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Chapter 6

Conclusion

In the first part of the thesis, based on [2] we study the relation between two distinct

realization of surface operators inN = 2 SQCD as monodromy defects and flavor defects.

We show that contours specified by a particular Je↵rey-Kirwan residue prescription in

the localization analysis map to particular realizations of the surface operator as flavour

defects. The localization integrand in the asymptotically conformal case di↵ers from that

of the pure theory only in the structure of the numerator and hence the set of poles picked

by a given JK vector remains the same as in the theory without flavours. As a result, on

the quiver side, the ranks of gauge nodes in the quiver remain the same. The ranks of

flavour nodes are uniquely fixed by how the flavour symmetry is broken by the defect and

by requiring conformality at each 2d gauge node. For each contour choice, we propose

how to construct a 2d/4d quiver theory whose twisted superpotential, when evaluated on

the solutions of the twisted chiral ring equations, matches the localization result after a

suitable map of parameters. Some work in this direction appeared recently in [34], but

our analysis of Seiberg duality has significant di↵erences.

As in the case of the pure 4d gauge theory, distinct contour choices are equivalent and

give rise to Seiberg-dual 2d/4d gauge theories. However, there is a new feature in the

asymptotically conformal SQCD case: due to a non-vanishing residue at infinity, distinct
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contours are inequivalent. While the prepotential obtained from the instanton partition

function is independent of the contour of integration, the twisted superpotential turns out

to be di↵erent for distinct contour choices.

Our main focus has been understanding Seiberg duality for surface defects in SQCD

which is consistent with such inequivalent contours . The ranks and connectivity of the

quivers one gets by Seiberg duality are exactly those that correspond to the di↵erent JK

prescriptions, but the e↵ective twisted superpotentials on the 4d Coulomb branch for dif-

ferent JK prescriptions are not trivially related. The resolution to this is known for the

case of 2d gauge theories in which the flavour group is not gauged [10]: the Lagrangian

of the dual theory is modified by non-perturbative corrections. Our main result in this

work is a proposal for a generalized Seiberg duality rule with further non-perturbative

terms that applies to the case of surface operators realized as flavour defects. We derive

this from the localization integrand by a careful analysis of the residue at infinity. With

the modified duality rules that now also involve the 4d gauge coupling, the twisted super-

potentials evaluated on the solutions of the chiral ring equations match for all dual pairs

of theories.

In the second part of thesis, we considered surface defects in SU(2) theory with four

fundamental flavours and studied modular properties the twisted chiral superpotential [6].

We matched the results for the superpotential obtained from localization methods and

from the Seiberg-Witten data. The coe�cients in the mass expansion satisfy a modular

anomaly equation that allows one to solve for them in an iterative manner in terms of

(quasi-) modular and elliptic functions. A key input here is the explicit localization results

that are crucial to fix the purely modular and elliptic contributions. While such an equation

was known for theN = 2? theory, the main di↵erence now is that the variables in terms of

which the resummation is done are not the bare couplings but the renormalized ones. This

required us to write down the map that relates the bare and the renormalized variables.

The map is verified using the Seiberg-Witten analysis in Appendix E.

64



In [14] it was shown that for the SU(2) Nf = 4 theory the instanton partition function

in the presence of the defect is reproduced by a 4-point spherical conformal block in

Liouville CFT with the insertion of a degenerate primary. This was studied in great detail

in [15] and we have checked up to n = 6 that our resummed results for ew0
n

match the

results one would obtain following the CFT analysis in [15].
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Synopsis

Motivation and Introduction

Defects or nonlocal operators in QFT are disturbances supported on a submanifold in

spacetime. They are good theoretical tools for studying non-perturbative e↵ects of gauge

theories and dualities. Defects are classified by the dimension of their support. Line

operators (e.g. Wilson lines, ’t Hooft loops) which are one dimensional defects, were

first introduced to study the phase structure of gauge theories. Surface operators are

2-dimensional generalisations of ’t Hooft and Wilson lines in gauge theories. Surface

operators were first introduced in N = 4 super Yang-Mills theories in [1] as solutions

to Hitchin equations with isolated singularities on a two-dimensional submanifold of the

four dimensional space-time. They serve as order parameters of the gauge theories. Once

inserted in the path integral their correlation function give us valuable information about

non-perturbative aspects of the gauge theory. Surface operators can also distinguish some

topological phases of the gauge theory which line operators can not detect.

In this thesis, we study surface operators in N = 2 supersymmetric QCD theories with

gauge group SU(N) and 2N fundamental flavours in four dimensions [2]. The matter

content of the theory ensures that it is conformal in the limit that the flavour masses are

zero and is referred to as asymptotically conformal SQCD. The low energy physics of the

gauge theory on the Coulomb branch in the presence of the defect is described by two

holomorphic functions, the prepotential and the twisted chiral superpotential. While the
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prepotential describes the e↵ective four dimensional theory in the absence of a defect, the

twisted chiral superpotential describes the e↵ective theory on the defect. So, our focus

will be on computing the twisted superpotential and analysing it. We study surface oper-

ators following two di↵erent approaches, namely as monodromy defects [1, 3]and flavor

defects [4,5]. Our goal is to clarify the relationship between these di↵erent approaches of

surface operators. In addition, we want to clarify Seiberg duality in the context of surface

operators in N = 2 SQCD.

We also study modular properties of simplest possible surface operator in four dimen-

sional N = 2 SQCD with gauge group SU(2) and four fundamental flavours [6]. It is

well known that this theory enjoys S-duality. Using the constraints imposed by the S-

duality, we show that the instanton contribution to the twisted chiral superpotential can be

resummed into elliptic functions and (quasi-) modular forms of the duality group.

Surface operators as monodromy defects

In this chapter, we discuss surface operators as monodromy defects in N = 2 SU(N)

gauge theory with 2N fundamental flavours in four dimension. In this approach, the defect

is defined by introducing a singularity structure for the gauge field near the location of the

defect. If r e
i✓ is the coordinate of the plane transverse to the defect D, then, as r ! 0, the

gauge field has the following behaviour [7]:

A ⇠ diag
✓

|      {z      }
n1

↵1, . . . ,↵1,
|      {z      }

n2

↵2, . . . ,↵2, . . .
|        {z        }

nM

↵M, . . . ,↵M

◆
d✓ ,

where the M integers nI satisfy

MX

I=1

nI = N .
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In the path integral, one then integrates over all gauge field configurations with this pre-

scribed singular boundary condition. In the presence of a surface operator the gauge group

S U(N) is broken to the Levi subgroup at the location of the defect:

L = S [U(n1) ⇥ U(n2) ⇥ . . . ⇥ U(nM)] .

In the path integral, one can also add a 2d topological term :

exp
⇣
2⇡i

MX

I=1

⌘I

Z

D

Tr FU(nI )

⌘

where ⌘I’s are constant parameters.

A surface operator is thus specified by the discrete lables [n1, n2, . . . , nM] and the conti-

nous parameters : (↵1, . . . ,↵M) and (⌘1, . . . , ⌘M).

In the asymptotically conformal SQCD theory, surface operators also breaks the SU(2N)

flavour symmetry to the following subgroup at the location of the defect:

F = S [U(n1 + n2) ⇥ U(n2 + n3) ⇥ . . . ⇥ U(nM + n1)] . (1)

Due to supersymmetry, the prepotentialF and the twisted chiral superpotentialW receive

three di↵erent contributions from classical, 1-loop, and instanton terms :

F = F class + F 1loop + F inst

W =Wclass +W1loop +Winst

To obtain the instanton contributions to F and W, we first compute the instanton par-

tition function Zinst[~n] in a Omega-deformed background using equivariant localization

technique [8] in the presence of the surface defect. In the vanishing limit of⌦-deformation

3



parameters ✏1 and ✏2 :

lim
✏i!0

log(1 +Zinst[~n]) = �F
inst

✏1✏̂2
+
Winst

✏1
(2)

where ✏̂2 =
✏2
M

.

The instanton partition function in the presence of such a surface operator, is given by a

multi-dimensional contour integral [2]:

Zinst[~n] =
X

{dI }
Z{dI }[~n] with Z{dI }[~n] =

MY

I=1

h (�qI)dI

dI!

Z dIY

�=1

d�I,�

2⇡i

i
z{dI } (3)

where

z{dI } =
MY

I=1

dIY

�,⌧=1

�
�I,� � �I,⌧ + ��,⌧

�
�
�I,� � �I,⌧ + ✏1

� ⇥
MY

I=1

dIY

�=1

dI+1Y

⇢=1

⇣
�I,� � �I+1,⇢ + ✏1 + ✏̂2

⌘

⇣
�I,� � �I+1,⇢ + ✏̂2

⌘ (4)

⇥
MY

I=1

dIY

�=1

Q
i2FI

(�I,� � mi)
Q

s2NI

⇣
as � �I,� +

1
2 (✏1 + ✏̂2)

⌘ Q
t2NI+1

⇣
�I,� � at +

1
2 (✏1 + ✏̂2)

⌘ .

Equation (4) is our proposal for the integrand for SQCD. In this case, the denominator and

its singularity structure is same as that of pure gauge theory [9], the fundamental flavours

only add factors in the numerator of the instanton partition function. To calculate the

partition function one has to specify the contour of integration for the �I variables. The

contour is specified by integrating �I,� in the upper or lower half-plane and by choosing

a definite order in the successive integrations. Equivalently, the contour of integration

can be selected by specifying a Je↵rey-Kirwan reference vector. Localization methods

therefore allows one to calculate the instanton partition function order by order in the

instanton expansion. The new feature is that there are M instanton counting parameters

qI in this case. The product of all of these turn out to be related to the usual 4d instanton

counting parameter.

q4d =

MY

I=1

qI . (5)
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Due to this fractionation, the partition function in the presence of the surface operator is

referred to in the mathematical literature as the ramified instanton partition function. The

M positive integers dI count the numbers of ramified instantons in the various sectors of

the partition function.

Surface operators as flavor defects

In this chapter, we discuss surface operators as flavor defects. In this approach, surface

operators are described as coupled 2d/4d systems realized as quiver gauge theories . To

describe a surface operator of Levi type in pure SU(N) theory one considers a �-model

with target space M = S U(N)
L . It can be realized as the low-energy limit of a GLSM ,

whose gauge and matter content can be summarized in a quiver diagram like in Fig. 3.1.

Figure 1: The quiver which describes the generic surface operator in pure SU(N) gauge
theory.

Here, rI = n1 + n2 + ... + nI . This is a U(r1)⇥ U(r2) ⇥ . . . gauge theory in 2d with bi-

fundamental matter and SU(N) flavour group. The Coulomb vevs of the 4d theory act as

twisted masses for the chiral matter fields. So these can be integrated out, leading to an

e↵ective low energy theory in the infrared for the vector multiplet in 2d. The e↵ective

action of such a theory can be encoded in the e↵ective twisted chiral superpotential and is

given by [9]:

W = 2⇡i
M�1X

I=1

rIX

s=1

⌧I �
(I)
s
�

M�2X

I=1

rIX

s=1

rI+1X

t=1

$
�
�(I)

s
� �(I+1)

t

� �
rM�1X

s=1

D
Tr$

�
�(M�1)

s
���E

(6)

where

$(x) = x

⇣
log

x

µ
� 1

⌘
,
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µ is the UV cut-o↵ scale, and ⌧I is the complexified FI parameter of the I
th node at the

scale µ. The angular brackets in the last term of (3.1) correspond to a chiral correlator in

the 4d SU(N) theory which implies that the coupling between the 2d and 4d theory is via

the resolvent of the SU(N) gauge theory [5].

We then obtain the massive vacua by extremizingW(�(I)
s ) i.e. they are solutions of the

twisted chiral ring equations:

exp
 
@W
@�(I)

s

!
= 1 (7)

The evaluation of the twisted chiral superpotential on the �s,? that solves the chiral ring

equations turns out to be identical to theW evaluated from the localization calculation.

In SQCD, the matter multiplets also provide flavours to the 2d gauge nodes. The addi-

tional constraint we impose is that for every quiver the complexified FI parameters of the

2d gauge nodes should not run, so that the 2d gauge theories are conformal. Combined

with the breaking of the flavour symmetry to F as in (1) for a generic surface operator,

this uniquely fixes how the broken 4d flavour group acts on the 2d gauge nodes. For a

generic surface operator [n1, n2, . . . nM] we show a particular 2d/4d realization below :

Now we follow the same prescription as the pure gauge theory for SCQD. We write down

the e↵ective action and extremize it to find the twisted chiral ring equations. We then solve

them to find the massive vacuum. The evaluation of the twisted chiral superpotential in

the massive vacuum once again reproduces the twisted superpotential Winst calculated

using localization.

Contour vs quiver and Seiberg duality

In this chapter, we discuss the precise relationship between two di↵erent formulations

of surface operators discussed earlier. In an earlier work [9] on surface operators in the

6



Figure 2: One realization of the [n1, n2, . . . nM] surface operator as a 2d/4d quiver in which
the 2d gauge nodes are oriented. The 4d flavour groups provide matter for the 2d nodes
such that the �-function of each FI parameter is zero.

pure 4d theory, it was shown that there is a one-to-one correspondence between massive

vacua of the 2d/4d theory and surface operators as monodromy defects. For a 2d/4d

quiver, the evaluation of the twisted chiral superpotential in a particular massive vacuum

reproduces the twisted superpotentialWinst calculated using localization. In particular, a

precise correspondence between di↵erent integration contour prescriptions in the ramified

instanton partition function for a monodromy defect and a particular 2d/4d quiver was

established.

In extending this correspondence to the asymptotically conformal SQCD case, we observe

that the fundamental flavours only add factors in the numerator of the instanton partition

function, leaving the denominator and its singularity structure unchanged. It therefore

follows that the quiver we may associate to a given integration contour has the same

2d gauge content of the one in the corresponding case without flavour. Given a 2d/4d

quiver, the evaluation of the twisted chiral superpotential in the chosen vacuum once

again reproduces the twisted superpotentialWinst calculated using localization and with

the particular JK prescription associated to the 2d/4d quiver.

In this context, there is an interesting issue that arises. There can be many equivalent 2d

7



quivers that can be coupled to the S U(N) flavour group. By equivalence it is meant that

the infrared behaviour of the 2d quivers (in this case, massive vacua) can be mapped one-

to-one, onto each other. Such quivers are related by 2d Seiberg duality. In this Chapter,

we also study this issue of Seiberg duality in the 2d/4d quiver realization of the defect in

SQCD and propose a relation between the twisted superpotentials of dual quivers. Seiberg

duality has been studied in the pure 4d theory in [9]. It was shown that there can be dif-

ferent 2d/4d quivers which realize the same flavour defect and are related by 2d Seiberg

duality [10]. Seiberg duality is an infrared equivalence such that for dual quivers the low

energy e↵ective superpotentials, evaluated in particular vacua, match. On the localization

side, we propose that each such Seiberg dual realization of the surface operator is asso-

ciated to a contour prescription and residue theorems guarantee the equality of the low

energy e↵ective superpotentials. In the case of the pure 4d gauge theory, distinct contour

choices are equivalent and give rise to Seiberg-dual 2d/4d gauge theories.

However, in the asymptotically conformal SQCD case due to a non-vanishing residue

at infinity, distinct contours are inequivalent. While the prepotential obtained from the

instanton partition function is independent of the contour of integration, the twisted su-

perpotential turns out to be di↵erent for distinct contour choices. Our main result is a

proposal for a generalized Seiberg duality rule that the Lagrangian of the dual theory is

modified by non-perturbative corrections that applies to the case of surface operators real-

ized as flavour defects. The appearance of non-perturbative terms in the superpotential of

the dual theory is in part already known in 2d conformal gauge theories [10]. Our result

extends it to the case when the flavor node is gauged in the 2d/4d quiver realization of

surface operator. When the flavor node is gauged, the twisted superpotential of the dual

quiver is modified by the following non-perturbative correction [2] :

�W =


log
⇣
1 � (�1)N f x

⌘
+ log

✓
1 � (�1)N f

q0

x

◆ ��
Tr em � Tr m

�
, (8)

where x is the exponentiated FI parameter of the 2d gauge node that is dualized, and Tr m

8



and Tr em denote respectively the sum of twisted masses for all Nf fundamental and Nf

anti-fundamental flavours attached to that node.

Modular properties of Surface operator

In this chapter, we study half-BPS surface operators in N = 2 supersymmetric QCD in

four dimensions with gauge group SU(2) and four fundamental flavours. It is well known

from [11] that the SU(2) theory with Nf = 4 enjoys an S-duality symmetry. A lot of

progress has been made in resumming the instanton contribution to the prepotential of

a large class of theories into (quasi-) modular forms of their respective S-duality groups

[12]. This was then extended to the case of the twisted chiral superpotential of N = 2?

SU(N) theory in the presence of a surface defect in [13]. Here we do the same for SQCD.

We use the constraints imposed by S-duality to show thatW satisfies a modular anomaly

equation and that the instanton expansion ofW at each order in a mass expansion can be

written in terms of elliptic functions and (quasi-) modular forms.

We compute the twisted chiral superpotential using equivariant localization as well as the

Seiberg-Witten data. The instanton contributions to F andW are obtained from the in-

stanton partition functionZinst[1, 1] as before using localization with choice of contour in

the upper-half complex plane. In order to confirm the results for the twisted superpoten-

tial obtained via localization, we compute the same from the Seiberg-Witten (SW) curve

of the gauge theory.

In [14], it was proposed that the twisted superpotential can be computed from the Seiberg-

Witten curve and is given by the integral of the SW di↵erential � along an open path on

the SW curve :

W(x0) =
Z

x0

� , (9)

where x0 is the continuous parameter that labels the surface operator, and is given by the

location of the defect on the Riemann surface. The SW di↵erential is obtained from the

9



Gaitto form of the curve as

� = x dt =
p
�2(t)dt . (10)

where the Gaiotto form of the curve is

x
2 = �2(t) (11)

The twisted superpotential is obtained by performing the integral with the Gaiotto form

of the SW curve for SU(2) theory with Nf = 4 flavours. We check that the instanton con-

tributions toW obtained via localization matches the results from the SW data , provided

one uses a suitable map between the instanton counting parameters (q1, q2) and the gauge

theory parameters (q0, x0).

To resum the instanton contributions to W one expands the twisted superpotential in a

mass expansion. It is convenient to work with the log x derivative of fW whose expansion

is :

x
@fW
@x
⌘ fW0 =

1X

n=0

ew0
n

(12)

where ew0
n
⇠ a

1�n.

Using the S-duality symmetry of SQCD we show that the ew0
n

in (5.25) obey a modular

anomaly equation :

@ew0
n

@E2
+

1
12

n�1X

l=0

 
@ew0`
@a

! 0
BBBB@
@efn�`
@a

1
CCCCA = 0 (13)

To solve the modular anomaly equation one needs to fix the coe�cients of the modu-

lar pieces that occur as integration constants. This we do by appealing to the explicit

10



localization results. The final resummed results for low values of n are given as follows:

ew02 = �
1

6a

3X

A=0

M
2
A

�
E2 + 12b}(z + !A)

�

ew04 = �
1

72a3

⇣ 3X

A=0

M
4
A

⇣
2E

2
2 � E4 + 24E2b}(z + !A) + 144b}(z + !A)2

⌘

+ 2
X

A<B

M
2
A
M

2
B

⇣
2E

2
2 � E4 + 12E2b}(z + !A) + 12E2b}(z + !B)

+ 144b}(z + !A)b}(z + !B)
⌘
� 12T1✓

4
4(E2 � 2✓4

2 � ✓4
4) + 12T2✓

4
2(E2 + ✓

4
2 + 2✓4

4)
⌘
(14)

The resummed results match what one would obtain from the description of surface oper-

ators as the insertion of a degenerate operator in a spherical conformal block in Liouville

CFT [15].

Conclusion

In this thesis, we study half-BPS surface operators in N = 2 supersymmetric asymp-

totically conformal gauge theories in four dimensions with SU(N) gauge group and 2N

fundamental flavours using localization methods and coupled 2d/4d quiver gauge theo-

ries. We show that contours in the localization analysis map to particular realizations of

the surface operator as flavour defects. We study Seiberg duality of 2d/4d quivers. Dual

quivers are mapped to contour deformations of the localization integral which involves

a residue at infinity. The Lagrangian of the dual theory gets shifted by non-perturbative

terms, which is referred to as modified Seiberg duality rule.The new rules, that depend

on the 4d gauge coupling, lead to a match between the low energy e↵ective twisted chiral

superpotentials for any pair of dual 2d/4d quivers. We also study modular properties of

half-BPS surface operators in N = 2 SQCD in four dimensions with gauge group SU(2)

and four fundamental flavours. We compute the twisted chiral superpotential that de-

scribes the e↵ective theory on the surface operator using equivariant localization as well

11



as the Seiberg-Witten data. We then use the constraints imposed by S-duality to resum

the instanton contributions to the twisted superpotential into elliptic functions and (quasi-)

modular forms.

Plan of the thesis

In this thesis, we study surface operators in N = 2 SQCD theories with gauge group

SU(N) and 2N fundamental flavours in four dimensions.

• Chapter 1 will provide general introduction and motivation for studying surface

operators.

• Chapter 2 will discuss surface operators as monodromy defects in N = 2 SQCD

theories.

• Chapter 3 will discuss surface operators as Flavor defects inN = 2 SQCD theories.

• Chapter 4 will discuss the relation between the above two approaches and Seiberg

duality.

• Chapter 5 will study modular properties of surface operators in N = 2 SQCD with

SU(2) gauge group and four fundamental flavours.

• Chapter 6 will conclude with a discussion of the results as well as open problems.

12



Chapter 1

Motivation and Introduction

Defects or nonlocal operators in QFT are disturbances supported on a submanifold in

spacetime. They are good theoretical tools for studying non-perturbative e↵ects of gauge

theories and dualities. Defects are classified by the dimension of their support. Line

operators (e.g. Wilson lines, ’t Hooft loops) which are one dimensional defects, were

first introduced to study the phase structure of gauge theories. Surface operators are

2-dimensional generalisations of ’t Hooft and Wilson lines in gauge theories. Surface

operators were first introduced in N = 4 super Yang-Mills theories in [1] as solutions

to Hitchin equations with isolated singularities on a two-dimensional submanifold of the

four dimensional space-time. They serve as order parameters of the gauge theories. Once

inserted in the path integral their correlation function give us valuable information about

non-perturbative aspects of the gauge theory. Surface operators can also distinguish some

topological phases of the gauge theory which line operators can not detect.

In this thesis, we have two parts. In the first part, we study surface operators in N = 2

SQCD theories with gauge group SU(N) and 2N fundamental flavours in four dimensions.

The condition on the number of fundamental flavours ensures that in the limit they are

massless the theory is super-conformal at the quantum level. We will refer to these as

asymptotically conformal gauge theories. Our interest is in the low-energy e↵ective action
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of such theories on the Coulomb branch, in the presence of a surface defect. This e↵ective

action is encoded in two holomorphic functions: the prepotential, which describes the

four dimensional (4d) dynamics without the defect, and the twisted chiral superpotential,

which describes the dynamics of the two dimensional (2d) theory on the defect.

In our study of surface operators we follow two approaches. In the first approach, we

consider the ramified instanton partition function Zinst, which is obtained by a suitable

orbifold of the instanton moduli space of the 4d SQCD theory without the defect [8] (see

also [13] for details). One way to realize the instanton moduli space is by considering

the open string excitations of D(-1)/D3/D7-brane systems in an orbifold of type IIB string

theory. In this realization, the ramified instanton moduli are open strings with at least one

end-point on the D(-1)-branes and, using localization techniques, the partition function

Zinst can be written as a contour integral over those moduli which represent the position

of the D(-1)-branes in the directions transverse to both the D3 and the D7-branes. For a

particular contour whose residues have an interpretation as Young tableaux, this is inter-

preted as the partition function of a monodromy defect in the gauge theory [1, 3]. Such

surface defects are labelled by Levi subgroups of SU(N) which are classified by partitions

of N. For asymptotically conformal SQCD, it turns out that the flavour group SU(2N) is

also broken at the location of the defect into M factors, whose ranks are determined by

the same partition of N. Both the prepotential and the twisted chiral superpotential on the

Coulomb branch can then be extracted from Zinst in the limit of vanishing ⌦-deformation

parameters [7, 14].

In the second approach, we describe surface defects as flavour defects, which are coupled

2d/4d systems realized as quiver gauge theories [4,5]. Here the 2d sector is a (2,2) theory

described by a gauged linear sigma model in the ultraviolet, in which the vacuum expec-

tation values of the adjoint scalar of the 4d theory act as twisted masses [16, 17]. The

2d theory has a discrete set of massive vacua determined by solutions of twisted chiral

ring equations that extremize the twisted superpotential. Our goal is to understand the
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precise relationship between these two distinct realization of surface operators, namely as

monodromy defects and flavor defects.

Work along this direction has been pursued in the pure 4d theory in [9,13,18–20]. One of

the main results in [9] is that there can be di↵erent 2d/4d quivers which realize the same

flavour defect and are related by 2d Seiberg duality [10]. Seiberg duality is an infrared

equivalence such that for dual quivers the low energy e↵ective superpotentials, evaluated

in particular vacua, match. These statements are reflected on the localization side in an

elegant way: each Seiberg dual realization of the surface operator is associated to a con-

tour prescription and residue theorems guarantee the equality of the low energy e↵ective

superpotentials. The contours are specified by the Je↵rey-Kirwan (JK) prescription [21]

and each reference JK vector associated to a given 2d/4d quiver can be written unambigu-

ously in terms of its Fayet-Iliopoulos (FI) parameters. So, in the case of the pure 4d gauge

theory, distinct contour choices are equivalent and give rise to Seiberg-dual 2d/4d gauge

theories. However, in the asymptotically conformal SQCD case: due to a non-vanishing

residue at infinity, distinct contours are inequivalent. While the prepotential obtained from

the instanton partition function is independent of the contour of integration, the twisted

superpotential turns out to be di↵erent for distinct contour choices. Our main focus is to

understand how Seiberg duality can be consistent with such inequivalent contours in the

context of surface defects in asymptotically conformal SQCD.

In the second part of the thesis, we study modular properties of simplest possible surface

operator in four dimensionalN = 2 SQCD with gauge group SU(2) and four fundamental

flavours [6]. It is well known that this theory enjoys S-duality. In [12, 22–25], S-duality

was used to constrain the prepotential of N = 2? theories with classical and exceptional

gauge groups. The instanton expansion of the prepotential was resummed to a mass ex-

pansion such that the expansion coe�cients were expressed as linear combinations of

(quasi-) modular forms of the duality group. This was then done for asymptotically con-

formal SQCD with fundamental matter in [26, 27]. This program was later extended to
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the case of a gauge theory with a surface defect in N = 2? SU(N) theory to constrain the

twisted superpotential [13]. We want to extend this one step further by using S-duality to

constrain the twisted superpotential of the SU(2) theory with Nf = 4 fundamental flavours

and resum the instanton contributions to the twisted superpotential.

The rest of the thesis is organized as follows. In Section 2, we introduce surface opera-

tors as monodromy defects and write the localization integrand from which the instanton

partition function is obtained after specifying a contour of integration. In Section 3, we

introduce surface operators as flavor defects. In section 4, we relate the di↵erent contours

of integration to distinct 2d/4d quivers by studying the [p,N � p] defect and we propose

a generalized Seiberg duality move and show in the case of the simplest quiver in what

manner the Lagrangian for the dual quiver is corrected from the perturbatively exact 1-

loop result by non-perturbative terms. We analyze the 3-node quiver in detail and test

successfully the rules laid out. In section 5, we study modular properties of simplest pos-

sible surface operator in four dimensionalN = 2 SQCD with gauge group SU(2) and four

fundamental flavours [6]. Using the constraints imposed by the S-duality, we show that

the instanton contribution to the twisted chiral superpotential can be resummed into el-

liptic functions and (quasi-) modular forms of the duality group. We provide a derivation

of our proposal using localization methods in Appendix A , collect some details of the

computations in the Appendices B and C, give some technical details on elliptic functions

and modular forms in appendix D and verify the map between the resummed and the bare

variables in appendix E.
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Chapter 2

Surface operators as monodromy

defects

In this chapter, first we briefly review surface operators as monodromy defects in pure

N = 2 theory with SU(N) gauge group in 4d [9, 20]. This will help us to introduce our

notation. Next we move on to discuss our main interest : surface operators as monodromy

defects in N = 2 SQCD.

2.1 In pure N = 2 theory

In this approach, a surface operator is defined by introducing a singularity structure for

the gauge field on a two dimensional plane in four dimensional Euclidean spacetime. If

r e
i✓ is the coordinate of the plane transverse to the defect, then, as r ! 0, the gauge field

has the following behaviour:

A = Aµdx
µ ' diag

✓

|      {z      }
n1

↵1, . . . ,↵1,
|      {z      }

n2

↵2, . . . ,↵2, . . .
|        {z        }

nM

↵M, . . . ,↵M

◆
d✓ (2.1)
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, here the ↵I’s are real parameters, where I = 1, . . . ,M. The M integers nI are such that

X

J

nJ = N . (2.2)

In the path integral, one integrates over all gauge field configurations with this prescribed

singular boundary condition. In the presence of a surface operator, one can also add a

topological phase factor to the path integral

S top[~n] = exp
⇣
2⇡i

MX

I=1

⌘I

Z

D

Tr FU(nI )

⌘
(2.3)

where ⌘I’s are constant parameters.

As a monodromy defect, a surface operator in a 4d SU(N) theory is specified by a partition

of N, denoted by ~n = [n1, n2, . . . nM], which corresponds to the breaking of the gauge

group to a Levi subgroup

L = S [U(n1) ⇥ U(n2) ⇥ . . .U(nM)] (2.4)

at the location of the defect [1,3] and 2M real parameters (↵I , ⌘I). This also gives a natural

partitioning of the classical Coulomb v.e.v.’s of the adjoint scalar � of the N = 2 SU(N)

theory as follows:

h�i = �
a1, . . . , ar1 | . . .

���arI�1+1, . . . arI

��� . . . |arM�1+1, . . . , aN

 
. (2.5)

Here we have defined the integers rI according to

rI =

IX

J=1

nJ , (2.6)

so that the I
th partition in (2.5) is of length nI . Introducing the following set of numbers
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with cardinality nI:

NI ⌘ {rI�1 + 1, rI�1 + 2, . . . , rI} , (2.7)

we define the nI ⇥ nI block-diagonal matricesAI according to

AI ⌘ diag
�
as2NI

�
=

0
BBBBBBBBBBBBBBBBBBBBBBBBBBB@

arI�1+1 0 0 . . .

0 . . . 0 . . .

...
...
. . .

0 0 . . . arI

1
CCCCCCCCCCCCCCCCCCCCCCCCCCCA

. (2.8)

With these conventions, the splitting in (2.5) can be written as

h�i = A1 �A2 � . . . �AM . (2.9)

We are interested in the low-energy e↵ective action of such theories on the Coulomb

branch, in the presence of a surface operator. The low energy e↵ective action that gov-

erns the combined gauge theory/surface operator system is completely specified by two

holomorphic functions, the prepotential F and the twisted chiral superpotentialW. The

non-perturbative contributions to these functions are obtained by first computing the in-

stanton partition function in a Omega-deformed background and then taking the vanishing

limit of the ⌦-deformation parameters:

lim
✏i!0

log
�
1 + Zinst[~n]

�
= �Finst

✏1✏2
+
Winst

✏1
. (2.10)

2.2 Monodromy defects in SQCD

The 4d N = 2 gauge theory of interest is the asymptotically conformal SQCD, which

is an SU(N) gauge theory with 2N fundamental flavours. We are interested in half-BPS

surface operators in this gauge theory, whose classification is the same as that for the pure
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gauge theory studied in [9]. For every partition of N, given by

MX

I=1

nI = N , (2.11)

one obtains a surface operator, labelled by the Levi subgroup:

L = S [U(n1) ⇥ U(n2) ⇥ . . . ⇥ U(nM)] . (2.12)

A new feature of surface operators in the asymptotically conformal SQCD theory is that

it also breaks the SU(2N) flavour symmetry to the following subgroup:

F = S [U(n1 + n2) ⇥ U(n2 + n3) ⇥ . . . ⇥ U(nM + n1)] . (2.13)

To denote the blocks into which the flavour group is broken, it is useful to define

FI = {rI�1 + rI � r1 + 1, . . . , rI + rI+1 � r1} , (2.14)

which is a set of cardinality nI + nI+1. The breaking of flavour symmetry in the presence

of the surface operator is represented in Fig. 2.1.

The instanton partition function in the presence of such a surface operator, which is also

referred to as the ramified instanton partition function, can be derived from the moduli ac-

tion of a D(-1)/D3/D7-brane system in an orbifold background that represents the surface

defect. Given the breaking of the gauge and flavour symmetry groups, the analysis is very

similar to what was carried out in [13] and therefore here we merely present the answer:

Zinst[~n] =
X

{dI }
Z{dI }[~n] with Z{dI }[~n] =

MY

I=1

h (�qI)dI

dI!

Z dIY

�=1

d�I,�

2⇡i

i
z{dI } (2.15)
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Figure 2.1: The asymptotically conformal 4d node with broken flavour symmetry. In the
realization of surface operators as flavour defects, the 4d gauge node as well as the 4d
flavour nodes act as matter for the gauge nodes of the 2d quiver.

where

z{dI } =
MY

I=1

dIY

�,⌧=1

�
�I,� � �I,⌧ + ��,⌧

�
�
�I,� � �I,⌧ + ✏1

� ⇥
MY

I=1

dIY

�=1

dI+1Y

⇢=1

⇣
�I,� � �I+1,⇢ + ✏1 + ✏̂2

⌘

⇣
�I,� � �I+1,⇢ + ✏̂2

⌘ (2.16)

⇥
MY

I=1

dIY

�=1

Q
i2FI

(�I,� � mi)
Q

s2NI

⇣
as � �I,� +

1
2 (✏1 + ✏̂2)

⌘ Q
t2NI+1

⇣
�I,� � at +

1
2 (✏1 + ✏̂2)

⌘ .

The M positive integers dI count the numbers of ramified instantons in the various sectors

and ✏1 and ✏̂2 =
✏2
M

parametrize the ⌦ background introduced to localize the integration

over the instanton moduli space [28, 29]. If one neglects the contribution of the flavours,

namely the numerator factors in the second line of (2.16), the integrand is identical to that

of the pure 4d theory. Note that the flavour factors are such that the breaking of the flavour

symmetry is respected.

To calculate the partition function one has to specify the contour of integration for the

�I variables. The contour is specified by integrating �I,� in the upper or lower half-plane

and by choosing a definite order in the successive integrations. Equivalently, the contour

of integration can be selected by specifying a Je↵rey-Kirwan reference vector. Localiza-

tion methods therefore allows one to calculate the instanton partition function order by
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order in the instanton expansion. Unlike the case of surface operators in the pure theory,

in asymptotically conformal SQCD, the instanton counting parameters qI are dimension-

less. The product of all of these turn out to be related to the usual 4d instanton counting

parameter.

q4d =

MY

I=1

qI . (2.17)

Due to this fractionation, the partition function in the presence of the surface operator is

referred to in the mathematical literature as the ramified instanton partition function. The

M positive integers dI count the numbers of ramified instantons in the various sectors of

the partition function.
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Chapter 3

Surface operators as Flavor defects

In this Chapter, following [9, 20] we briefly review surface operators as flavor defects in

pure N = 2 theory with SU(N) gauge group in 4d. Then we discuss how one can extend

this formulation for surface operators as flavor defects in N = 2 SQCD.

3.1 In pure N = 2 theory

In this approach a surface operator is described by a non-linear sigma model. For a surface

operator with a Levi subgroup L in a 4d theory with a gauge group G, the relevant sigma

model is defined on the target space G/L [1, 3]. Such a space is, in general, a flag variety

which can be realized as the low-energy limit of a GLSM [16, 17], whose gauge and

matter content can be summarized in the quiver diagram of Fig. 3.1.

Figure 3.1: The quiver which describes the generic surface operator in pure SU(N) gauge
theory.

Each circular node represents a 2d gauge group U(rI) where the ranks rI are as in (2.6),
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whereas the last node on the right hand side represents the 4d gauge group SU(N) which

acts as a flavour symmetry group for the (M � 1)th 2d node. The arrows correspond to

matter multiplets which are rendered massive by non-zero v.e.v’s of the twisted scalars

�(I) of the I
th node and of the 4d adjoint scalar �. The orientation of the arrows specifies

whether the matter is in the fundamental (out-going) or in the anti-fundamental (in-going)

representation.

The defect is 1/2-BPS and preserves (2, 2) supersymmetry in two dimensions. The ef-

fective action for the twisted chiral multiplets is obtained by integrating out the massive

matter multiplets and, thanks to supersymmetry, can be encoded in the e↵ective twisted

chiral superpotential. For the quiver of Fig. 3.1, this is given by:

W = 2⇡i
M�1X

I=1

rIX

s=1

⌧I �
(I)
s
�

M�2X

I=1

rIX

s=1

rI+1X

t=1

$
�
�(I)

s
� �(I+1)

t

� �
rM�1X

s=1

D
Tr$

�
�(M�1)

s
���E

(3.1)

where

$(x) = x

⇣
log

x

µ
� 1

⌘
, (3.2)

µ is the UV cut-o↵ scale, and ⌧I is the complexified FI parameter of the I
th node at the

scale µ, namely

⌧I =
✓I

2⇡
+ i ⇣I (3.3)

with ✓I and ⇣I being, respectively, the ✓-parameter and the real FI parameter of the I
th

gauge node. Finally, the angular brackets in the last term of (3.1) correspond to a chiral

correlator in the 4d SU(N) theory. This correlator implies that the coupling between the

2d and 4d theory is via the resolvent of the SU(N) gauge theory [5], which in turn depends

on the 4d dynamically generated scale ⇤4d.

Once the 4d Coulomb v.e.v.’s are given, the 2d Coulomb branch is completely lifted except

for a finite number of discrete vacua. These are found by extremizing the twisted chiral
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superpotentialW, i.e. they are solutions of the twisted chiral ring equations [30, 31]

exp
 
@W
@�(I)

s

!
= 1 . (3.4)

Once the solutions to the twisted chiral ring equations are obtained (order by order in

the strong coupling scales of the 2d/4d theories), we evaluate the e↵ective twisted chiral

superpotential W on this particular solution, and verify that the non-perturbative con-

tributions exactly coincide with theWinst calculated using localization. In essence, this

match provides a one-to-one map between 1/2-BPS defects in the 4d gauge theory and

massive vacua in the coupled 2d/4d gauge theory.

3.2 Flavor defects in SQCD

In extending this correspondence to the asymptotically conformal SQCD case, we no-

tice that the main di↵erence with the pure case is that the matter multiplets now provide

flavours to the 2d gauge nodes as well. The additional constraint we have to impose is that

for every quiver the complexified FI parameters of the 2d gauge nodes should not run, so

that the 2d gauge theories are conformal. Since the ranks of the 2d gauge nodes are fixed,

the number of (anti-) fundamental flavours at each node is fixed by the necessity to cancel

the contribution of the neighbouring gauge nodes (that also act as flavours) to the running

of the FI coupling. Combined with the breaking of the flavour symmetry to F as in (5.2)

for a generic surface operator, this uniquely fixes how the broken 4d flavour group acts on

the 2d gauge nodes.

We illustrate the points above for a generic surface operator [n1, n2, . . . nM] by giving a

particular 2d/4d realization, shown in Figure 3.2 .

Given the resulting 2d/4d quiver, the evaluation of the twisted chiral superpotential in the

chosen vacuum once again reproduces the twisted superpotentialWinst calculated using
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Figure 3.2: One realization of the [n1, n2, . . . nM] surface operator as a 2d/4d quiver in
which the 2d gauge nodes are oriented. The 4d flavour groups provide matter for the 2d
nodes such that the �-function of each FI parameter is zero.

localization and with the particular JK prescription associated to the 2d/4d quiver.

Now we follow the same prescription as the pure gauge theory for SCQD. We write down

the e↵ective action and extremize it to find the twisted chiral ring equations. We then solve

them to find the massive vacuum. The evaluation of the twisted chiral superpotential in

the massive vacuum once again reproduces the twisted superpotential Winst calculated

using localization.
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Chapter 4

Contours vs quivers and Seiberg duality

In this chapter, we discuss the exact relationship between two di↵erent approaches of

surface operators, name as Monodromy defects and Flavor defects in N = 2 SQCD. We

further discuss Seiberg duality in the context of SQCD.

4.1 Contours vs quivers

In order to extract the twisted chiral superpotential from the localization analysis one

needs to provide a residue prescription to calculate the instanton partition function. This

prescription is most succinctly specified via a JK reference vector [21] that uniquely spec-

ifies the set of poles chosen by the contour 1.

In our previous work [9] on surface operators in the pure 4d theory, it was shown that

di↵erent JK prescriptions map to distinct 2d/4d quiver gauge theories. In that case the

quivers are equivalent, and related to each other by Seiberg duality. For such quivers

the ranks of the 2d gauge groups directly correlate with a choice of a massive vacuum

and the evaluation of the twisted chiral superpotential in that particular massive vacuum

reproduces the twisted superpotential Winst calculated using localization. Despite the
1For applications to gauge theories see, for instance, [18, 32, 33].
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equivalence between quivers, we could obtain an unambiguous map between contours

and quivers, thanks to the match between the individual residues on the localization side

and the individual terms in the solution of the chiral ring equations. In particular, the

number of residues that contribute to the contour integrals are related to the ranks of

the 2d nodes of the quivers, while the coe�cients of the JK vector correspond to the FI

parameters of the 2d gauge groups.

In extending this correspondence to the asymptotically conformal SQCD case, we find

that given the resulting 2d/4d quiver, the evaluation of the twisted chiral superpotential

in the chosen vacuum once again reproduces the twisted superpotentialWinst calculated

using localization and with the particular JK prescription associated to the 2d/4d quiver.

We illustrate the points above for a generic surface operator [n1, n2, . . . nM] by giving a

particular 2d/4d realization, shown in Figure 3.2.

One property we would like to emphasize is that the map between a given JK contour and

its corresponding quiver is unambiguous: the superpotential calculated from a particular

localization prescription and that obtained from the twisted chiral ring equations of the

2d/4d quiver match. We will show this explicitly in the following sections in various

examples.

It is important to stress that in our earlier discussion, nowhere did we use Seiberg duality

rules for the asymptotically conformal SQCD theory or mention the equivalence between

the di↵erent 2d/4d coupled theories. For surface operators in the pure 4d theory, the 2d/4d

quivers related to distinct JK prescriptions were part of a duality chain in which each step

is a particular 2d Seiberg duality move (for example, see Fig. 7 in [9]). In that case it

was true that the twisted superpotential calculated using di↵erent contour choices were

identical. However in asymptotically conformal SQCD there is an interesting twist to the

story. By explicit calculation, one can check that, while the prepotential calculated using

the above prescription is independent of the choice of surface operator and of the contour

of integration, the twisted chiral superpotential calculated using di↵erent JK prescriptions,
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in fact, do not agree. We illustrate this point in the simple setting of the [p,N � p] defect.

The [p,N � p] defect

Let us consider the surface defect [p,N � p], and focus for simplicity on the 1-instanton

contribution to the partition function Z1-inst.

In order to write it in compact form, we introduce the polynomials:

PI(z) =
Y

u2NI

(z � au) , BI(z) =
Y

i2FI

(z � mi) . (4.1)

In terms of these, Z1-inst for the 2-node defect takes the form

Z1-inst = �
2X

I=1

qI

✏1

Z
d�I

2⇡i
(�1)nI BI(�I)

PI

⇣
�I � 1

2 (✏1 + ✏̂2)
⌘

PI+1

⇣
�I +

1
2 (✏1 + ✏̂2)

⌘ , (4.2)

while, using (2.10), the 1-instanton twisted superpotential is given by

W1-inst = lim
✏i!0

✏1Z1-inst . (4.3)

To compute the integrals in (4.2) we can use distinct JK prescriptions that simply corre-

spond to integrating each �I along a closed contour in the upper (+) or lower (�) half-

planes. According to the analysis of [9,20], out of the four inequivalent possibilities, only

two JK prescriptions are relevant and we denote them by (+�) and (�+), respectively.

With the (+�) prescription, the 1-instanton contribution to the twisted superpotential is

W+�
1-inst = (�1)p+1

q1

X

u2N1

B1(au)
P
0
1(au)P2(au)

+ (�1)N�p
q2

X

u2N1

B2(au)
P
0
1(au)P2(au)

, (4.4)

31



while with the (�+) prescription we get

W�+
1-inst = (�1)p

q1

X

u2N2

B1(au)
P1(au)P02(au)

+ (�1)N�p+1
q2

X

u2N2

B2(au)
P1(au)P02(au)

. (4.5)

where the 0 symbol denotes derivative. We can easily verify that the two superpotentials

are di↵erent and that their di↵erence is

W�+
1-inst �W+�

1-inst = (�1)p
q1

X

u2N1[N2

B1(au)
P0(au)

+ (�1)N�p+1
q2

X

u2N1[N2

B2(au)
P0(au)

, (4.6)

where P(z) is the classical gauge polynomial given by

P(z) =
NY

u=1

(z � au) . (4.7)

It is simple to realize that, since the di↵erence of the contours in the upper and lower half-

planes is a contour around infinity, the di↵erence (4.6) is due to non-vanishing residues

at infinity in the integrand of Z1-inst, a property which is characteristic of asymptotically

conformal theories. So we can write:

W�+
1-inst �W+�

1-inst =

Z

C1

dz

"
(�1)p

q1
B1(z)
P(z)

+ (�1)N�p+1
q2

B2(z)
P(z)

#

=
h
(�1)p+1

q1 + (�1)N�p+1
q2

i X

i2F1

mi (4.8)

where C1 is a closed curve encircling infinity clockwise, and the second line follows from

using the explicit expressions for the gauge and flavour polynomials.

In Appendix A, by lifting the model to five dimensions with one compact direction, we

show that the existence of non-vanishing residues at infinity holds at every instanton num-

ber. This explains why twisted superpotentials evaluated with di↵erent contour prescrip-

tions are generically di↵erent. For the 2-node defect [p,N � p], we are able to resum the
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instanton expansion and obtain

W�+
inst �W+�

inst = �
h

log(1 + (�1)p
q1) + log(1 + (�1)N�p

q2)
i X

i2F1

mi . (4.9)

As discussed earlier, we expect that di↵erent JK prescriptions map to distinct quivers re-

lated by 2d Seiberg duality, with equivalent superpotentials. This result therefore suggests

that in SQCD with surface defects, the definition of what is the dual quiver necessarily

involves non-perturbative modifications due to ramified instantons. We will discuss this

issue in greater detail in the following section.

4.2 Seiberg duality

We now study Seiberg duality in the 2d/4d quiver realization of the defect and propose

a relation between the twisted superpotentials of dual quivers. For the purely 2d case,

this has been discussed in detail in [10]. We begin with a 2d U(N) gauge theory with

Nf fundamental flavours and Nf anti-fundamental flavours shown in Figure 4.1. We now

Figure 4.1: The gauge group is represented by a circle, and the flavour groups are rep-
resented by squares. The quiver diagram has a single 2d gauge node of rank N with Nf

fundamental and Nf anti-fundamental flavours attached to it.

perform a Seiberg duality operation on the 2d gauge node, and obtain the quiver diagram

shown in Figure 4.2.

Under the duality, the roles of the fundamental and anti-fundamental flavours are ex-

changed as denoted by the reversal of the arrows. There is also the addition of a mesonic

field, as described by the line connecting the two flavour groups.

When these duality rules are applied to quiver theories, one has to take into account that
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Figure 4.2: The quiver diagram obtained after a 2d Seiberg duality on the gauge node in
Fig. 4.1.

for each 2d gauge node flavours can be provided by other 2d gauge nodes of the quiver; in

such cases the extra mesonic field should be treated as just another chiral multiplet in the

dual quiver. We will see several examples in later sections. So far, we have only shown

how the quiver itself is modified by the action of duality, we still have to show how the

duality acts on the parameters and Lagrangian of the quiver theories.

We again focus on the simplest 2-node case and solve the twisted chiral ring equations of

the two purported dual quivers. Imposing duality will then allow us to find the rules.

4.3 The 2-node case

We consider the [p,N � p] defect and describe its e↵ective action. We remark that the

results of this subsection have some partial overlap with those of the recent paper [34],

but our analysis of Seiberg duality has significant di↵erences.

The quiver Q0: We first consider the realization of the defect as the quiver in Figure 4.3.

After the massive chiral multiplets are integrated out, the twisted chiral superpotential

takes the following form:

WQ0 = log x

X

s2N1

�s �
X

s2N1

X

i2F1

$(mi � �s) �
X

s2N1

D
Tr$(�s ��)

E
, (4.10)

where x is the exponentiated FI parameter of the 2d theory, �s are the scalars in the

twisted chiral suprerfield that encodes the 2d vector multiplet and the mi are the masses
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Figure 4.3: A 2d/4d quiver realization of the [p,N � p] defect in SU(N) theory with 2N

flavours

of the 4d flavours that also act as twisted masses for the 2d chiral multiplets. We have

also introduced the function $(x) = x
�

log x

µ � 1
�
, which is the result of integrating out a

chiral multiplet of twisted mass x. In the last term of (4.10), the angular brackets denote

a chiral correlator in the 4d SU(N) gauge theory, and � is the adjoint scalar in the vector

multiplet. The twisted chiral ring equations are [30, 31]:

exp
 
@WQ0

@�s

!
= 1, s 2 N1 , (4.11)

and they explicitly read

exp
D
Tr log(�s ��)

E
= (�1)N

x B1(�s) for s 2 N1 (4.12)

where B1(�s) is the polynomial defined in (4.1). For the asymptotically conformal case

under consideration, the resolvent of the 4d gauge theory which determines the chiral cor-

relator, has a non-trivial dependence on q0, the instanton weight of the 4d SU(N) theory.
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We refer the reader to Appendix B for details; here we merely present the result, namely

*
Tr log

z ��
µ

+
= log

✓
(1 + q0)

bP(z) + Y

2µN

◆
. (4.13)

Here, bP(z) is the quantum gauge polynomial corresponding to the classical one defined in

(4.7):

bP(z) = z
N + u2z

N�2 + . . . + (�1)N
uN , (4.14)

where uk are the gauge invariant coordinates on moduli space, and the variable Y is given

in terms of the Seiberg-Witten curve of the asymptotically conformal 4d gauge theory:

Y
2 = bP(z)2 � 4q0

(1 + q0)2 B(z) , (4.15)

where B(z) is the flavour polynomial. We refer the reader to Appendix B for details.

Exponentiating (4.13) and using (4.15), we can recast the twisted chiral ring equations

(4.12) in the following form

(1 + q0) bP(�s) = (�1)N

 
x B1(�s) +

q0

x
B2(�s)

!
for s 2 N1. (4.16)

The classical vacuum about which we solve these equations is

�s = as + ��s for s 2 N1 , (4.17)

and the solution in the 1-instanton approximation is

��s = (�1)N
1

P
0
1(as)P2(as)


x B1(as) +

q0

x
B2(as)

�
for s 2 N1 . (4.18)

Let us now evaluate the twisted superpotential (4.10) on this solution. This is a little

tricky since one needs to expand the 4d chiral correlator
D
Tr$(� � �)

E
in powers of q0.

This is carried out in Appendix B; using those results, we find (neglecting the 1-loop
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contributions)

WQ0(�?) = log x

X

s2N1

as + (�1)N
x

X

s2N1

B1(as)
P
0
1(as)P2(as)

+ (�1)N+1 q0

x

X

s2N1

B2(as)
P
0
1(as)P2(as)

.

(4.19)

It can be easily checked that the 1-instanton terms match the localization result (4.4) with

the (+�) prescription, namely

WQ0(�?)
���
1-inst =W

+�
1-inst , (4.20)

provided we make the following identifications:

q1 = (�1)N+p+1
x , q2 = (�1)p+1 q0

x
. (4.21)

We have checked that the match between the superpotential evaluated on the solution

of twisted chiral ring equations and the localization results continues to hold up to 8

instantons for various low rank cases.

The quiver Q1: Acting with the Seiberg duality rules on the quiver diagram of Fig. 4.3,

one obtains the quiver diagram represented in Fig. 4.4.

After integrating out the massive chiral multiplets, the twisted chiral superpotential cor-

responding to this quiver diagram takes the following form:

WQ1 = log y

X

s2N2

�s �
X

s2N2

X

i2F1

$(�s � mi) �
X

s2N2

D
Tr$(� � �s)

E
, (4.22)

where we have denoted by y the exponentiated FI parameter of of the 2d gauge node. The
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Figure 4.4: The 2d/4d quiver diagram obtained after the action of Seiberg duality on the
2d node in Fig. 4.3

chiral ring equations that follow fromWQ1 are:

(1 + q0) bP(�s) = (�1)N

1
y

B1(�s) + q0 y B2(�s)
�

for s 2 N2 . (4.23)

We solve them in the vacuum given by

�s = as + ��s for s 2 N2 , (4.24)

and in the 1-instanton approximation we obtain

��s = (�1)N
1

P1(as)P02(as)

"
1
y

B1(as) + q0 y B2(as)
#

for s 2 N2 . (4.25)

Evaluating the twisted chiral superpotential on this solution, we find (neglecting the 1-
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loop contributions as before)

WQ1(�?) = log y

X

s2N2

as + (�1)N+1 1
y

X

s2N2

B1(as)
P1(as)P02(as)

+ (�1)N
q0 y

X

s2N2

B2(as)
P1(as)P02(as)

.

(4.26)

If we now impose that the classical contributions inWQ0 andWQ1 match, we find that

the FI parameters of the pair of dual theories are related in the same way as in the pure

theory, namely:

y =
1
x
. (4.27)

Using this identification and the relations in (4.21), it can be checked that

WQ1(�?)
���
1-inst =W

�+
1-inst (4.28)

i.e. the 1-instanton contribution of WQ1 matches the localization result (4.5) with the

(�+) prescription. We have checked in several examples that this match also occurs at

higher instanton numbers.

4.4 The dual theory

In the previous section we have shown that, with an appropriate map of parameters, the

twisted superpotentials of the quivers Q0 and Q1 match the results from localization ob-

tained with two distinct JK prescriptions. Since these di↵er already at the 1-instanton

level, as shown in (4.8), it is clear that the superpotentialsWQ0 andWQ1 do not match.

By studying a number of low-rank theories at the first few instanton orders, we find that

the di↵erence between the superpotentials of the two quivers can be written as

WQ1(�?) �WQ0(�?) = (�1)N+1
⇣
x +

x
2

2
+

x
3

3
+ . . .

⌘ X

i2F1

mi
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+ (�1)N+1
⇣q0

x
+

q
2
0

2x2 +
q

3
0

3x3 + . . .
⌘ X

i2F1

mi . (4.29)

After using the map (4.21) we observe that this is in complete agreement with the re-

summed result (4.9) obtained for the superpotentials calculated from the (+�) and (�+)

prescriptions using localization. This not only supports our identification between con-

tours and quivers, it also shows us the way to correctly identify dual pairs of quiver theo-

ries.

In fact, given the simple relation (4.29), it is natural to propose that the quiver theory that

is actually dual to Q0 and that we denote by eQ1, is the one whose superpotential di↵ers

from that of Q1 by non-perturbative corrections according to

WeQ1
= � log x

X

s2N2

�s �
X

i2F1

X

s2N2

$(�s � mi) �
X

s2N2

D
Tr$(� � �s)

E

+
✓

log
⇣
1 � (�1)N

x

⌘
+ log

⇣
1 � (�1)N

q0

x

⌘◆ X

i2F1

mi . (4.30)

The first line of the right hand side of the equation above is identical to the superpotential

of the quiver Q1 given in (4.22), in which we have used the map (4.27). The second

line in (4.30) encodes the non-perturbative corrections to the naive answer. Expanding

the logarithm, we see that the power series coincides with the di↵erence calculated in

(4.29). Furthermore, this is precisely what we derive from first principles using contour

deformation arguments in Appendix A.

The appearance of non-perturbative terms in the superpotential of the dual theory is in part

already known in the context of conformal gauge theories in two dimensions. Indeed, as

shown in [10], 2d Seiberg duality requires not only the inversion of the FI couplings,

but also that the twisted superpotential of the dual quiver is modified by the following

non-perturbative correction:

�W = log
⇣
1 � (�1)N f x

⌘ �
Tr em � Tr m

�
. (4.31)
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where x is the exponentiated FI parameter of the 2d gauge node that is dualized, and Tr m

and Tr em denote respectively the sum of twisted masses for all Nf fundamental and Nf

anti-fundamental flavours attached to that node.

The purely 2d part of the non perturbative term in (4.30) is exactly �W in (4.31), written

for the particular case we are considering. Note that in (4.30) it depends only on the

anti-fundamental flavours attached to the dualized node in Fig. 4.3, because in Q0 the

contribution from fundamental flavours is solely due to the 4d node and this vanishes due

to the tracelessness condition of SU(N). Our result shows that, whenever a 2d gauge node

connected to a dynamical 4d gauge node is dualized, there is also an extra contribution

that arises as a consequence of the non-trivial 4d dynamics. The modified Seiberg rule in

(4.30) is thus a generalization of the one in (4.31) and represents the main result of this

section.

4.5 Generalized Seiberg duality : basic rules

The definition of the dual quiver we have introduced might seem simply a change in

nomenclature since the non-perturbative terms we have added are constant and do not

a↵ect the dynamics or twisted chiral ring equations. However, in a generic quiver with

more nodes, the fundamental or anti-fundamental matter fields of a given 2d node are

realized by other 2d gauge nodes; in this case the role of the twisted masses will be

played by Tr� of that gauge node and thus such terms do a↵ect the dynamics. Indeed,

they a↵ect the form of the twisted chiral ring equations.

In summary the basic duality rules for the twisted chiral superpotentials of pairs of dual

quivers are:

1. The ranks of the gauge and flavour nodes of the dual quiver are completely deter-

mined by the operation shown in Figures 4.1 and 4.2.
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2. For such a duality move, the exponentiated FI couplings of the pair of dual quivers

are related by inversion, as shown in (4.27).

3. If the dualized node is only connected to flavour or other 2d gauge nodes, the twisted

chiral superpotential of the dual quiver is corrected by a non-perturbative piece

given in (4.31). The twisted masses are replaced by the twisted scalars of the vector

multiplet in case the flavour is realized by a 2d gauge node.

4. If the dualized node is connected to the dynamical 4d gauge node, the non-perturbative

correction to the twisted superpotential takes the form:

�W =


log
⇣
1 � (�1)N f x

⌘
+ log

✓
1 � (�1)N f

q0

x

◆ ��
Tr em � Tr m

�
, (4.32)

where Nf is the number of (anti-) fundamental flavours attached to the dualized

node. As before, when the flavour symmetry is realized by a 2d gauge node, the

twisted masses are replaced by the twisted scalars in the 2d vector multiplet.

Given these duality rules and the resulting twisted superpotential of the dual quiver the-

ory, we solve the twisted chiral ring equations order by order in the exponentiated FI cou-

plings. Upon evaluating the superpotential on the solutions of the chiral ring equations,

we find a perfect match with the evaluation of the superpotential on the corresponding

massive vacuum of original quiver.

4.6 Seiberg duality for 3-node quivers

We now apply the duality rules derived in the previous section to quivers with two gauge

nodes and one flavour node. We begin with the quiver denoted by Q0 and perform the

sequence of Seiberg dualities shown in Fig. 4.5.

The ranks and connectivity of the quivers are determined by the duality rules discussed
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Figure 4.5: A sequence of dualities relating 2d/4d quivers corresponding to the [n1, n2, n3]
defect in SU(N) asymptotically conformal SQCD, starting from the quiver Q0.

in Section 4.2. These are su�cient to determine the classical and one-loop contribu-

tions to the twisted chiral superpotential. With these ingredients alone, starting from Q0

we can obtain three quivers Q` (with ` = 1, 2, 3), whose twisted chiral superpotential

WQ` is computed, at 1-instanton level, in Appendix C. From our previous discussion of

Seiberg duality we know however that each step of the duality chain induces additional

non-perturbative corrections for the superpotential. We shall therefore use the notation
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eQ`, in order to indicate that while their twisted superpotentials share the classical and

one-loop parts with those of Q`, they di↵er by non-perturbative terms.

The twisted chiral superpotential for the first quiver Q0 is:

WQ0

�{x}� = log x1 Tr�(1) + log x2 Tr�(2) �
X

s2N1

X

t2N1[N2

$(�(1)
s
� �(2)

t
)

�
X

s2N1

X

i2F1

$(mi � �(1)
s

) �
X

s2N1[N2

X

i2F2

$(mi � �(2)
s

) �
X

s2N1[N2

D
Tr$(�(2)

s
��)

E
.

(4.33)

We now perform a duality on the U(n1) gauge node in Q0 to obtain the quiver eQ1 whose

twisted superpotential is

WeQ1

�{x}� = � log x1 Tr�(1) + log(x1x2) Tr�(2) �
X

s2N2

X

i2F1

$(�(1)
s
� mi)

�
X

s2N2

X

t2N1[N2

$(�(2)
t
� �(1)

s
) �

X

s2N1[N2

X

i2F1[F2

$(mi � �(2)
s

) (4.34)

�
X

s2N1[N2

D
Tr$(�(2)

s
��)

E
+ log

⇣
1 � (�1)n1+n2 x1

⌘⇣ X

i2F1

mi � Tr�(2)
⌘
.

The last logarithmic term accounts for the non-perturbative corrections due to the standard

duality rule (4.31) in which we have used Nf = n1 + n2 since it is the U(n1 + n2) gauge

node that provides fundamental matter to the U(n1) node that is dualized.

In order to see the e↵ect of the duality more clearly, one can write the above superpoten-

tial using the variables that are natural for the quiver Q1, by collecting the Tr�(2) terms

together. Comparing with the superpotentialWQ1 given in (C.6), we have

WeQ1

�{x}� =WQ1

�{y}� + log
⇣
1 � (�1)n1+n2 x1

⌘ X

i2F1

mi , (4.35)
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where the FI parameters (y1, y2) appearing inWQ1 are

y1 =
1
x1
, y2 =

x1x2

1 � (�1)n1+n2 x1
. (4.36)

Here we see how the Seiberg duality acts on the FI parameters when more than one gauge

node is present 2.

The twisted chiral ring equations obtained fromWQ0 andWeQ1
can be solved as usual by

expanding about a particular classical vacuum that corresponds to the surface operator and

performing an order-by-order expansion in the exponentiated FI couplings xI . Upon eval-

uating the respective superpotentials on the resulting solutions, we find a perfect match

up to purely q0-dependent terms. We have checked this up to 8 (ramified) instantons for

several low rank cases and this agreement is a confirmation of the proposal for 2d Seiberg

duality at the level of the low energy e↵ective action.

It is important to mention here that the twisted chiral ring equations one would write

for eQ1 are di↵erent from those that one would write for the quiver Q1 on account of the

non-perturbative corrections to the FI parameters of the dual theory. It is only with these

corrections that the equality with the low-energy superpotentialWQ0 holds.

Along the same lines, we now consider the second and third dualities moves in the duality

chain in Figure 4.5. In the former, the dualized 2d node is connected to the 4d gauge node,

and thus the modified duality rules (4.32) have to be used. This duality step leads to the

quiver eQ2 and, collecting terms as before, we find

WeQ2

�{x}� =WQ2

�{z}� +


log
⇣
1 � (�1)n1+n3 y2

⌘
+ log

⇣
1 � (�1)n1+n3

q0

y2

⌘� X

i2F1[F2

mi

+ log
⇣
1 � (�1)n1+n2 x1

⌘ X

i2F1

mi . (4.37)

The superpotentialWQ2 is defined in (C.11) in Appendix C and is determined purely by

2As shown in [10], it is possible to define cluster variables in terms of which the Seiberg duality action
on the FI parameters can be recast as a cluster algebra.
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the connectivity of the quiver Q2 whose FI parameters we denote (z1, z2) are expressed in

terms of those of the original quiver Q0 via their dependence on yI according to

z1 = �
y1y2

(1 � y2)(1 � q0
y2

)
, z2 =

1
y2
. (4.38)

In (4.38) we see the appearance of q0 since the dualized node is directly connected to the

dynamical 4d node.

Finally, we perform the third duality move and obtain the quiver denoted by eQ3 in Figure

4.5; its twisted superpotential is:

WeQ3

�{x}� =WQ3

�{w}� + log
⇣
1 � (�1)n2+n3 z1

⌘ X

i2F2

mi

+


log
⇣
1 � (�1)n1+n3 y2

⌘
+ log

⇣
1 � (�1)n1+n3

q0

y2

⌘� X

i2F1[F2

mi

+ log
⇣
1 � (�1)n1+n2 x1

⌘ X

i2F1

mi . (4.39)

The superpotentialWQ3 is defined in (C.16) in Appendix C and its FI parameters (w1,w2)

are

w1 =
1
z1

w2 =
z1z2

1 � (�1)n2+n3 z1
. (4.40)

By successively composing the relations (4.38) and (4.36), one can express these FI cou-

plings in terms of those of the original quiver Q0.

Once the twisted chiral superpotentials of the dual quivers are obtained, we can solve

the corresponding chiral ring relations as usual and evaluate the superpotentials on these

solutions. Our calculations confirm the equality of these quantities and show that, up to

purely q0-dependent terms, the three quivers eQ1,2,3 derived from Q0, lead to the same low

energy e↵ective action on the Coulomb branch.
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4.7 Rows of dual quivers

So far, we have worked out a single duality chain starting with the quiver Q0 and shown

that the twisted superpotentials evaluated on the solutions to the twisted chiral ring equa-

tions match for all these four 3-node quivers:

Q0  ! eQ1  ! eQ2  ! eQ3 . (4.41)

The arrows are double headed since dualities can be performed in either direction. The

new result has been the second duality move, which is a generalized duality and involves

a change in the superpotential as shown in (4.32).

These results can be easily generalized to the generic case in which the gauge nodes

form a linear quiver. Our earlier work has shown that, for such an M-node case, there

are 2M�1 possible Seiberg-dual quivers [9]. Each such quiver is labelled by a vector

(s1, s2, . . . , sM�1) whose entries take values 0 or 1. For instance, for the 3-node cases

studied in this work, we find the following set of quivers that map to distinct JK vectors

on the localization side, that are completely determined by the permutation ~s (see [9] for

details):

Figure 4.6: The linear 3-node quivers that are Seiberg-dual to the oriented quiver Q0.
Only the gauge nodes are shown, the flavour nodes can be assigned unambiguously such
that each 2d gauge node is conformal. The sI that label the quiver are drawn on the arrows
linking the gauge nodes.

For the asymptotically conformal gauge theories, as we have seen, for each duality move,
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one has to add non-perturbative corrections in order to obtain the correct twisted super-

potential of the dual quiver. So, given a dual quiver specified by a permutation ~s, there

are two steps to be carried out: first, one needs to find out the sequence of Seiberg-duality

moves needed to connect the quiver Q0 to any one of the quivers in the list. Secondly, one

has to add appropriate non-perturbative corrections after each duality move.

The way Seiberg duality moves are encoded in terms of the permutation basis can be

described by realizing that there are only M � 1 basic duality moves, that correspond to

dualizing one of the M�1 2d gauge nodes. Given that the M�1 arrows of the quivers are

also denoted by the same vector ~s, and knowing the action of duality, which exchanges

fundamental with anti-fundamental matter on the dualized node, it then follows that the

basis of duality moves can be represented by the following actions on the vector ~s:

D1 : (⇤ ⇤ ⇤ . . . 0)! (⇤ ⇤ ⇤ . . . 1)

D2 : (⇤ ⇤ ⇤ . . . 10)! (⇤ ⇤ ⇤ . . . 01)

D3 : (⇤ ⇤ . . . 10⇤)! (⇤ ⇤ . . . 01⇤) and so on . (4.42)

In this way, it is easy to find out how any quiver labelled by ~s can be connected to Q0

by a sequence of duality moves. Once this is done, one can add the appropriate non-

perturbative corrections to the twisted superpotential after each duality using the rules

explained in Section 4.2 and obtain a row of dual theories, just as before:

Q0
D1 ! eQ1

D2 ! eQ2  ! · · · . (4.43)

This solves the problem of finding dual quivers related to Q0 for the generic linear quiver.

We conclude with the following observation: given the localization integrand, one could

choose any JK prescription to evaluate the partition function. On the 2d/4d quiver side,

this corresponds to choosing a particular quiver Qk; one could then perform a set of
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Seiberg dualities:

bQ0
D1 ! bQ1

D2 ! bQ2 · · · ! Qk  ! bQk+1  ! · · · (4.44)

In this duality chain, the quiver Qk has a Lagrangian that one would write down purely

from the quiver itself. All the others bQ` are related to it by Seiberg-dualtiy and their super-

potentials would di↵er from those one would write for the quiver Q` by non-perturbative

pieces determined by the sequence of dualities involved. The low energy superpotentials

for each quiver in the chain are identical to that obtained for Qk (up to purely q0-dependent

terms). One can therefore write down 2M�1 such duality chains starting with any of the

quivers corresponding to a given JK prescription. The results match along the rows of

dual quiver: these are interpreted as the result of deforming the integration contour from

one set of poles to another, keeping into account the residues at infinity.
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Chapter 5

Modular properties of surface operators

In this chapter, we consider a simplest surface operator in N = 2 supersymmetric SQCD

with gauge group SU(2) and Nf = 4 fundamental flavours in four dimensions and study

it’s modular properties [6].

5.1 Localization analysis

For the SU(2) theory, there is one monodromy defect that breaks the gauge group on the

defect to the Levi subgroup :

L = U(1) ⇥ U(1) (5.1)

The defect also breaks the flavour symmetry to [2] :

F = S [U(2) ⇥ U(2)] (5.2)
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The prepotential F and the twisted chiral superpotential W receive contributions from

classical, 1-loop, and instanton terms :

F = F class + F 1loop + F inst

W =Wclass +W1loop +Winst (5.3)

The instanton contributions toF andW are obtained from the instanton partition function

Zinst as (2.10). In the presence of a co-dimension 2 surface defect, Zinst is obtained by

the orbifold procedure detailed in [7, 8, 13, 20, 35–38]. For the SU(2) theory with Nf = 4,

Zinst is given by equations 8-9 of [2] with M = 2 and ~n = [1, 1] :

Zinst[1, 1] =
X

{d1,d2}

(�q1)d1

d1!
(�q2)d2

d2!

Z d1Y

�=1

d�1,�

2⇡i

Z d2Y

�=1

d�2,�

2⇡i
z{d1,d2} , (5.4)

where q1 and q2 are the instanton counting parameters, d1 and d2 the number of ramified

instantons, ✏̂2 ⌘ ✏2
2 , m1, . . . ,m4 the masses of fundamental flavours, and

z{d1,d2} =
d1Y

�,⌧=1

�
�1,� � �1,⌧ + ��,⌧

�
�
�1,� � �1,⌧ + ✏1

�
d2Y

�,⌧=1

�
�2,� � �2,⌧ + ��,⌧

�
�
�2,� � �2,⌧ + ✏1

�

d1Y

�=1

d2Y

⇢=1

⇣
�1,� � �2,⇢ + ✏1 + ✏̂2

⌘

⇣
�1,� � �2,⇢ + ✏̂2

⌘
d2Y

�=1

d1Y

⇢=1

⇣
�2,� � �1,⇢ + ✏1 + ✏̂2

⌘

⇣
�2,� � �1,⇢ + ✏̂2

⌘

d1Y

�=1

(�1,� � m1)(�1,� � m2)
⇣
a1 � �1,� +

1
2 (✏1 + ✏̂2)

⌘ ⇣
�1,� � a2 +

1
2 (✏1 + ✏̂2)

⌘

d2Y

�=1

(�2,� � m3)(�2,� � m4)
⇣
a2 � �2,� +

1
2 (✏1 + ✏̂2)

⌘ ⇣
�2,� � a1 +

1
2 (✏1 + ✏̂2)

⌘ . (5.5)

Here a1 and a2 are the Coulomb vev’s and upon imposing the SU(2) constraint we have

a1 = �a2 = a.

Our choice of contour is such that the integral picks the poles in the upper half �1,2 plane
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[18, 20]. We package the instanton contributions to F andW as 1

F inst =

1X

n=0

f
inst
n
, Winst =

1X

n=0

w
inst
n

(5.6)

where f
inst
n
⇠ a

2�n and w
inst
n
⇠ a

1�n. From (5.4) and (2.10) one obtains :

f
inst
2k+1 = 0, 8 k 2 Z�0

w
inst
2k+1 = 0, 8 k 2 Z+ . (5.7)

The first few non-zero f
inst
n

up to 4 ramified instantons are :

f
inst
0 = a

2
"
q1q2

2
+

13(q1q2)2

64

#

f
inst
2 =

q1q2

2

X

i< j

mimj +
(q1q2)2

64

0
BBBBBB@
X

i

m
2
i
+ 16

X

i< j

mimj

1
CCCCCCA

f
inst
4 =

1
2a2

2
6666664q1q2m1m2m3m4 +

(q1q2)2

32

0
BBBBBB@16m1m2m3m4 +

X

i< j

m
2
i
m

2
j

1
CCCCCCA

3
7777775 . (5.8)

We now give the first few non-zero w
inst
n

up to 4 ramified instantons :

w
inst
0 = a

"
q1

2
+

3q
2
1

16
+

5q
3
1

48
+

35q
4
1

512
� (q1 ! q2) +

q1q2

16

 
q1 +

q
2
1

2
� (q1 ! q2)

! #

w
inst
1 = �

m1 + m2

2

 
q1 +

q
2
1

2
+

q
3
1

3
+

q
4
1

4

!
� �

m1,2 ! m3,4, q1 ! q2
�

w
inst
2 =

1
a

"⇣
m

2
1 + m

2
2

⌘

16

 
q

2
1 + q

3
1 +

15
16

q
4
1 � q

2
1q2 +

q
2
1q

2
2

8
� q

3
1q2

2

!
�

⇣
m1,2 ! m3,4, q1 $ q2

⌘

+
m1m2

2

 
q1 +

q
2
1

2
+

3q
3
1

8
+

5q
4
1

16
� q1q2

2
� q1q

2
2

8
� q1q

3
2

16
� 3

16
q

2
1q

2
2 �

q
3
1q2

16

!

�
⇣
m1,2 ! m3,4, q1 $ q2

⌘#

w
inst
4 = �

1
16a3

"
1

32

⇣
m

4
1 + m

4
2

⌘
q

4
1 �

⇣
m

4
3 + m

4
4

⌘
q

4
2 +

m1m2m3m4

2

⇣
q

3
1q2 � q1q

3
2

⌘

1When we package the entire prepotential or the twisted chiral superpotential as in (5.6) we use no
superscript.
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+
⇣
m

3
1m2 + m1m

3
2

⌘  
q

3
1

3
�

q
3
1q2

2
+

q
4
1

2

!
� �

m1,2 ! m3,4, q1 $ q2
�

+ m
2
1m

2
2

 
q

2
1 + q

3
1 +

9
8

q
4
1 � q

2
1q2 +

q
2
1q

2
2

4
� q

3
1q2

2

!
� �

m1,2 ! m3,4, q1 $ q2
�

+
⇣
m

2
1 + m

2
2

⌘
m3m4

 
q

2
1q2 �

q
2
1q

2
2

2
+

q
3
1q2

2

!
� �

m1,2 $ m3,4, q1 $ q2
�
#

(5.9)

where we have used (!,$) to denote terms that are obtained by performing the switch

indicated by the arrows on the immediately preceding terms.

5.2 Superpotential from Seiberg-Witten data

In this section we follow the proposal in [14] according to which the twisted chiral super-

potential can be computed from the SW data. This helps us obtain the map that relates the

gauge theory parameters to the instanton counting parameters and thereby verify the re-

sults from localization obtained in the previous section. According to the proposal in [14]

the twisted superpotential is given by the integral of the SW di↵erential � along an open

path on the SW curve :

W(x0) =
Z

x0

� , (5.10)

where x0 is the continuous parameter that labels the surface operator, and is given by the

location of the defect on the Riemann surface.

Let us now recall a few salient features of the SW solution of the SU(2) theory with

Nf = 4 flavours. We will work with the Gaiotto form of the curve as � is easily extracted

from there. The Gaiotto form of the curve is [39]

x
2 = �2(t) , (5.11)
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where �2(t)dt
2 is a quadratic di↵erential. The SW di↵erential is readily given by [39]

� = x dt =
p
�2(t)dt . (5.12)

Let us first analyse the case when the masses of the flavours are set to zero. In this limit,

the Gaiotto curve is such that �2(t) takes the form [40]

�2(t) =
q0(q0 � 1)

t(t � q0)(t � 1)
@ f0

@q0
. (5.13)

where q0 = e
⇡i⌧0 , such that ⌧0 =

✓
⇡ +

8⇡i

g2 is the bare complexified gauge coupling and f0

is the prepotential in the massless limit. After adding the classical and the 1 loop terms

to the instanton contribution obtained via the SW analysis (see [40] for example) which

matches the localization results obtained in the previous section we have :

f0 = a
2 log q0 � a

2 log 16 + f
inst
0

= a
2
 
log q0 � log 16 +

q0

2
+

13q
2
0

64

!
. (5.14)

We substitute for the SW di↵erential from (5.12), (5.13) and (5.14), and perform the

integral in (5.10) to obtain :

w0 = a log x0 + a

"
x0

2
+

3x
2
0

16
+

5x
3
0

48
+

35x
4
0

512
�

 
x0 !

q0

x0

!
+

q0

16

 
x0 +

x
2
0

2
�

 
x0 !

q0

x0

!! #
.

(5.15)

By comparing w
inst
0 from (5.9) and w0 obtained from the curve (5.15), we obtain the fol-

lowing map between the instanton counting parameters (q1, q2) and the gauge theory pa-

rameters (q0, x0) :

q1 = x0, q2 =
q0

x0
. (5.16)

Note that in f
inst
n

in (5.8) q1 and q2 always appear as the combination q1q2 and powers
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thereof, thus ensuring that the prepotential depends only on q0 and is independent of x0.

We will now consider the case when all the masses are turned on. The Gaiotto form of

the SW curve is still x
2 = �2(t), where [40]:

�2(t) =
q0(q0 � 1)

t(t � 1)(t � q0)
@F
@q0
+

q0(m1 + m2)(m3 + m4)
2t(t � 1)(t � q0)

� (q0 � 1)(m2
3 + m

2
4)

2t(t � 1)(t � q0)

� m
2
3 + m

2
4 + 2m1m2

2t(t � 1)
+

(m3 � m4)2

4t2 +
(m3 + m4)2

4(t � q0)2 +
(m1 + m2)2

4(t � 1)2 . (5.17)

The twisted superpotential when the masses are turned on is obtained exactly as in the

massless case by performing the integral in (5.10). One can easily check that the in-

stanton contributions toW obtained via localization in the previous section matches the

results from the SW data after the masses are turned on, provided one uses the map (5.16)

between parameters. We have checked that the match holds up to w8 to 8 ramified instan-

tons.

Now that we have matchedW obtained via localization and from the SW data we will

shift gears and turn our attention to utilizing the S-duality symmetry of the theory to resum

the instanton contributions.

5.3 Resumming the twisted chiral superpotential

A lot of progress has been made in resumming the instanton contribution to the prepoten-

tial of a large class of theories into (quasi-) modular forms of their respective S-duality

groups [12, 22–27]. This was then extended to the case of the twisted chiral superpoten-

tial of N = 2? SU(N) theory in the presence of a surface defect in [13]. There it was

shown thatW satisfies a modular anomaly equation, and that the instanton expansion of

W at each order in a mass expansion can be resummed into elliptic functions and (quasi-)

modular forms. Since the SU(2) theory with Nf = 4 also has an S-duality symmetry we

will now attempt to do the same in this theory.
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5.3.1 Resummation variables

Unlike in the N = 2? theory, the gauge coupling and the continuous parameter that

describes the surface defect are renormalized in asymptotically conformal SQCD theories.

In the theory of interest to us this is already clear from the expressions for F andW in the

massless limit in (5.14) and (5.15) respectively. We would like to resum the terms on the

RHS of these equations to simple expressions in terms of the renormalized counterparts

q and x of q0 and x0 respectively. The q0 vs q relation has appeared in several references

and is given by [12, 15, 27, 41] :

q0 =
e3 � e2

e1 � e2
(q) =

✓4
2(q)
✓4

3(q)
(5.18)

where ei ⌘ }(!i) denote the Weierstraß } function evaluated at the half periods and ✓i

are the Jacobi ✓ functions. We refer the reader to Appendix D for details on Jacobi theta

functions and the Weierstraß } function. The first few terms that appear in the expansion

of (5.18) are :

q0 = 16q(1 � 8q + 44q
2 � 192q

3 + . . .) (5.19)

One can now check that ef0 which is the prepotential in the massless limit (5.14) when

expressed in terms of q takes the expected form :

ef0 = a
2 log q . (5.20)

Note that here and henceforth we use the tilde symbol to denote quantities expressed in

terms of the renormalized variables (q, x).

For the parameter x0, following the analysis in [15] we have the following map to the

resummed variable x :

x0 =
}(z + w1| ⌧) � e2

e1 � e2
(5.21)
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where ⌧ and z are such that

q = exp(⇡i⌧), x = exp(2⇡iz) . (5.22)

A similar map was also used in the recent paper [42]. We verify this map in Appendix E

using the SW analysis in the massless limit. Note that the q0 vs q map in (5.18) is a special

case of (5.21) for z = w2. The first few terms that appear in the expansion of (5.21) are :

x0 = 4(x � 2x
2 + 3x

3 � 4x
4) + 8q(1 � 4x + 8x

2 � 12x
3) + 4q

2
 
1
x
� 12

!
+ . . . (5.23)

With the above expansions for q0 and x0 one can check that up to purely q0 dependent

terms, ew0(q, x) which is the twisted superpotential in the massless limit (5.15) takes the

expected form :

ew0 = a log x . (5.24)

In the next section where we resum the instanton contributions toW we will find it more

convenient to work with the log x derivative of fW whose expansion is :

x
@fW
@x
⌘ fW0 =

1X

n=0

ew0
n

(5.25)

where ew0
n
⇠ a

1�n. Clearly from (5.24) we have :

ew00 = a . (5.26)

The next few non-zero ew0
n

obtained by substituting the expansions for q0 and x0 from

(5.19) and (5.23) in (5.9) are :

ew01 = �2(m1 + m2)
 
x + x

3 � q
2

x

!
� 2(m3 + m4)

✓
q x � q

x

◆
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ew02 =
1
a

h
2(m2

1 + m
2
2)(x

2 + 2x
4) +

2q
2

x2 (m2
3 + m

2
4) + 2m1m2

 
x + 3x

3 +
q

2

x

!

+ 2m3m4

✓
q

x
+ q x

◆ i

ew04 = �
1
a3

h
2(m4

1 + m
4
2)x

4 + 4m1m2(m2
1 + m

2
2)x

3 + 2m
2
1m

2
2(x

2 + 8x
4) + 2m

2
3m

2
4

q
2

x2

+ 4m3m4(m2
1 + m

2
2)q x + 4m1m2(m2

3 + m
2
4)

q
2

x
+ 16m1m2m3m4 q x

2
i
(5.27)

The above expressions will be useful in the next sub-section when we resum ew0
n

to linear

combinations of elliptic functions and (quasi-) modular forms.

5.3.2 Modular Anomaly Equation for the twisted superpotential

It is well known from [11] that the SU(2) theory with Nf = 4 enjoys an S-duality symme-

try under which the renormalized gauge coupling ⌧ transforms as

⌧! �1
⌧
. (5.28)

It was shown in [1] (see also [13]) that under this duality the variable z that is related to

the continuous parameter x that labels the defect as in (5.22) transforms as

z! � z

⌧
. (5.29)

The action of S-duality on the Coulomb vev a is such that

S (a) := aD =
1

2⇡i

@F
@a
= ⌧

 
a +

�

12
@ f

@a

!
(5.30)

where � = 6
⇡i⌧ and f = F 1 loop +F inst. The anomalous terms on the RHS arise solely from

the dependence of the prepotential on the second Eisenstein series E2 [12]. From the form

of ew00 in (5.26), we see that it transforms exactly as in (5.30).

Motivated by the transformation of gW0class
we propose that, as in [13], gW0 transforms
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under S-duality with weight one. The ew0
n

in (5.25) then obey a modular anomaly equation,

the derivation of which proceeds exactly as in the case of the N = 2? theory in [13]. The

anomaly equation is :

@ew0
n

@E2
+

1
12

n�1X

l=0

 
@ew0`
@a

! 0
BBBB@
@efn�`
@a

1
CCCCA = 0 (5.31)

Since ew1 and ew01 are independent of a, they do not contribute to the IR dynamics and we

start our analysis at n = 2. For n = 2 the equation takes the form :

@ew02
@E2
+

1
12

 
@ew00
@a

! 0
BBBB@
@ef2

@a

1
CCCCA = 0 (5.32)

The prepotential for this theory was resummed in [12] and in particular :

ef2 = 2R log
✓

a

⇤

◆
. (5.33)

where

R =
1
2

4X

f=1

m
2
f
. (5.34)

We substitute for ew00 from (5.26) and ef2 from (5.33) and solve (5.32) to obtain,

ew02 = �
E2R

6a
+

1
a

(modular term) (5.35)

Since the modular terms that one must add to (5.35) must have weight two, one arrives at

the following ansatz for ew02 :

ew02 = �
E2R

6a
+

1
a

3X

A=0

cA }(z + !A) (5.36)

The coe�cients cA are fixed by comparing the expansion of the RHS of the above equation

with the first few terms in the localization result for the same expressed in terms of (q, x)
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in (5.27). This leads to :

ew02 = �
1

6a

3X

A=0

M
2
A

�
E2 + 12b}(z + !A)

�
(5.37)

where MA are the following mass combinations :

M0 = �
(m1 + m2)

2
, M1 =

(m1 � m2)
2

, M2 =
(m3 + m4)

2
, M3 =

(m3 � m4)
2

, (5.38)

which appear as residues of the quadratic di↵erential in the SW data. From the resummed

result for w
0
2 in (5.37), one can see that under the combined action of S-duality on the

gauge coupling and the triality transformation on the masses of the fundamental flavours,

the a independent part transforms as a quasi-modular form of weight two.

We performed a similar analysis of (5.31) at the next two levels. This required the fol-

lowing resummed expressions for the prepotential at n = 4, 6 [12] :

ef4 = �
R

2
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6
+ T1✓

4
4 � T2✓

4
2

ef6 = �
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3
⇣
5E

2
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⇣
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⌘
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4 � ✓4
2

⌘

6a4 (5.39)

where

T1 =
1

12

4X

f< f 0=1

m
2
f
m

2
f 0 �

1
24

4X

f=1

m
4
f

T2 = �
1

24

4X

f< f 0=1

m
2
f
m

2
f 0 +

1
48

4X

f=1

m
4
f
� 1

2
m1m2m3m4

N =
3

16

4X

f< f 0< f 00=1

m
2
f
m

2
f 0m

2
f 00 �

1
96

4X

f, f 0=1

m
2
f
m

4
f 0 +

1
96

4X

f=1

m
6
f
. (5.40)

Here R, Ti, and N are the first few mass invariants that transform under the triality action
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as :

R! R, T1 $ T2,N ! N . (5.41)

Solving the modular anomaly equation (5.31) at n = 4, 6 we obtained the following re-

summed results for ew04 and ew06 :

ew04 = �
1

72a3

⇣ 3X

A=0

M
4
A

⇣
2E

2
2 � E4 + 24E2b}(z + !A) + 144b}(z + !A)2

⌘

+ 2
X

A<B

M
2
A
M

2
B

⇣
2E

2
2 � E4 + 12E2b}(z + !A) + 12E2b}(z + wB)

+ 144b}(z + !A)b}(z + !B)
⌘
� 12T1✓

4
4(E2 � 2✓4

2 � ✓4
4) + 12T2✓

4
2(E2 + ✓

4
2 + 2✓4

4)
⌘

ew06 = �
1

432a5

0
BBBBB@

3X

A=0

M
2
A

�
E2 + 12b} (z + !A)

�
1
CCCCCA

 3X

B=0

M
4
B

⇣
2E

2
2 � E4 + 24E2b}(z + !B)

+ 144b}(z + !B)2
⌘
+ 2

X

B<C

M
2
B
M

2
C

⇣
2E

2
2 � E4 + 12E2b}(z + !B) + 12E2b}(z + wC)

+ 144b}(z + !B)b}(z + !C)
⌘
� 12T1✓

4
4(E2 � 2✓4

2 � ✓4
4) + 12T2✓

4
2(E2 + ✓

4
2 + 2✓4

4)
!

� R
3

720a5 (5E
3
2 � E2E4 � 2E6) � N

15a5 (E2E4 � E6) +
R

12a5 (T1✓
4
4 � T2✓

4
2)(E2

2 � E4)(5.42)

Note that as in the case of ew02, under the combined action of S-duality and triality, ew04 and

ew06 transform as expected. The above resummed results have been matched with explicit

results from localization expressed in terms of the renormalized variables (q, x) up to 8

ramified instantons.
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Appendix A

Contour deformations

In this section, we derive the 2d/4d Seiberg duality rule in SQCD by lifting the theory

to three dimensions and studying the partition function of the surface operator of type

[n1, n2] with support R2 ⇥ S
1
� in R4 ⇥ S

1
�. As we shall see, the extra circle direction

allows us to relate the partition functions for the (+�) and (�+) contours up to all orders

in the instanton expansion. We follow the basic ideas in [43] though we will keep the

4d instanton weight q0 , 0. In the end we will take the four dimensional limit � ! 0

and set the ⌦-deformation parameters ✏i to zero in order to read o↵ how the 2d twisted

superpotentials obtained using the two prescriptions are related.

The partition function for the (+�) contour in the 2-node case is given by

Z
+� =

X

d1,d2

(�q1)d1

d1!
(�q2)d2

d2!

Z

+

d1Y

�=1

d�1,�

2⇡i

Z

�

d2Y

⇢=1

d�2,⇢

2⇡i
z{dI } , (A.1)

where the integrand takes the following form:

z{dI } =
2Y

I=1

dIY

�,⌧=1

sinh �
2
�
�I,� � �I,⌧ + ��,⌧

�

sinh �
2
�
�I,� � �I,⌧ + ✏1

�

⇥
d1Y

�=1

d2Y

⇢=1

sinh �
2

⇣
�1,� � �2,⇢ + ✏1 + ✏̂2

⌘

sinh �
2

⇣
�1,� � �2,⇢ + ✏̂2

⌘
sinh �

2

⇣
�2,⇢ � �1,� + ✏1 + ✏̂2

⌘

sinh �
2

⇣
�2,⇢ � �1,� + ✏̂2

⌘ (A.2)
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⇥
2Y

I=1

dIY

�=1

Q
i2FI

sinh �
2 (�I,� � mi)

Q
s2NI

sinh �
2

⇣
as � �I,� +

1
2 (✏1 + ✏̂2)

⌘ Q
t2NI+1 sinh �

2

⇣
�I,� � at +

1
2 (✏1 + ✏̂2)

⌘ .

This is obtained from the integrand in (2.16) by lifting rational functions to trigonometric

functions. Since we are eventually interested only in the strict 4d limit, we have not turned

on either 3d or 5d Chern-Simons levels. Given this starting point, our goal is to deform

the contour to obtain Z�+, knowing that as emphasized in [43], due to a non-trivial residue

at infinity, one should obtain a wall-crossing type pre-factor.

Let us review how this works for the case in which q2 = 0. The second line in (A.2)

is not present in such a case and only terms with I = 1 survive. The integral receives

contributions from multiple residues at the singularities of the integrand. When we reverse

the contour, among the possible singularities to consider there are both the ones at finite

points and the ones at infinity. In the particular case of our integrand, there are residues

at both asymptotes ±1. Out of the d1 integration variables, let us assume that p1 of them

are evaluated at their poles in the asymptotes. We will eventually sum over all values of

p1 from 0 up to d1. The integrand breaks up naturally into three sets of terms: the first

involves just the p1 variables that approach infinity; a second, which involves only the

complementary set and a last piece, which involves both; after taking the limit in which

the �1,� are taken in this last piece, we find the following result for the residue:

Res(+)zd1 =

d1X

p=0

Res\��1,�2Asymp±

2
6666664

p1Y

�,⌧=1

sinh �
2
�
�1,� � �1,⌧ + ��,⌧

�

sinh �
2
�
�1,� � �1,⌧ + ✏1

�

3
7777775

⇥ (�1)p1n1e
� �2 p1

⇣P
j2F1 m j�

P
u2N1[N2 au

⌘
Res(�)zd1�p1 . (A.3)

The sum over au gives zero due to the tracelessness condition. The way to deal with the

residue coming from the asymptotic region is identical to what is calculated in [43] and

we refer the reader to that reference for the details. The final result for the case when there

are equal numbers of fundamental and anti-fundamental 2d flavours is given as follows
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(see equation (4.44) of [43]):

Z
+ = Z

� ⇥ PE

2
66666666664

2(�1)n1q1

✓
e
� �2

P
i2F1 mi � e

+
�
2

P
i2F1 mi

◆

(1 � e2�✏1)

3
77777777775

(A.4)

Here we have written the result in terms of the plethystic exponential. For a function f (t)

given by a series expansion:

f (q1) =
1X

n=0

fnq
n

1 =) PE
⇥
f (q1)

⇤
=

1
Q1

n=1(1 � q
n

1) fn
. (A.5)

For our case, the function whose plethystic exponential is taken is a linear one and we

consider a series expansion in (�1)n1+1
q1. In order to understand what this means for the

superpotential that governs 4d e↵ective action, we take the �! 0 limit and find

Z
+ = Z

� ⇥ PE

2
6666664(�1)n1q1

1
✏1

X

i2F1

mi

3
7777775 (A.6)

The ✏1 ! 0 limit then allows one to extract the low energy twisted chiral superpotential

from the partition function via1

lim
✏1!0

Z
± = e

W±
✏1 . (A.7)

Putting all this together, we find that

W+ �W� = log(1 + (�1)n1q1)
X

i2F1

mi . (A.8)

Using the relation (4.21) between the vortex counting parameter q1 and the exponentiated

FI parameter of the quiver Q0, we find that (A.8) is the same result proposed in [10] for the

twisted chiral superpotentials of quivers related by Seiberg duality using the S
2 partition

function. Here we have shown that this can be derived from a simple contour deformation

argument.

1Since q0 = 0, the prepotential is zero.
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We now turn to generalize this to the case in which q0 , 0, starting from the integrand

in (A.2). We begin with the (+�) contour and deform it to the (�+) contour; in the

deformation process, one picks up contributions from the asymptotes �I,� ! ±1. Let

us consider the term in which, out of the (d1, d2) integration variables, we let (p1, p2) of

them to approach infinity. As before, the integrand breaks up into three sets of terms:

the first involves only those �I,� that take asymptotic values; another set that involves

the complementary �I,� that take finite values and lastly, those that take values in both

sets. After taking the asymptotic limit in this last piece and summing over all the possible

values for p1 and p2, we find the following result for the residue:

Res(+�)zd1,d2 =

d1X

p1=0

d2X

p2=0

Res\��1,�2Asymp±

2
6666664

2Y

I=1

p1Y

�,⌧=1

sinh �
2
�
�I,� � �I,⌧ + ��,⌧

�

sinh �
2
�
�I,� � �I,⌧ + ✏1

�

⇥
p1Y

�=1

p2Y

⇢=1

sinh �
2

⇣
�1,� � �2,⇢ + ✏1 + ✏̂2

⌘

sinh �
2

⇣
�1,� � �2,⇢ + ✏̂2

⌘
sinh �

2

⇣
�2,⇢ � �1,� + ✏1 + ✏̂2

⌘

sinh �
2

⇣
�2,⇢ � �1,� + ✏̂2

⌘

3
7777775

⇥ (�1)p1n1e
� �2 p1

P
i2F1 mi (�1)p2n2e

� �2 p2
P

i2F2 mi Res(�+)zd1�p1,d2�p2 .

(A.9)

In the asymptotic residue, there is now a mixed term between the �1,� and �2,⇢; however,

the key observation is that we are only interested in how the twisted chiral superpotential

changes across the contour deformation and not the whole partition function, which is ob-

tained by setting ✏2 ! 0. In this limit, the mixed term is an even function of �1,���2,⇢ and

does not lead to any new pole that might contribute to the twisted chiral superpotential.

As a result, the residue calculation factorizes into a contribution from the �1,� integrals

and that from the �2,⇢ integrals; the calculation for each set is identical to that done for the

purely 2d case and we obtain in the 4d limit,

Z
+� = Z

�+ ⇥ PE

2
6666664(�1)n1q1

1
✏1

X

i2F1

mi

3
7777775 ⇥ PE

2
6666664(�1)n2q2

1
✏1

X

i2F2

mi

3
7777775 (A.10)

By using the formula for the plethystic exponential, the tracelessness of the flavour group
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SU(2N), and the form of the instanton partition function in the limit ✏1 ! 0 we finally

obtain

W+� �W�+ =
�

log(1 + (�1)n1q1) + log(1 + (�1)n2q2)
� X

i2F1

mi . (A.11)

Using the map between the qI and the exponentiated FI parameters and the 4d couplings

we derived in (4.21), and by identifying the (+�) and (�+) contours with the correspond-

ing quivers, we derive the following rule for how the twisted superpotential transforms

under the action of Seiberg duality:

�W =

log(1 � (�1)N f x) + log

✓
1 � (�1)N f

q0

x

◆� X

i2F1

mi , (A.12)

where Nf denotes the number of (anti-) fundamental flavours attached to the 2d gauge

node.
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Appendix B

4d corrections to the 2d Lagrangian

In this section we show how to evaluate the 4d instanton corrections to the 2d twisted

chiral superpotential due to the presence of the chiral correlator hTr$(� ��)i. We write

this function as follows:

hTr $(z ��) i =
Z

z

dz
0
*

Tr log
(z0 ��)
µ

+
. (B.1)

We observe that the 4d observable on the R.H.S. is itself the integral of the generating

function of the chiral correlators in the 4d gauge theory, and is referred to as the resolvent

of the 4d theory. So we begin with a brief review of known results regarding the resolvent

of the N = 2 supersymmetric SQCD gauge theory (we follow the discussion in [44]).

We then show how the quantum gauge polynomial can be written in terms of the chiral

correlators of the gauge theory and finally we show how the 2d Lagrangian is a↵ected by

the coupling to the four dimnensional theory.
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B.1 Resolvents and chiral correlators in 4d asymptoti-

cally conformal SQCD

The Seiberg-Witten curve of the asymptotically conformal SU(N) gauge theory with Nf =

2N fundamental flavours is given by

Y
2 = bP(z)2 � g

2
B(z) , (B.2)

where the characteristic gauge polynomial is given by

bP(z) = z
N + u2z

N�2 + . . . + (�1)N
uN , (B.3)

and the flavour polynomial is given by

B(z) =
2NY

i=1

(z � mi) . (B.4)

The constant g
2 is related to the Nekrasov counting parameter q0 by

g
2 =

4q0

(1 + q0)2 . (B.5)

The Seiberg-Witten di↵erential is given by

�S W = z
d (z)

dz
dz , (B.6)

where the function  (z) is

 (z) = log
0
BBBB@
bP(z) + Y

µN

1
CCCCA . (B.7)
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The chiral correlators of the gauge theory
D
Tr�`

E
can be obtained by expanding (for large

z) the resolvent: *
Tr

1
z ��

+
=

d (z)
dz
. (B.8)

Integrating with respect to z, we find that the integral of the resolvent has a simple form

in terms of the function  (z):

*
Tr log

z ��
µ

+
= log

0
BBBB@(1 + q0)

bP + Y

2µN

1
CCCCA . (B.9)

The constant log piece added on the R.H.S ensures that the large-z expansion of both sides

match.

B.2 Chiral correlators vs. quantum gauge polynomial

Given the gauge polynomial in (B.3) and using equation (B.9), it is possible to write the

coe�cients that appear in the gauge polynomial in terms of the chiral correlators of the

quantum gauge theory, which can be calculated from first principles using localization

methods [44–47]. Unlike the case of pure gauge theory, in the asymptotically conformal

case, this relation is subtle due to the presence of the dimensionless coupling q0 that

appears non-trivially in the resolvent. To extract this relation, it is convenient to use an

equivalent expression for the resolvent [44]:

*
Tr log

z ��
µ

+
=

1
2

log
bP(z) + Y

bP(z) � Y

+
1
2

log
B(z)
µ2N
+

1
2

log q0 . (B.10)

Expanding the R.H.S of (B.10) for large z and equating the coe�cients of z
�k on both

sides of the equation allows us to express the uk purely in terms of the hTr�ki. In order to

write down compact expressions, we express the flavour polynomial also in terms of the
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symmetric polynomials of the masses S k:

B(z) = z
2N +

2NX

j=2

(�1) j
S j z

2N� j . (B.11)

For the lowest orders, following this procedure, we find:

u2 = �
1
2

 
1 � q0

1 + q0

!
hTr�2i + q0

1 + q0
S 2

u3 = +
1
3

 
1 � q0

1 + q0

!
hTr�3i + q0

1 + q0
S 3

u4 = �
1
4

 
1 � q0

1 + q0

!
hTr�4i + 1

2
hTr�2i

 
1
4
hTr�2i + q0 S 2

1 + q0

!
+

q0

1 + q0
S 4

u5 = +
1
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1 � q0

1 + q0

!
hTr�5i � 1

3
hTr�3i

 
1
2
hTr�2i + q0 S 2

1 + q0

!
+

q0 S 3

2(1 + q0)
hTr�2i + q0

1 + q0
S 5

u6 = �
1
6

 
1 � q0

1 + q0

!
hTr�6i + 1

4
hTr�4i

 
1
2
hTr�2i + q0S 2

1 + q0

!
+

1
3
hTr�3i

 
1
6
hTr�3i � q0S 3

1 + q0

!

� 1
2

 
1 � q0

1 + q0

!
hTr�2i

 
1
24

⇣
hTr�2i

⌘2 � q0S 2

4(1 � q0)
hTr�2i � q0

(1 � q0)
S 4

!
+

q0

1 + q0
S 6 .

(B.12)

B.3 Weak coupling expansions and 4d corrections to the

2d superpotential

In this section we expand the resolvent in (B.10) as an expansion in small q0. As we have

seen, the coe�cients uk in the gauge polynomial P(z) have a q0-expansion; let us formally

expand the gauge polynomial as follows:

bP(z) = P(z) +
1X

n=1

pn(z)qn

0 , (B.13)

where P(z) is the classical gauge polynomial defined in (4.7), and the pn(z)’s can be calcu-

lated using (B.12). Then we find that the resolvent has the following instanton expansion
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(we suppress the z-dependence of the polynomials in order to have compact expressions):

*
Tr log

z ��
µ

+
= log

P

µ
+ q0

✓
1 +

p1

P
� B

P2

◆

+ q
2
0

 
�3B

2

2P4 +
2B (P + p1)

P3 � P
2 � 2p2P + p

2
1

2P2

!
+ . . . .

(B.14)

Substituting this into (B.1) and performing the integral, we obtain the one and two instan-

ton corrections to the twisted superpotential of the 2d quiver due to the 4d theory.
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Appendix C

Chiral ring equations and

superpotentials at the 1-instanton level

In this section we study the four quivers shown in Figure 4.5 in turn, write down the

twisted chiral ring equations and calculate the 1-instanton result for the low energy su-

perpotential, which is the evaluation of the twisted chiral superpotential in a particular

vacuum. Given these results one can check explicitly that the low energy superpotential

for the distinct quivers are di↵erent already at the 1-instanton level.

Quiver Q0
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The twisted superpotential is

WQ0(x) = log x1

X

s2N1

�(1)
s
+ log x2

X

s2N1[N2

�(2)
s

�
X

t2N1[N2

X

s2N1

$(�(1)
s
� �(2)

t
) �

X

i2F1

X

s2N1

$(mi � �(1)
s

)

�
X

i2F2

X

s2N1[N2

$(mi � �(2)
s

) �
X

s2N1[N2

hTr$(�(2)
s
��)i . (C.1)

The chiral ring equations are:

G2(�(1)
s

) = (�1)n1+n2 x1B1(�(1)
s

) for s 2 N1 ,

(1 + q0)bP(�(2)
s

) = (�1)N

 
x2 G1(�(2)

s
)B2(�(2)

s
) +

q0

x2

B1(�(2)
s )B3(�(2)

s )
G1(�(2)

s )

!
for s 2 N1 [N2 ,

(C.2)

where G1(z) and G2(z) are the 2d gauge polynomials for the quiver. We solve the equations

about the following vacuum:

�(1)
s
= as for s 2 N1 ,

�(2)
s
= as for s 2 N1 [N2 . (C.3)

Then at 1-instanton the twisted superpotential evaluated on the solution is

W
���
�?
= (�1)n1+n2 x1

X

s2N1

B1(as)
P
0
1(as)P2(as)

+ (�1)N+1
x2

X

s2N2

B2(as)
P
0
2(as)P3(as)

+ (�1)n3
q0

x1x2

X

s2N1

B3(as)
P3(as)P01(as)

. (C.4)

This matches the 1-instanton results from localization at 1-instanton using the contour

(+ + �) if we use the map:

q1 = (�1)n2+1
x1, q2 = (�1)n1+n3+1

x2, q3 =
q0

x1x2
. (C.5)
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Quiver Q1

The twisted superpotential is

WQ1(y) = log y1

X

s2N2

�(1)
s
+ log y2

X

s2N1[N2

�(2)
s

�
X
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X
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X
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$(mi � �(2)
s

) . (C.6)

The chiral ring equations are:

G2(�(1)
s

) =
(�1)n1+n2

y1
B1(�(1)

s
) for s 2 N2 ,

(1 + q0)bP(�(2)
s

) = (�1)n1+n3
⇣
y2
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s )B2(�(2)

s )
G1(�(2)

s )
+

q0

y2
B3(�(2)

s
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s
)
⌘

for s 2 N1 [N2 . (C.7)

We solve the equations about the following vacuum:

�(1)
s
= as for s 2 N2 ,

�(2)
s
= as for s 2 N1 [N2 . (C.8)
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Then at 1-instanton the twisted superpotential evaluated on the solution is:

W
���
�?
=

(�1)n1+n2+1

y1

X

s2N2

B1(as)
P1(as)P02(as)

+ (�1)n2+n3+1
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B3(as)
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. (C.9)

This matches the 1-instanton results from localization using the contour (� + �) and the

map:

q1 =
(�1)n2+1

y1
, q2 = (�1)n3y1 y2, q3 = (�1)n1+1 q0

y2
. (C.10)

Quiver Q2

The twisted superpotential is
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) �

X

s2N2[N3

hTr$(� � �(2)
s

)i

�
X

i2F2

X

s2N2

$(mi � �(1)
s

) �
X

i2F1[F2

X

s2N2[N3

$(�(2)
s
� mi) . (C.11)

The chiral ring equations are:

G2(�(1)
s

) = (�1)n2+n3z1B2(�(1)
s

) for s 2 N2 ,
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(1 + q0)bP(�(2)
s

) = (�1)n1+n3

 
B1(�(2)

s )B2(�(2)
s )

z2G1(�(2)
s )

+ q0 z2 B3(�(2)
s

)G1(�(2)
s

)
!

for s 2 N2 [N3 .

(C.12)

We solve the equations about the following vacuum:

�(1)
s
= as for s 2 N2 ,

�(2)
s
= as for s 2 N2 [N3 . (C.13)

Then at 1-instanton the twisted superpotential evaluated on the solution is:

W
���
�?
=

(�1)n1+n2

z1z2

X

s2N2

B1(as)
P1(as)P02(as)

+ (�1)n2+n3z1

X

s2N2

B2(as)
P
0
2(as)P3(as)

+ (�1)n3+1
q0 z2

X

s2N3

B3(as)
P
0
3(as)P1(as)

. (C.14)

This matches the 1-instanton results from localization following the contour (� + +) and

the map

q1 =
(�1)n2

z1 z2
, q2 = (�1)n3+1

z1, q3 = (�1)n1+1
q0 z2 . (C.15)

Quiver Q3
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The twisted superpotential is

WQ3(w) = log w1

X

s2N3

�(1)
s
+ log w2

X

s2N2[N3

�(2)
s

�
X

t2N2[N3
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$(�(2)
s
� mi) . (C.16)

The chiral ring equations are:

G2(�(1)
s

) = (�1)n2+n3
B2(�(1)

s )
w1

for s 2 N3 ,

(1 + q0)bP(�(2)
s

) = (�1)N

 
G1(�(2)

s )B1(�(2)
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w2
+ q0 w2

B2(�(2)
s ) B3(�(2)

s )
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s )
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for s 2 N2 [N3 .

(C.17)

We solve the equations about the following vacuum:

�(1)
s
= as for s 2 N3 ,

�(2)
s
= as for s 2 N2 [N3 . (C.18)

Then at 1-instanton the twisted superpotential evaluated on the solution is:

W
���
�?
=

(�1)N+1

w2

X

s2N2

B1(as)
P1(as)P02(as)

+
(�1)n2+n3+1

w1

X
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P2(as)P03(as)

+ (�1)n1+1
q0 w1 w2

X

s2N3

B3(as)
P
0
3(as)P1(as)

. (C.19)

This matches the 1-instanton results from localization following the contour (� � +) and

the map

q1 =
(�1)n2+n3+1

w2
, q2 =

(�1)n3+1

w1
, q3 = (�1)n1+n3q0 w1 w2 . (C.20)
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Appendix D

Useful formulas for modular forms and

elliptic functions

The Jacobi ✓-functions are

✓1(z|⌧) =
1X

n=�1
q
(n� 1

2 )2

(�x)n� 1
2

✓2(z|⌧) =
1X

n=�1
q
(n� 1

2 )2

x
n� 1

2

✓3(z|⌧) =
1X

n=�1
q

n
2
x

n

✓4(z|⌧) =
1X

n=�1
q

n
2
(�x)n (D.1)

where x = e
2⇡iz and q = e

⇡i⌧. At z = 0, ✓2, ✓3 and ✓4 give the following expansions

✓2(0|⌧) ⌘ ✓2(q) = 2q
1/4(1 + q

2 + q
6 + . . .)

✓3(0|⌧) ⌘ ✓3(q) = 1 + 2q + 2q
4 + 2q

9 + . . .

✓4(0|⌧) ⌘ ✓4(q) = 1 � 2q + 2q
4 � 2q

9 + . . . (D.2)
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Under ⌧! ⌧0 = �1
⌧ these transform as follows :

✓4
2 ! �⌧2✓4

4, ✓4
3 = �⌧2✓4

3, ✓4
4 = �⌧2✓4

2 (D.3)

The expansions to the first few orders of the first three Eisenstein series are given by

E2 = 1 � 24q
2 � 72q

4 + . . .

E4 = 1 + 240q
2 + 2160q

4 + . . .

E6 = 1 � 504q
2 � 16632q

4 + . . . (D.4)

While E4(⌧) and E6(⌧) transform as modular forms with weight 4 and 6 respectively, E2(⌧)

is quasi-modular of degree 2. Under ⌧! ⌧0 = �1
⌧ we have the following transformations

:

E2(⌧0) = ⌧2
E2(⌧) +

6
i⇡
⌧

E4(⌧0) = ⌧4
E4(⌧)

E6(⌧0) = ⌧6
E6(⌧) (D.5)

The Weierstraß }-function is defined as

}(z|⌧) = � @
2

@z2 log ✓1(z|⌧) � ⇡
2

3
E2(⌧) . (D.6)

In many of our formulas the following rescaled }-function appears:

b}(z|⌧) :=
}(z, ⌧)

4⇡2 = x
@

@x

⇣
x
@

@x
log ✓1(z|⌧)

⌘
� 1

12
E2(⌧) . (D.7)

Under S duality, this transforms as

b}(z|⌧)! ⌧2 b}(z|⌧) . (D.8)
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A few terms that appear in the expansion of b}(z|⌧) are as follows :

b}(z|⌧) = � 1
12
� (x + 2x

2 + 3x
3 + 4x

4) + q
2
 
2 � 1

x

!
+ . . . (D.9)

There are also the } functions with arguments shifted by half-periods z! z + !i, where

!1 =
1
2
, !2 =

⌧

2
, !3 =

⌧ + 1
2

(D.10)

On x these correspond to the following transformations respectively,

x! �x, x! qx, x! �qx (D.11)

The expansions for b} (z + !i|q) are easily obtained by performing (D.11) in (D.9). The

expression for b} function evaluated at the half-periods !i (D.10) are denoted as bei and

they satisfy the following relations :

be1 �be2 =
✓4

3

4

be3 �be2 =
✓4

2

4

be1 �be3 =
✓4

4

4
(D.12)
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Appendix E

Verifying the resummation map

Let us now verify that (5.21) is indeed the correct map that relates the bare and the renor-

malized variables. We start by expressing the twisted superpotential in the massless limit

as the integral of the SW di↵erential as described in Section 5.2. We substitute (5.12) and

(5.13) in (5.10) to get :

w0 =

Z
x0

s

q0(q0 � 1)
@ f0

@q0

dt
p

t(t � q0)(t � 1)
(E.1)

We notice that when expressed in terms of q using (5.18) or its expansion in (5.19) we

have the following:

q0
@ f0

@q0
=

a
2

✓4
4
,

q0 � 1 =
e3 � e1

e1 � e2
(q) = �✓

4
4(q)
✓4

3(q)
. (E.2)

We substitute this in (E.1) to get the following expression for w0 :

w0 =
ia

✓2
3

Z
x0

dt
p

t(t � q0)(t � 1)
(E.3)
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Let us now look at w0 expressed in terms of the renormalized variables, i.e. ew0 in (5.24)

and perform some simple manipulations :

ew0 = 2⇡ia

Z
z

dz = 2⇡ia

Z
x0

dx0
dx0
dz

= 2⇡ia ⇡2✓4
3

Z
x0

dx0

}0
. (E.4)

In the final equality we have used the map (5.21). The Weierstraß }-function satisfies the

di↵erential equation :

}02 = 4(} � e1)(} � e2)(} � e3) (E.5)

which can be expressed as

}0 = 2⇡3✓6
3

p
x0(x0 � q0)(x0 � 1) (E.6)

using (5.21) and (D.12). We substitute the above in (E.4) and obtain (E.3) which was

arrived at using only the well established q0 vs q map in (5.18). This confirms the x0 vs x

map in (5.21).

86



Bibliography

[1] S. Gukov and E. Witten, “Gauge Theory, Ramification, And The Geometric

Langlands Program,” arXiv:hep-th/0612073.

[2] S. K. Ashok, S. Ballav, M. Frau, and R. R. John, “Surface operators in N = 2

SQCD and Seiberg Duality,” Eur. Phys. J. C 79 (2019) 372, arXiv:1901.09630

[hep-th].

[3] S. Gukov and E. Witten, “Rigid Surface Operators,” Adv. Theor. Math. Phys. 14

(2010) 1, 87–178, arXiv:0804.1561 [hep-th].

[4] D. Gaiotto, “Surface Operators in N = 2 4d Gauge Theories,” JHEP 11 (2012) 090,

arXiv:0911.1316 [hep-th].

[5] D. Gaiotto, S. Gukov, and N. Seiberg, “Surface Defects and Resolvents,” JHEP 09

(2013) 070, arXiv:1307.2578 [hep-th].

[6] S. Ballav and R. R. John, “Modular properties of surface operators in N=2 SQCD,”

JHEP 07 (2019) 177, arXiv:1905.10898 [hep-th].

[7] L. F. Alday and Y. Tachikawa, “A�ne SL(2) conformal blocks from 4d gauge

theories,” Lett. Math. Phys. 94 (2010) 87–114, arXiv:1005.4469 [hep-th].

[8] H. Kanno and Y. Tachikawa, “Instanton counting with a surface operator and the

chain-saw quiver,” JHEP 06 (2011) 119, arXiv:1105.0357 [hep-th].

87

http://arxiv.org/abs/hep-th/0612073
http://dx.doi.org/10.1140/epjc/s10052-019-6866-5
http://arxiv.org/abs/1901.09630
http://arxiv.org/abs/1901.09630
http://dx.doi.org/10.4310/ATMP.2010.v14.n1.a3
http://dx.doi.org/10.4310/ATMP.2010.v14.n1.a3
http://arxiv.org/abs/0804.1561
http://dx.doi.org/10.1007/JHEP11(2012)090
http://arxiv.org/abs/0911.1316
http://dx.doi.org/10.1007/JHEP09(2013)070
http://dx.doi.org/10.1007/JHEP09(2013)070
http://arxiv.org/abs/1307.2578
http://dx.doi.org/10.1007/JHEP07(2019)177
http://arxiv.org/abs/1905.10898
http://dx.doi.org/10.1007/s11005-010-0422-4
http://arxiv.org/abs/1005.4469
http://dx.doi.org/10.1007/JHEP06(2011)119
http://arxiv.org/abs/1105.0357


[9] S. K. Ashok, S. Ballav, E. Billo, M.and Dell’Aquila, M. Frau, V. Gupta, R. R. John,

and A. Lerda, “Surface operators, dual quivers and contours,” Eur. Phys. J. C 79

(2019) 278, arXiv:1807.06316 [hep-th].

[10] F. Benini, D. S. Park, and P. Zhao, “Cluster Algebras from Dualities of 2d N = (2,

2) Quiver Gauge Theories,” Commun. Math. Phys. 340 (2015) 47,

arXiv:1406.2699 [hep-th].

[11] N. Seiberg and E. Witten, “Monopoles, duality and chiral symmetry breaking in

N=2 supersymmetric QCD,” Nucl.Phys.B 431 (1994) 484,

arXiv:hep-th/9408099.

[12] M. Billo, M. Frau, L. Gallot, A. Lerda, and I. Pesando, “Deformed N=2 theories,

generalized recursion relations and S-duality,” JHEP 1304 (2013) 039,

arXiv:1302.0686 [hep-th].

[13] S. K. Ashok, M. Billo, E. Dell’Aquila, M. Frau, R. R. John, and A. Lerda,

“Modular and duality properties of surface operators in N=2* gauge theories,”

JHEP 07 (2017) 068, arXiv:1702.02833 [hep-th].

[14] L. F. Alday, D. Gaiotto, S. Gukov, Y. Tachikawa, and H. Verlinde, “Loop and

surface operators in N=2 gauge theory and Liouville modular geometry,” JHEP

1001 (2010) 113, arXiv:0909.0945 [hep-th].

[15] A.-K. Kashani-Poor and J. Troost, “Transformations of Spherical Blocks,” JHEP

1310 (2013) 009, arXiv:1305.7408 [hep-th].

[16] E. Witten, “Phases of N=2 theories in two-dimensions,” Nucl. Phys. B403 (1993)

159–222, arXiv:hep-th/9301042.

[17] A. Hanany and K. Hori, “Branes and N=2 theories in two-dimensions,” Nucl. Phys.

B513 (1998) 119–174, arXiv:hep-th/9707192.

88

http://dx.doi.org/10.1140/epjc/s10052-019-6795-3
http://dx.doi.org/10.1140/epjc/s10052-019-6795-3
http://arxiv.org/abs/1807.06316
http://dx.doi.org/10.1007/s00220-015-2452-3
http://arxiv.org/abs/1406.2699
http://dx.doi.org/10.1016/0550-3213(94)90214-3
http://arxiv.org/abs/hep-th/9408099
http://dx.doi.org/10.1007/JHEP04(2013)039
http://arxiv.org/abs/1302.0686
http://dx.doi.org/10.1007/JHEP07(2017)068
http://arxiv.org/abs/1702.02833
http://dx.doi.org/10.1007/JHEP01(2010)113
http://dx.doi.org/10.1007/JHEP01(2010)113
http://arxiv.org/abs/0909.0945
http://dx.doi.org/10.1007/JHEP10(2013)009
http://dx.doi.org/10.1007/JHEP10(2013)009
http://arxiv.org/abs/1305.7408
http://dx.doi.org/10.1016/0550-3213(93)90033-L
http://dx.doi.org/10.1016/0550-3213(93)90033-L
http://arxiv.org/abs/hep-th/9301042
http://dx.doi.org/10.1016/S0550-3213(97)00754-2
http://dx.doi.org/10.1016/S0550-3213(97)00754-2
http://arxiv.org/abs/hep-th/9707192


[18] A. Gorsky, B. Le Floch, A. Milekhin, and N. Sopenko, “Surface defects and

instanton-vortex interaction,” Nucl. Phys. B920 (2017) 122–156,

arXiv:1702.03330 [hep-th].

[19] S. K. Ashok, M. Billo, E. Dell’Aquila, M. Frau, V. Gupta, R. R. John, and

A. Lerda, “Surface operators in 5d gauge theories and duality relations,” JHEP 05

(2018) 046, arXiv:1712.06946 [hep-th].

[20] S. K. Ashok, M. Billo, E. Dell’Aquila, M. Frau, V. Gupta, R. R. John, and

A. Lerda, “Surface operators, chiral rings and localization in N=2 gauge theories,”

JHEP 11 (2017) 137, arXiv:1707.08922 [hep-th].

[21] L. Je↵rey and F. Kirwan, “Localization for non-abelian group actions,” Topology 34

(1995) 291–327, arXiv:alg-geom/9307001.

[22] M. Billo, M. Frau, L. Gallot, A. Lerda, and I. Pesando, “Modular anomaly

equation, heat kernel and S-duality in N = 2 theories,” JHEP 1311 (2013) 123,

arXiv:1307.6648 [hep-th].

[23] M. Billo, M. Frau, F. Fucito, A. Lerda, J. Morales, R. Poghossian, and D. R.

Pacifici, “Modular anomaly equations in N = 2⇤ theories and their large-N limit,”

JHEP 1410 (2014) 131, arXiv:1406.7255 [hep-th].

[24] M. Billo, M. Frau, F. Fucito, A. Lerda, and J. Morales, “S-duality and the

prepotential in N = 2? theories (I): the ADE algebras,” JHEP 1511 (2015) 024,

arXiv:1507.07709 [hep-th].

[25] M. Billo, M. Frau, F. Fucito, A. Lerda, and J. Morales, “S-duality and the

prepotential of N = 2? theories (II): the non-simply laced algebras,” JHEP 1511

(2015) 026, arXiv:1507.08027 [hep-th].

89

http://dx.doi.org/10.1016/j.nuclphysb.2017.04.010
http://arxiv.org/abs/1702.03330
http://dx.doi.org/10.1007/JHEP05(2018)046
http://dx.doi.org/10.1007/JHEP05(2018)046
http://arxiv.org/abs/1712.06946
http://dx.doi.org/10.1007/JHEP11(2017)137
http://arxiv.org/abs/1707.08922
http://arxiv.org/abs/alg-geom/9307001
http://dx.doi.org/10.1007/JHEP11(2013)123
http://arxiv.org/abs/1307.6648
http://dx.doi.org/10.1007/JHEP10(2014)131
http://arxiv.org/abs/1406.7255
http://dx.doi.org/10.1007/JHEP11(2015)024
http://arxiv.org/abs/1507.07709
http://dx.doi.org/10.1007/JHEP11(2015)026
http://dx.doi.org/10.1007/JHEP11(2015)026
http://arxiv.org/abs/1507.08027


[26] S. K. Ashok, M. Billo, E. Dell’Aquila, M. Frau, A. Lerda, and M. Raman,

“Modular anomaly equations and S-duality in N = 2 conformal SQCD,” JHEP

1510 (2015) 091, arXiv:1507.07476 [hep-th].

[27] S. K. Ashok, E. Dell’Aquila, A. Lerda, and M. Raman, “S-duality, triangle groups

and modular anomalies in N=2 SQCD,” JHEP 1604 (2016) 118,

arXiv:1601.01827 [hep-th].

[28] N. A. Nekrasov, “Seiberg-Witten prepotential from instanton counting,” Adv. Theor.

Math. Phys. 7 (2004) 831–864, arXiv:hep-th/0206161.

[29] N. Nekrasov and A. Okounkov, “Seiberg-Witten theory and random partitions,”

Prog. Math. 244 (2006) 525–596, arXiv:hep-th/0306238.

[30] N. A. Nekrasov and S. L. Shatashvili, “Quantum integrability and supersymmetric

vacua,” Prog. Theor. Phys. Suppl. 177 (2009) 105–119, arXiv:0901.4748

[hep-th].

[31] N. A. Nekrasov and S. L. Shatashvili, “Quantization of Integrable Systems and

Four Dimensional Gauge Theories,” arXiv:0908.4052 [hep-th].

[32] F. Benini, R. Eager, K. Hori, and Y. Tachikawa, “Elliptic genera of

two-dimensional N=2 gauge theories with rank-one gauge groups,” Lett. Math.

Phys. 104 (2014) 465–493, arXiv:1305.0533 [hep-th].

[33] K. Hori, H. Kim, and P. Yi, “Witten Index and Wall Crossing,” JHEP 01 (2015)

124, arXiv:1407.2567 [hep-th].

[34] J.-H. Baek, “Chiral Rings for Surface Operators in 4d and 5d SQCD,” JHEP 01

(2019) 159, arXiv:1811.04901 [hep-th].

[35] H. Awata, H. Fuji, H. Kanno, M. Manabe, and Y. Yamada, “Localization with a

Surface Operator, Irregular Conformal Blocks and Open Topological String,”

Adv.Theor.Math.Phys. 16 (2012) 325, arXiv:1008.0574 [hep-th].

90

http://dx.doi.org/10.1007/JHEP10(2015)091
http://dx.doi.org/10.1007/JHEP10(2015)091
http://arxiv.org/abs/1507.07476
http://dx.doi.org/10.1007/JHEP04(2016)118
http://arxiv.org/abs/1601.01827
http://arxiv.org/abs/hep-th/0206161
http://arxiv.org/abs/hep-th/0306238
http://dx.doi.org/10.1143/PTPS.177.105
http://arxiv.org/abs/0901.4748
http://arxiv.org/abs/0901.4748
http://arxiv.org/abs/0908.4052
http://dx.doi.org/10.1007/s11005-013-0673-y
http://dx.doi.org/10.1007/s11005-013-0673-y
http://arxiv.org/abs/1305.0533
http://dx.doi.org/10.1007/JHEP01(2015)124
http://dx.doi.org/10.1007/JHEP01(2015)124
http://arxiv.org/abs/1407.2567
http://dx.doi.org/10.1007/JHEP01(2019)159
http://dx.doi.org/10.1007/JHEP01(2019)159
http://arxiv.org/abs/1811.04901
http://arxiv.org/abs/1008.0574


[36] S. Nawata, “Givental J-functions, Quantum integrable systems, AGT relation with

surface operator,” Adv.Theor.Math.Phys. 19 (2015) 1277–1338, arXiv:1408.4132

[hep-th].

[37] N. Nekrasov, “BPS/CFT correspondence IV: sigma models and defects in gauge

theory,” Lett. Math. Phys. 109 (2019) no. 3, 579, arXiv:1711.11011 [hep-th].

[38] S. Jeong and N. Nekrasov, “Opers, surface defects, and Yang-Yang functional,”

arXiv:1806.08270 [hep-th].

[39] D. Gaiotto, “N=2 dualities,” JHEP 1208 (2012) 034, arXiv:0904.2715

[hep-th].
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Surface operators in gauge theories are non-local 
operators supported on co-dimension two sub-
manifolds of space7me. There are different 
types of surface operator which can be studied 
from various approaches. In one approach, sur-
face operator is studied as monodromy defects, 
where one specifies how the gauge fields are 
affected by the presence of the surface operator 
by imposing suitable boundary condi7ons in the 
path-integral. In this framework the non-pertur-
ba7ve effects are described in terms of ramified 
instantons whose par77on func7on can be com-
puted using equivariant localiza7on methods. In 
another approach, surface operators are de-
scribed as flavor defects, which are coupled 2d/
4d quiver gauge theories. Quiver realiza7ons of 
surface defects can be compared with the local-
iza7on approach by considering the low energy 
twisted chiral superpoten7al. 

In this thesis, we  study half-BPS surface operators in N=2  supersymmetric asympto7cally conformal 
gauge theories in four dimensions with SU(N) gauge group and 2N fundamental flavours using local-
iza7on methods and coupled 2d/4d quiver gauge theories. We show that contours in the localiza7on 
analysis map to par7cular realiza7ons of the surface operator as flavour defects. We study Seiberg 
duality of 2d/4d quivers. Dual quivers are mapped to contour deforma7ons of the localiza7on inte-
gral which involves a residue at infinity. The Lagrangian of the dual theory gets shiRed by non-per-
turba7ve terms, which is referred to as modified Seiberg duality rule. The new rules, that depend on 
the 4d gauge coupling, lead to a match between the low energy effec7ve twisted chiral superpoten-
7als for any pair of dual 2d/4d quivers. We also study modular proper7es of half-BPS surface opera-
tors in N=2 SQCD in four dimensions with gauge group SU(2) and four fundamental flavours. We 
compute the twisted chiral superpoten7al that describes the effec7ve theory on the surface operator 
using equivariant localiza7on as well as the Seiberg-WiTen curve. We then use the constraints im-
posed by S-duality to resum the instanton contribu7ons to the twisted superpoten7al into ellip7c 
func7ons and (quasi-) modular forms. 

Figure: Schema.c summary of surface operator
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