢(d) is given by:

v =al1-L)(1- ). (1-1)
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Figure 3.5: The dissections invariant under some rotation for p = 5 itis clear thatd = 1,5
and are as shown in the first two diagrams starting clockwise from the left corner . For
p = 6 withd = 1,2,3,6 and the invariant dissections are the ones shown in first and last
three diagrams of figure(3.5)

Thus, the total number of such p-angulations once we also include identity rotation is

i 1 i o
an,p + §F%,p +y 2diGednp) P D) X+ +ki=nja FropFrpp--Frp, 1f nis odd
Pn =
1 1 . .
T Frp + 5 ZaGednp YD) Zigv.+ki=nja FrpFrop---Fips if nis even
1 1 i = P
—(p—2)n+pF”’P + zF%’p + ; Zlecd(n,p) ¢(d)Fn/d,p,p/d7 lf nis Odd
DPn =
1 1 ~ . .
T Frp + 5 ZaGednp) XD Fnjap.pda- if nis even,

where, we have used the combinatorial identity

. pld ((p— Dn + 5) 37)

Fn/dpp/d = Z Fk] Pszp"'Fkip =
kit rk=n/d (p—2n+p n

with £, ,; = F, , which we shall prove in appendix C.
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3.6 Factorisation

In this section we will try to argue that the accordiohedra factorise geometrically and this
directly implies factorisation for planar amplitudes in massless ¢” theory. We shall first
argue that the geometric factorisation of accordiohedron holds and then show how this

leads to the factorisation of the amplitude.

In ?? it was shown how the factorisation of Stokes polytope leads to a recursions relation
on a’s. We shall see that even for more general Accordiohedra @’s are required to satisfy

analogous recursion relations.

Our first assertion is the following. Given any diagonal (i j), consider all P which contains
ij and the consider all the corresponding kinematic accordiohedron ﬂC[’j’n. We contend
that for each accordiohedron , the corresponding facet X;; = 0 is a product of lower
dimensional accordiohedra

Ach = ACH, x AC

p.n p.m p.n+2—m’

ij =

(3.8)

where P, and P, are such that P, U P, U (ij) = P.

P, is the p-angulation of the polygon {i, i + 1,..., j} and P, is the p-angulation of
{j,j+1,...,n,...,i}. Now we know that, on ﬂC;n any planar scattering variable Xy, is a
linear combination of X;; and remaining X’s which constitute P. Hence in order to prove
this assertion we need to show that any X;; with i < k < [ < j can be written as a linear
combination of X;; and elements of P, and similarly any variable in the complimentary

set can be written in terms of X;; and elements of P;.

However this is immediate since we know from the factorisation property of associahe-
dron proven in [43] that any X; = X;; + Z Xm. some of these X, € @; and

i<m<n<j
the others are constrained via X,,, = d,,. This proves our assertion. Thus X;; = 0 facet
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factorises into two lower dimensional accordiohedra.

Our second assertion is that the geometric factorisation implies amplitude factorisation of
¢ theory. This assertion is based on the following two facts.
(1) As the accordiohedra is a positive geometry , we know that it’s canonical form satisfies

the following properties satisfed by canonical form on any positive geometry A

RCSH(,U}{ = ws, (39)

where we think of w4 as defined on the embedding space and H is any subspace in the

embedding space which contains the face B. It is also known that if 8 = B, X B, then

w(B) = w(B)) N w(B,). (3.10)

Thus we immediately see that

P _ P Py
Resy, -0 W(AC,,) = w,)] N w,;,_,

vV P. (3.11)
wherem = j—i+1.

We thus see that residue over each accordiohedron which contains a boundary X;; — 0
factorises into residues over lower dimensional accordiohedra. This factorisation property
naturally implies factorisation of amplitudes as follows. Consider the n-gon with a diag-
onal (ij) (with i, j such that this diagonal can be part of a p-angulation). This diagonal
subdivides the n-gon into a two polygons with vertices {i,..., j} and {j,...,n, 1,...i} re-
spectively. By considering all the kinematic accordiohedra associated to these polygons,

we can evaluate 1\~/I|‘,~_,~+1|, M, j-i+1) Which correspond to left and right sub-amplitudes

respectively. This immediately implies that
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— —_ ] —
Mlx, =0 = ML;MR (3.12)

)

This proves physical factorisation. We also note that, eqns. (5.1) and (3.12) imply follow-

ing constraints on a’s.

ap = ) apap, (3.13)

P containing(ij) Pr,Pg

The left hand side of the above equation involves sum over all accordiohedra ﬂCﬁ;n for
which (ij)e P and the right hand side involves sum over P, and Pg which range over all

the p-angulations of the two polygons to the left and right of the diagonal (i j) respectively.

It can be verified that in all the examples up to p = 12 and n = 3 the @p’s do indeed satisfy

these constraints.

For n = 1 there is only one diagonal which we can to be (1, p). The accordiohedra is
always a line as we had emphasised in section (3.3) and (1, p) appears in the vertex of
exactly two of these lattices namely {1 p, p—12p—-2}and {p + 1 2p + 1, 1 p}. There
is only way to divide P into P, and Py and both these are trivial have @ = 1. Thus, the

above equation (3.13) gives

ZCL’pzl

ap

1
3 forall P.

We could expect that the set of equations (3.13) would help in determining all the weights.
But, as we shall now show this is not the case as (3.13) provides foo few equations .
In other words the set of equations (3.13) provide a set of necessary but not sufficient

conditions.
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Let, us consider the case n = 2 for p = 5 and the diagonal (15), in this case the 11-gon
gets divided into a 5-gon and 8-gon and we have weights ap, = % and ap, = 1. There are
exactly 4 squares and 5 pentagons which contain the diagonal (15) in their vertices. Thus,

we have

dal + 5a3 = 2. (3.14)

We can check that for any other choice of diagonal (ij) we get the same equation. It is

clear that this is not sufficient to solve for aé, ag. The solution we had obtained using our

3

. . . . 1 _
prescription in section () namely a5 = 57,

a? = £ does indeed satisfy (3.14).
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Chapter 4

Primitives and Weights

To determine the weights we would need to actually identify the primitive accordiohedra
, then we need to find all the vertices of the accordiohedra starting with these primitives
as the reference p-angulations. There is no general classification for primitives of an
arbitrary dimension n to our knowledge since they grow as p". We provide a complete

classification for n < 3 and give the compute the corresponding weights.

4.1 Primitives and Weights for n = 2 case

We would like to provide the details of the primitives and weights for ¢” interactions for
the n = 2 ( 2d case). In this case there are 3 vertices with 3p — 4 legs. We could try to
recursively construct these graphs from the n = 1 graphs. So without loss of generality
we consider only Feynman graphs in which two of the vertices lie in a line as shown in the
figure(4.1). The 3rd vertex can then be made to lie on the central line connecting the first
two vertices and it can be either above or below this line. These graphs can be denoted as
(k1, ky) such that k; + k, = p —2, where the 3rd vertex has k; legs above and k, legs below

the central line.

Since, we are only interested in primitives the graphs for which 3rd vertices are (ki, k;)
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and (k,, k1) correspond to the same primitive graph. Thus, without loss of generality we

can choose the diagrams in which the 3rd vertex has more legs above the central vertex

than below it to be primitive graphs namely (p — 2,0), (p — 3, 1),..., ([”7_21 , [”T_ZJ). We

shall call them [1],[2].....[k], where k = | £|.

A f pisodd

Figure 4.1: The primitive graphs for n=2 case.

The primitives are all shown in the above figure(4.1). We shall now show that these are
the only primitives. It is clear that all the graphs above are inequivalent under cyclic
permutations. As explained earlier the total number of such graphs is given by the Fuss-

Catalan number

1 (3(17—1)): (p-DBp-4)
3(p-2)+1 3 2

We shall show that if we perform the channel sum starting with these primitives we

generate all the graphs. A cyclic permutation corresponds to a clockwise rotation of the

labels and every graph returns to itself after a rotation of period 3p — 4 but a graph for

which the 3rd vertex is symmetric about the central line returns to itself after only half

a rotation i.e has a period %. The only such graph is the last graph in the case when

p = 2k. Thus, the total number of graphs generated by performing sum over all the
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channels is :

k(3p — 4) Jf p=2k+1

(k= 1)@3p -4+ L2 if p=2k

using

k=12 if p=2k+1
k=% ,if p=2k
we get the total number of graphs to be (p_l)(zﬂ which agrees with our results from

(3.6). As explained in the previous subsection the accordiohedra generated by starting
with a particular graph (or p-angulation ) depends only on the relative configuration of

the diagonals and in this case since there are 2 diagonals the only possibilities are :

1. The diagonals meet as in [1], in this case the accordiohedron is an associahedron

A,.(see (3.2))

2. The diagonals do not meet as in [2],... ,[k], in all these other cases the accordiohe-

dron turns out to be a square.

We can provide a mapping between the vertices of the Stokes polytope AC f; , and AC; , for
the n = 2 case as follows: 1.) When the two diagonals meetthen P = {i p+i,ii+2p — 2}
withi = 1,...,3p — 4 and we could map the vertices of the Stokes polytope which is a
pentagon in case with the pentagon corresponding to the accordiohedra once we notice
that the all i = 1, ..., 8 which is part of some diagonal ij do not appear in a vertex of the
Stokes polytope. For example in the case of P = {(1 4,1 6} only i =1, 3,4,5, 6,8 appear
and similarly in the case of the accordiohedron exactly 6i =1, p—-1, p, 2p -3, 2p —
4, 3p —4 out of a possible 3p — 4 appear thus we could trivially define a map between the

two as follows:
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i > i+ f0)
1, ifi=1

(p—4), ifi=3,4,
with fi) = a
2p-4),ifi=56

3(p-4),ifi=8

2.) When the two diagonals do not meet then we notice that there are several possible
choices of the diagonals for p > 5, but we notice that the maximum number of i’s which
can appear for any choice of P is 8, since each diagonal appears twice thus there are only

4 possible ij’s. We can thus identify these i’s with i = 1, ..., 8 and define a mapping.

For example we provide such a mapping between the Stokes polytope corresponding to

Q = {(14,58)} and the accordiohedra corresponding to p = 5, 6 (see (3.2) )below:

p=5: With P = {(15,610)}

1 , ifi=1

(p-4), ifi=23,4,5
S =
2p-4), ifi=6

3(p-4),ifi=17,8
p=6: With P = {(16,914)}
1, ifi=1

FO=3(p-3),ifi=23,4,5,6

2(p=3), if
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It is straightforward to find such a mapping for general p > 4 and a general choice of P. !

4.2 Primitives for n = 3 case

We would now try to find all primitive graphs for the n = 3 case. In this case there are 4
vertices with 4p — 6 legs. As before we can try to recursively construct primitive graphs

from n = 2 case.

[1,1]
2, 2]
,if pis odd
[k, K]
Jif p is even

Figure 4.2: The primitive graphs of the type [, i].

There are two possible ways we add the 4th vertex which could be any of the k = L%J

types in the n = 2 case :

1. We can add another central vertex either above or below the central linetoan = 2

graph. We call these graphs [i, i] and [, j]. ( see figures (4.2), (4.4)).

'Tt is a well known fact that there is a unique 2d convex polytope with a given number of vertices, so the
above mapping is not really needed here but in the case of 3 and higher dimensional polytopes ,there could
be several polytopes with same f-vector, thus we would need such a mapping to be sure that the polytopes
are isomorphic.
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2. We can add the vertex to any one of the external legs of the 3rd vertex. We denote

these graphs by (ky, k, k3), where ky + ky + k3 = p -3

There are 3 primitives of the type [i, i] for each i = 1, ..., k since the graphs where both
vertices are down are just cyclic permutations of the graph with both vertices up. In case
where p is even you also have a vertex with equal number of legs above and below the
central line, thus there is only one such primitive corresponding to this case. The graphs
with one central vertex up and the other down (the 2nd and 3rd graphs for each [i,i] )
have half periods i.e. under cyclic permutations they go back to themselves after 2p — 3
operations. The same is also true for the symmetric vertex when p is even. All other

graphs have full period of 4p — 6.

P2 p-1-i
—

(1]

[i.]]

i-1 p-1-j p-1-i -1 p=i-1 p_jiq

Figure 4.3: The primitive graphs of the type [, j].

There are 4 primitives for each [i, j] since now the graphs with both vertices down are
inequivalent to the ones with both vertices up under cyclic permutations. When p is even
we have only 2 primitives of the type [i, k] since [k] is symmetric. All these graphs all

have a period of 4p — 6.
These possibilities are summarised in the table below:

We could also consider graphs of the type (ki, k», k3) such that k; + k, + k3 = p — 3. Since
there are ( ’r’j) non zero solutions of x; + ... + x, = n, in this case we have the following

possibilities:
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Type of primitive | number of primitives | period of the primitive
[Z, ] 3 1 with4p — 6
withi=1,....k—1 2 with 22°
[k, k] 1,if piseven e
3,if pisodd 1 with4p -6
2 with 2-°
(i, j]
withi, j=1,...k—1 4 4p -6
i #
[Z, k] 2 ,if peven 4p -6
withi=1,..,k-1 4, if p odd 4p -6

Table 4.1: Primitive graphs of type 1.

We have a graph of the type (0,0,p-3) with period 4p — 6.

We can have a two graphs (k;, 0, k3) and (0, ki, k3) for each k; + k3 = p — 3 with
ki # ks (which are inequivalent since they are reflections of each other) and when
p is odd we also have one graph (ki, 0, k3) with k; = k3 with period 4p — 6. Thus,

there are

("7Y) =@-4.if pisodd
("f) —1=(p-95), if piseven
such diagrams.
We have one graph for each (ky, k», k3) with k; = k, # k3 with period 4p — 6. In this

case we have

-3 .
|5=),  if p#3k

|Z2] -1, if p=3k

such diagrams.
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The result of this exercise turns out to be

e When p = 3k we have exactly one graph with k; = k, = k3 which has a period %.

e We have two graphs (ki, k,, k3) and (k», k1, k3) for each ky # k, # k3. In this case we
have

(p*4)2(p75> —3|_L£3J .
2l i p ek
(P=4H(p-5) _3<LEJ_1)_1 .
" , if p=3k

These possibilities are summarised in the table below:

Type of primitive number of primitives period of the primitive
0,0,p-3) 1 4p -6
(k1,0, k3) 1,if pisodd 4p-6

k1=k3=”T_3 0, if pis even
(k1,0,k3) p—4,ifpiseven 4p -6
ky # ks p—-5.ifpisodd

(ky, ko, k3) 22 if pis even 4p -6

p # 3k
ki = ko 23 ifpis odd 4p -6
p # 3k
|53) - 1,if p =3k 4p-6
(ky, k2, k3) L,if p =3k 4”3_6
ki =ky =k 0, otherwise
(ki ko, k3) 2=90=3) _ 22 if pis even 4p -6
ky # ky # k3 p # 3k
P9 _ 23 if pis odd 4p-6
p # 3k
o= 23]+ 2 if p = 3k 4p-6

Table 4.2: Primitive graphs of type 2.

We can now find the total number of p-angulations by summing over all channels by

multiplying columns two and three of the tables above and adding them up.

number of p-angulations = Z( primitive o) X (period of o)

o

WM which matches with the expected
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Fuss-Catalan number which agrees with equation (3.6)

1 (4(1?— 1)) _ (p - D(2p-3)4p-5)
4

Ap-2)+1 3

p-af

oo
I

Figure 4.4: The primitive graphs of the type (ki, k», k3).

Since, there are 3 diagonals now the relative configuration of diagonals can be of one of

the following types:

1. None of the diagonals meet - in this case the corresponding accordiohedron is a

2(p=3)°

cube. There are 1 + {TJ graphs of this type namely [i, ], [, j] withi, j =2, ...,k

and (kl, kz, kz) with kl, kz, k3 # 0.

2. Two of the diagonals meet - in this case the corresponding accordiohedron is of the

mixed type. There are 3p — 10 graphs of this type namely [1, j] with j = 2, ...,k and

(k1,0, ks) with ki, ks # 0.
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3. All three diagonals meet at a vertex or form zig-zag configuration in this case the
corresponding accordiohedron is an associahedron. There are 3 graphs of this type

namely [1, 1].

4. All three diagonals meet and form an inverted U configuration in this case the cor-
responding accordiohedron is of the Lucas type. There is exactly one graph of this

type which is (0,0, p — 3).

Thus the total number of primitives is :

_ 3y _ _
3p—5+{2(p 3)|:{(p D@2p 1)}

3 3

which agrees with we our general formula (3.6).

The accordiohedra for n = 3 we get continue to be one of the four kinds of Stokes poly-
topes. We could define a function from vertices of the Stokes polytopes to that of the
accordiohedra as we had done in the n = 2 case to establish that this is indeed the case.
We can thus continue to use the same names Lucas, Mixed etc for the n = 3 Stokes poly-
topes for accordiohedra as well. We expect that at sufficiently higher n, accordiohedra

will be generated which do not correspond to any Stokes polytope.

4.3 Determination of the weights

In this section we shall provide a simple method to determine the weights for the general
case and demonstrate the method in a few examples. We recall that we had the reduced
amplitude M, which is a weighted sum of canonical forms of all the primitive accordio-
hedra of a given dimension n. We would like to determine the weights such that this gives

the full amplitude i.e. M, = M,.
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The full amplitude M, is given by :
71
M = Z l_[ X. .
all ijx k=1 kK
where, the sum is over all (i, ji, ..., i, j,,) that form a complete p-angulation.

Thus, to get the full amplitude from the partial amplitude we need to impose the constraint

that each [];_, x; appears exactly once.
Kk

But, as we had emphasised before the accordiohedron depends only on the relative config-

uration of diagonals of the reference p-angulation which does not change under rotations

and thus it is sufficient to impose these constraints for the primitive p-angulations.

!
i o .
Z n,a, =1 for each primitive 1 <i <1
i=1
where, n; is number of times primitive i appears in the vertices of all accodiohedra,

l' . .
«, are the corresponding weights

Since, we have managed to classify all the primitives unto n = 3 we should be able to
implement this straightforward procedure to get all the weights and we shall now discuss

our results.
We shall first see what these conditions are for n = 2 in the p = 5, 6 cases.

p = 5 : In this case there are two primitives as we had explained in the section (4.1) and

we get:

3a;+a§ = 1

1 2 _
as+4a; = 1
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which can be solved to give:

1_3 2_ 2
s = 17, X5 =

@ 1

p = 6 : In this case there are 3 primitives and we get:

1 2 30 _
26 +ag + 20, = 1
1 2 _
ag +4a; = 1
1 30 _
ag+20, = 1
which can be solved to give:
1_1.2_1 3 _1
¥ =3%=5-%=3

We can similarly do this for any p with n = 2 and the results are the following :

For p = 2k

é ,1even
A(p-2-ii) =
1 .
3 .iodd
and For p =2k + 1
k+1+1i
A(p-2-ii) = 3p——4

withi=0,...,k—-1.

The a’s for n = 3 case with p < 12 are given below (for the sake of brevity we shall call

a’s corresponding to [i, jl, (ky, k2, k3) as [i, jl, (ki, ka, k3)):

If p is even then :

Pl = L i L -3 3 3 3 .
[ 1] = 53, 53> 5505 L] = 24 24 24"" P[2.1] = 24 24 24"" 213,11 = 24 24’24"" > e

(kl’ k2’ k3) (kZ’ kl, k3) 249 249 249 .. (kl’() kZ) (0’ kl9k2) 24 ) (O 0 P 3) - 5
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If p is odd then the results for the first few cases are :

pP=5:[i,i] = 55, 5 withi = 1,2;[1,2] = 55: (1,1,0) = 5: (0,0,2) = 5 .

1,2,3; [1,j] = 2,2 with j = 2,3; [23] =

. i1 3 T o .
p=7: [i,i] = . 55 With i 647 64°

6
10
% (112 =4

0,1,3)=(1,0,3) = £;(2,0,2) = &; (0,0,4) = & .

p=9:[i,il= %, & & 2. withi = 1,2,3,4; [1,/]1= 2, &, & with j =2,3,4; [2,)] =
S with j=3,4[3,41= 2; 2,2,2) =24 (LLH=2:(1,23)=2,1,3) = &

:(3,0,3) = £,

(1,0,5)=(0,1,5) = 64, (2,0,4) =(0,2,4) = ;(0,0,6) = ﬁ.

4>

p=11: [i,i] = {5, 35, 15 1550 75 With i = 1,2,3,4,5; [1,j] = {5, 15> 115> 155+ With

1127 1127 1127 112”7 112 112°
_]:2’3,4959
[2, /1= -3, 13, <5, with j = 3,4,5;[3, j] = 13, 75, with j = 4,5; [4,5] = {55 (1,1,6) =
22
112°

2,2,4) = 19:(3,3,2) = £ 0,44 = 1% (1,0,7) = (0,1,7) = 1%; (2,0,6) =

12° 12°

(3,0,5) = (0,3,5) = 22; (1,2,5) = (2,1,5) = 4 (1,3,4) = (3,1,4) = 14 (0,0,8) =
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The Amplituhedron is a remarkable space-time
independent framework that has been developed by
Arkani-Hamed and collaborators over the last decade.
In this framework, each theory is associated to a

putative family of geometric objects living kinematic
space. This geometric object has a unique differential _»@ ="
form associated to it called the canonical form which

has logarithmic singularities on the boundary of the
geometry. The scattering amplitude is obtained from
the canonical form by pulling it back onto the
geometry. In this formulation unitarity and locality
emerge from properties of the geometry rather than

being physical inputs to the theory. Locality emerges
from the fact that the only physical poles correspond to Figure 1.Schematic summarising the
boundaries of the geometry and Unitarity follows because Amplituhedron  Programme

each boundary of the geometry is a product of lower

dimensional geometries of the same kind which directly implies the physical factorization of

the corresponding amplitude. This framework was established for all loop N*M H V
amplitudes in N=4 SYM and tree level and 1-loop amplitudes in bi-adjoint ¢ theory.

In this thesis the formulation was extended to tree amplitudes in planarg¢?(p > 4)
theories by establishing a precise connection between scattering forms and a

polytope called "Stokes polytopes' for p=4 ( more generally “Accordiohedron’ for p >4

) living in kinematic space. It was shown in the thesis that unlike the case of ¢*
interactions there is no single simple polytope which can be the amplituhedron of these
theories, and whose canonical form yields the planar ¢? amplitude.

However, there are several simple polytopes associated with the different topological
classes of ordered p+(p-2)n-point Feynman diagrams for each dimension n which can be
embedded in kinematic space. A weighted sum of the canonical forms of all these
accordiohedra does indeed give the right planar amplitude. The weights are unique positive
rational numbers and can be determined by a simple prescription provided in the thesis.
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