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SYNOPSIS

Polymers are long molecules, composed of smaller units called monomers. From

plastics to coatings, many kinds of synthetic polymers are used in everyday life. A

large number of biological polymers are constituents of the cells and tissues which

make up living organisms [Phillips et al., 2012, Boal and Boal, 2012].

A number of experimental situations involve understanding the reduction of poly-

mer entropy due to confinement and unusual phase behaviour that can arise as a

consequence. For example, DNA in living cells is a polymer confined within a nu-

cleus and a number of biological macromolecules are wrapped in a membrane prior

to being transported to their destination [Alberts et al., 2013]. Chromatin, the term

describing DNA complexed with packaging proteins in living cells, is folded and

compacted on several length scales and the modulation of this folding by biophysi-

cal and biochemical processes controls DNA accessibility [Van Holde and Zlatanova,

1996, Butler and Crothers, 1983]. The term euchromatin refers to a more loosely

packed, gene-rich region f DNA while heterochromatin is more tightly packed and

typically gene-poor [Alberts et al., 2013].

This thesis studies aspects of the behaviour of polymers under confinement. It de-

scribes three problems: the first concerns a novel mechanical property of the mouse

embryonic stem cell nucleus exiting pluripotency, the property of auxeticity. This is

studied using a combined biophysical and dynamical systems approach. The second

describes a general computational approach to understanding confined polymers.

v



Here, tuning both the interaction of the polymer with the walls of the confinement

and the density of crowder particles provides a way of altering polymer conforma-

tions within the confining region. This is studied using large-scale coarse-grained

molecular dynamics simulations. In the third problem, using the coarse-grained

molecular dynamics simulation, diffusive behaviour of a particle in a cylinder with

its inner surface grafted with polymers is studied.

This thesis is comprised of 5 chapters. In Chapter 1, the Introduction, we de-

scribe the necessary theoretical background and terminology required to describe

the results presented in this thesis. We discuss different polymer models and the

properties of polymers in solution and also summarize arguments concerning the

behaviour of polymers under confinement. Chapter 2 describes the basic princi-

ples and techniques of molecular dynamics simulations. Chapter 3 illustrates how

the observation of auxeticity in mouse embryonic stem cells can be modelled. It ex-

tends the predictions of the theoretical framework to Waddington’s ideas concerning

the epigenetic landscape in stem cells. In Chapter 4, we present results from the

simulation of a long polymer chain and crowder particles under confinement with

different wall interactions and solvent quality. It also presents the results from large-

scale coarse-grained molecular dynamics simulations of a particle in a infinitely long

cylinder with its inner surface grafted with polymers. Finally, Chapter 5 provides

conclusions from this thesis and perspectives for future work.

Auxetic phenotype in mouse embryonic stem cell nuclei

Stem cells are cells that can both self-renew as well as differentiate into specific cell

types upon receiving specific biochemical and mechanical cues [Alberts et al., 2013].

Cells which can differentiate into multiple cell types are pluripotent stem cells. The

biophysical properties of stem cells are very different from those of differentiated

cells. Experiments [Talwar et al., 2013] show that embryonic stem (ES) cells show
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larger nuclear area fluctuations as compared to differentiated fibroblasts. ES cells

have more open and fluid chromatin, also exhibiting hyperdynamic binding and

unbinding [Meshorer et al., 2006] of histone proteins [Efroni et al., 2008]. The

differentiation of ES cells into various lineages results in stiffer nuclei and condensed

chromatin.

ES cells lack specific structural proteins that border the nuclear envelope, leading

to softer nuclei that are more sensitive to internal chromatin dynamics. The dy-

namics of chromatin thus plays a more significant role in controlling the rheological

properties of the nucleus, and thus nuclear mechanics, in ESCs. Generally, ma-

terials have a positive Poisson’s ratio i.e., if we stretch/compress the material, it

shrinks/elongates in the other two perpendicular dimensions. However, there are

some materials which elongate/shrink upon stretching/compressing them. These

materials are called auxetic. Recent experiments [Pagliara et al., 2014] show that

the nucleus of mouse embryonic stem cells, en-route to differentiation, exhibit aux-

etic behavior i.e., they have a negative Poisson’s ratio. In the intermediate transition

state, the cross-sectional nuclear area of stem cells becomes 5 − 10% smaller when

compressed by 2µm. In a similar experiment performed on naive pluripotent stem

cells, as well as on differentiated stem cells, the nuclear area expands, indicating a

positive Poisson’s ratio.

The model [Tripathi and Menon, 2019] we develop explains this phenomenon as

well as provides a broader biophysical perspective. It assumes that the nucleus is

compressible and that the chromatin in the nucleus can be described as an active

polymeric fluid. The response of the nucleus to the uniaxial external force is assumed

to be anisotropic. We show that auxeticity arises from the coupling of a variable

describing chromatin compaction with variables describing nuclear dimensions.

The variables entering the model are the chromatin compaction variable Ψ, governed

by the fraction of bound histones, as well as the nuclear dimensions parallel R‖ and
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perpendicular R⊥ to the external applied force f . We derive a de-dimensionalized,

coupled, dynamical system for the variables δΨ, δR‖ and δR⊥ and use it to derive

the principal results summarized below.

Results

• The mechanical behaviour of the nucleus depends upon a parameter B that

represents the lowest order coupling between chromatin compaction and nu-

clear dimensions. For B < 0, the system shows auxetic behavior while for

B > 0, the system behaves as a conventional material with a positive Pois-

son’s ratio (see Figure S.1).

(a) (b)

Figure S.1: The mechanical behaviour of dynamical variables of the model with
the force for (a) positive parameter B (b) for negative B. C and D are the other
parameters of the model. Red and blue show the regions where a stable solution is
obtained (red = normal, blue = auxetic), while grey shows where solutions become
unstable.

• The auxetic-nonauxetic boundary must be crossed twice as ES cells transit

the transitional state as they differentiate. We propose that one useful way

of monitoring this is to study the behavior of specific time correlation func-

tions. In Figure S.2, the 〈δR⊥(0)δΨ(t)〉 changes the sign of its slope when the

parameter B changes sign. This change of sign can be used to determine the
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transition state between the stem cell and differentiated prime.

10-3
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10-1
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(a) (b) (c)

Figure S.2: (a) Choice of parameters in (B,C,D) parameter space, B showing on ver-
tical axis (B,C and D are the parameters appearing in the model). Column (b) and
(c) show the correlation functions 〈δR⊥(0)δΨ(t)〉 and 〈δΨ(0)δR⊥(t)〉 respectively.

• Our model describes the dynamics of the chromatin compaction variable Ψ.

This fluctuates about a constant value but is constrained by a chromatin

compaction potential V (δΨ). Different minima of this compaction potential

V (δΨ) reflect the local stability of different compaction states of chromatin.

It is known that one distinction between different classes of cell types arises

from their different levels of chromatin compaction. Waddington originally

described cell differentiation in terms of a ball rolling down a slope to different

valleys at the bottom, using the idea of an epigenetic landscape [Wadding-
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Figure S.3: A pictorial representation of epigenetic landscape, projected onto a single
compaction variable Ψ.

ton, 1947]. The biophysical interpretation of this landscape been unclear. We

suggest that projecting the complex spatial-temporal distribution of chromatin

compaction in cells onto an overall compaction variable Ψ (see Figure S.3) pro-

vides a specific way of connecting the landscape picture to our mathematical

formulation. Thus, we interpret the time dependence of Ψ in terms of motion

in a one dimensional potential described through our equations, as shown in

the figure. This approach provides specific biophysical insights into the epi-

genetic landscape, also suggesting how it might be experimentally probed in

coarse-grained biophysical measurements.

Conformations of crowded polymers under confinement within

interactive surfaces

The shape of the polymer depends upon factors such as solvent condition, presence

of other particles, concentrations, temperature etc. [de Gennes, 1979, Doi, 1996].

Biological polymers, in addition to being confined, are also crowded. For example,

within the cell, the heterogenous mixture of proteins, organelles, water and different

ions can lead to the loss of conformational entropy, yielding effects which are hard

to predict. The degree of confinement, as well as the presence of crowders, affects
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the conformation and other properties of the polymer. The interaction of polymers

with surfaces has relevance in applications such as the coating of surfaces, aspects

of interfacial macromolecular recognition, adhesion, wetting, etc. [Ionov et al., 2010,

Haraguchi et al., 2014].

We study the conformations of the polymer under crowded and confined condi-

tions [Tripathi et al., 2019]. Conformations of the polymer are expected to depend

upon the interplay between monomer-monomer interactions, monomer-surface in-

teractions and the degree of confinement. Earlier studies [Bachmann and Janke,

2005, Arkın and Janke, 2012b] have shown that, in the absence of crowder parti-

cles, the polymer assumes four main phases depending upon these factors: these are

desorbed extended (DE), desorbed collapsed (DC), adsorbed extended (AE) and ad-

sorbed collapsed (AC) phases. In this study, we take this problem one step further,

adding a new dimension of crowder density to the problem which makes it closer to

a real scenario.

We simulate a coarse-grained model of a 400-monomer-long neutral polymer and

crowder particles in spherical confinement. The size of the monomers and the crow-

der particles are kept the same for simplicity. To understand the effect of crowder

density, the number of crowder particles Nc is changed such that the crowder density

(φc) of the system varies from 0.035 to 0.435, where φc is defined as φc = Ncvc/V ,

vc = 4
3
πr3

c , rc is the radius of the crowder particle, V is the volume of the confinement

region. The solvent quality is implemented by an implicit solvent condition.

A pair of non-bonded particles interact via a Weeks-Chandler-Andersen potential

which is a truncated and shifted Lennard-Jones (LJ) potential with a cutoff. The

bonded monomers interact via a harmonic spring potential. The interaction of the

wall with the monomers as well as the crowders is given by the LJ potential. The

cutoff for LJ interaction, in this case, depends upon whether the polymer is attracted

or repelled from the confining wall.
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Results

• To understand the effect of confinement, we simulated the polymer under con-

finement with good solvent parameters along with the crowder particles and

compared the results with the simulation of polymer under periodic bound-

ary condition keeping the other parameters same. The polymer assumes a

desorbed extended conformation in both the cases, however, the radius of gy-

ration Rg is significantly smaller in case of confinement compared to that in

the unconfined case.

• Further, to understand the role of crowder density φc on the conformation of

the polymer, simulations of a polymer in both good and poor solvent conditions

are performed with different numbers of crowder particles. In Figure S.4 (c)

and (d), it can be seen that in the case of a good solvent, the polymer is

adsorbed almost completely onto the wall and varying the crowder density

does not make any difference to the conformation of the polymer. However, for

a poor solvent, the polymer makes a transition from an open conformation to

a collapsed one for moderate values of εmw. Increasing the number of crowder

particles compacts the polymer, reflecting in the order parameter q which

represents the average number of neighbours for a monomer (see Figure S.4).

• In order to understand the effect of monomer-wall interaction strength εmw,

we simulated the polymer in a good solvent condition under confinement with

different εmw. It is observed that the polymer gets adsorbed onto the confining

surface. The degree of adsorption depends upon the attractive wall strength.

The higher the attractive wall strength, the larger the number of monomers

that re adsorbed onto the surface. However, in poor solvent conditions, there is

a transition from an adsorbed collapsed conformation to an adsorbed extended

state as we increase εmw. Increasing the number of crowder particles, however,

further changes the conformation of the polymer. The monomers tend to take

xii



  

Good 

Solvent

Poor 

Solvent

�T = 0.05 �T = 0.25 �T = 0.35 �T = 0.45(a)

(b)

Figure S.4: The snapshots of polymer for (a) good solvent condition, (b) poor solvent
condition for different φc values for fixed εmw = 10.0, (c) the fraction of adsorbed
monomers (fad) and (d) Rg as a function of φc.

a more structured form for higher φc values (see Figure S.5).

low crowder density �T = 0.05(a)

high crowder density �T = 0.35(b)

✏mw = 1.0 ✏mw = 5.0 ✏mw = 10.0 ✏mw = 20.0

0.035

0.335

Figure S.5: The snapshots of the polymer for (a) low crowder density φc = 0.035
and for (b) high density φc = 0.335 for different wall attractive strengths.

Our results show that the problem of polymer confinement changes significantly

when the additional parameter of crowder density φc is added to it. φc plays an

important role in changing the conformations significantly, while the addition of

crowder particles adds an additional level of biological realism.
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Diffusion in Crowded and Grafted Cylindrical Tube

The diffusion of molecules in confined compartments is an important phenomenon in

many biological processes. In this third problem, results from large-scale molecular

dynamics simulations of a particle in an infinitely long cylinder grafted with neutral

polymers are presented. Additionally, crowding agents are added to the system,

and we study the diffusivity of the particle and conformations of the polymers as

a function of the confining potential, solvent quality and the density of crowders.

We simulate a particle confined in an infinitely long cylinder of radius 20 units

which has its inner surface grafted with 20-monomer-long neutral polymers. The

size of the tracer particle, monomers and the crowder particles are kept the same,

for simplicity. To understand the effect of crowder density, the number of crowder

particles Nc is added such that the crowder density (φc) of the system varies from

0.035 to 0.435, where φc is defined as φc = Ncvc/V , vc = 4
3
πr3

c , rc is the radius of

the crowder particle, V is the volume of the confinement region. The solvent quality

is implemented by an implicit solvent condition. A pair of non-bonded particles

interact via a WCA potential. The bonded monomers interact via a harmonic

potential. The interaction of the wall with the monomers as well as the crowders is

given by the LJ potential. The cutoff for LJ interaction, in this case, depends upon

whether the polymer is attracted or repelled from the confining wall.

Results

• In good solvent conditions, the radius of gyration Rg decreases with the crow-

der density φc for attractive as well as repulsive wall cases. In case of poor

solvent conditions, the radius of gyration of the graft polymers does not change

significantly with the crowder density except for the highest density case.
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• For both solvent conditions and different monomer-wall interactions, as the

crowder density increases, the behaviour of the particle shifts from super-

diffusive behaviour to normal Brownian motion.

• The distribution of crowder particles is uniform near the axis of the cylinder,

while near the wall of the cylinder, these particles form layered structures

across a range of solvent conditions and different monomer-wall interactions.

On the other hand, the monomers are adsorbed to the wall in a layered fashion

under poor solvent conditions with the degree of adsorption and the number

of layers depending upon the monomer-wall interaction. In good solvent con-

ditions, the polymers tend to assume an extended structure for repulsive walls

while they adsorb to the cylindrical wall and form a layered structure for high

attractive interaction.

We studied the diffusion of tracer particle in a cylindrical geometry with walls coated

by polymers. We concluded that tracer particles in such a geometry were slowed

down as more crowder particles were introduced to the cylindrical confinement. This

slow down occurs regardless of solvent condition and wall interaction.
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Chapter 5

Conclusion

This thesis studied the properties of confined polymers in biophysical and bioengi-

neering contexts. It studied models of the coupling of stem cell chromatin, modelled

as an active polymer solution, with a soft confining nucleus. It then went on to

explore the problem of polymers confined within a hollow sphere or cylinder, where

the solvent quality, the interaction with the wall and the density of crowders could

be tuned separately. This set of models is appropriate in a number of industrial as

well as biophysical contexts.

The first of the problems studied dealt with the understanding of auxetic behaviour

observed in the nuclei of mouse stem cells. The mechanical properties of stem cells

change as they differentiate to specific cell types. In experiments [Pagliara et al.,

2014], it is seen that the nucleus of mouse embryonic stem cell exhibits auxetic

behavior in a transition state that intervenes between the pluripotent and differ-

entiation primed state. We developed a simple model which described this auxetic

behavior while also providing a broader biophysical perspective on the implications

of model results for Waddington’s idea of an epigenetic landscape. The main results

from the model are summarized below,
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• The Poisson’s ratio of the nucleus depends upon a coupling parameter B which

describes the lowest order coupling of a variable describing the level of chro-

matin compaction Ψ with the nuclear size R. For positive values of B, the

nucleus behaves as normal material with positive Poisson’s ratio, whereas for

negative values of B, the nucleus exhibits auxetic behavior with a negative

Poisson’s ratio.

• We can interpret the experimental data in the following way: The value of the

parameter B goes from being positive in embryonic stem cell state to negative

in transition state to being positive again in differentiation primed state. The

nucleus thus transitions from being non-auxetic to auxetic to again nonaux-

etic states as the cell differentiates. We propose that the auxetic-nonauxetic

boundary can be determined by studying time correlation functions of coarse-

grained variables. We show that the cross-correlation function 〈δR⊥(0)δΨ(t)〉

should changes the sign of its slope as B changes sign.

• We model the dynamics of chromatin compaction variable Ψ constrained by

a potential V (δΨ). The chromatin compaction potential can be expected

to be complex, possessing multiple minima. It is known that different cell

types have different levels of chromatin compaction. We connect Waddington’s

complex epigenetic landscape to a simple one dimensional potential V (δΨ) by

projecting the compaction which should be a function of both space and time

to an overall chromatin compaction variable Ψ that depends only on time.

Our model can be generalized in many ways. In chapter 3, we considered Ψ as

a function of time t only while neglecting its spatial dependence. This is a good

approximation for a relatively fluid stem cell state, although chromatin compaction

should really be thought of a spatially inhomogeneous in differentiated states. Hence,

including a spatial dependence Ψ(r, t) should be a first step towards generalization.

Also, a coarse-grained simulation of an active polymer in a flexible confinement is
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feasible. It will be interesting to see how the arguments of chapter 3 translate to

simulations.

In the second problem examined in the thesis, we studied the conformational be-

haviour of polymers in crowded and confined environment using molecular dynamics.

The main results are summarized below,

• To understand the effect of confinement on the conformations of polymer,

we compared the results from the simulation of polymer under spherical con-

finement and periodic boundary condition under the same set of parameters.

Under good solvent conditionS, the polymer assumes a desorbed extended con-

formations in both the cases but the radius of gyration Rg of the polymer is

smaller in case of confinement compared to that in unconfined case.

• To understand the effect of crowder density φc on the conformations of poly-

mer, simulations of the polymer were carried out varying the number of crow-

der particles. Under good solvent conditions and confinement by an attractive

surface, the polymer is extended and completely adsorbed onto the surface

of confinement. Changing φc does not further change the conformations of

the polymer. In case of poor solvent conditions, the polymer collapses and is

adsorbed on the surface for moderate value of φc. It becomes more ordered

and compact for higher values of φc.

• To understand the effect of monomer-wall interaction, the polymer is simulated

in good and poor solvent condition with varying monomer-wall interaction

strength εmw. The polymer gets adsorbed for all the values of εmw, but the

degree of adsorption depends upon the magnitude εmw.

• We establish from the simulation that the interplay among the solvent condi-

tion, εmw and φc are all relevant to understanding the conformational landscape

of the polymer.
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Adding crowder particles to the system adds one more layer of complexity and takes

the system one more step closer to a realistic system. In future, more detailed

studies taking into accounts of more system-specific details should be fruitful as

confinement, wall-interaction and crowders are very general in biological systems.

In the third problem, we employ molecular dynamics simulation to study the dif-

fusivity of a tracer particle in an infinitely long cylindrical tube with its internal

surface grafted with polymers under different solvent conditions, crowder densities

and monomer-wall interactions. we found that

• For poor solvent condition, the radius of gyration of the graft polymers does

not change significantly with the crowder density except for the highest density

case. In case of a good solvent condition, the radius of gyration decreases with

an increase in number of crowder particles.

• The diffusion of tracer particle slows down as tube becomes more crowded.

This slow down happens regardless of solvent condition and wall interaction.

• The crowder particles are uniformly distributed in the middle of the tube, while

near the tube’s wall they form layered structure for both solvent conditions

and different monomer-wall interactions. On the other hand, the monomers

stick to the wall in layered fashion in poor solvent condition, however, the

degree of adsorption and the number of layers depend upon the monomer-

wall interaction. For good solvent condition, the polymers tend to assume

extended structure for repulsive wall. For high attractive interaction, polymers

gets adsorbed to the cylindrical wall and form a layered structure even for the

good solvent condition.

In second part of the chapter 4, we presented preliminary results from the molecular

dynamics simulations. We studied diffusion of the tracer particle and concluded that

as the crowder density increases, particle shifts the behaviour from super-diffusive
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behaviour to normal Brownian motion. The density of polymer grafts affects the

shape and other properties of the cylindrical tube which also needs further probing.

Also, we have chosen the tracer particle of fixed size, while we might find interesting

results if we can use an extended object such as a polymer as a tracer. This is

important as there are many biological scenarios where a polymer diffuses through

a porous medium.
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Abstract

The mechanical properties of stem cell nuclei differ from those of other cells, but
researchers understand little about what determines those properties. To that end,
we developed a mathematical model that shows how a peculiar mechanical behavior
in the nuclei of mouse stem cells arises from interactions between the shape of the
nucleus and the compaction of chromatin, the complex of tightly wound DNA and
protein that forms chromosomes. The nuclei of mouse stem cells can exhibit aux-
eticity, an abnormal response to being compressed. Our model links this behavior
to the compaction state of the cell’s chromatin. As the cell transitions, and the
chromatin unravels, the cell nucleus becomes auxetic. Our results agree with exper-
iments, and the model provides several testable predictions. Importantly, the results
suggest a biophysical interpretation of the “epigenetic landscape”—a framework for
envisioning how changes in gene expression drive stem cell differentiation—which,
in turn, could help researchers guide stem cells in a more controlled manner.

We also revisit the earlier understanding of the adsorption of confined polymers on
attractive surfaces in light of our results from molecular dynamics simulations of a
spherically confined neutral polymer in the presence of crowding particles, studying
polymer shapes and conformations as a function of the strength of the attraction to
the confining wall, solvent quality, and the density of crowders. The conformations
of the polymer under good solvent conditions are weakly dependent on crowder
particle density, even when the polymer is strongly confined. In contrast, under
poor solvent conditions, when the polymer assumes a collapsed conformation when
unconfined, it can exhibit transitions to two different adsorbed phases, when either
the interaction with the wall or the density of crowder particles is changed.

The diffusion of a tracer particle along an infinitely long cylinder, whose inside is
grafted with polymers and further filled with crowded particles is investigated via
measurements of diffusion constants. Our results show that the diffusion behavior of
the tracer particle in such a soft and flexible obstacle mesh made of neutral polymers
is significantly different from systems filled with hard spherical crowding agents.



Chapter 1

Introduction

Polymers are long molecules made up of smaller chemical units called monomers

linked together via covalent bonds [de Gennes, 1979, Doi, 1996]. As extended

structures, they constitute the main physical components of biological cells. Fil-

aments of the cytoskeleton (microtubules, intermediate filaments and actin) which

provide architectural stability as well as a network for intracellular transport, double-

helical DNA which encodes RNA sequence, and proteins synthesized using the in-

formation in RNA, are all biological polymers [Alberts et al., 2013, Boal and Boal,

2012, Phillips et al., 2012]. Non-biological (synthetic) polymers exist as well. An ex-

ample is polyethylene (−CH2−CH2−CH2−), composed of the identical repeating

unit ethylene (CH2 = CH2).

Understanding how confinement constraints the configurations of long molecules is

important in many biological processes. An example is DNA inside a nucleus. If

the DNA was straightened out, it would be orders of magnitude larger than the

nuclear radius. Even in non-extended form, the radius of gyration of an equivalent

length of DNA would exceed nuclear dimensions. The entropy of polymers decreases

when they are confined. Confinement thus affects other properties as well, including

diffusivity, elastic modulus etc [Vogt, 2018]. Confined polymers are relevant not only
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in biological processes but also in nanofabrication and in the passage of polymers

through narrow pores in industrial contexts [Tegenfeldt et al., 2004, Chen et al.,

2004, Reisner et al., 2005, Jo et al., 2007, Balducci et al., 2006, Reisner et al., 2007].

In this chapter, various models for confined and unconfined polymers used in polymer

physics are discussed. We first motivate why using simple, minimal models is often

sufficient to understand the behaviour of polymers on relatively larger time and

length scales.

1.1 Polymer Models

A polymer is a long chain molecule that can be up to 108 monomers long. It has

a backbone which is generally a carbon atom chain, with other atoms attached to

it (e.g. N, H, O). Atomic-scale simulations are computationally very expensive.

Such simulations are generally done for a small number of particles. However, with

advancements in high-performance computing, simulations for 106 particles are now

routine [Hospital et al., 2015]. One might have naively expected that a considerable

degree of molecular detail would be required to make a sensible prediction about

the physical behavior of a polymer, but this is neither necessary nor indeed always

feasible. Indeed, the degree of detail we need depends upon the time and length

scales that are natural to the problem we are interested in investigating.

What are useful models of polymers that do not incorporate atomistic detail? This

depends upon the problem we are interested in and the method we want to employ

to solve the problem. In some cases, where computer simulations are employed, a

polymer can be thought of as a sequence of N segments of length b with appropriate

interactions (see Figure 1.1(a)). On the theoretical side, a polymer can be modelled

as a continuous chain where the position at every point in real space is parametrized

by a single one-dimensional coordinate, usually the arc-length (see Figure 1.1(b)).
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Figure 1.1: Schematic representation of a polymer in different approaches. A Poly-
mer can be viewed as a sequence of small segments or as a continuous chain.

A polymer has a large number of internal degrees of freedom and can take many

different conformations. To study such a system, we first study a simple coarse-

grained model where monomers follow a regular lattice and nearest neighbours are

connected with a bond.

First, we discuss an ideal chain model. This is useful in describing flexible polymers.

The end-to-end distance follows a Gaussian distribution. We also discuss briefly the

Gaussian chain model in which the distribution of individual bond sizes is modeled

as Gaussians. We further discuss the worm-like chain model where stiffness is intro-

duced in the chain through interaction energy between the neighboring segments.

We also discuss two extreme limits of this model.

1.2 Flexible Polymer

1.2.1 The ideal chain on a lattice

This is a basic model describing the properties of a large class of flexible polymers.

In this model, a polymer chain is composed of N segments of size b, where the

segments can cross each other. In this freely jointed chain (FJC) model, the polymer

configuration is a sequence of N steps of a random walk with step length b (see
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Figure 1.2). Let a1, a2, ...aN be the steps of the random walk. The monomers have

no excluded volume and repulsion among them, hence the correlation between the

direction of steps of the random walk is zero, giving rise to,

〈R〉 =
N∑
i=1

〈ai〉,

= 0, (1.1)

where R is the end-to-end distance vector and 〈·〉 refers to the mean value of the

variable.

The mean square end-to-end distance 〈R2〉 can be computed as,

〈R2〉 =
N∑
i=1

N∑
j=1

〈aiaj〉.

Since 〈aiaj〉 is zero for i 6= j,

〈R2〉 =
N∑
i=1

N∑
i=1

〈a2
i 〉,

= Nb2. (1.2)

Since vectors a1, a2, ...aN are independent, we invoke the central limit theorem,

according to which the sum of these vectors R =
∑N

i=1 ai is distributed according to

a Gaussian distribution and the distribution P (R) is given by the same expression

as for the random walk model,

P (R) =

(
3

2πNb2

)−3/2

exp

(
− 3R2

2Nb2

)
, (1.3)

with zero mean and variance 〈R2〉 = Nb2. The quantity 〈R2〉 typically gives the
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Figure 1.2: The random walk model of the polymer with N segments. The black
spheres represent the monomers and the thick lines are the bonds between the
monomers.

idea about the extent of the polymer as opposed to its contour length Nb. From

Eq. 1.2,

R ∼ bN1/2. (1.4)

The end-to-end distance of an ideal chain polymer scales in the number of segments

with an exponent ν = 1/2.

The radius of gyration Rg is also used for describing the polymer size as in many

cases such as branched polymers where end-to-end distance R is not useful. R2
g is

defined as the mean square distance between all the monomers and the center of

mass to all the monomers,

R2
g =

1

N

N∑
i=1

(ri −RCM)2, (1.5)

=
1

2N2

N∑
i=1

N∑
j=1

(ri − rj)
2, (1.6)

where RCM = 1
N

∑N
i=1 ri is the center of mass and ri is the position vector of the ith
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segment.

We now calculateRg for the ideal chain model. From Eq. 1.2, 〈(rn−rm)2〉 = |n−m| b2

for large |n−m|. Using definition 1.6,

R2
g =

1

2N2

N∑
n=1

N∑
m=1

|n−m| b2.

For large N , the summation can be replaced by integration,

R2
g =

1

2N2

∫ N

1

dn

∫ N

1

dm |n−m| b2,

=

(
N

6

)
b2. (1.7)

Both the end-to-end distance R and radius of gyration Rg scale as N1/2. This model

can be used to describe a flexible polymer, as the correlation between the segments

decay on a smaller length scale than the length of the polymer.

1.2.2 The Gaussian Chain Model

In this model, the polymer chain is considered to be made of randomly oriented

(freely jointed) segments. The length of a segment is not a constant but has a

Gaussian probability distribution given by,

P (a) =

(
3

2πb2

)−3/2

exp(−3a2

2b2
), (1.8)

with the expectation value of the segment length given by,

〈a2〉 = b2. (1.9)

This way, the Gaussian behavior is embedded at every length scale in this model
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rather than just in the end-to-end distance. Using this, the probability distribution

of the end-to-end vector R is given by the product,

P (R) =
N∏
i=1

(
3

2πb2

)−3/2

exp

(
−3a2

i

2b2

)
. (1.10)

1.3 Semi-flexible Polymers

1.3.1 Worm-like Chain

The models discussed so far have neglected self-avoidance as well as bending rigidity

i.e. there is no energy cost to bend the polymer chain. In reality, all polymers are

not completely flexible. Biological polymers are typically stiff at a length scale

comparable to the size of several monomers. The worm-like chain model is used to

describe a stiff polymer, where the stiffness is incorporated by requiring that two

successive segments reduce their energy when aligned. This model for a semi-flexible

polymer is sometimes referred to as the Kratky-Porod model [Kratky and Porod,

1949, Saitô et al., 1967].

Let’s consider a chain of maximum length L. A point on the polymer is parametrized

by a variable s. A tangent on this point along the polymer is t̂(s) and r(s) is the

position vector of the point (see Figure 1.3). The tangent vector is given by,

t̂(s) =
∂r

∂s
. (1.11)

The energy associated with bending the polymer can be written as,

E =
1

2
kBT

∫ L

0

ds lp

(
∂2r(s)

∂s2

)2

, (1.12)

where lp is persistence length for the polymer, kB the Boltzmann constant and T is
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Figure 1.3: The worm-like chain model. The r(s) is the position vector of a point
on the polymer chain parameterized by parameter s and t̂(s) is the tangent at the
point.

the absolute temperature. The persistence length lp is a length scale related to the

bending stiffness of the polymer. The physical meaning of the persistence length is

the following: Chain segments are roughly aligned on length scales smaller than lp

while they are decorrelated at length scales much larger than lp [Khokhlov et al.,

2011].

The tangent-tangent correlation function can be solved exactly. It decays exponen-

tially with distance along the chain.

〈t̂(s).t̂(0)〉 = exp(−s/lp). (1.13)

The mean square end-to-end distance of the polymer can be calculated as,

〈R2〉 = 〈R.R〉,

=

〈(∫ L

0

ds t̂(s)

)
.

(∫ L

0

ds′ t̂(s′)

)〉
,

=

∫ L

0

ds

∫ L

0

ds′〈t̂(s).t̂(s′)〉. (1.14)
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Using Eq. 1.13 and integrating Eq. 1.14,

〈R2〉 = 2lpL

[
1− lp

L

(
1− e−lp/L

)]
.

There are two limits,

〈R2〉 =


2lpL, for L� lp

L2, for L� lp

In the first limit, where the chain persistence length lp is much smaller than chain

length L, the model behaves as an FJC and the chain follows Gaussian statistics.

In the second limit, where lp � L, the chain behaves like a stiff rod.

In this model, the radius of gyration can be calculated as following,

〈R2
g〉 =

1

2L2

∫ L

0

ds

∫ L

0

ds′ 〈(r(s)− r(s′))2〉.

Using r(s)− r(s′) =
∫ s′
s
dτ t̂(τ)

〈R2
g〉 = l2p

(
fD

(
L

lp

)
− 1 +

L

3lp

)
,

=


2lpL

6
, for L >> lp

L2

12
, for L << lp

(1.15)

where fD is the Debye function and is given by [Doi and Edwards, 1988],

fD(x) =
2

x2
(e−x − 1 + x).
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1.4 Non-ideal Chains

1.4.1 The Self-avoiding Chain

In the ideal chain model, the chain can overlap itself. In real polymers, monomers

interact with the solvent as well as amongst themselves. In good solvent conditions,

they tend to adopt swollen conformations, which can be modeled as an effective

repulsion between monomers. In a poor solvent where the monomer-monomer in-

teraction outweighs the monomer-solvent interaction, the polymer conformations

are compact. This can be modelled as an effective attractive interaction between

monomers. In computational models, the tendency of the polymer not to cross itself

in physical space can be modelled as an excluded volume effect. To include this

effect into the model, a steep repulsive interaction potential is introduced which

prohibits the interpenetration of polymer segments.

Self-avoidance changes the size exponent ν in the relation R ∼ Nν [Doi, 1996]. The

size of the polymer increases when the self-avoidance is introduced. The exponent

depends upon the dimensionality of the system because the effect of self-avoidance

reduces in a higher dimension. For dimension d = 1, ν = 1. Also, for d → ∞,

R ∼ N1/2 must be recovered.

1.4.2 Flory Theory

Flory tried to estimate the size of the self-avoiding chain [Flory, 1965, Flory, 1970]

by balancing the excluded volume interaction energy which tends to swell the chain

and the entropic interaction which tend to restore Gaussian behavior. The mean

density of monomers in the chain of size R is N/Rd, where d is the dimension of the

space in which the chain is embedded. The excluded volume of a monomer is ad,

where a represents monomer size. Hence the excluded volume interaction energy for
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a single chain is given by,

Fexcl ∼ kBT
adN2

Rd
. (1.16)

The entropic contribution to the free energy is given by,

Fent ∼ kBT
R2

Nb2
. (1.17)

The equilibrium size of the coil is calculated by minimizing the total energy function

F = Fexcl + Fent.

F ∼ kBT
adN2

Rd
+ kBT

R2

Nb2
,

∂F

∂R
∼ 0,

R ∼ N
3
d+2 .

Comparing it with R ∼ N ν , we get ν = 3
d+2

. This relation is called the Flory

formula. For

• d = 1, R ∼ N , which is exact,

• d = 2, R ∼ N3/4, which is exact,

• d = 3, R ∼ N3/5, the more accurate value ν ≈ 0.588 comes from simulation,

• d = 4, R ∼ N1/2, this is again an exact. In this dimension, chain behaves as

an ideal chain.

It is important to note that the success of Flory theory is due to the cancellation

of two errors [de Gennes, 1979]. Flory’s method is used for its simplicity in many

cases such as linear chains with stiffness and polymers in confined spaces.
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1.5 Polymers in Solvent: Flory-Huggins Mean-field

Theory

In biological systems, polymers are usually found in solutions [Alberts et al., 2013].

Polymers in a solution behave very differently in different concentration regimes.

The overlap concentration c∗ of the polymer above which polymers begin to overlap

and entangle with each other is defined as [Doi, 1996, de Gennes, 1979],

c∗ ∼ N/R3
g, (1.18)

where, N is the degree of polymerization.

Now assuming ideal solution and using Rg ∼ N1/2 leads to,

c∗ ∼ N−1/2, (1.19)

φ∗ ∼ vN−1/2, (1.20)

where, φ∗ is the overlap volume fraction and v is the volume of a monomer. We see

that for large N , the overlap volume fraction φ∗ is very small implying that even

for very low volume fraction (φ � 1), the polymers are overlapped. The solutions

with φ < φ∗ are called dilute solution and with φ > φ∗ and φ � 1 are dubbed

as semi-dilute solution. The semi-dilute regime is a specific feature of the polymer

solution. When φ� φ∗ and φ < 1, the polymer solution is concentrated and highly

entangled.

The Flory-Huggins theory is a lattice-based mean-field theory used to describe poly-

mer solutions [Flory, 1965, Huggins, 1964]. It is an extension of lattice mean-field

theory which describes the dissolution of two low molecular weight liquids. The dis-

solution of a polymer into a solvent changes the free energy of the polymer-solvent

system. The Flory-Huggins mean-field theory compares the free energy of the system
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of polymer and solvent before and after mixing. Figure 1.4 shows a two-dimensional

Figure 1.4: The mixture of polymer and solvent on a lattice. The black spheres
represent the monomers while the white spheres represent the solvent particles.

version of a polymer-solvent system which has total ntot number of lattice sites and

each site is occupied by either a monomer or a solvent particle. Let Ns be the

number of solvent particles, Np be the number of polymers and N be the degree of

polymerization, then,

ntot = Ns +NNp. (1.21)

The polymer volume fraction φ is defined as,

φ =
NNp

ntot
. (1.22)

The entropy of mixing per lattice-site for the polymer-solvent system can be written

as the following,

∆S

kBTntot
= −

(
φ

N
lnφ+ (1− φ) ln (1− φ)

)
, (1.23)

where (1−φ) is the volume fraction of solvent particles. This expression is somewhat

similar in form to the expression for the entropy of mixing for two liquids [Hill, 1986]

but for a few crucial differences. The first difference is that the volume fraction
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appears in place of the mole fraction and the second one is that the degree of

polymerization N appears explicitly. This is because the monomers are connected,

which reduces the number of conformations of the polymer by a factor of 1/N .

Since the entropy of mixing is small especially at low concentration, the miscibility

of polymer in the solvent is governed by the change in interaction energy (enthalpy

change) upon mixing. We take εpp, εss and εps to be the interaction energy associated

with polymer-polymer, solvent-solvent and polymer-solvent contacts respectively.

Then the change in interaction energy per lattice site before and after mixing χ will

be given by,

χ = z(εps − (εpp + εss)/2)/kBT, (1.24)

where z is the lattice co-ordination number and χ is called the Flory-Huggins param-

eter. A positive value of χ indicates that the polymer-solvent contacts are preferred

and the polymer prefers to dissolve in solvent. A negative value indicates that the

polymer-solvent contacts are less favored. The enthalpy of mixing ∆H is given

by the change in number of contacts before and after mixing times the change in

interaction energy per lattice site,

∆H

kBTntot
= z(εps − (εpp + εss)/2)φ(1− φ),

= χφ(1− φ) (1.25)

From Eq. 1.23 and Eq. 1.25, the free energy of mixing per lattice site is given by,

∆F

kBTntot
=

φ

N
lnφ+ (1− φ) ln (1− φ) + χφ(1− φ). (1.26)

Various quantities can be calculated from the free energy. If P is the pressure and

V = ntotvc is the volume of the system, the Gibbs free energy G can be written as,

G(Np, Ns, P, T ) = F + PV = F + P (NpN +Ns)vc (1.27)
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The chemical potential of the polymer is given by the change in the Gibb’s free

energy when a polymer is added to the system keeping other variables Ns, T, P

constant.

µp(φ, P, T ) =
1

N
(G(Np + 1, Ns, P, T )−G(Np, Ns, P, T ))

= µ0
p(T ) + kBT

(
∆F + (1− φ)

∂∆F

∂φ

)
+ Pvc (1.28)

Similarly, the chemical potential of the solvent is given by,

µs(φ, P, T ) = µ0
s(T ) + kBT

(
∆F − φ∂∆F

∂φ

)
+ Pvc (1.29)

Since the polymers are dispersed in the solvent, the osmotic pressure Π of the solu-

tion can also be calculated. The osmotic pressure is the extra pressure that must be

applied across a semi-permeable membrane to maintain the equilibrium of solvent

particles. Hence,

µs(φ, P + Π, T ) = µs(0, P, T ). (1.30)

Using Eq. 1.29 in Eq. 1.30, we get,

Π =
kBT

vc

(
φ
∂∆F

∂φ
−∆F

)
(1.31)

Using Eq. 1.26 in Eq. 1.31 yields,

Π =
kBT

vc

(
φ

N
− ln(1− φ)− φ− χφ2

)
(1.32)

This expression of osmotic pressure is also used in chapter 3.
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1.5.1 Effect of Solvent Quality

The size and shape of the polymer depends strongly upon the quality of the sol-

vent in the polymer solution. In good solvent conditions, the polymer takes on

an expanded conformation to increase polymer-solvent contacts. In poor solvent,

the polymer shrinks to take a compact globular structure to minimize the polymer-

solvent contacts and to maximize monomer-monomer contacts (see Figure 1.5). The

size of the polymer in poor solvents follows Rg ∼ bN1/3 while in a good solvent,

Rg ∼ N3/5.

Figure 1.5: The polymer conformations in (a) good and (b) poor solvents.

1.6 Polymers Under Confinement

Confinement of the macromolecules is very common in biological systems and drug

delivery applications. For example, stretching DNA in nano-channels is an impor-

tant technique for separating DNA to perform experiments such as genome sequenc-

ing, restriction mapping [Reisner et al., 2012, Riehn et al., 2005, Douville et al.,

2008]. Also, understanding polymer confined in nano-channels serves as to under-

stand chromosome organization and viral DNA packing. Polymers in dilute solution

have many degrees of freedom. Upon confinement, the number of conformations a

polymer molecule can assume reduces and this leads to a variety of interesting ef-

fects. This entropic penalty associated with confinement has important implications

for the behavior and dynamics of the polymer. Confining cavities can be of different
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shapes. The interaction between the polymer and cavity wall can also potentially

be tuned to give the energy contribution.

In this section, we discuss the behavior of the polymers under confinement. We

discuss different approaches to derive the free energy of the polymer under confine-

ment.

1.6.1 Analytical Approach to Confinement

A natural confining geometry is a spherical one. In this section, we consider a

Gaussian polymer chain with one end at r0 and other end at r within a sphere of

radius Rc (see Figure 1.6). The probability of finding an unconfined chain of size N

with its ends at r0 and r is given by,

P (r, r0;N) =

(
3

2πNb2

)3/2

exp

[
−3(r− r0)2

2Nb2

]
. (1.33)

This probability distribution satisfies the following diffusion equation,

(
∂

∂N
− b2

6
∇2

)
P (r, r0;N) = 0, (1.34)

In order to obtain the free energy of polymer under confinement, we need to solve

Eq. 1.34 with the boundary condition that P is zero when the polymer ends r0 and

r are at the boundary of the confinement [Muthukumar, 2012a, Muthukumar, 2016].

We neglect the angular dependence. Eq. 1.34 can be written as,

∂

∂N
P (r, r0;N) =

b2

6

1

r2

∂

∂r

(
r2 ∂

∂r
P (r, r0;N)

)
. (1.35)
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Figure 1.6: A polymer chain confined in a sphere of radius Rc with one end at r0
and other at r.

This equation can be solved by the separation of variable method. The solution

is [Muthukumar, 2016],

P (r, r0;N) =
1

2Rrr0

∞∑
m=1

sin
(mπr0

R

)
sin
(mπr

R

)
exp

[
−m

2π2Nb2

6R2

]
. (1.36)

If both the ends of polymers are allowed anywhere in the cavity, the partition func-

tion Z is computed by averaging over r0 and r. It is given as,

Z =

(
4πR3

c

3b3

)
6

π2

∞∑
m=1

1

m2
exp

[
−m2π2

(
Nb2

6R2
c

)]
. (1.37)

The free energy of the polymer can be written using F = −kBT lnZ. Using Eq. 1.37,

F

kBT
= − ln

(
4πR3

c

3b3

)
− ln

[
6

π2

∞∑
m=1

1

m2
exp

[
−m2π2

(
Rg

Rc

)2
]]

, (1.38)

In Eq. 1.38 the first term is due to translational entropy of the chain and the second

is due to the confinement. The radius of gyration Rg for the Gaussian chain is

related to N by the expression R2
g = Nb2/6.
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1.6.2 Scaling Approach to Confinement

In this section, we derive the free energy expression for a flexible polymer chain in

a cylindrical cavity using scaling arguments. Let’s consider a polymer chain with

N segments confined in an infinitely long cylindrical pore with diameter D. The

average polymer dimension along the length of the cylinder is R‖ (see Figure 1.7).

In case of no confinement or very weak confinement, R‖ is proportional to the radius

of gyration Rg of the polymer. Under strong confinement, the size of the polymer

along the length of pore will be proportional to N [de Gennes, 1979]. Keeping these

arguments in mind,

R‖ ∼ Rgf(D/Rg), (1.39)

where f(D/Rg) is a scaling function of a dimensionless variable D/Rg.

Figure 1.7: A polymer chain confined in a cylindrical pore of diameter D.

When a polymer is placed under strong confinement i.e. D � Rg, the polymer

dimension R‖ ∼ N . Since Rg ∼ N ν , this can be the case only when the scaling

function is an algebraic function of the variable D/Rg [de Gennes, 1979]. Using this

relation, Eq. 1.39 can be written as,

R‖ ∼ Rg

(
D

Rg

)x
. (1.40)

Thus, for strong confinement,

N ∼ Nν

(
D

Nν

)x
. (1.41)
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Comparing the powers of N yields,

x = −1− ν
ν

. (1.42)

From Eq. 1.40 and Eq. 1.42,

R‖ =
N

D1/ν−1
. (1.43)

Hence, under weak confinement where D � Rg, R‖ ∼ Rg while for strong confine-

ment where D � Rg, Eq. 1.43 is followed.

R‖ ∼


Rg, for D � Rg

N
D1/ν−1 , for D � Rg

Similarly, using the scaling function, the free energy of confinement can be written

in terms of a function of a dimensionless variable D/Rg,

F

kBT
∼ fs

(
D

Rg

)
, (1.44)

where fs is scaling function of variable D/Rg. For strong confinement, the energy

must be linear in N , as doubling the N will double the energy. Using similar argu-

ments and calculations as in deriving Eq. 1.43, the expression for the confinement

free energy can be written as,
F

kBT
∼ N

D1/ν
(1.45)

1.6.3 Thermodynamic Approach to Confinement

The polymer under confinement is very similar to the polymer in a solvent with the

solvent boundary being the wall of the confinement. Thus, the Flory-Huggins theory

of polymer solutions can be used to get the free energy expression [Muthukumar,
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2012a]. The free energy of the polymer under confinement has two parts. The first

part comes from the translational entropy and the enthalpy contribution of polymer

segments and solvent particles (see section 1.5). A dilute and semidilute solution is

characterized by large and strongly correlated fluctuations in the monomer density

that are absent in the melt. The second part of free energy arises due to monomer

density fluctuations and can be given by [Muthukumar, 1986, Muthukumar and

Edwards, 1982],
∆Ffluc
kBTΩ

∼ 1

24πξ3
, (1.46)

where ξ is the correlation length which depends upon the polymer volume fraction

φ. The correlation length ξ is proportional to φ−1/2 for concentrated solutions and

φ−3/4 for semi-dilute solutions.

The total free energy can be written as the sum of Eq. 1.26 and Eq. 1.46,

∆F

kBTΩ
=

φ

N
lnφ+ (1− φ) ln (1− φ) + χφ(1− φ) +

1

24πξ3
. (1.47)

Note that the volume of the system Ω is equivalent to the number of total sites

ntot in Eq. 1.26. In the mean field theory framework, if the system falls under the

concentrated regime, the free energy contribution 1/24πξ3 arising due to monomer

density fluctuations is of the order of φ3/2 which is smaller in comparison to other

terms which are of the order of O(φ2). This contribution can thus be ignored. In

this case, the free energy approximately is,

∆F

kBT
∼ Ωφ2 ∼ R3

c

(
N

R3
c

)2

∼ N2

R3
c

, (1.48)

where N is the number of polymer segments in the solution and Rc is the size of the

confinement . This expression changes if the chain length is such that the segment

concentration falls under within semi-dilute regime. The fluctuation term 1/24πξ3

then becomes of the order of φ9/4 and contributes significantly in comparison to
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other O(φ2) terms and the free energy can be approximated as,

∆F

kBT
∼ Ω

ξ3
∼ R3

c

(
N

R3
c

)9/4

∼ N9/4

R
15/4
c

. (1.49)

Hence, the free energy function under confinement given by Eq. 1.47 is a concentra-

tion dependent crossover function which has two different limits in the concentrated

(Eq. 1.48) and semi-dilute regime (Eq. 1.49).

1.7 The Stem Cell

A cell is the basic structural, functional and biological unit of all known living or-

ganisms [Alberts et al., 2013]. Cells can be prokaryotic or eukaryotic. Prokaryotic

cells are those in which nuclei are absent. Prokaryotes include two of the three

domains of life, bacteria and archaea. Eukaryotic cells possess a nucleus as well as

other membrane-bound structures called organelles. These include the endoplas-

mic reticulum (ER), the golgi complex, lysosomes, mitochondria, microbodies and

vacuoles[Alberts et al., 2013]. Plants, animals, fungi, protozoa and algae are all

examples of eukaryotes.

Stem cells are undifferentiated cells that can differentiate into specialized cells and

can divide while maintaining differentiated state [Alberts et al., 2013]. The defini-

tion of stem cell requires the specification of both potency and of the property of

self-renewal. The ability to go through numerous cell-cycles while maintaining the

undifferentiated state is called self-renewal. The ability of the stem cell to differen-

tiate into various different specialized cells is termed as potency.

Depending upon where they are sourced from, stem cells can be mainly classified into

three types: embryonic stem cells, obtained from a 4 to 6 days old embryo, adult stem

cells, obtained from tissues in the adult and induced pluripotent stem cells, derived
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from an adult cell by introducing a specific set of pluripotency "reprogramming

factors" into a given cell type [Takahashi and Yamanaka, 2006]. Stem cells can also

be categorized on the basis of their potency. The Zygote and the cells of first few

cycles are the most potent stem cells as they can differentiate into all kinds of specific

cell types. They are called totipotent stem cells. On the other hand, pluripotent

stem cells the have ability to differentiate into almost all kinds of stem cells, but

not all possible cell types. Cells which can differentiate into a restricted family of

cell types are called multipotent stem cells. For example, a hematopoietic stem cell

that could differentiate into a WBC, RBC or platelets, is a multipotent stem cell.

Stem cells differentiate into specific cells, according to the environment and the

stimuli they receive. The mechanical properties of stem cells differ from those of a

differentiated cell. Experiments [Chowdhury et al., 2010, Pajerowski et al., 2007]

show that mechanically undifferentiated cells nuclei are less stiffer than those of

differentiated ones. The fact that differentiated and undifferentiated cells have dif-

ferent stiffness and flexibility indicates that the nature of chromatin organization in

these cells may play a role in their properties. Experiments [Pagliara et al., 2014]

find that the nuclei of mouse embryonic stem cells exiting the pluripotent state have

a negative Poisson’s ratio, exhibiting an expansion in the lateral direction upon

stretching and a lateral contraction upon compression. Materials which exhibit a

negative Poisson’s ratio are termed as auxetic materials. In chapter 3, we explain

this phenomenon by deriving a dynamical systems model in which we couple nu-

clear dimensions to states of chromatin compaction and make a number of specific

predictions for experiments.

The nucleus is a membrane enclosed organelle containing most of the cell’s genetic

material, organized as multiple long linear DNA molecules complexed with a large

variety of proteins including packaging proteins called histones. The combination

of DNA with bound histones is called chromatin. It is believed that, in stem cells,
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highly active chromatin continually exchanges a fraction of bound histones with an

unbound or loosely bound pool of histones and other associated proteins (see Fig-

ure 3.1(b)). This is described by saying that chromatin is hyperdynamic [Meshorer

et al., 2006].

A section of DNA which encodes the synthesis for protein or RNA is called gene.

During the process of gene expression, information from the gene sequence is used in

the synthesis of these gene products. This process involves two steps: transcription

and translation. The first step in which gene’s DNA is copied into messenger RNA

(mRNA) using an enzyme called RNA polymerase, is called transcription. During

the second step, mRNA is used to synthesize proteins with the help of ribosomes.

This process of synthesizing the protein from RNA is called translation. A good

fraction of genes are inactive for most of the life time of the cells and their expression

is tightly regulated so that they are expressed only when the corresponding gene

products are needed [Alberts et al., 2013]. A cell regulates its gene expression

depending upon internal and external stimuli and the specific type.

1.8 Summary

In this chapter, we discussed various polymer models. First, we discussed the ideal

chain polymer model in which the bond length is constant and more than one

monomer can occupy one lattice point. In this model Rg of the polymer scales

as N1/2. The shortcoming of constant bond length is corrected by embedding the

Gaussian behavior to bond length. The self-avoiding chain model is discussed where

the overlap of the monomers onto each other is prohibited.

Subsequently, we discussed polymers in confinement. When the polymer is restricted

to a confined space, the number of conformations a polymer can assume is reduced.

The free energy of confinement depends upon the shape and size of the confinement.
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Three different approaches are taken to solve the problem of confinement. In an

analytical approach, a polymer chain was confined to the interior of a sphere, the

diffusion equation is solved analytically and the corresponding free energy was writ-

ten down. Second, we used scaling arguments to derive free energy expression for a

polymer confined in a cylindrical tube. Finally, in a thermodynamic approach, the

Flory-Huggins theory of polymer was used to derive the expression for free energy.

At the end, a brief summary of the stem cell and the related biological terms was

provided. These terms will be used in chapter 3.
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Chapter 2

Methods

There are various ways to understand the behaviour of a polymer system. In this

thesis, we discuss, two of them; one is through a theoretical approach which we dis-

cussed earlier in chapter 1 and the other is through a computational approach, based

on molecular dynamics simulations, which we discuss in this chapter. Molecular dy-

namics (MD) simulations were first introduced by Alder and Wainwright [Alder and

Wainwright, 1957, Alder and Wainwright, 1959] to study the phase transition of a

hard sphere system. Today, a number of advancements have been made in terms of

techniques and computational power so that we can solve far more complex problems

with molecular dynamics.

2.1 Molecular Dynamics: The Basic Idea

Molecular dynamics simulations allow us to determine the motion of constituent

particles which interact with each other through an interaction potential. The time

evolution of the particles position is obtained by solving Newton’s equations of

motion. MD simulations provide the microscopic picture of the system from which

the macroscopic properties of the system can be measured.
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Let’s take a system of N particles which interact with each other via a potential

U(ri), where i is the index for each particle. The force (Fi) exerted on ith particle

can be written as,

Fi = −∇U(ri). (2.1)

The above expression can also be written in terms of mass m and acceleration d2r
dt2

of the particle,

mi
d2ri
dt2

= −∇U(ri). (2.2)

Solving the above equations along with the appropriate boundary conditions and

initial condition yields the trajectory of the particle over a period of time.

2.1.1 Force Field and Equations of Motion

The force field is a collection of equations and parameters which are used to re-

produce the molecular geometry and properties of the system. Most force fields are

empirical and consist of both bonded potentials which include chemical bonds, bond

angles, dihedrals and improper angles, and non-bonded potentials which include van

der Waals and electrostatic forces. The parameters are obtained either from ab-initio

semi-empirical quantum mechanical calculations or by fitting the experimental data.

A typical force field which comprises bonded and non-bonded interactions is,

U = Ubond + Unon−bond, (2.3)
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U =
∑
bonds

1

2
kb(r − r0)2 +

∑
angles

kθ(θ − θ0)2 +
∑

dihedrals

kφ[1 + cos(nφ+ δ)]

+
∑

impropers

kψ(ψ − ψ0)2 +
∑
i

∑
j 6=i

4εij

[(
σij
rij

)12

−
(
σij
rij

)6
]

+
∑
elec

qiqj
4πε0εrrij

, (2.4)

where the first four terms are the contribution from two body interaction potential

(bond), three body interaction potential (angle) and four body interaction potentials

(dihedral and improper) and the last two term are van der Waals and electrostatic

interaction.

2.1.2 Bonded Interaction

The first part in Eq. 2.4 is the bond energy due to the interaction between two

adjacent particles which are chemically bonded (see Figure 2.1 (a)). The simplest

and most common choice for bonded interaction is the harmonic potential kb
2

(r−r0)2.

The r0 is the equilibrium bond length and kb is the force constant. The next term

in the equation represents the energy associated with the angle θijk made by two

adjacent bonds (Figure 2.1 (b)). The θ0 is the equilibrium angle and kθ is the force

constant associated with the bond angle. The third term in the Eq. 2.4 is associated

with the 4 body torsional interaction. The kφ is the torsional force constant and

φijkl is the angle between the planes formed by i, j and k molecules and j, k and l

molecules (Figure 2.1 (c)), the integer constant n is non-negative and indicates the

periodicity and δ is the phase shift angle. The fourth term in Eq. 2.4 is the improper

angle potential which is used to give the system a correct chirality. The improper

angle ψ is the angle between the bond lj and the plane formed by ijk (Figure 2.1

(d)), ψ0 is the equilibrium value of ψ and kψ is the stiffness of the potential.
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Figure 2.1: Schematic description of different bonded interactions and the parame-
ters involved.

2.1.3 Non-Bonded Interaction

The non-bonded interaction includes Lennard-Jones potential and Coulomb electro-

static potential. The Lennard-Jones potential is an intermolecular pair potential

which has been studied extensively. It consist of a repulsive interaction term 1/r12

which describes the Pauli repulsion due to overlapping of electron orbitals and an

attractive interaction term −1/r6 to mimic the attraction at long range (see Fig-

ure 2.2). The force due to this potential can be repulsive or attractive depending

upon the value of intermolecular separation rij. To include the strength of the at-

traction/repulsion a parameter εij is used while σij is related to the molecular size.

The 1/r6 interaction term is long range in power law but in order to save computing

time, it is generally truncated at a cut-off distance rc = 2.5σ (σ is the length scale

of the system) and shifted to avoid discontinuity in potential energy at the cut-off

distance. The other non-bonded potential is Coulomb interaction potential where

qi and qj are the charges of the ith and jth particle, ε0 is the electric permittivity of

vacuum and εr is the permittivity of the medium. The Coulomb potential is long

range and can be computed with a cut-off as in case of LJ potential but 1/r ap-
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Figure 2.2: LJ interaction potential (blue) is a combination of a repulsive (1/r12)
(red) and an attractive −(1/r6) part (green).

proaches 0 slower than 1/r6. Hence, special techniques such as Particle Mesh Ewald

(PME) [Ewald, 1921] and Fast Multipole Method (FMM) are employed to calculate

it [Frenkel and Smit, 2001]. In this thesis, we explored the neutral polymers using

the molecular dynamics simulation, hence no electrostatic computation is carried

out in chapter 4.

Now in order to describe the motion of the system, we write down the equations of

motion,

mi
d2ri
dt2

= − ∂

∂ri
U(r1, r2, ....rN), (2.5)

This is a system of N second order coupled differential equations.
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2.1.4 Solution of Equation of Motion

The interaction potential function U(ri) is a function of 3N atomic positional co-

ordinates. Hence, solving the equation of motion analytically is not possible and

we solve it numerically along with the initial conditions. There are many algo-

rithms available to integrate the equations of motion. Some conditions are met

while choosing integration algorithm, it should conserve the energy, should be re-

versible, computationally efficient and allow for a long integration time step. Some

of the commonly used algorithms are discussed below.

Euler Algorithm

This is, perhaps, the most simple algorithm to integrate the equations of motion.

The trajectory is calculated as following,

r(t+ δt) = r(t) + ṙ(t)δt+
1

2
r̈(t)δt2 +O(δt3), (2.6)

v(t+ δt) = v(t) + v̇(t)δt+O(δt2), (2.7)

The Euler algorithm is neither time-reversible nor phase-space preserving and hence

not preferred.

Verlet Algorithm

This is one of the most commonly used integration algorithm which was introduced

by Verlet 1967 [Verlet, 1967]. We write two Taylor series expansions for r(t), one

forward in time and other backward in time.
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r(t+ δt) = r(t) + ṙ(t)δt+
1

2
r̈(t)δt2 +

1

3!

...
r (t)δt3 +O(δt4), (2.8)

r(t− δt) = r(t)− ṙ(t)δt+
1

2
r̈(t)δt2 − 1

3!

...
r (t)δt3 +O(δt4). (2.9)

Adding Eq. 2.8 and Eq. 2.9 together yields,

r(t+ δt) = 2r(t)− r(t− δt) + r̈(t)δt2 +O(δt4). (2.10)

It is to note that this position at time t+δt depends upon the position at two previous

time steps t and t− δt. The error associated with the r(t) is of the order of δt4. The

Verlet algorithm does not use velocity to update the position of particles, however

it can be derived from the knowledge of position co-ordinates of the particles. From

central difference, the velocity at time t can be written as,

v(t) =
r(t+ δt)− r(t− δt)

2δt
+O(δt2). (2.11)

We see from Eq. 2.11 that the error associated with the v(t) is of the order of δt2

rather than δt4. The velocity of a particle at time t is computed only when we know

its position at time t + δt. The velocity does not appear explicitly in the Verlet

algorithm which makes it inaccurate to implement e.g. temperature control. In

order to start a calculation, we generally know the position of the particle and the

velocity it has but knowing these two values is not enough to start this algorithm.

The problem of accuracy and need to store positions of two previous time steps can

be solved using other modified algorithms such as Leap-Frog Verlet [Frenkel and

Smit, 2001] and Velocity-Verlet Algorithms.

33



Leap-Frog Algorithm

The slope of a function between two points is a much better approximation of the

derivative at the midpoint, than at either end. In this method, we use the following

approximation,

r(t+ δt) = r(t) + ṙ(t+ δt/2)δt, (2.12)

v(t+ 3δt/2) = v(t+ δt/2) + v̇(t+ δt)δt. (2.13)

The velocities are updated at half time steps and leap ahead the position co-

ordinates. The current velocities can be written as,

v(t+ δt) =
(v(t+ δt/2) + v(t+ 3δt/2)

2
. (2.14)

The error in Leap-Frog method are of the order of δt2.

Velocity-Verlet Algorithm

Velocity-Verlet algorithm [Swope et al., 1982] has improved accuracy compared to

Verlet algorithm. To derive the velocity-Verlet algorithm, the Taylor expansion of

the position co-ordinates as well as velocity and the first derivative is written as,

r(t+ δt) = r(t) + ṙ(t)δt+
1

2
r̈(t)δt2 +O(δt3), (2.15)

v(t+ δt) = v(t) + v̇(t)δt+
1

2
v̈(t)δt2 +O(δt3), (2.16)

v̇(t+ δt) = v̇(t) + v̈(t)δt+O(δt2), (2.17)

Rearranging Eq. 2.17 and multiplying both sides by δt/2 yields,
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v̈(t)
δt2

2
=
δt

2
[v̇(t+ δt)− v̇(t)] (2.18)

Substituting the value of v̈(t) δt
2

2
in Eq. 2.16 gives,

v(t+ δt) = v(t) +
δt

2
[v̇(t+ δt) + v̇(t)] +O(δt3) (2.19)

Replacing ṙ = v and v̇ = a in Eq. 2.15 and 2.19 leads to the final velocity-Verlet

algorithm,

r(t+ δt) = r(t) + δtv(t) +
δt2

2
a(t)

v(t+ δt) = v(t) +
δt

2
[a(t) + a(t+ δt)] . (2.20)

This algorithm has an error of the order of δt3 in position as well as velocity. As

the equations in this algorithm computes both the position and velocity, it is self

starting unlike Verlet algorithm which yielded only the position from two previous

steps.

2.2 Ensembles

An ensemble is a collection of a large number of microscopically different replicas

of a system having statistically similar macroscopic properties. The ensemble for-

malises the idea that experiments may give similar macroscopic outcomes even if

the microscopic details are not same. There are different types of ensembles and

what ensemble to choose for the simulation depends upon the system specifics and

the quantities of interest. Three most important ones are microcanonical, canonical

and grand canonical ensembles.
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The microcanonical ensemble, also known as NVE ensemble has the number of

particles N , the volume V and the energy E of the system constant. This ensemble

is useful for a system which is isolated from its environment (heat bath). When the

system is not isolated and is in contact with its environment, it can exchange energy

and keep the temperature constant. In this case, the canonical ensemble is used. In

this ensemble, systems have number of particles N , volume V and temperature T

constant. On the other hand, a grand canonical ensemble is used when a system is

open (free to exchange particles) and in contact with the environment, it will have

the chemical potential µ, volume V and temperature T constant.

2.3 Thermostats and Barostats

In molecular dynamics simulation, only integrating the equations of motion yields

microcanonical ensemble as the energy is conserved. In order to perform simulations

under the conditions of constant temperature and/or constant pressure, modifica-

tions are done to the Newton’s equations of motion. A brief introduction to such

methods is following,

Andersen Thermostat

Andersen proposed this thermostat in 1980 [Andersen, 1980] which allowed the

simulations under constant temperature for the first time. This thermostat couples

the system with a heat bath and a randomly chosen particle is imparted a momentum

which is chosen from Boltzmann distribution at temperature T . The time between

the collision is decided randomly following Poisson’s distribution. This thermostat

cannot be used for calculating diffusion coefficients as it destroys the momentum

transport because of random velocities.
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Thermostat using velocity rescaling

In this method, the velocities are rescaled to keep temperature constant without

allowing for any fluctuation in temperature.

vi →
√
T0

T
vi, (2.21)

where T0 is the desired temperature and T is the instantaneous temperature calcu-

lated from the velocities of the particles. This method leads to discontinuities in the

momentum of the particles due to rescaling.

Berendsen Thermostat

In canonical ensemble, the instantaneous temperature of the system fluctuates about

the desired temperature which Gaussian thermostat does not allow. In order to

overcome this problem arising from the rescaling method, Berendsen Thermostat

[Berendsen et al., 1984] was introduced. The velocities are rescaled such that the

rate of change of temperature depends upon the difference between the instantaneous

temperature of the system and the desired temperature.

dT

dt
=

1

τ
(T0 − T ), (2.22)

where τ is coupling parameter determining how tightly the heat bath and the system

is coupled.

Lagrangian Thermostat

In this method, the particle is assumed to be moving in a sea of fictional smaller par-

ticles. The smaller particles create a damping force −γpi on the particle, where γ is

frictional coefficient and pi is the momentum of the particle. Also, the smaller parti-
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cles have their own kinetic energy and they collide and randomly impart momentum

to the particle. Hence, the equation of motion is,

m
d2ri
dt2

= −∇U(ri)−mγ
dri
dt
−Ri(t), (2.23)

where Ri(t) is the random force due to the collision of the smaller particles. As this

thermostat mimics the viscous aspect of the solvent, it is used in such solute-solvent

systems where the behavior of solvent is non-interesting and the behavior of solute

is desired (such as proteins, DNA in a solvent etc.).

Nosé–Hoover Thermostat

It is one of the most accurate and efficient method to perform constant temperature

molecular dynamics simulations. It was developed by Nosé [Nosé, 1984] and further

modified by Hoover [Hoover, 1985]. Nosé–Hoover Thermostat uses a deterministic

algorithm where it adds an additional degree of freedom (s) which gives an effect of

heat bath. The Lagrangian of the extended system is given by,

L =
N∑
i=1

mi

2
s2q̇i

2 − U(q) +
Q

2
ṡ2 − gkBT ln s, (2.24)

wheremi is the mass, qi is the coordinate of ith particle, Q is the mass associated with

s, and g is the number of degrees of freedom of the system. Using the Lagrangian

of the system, the equation of motion can be written down as below,

dqi
dt

=
pi
mis2

,

dpi
dt

= −∂U
∂qi

,
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ds

dt
=
ps
Q
,

dps
dt

=

∑ pi
mis2
− gkBT
s

,

where pi and ps are momenta conjugate to qi and s.

Berendsen Barostat

Most experiments are done under constant pressure rather than constant volume.

Thus in order to mimic the experimental conditions, simulations need to have a

constant pressure as well which is achieved using a suitable barostat. The Berendsen

barostat [Berendsen et al., 1984] is very similar to Berendsen thermostat. The

instantaneous pressure P of the system is rescaled in such a way that,

dP

dt
=

1

τ
(P0 − P ), (2.25)

where P0 is the desired pressure and τ is the coupling constant similar to what was

used in Berendsen thermostat. This rescaling of pressure leads to the change in cell

dimension which is corrected by a factor η,

η = 1− ∆t

τ
γ(P0 − P ), (2.26)

where ∆t is integration time step and γ is the isothermal compressibility of the

system.
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2.4 Ergodic Hypothesis

With MD simulations, one calculates the time averages of an observable, but ex-

periments are supposed to provide ensemble average of the observable. The ergodic

hypothesis states that the time average of an observable is equal to its ensemble

average with probability one.

〈A〉time = 〈A〉ensemble. (2.27)

The assumption behind this is that if we let the system evolve in time, it will cover

all the phase space and take all the conformations. As the simulations are carried out

for a finite time, the systems do not have enough time to cover all the possibilities

and do not obey ergodicity. In molecular dynamics, for the calculation purposes,

systems are assumed to be ergodic [Calvo et al., 2002].

2.5 All Atom vs Coarse Grained Model

The most fundamental and accurate model of the matter is which invokes quantum

mechanics. In this approach, Schrödinger equation is needed to be solved for all

the sub-atomic particles in the system. Computationally, many approximations are

made in order to solve it, even then it is limited to a small number of particles.

Solving a larger system with such great detail is neither computationally practical

nor needed as often the phenomenon we are interested in are manifested on a larger

length and time scales. As the length and time scales of the different systems differ

orders of magnitude, the details we need to input in the simulations vary significantly.

When one moves to the larger scales, a coarse-grained model is used to describe the

system. In these models pseudo-atoms are defined which are group of atoms. The

number of atoms in a pseudo-atom depends upon the length scale of the system
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we are interested in. These coarse-grained models are derived from the atomistic

models and are computationally much less expensive.

2.6 Software Packages

In order to make implementation of various algorithms used in the integration of

Newton’s equations and thermostats/barostats, easier and faster, various software

packages are available. The suitability of a package depends on the problem and

the features of the package. For example, for all atom simulations, NAMD pack-

age [Phillips et al., 2005] can be used and for coarse grained system LAMMPS [Plimp-

ton, 1995] or GROMACS [Van Der Spoel et al., 2005] can be utilized. For the re-

sults presented in chapter 4, LAMMPS package is utilized for the coarse grained

simulations. LAMMPS stands for Large-scale Atomic/Molecular Massively Parallel

Simulator and is distributed by Sandia National Laboratories, a US Department of

Energy laboratory. It is an open-source code written in C++/Python under the

terms of the GPL. It runs on single processors or in parallel using message-passing

techniques and a spatial-decomposition of the simulation domain. In this thesis,

LAMMPS was used to perform all the simulation presented in chapter 4.

There are various tools available for the visualization of the trajectory generated at

the end of the simulations. For example OVITO [Stukowski, 2010], VMD [Humphrey

et al., 1996] and PIZZA.PY. Some of the packages have analytical capabilities along

with the visualization capability. I used VMD package in the visualization and also

some of the analysis was done using custom tcl scripts in VMD.
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Chapter 3

Chromatin Compaction, Auxeticity

and the Epigenetic Landscape of

Stem Cells

Measurements of the deformability of cell nuclei in the transitional state that inter-

venes between the embryonic stem cell state and the differentiation primed state of

mouse stem cells indicate that such nuclei are auxetic i.e. have a negative Poisson’s

ratio. We show, using a theoretical model, how this remarkable mechanical be-

haviour results from the coupling between chromatin compaction states and nuclear

shape. Our model yields a biophysical interpretation of the epigenetic landscape of

stem cells, also suggesting how this landscape might be probed experimentally. This

chapter is based on the work presented in Ref. [Tripathi et al., 2019].

3.1 Introduction

Embryonic stem cells (ES cells) occupy the apex of a hierarchy of cellular states [Young,

2011]. They can self-renew, maintaining their ”stemness”, but also differentiate into
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varied cellular lineages when supplied with appropriate biochemical or mechanical

cues. This is the property of pluripotency [Suda et al., 1987, Heo et al., 2018]. Cell

lineage choice results from shifts in patterns of gene expression, controlled by the

rewiring of gene regulatory networks. Such rewiring can arise because the tran-

scription factors that control the production of RNA are present at different levels

in different cell types. But such shifts can also occur through biochemical changes

at the DNA level, such as the methylation of cytosine residues, as well as through

modifications in histone and other architectural proteins that bind DNA [Berger,

2007, Hawkins et al., 2010]. Such epigenetic modifications, termed thus because

they do not affect DNA sequence, alter the local structure and biophysical proper-

ties of chromatin, the term applied to DNA in its natural state in the nuclei of living

cells.

Changes in patterns of gene expression should have biophysical correlates, since they

require actively transcribed genes to be more accessible than silenced genes [Rando

and Chang, 2009]. Regions of chromatin which see higher levels of transcriptional

activity are typically more loosely packed (euchromatin) than gene poor and rel-

atively more compact (heterochromatin) regions. These regions can be identified

through local epigenetic marks [Narlikar et al., 2002]. The local state of chromatin

compaction is clearly relevant to the biophysics of chromatin. It may assume added

importance in the highly dynamic stem cell state since ES cells are known to be

transcriptionally hyperactive [McNally, 2011, Efroni et al., 2008]. In addition, ES

cell chromatin is “hyperdynamic”, with histones binding and unbinding locally at an

enhanced rate compared to differentiated cells [Meshorer et al., 2006]. This increased

rate of binding and unbinding leads to larger fluctuations in chromatin packaging.

Stem cell chromatin is thus more fluid-like than the chromatin of differentiated cells.

Such fluidity likely contributes to the maintenance of pluripotency [Gaspar-Maia

et al., 2011].
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Before lineage commitment, ES cells exhibit decondensed chromatin and soft nuclei.

A slowing down of histone dynamics, a stiffening of the nuclear envelope and global

chromatin remodelling all accompany differentiation. This results in a transition

between a more open chromatin configuration to a more compact state [Engler

et al., 2006, Justin and Engler, 2011, Evans et al., 2009, Chen and Dent, 2014,

Ugarte et al., 2015]. The interplay of chromatin packaging with fluctuations of the

relatively pliable chromatin-enclosing nuclear envelope might reasonably be expected

to underly the special biophysical properties of the stem cell nucleus [Bošković et al.,

2014, Dado et al., 2012]. Purely mechanical cues, such as substrate stiffness or

substrate structure, are sufficient to drive stem cell differentiation into preferred

lineages [Engler et al., 2006, Yim and Sheetz, 2012, Hwang et al., 2013]. This

suggests a biophysical link between nuclear mechanics, chromatin packaging and

lineage choice.

Waddington originally visualised the differentiation of stem cells in terms of a set

of branching tracks representing different cell fate choices [Waddington, 1947]. A

subsequent, more pictorial version of this idea used the analogy of a ball rolling

along an "epigenetic landscape" with minima chosen to represent stable differenti-

ated states [Gilbert, 2000, Waddington, 2014]. Stable positions in this landscape

have been argued to correspond to attractors of a high-dimensional nonlinear dy-

namical system controlled by feedback [Huang, 2012]. This provides a particularly

appealing and pictorial way of understanding how stem cell differentiation into spe-

cific cell lineages can be visualized. Such ideas connect naturally to other landscape

descriptions of biophysical states and phenomena [Kauffman, 1992, Onuchic et al.,

1997]. However, the experimental corollaries of an epigenetic landscape and how, in

particular, nuclear mechanics might enter its description, are little understood.

We ask whether recent biophysical measurements of the mechanical properties of

stem cell nuclei can provide insights into these broader questions [Miroshnikova
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et al., 2017, Chalut et al., 2012, Swift and Discher, 2014]. We first note that al-

most all materials have a positive Poisson’s ratio, becoming wider in the transverse

direction when compressed uniaxially along a longitudinal dimension [Landau and

Lifshitz, 1986, Chaikin et al., 1995]. Materials with a negative Poisson’s ratio, among

them foams, are termed auxetics [Evans and Alderson, 2000, Grima et al., 2006].

Pagliara et al. [Pagliara et al., 2014] report results from atomic force microscopy

(AFM) measurements of the reduced modulus K = E/(1− ν2), with E the unaxial

stiffness and ν the Poisson’s ratio, of naive mouse embryonic stem cell (N-ESC) nu-

clei exiting the pluripotent state en route to differentiation via a transitional state

(T-ESC) and a differentiation primed (P) state. In the transitional state, obtained

when specific inhibitors preventing the transition to a differentiation primed state

are removed, the cell nuclei were noticed to become smaller by about 5-10% in cross

section when compressed to the level of about 2 µm with the AFM probe [Pagliara

et al., 2014]. Similar results were obtained by observing changes in nuclear dimen-

sions when cells in the T-ESC state were set in flow along a microchannel. Whereas

both the N-ESC as well as the P states exhibit a positive Poisson’s ratio, the T-ESC

state that intervenes between them is thus auxetic, with a negative Poissons ratio.

Pagliara et al. suggest that the auxetic phenotype might be connected to chromatin

de-condensation, since chromatin in the transitional state is less condensed than in

either the embryonic stem cell state or the differentiation primed state [Pagliara

et al., 2014]. Disrupting the actin cytoskeleton through Cytochalasin D treatment

did not remove auxeticity, indicating that it might naturally originate in the bio-

physical properties of the nucleus itself and not of the extranuclear environment.

The model we describe here [Tripathi and Menon, 2019] addresses these experiments,

placing them in a wider context of our understanding of the epigenetic landscape

of stem cells. It uses four biophysical assumptions. These follow from the exper-

imental observations. First, the nucleus in the auxetic regime is compressible, a

fundamental property of the auxetic state [Huang and Chen, 2016, Ren et al., 2018].
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Figure 3.1: (a) Schematic of the AFM experiment of Ref. [Pagliara et al., 2014]
(b) Fluctuations in chromatin compaction arising from the fast on-off dynamics of
nucleosomes in the stem cell state, where histones are hyperdynamic (c) Definitions
of the variables Ψ, R‖, and R⊥ in the AFM-based indentation experiment, includ-
ing the applied force f arising from the indentation (d) Illustration of normal i.e.
non-auxetic behaviour in the experiments, showing how the nucleus expands in the
direction perpendicular to the applied force f , while the nuclear dimension in the
direction parallel to the force contracts. (e) Illustration of auxetic behaviour, show-
ing how the nucleus contracts both in the direction perpendicular to the applied
force as well as in the direction parallel to it. The schematic plots in (f) for the
non-auxetic case and (g) for the auxetic case show how the variables Ψ, R‖, and
R⊥ behave in both limits as f is increased from zero. The unperturbed nucleus is
taken to be spherical.

Second, mechanical response to a uniaxial external force in such a regime must distin-

guish between directions parallel to the force and perpendicular to it, although such

anisotropy need not be intrinsic to isolated stem cells in the absence of an applied

force [Alderson et al., 2005]. Third, a number of experiments indicating chromatin

fluidity in all but terminally differentiated states argue that chromatin is best de-

scribed as a confined, active polymer fluid in a semi-dilute regime [Pajerowski et al.,

2007]. (Indeed, the formation of heterochromatin foci has been discussed in analogy

with active phase separation in liquid-liquid mixtures [Larson et al., 2017, Strom

et al., 2017].) An alternative view of auxeticity which considers the nucleoplasm to
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be a gel and uses ideas from phase separation is described in Ref. [Yamamoto and

Schiessel, 2017]. We will treat activity as equivalent to a (higher) effective temper-

ature [Ganai et al., 2014, Agrawal et al., 2017, Agrawal et al., 2018]. Fourth and

finally, we assume that auxetic behaviour arises from the form of the coupling of

chromatin compaction states to mechanical variables, which we choose as nuclear

dimensions parallel to, as well as perpendicular to, the applied force. These four

assumptions, all reasonable from a biophysical standpoint, inform our mathemati-

cal model. We use them to derive a model non-linear dynamical system describing

auxetic behaviour in the transitional state of stem cells.

3.2 Materials and Methods

We first identify relevant variables of interest, in particular those that are amenable

to measurement. Figure 3.1(a) shows a schematic of the experiments of Ref. [Pagliara

et al., 2014] while Figure 3.1(b) illustrates how the on-off dynamics of nucleosomes

in the stem cell state might alter chromatin packaging. Figure 3.1(c) illustrates the

definitions of the fundamental mechanical variables that enter our model. We use

a single variable, labelled Ψ, to describe nucleosome-induced compaction of chro-

matin. The variable Ψ can be thought of as representing the number of nucleosomes

bound to chromatin at a given time, with the biophysical interpretation that a

larger number of bound nucleosomes yields a more compact chromatin structure.

The structural variables R‖ = R0 + δR‖ and R⊥ = R0 + δR⊥ denote nuclear dimen-

sions parallel and perpendicular to the direction of the applied force f , as shown.

Figure 3.1(d)- (e) illustrate how nuclei deform under force in both the non-auxetic

(d) and the auxetic (e) case. Finally. Figs. 3.1(f) and (g) supply schematics of

auxetic and non-auxetic response to a force f , in the variables Ψ, R‖, and R⊥. How

to derive the schematics of Figs. 3.1(f) and (g), including the behaviour of Ψ in both

the auxetic and non-auxetic cases predicted by the theoretical formulation, is the
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subject of this chapter.

3.2.1 Model Description

Our equations are formulated in terms of δΨ, δR‖ and δR⊥ defined as in Figure 3.1

and derived below. The equations describing how these quantities change in time

take the form

d(δΨ)

dt
= −dV (δΨ)

dδΨ
+B(

1

2
δR‖ + δR⊥) + ηΨ, (3.1a)

d(δR‖)

dt
= −CδR‖ −DδΨ− f‖ + ηR, (3.1b)

d(δR⊥)

dt
= −CδR⊥ −DδΨ + f⊥ + η′R. (3.1c)

We have used our freedom to choose units suitably to "de-dimensionalize" the

coefficients that appear in these equations. The first term on the right-hand side of

each of these equations represents the independent relaxation of fluctuations away

from {Ψ0, R0}. We assume that the δΨ variable relaxes subject to an effective

potential V (δΨ). The interpretation of this term will become clearer as we proceed.

The second term couples δΨ to the mechanical variables R‖ = R0 + δR‖ and R⊥ =

R0 + δR⊥, with coefficient B; the relative factor of 2 accounts for the 3-d geometry.

This coupling appears to lowest order in the fluctuations δR‖ and δR⊥. This is the

simplest form that these equations could take. Their biophysical content lies in the

estimates of the numerical values associated with the coefficients. More subtly, the

coupling between chromatin compaction and nuclear dimensions is to be found in

the cross-terms in Eq. 3.1.

In the absence of a force, R‖ and R⊥ are equivalent. The symmetry between them

is broken only by f‖ and f⊥. These forces represent both external forces as well as

forces that arise from the remodelling of the extranuclear actin cytoskeleton, which

can be assumed to be uniform if f‖ = 0. We can assume that f‖ couples primarily to
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δR‖ whereas f⊥ couples to δR⊥. In the absence of external forces, the two equations

reduce to a single one. The quantity C represents a ratio of time-scales for the

relaxation of the Ψ and the R variables. If Ψ0 represents a stable state, or at least

a state that evolves slowly on the time-scale of the fluctuations δΨ, we can expand

in these fluctuations. At the simplest level then, these fluctuations are subject to

a harmonic potential. The case where δR‖ = δR⊥ ≡ δR, with f⊥ = f‖ = 0 and

the V (δΨ) term chosen to be bistable, was studied in Ref. [Talwar et al., 2013], in

the context of nuclear size oscillations in the ES state of mouse stem cells. We will

use this more specific form of these equations when we identify signals of auxetic

behaviour in fluctuations within the undeformed steady state. Our results suggest

that signatures of the transition between auxetic and non-auxetic behaviour might

be most easily seen in these fluctuations.

In Ref. [Talwar et al., 2013], in a description of enhanced fluctuations in mouse

N-ESCs, B > 0 was assumed. The physical interpretation there was that increas-

ing the size of the nucleus would expose binding sites for histones. This leads to

a concomitant increase in Ψ which would then drive the nucleus to shrink [Talwar

et al., 2013]. The coupled dynamics of the fast histone on-off rates in the hyperdy-

namic case with the slower fluctuations in nuclear size leads to interesting fluctuation

behaviour. Such a choice of sign leads inevitably to non-auxetic behavior; see below.

Experiments show that chromatin is most decondensed in the transitional state, as

opposed to either the ES state or the differentiation primed states between which it

intervenes [Pagliara et al., 2014]. A further expansion of nuclear dimensions might

then be expected to result in the expulsion of nucleosomes, rather than their accu-

mulation, in this intermediate state. Incorporating this into the modelling requires

that we consider the case where B < 0. Indeed, treating the naive pluripotent ESC

state with trichostatin A, an HDAC inhibitor that globally decondenses chromatin,

made the N-ESC auxetic, arguing for the connection to our modelling. We can thus
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view the transition between the naive stem cell, the transitional state and the dif-

ferentiation primed state in terms of a re-entrant behaviour in the sign of B. This

is an experimentally testable prediction.

The on-off dynamics of histones is inherently noisy. Our equations account for

such stochastic effects, represented as additive noise with standard properties, with

terms represented by ηΨ, ηR and η′R. In general, the effects of the noise should

be most significant for the fast fluctuating Ψ variable. We thus choose to retain

only the Gaussian-distributed, delta-correlated ηΨ term in our equations, setting

ηR = η′R = 0.

3.2.2 Derivation of model equations: R equation

Our equations are motivated in the following way, illustrated, for simplicity, in the

isotropic case: Assume first that the nucleus is a sphere of radius R, prestressed

by chromatin polymer pressure. Given compressibility, assume that the dominant

modes of fluctuations are breathing modes, associated with an elastic energy Eel =

Ka
2a0

[(a− a0)2], which penalises changes in area a from an unstressed or even pre-

stressed state where the area is a0. This term also accounts for the contribution

of the actin cytoskeleton, which enters as a modified area expansion modulus Ka.

Fluid flow in and out of the sphere, driven by a pressure imbalance, leads to volume

changes and is resisted by a cost for deviations in the surface area from its preferred

value.

Describing stem-cell chromatin as a polymer solution at an effective (active) tem-

perature T ∗, the free energy of the polymer solution in units of kBT ∗, is of the form

fm(φ) = φ
N
lnφ+(1−φ)ln(1−φ)+χφ(1−φ)+1/(24πξ3), (see Chapter 1 for details)

where φ is the volume fraction of the polymer and ξ ∼ φ−ν/(3ν−1) is the correlation

term arising from monomer density fluctuations [Doi, 1996, Muthukumar, 2012b].
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Activity enters as an effective temperature T∗. More subtly, it modifies the effective

Flory term χ.

The polymer osmotic pressure follows from Π = kBT
∗

νc

[
φ∂fm

∂φ
− fm

]
, which yields

Π = kBT
∗

νc

[
φ
N
− ln(1− φ)− φ− χφ2

]
(refer to Chapter 1 for detailed derivation),

where kB is the Boltzmann constant, T ∗ is the effective temperature, νc is the

monomer volume, φ is the volume fraction of the polymer and N is the degree of

polymerization [Doi, 1996]. Physically, χ alters the relative balance of chromatin-

chromatin and chromatin-solvent interactions, as manifest in the compaction state

of chromatin. The effective Flory parameter χ is then tuned by the fraction of bound

nucleosomes, which controls Ψ : χ = χ(Ψ). We then have,

∆Π = −kBTφ
2
0

νc
χ′δΨ, (3.2)

where χ′ =
dχ

dΨ
. Penalising fluctuations of the nuclear envelope from its preferred

area a0 yieldings a restoring net force of the form F = −16πKaδR and thus a

pressure term

∆P =
4Ka

R2
0

δR. (3.3)

Darcy’s law provides an expression for the rate of change of volume dV
dt

= κA
µL

(∆Π−

∆P ), where κ is the permeability (m2), A is the area of the nucleus, µ the viscosity

and L the length over which the pressure drops [Whitaker, 1986]. This yields, where

we use the notation Ṙ = dR/dt, Ψ̇ = dΨ/dt,

Ṙ = −
(

4κKa

µLR2
0

)
δR−

(
κkBTφ

2
0

µLνc
χ′
)
δΨ,

=⇒ Ṙ = −CδR−DδΨ,

where C =
4κKa

µLR2
0

and D =
κkBT

∗φ2
0

µLνc
χ′. Note that D > 0 is required by the bio-

physical input that the binding of histones must lead to a contraction in DNA. The
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larger the polymer-solvent interaction, the smaller the Flory-Huggins χ parameter

implying that we can interpret histone binding and the consequent compaction of

DNA as an effective decrease of the polymer-solvent interaction with histone bind-

ing. This then implies that the effective Flory-Huggins parameter should increase

with Ψ, implying that χ′ > 0 . Here, ∆Π−∆P provides the driving force, in this case

the difference between polymer and Laplace pressures relative to their unperturbed

values. This holds in the absence of a force f .

This result is easily generalized to the anisotropic case.

3.2.3 Derivation of model equations: Ψ equation

We now discuss the dynamics of δΨ. First, ignoring the coupling to R⊥ and R‖, we

model fluctuations in Ψ as relaxing in an over-damped manner to Ψ0. This dynam-

ics explores the one-dimensional landscape defined through the effective potential

V (δΨ), with Ψ0 at least a local minimum. Consider N nucleosome binding sites on

a piece of DNA, in equilibrium with unbound nucleosomes at chemical potential µ,

with the energy gain from nucleosome binding to DNA being ε. The probability of

the nucleosome being bound is the Fermi function p = 1/(1 + e(ε−µ)/kBT ), since this

is an effective two state-problem at each binding site. If the radius of the confining

sphere is changed from R0 to R = R0 +δR, the DNA will stretch in place, altering ε.

Assuming ε = ε(R), ε(R) = ε(R0 + δR) ≈ ε(R0) + ε′δR where ε′ =
∂ε

∂δR
. Expanding

e−ε
′δR/kBT ≈ 1−ε′δR/kBT , yields δΨ ≈ Nx0ε′δR

kBT (1+x0)2
where e−µ/kBT = ζ and ε(R0) = ε0,

x0 = ζe−ε0/kBT . Thus, changes in R also drive changes in Ψ, which evolves to its

final value, given the change δR, through a kinetic coefficient which multiplies the

term above. Adding to this the term in δΨ coming from the epigenetic potential,

which can be assumed to be quadratic at lowest order in an expansion about the

stable value Ψ0:V (δΨ) = 1
2
A(δΨ)2, we have our final result: Ψ̇ = −AδΨ+BδR. A is

simply the inverse of the relaxation time for compaction fluctuations τΨ, defined be-
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low. The sign of B depends on the sign of ε′, since all other quantities that enter its

definition (N, x0 and T ) are explicitly positive, reducing to the question of whether

the nucleosome binding energy is reduced when the nucleus is expanded. In general,

as is known from in vitro single molecule experiments, extending DNA expels bound

nucleosomes, implying that their binding energy is reduced upon stretching; thus,

the sign of B should be negative for the auxetic state given our interpretation above.

More details of the physical arguments are provided in next section.

3.2.4 Estimation of parameters

We now estimate C = 4κKa/µLR
2
0 and D = κkBTφ

2
0/µLνcχ

′. We take κ = l2p,

relating the permeability κ to the pore size lp. Assuming a nuclear pore complex size

of lp ' 5nm [Davis, 1995], this yields κ = 2.5×10−17m2. From plate theory, the area

modulus Ka and the Youngs modulus E are related through Ka ≈ Et, [Landau and

Lifshitz, 1986] where t is the thickness of the plate. Thus, C = 4κκA
µLR2

0
≈ 4l2p×Et

µtR2
0

=
4l2pE

µR2
0
.

With E ≈ 200 Pa [Caille et al., 2002, Guilak et al., 2000, Dahl et al., 2005], the

radius of the nucleus R0 = 5 × 10−6m and µ ≈ 2 − 3 centi-poise ≈ 2 × 10−3

Pa-sec, [Mastro et al., 1984] C ≈ 0.4sec−1. To calculate D, we assume that the

length over which the pressure drops is the same as the membrane thickness (65

nm [Franke, 1970]). To calculate the chromatin volume fraction, we approximate

DNA as a cylinder and the histone octamer as a disc and calculate the volume of all

the components. The number of base pairs in the mouse genome is approximately

3 × 109. The average size of a basepair is approximately 3.4 [Finch et al., 1981].

Thus, the length of DNA is (3.4 × 10−10) × (3 × 109) ∼ 1 m for the haploid case.

In the case of diploid nuclei, the length of DNA ∼ 2 m. Now the thickness of the

DNA is 20 [Schiessel, 2003]. Approximating DNA as a cylinder, the volume of DNA

is ∼ πR2L ∼ 3.14 × (400 × 10−20) × 2 ∼ 25 × 10−18m3 = 25µm3. As the number

of basepairs per nucleosome is ∼ 200 [McGhee and Felsenfeld, 1980], the number of
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histone octamer cores will be ∼ (3 × 109)/200 = 1.5 × 107. The histone octamer

can be approximated by a disc of 110 × 110 × 57 [Finch et al., 1981, Luger et al.,

1997, Wang et al., 1994] ∼ 5.41× 1053. Thus, the volume of all the histones would

be (1.5 × 107) × (5.41 × 105 × 10−30)m3 ∼ 81.15 × 10−19m3 ∼ 8µm3. The total

volume of chromatin ∼ volume of DNA + volume of histones octamers + linker

proteins (which we ignore for simplicity) ∼ 25 + 8 ∼ 33µm3. Taking the nucleus

to be of radius 5µm, the volume of the nucleus ∼ 523µm3. Using this, the volume

fraction of the chromatin is ∼ 33/523 ∼ 0.06. A reasonable value to consider is then

0.1 which we have used in our calculations. This calculation is similar to that for

Arabidopsis cell nuclei in Ref. [De Nooijer et al., 2009]. With νc = (10nm)3 [Finch

et al., 1977, Luger et al., 1997, Richmond and Davey, 2003], and T ' 300 K, we

obtain D ≈ 8× 10−6χ′m/sec.

3.2.5 Mapping to the experimental system

In steady state, δΨ = −Bf
(2AC+3BD)

, δR‖ = − (2AC+2BD)
(2AC+3BD)

f
C

and δR⊥ = BD
(2AC+3BD)

f
C
.

For finiteness, we require 2AC + 3BD 6= 0. From this, the Poisson’s ratio is

ν = − δR⊥
δR‖

= BD
2CA+2BD

. Choosing the experimental value of ν = −0.25 and re-

arranging the above expression, we find that CA
BD

= −3. Making a reasonable choice

for the ratio τΨ/τR ' 0.01, yields τΨ and the value of C obtained above yields

τR = 2.5 sec and τΨ = 2.5 × 10−2 sec, with A = 40sec−1. Fom B = −CA
3D
, B =

−7×105×5×107

3χ′
= −7×105

χ′
m−1sec−1. Our final set of parameter values is then C =

0.4sec−1, τR = 2.5sec, D = 8× 10−6χ′m-sec−1, A = 40sec−1, τΨ = 2.5× 10−2sec, B =

−7×105

χ′
m−1sec−1. In dimensionless units, taking τΨ = 2.5× 10−2sec and measuring

length in units of R0, yields: A = 1.0, C = 0.01, D = 0.04χ′ and B = −0.09/χ′. If

we assume dχ
dΨ
|Ψ=Ψ0 ' χ

Ψ0
, χ ≈ 0.5 and Ψ0 = 1, this yields χ′ = 0.5.

55



3.2.6 Numerical simulations

Our numerical simulations implement Langevin dynamics in solving the stochastic

Eqns. 3.1. We use both a simple Euler discretization as well as a fourth order

Runge-Kutta method, checking that both gave essentially similar results.

3.3 Results

3.3.1 Auxetic and normal mechanical behaviour in a model

description of nuclear indentation

The AFM indentation experiment corresponds to taking f = f‖ 6= 0, setting f⊥ = 0.

The set of model equations, Eqs. 3.1 have a number of parameters, which we fix

using experimental and theoretical input. The choice of parameters and the range

of values they can take are discussed in Methods. The solutions of these equations

are provided in Appendix A.1.

Figure 3.2 shows plots of δΨ, δR‖ and δR⊥ (Figure 3.2, panels (e) - (h)) for small

f , as obtained from our model equations. The quantities δΨ, δR‖ and δR⊥ vary

linearly with f , a consequence of the fact that we assume that V (δΨ) increases

quadratically about its stable value. This is across the parameter values shown in

Figure 3.2, panels (a) - (d), for the state points (B,C) marked on the figures with

the filled black circle. These plots are for a choice of parameters corresponding to

non-auxetic i.e. regular behaviour. For the normal i.e., non-auxetic state, the slope

of δR‖ and δR⊥ vs. f should have opposite signs.

Our model predicts that the slope of δΨ vs. f is negative i.e. the compaction

decreases with the applied force in the non-auxetic state; see Figure 3.2, panels (e)

and (h).
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Figure 3.2: Parameter choices for C and D and : (a) B = 10.0, (b) B = 2.0 (c)
B = 0.17 (d) B = 0.1, all in the regime of non-auxetic (regular) behavior . The
behaviour of the dynamical variable with the increase in force for the parameter
values (e) C = 0.01, D = 0.02, B = 10.0. (f) C = 0.01, D = 0.02, B = 2.0. (g)
C = 0.01, D = 0.02, B = 0.17. (h) C = 0.01, D = 0.02, B = 0.1. Parameter
choices for C and D, in the auxetic regime with (i) B = −0.1, (j) B = −0.17
(k) B = −2.0 (l) B = −10.0. The line separating blue and gray regions marks
the stable-unstable boundary. The behaviour of the dynamical variable with the
increase in force for the parameter values (m) C = 0.01, D = 0.02, B = −0.1.
(n) C = 0.01, D = 0.02, B = −0.17. (o) C = 0.01, D = 0.02, B = −2.0. (p)
C = 0.1, D = 0.02, B = −10.0. (Red and blue colours in the colour plots show the
regions where a stable solution is obtained (red = normal, blue = auxetic) while the
grey colour shows where solutions become unstable).

In Figure 3.2, panels (m) - (p), we also show results for the auxetic case, where the

slope of δR‖ and δR⊥ vs f have the same sign. Note that δR‖ and δR⊥ now both

decrease with f . This indicates auxetic behaviour. This behaviour is seen across the

parameter values shown in Figure 3.2, panels (i) - (l), for the state points marked

on the figures with the filled black circle. These parameter values are chosen in the

57



regime where the fixed point is stable, shown in blue. (The grey region shows the

regime in which the equations have unstable solutions.) In the auxetic case, the

slope of δΨ vs. f is positive.

Thus, the solutions of our model equations yield both auxetic and non-auxetic be-

haviour, controlled by the sign of B in Eqs. 3.1. The results are consistent with the

schematics of Figure 3.1 (f) and (g), which show how chromatin compaction varies

upon the application of an external force. The additional information they provide

relates to the behaviour of the compaction variable. As shown in Methods, the pa-

rameter values we derive are consistent with experimental measures of auxeticity in

transitional stem cell nuclei.

3.3.2 Describing nuclear shape changes in micro-channel flow

Nuclear indentation through the AFM method described in Ref. [Pagliara et al.,

2014] provides a direct way of accessing the auxetic mechanical behaviour of the

nucleus. Here, a fixed force is applied along the longitudinal (‖) direction and a

transverse (⊥) deformation measured. An alternative method involves an optofluidic

assay, in which cells are passed through narrow micro-channels of controlled width.

These cells are then imaged through fluorescence microscopy of Syto13 labeled cells.

When the width of the channel is comparable to the cell size, this constrains cell

dimensions. A further complication is the role of stretching stresses caused by

cytoskeletal strain acting when cells are confined to the micro-channel. Given our

model assumptions, we may model the confined case by accounting both for f‖

and f⊥ in the governing equations, Eqs. 3.1. Whereas f‖ is primarily controlled

by the size of the constriction through which these cells pass, f⊥ derives from the

anisotropic remodelling of the actin cytoskeleton.

The geometry of the micro-channel experiments is shown in Figure 3.3(a), where
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(a) (b)

(c)

(d)
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(I) (II) (III)

(I) (II) (III)

(I) (II) (III)

Small
Nuclei 

Large
Nuclei

Auxetic Non-auxetic

Figure 3.3: (a): Schematic of a cell confined to a microchannel with width compara-
ble to cell dimensions, (b) schematic of the effects of the combination of longitudinal
and transverse forces applied to cells of different sizes. These follow from our calcu-
lations and are consistent with the results of Ref. [Pagliara et al., 2014], (c) Plots
of S‖ and S⊥ extracted from experiments, for the transitional, primed and naive ES
cell states. The arrow connects the two terminal points. (d) Contour plots for δΨ,
δR⊥ and δR‖, against (f‖, f⊥), with solid lines showing loci of constant strain (e)
Predictions for transitional, primed and naive ES cell states, of S‖ and S⊥. The
straight line represents experimental predictions for intermediate cell sizes. Experi-
mental data are digitized from the scatter plot of Figure S10 of Ref. [Pagliara et al.,
2014] and shown on the same figure

we show a cell confined to a channel whose width is comparable to cell dimensions.

In the experiments the channel width is 12 µm while cell sizes range from 6 µm
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to 14 µm. Figure 3.3(b) shows a schematic of the effects of the combination of

longitudinal and transverse forces applied to cells of different sizes, as obtained in our

calculations; see below. For small cells in the auxetic case, if they have unconfined

dimensions much smaller than the channel width, their longitudinal and transverse

dimensions increase when they are confined to the channel. For larger cells in the

same limit, both dimensions decrease. These are consistent with expectations from

auxetic behaviour. On the other hand, irrespective of cell sizes in the non-auxetic

case, the longitudinal dimension decreases while the transverse dimension increases.

These are consistent with the behaviour shown in Figure 3.3(b). These schematic

results recapitulate the results of Ref. [Pagliara et al., 2014].

To extend this to the mechanical response of stem cells of various sizes in a micro-

channel, our modelling strategy is the following. The experiments, performed on a

range of cell sizes at a fixed micro-channel width, obtain longitudinal and transverse

strains for an ensemble of cells of different sizes. At the extreme limits of cell sizes,

Figure S10 of Ref. [Pagliara et al., 2014] shows averaged strains in the parallel and

perpendicular directions. These are proportional to R‖ and R⊥ in our definitions

in Eq. 3.1, and using R0 as our unit of length converts this proportionality to an

equality. We label these strains as S‖ and S⊥ and display them in Figure 3.3(c)

(I) - (III), for the transitional, primed and naive ES cell states. Starting with these

results, we can invert the relationship between strains and forces, finding the effective

f‖ and f⊥ that produce these strains.

We can now explore the space of values of (f‖, f⊥), constructing contour plots of

δΨ, δR⊥ and δR‖, as shown in Figure 3.3 (d) (I) - (III). The parameters chosen are

for the smallest and the largest cells, using the data shown in Figure 3.3(c) (I). The

solid lines in Figure 3.3 (d) (II) - (III) represent a choice of a few lines of constant

strain in each case, as a function of f‖ and f⊥. These lines then predict the forces

(f‖, f⊥) required to create a fixed strain across cells of different sizes.
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The extremal points of Figure 3.3(b) (I) - (III) are now associated to points on the

(f‖, f⊥) surface. We can then model the data for cells of sizes intermediate from these

by supposing that f‖ and f⊥ vary independently and linearly between their terminal

values. We ask if these results can fit data for intermediate cell sizes, shown in the

scatterplot illustrated in Figure 3.3 of Ref. [Pagliara et al., 2014]. These results are

shown in Figure 3.3(e) (I) - (III), for transitional, primed and naive ES cell states.

The experimental data are shown as points while the theoretical prediction that

follows from our analysis is shown as the green line. In all three cases, there is an

approximate linear relationship between S‖ and S⊥ that our calculation captures.

The magnitude of the strains at intermediate values of cell size is correctly rendered.

Our model thus, despite its simplicity, captures all essential features of the data of

Ref. [Pagliara et al., 2014]. As we have pointed out, the model can then be used

to provide specific predictions for mechanical response in cells of different sizes.

Also, even though the chromatin compaction variable δΨ was not measured in those

experiments, our model provides specific predictions for how this quantity varies

across different cell sizes in comparison to the width of the microchannel. This

prediction is experimentally testable and we discuss possible ways of doing so in the

concluding section.

3.3.3 Autocorrelations and cross-correlations of chromatin

compaction and nuclear dimensions in the auxetic regime

The previous sections explored the use of an external force, either applied directly

using an AFM tip or indirectly by confining cells to a narrow microchannel, in

understanding auxetic and non-auxetic behaviour. However, our general model for-

mulation suggests how less invasive ways of probing the coupled mechanical response

of chromatin compaction and nuclear dimensions might provide useful information.

Let us assume that we can measure both chromatin compaction as well as the di-

61



mensions of the nucleus simultaneously as a function of time - possible ways of doing

this are discussed later. Assuming an initially spherical nucleus, R‖ and R⊥ coin-

cide, since now there is no externally imposed direction that leads to an anisotropic

mechanical response. The only relevant mechanical variable is then R(t), the ra-

dius of the spherical nucleus as a function of time. Our equations are now simpler,

since they involve only the two variables, Ψ and R. The solution to the full set of

equations is provided in Appendix A.1.
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Figure 3.4: Computations of autocorrelations and cross-correlations in the simplified
2-component model, in the auxetic regime, with C = 0.01, D = 0.02 and B = −0.17.
We illustrate the calculation of the following correlation functions: (a) The autocor-
relation of the δΨ variable〈δΨ(0)δΨ(t)〉, (b) The autocorrelation of the δR variable,
〈δR(0)δR(t)〉, (c) The cross-correlation between δΨ and δR, 〈δΨ(0)δR(t)〉, (d) The
cross-correlation of δR and δΨ, 〈δR(0)δΨ(t)〉. The insets show the behaviour close
to the origin in two special cases where there is a competition between the two
time-scales for relaxation. Points represent the numerical solution of the Langevin
equations while lines represent the analytic formulae.

Given measurements of Ψ(t) and R(t) = R0 + δR(t), we can ask whether signatures
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of auxetic and non-auxetic behaviour might be visible in such measurements. Since

such measurements provide data in time, we can compute autocorrelations of these

variables as well as their cross-correlations. The solutions to these equations can

be computed explicitly and are provided in Appendix A.2. Figure 3.4 shows our

computation (lines: exact calculations; points: numerical solutions of the Langevin

equation) of autocorrelations and cross-correlations in the model, with parameters

chosen within the auxetic regime.

The autocorrelations 〈δΨ(0)δΨ(t)〉 and 〈δR(0)δR(t)〉 are shown in Figure 3.4(a) -

(b) whereas the cross-correlations 〈δΨ(0)δR(t)〉 and 〈δΨ(0)δR(t)〉 are shown in Fig-

ure 3.4(c) - (d) respectively. The insets expand the behaviour of the cross-correlation

functions close to the origin, where two time-scales for relaxation compete. The time-

scale for the relaxation of autocorrelations in the Ψ variable is substantially smaller

than for the R variable. The cross correlations 〈δΨ(0)δR(t)〉 and 〈δΨ(0)δR(t)〉 both

relax to zero in an interesting two-step way, with a sharp initial step reflecting the

relaxation of the fast variable Ψ followed by a slower relaxation, primarily driven by

the R variable.

We can further investigate model predictions for the case in which a weak force

is applied and allowed to vary in time in a sinusoidal fashion (see Appendix A.4).

For our linear system of equations, this then implies that quantities such as Ψ, R‖

and R⊥ should also oscillate at the same frequency, but with a phase lag between

them. This phase lag predicts the relative importance of what is termed reactive

and dissipative response, with the first largely located in the elastic properties of the

nuclear envelope and the second associated to dissipation connected to the flow of

fluid across the nuclear envelope as well as of the friction encountered by chromatin

as its fluctuations relax. These can be predicted from the theoretical formulation,

and indeed are the focus of standard experiments in the physics literature that

studies soft materials, but whether their experimental analogue can be probed in
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biophysical measurements on stem cells is an open question.

Extracting behaviour as shown in Figure 3.4 would constitute a powerful test of

model predictions.

3.3.4 Correlations across the auxetic-nonauxetic boundary as

probes of the transition

Our model describes chromatin compaction states using a single variable Ψ, with

larger values of Ψ representing overall more compact states of chromatin packing. We

suggest that Ψ fluctuates in time about an approximately constant value, but that

these fluctuations are constrained by a chromatin compaction potential defined as

V (δΨ), that controls how large they can be. These fluctuations are also constrained

by their coupling to nuclear dimensions through the variables δR‖ and δR⊥. They

are influenced, as well, by the inherent noisiness of nucleosome on-off dynamics in a

hyperdynamic state. All these effects are included in our model.

This choice of an “chromatin compaction potential” identifies the relevant biophysi-

cal distinction between more open, gene-rich euchromatin and more tightly bound,

gene-poor heterochromatin as broadly being one of local compaction. We project

the multi-dimensional landscape of potential chromatin states that Waddington en-

visaged, which should be more generally describable through a spatially varying

and sequence-dependant compaction field, onto a single scalar compaction variable.

Our equations then provide a way of understanding how such a compaction variable

couples to mechanical variables describing nuclear shape and size.

Our results suggest a simple method for determining the location of the auxetic-to-

non-auxetic transition. We will work in the limit described in the previous section,

where we infer the transition by monitoring the system non-invasively, measuring

only the variables Ψ and R as functions of time in steady state. From these mea-
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surements, we can calculate their autocorrelations and cross-correlations.
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Figure 3.5: The left columns (a) shows our choice of parameters in (B,C,D) space,
with B, shown on the vertical axis, varied so as to cross the auxetic to non-auxetic
boundary. The two columns on the right, columns (b) and (c) illustrate the corre-
lation function 〈δR(0)δΨ(t)〉 and 〈δΨ(0)δR(t)〉. Across the auxetic to non-auxetic
boundary, where the sign of B changes, the Ψ variable decouples, at lowest order,
from the δR variable, leading to a flat behaviour of the correlation 〈δR(0)δΨ(t)〉. In
contrast, while Ψ is not influenced by δR, fluctuations in Ψ do couple to δR, leading
to a non-trivial relaxation of the correlation function 〈δΨ(0)δR(t)〉. This change
of sign of d〈δR(0)δΨ(t)〉/dt indicates that the auxetic to non-auxetic boundary has
been crossed.

In Figure 3.5, we show plots of the correlation functions 〈δR(0)δΨ(t)〉 and 〈δΨ(0)δR(t)〉.

These illustrate that 〈δR(0)δΨ(t)〉 is a good indicator of the transition from auxetic

to non-auxetic behaviour, with 〈δR(0)δΨ(t)〉 changing the sign of its slope upon

approaching its asymptotic value across the auxetic to non-auxetic boundary. On
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the boundary, there is no correlation at all, to this order, between fluctuations in the

nuclear dimension and fluctuations in chromatin compaction. Since the change from

auxetic to non-auxetic behaviour is marked by the parameter B changing sign, it

must cross zero at least at one point. (Since the experimental sequence encountered

as ES cells differentiate is: non-auxetic → auxetic → non-auxetic, this suggests

that B should change sign at least twice. This is a specific prediction that can be

addressed in experiments, as we discuss below.)

Now note that at this special point, fluctuations in Ψ decouple from fluctuations in

the nuclear size variable to linear order; fluctuations in Ψ influence fluctuations in

δR but not vice versa. As we show below, this provides a practical way of accessing

V (δΨ).

3.3.5 Physical argument for the transition between auxetic

and non-auxetic behaviour

The values of Ψ0 and R0 could reasonably be expected to vary across the transition

between embryonic stem cell, transitional state stem cell and the differentiation

primed stem cell. The single central biophysical input we have from the experiments

is that chromatin is least dense in the transitional state, where auxeticity is observed.

This is in contrast to the states it borders, which behave like normal, non-auxetic

materials. This is crucial, since it relates to how Ψ0 must vary across these states.

Physically, we can imagine that as we transition across the sequences N-ESC →

T-ESC → P-cells, the value of Ψ0 decreases till it attains its least value and then

increases again. This would be consistent with experiments. We illustrate this in

the figure below.

Consider the situation as shown. Starting from high values of compaction, reducing

Ψ0 exposes small sections of DNA while locally stretching it as well. This is a
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Figure 3.6: (a) Pictorial representation of values of Ψ0 for N-ESC, T-ESC and
P-cells and (b) pictorial representation of changes in chromatin compaction.

regime where we might reasonably expect that fluctuations that remove histones

stretch DNA marginally further, exposing binding sites. This is the regime in which

B > 0. Now imagine that Ψ0 is decreased still further. Beyond a point, the physics

of nucleosome ejection in stretched DNA would be expected to dominate. In this

regime, we expect B < 0, since now extending DNA makes it less favourable for

histones to bind, changing the sign of dε/dR. As shown in the figure, the non-

monotonic structure of Ψ0 variation across N-ESC → T-ESC → P-cells, implies

that (a) there should be a non-trivial regime over which B < 0, that (b) this regime
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should be bounded by two points at which B = 0 and that for larger values of

compaction, on either side, we should have B > 0. These are precisely the input to

our calculation and the physical intuition we provide.

3.3.6 Inferring V (δΨ) from experimental data

We can describe the transition between ESC, T-ESC and differentiation-primed

states in terms of a trajectory in the space of the variables C,D and B. As is

standard, we can assume that the parameters controlling these variables must vary

smoothly, since they reflect continuous shifts in the transcriptome; indeed the as-

sumption of smooth variation is central to landscape ideas. As the stem cell transits

between these states, it encounters auxetic (B < 0) [Figure 3.7 (g) - (i)] and non-

auxetic (B > 0) [Figure 3.7 (d) - (f)] states, with an intervening B = 0 state,

[Figure 3.7 (a) - (c)].
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Figure 3.7: Reconstruction of the potential landscape V (δΨ) in the simplified 2-
component model: (a) Assuming a quadratic potential, (b) Assuming a sixth-order
potential, and (c) Assuming a quadratic potential with a superimposed sinusoid:
V (δΨ) = aδΨ2 + b2Sin2(cδΨ), for B = 0.0 (blue), B = 1.0 (red) and B = −1.0
(green).

For each of these chosen values of B, we illustrate the choice of a specific chromatin

compaction potential that we can model as a smooth function, shown via the solid

lines in each sub-plot. We choose these functions to be (1) a simple quadratic
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potential, (2) a quartic potential with a shallow minimum at the origin and two

symmetrically placed deeper minima on either side, as well as (3), the more complex

case of a quadratic potential with a superposed sinusoidal modulation that provides

more intricate structure. We do not yet know what form such a potential takes in

the experiments, but intend to illustrate a method by which information from the

measurement of fluctuations could help in its extraction.

For B = 0, as shown in Figure 3.7 (a) - (c) (blue filled circles), given that δΨ(t)

reflects its relaxation in the chromatin compaction potential, we form a histogram of

δΨ values. Since the governing equation for the δΨ variable can be interpreted as a

Langevin equation for a particle moving in the specified potential, the steady-state

probability distribution of δΨ can be inferred from this histogram in a straightfor-

ward manner, as discussed later in this section. Figs. 3.7 (a) - (c) shows results

from a numerical and analytic reconstruction of the assumed potential V (δΨ) using

such a method. In this way, we thus proceed from the histogram of measured values

to the potential that controls such fluctuations. While the data used in these figures

is “synthetic”, the procedure for extracting the potential from them is robust.

Provided |B| 6= 0 is not too large and for parameter values comparable to the ones

we use, this procedure reconstructs V (δΨ) reasonably well, a consequence of the fact

that fluctuations in δR couple relatively weakly to fluctuations in δΨ. Figs. 3.7

(a) - (c), shows V (δΨ), obtained from histograms of δΨ values for B = -1 (red filled

circles) and B = 1 (green filled circles). These suggest that one need not precisely

locate the region where B vanishes for this approach to be of use.

The mathematical method to extract the potential landscape from the experimental

data is discussed. A simpler 2-d analog of the dynamical system 3.1 can be written
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as following,

˙δΨ = −∂V (δΨ)

∂δΨ
+BδR + η(t), (3.4)

˙δR = −CδR−DδΨ. (3.5)

Assuming that the dynamics of δR is much slower than that of δΨ, we can consider

δR as a constant in ˙δΨ equation. This results in,

˙δΨ = − ∂

∂δΨ
[V (δΨ)−BδRδΨ] + η(t). (3.6)

The corresponding Fokker-Planck equation can be written as,

∂P (δΨ, t)

∂t
=

∂

∂δΨ

[
∂Veff (δΨ)

∂δΨ
P (δΨ, t)

]
+

1

2

∂2

∂2δΨ
P (δΨ, t), (3.7)

where Veff (δΨ) = V (δΨ)−BδRδΨ.

For the steady state solution ∂P/∂t = 0,

∂

∂δΨ

[
∂Veff (δΨ)

∂δΨ
P (δΨ, t)

]
+

1

2

∂2

∂2δΨ
P (δΨ, t) = 0, (3.8)

or,

∂

∂δΨ

[
∂Veff (δΨ)

∂δΨ
Ps(δΨ) +

1

2

∂

∂δΨ
Ps(δΨ)

]
= 0 =

∂

∂δΨ
j(δΨ) (3.9)

In steady state, the flux j(δΨ) vanishes, thus This means,

[
d

dδΨ
+ 2

dVeff (δΨ)

dδΨ

]
Ps(δΨ) = 0. (3.10)

The above equation can be solved for the values of δΨ for a constant value of δR.

Once we have those values, we can obtain the distribution P (δΨ). Taking the
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negative log of this result yields the effective potential Veff , as

Ps(δΨ) ∼ exp(−2Veff (δΨ)),

Ps(δΨ) ∼ exp(−2(V (δΨ))−BδRδΨ),

V (δΨ) ∼ −0.5 ln[Ps(δΨ)] +BδRδΨ. (3.11)

For the parameter value B = 0, this expression relates the probability distribution

P (δΨ) to the potential landscape V (δΨ).

3.4 Discussion

An ”epigenetic landscape”, whose lowest points represent gene expression patterns

encoding specific differentiated states, is often pictorially represented in the following

way [Huang, 2012, Furusawa and Kaneko, 2012]: Imagine projecting all possible gene

expression states onto a two-dimensional (XY) plane. This projection is constrained

by the requirement that two nearby state points represent closely related expression

patterns. (Naively, the rewiring of gene-regulatory networks required to convert

expression programs from one cell type to another should be smaller the more similar

these cell types are [Huang, 2012].) The height of a surface (the landscape) above

a point on this plane can then be assigned to the relative ”energy” of the state

described by that point. The shape of the surface can then be used as a qualitative

way of describing barriers to accessing different gene expression patterns starting

from a given initial state.

The plasticity required of gene-regulatory networks in the stem cell states implies, in

this pictorial analogy, that the shape of the landscape should determine which states

will become unstable - and to which other states - as biochemical and mechanical

parameters are changed. Biochemical parameters here could refer to levels of protein
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factors that modulate stemness while mechanical parameters could represent the

stiffness and anisotropy of the substrate on which these cells are cultured [Li et al.,

2012]. If one imagines, as Waddington did, a ball rolling on this landscape as

representing the stem cell state choosing between terminally differentiated states,

the motion of the ball should be biased by the underlying shape of the landscape,

including its peaks, ridges and valleys. The resulting energy surface can be depicted

as a geographical landscape, along the lines of Waddington’s original picture.

V(ψ)

ψ
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tia
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n

Compaction

Figure 3.8: Schematic of an epigenetic landscape in the compaction variable. A
pictorial representation of the epigenetic landscape, projected onto a single variable
describing overall compaction. Points towards the back of the figure represented
the ES cell state while points in the valleys towards the foreground represent dif-
ferentiated states. As one moves from back to front, the figure describes how the
effective potential governing overall compaction can be described via a cut through
the landscape as shown.

Such a qualitative picture also suggests that this landscape might also be thought

of as dynamic, tilting and deforming to favour one set of states over others. This
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would then describe how an initial state might be guided to a specific cell fate as

the cell integrates external environmental signals when driven to differentiate.

The description of the previous paragraph proceeded along conventional lines. Our

view here emphasizes biophysical aspects of this argument. Instead of projecting

states depending on their proximity in gene expression space, we imagine them to

be projected according to their level of chromatin compaction; arguments concern-

ing the proximity of closely related cell types in such a “chromatin compaction”

space should parallel those in the case of the “gene expression” space. To moti-

vate this, we note that the relative ratio of heterochromatin to euchromatin varies

across differentiated cell types [Rivera and Ren, 2013]. It has been suggested that

chromatin density might itself act to regulate gene expression in a stem cell popu-

lation [Golkaram et al., 2017]. While the embryonic stem cell state has a chromatin

organization that is best described as a highly correlated fluid, the differentiated

state fluctuates far less, with condensed heterochromatin foci forming during the

differentiation of pluripotent embryonic stem cells [Mao et al., 2015]. The forma-

tion of heterochromatin domains has recently been argued to be mediated by phase

separation [Larson et al., 2017, Strom et al., 2017]. Together with the accumula-

tion of silencing histone marks, this results in differential expression [Meshorer and

Misteli, 2006]. Classifying the epigenetic states underlying these cell types through

their levels of local chromatin compaction should provide one approximate way of

connecting the theoretical ideas presented here to experimental data.

This idea is illustrated in Figure 3.8, which shows a schematic of such a landscape.

The coloured balls towards the front of the figure represents stable, differentiated

states. The ball at the back represents the ES cell state. As the cell differentiates,

one imagines that the landscape is tilted forward so as to allow the ball to fall towards

these stable states. All possible accessible intermediate states can be represented,

again pictorially, in terms of a plan that intersects this landscape. The curve that
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defines where these two curves intersect provides a one-dimensional surface, to be

identified with the V (δΨ) of our discussion.

We stress that all projections from a high-dimensional space to a low-dimensional

one, involve a loss of information. The question is whether the reduced information

that results from projecting the complexity of epigenetic control into the reduced

space of overall compaction, suffices for a biophysical description. Expanding the

potential V (δΨ) about a local minimum led to the results described in this chapter.

However, we should ideally think of this potential as itself evolving over some time

scale and the choice of the initial point as reflecting a cell-specific initial condition,

such as cellular levels of Lamin A [Swift et al., 2013].

3.5 Conclusions

In this chapter, we presented a theory of auxetic behaviour in the nuclei of stem cells

in the transitional state. We began by pointing out that the unusual mechanical

properties of the stem cell nucleus, as well as its fluctuations, should provide a

window into the packaging and dynamic character of the chromatin states contained

within it. We proposed that fluctuations in chromatin compaction should couple

to fluctuations in the dimensions of the relatively soft nucleus that characterizes

stem cells. We used these observations to argue that these coupled fluctuations, in

chromatin packaging and nuclear shape, were most easily described in terms of a

coupled, in general non-linear, dynamical system in three variables. We exploited the

experimental observation that chromatin is least compact in the transitional state

as compared to the pluripotent state and the differentiation primed state, to argue

for a specific sign of the coupling term that connected size fluctuations to chromatin

density fluctuations. We then showed how auxeticity resulted as a consequence,

providing a simple and intuitive explanation for this puzzling observation. We then
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went on to suggest that we could map out the normal to auxetic transition using

ideas from the model. We further suggested experiments that could implement and

test these ideas.

Our model could be generalized in several ways. The chromatin compaction variable

is central to our discussion. Neglecting spatial variations in Ψ, as we do in this

chapter, should be a valid first approximation in the relatively fluid stem cell state.

However, chromatin compaction is certainly inhomogeneous in the differentiated

state, while fluctuations about even the uniform state should, in principle, also be

allowed for. Replacing Ψ by the field variable Ψ(r, t), thus allowing it to vary both

in space and in time, would be the logical next step in generalizing our model. Our

simple parametrization of nuclear shape and mechanics could certainly be improved

upon. Finally, simulations of a suitably coarse-grained model for active confined

polymers, coupled to a flexible confining nuclear envelope, are feasible. It would

be interesting to see how the arguments we supply here might be tested in such

simulations. In all, however, we would not expect these technical improvements to

alter our basic intuition qualitatively and would argue that the simplicity of our

model makes it especially attractive.

We have proposed that projecting the complex spatial-temporal distribution of chro-

matin compaction onto an overall compaction variable and interpreting the time-

dependence of this variable in terms of motion within a simplified one-dimensional

potential, should provide a particularly useful biophysical way of formalizingWadding-

ton’s intuitive picture of an “epigenetic landscape” [Gilbert, 2000]. This way of

understanding landscape ideas in the differentiation of stem cells is novel. Imple-

menting the related analysis experimentally would seem to be feasible. In particular,

the fluorescence anisotropy measurements of labelled histones in the embryonic stem

cells state presented in Ref. [Talwar et al., 2013], coupled to confocal microscopy

measurements of the nuclear dimensions, should provide a non-invasive way of deter-
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mining the coupling of chromatin compaction to mechanical variables describing the

nucleus and its shape. Examining other possibilities for simultaneously character-

izing chromatin compaction in addition to nuclear size and shape in a non-invasive

way would be especially valuable.

Connecting microscopic, molecular-scale biochemical views of how stem cell tran-

scriptional programs are modulated, with the averaged, larger-scale biophysical ap-

proach that we describe in this chapter, should lead to an improved understanding of

the communication between stem cell nuclear mechanics and chromatin states. This

improved understanding would also help to illuminate the role of the mechanical

environment in biasing lineage choice.
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Chapter 4

Crowding and Confinement influence

polymer conformations and single

particle diffusion

In this chapter, we present results from molecular dynamics simulations from two

problems. One of them, presented in section 4.1, is of a spherically confined neutral

polymer in the presence of crowding particles, studying polymer shapes and confor-

mations as a function of the strength of the attraction to the confining wall, solvent

quality and the density of crowders. The conformations of the polymer under good

solvent conditions are seen to be largely independent of crowder particle density,

even when the polymer is strongly confined. In contrast, under poor solvent con-

ditions, when the polymer assumes a collapsed conformation when unconfined, it

can exhibit transitions to two different adsorbed phases, when either the interaction

with the wall or the density of crowder particles is changed.

In the second problem, presented in section 4.2, we present results for a different

geometry, studying results from molecular dynamics simulations of a particle in an

infinitely long cylinder grafted with neutral polymers. This chapter is partly based
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on the work presented in Ref. [Tripathi et al., 2019].

4.1 Confined Crowded Polymers near Attractive Sur-

faces

For an unconfined neutral polymer, the nature of the solvent determines whether

the polymer adopts, on average, an extended or a collapsed conformation. If con-

fined, the polymer experiences a loss of conformational entropy. This reduces al-

lowed configurations to a subset that depends on the shape and other properties of

the confining volume [Ganai et al., 2014, Jun and Mulder, 2006, Jun and Wright,

2010, Kang et al., 2015b, Tark-Dame et al., 2011, Jeon et al., 2016, Fošnarič et al.,

2013, Ruggiero et al., 2018]. A number of polymers in biological contexts encounter

varying degrees of confinement. The approximately 2m of DNA in the nucleus of

eukaryotic cells must be restricted to a nucleus that is ∼ 10µm in radius, while the

packaging of viral DNA into sub-micron-sized protein capsids is often dense enough

to induce local crystallinity [Boyle et al., 2001, Misteli, 2007, Lieberman-Aiden

et al., 2009]. Cargo transported along axons by molecular motors typically consists

of specific protein molecules encapsulated in vesicles of diameter 30−80nm, compa-

rable in dimension to the larger peptide neurotransmitters that such vesicles must

accommodate [Purves et al., 2001].

Biological polymers in vivo, in addition to being confined in their natural contexts,

also inhabit highly crowded environments. The presence of crowders can affect the

compaction and higher-order organization of single biopolymer, as well as promote

aggregation of such polymers in solutions [Ha and Jung, 2015, Zimmerman and

Minton, 1993, Phillips et al., 2012, Zhou, 2013, Feig et al., 2017, Lim and Den-

ton, 2014, Ellis, 2001]. At high crowder concentration, neutral polymers have been

shown to undergo a continuous extended-to-collapsed transition [Shendruk et al.,
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2015, van den Berg et al., 1999]. Incorporating attractive interactions between

crowder particles and macromolecular polymers leads to the formation of complex

aggregates which can be observed directly [Zhou et al., 2008]. Although repulsive in-

teractions do not promote the formation of complexes, they can affect reaction rates

and conformations via the Asakura Oosawa depletion interaction [Asakura and Oo-

sawa, 1954]. Experiments show that small molecules such as polyethylene glycol

(PEG) can condense DNA [Vasilevskaya et al., 1995]. Athough DNA is confined

and crowded within the nucleus, it is not structureless and the interplay between

polymer shape, confinement and crowding can potentially accentuate certain as-

pects of such a structure while attenuating others. Within the cell, the presence of

a heterogeneous mixture of proteins, organelles, water and ions can influence the

loss of conformational entropy of the biopolymers present in ways that are particu-

larly hard to predict[Zimmerman and Minton, 1993, Minton, 2005, Uversky et al.,

2002, Cheung et al., 2005, Bokvist and Gröbner, 2007]. As regards the effects of

confining polymers by surfaces, understanding polymer adsorption onto surfaces as

solvent conditions are varied is relevant both to the efficiency of biosensors [Yang

et al., 2015] as well as to the formulation of protein resistant coatings [Ionov et al.,

2009, Haraguchi et al., 2014]. The ability to accurately describe the phase behavior

of polymers in confined, crowded regimes is thus central to an improved understand-

ing of a number of biological processes [Strulson et al., 2014, Onuchic and Wolynes,

2004, Thirumalai and Hyeon, 2005, Iborra, 2007].

Using atomistic simulations to study the structural and dynamical properties of

realistic bio-polymers is computationally expensive, even without accounting for

crowders. Thus, many studies use a coarse-grained, neutral polymer description of

such biopolymers, even though biologically relevant polymers such as DNA are typi-

cally weakly charged in solution. (The screening of the charges through counterions,

salt and the presence of other charged species around the biological polymer of rel-

evance should render the electrostatic interactions effectively short-ranged[Nelson,
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2004].) A number of coarse-grained simulation studies of neutral polymers in the

presence of crowders have been performed earlier [Reddy and Yethiraj, 2006, Jeon

et al., 2016, Kang et al., 2015b, Shin et al., 2015]. Several other studies have ex-

amined the interaction of both neutral and charged polymers with surfaces[Rajesh

et al., 2002, Reddy and Yethiraj, 2010, Bachmann and Janke, 2005, Plascak et al.,

2017, Martins et al., 2018].

The interplay between chain entropy, monomer-monomer interactions and monomer-

surface interactions should determine the conformational landscape of polymers near

surfaces. There appear to be four dominant "phases" that describe the behaviour

of neutral polymers near attractive walls and under different solvent conditions:

the desorbed-extended (DE), desorbed-collapsed (DC), adsorbed-extended (AE)

and adsorbed-collapsed (AC) phases [Rajesh et al., 2002, Bachmann and Janke,

2005, Arkın and Janke, 2012a, Krawczyk et al., 2005]. Using phenomenological

arguments, Rajesh et al. [Rajesh et al., 2002] showed that for low values of at-

traction between the monomers and the surface as well as between the monomers,

the polymer adopts a desorbed-extended conformation (DE). Upon increasing the

monomer-monomer attraction, a desorbed-collapsed (DC) phase results. If the in-

teraction strength between monomer and surface is further increased, the polymer

can assume either an adsorbed-extended (AE) or an adsorbed-collapsed (AC) con-

formation, depending on the monomer-monomer interaction. These authors also

predicted a "surface attached globule" state (SAG), in which the number of con-

tacts between the collapsed conformations of the polymer and the surface is much

less than that in AC phase.

Monte-Carlo simulation studies of neutral and spherically confined polymers sug-

gest that at low temperatures, where enthalpic effects dominate, the polymer ad-

sorbs on the wall of the sphere, tending to form layer-like structures [Arkın and

Janke, 2012b, Bachmann and Janke, 2005]. At higher temperatures, where entropic
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effects dominate, the polymer was found to desorb, assuming an extended confor-

mation (DE). The effect of solvent conditions on polymer conformations near the

surface have also been studied using lattice models of a grafted polymer on a sur-

face [Plascak et al., 2017]. Under good solvent conditions, a grafted polymer on

a flat surface is adsorbed on the surface at low temperatures, while it assumes a

desorbed conformation at higher temperatures. Under poor solvent conditions and

for low temperatures, the polymer takes a globular adsorbed conformation, while for

higher temperatures, the polymer desorbs from the surface. Multi-canonical Monte

Carlo simulations suggest a possible phase diagram consolidating the observed be-

haviour [Arkın and Janke, 2012b]. In this phase diagram, for low temperatures

and for a small value of monomer-surface interaction energy, the polymer assumes a

desorbed collapsed conformation. With increasing surface interaction, the polymer

undergoes a transition from an amorphous globular conformation to a more lay-

ered internal structure. The layering, in those simulations, covered regimes ranging

between a 4−layered adsorbed structure to an adsorbed monolayer.

Although various aspects of confinement and crowding in relation to polymer con-

formation near attractive surfaces have been studied before, we know of no studies

that examine the interplay of all three parameters on an equal footing. In addition,

we note that the simulations, especially those for attractive surfaces, have largely

been performed on polymers of relatively short chain length. The layered structures

observed in these regimes in previous work could thus be an artefact of the small

polymer size. Different structures could possibly be stabilized, or the boundaries

between the states proposed earlier altered, when long chain polymers, as opposed

to short ones, are adsorbed at a surface. In addition, confining polymers in three di-

mensions and adding crowders to the system adds further dimensions of complexity,

but represent a scenario that is more relevant to biophysical situations.

To examine these questions, this part of the chapter explores how confinement, crow-
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der density, solvent conditions and surface interaction combine to influence polymer

conformations, using simulations of a simple model system. Our work [Tripathi

et al., 2019] extends previous results through the incorporation of the effects of

crowder density, specifically, in the confined case with wall interaction. We point

out that solvent quality and crowder density complement each other in determin-

ing configurations, and that the resultant effects of these are most prominent in the

poor solvent case. We characterize the "crumpling" of polymer conformations under

the combination of high crowder density and poor solvent conditions. Although the

parameter space is large, our results provide an understanding for the nature of poly-

mer conformations in each of these different regimes, suggesting physical arguments

for why they should be stabilized.

4.1.1 Methods

We study, using molecular dynamics simulations, a single, long, self-avoiding poly-

mer chain of 400 monomers, confined to the interior of a hollow sphere. The simu-

lated volume also contains crowders i.e. particles that interact non-specifically with

the monomers constituting the chain as well as with themselves. In our simulations,

we vary solvent quality across the extreme limits of good and poor solvents. There

are no other explicit solvent particles, aside from the crowder particles. In previous

work [Kang et al., 2015a], a parameter λ was defined to compare the relative sizes of

the crowder particle and the polymer (λ = R0
g/σc, where R0

g is the radius of gyration

of the polymer with no crowder particles present and σc is the size of the crowder

particle). Following this definition, the sizes chosen in our present simulations cor-

respond to the case of λ >> 1 as the monomer and the crowder particle have the

same size.

We define the crowder density as φc = Ncvc/V , with Nc being the number of crow-

ders, vc = 4/3πσ3
c the volume of each crowder particle, σc the radius of the crowder,
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and V the volume of the spherical confining region. We vary φc between 0.035 to

0.435 in steps of 0.05, by changing the number of crowder particles between 950 and

11750. The range of crowder densities considered in this work is similar to the range

used in previous work [Kang et al., 2015a, Kang et al., 2015b, Palit et al., 2017]. We

also perform simulations of a polymer in a good solvent placed in a periodic box,

thus mimicking the unconfined case, so as to compare our results with results for

the confined case. The crowder density range explored for such simulations is the

same as for the confined case.

Pairs of all non-bonded particles (monomers and crowders) interact through the van

der Waals interactions, modeled through a truncated and shifted Lennard Jones

(LJ) 6-12 potential with a cutoff of rc, where

V LJ
ij (rij) =


4εij

[(
σij
rij

)12

−
(
σij
rij

)6
]

r < rc

0 r ≥ rc

(4.1)

Here i, j = m, c refers to the monomers and crowder particles respectively, and rij

is the distance between two particles, (By definition, εij is a symmetric matrix and

the quantities εij and σij define the corresponding interaction parameters.) The size

of the monomer and the crowder particles is set to be 1.0, in our reduced units. We

model different solvent conditions by choosing different values for the cutoff distance

rc for the interactions among the monomers. The good and poor solvent conditions

are mimicked via interactions among the monomers with different rc (see Table 4.1).

The nature of the interactions among crowder particles and between crowders and

monomers is a repulsive, soft-core interaction (rc = 21/6). The interaction of the

monomers with the wall is also described by a Lennard-Jones potential and both

repulsive and attractive wall interactions between monomers and wall are considered.

The interaction of the crowder particles with the wall is set to be repulsive regardless

83



of solvent condition. The strength and sign of the interaction of the polymer with

the wall can be varied, so that the full range between repulsive and attractive wall

strengths is accessed. The parameters used in this study are given in Table 4.1.

Good solvent Poor solvent
i− j εij σij rc εij σij rc
m-m 1.00 1.00 (2)1/6 1.00 1.00 2.5
c-c 1.00 1.00 (2)1/6 1.00 1.00 (2)1/6

m-c 0.50 1.00 (2)1/6 5.00 1.00 (2)1/6

Table 4.1: Table of parameters for LJ potential for good and poor solvent conditions.
Different values of rc determine the solvent condition. To delineate the effect of poor
solvent conditions, a higher value of εij was used between monomers and crowder
particles, though the potential is soft-core repulsion for good and bad solvent cases.

The polymer chain connectivity is modelled via a harmonic potential,

V bond
ij (rij) =

1

2
kbond(rij − r0)2, (4.2)

where the bond length r0 for the polymer is set to be 1.122. The equation of motion

is integrated for 108 steps using a velocity-Verlet algorithm. The step size is taken to

be δt = 0.001τ , where τ = σ
√
m/ε, m, σ and ε are units of mass, length and energy

respectively. All simulations are performed under constant volume and temperature

(T) conditions (T = 1.0) using a Nosé–Hoover thermostat. The MD implementation

is from the LAMMPS [Plimpton, 1995] software package. All visual image generation

and analysis was performed using scripts developed in the VMD package [Humphrey

et al., 1996]. The system’s initial configuration is constructed using the Pizza-py

toolkit [Plimpton, 1995]. A harmonic wall interaction was initially used for 104

steps to stabilise the polymer inside the confining surface (of radius R = 15.0).

With this starting point, several systems with the desired wall interaction potential

and parameters were generated.

Different shape parameters are calculated to assess the size and shape of the polymer,
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as detailed below. The radius of gyration is defined as

R2
g =

1

2N2

N∑
i=1

N∑
j=1

|(ri − rj)|2. (4.3)

Additional shape parameters can be defined using the gyration tensor,

Smn =
1

2N2

N∑
i=1

N∑
j=1

(
rim − rjm

) (
rin − rjn

)
. (4.4)

The gyration tensor can be diagonalised, yielding three eigenvalues λ1, λ2, λ3 (where

we order λ1 < λ2 < λ3 ). The asphericity b, which describes the deviation of the

average shape of the polymer from a sphere, is defined as,

b = λ3 −
1

2
(λ1 + λ2). (4.5)

The local structure of polymer conformations can be represented through contact

maps. If any two monomers, say monomer i and monomer j, approach each other to

within a distance of 2σ, this is counted as a contact between i and j. Contact maps

are calculated over a production run (5×106τ). An average value for the number of

contacts is then computed and associated to elements of a two dimensional matrix

indexed by monomer labels. For the confined, adsorbed case, we count the average

fraction of monomers adsorbed on the surface. We also measure a height function

that quantifies the height of the adsorbed configuration relative to the confining

sphere surface. To calculate the height of the polymer stacks, we calculate the

distance of each monomer from the centre of the confining sphere. We then subtract

this quantity from the radius of the confinement. The largest number thus obtained,

after averaging over a large number of configurations, is a measure of the height of

the polymer stack, and is termed H.
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To understand the effect of the curvature of the confinement on the conformation

of the polymer, we performed additional simulations with a larger sphere of radius

R = 30.0, for the same crowder densities and potential parameters. In all cases, we

perform a large number of simulations starting from different initial conditions and

with the same parameters to ensure good statistical averaging.

4.1.2 Results

Effect of confinement and crowders on polymer conformations in a good

solvent

To understand the impact of crowder particle density and confinement on poly-

mer conformation, we simulated the neutral polymer within a confining sphere with

repulsive walls, and under good solvent conditions. A control simulation with pe-

riodic boundary conditions was also performed to compare results for confined and

unconfined polymers.

We measured the radius of gyration Rg of the polymer, under both confining and

non-confining conditions, varying crowder densities. Our results are shown in Fig-

ure 4.1. The radius of the confining sphere was chosen based on the typical Rg value

of the polymer in the unconfined case ensuring that even at the smallest crowder

particle densities, the Rg value of the polymer in the confined sphere is significantly

lower than that in the unconfined case.

Earlier studies [Kang et al., 2015b, Kang et al., 2015a, Marenz et al., 2012, Hsu

and Grassberger, 2005, Shendruk et al., 2014, Cacciuto and Luijten, 2006, Das

and Chakraborty, 2010], both theoretical and computational, have shown that the

primary effect of confinement is to reduce the conformational space available to the

polymer. This can be seen in our simulations at very low crowder density. As the

crowder density is increased, the conformations of confined and unconfined polymer
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(a) (b)

(c)

Figure 4.1: (a) The radius of gyration of the polymer in a good solvent condition
under confinement with repulsive walls (blue) and in the absence of confinement
(red) at different crowder densities. Each data point for unconfined and confined
polymer is averaged over 10 and 5 simulations respectively. The corresponding error
bars are also shown in the figure which represent standard deviation of the data.
(b,c) Snapshots of the polymer at the highest crowder density are shown for periodic
boundary conditions and spherical confinement.

vary differently with the crowder densities. As seen in earlier work [Kang et al.,

2015a] for the unconfined case, Rg values decrease, indicating an evolution into a

more compact structure, as the crowder density is increased. Figure 4.2, shows

the relative change with respect to the lowest crowder density considered in this

study. From both Figure 4.1 and Figure 4.2, it can be seen that for the highest

crowder density simulated here, the reduction of Rg is significant, as also seen in

other studies [Mao et al., 1995, Kim et al., 2015, Shendruk et al., 2014, Jeon et al.,

2016]. This is a consequence of depletion forces due to the crowders. However, note

that the decrease is not as dramatic as that seen in Ref. [Kang et al., 2015a], for

similar values of λ. This is likely because the polymers used in the present study

are significantly longer than those used in previous work.

For the confined case, the Rg values of the polymer are relatively insensitive to the

crowder densities when compared to the unconfined polymer, with only a slight re-
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Figure 4.2: Relative change in the Rg values, as a function of crowder density, for
the unconfined (red) and confined (blue) cases. The values are computed relative
to the case of lowest crowder density considered in the study (φminc = 0.035). Each
data point is averaged over 10 different initial conditions.

duction at highest values of crowder densities. This suggests that under confinement,

the polymer conformation is already somewhat compact and that the addition of

crowder particles thus does not change the global conformation significantly. At the

highest crowder densities considered in the present study, Rg values of unconfined

and confined polymer are comparable. However, introducing an attraction between

monomers, modelling poor solvent conditions, can affect the conformational land-

scape of the polymer. This will be explored in later sections.

Confined polymers in a good solvent with attractive walls

In this section, we explore the conformations of a long polymer interacting with an

attractive wall and under good solvent conditions. Representative snapshots of the

systems for different wall attraction strengths and crowder densities are shown in

Figure 4.3. In the previous section, we showed that in the confined case and for

repulsive walls, the global conformation of the polymer varies little with crowder

particle density. Figure 4.3(a) shows that for attractive wall interactions, there is
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only a marginal change in the overall conformation of the polymer, provided a good

solvent condition is maintained.

To quantify this visual observation further, we computed two shape parameters for

the polymer: (i) asphericity (b) and (ii) radius of gyration Rg, both as a function of

crowder density. In addition, we also compute the number of adsorbed monomers

on to the confining surface also as a function of crowder density. The variation of

Rg values plotted against crowder density for a range of attractive wall strengths is

shown in Figure 4.3(d). This figure shows that the conformation of the polymers

is largely insensitive to the crowder density, even at the highest crowder densities

we consider. This is in contrast to the repulsive wall case discussed in the previous

section.

This result suggests that the attractive wall interactions dominate the conforma-

tional landscape of the polymer when it is confined under good solvent conditions.

A small reduction in Rg values upon increasing the crowder density is only seen

when the attractive wall strength is small, for εmw = 1.0 in the figure.

These results are mirrored in the plots of asphericity as a function of crowder density

shown in Figure 4.3(e). At the largest values for the attractive wall interaction, b

values are relatively insensitive to crowder densities, but appear to exhibit somewhat

unusual and non-monotonic behaviour for intermediate values of crowder density

and wall interaction. To further understand the adsorption of the polymer on to the

confining wall surface, we measure the number of adsorbed monomers on the surface

(fad) for different wall attraction strengths as a function of crowder densities. We

consider a monomer to be adsorbed on the surface if it is within 1.5σ of the wall.

Each point in the plot represents an average of 5 initial conditions and is averaged

over 5× 106 time steps.

For the lowest values of wall attraction strength and for a small number of crowder

particles, the number of adsorbed monomers is very small, suggesting a largely
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Figure 4.3: Good solvent condition: The snapshots of the polymer conformation
for (a) the wall attraction εmw = 1.0, the crowder density φc = 0.035, (b) εmw =
10.0, φc = 0.035, (c) εmw = 10.0, φc = 0.435. The variation of (d) radius of gyration
Rg, (e) asphericity b and (f) the fraction of adsorbed monomers fad with φc for
different εmw.

desorbed-extended (DE) configuration of the polymer. However, as the crowder

density is increased, there is an increase in the number of adsorbed monomers on

the surface. This observation is consistent with our results for the Rg and b values of

the polymer for low attractive wall strength and highest crowder density, where we

noted that the polymer tends to have a more compact structure and the effects of

crowder particles dominate. However, as the wall attraction strength is increased, i.e.

for εmw > 1.0, there is a substantial increase in the number of adsorbed monomers,

as indicated by the adsorption of nearly 80% of monomers, in Figure 4.3(f). This

does not vary much with crowder density and the polymer remains in an adsorbed-

extended (AE) state under good solvent conditions for high attractive wall strengths.

We believe that the non-monotonic behaviour of the asphericity in Figure 4.3(e) is

likely due to the fact that the polymer shape is considerably distorted by its inter-

actions with the surface and its spreading. At low values of wall interaction, both

Figure 4.3(d) and Figure 4.3(e) suggest that the polymer is largely detached from
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the wall. At the highest values of wall interaction, the polymer is largely adhered

to the wall. For values of the wall interaction that lie in-between these extremes,

although most monomers are adhered to the wall on average, excursions from it are

not penalized as much, especially at low crowder concentrations. As the polymer

shifts between a largely three-dimensional to a largely two-dimensional conforma-

tion, the nature of the depletion interaction induced by the crowders can exhibit a

non-trivial dependence on crowder density, which we suggest may be responsible for

the complex behaviour we see.

Confined polymers in a poor solvent with attractive walls

  

�c = 0.035

�c = 0.435

✏mw = 1.0 ✏mw = 5.0 ✏mw = 10.0 ✏mw = 20.0(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 4.4: Poor solvent: The snapshots of the polymer for low crowder density
φc = 0.035 and for high density φc = 0.435 for different wall attractive strengths.

A neutral, unconfined polymer is collapsed under poor solvent conditions. In this

section, we explore confined polymer conformations under poor solvent conditions

and near an attractive wall. We vary the strength of the interaction with the wall as

well as the crowder particle densities, mapping out the qualitative phases obtained

with these parameters.

For low crowder densities, φc = 0.035, and for a small monomer-wall attractive
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strength εmw = 1.0, the polymer assumes a globular conformation on average. This

can be seen in Figure 4.4(a). If we now increase the attraction towards the wall,

keeping crowder densities the same, the polymer extends while remaining adsorbed

on the wall surface (AE), as seen in Figure 4.4(b-d)). However, at high crowder den-

sities, the polymer remains in an adsorbed collapsed conformation (AC), regardless

of the wall interaction strengths, as shown in Figure 4.4(e-h). This is in contrast

to what was obtained for good solvents, for which the polymer remains in an AE

conformation at sufficiently large wall interaction strength, irrespective of crowder

densities.

The coverage of the polymer onto the confining surface in poor solvent conditions

differs significantly from that in good solvent conditions. This can be understood

in terms of two opposing effects. The polymer wants to maximize its (attractive)

interactions with the wall by spreading out over it, but this competes with a tendency

towards compaction induced by the poor solvent and exacerbated by the presence

of crowder particles. This tendency is present even for low crowder densities. To

gain further insight, we calculated the conformational parameters Rg, b and fad,

for different attractive wall strengths and as a function of crowder densities. These

results are shown in Figure 4.5(a-c).

For an attractive wall strength of εmw = 1.0, regardless of the crowder density,

the polymer is in a collapsed conformation. At the lowest crowder density, as the

attractive wall strength increases across εmw = 5.0, 10.0 and 20.0, the Rg values are

increased, suggesting a transition from desorbed-collapsed (DC) to the adsorbed-

extended(AE) structure of the polymer. At these higher attractive wall strengths,

the crowder density influences the polymer conformation significantly under poor

solvent conditions. This is in contrast to good solvent conditions, under which the

crowder density has a far smaller effect on the polymer conformation.

In addition, under poor solvent conditions, as the crowder density increases, the
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polymer makes a second transition from adsorbed-extended (AE) to adsorbed-collapsed

(AC), as can be seen from the decrease of the Rg values in Figure 4.5(a) for higher

crowder densities. This can also be seen in calculations of the asphericity Fig-

ure 4.5(b), where, at high crowder densities, regardless of the wall attraction, the

polymer assumes a compact conformation. This contrasts to the behaviour in good

solvent conditions. The number of adsorbed monomers on the wall surface also show

a similar decrease at high crowder densities, as shown in Figure 4.5(c).
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Figure 4.5: Poor solvent: (a,b,c) Different shape parameters of the polymer for
various attractive wall strengths as a function of crowder density. The pair radial
distribution functions for (d) low crowder density φc = 0.035 and (e) high density
φc = 0.335 for different wall attractive strength εmw.

Though the Rg values of the polymer, under poor solvent conditions and for high

attractive wall strengths, is similar to that of the polymer under good solvent con-

ditions, the internal structure of the polymer at low and high crowder densities

is very different. This is captured by radial distribution functions (g(r))between

monomers. Our results are shown in Figure 4.5(d-e). The g(r) values of the poly-

mer under poor solvent and at high crowder density clearly show a more ordered
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internal structure when compared to low crowder density. This is seen in the in-

creased number of peaks emerging in pair distribution function between monomers.

The internal structure is more pronounced at low attractive wall strengths while the

competing wall interactions at higher strengths lead to reduced structure.

Consolidating these results provides us a global picture of the possible conformations

of a neutral polymer in the φc − εmw space under poor solvent conditions and the

competing effects that favour different conformations. First, a small value for the

wall attraction leads to an adsorbed collapsed (AC) structure. Upon increasing the

crowder density, the polymer maintains this AC structure. As the attraction of the

polymer towards the wall is increased, the AC state opens up in order to maximise

contact with the wall. There is then a transition towards an adsorbed-extended

(AE) as well as layered structure at low crowder density. If we now increase crowder

density, the polymer tries to collapse further to avoid exposure to the crowder par-

ticles. The competition between the attractive interactions between monomer and

wall and the repulsive interaction between the polymer and the crowder particles

now governs polymer shape and internal structure. For intermediate εmw values,

the crowder interaction appears to be dominant while for higher values of εmw, the

attraction wins, leading to an absence of layering even at higher crowder densities.

Confined polymers with attractive walls: The role of crowder density

In this section, we compare the conformations and internal structure of the polymer

as a function of crowder densities. Some conformations of the polymer, along with

Rg and fad calculations are shown in Figure 4.6. These are shown for both good and

poor solvent conditions as indicated, plotted as a function of crowder densities and

for a fixed wall attraction strength (εmw = 10.0) From Figure 4.6, it can be seen that

for poor solvents, the polymer adapts an extended conformation on the confining

spherical surface, if the attractive wall strength is large and the crowder density low.
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Figure 4.6: The snapshots of the polymer (a) for good solvent condition (b) for
poor solvent condition at different crowder densities φc = 0.035, 0.235, 0.335, 0.435
for attractive wall strength εmw = 10.0, (c) Fraction of adsorbed monomers on the
surface of confinement as a function of crowder density in good and poor solvent
conditions. (d) The radius of gyration of polymer as a function of crowder density
for εmw = 10.0.

However, as the crowder density is increased, the polymer configurations undergoes a

transition from more extended configurations to a collapsed configuration. This is in

contrast to good solvent conditions, for which polymer conformations are relatively

insensitive to crowder density, as shown in Figure 4.6(a).

The calculated values of Rg and fad as a function of crowder densities in Figure 4.6(c-

d) quantify the transition from extended to collapsed polymer conformations in poor

solvent conditions and at high crowder densities. We contrast these results to the
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case for low crowder density in Figure 4.4(a) where, as the attractive wall strength

is increased, a first transition from collapsed to extended conformation (AC to AE

phase) in poor solvent is observed. While that transition was driven by the attractive

wall strength, the transition from extended to collapsed shown in Figure 4.6 (b) in

the poor solvent case is driven by crowder density.
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Figure 4.7: For poor solvent condition and εmw = 10.0 (a) the radial distribution
function g(r), (b) the density function ρ(r′) for φc = 0.035, 0.085, 0.185, 0.285, 0.385.

To investigate structure in the conformation of the extended polymer at high wall

interaction strength, we calculate the radial distribution function g(r). For fixed

monomer-wall interaction (εmw = 10.0), as φc is increased, the order in the structure
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increases (see Figure 4.7 (a)). To understand the positioning of the polymer relative

to the wall, we plot the normalized density, ρ(r′), of the polymer vs. the radial

distance r′ (see Figure 4.7 (b)) from the center of the sphere. To calculate ρ(r′), we

split the spherical volume in a large number of thin shells and count the number

of monomers in each shell, normalizing this with respect to the average density

obtained if the monomers were distributed uniformly throughout the volume. This

density distribution ρ(r′) gives us insights into the layering of the polymer upon

increasing crowder density.

Our results suggest that, as the crowder density is increased, there is an emergence

of layering with respect to the surface. For lower crowder density, there are fewer

layers. As we increase the crowder density in the system, more layers begin to

appear, as seen in Figure 4.7 (b)). This can be understood in the following way.

In poor solvent conditions, as we increase the number of crowder particles in the

system, the polymer tries to collapse in order to avoid the exposure to the crowder

particles. However, since monomers are attracted towards the wall, a fully globular

conformation cannot be sustained. This leads to a partial layering near the wall

and hence to the peaks in the density plot. The emergence of internal structure can

also be captured via time-averaged contact maps shown in Figure 4.8. The contact

maps show that as the crowder density increases, the number of contacts increase in

general, suggesting an increase in local density. There are also significant contacts

between monomers which are far apart along the sequence, consistent with the visual

identification of the collapse of the polymer with increasing crowder density.

A crumpling transition induced by crowders

To better characterize the "crumpling" of the polymer under the combination of poor

solvent conditions and high crowder densities, we plotted the maximal height of the

polymer from the surface as a function of crowder density, for all wall interaction
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Figure 4.8: For poor solvent condition and εmw = 20.0: (a) Snapshots of the system
for different values of φc, and (b) Corresponding contact maps averaged over the
final 5× 106 time steps.

strengths (see Figure 4.9(a)).

Some intuition for the maximal height can be obtained from side-views of the system

as a function of crowder density, as shown in Figure 4.9(b). At low crowder densities,

increasing the strength of the attractive interactions between monomers and wall

results in the polymer spreading on the surface. This is evident in the height profile

at the smallest crowder density considered (φc = 0.035). The highest height is

achieved for the smallest wall attraction strength, where the polymer assumes a

collapsed conformation. When the attractive strength of the wall is small (εmw =

1.0), the height function is largely independent of the crowder density except at the

largest crowder density, where the compactness of the polymer increases. However,

for other attractive wall strengths, the dependence of the height function on the

crowder density is more complex. For an attractive wall strength of εmw = 5.0,

the initial configuration of the polymer is more extended (as can be seen from the

difference in heights even at the smallest crowder density). However, the extended-

to-collapsed transition is initiated at a lower density than in the case of εmw = 1.0.

For higher wall interactions, the extended-to-collapsed transition occurs at higher
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crowder densities.

Our results suggest the following: The polymer in poor solvent conditions near

an attractive wall experiences two competing forces. These favour, independently,

compaction and spreading on the wall. The propensity to collapse would lead to a

higher height function. This is primarily driven by crowder particles. The propensity

of the polymer to spread along the surface arises from its attractive interactions with

the surface. The interplay between these determines the eventual conformational

landscape of the polymers at the interface. For low attractive wall strength εmw =

5.0, a smaller threshold crowder density is required for collapse (for φc < 0.235). We

thus see an increase in the height function. As the strength of the attraction towards

the wall is increased, the threshold crowder density after which the polymer starts to

collapse moves towards higher crowder density, as seen for εmw = 10.0, 20.0. At the

highest crowder densities (φc = 0.435), irrespective of wall interactions, the polymer

under poor solvent conditions is predominantly in a collapsed state, as evident in

the height function.

Snapshots of the collapsed polymer in poor solvent conditions under lowest and

highest crowder densities are shown in Figure 4.10(a,b). The figure shows two

collapsed structures obtained under two very different conditions. From the visual

images, we can already see internal structure in these at high crowder density. To

quantify the emergence of internal structure in the collapsed conformation at high

crowder densities, we calculated the pair distribution function for the two collapsed

phases. These results are shown in Figure 4.10(c). The presence of strong peaks

in the distribution function, for the case of high crowder density, clearly indicates

increased structure in the collapsed conformations compared to the case for lower

crowder density.

To further quantify local structure, we calculate the average number of neighbours

for each monomer and plot it is a function of monomers in Figure 4.11. From the
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Figure 4.9: (a) The maximum height of the polymer stack along the radial direction.
The height of the stack decreases as the strength of the attraction increases and
more and more monomers are recruited along the wall of the confinement. (b) The
snapshots of the polymer conformation in poor solvent condition for the different
crowder densities.

results, it can be seen that the average number of neighbours, barring the monomers

on the surface of the collapsed conformation, is around 9, which is very different

from the low crowder density case. This suggests that the polymer assumes a more

ordered collapsed phase at high crowder density and a more amorphous collapsed

phase at low crowder density.
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Figure 4.10: Snapshots of the system in a poor solvent for (a) εmw = 1.0, φc = 0.035,
(b) εmw = 20.0, φc = 0.435 and (c) the pair radial distribution function of polymer
for parameters of (a) and (b) . For lower wall attraction εmw and lower density
value φc = 0.035, the plot suggests less order while for the higher wall attraction
εmw = 20.0 and higher crowder density φc = 0.435, g(r) shows many peaks indicating
more order in the system.
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Figure 4.11: Average number of neighbours for (a) εmw = 1.0, φc = 0.035 and
(b) εmw = 20.0, φc = 0.435. The average number of neighbours for higher density
(φc = 0.435) and higher wall attraction (εmw = 20.0) system is about 9 which is
higher than that for lower wall attraction (εmw = 1.0) and lower crowder density
(φc = 0.035) system. This suggests that polymer is more ordered in the higher
crowder density system than for the lower density system.

4.1.3 Discussion and Conclusion

In this part, we used molecular dynamics simulations to describe the conformational

landscape of a confined polymer in the presence of attractive walls as well as crowder

particles. We varied solvent quality across good and poor solvent conditions. We

used a 400−monomer long polymer, exploring the parameter space of the density of

crowder particles, the strength of wall interactions and the quality of the solvent.
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The conformation of a polymer on a surface has been the subject of a number of

earlier studies [Rajesh et al., 2002, Bachmann and Janke, 2005, Plascak et al., 2017,

Martins et al., 2018]. The nature of polymer configurations depends on the curvature

of the surface [Arkın and Janke, 2012b, Bachmann and Janke, 2005, Möddel et al.,

2014], solvent quality [Reddy and Yethiraj, 2010], boundary conditions, and the

interaction energy between the surface and the polymer.

Earlier Monte Carlo studies [Möddel et al., 2014] showed that polymers display a

number of shape transitions near an attractive planar surface. This work suggested

a pseudo phase-diagram in the εmw − T plane. In this phase diagram, at low tem-

peratures, the polymer assumes a layered adsorbed crystalline shape. At higher

temperatures, the polymer is desorbed if the surface attraction is small, while the

polymer remains adsorbed for high surface attraction. Similar shape transitions are

seen for polymers on curved surfaces [Arkın and Janke, 2012b].

As we show, the situation is considerably more complex when the polymer is con-

fined, thereby reducing its allowed fluctuations. We showed that for poor solvents,

as the attractive interaction strength between the wall and the polymer was in-

creased, the polymer exhibited a shape transition from an adsorbed globule (AG) to

an adsorbed layered (AL) phase. For intermediate values of εmw, as the number of

crowder particles was increased, polymer configurations changed from the AL state

to an adsorbed collapsed (AC) state. In good solvents, at low surface attraction, the

polymer did not completely adsorb on the surface. As the surface attraction was

increased the polymer gradually adsorbed on the attractive surface.

The curvature of the confining sphere plays an important role in the selection of

conformations. In order to understand the effect of the curvature on the conforma-

tion, we simulated the system of polymer of same length in a sphere with larger

radius R = 30.0 with the total volume fraction from 0.035 to 0.435 for εmw = 10.0.

We observed layered structures in proximity to the wall, as seen from the difference
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Figure 4.12: The density function of the monomers in poor solvent condition confined
within attractive walls (a) for the sphere of radius R = 15.0 (b) for the sphere of
radius R = 30.0.

in number of peaks (suggesting layers of stacked monomers) when the radius of con-

fining sphere was doubled (see Figure 4.12). As the radius of the confining sphere

is increased, the number of secondary peaks decreases. For the larger sphere, all

the monomers are adsorbed on the surface at low φc. As the density of crowders

is increased, a second layer appears. For the smaller system, there are multiple

layers present even at the smaller density of crowders. These results suggest that

the confinement and the relative ratio of confining sphere radius and length of the

polymer can significantly alter the conformational landscape of the polymers. In

particular, smaller confinement radii can led to more substantial layering, presum-

ably because the smaller sphere frustrates the formation of the adsorbed monolayer

that is a feature of the sphere with larger radius. These features can all be tuned

by the density of crowders, providing a second axis to adjust the properties of the

adsorbed state. The density function describes the normalized number of particles

at a given distance r′ from the center of the confinement. The density function plots

for monomers indicate that for the system with R = 15.0 and φc = 0.035, there

are two layers of monomers. Increasing the φc to 0.285 leads to multiple peaks (see

Figure 4.12(a)) which is an indication of the onset of collapse of the polymer to a

globular conformation. In the case of the system with larger radius R = 30.0 and

for φc = 0.035, all the monomers are adsorbed on the surface while increase in φc

value to 0.285, some of the monomers associate to the top of the monomer layer,
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indicated by the emergence of the second peak in the density function plot (see

Figure 4.12(b)).

ϕc

ϵmw1 5 20

0.035

0.235

0.385

Poor solvent condition Good solvent conditionϕc

ϵmw1 5 20

0.035

0.235

0.385

Figure 4.13: Conformations of polymer under different crowder densities and attrac-
tive wall strengths for the poor and good solvent condition in φc − εmw space.

In this study, in addition to the interacting surfaces and solvent condition, we dis-

cussed the role of another critical variable associated to crowding of the polymer

chain by other monomeric particles. The quantity φc was found to play an important

role in determining the conformation of the polymer. In good solvent conditions,

we found that the crowder particle density did not affect the conformations sub-

stantially. In poor solvent conditions however, for higher levels of wall attraction,

an increase in number of crowder particles leads to a more ordered structure. We

suggest that this may be a general feature of crowded confined polymers in a poor

solvent, when attracted by a wall, and that the ability to adjust solvent quality as

well as crowder concentration may be key to stabilizing a polymer in the vicinity of

a confining wall.

The addition of crowder particles adds additional complexity but presumably pro-
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vides a better representation of a large number of biological situations. Indeed, the

combination of confinement, crowding and wall interactions should be generic to a

number of polymer systems of biological and pharmacological relevance. More de-

tailed studies of these regimes, keeping specific systems in mind, and including the

size effects of the crowders under these conditions should be fruitful.

4.2 Diffusion in Crowded and Grafted Cylindrical

Tube

Understanding particle mobility in confined porous channels is crucial to various

processes including ion transport across membranes via ion channels, translocation

of biopolymers through confined spaces, the extraction of oil etc. [Wang et al.,

2019, Peteu, 2007]. Polymers that are grafted on the surface of a hollow channel-

forming cylinder, especially coating the inside of such channels, are interesting sys-

tems that can be used to tailor the transport of various solutes. Such structures

also play an important role in the design of microfluidic and nanofluidic devices

with specified properties [Yu et al., 2003, Speyer and Pastorino, 2019, Zuo et al.,

2017]. These properties can be modified by tuning the polymer-channel surface

interactions, temperature, pH, crowder particle density and the nature of crowder

particles also present within the channel. [de Groot et al., 2013, Conrad and Robert-

son, 2019, Speyer and Pastorino, 2019]. These alter the conformation of polymers

lining the channel, allowing for flow through them to be controlled.

This, in turn, can influence the transport properties of particles within channels [Reznik

and Landes, 2012, Adiga and Brenner, 2005]. Other factors influencing particle

mobility include the length of the grafted polymers, the grafting density of the

polymers on the surface, particle-surface interactions and the effective particle size

itself. Many of these factors can impede the motion of the particle and contribute
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to caging behavior, providing the ability to tune the diffusion of particles [Filippidi

et al., 2007, Choi et al., 2014].

Polymer brushes also offer a unique porous environment to the particle motion [Zhang

and Müller, 2005, Brittain and Minko, 2007, Dimitrov et al., 2006]. Most studies

of particle motion through porous media use systems where the pore/cavity size is

uniform and fixed in location. Determining aspects such as mean first passage times

and translocation of solutes through cavities is a challenging prospect for even static

cavities. Whether making pores effectively dynamic should impedes or accelerate

particle motion is not intuitive.

The diffusion coefficient D provides a measure of how easy it is to move a particle

of fixed size in a given environment where it is only subject to thermal fluctua-

tions [Jacobs, 1935]. The diffusion of tracer particle inside nanopores formed by

lining cylindrical channels with polymer brushes depends upon the solvent condi-

tion as well as the density and length of the polymer grafts. It can also be affected by

the crowder particles added to the solution. The longer the polymer grafts are, the

smaller the effective diameter of the tube will be, as the radius of gyration (Rg) of

the polymer in poor solvent conditions is ∼ N1/3 whereas in good solvent conditions

it is ∼ N3/5, where N is degree of polymerization.

4.2.1 Methods

We study the diffusion of a tracer particle as well as the conformational structure

of polymer grafts in a hollow impenetrable cylinder containing a solvent as well as

crowder particles. The polymers are grafted on the interior surface of an infinitely

long cylinder, which we approximate by applying periodic boundary conditions along

the axis of the cylinder of length L. In our simulations, we vary the solvent quality

from good solvent to poor solvent. We do not have any explicit solvent particles.
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However, we allow for separate crowder molecules, varying the number of crowder

particles from 0 to 12000 such that the the crowder density φc changes from 0.00 to

0.391. The crowder density φc = Ncvc/V , where Nc, vc and V are the number of

crowder particles, volume of a crowder particle and V is the volume of the cylinder.

(a) (b)

Figure 4.14: Model representation of the simulated system. (a) The lateral view
and (b) the cross-sectional view of the system. The blue color particles represent
the anchor monomers, red color particles are the monomers which are not fixed to
the cylindrical wall, the crowder particles and the tracer particle are shown in grey
and yellow respectively. (Note that tracer particle is shown bigger than the original
size for better visualization.)

A bead-spring model is used to simulate polymers. A simple harmonic potential 4.2

is used for the bonded interactions between the subsequent monomers. A shifted

and truncated Lennard-Jones (LJ) 6-12 potential 4.1, at a cutoff rc, is used for

pairs of non-bonded interactions between all types of particles, monomers, crowders

and tracers. The interaction among the particles determines the effective solvent

condition. The interaction of the monomer with the wall is described by a Lennard-

Jones potential. Both repulsive and attractive wall interactions between monomers

and cylindrical wall are considered. The interaction of the crowder particles to the

wall is set to be repulsive regardless of solvent condition. The strength and sign of
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the interaction of the polymer with the wall can be varied, so that the full range

between repulsive and attractive wall strengths is accessed. The parameters used in

this study are given in Table 4.2.

Good solvent Poor solvent
i− j εij σij rc εij σij rc
m-m 1.00 1.00 (2)1/6 1.00 1.00 2.5
c-c 1.00 1.00 (2)1/6 1.00 1.00 (2)1/6

m-c 1.00 1.00 (2)1/6 1.00 1.00 (2)1/6

m-t 1.00 1.00 (2)1/6 1.00 1.00 (2)1/6

c-t 1.00 1.00 (2)1/6 1.00 1.00 (2)1/6

Table 4.2: Table of parameters for interaction potential for good and poor solvent
conditions. Different values of rc determine the solvent condition of the system.

The equation of motion is integrated for 107 steps using a velocity-Verlet algorithm.

The size of time step is taken to be δt = 0.001τ . All simulations are performed

under constant volume and temperature (T) conditions (T = 1.0) using a Nosé-

Hoover thermostat. The MD algorithm is implemented using the LAMMPS software

package. Snapshots of the system were taken using the VMD package and used to

first qualitatively assess changes in configurations across parameter values, prior to

quantitative analysis.

The system’s initial configurations is generated using a custom python code. The

polymers are grafted on the interior of a cylinder of height 20 units along z−axis

and radius 16 units. The degree of polymerization of grafted polymers used is 20

and the distance between the graft is 4 units along z−axis and π/9 radian radially.

The average bond length r0 for the polymer is taken to be 1.122, and the size of the

tracer, monomers and crowder particles are taken to be 1.0, in the units set above.

Five independent simulations are performed at each point in parameter space, using

different initial velocities and independent random configurations of tracers and

polymers.

To understand the position and structure of grafted polymers, we calculate the
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distribution of monomers inside the cylinder. The monomer distribution (Pmono) is

defined as number of monomers in a cylindrical shell normalized with the number

of particles in a uniform distribution. A similar quantity (Pcrow) is defined for the

crowder particles. To further analyze the spatial structure, the pair distribution

function g(r) is calculated. We computed different pair distribution functions such

as gmm(r), gmt(r), gct(r), gcc(r) and gmc(r). We also calculated the radius of gyration

as a function of solvent quality, crowder density and wall interaction to understand

the effective size of the cylindrical tube in which crowders and tracer particles diffuse.

To quantify the diffusive behaviour of tracer particles, we plotted the 〈(z(t + τ) −

z(t))2〉 vs τ for them. The diffusion coefficient D was calculated by fitting the long-

time linear trend of the mean square displacement (MSD) 〈(z(t + τ) − z(t))2〉 in

z−dimension as a function of lag τ .

4.2.2 Results

We fix the grafting density of the polymer inside the cylinder for the current study

and introduce a tracer particle and a number of crowder particles to the system.

The number of crowder particles is increased from 0 to 12000 in steps of 2000. The

interaction among monomers decide the solvent condition of the system. To simulate

a good solvent condition, the interaction between the monomers is repulsive whereas

for poor solvent condition, it is attractive.

To understand the effect of crowder density φc on the radius of gyration of the

polymer grafts Rg, which in turn provides an approximate estimate of the effective

radius of the cylindrical tube, we compute Rg for different number of crowder parti-

cles, different solvent conditions and monomer-wall interactions. In Figure 4.15, we

see that as the density of crowder particles φc increases for poor solvent conditions,

the average radius of gyration does not change significantly and is independent of
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monomer-wall interactions, except at the highest density of crowder particles. On

the other hand, for good solvent conditions, the radius of gyration shows a gradual

decrease with crowder density φc. Furthermore, it is seen that the type of monomer-

wall interaction, whether attractive or repulsive as well as the strength εmw, do not

have a significant effect on the radius of gyration of the polymer grafts.

Figure 4.15: The radius of gyration of polymer grafts for poor and good solvent
conditions and different monomer-wall interactions. The symbols are abbreviations
for, GS: good solvent, PS: poor solvent, AW: attractive wall, RW: repulsive wall.

To investigate further the effect of crowder density on the diffusion of the tracer par-

ticle, we plot (see Figure 4.16) mean square displacement(MSD) in the z−direction

(along the long axis of the cylinder) 〈(z(t+τ)−z(t))2〉 against the lag τ for different

solvent conditions and monomer-wall interactions. We find that 〈(z(t+ τ)− z(t))2〉

decreases with increasing φc regardless of solvent conditions and monomer-wall in-

teractions. The fast growth of MSD at small times suggests super-diffusion following

〈∆z(τ)〉2 ∼ τα with α > 1, where ∆z(τ) = z(t + τ) − z(t). At larger times, for

φc = 0, the tracer particle shows super-diffusive behaviour, while for φc > 0, we see

what resembles normal Brownian diffusion with ∆z(τ)2 ∼ τα with α ∼ 1.

To understand the results of Figure 4.16 better, we calculated the values of diffusion

constant D from the plots by fitting the MSD at larger time scales for φc > 0 to a

line using a least-square-fit method for all τ values. We then plotted them against

φc for different solvent conditions and wall interactions. Figure 4.17 shows that the
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(b) (c) (d)
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(a)

Figure 4.16: The plot shows 〈(z(t + τ) − z(t))2〉 vs τ for poor and good solvent
condition and different wall interactions. Super-diffusive behaviour is seen for φc =
0, while behaviour shifts to normal Brownian motion for φc > 0.

diffusion coefficientD decreases as the density of crowder particles is increased in the

tube, explained by the observation that increasing the number of crowder particles

reduces the space for the tracer particle to move.

Figure 4.17: The plot shows the diffusion coefficient D vs crowder density φc for
good and poor solvent conditions with different wall-monomer interactions. The
diffusion coefficient decreases as more number of crowder particles are added to the
system regardless of solvent condition and monomer-wall interaction.

To understand the radial distribution of the particles, we plot the average probability

distribution for monomers Pmono and crowders Pcrow (see Figure 4.18) over the last
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5 × 105 steps of the trajectory. From Figure 4.18 (a), we see that, in the case of

a poor solvent condition and for an attractive wall with monomer-wall interaction

strength εmw = 1, the monomers attach only loosely to the cylindrical wall for all

φc. On the other hand as εmw is increased to 10, almost all the monomers attach

to the wall, as seen in Figure 4.18(b) as there is one very high peak supplemented

with a smaller secondary peak.

(b) (c) (d)

(h)(g)(f)(e)

(a)

Figure 4.18: The average monomer distribution in the cylindrical confinement for
different solvent conditions and monomer-wall interactions. Monomers largely avoid
the contact with the wall except for the high attractive interaction strength εmw =
10.

Figure 4.18 (c-d) shows that for poor solvent conditions with a repulsive wall, the

polymers attach to the wall of the cylinder only at a single attachment point, pre-

ferring to expand out into the solution to minimize their interactions with the wall.

Even for attractive walls, in the case of a good solvent condition (Figure 4.18 (e-h)),

the monomers largely avoid the wall except at the highest attractions εmw = 10.

We further see from Figure 4.19 that the crowders are uniformly distributed in the

volume near the axis of the cylindrical tube (R = 0) and exhibit some layering

structure regardless of solvent conditions and monomer-wall interactions as they

penetrated close to the wall of the tube (R = 15). The layering becomes more

prominent as the number of crowder particles increases in the system.
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(h)(g)(f)(e)
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Figure 4.19: The crowder particle distributions for different solvent conditions and
monomer-wall interactions. The crowders are uniformly distributed in the middle
of the tube while show layering for higher crowder density neat the wall of the tube.

(b) (c) (d)

(h)(g)(f)(e)

(a)

Figure 4.20: The pair distribution function for monomer-monomer pairs. Enhanced
ordering is seen in poor solvent conditions whereas for good solvent conditions, this
order reduces.

To investigate the structural organization of the system, we also calculate pair dis-

tribution functions g(r). Figure 4.20 shows plots of the pair distribution function

gmm(r) for monomer-monomer pairs. In the top panel, Figure 4.20(a-d), shows

gmm(r) for the poor solvent condition with attractive and repulsive wall for εmw =

1, 10. It is seen that the structure is enhanced with the crowder density φc. For

good solvent condition, the effect of crowder density is to increase the organization,

although the effect of φc is reduced in this case as can be seen from the height of

the primary peak (see Figure 4.20 (e-h)).
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Figure 4.21: The pair distribution function for monomer-crowder pairs. The
monomer-crowder pairs are less ordered for poor solvent conditions as compared
in the good solvent conditions.

Figure 4.21 shows the pair distribution function for monomer-crowder pairs. For

poor solvent conditions, the polymers seems to interact less with the crowder, as the

polymer is in a collapsed conformation (see Figure 4.21 (a-d)), but Figure 4.21 (e-h)

shows a single peak indicating enhanced monomer-crowder pair structural ordering.

4.2.3 Discussion and Conclusion

In this section, we used molecular dynamics simulations to understand the diffusion

of a tracer particle in q cylindrical geometry. This was observed to vary as a function

of the conformation of polymer grafts when the cylindrical tube had its internal

surface grafted with by a uniform density of polymers. We varied solvent quality

across good and poor solvent quality. We varied the number of crowder particles,

solvent quality and the monomer-wall interaction to understand their effects on the

diffusion of the tracer particles.

We showed that the diffusion of the tracer particle reduces with an increase in the

number of crowder particles. We noticed a regime of superdiffusive behaviour in the

case where crowder particles were absent. As the size of the tracer becomes compara-
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ble to the size of the tube’s diameter, we can expect diffusion to become increasingly

difficult. We can also expect tracer particle to exhibit caging behaviour [Schneider

et al., 2016] at moderate to higher crowder densities, similar to behaviour seen in

tracer-obstacle systems [Ghosh et al., 2015, Scalliet et al., 2015].

Here, we considered the case where the polymer graft density is kept constant. In

experimental systems, however, the polymer graft density plays a significant role

in determining the conformations of each grafted polymer. Hence, it would be a

natural next step to study the effects of grafting density on the diffusivity of the

tracer.
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Chapter 5

Conclusion

This thesis studied the properties of confined polymers in biophysical and bioengi-

neering contexts. It studied models of the coupling of stem cell chromatin, modelled

as an active polymer solution, with a soft confining nucleus. It then went on to

explore the problem of polymers confined within a hollow sphere or cylinder, where

the solvent quality, the interaction with the wall and the density of crowders could

be tuned separately. This set of models is appropriate in a number of industrial as

well as biophysical contexts.

The first of the problems studied dealt with the understanding of auxetic behaviour

observed in the nuclei of mouse stem cells. The mechanical properties of stem cells

change as they differentiate to specific cell types. In experiments [Pagliara et al.,

2014], it is seen that the nucleus of mouse embryonic stem cell exhibits auxetic

behavior in a transition state that intervenes between the pluripotent and differ-

entiation primed state. We developed a simple model which described this auxetic

behavior while also providing a broader biophysical perspective on the implications

of model results for Waddington’s idea of an epigenetic landscape. The main results

from the model are summarized below,
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• The Poisson’s ratio of the nucleus depends upon a coupling parameter B which

describes the lowest order coupling of a variable describing the level of chro-

matin compaction Ψ with the nuclear size R. For positive values of B, the

nucleus behaves as normal material with positive Poisson’s ratio, whereas for

negative values of B, the nucleus exhibits auxetic behavior with a negative

Poisson’s ratio.

• We can interpret the experimental data in the following way: The value of the

parameter B goes from being positive in embryonic stem cell state to negative

in transition state to being positive again in differentiation primed state. The

nucleus thus transitions from being non-auxetic to auxetic to again nonaux-

etic states as the cell differentiates. We propose that the auxetic-nonauxetic

boundary can be determined by studying time correlation functions of coarse-

grained variables. We show that the cross-correlation function 〈δR⊥(0)δΨ(t)〉

should changes the sign of its slope as B changes sign.

• We model the dynamics of chromatin compaction variable Ψ constrained by

a potential V (δΨ). The chromatin compaction potential can be expected

to be complex, possessing multiple minima. It is known that different cell

types have different levels of chromatin compaction. We connect Waddington’s

complex epigenetic landscape to a simple one dimensional potential V (δΨ) by

projecting the compaction which should be a function of both space and time

to an overall chromatin compaction variable Ψ that depends only on time.

Our model can be generalized in many ways. In chapter 3, we considered Ψ as

a function of time t only while neglecting its spatial dependence. This is a good

approximation for a relatively fluid stem cell state, although chromatin compaction

should really be thought of a spatially inhomogeneous in differentiated states. Hence,

including a spatial dependence Ψ(r, t) should be a first step towards generalization.

Also, a coarse-grained simulation of an active polymer in a flexible confinement is
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feasible. It will be interesting to see how the arguments of chapter 3 translate to

simulations.

In the second problem examined in the thesis, we studied the conformational be-

haviour of polymers in crowded and confined environment using molecular dynamics.

The main results are summarized below,

• To understand the effect of confinement on the conformations of polymer,

we compared the results from the simulation of polymer under spherical con-

finement and periodic boundary condition under the same set of parameters.

Under good solvent conditionS, the polymer assumes a desorbed extended con-

formations in both the cases but the radius of gyration Rg of the polymer is

smaller in case of confinement compared to that in unconfined case.

• To understand the effect of crowder density φc on the conformations of poly-

mer, simulations of the polymer were carried out varying the number of crow-

der particles. Under good solvent conditions and confinement by an attractive

surface, the polymer is extended and completely adsorbed onto the surface

of confinement. Changing φc does not further change the conformations of

the polymer. In case of poor solvent conditions, the polymer collapses and is

adsorbed on the surface for moderate value of φc. It becomes more ordered

and compact for higher values of φc.

• To understand the effect of monomer-wall interaction, the polymer is simulated

in good and poor solvent condition with varying monomer-wall interaction

strength εmw. The polymer gets adsorbed for all the values of εmw, but the

degree of adsorption depends upon the magnitude εmw.

• We establish from the simulation that the interplay among the solvent condi-

tion, εmw and φc are all relevant to understanding the conformational landscape

of the polymer.
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Adding crowder particles to the system adds one more layer of complexity and takes

the system one more step closer to a realistic system. In future, more detailed

studies taking into accounts of more system-specific details should be fruitful as

confinement, wall-interaction and crowders are very general in biological systems.

In the third problem, we employ molecular dynamics simulation to study the dif-

fusivity of a tracer particle in an infinitely long cylindrical tube with its internal

surface grafted with polymers under different solvent conditions, crowder densities

and monomer-wall interactions. we found that

• For poor solvent condition, the radius of gyration of the graft polymers does

not change significantly with the crowder density except for the highest density

case. In case of a good solvent condition, the radius of gyration decreases with

an increase in number of crowder particles.

• The diffusion of tracer particle slows down as tube becomes more crowded.

This slow down happens regardless of solvent condition and wall interaction.

• The crowder particles are uniformly distributed in the middle of the tube, while

near the tube’s wall they form layered structure for both solvent conditions

and different monomer-wall interactions. On the other hand, the monomers

stick to the wall in layered fashion in poor solvent condition, however, the

degree of adsorption and the number of layers depend upon the monomer-

wall interaction. For good solvent condition, the polymers tend to assume

extended structure for repulsive wall. For high attractive interaction, polymers

gets adsorbed to the cylindrical wall and form a layered structure even for the

good solvent condition.

In second part of the chapter 4, we presented preliminary results from the molecular

dynamics simulations. We studied diffusion of the tracer particle and concluded that

as the crowder density increases, particle shifts the behaviour from super-diffusive
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behaviour to normal Brownian motion. The density of polymer grafts affects the

shape and other properties of the cylindrical tube which also needs further probing.

Also, we have chosen the tracer particle of fixed size, while we might find interesting

results if we can use an extended object such as a polymer as a tracer. This is

important as there are many biological scenarios where a polymer diffuses through

a porous medium.
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Appendix

A.1 Exact solution of the anisotropic case for a har-

monic epigenetic potential in the absence of

noise

Our governing equations represent a three-dimensional, coupled and, in general,

non-linear dynamical system. The choice of a harmonic epigenetic potential δΨ2/2

and a constant force f yields a linear system of equations that can be written as,

˙δΨ = −AδΨ +B

(
1

2
δR‖ + δR⊥

)
,

˙δR‖ = −CδR‖ −DδΨ− f,

˙δR⊥ = −CδR⊥ −DδΨ. (A.1)

We define the Laplace transform and its inverse as,

X(s) =

∫ ∞
0

x(t)e−stdt,

x(t) =
1

2πi
lim
T→∞

∫ γ+iT

γ−iT
X(s)estds, (A.2)

where the integration is done along the vertical line Re(s) = γ in complex plane so
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that γ is greater than the real part of all singularities of X(s).

Using the definition in Eq A.2, we take the Laplace transform of Eqs A.1,

sδΨ(s)− δΨ(0) = −AδΨ(s) +
B

2
δR‖(s) +BδR⊥(s),

sδR‖(s)− δR‖((0) = −CδR‖(s)−DδΨ(s)− f

s
,

sδR⊥(s)− δR⊥(0) = −CδR⊥(s)−DδΨ(s). (A.3)

For the simplest initial condition, with δΨ(0) = δR‖(0) = δR⊥(0) = 0, taking the

inverse Laplace transform yields the solution.

δΨ(t) = −Bf
2

(a+ bec11t + cec22t),

δR‖(t) =
BDf

2
(a1 − b1e

−Ct + c1e
c11t + d1e

c22t)− f,

δR⊥(t) =
BDf

2
(a1 − b1e

−Ct + c1e
c11t + d1e

c22t),

where the constants are given by the following,

a =
1

c11c22

,

b =
1

c11(c11 − c22)
,

c =
1

c22(c22 − c11)
,

a1 =
a

C
,

b1 =
1

C(C + c11)(C + c22)
,

c1 =
b

(C + c11)
,

d1 =
c

(C + c22)
,
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and

c11,22 =
−(A+ C)±

√
(C − A)2 − 6BD

2
.

At long times, these solutions attain steady state values that vary linearly with the

applied force f .

A.2 Correlation functions for the case of a harmonic

chromatin compaction potential

For the system of equations which incorporates noise in the chromatin compaction

variable, we can compute correlation functions analytically. We define Fourier and

inverse Fourier transforms as,

X(ω) =

∫ ∞
−∞

x(t)eiωtdt,

x(t) =
1

2π

∫ ∞
−∞

X(s)e−iωtds. (A.4)

Taking the Fourier transform of the system and rearranging gives,

(iω + A)δΨ(ω) =
B

2
δR‖(ω) +BδR⊥(ω) + αη(ω),

(iω + C)δR‖(ω) = −DδΨ(ω)− fδ(ω),

(iω + C)δR⊥(ω) = −DδΨ(ω). (A.5)

Solving this system of Eqs. A.5 simultaneously for δΨ(ω) yields the expression,

δΨ(ω) =
−Bfδ(ω) + 2α(iω + C)η(ω)

[2(iω + C)(iω + A) + 3BD]
, (A.6)

Using the expression for δΨ(ω) and the assumption that the noise is Gaussian and
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delta correlated yields

〈η(ω)〉 = 0,

〈η(ω)η(ω′)〉 = 2πδ(ω + ω′). (A.7)

We thus obtain

〈δΨ(ω)δΨ(ω′)〉 =
B2f 2δ(ω)δ(ω′) + 8πα2(iω + C)(iω′ + C)δ(ω + ω′)

[2(iω + C)(iω + A) + 3BD][2(iω′ + C)(iω′ + A) + 3BD]
. (A.8)

The inverse Fourier transform of the expression Equation A.8 yields the correlation

function 〈δΨ(t)δΨ(t′)〉,

〈δΨ(t)δΨ(t′)〉 =
1

(2π)2

∫ ∫
dωdω′〈δΨ(ω)δΨ(ω′)〉e−iωt−iω′t′ , (A.9)

and

〈δΨ(t)δΨ(t′)〉 =
B2f 2

4π2(2AC + 3BD)2
+

−α2

2ω0ω1(ω2
0 − ω2

1)

[
(ω0 + ω1)(z2

3 + C2)

e−(ω0−ω1)∆t − (ω0 − ω1)(z2
4 + C2)e−(ω0+ω1)∆t ].

Now, we ignore the constant part and keep the part coming from the fluctuation,

〈δΨ(t)δΨ(t′)〉 =
−α2

2ω0ω1(ω2
0 − ω2

1)

[
(ω0 + ω1)(z2

3 + C2)e−(ω0−ω1)∆t

−(ω0 − ω1)(z2
4 + C2)e−(ω0+ω1)∆t ].

where ∆t = t− t′, z1,2 = i(ω0 ± ω1), z3,4 = i(−ω0 ± ω1), ω0 and ω1 is given by,
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Figure A.1: Computations of autocorrelations and cross-correlations, in the auxetic
regime, with C = 0.01, D = 0.02 and B = −0.17. (a) the autocorrelation function
for δΨ, 〈δΨ(0)δΨ(t)〉, (b) the autocorrelation function for δR‖, 〈δR‖(0)δR‖(t)〉,
(c) the autocorrelation function for δR⊥, 〈δR⊥(0)δR⊥(t)〉, (d) the cross-correlation
function for δΨ and δR‖, 〈δΨ(0)δR‖(t)〉, (e) he cross-correlation function for δR‖
and δR⊥, 〈δR‖(0)δR⊥(t)〉 and (f) he cross-correlation function for δR⊥ and δΨ,
〈δR⊥(0)δΨ(t)〉. The insets show the behaviour close to the origin in two special
cases where there is a competition between the two time-scales for relaxation. Points
represent the numerical solution of the Langevin equations while lines represent the
analytic formulae.

ω0 =
A+ C

2
,

ω1 =

√
(A− C)2 − 6BD

2
.

The other correlation functions are calculated in a similar way. The expressions are

as follows,

〈δR‖(0)δR‖(t)〉 =
α2D2

2ω0ω1

[
e−(ω0−ω1)∆t

(ω0 − ω1)
− e−(ω0+ω1)∆t

(ω0 + ω1)

]
, (A.10)

〈δR⊥(0)δR⊥(t)〉 =
α2D2

2ω0ω1

[
e−(ω0−ω1)∆t

(ω0 − ω1)
− e−(ω0+ω1)∆t

(ω0 + ω1)

]
, (A.11)
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〈δR‖(0)δR⊥(t)〉 =
α2D2

2ω0ω1

[
e−(ω0−ω1)∆t

(ω0 − ω1)
− e−(ω0+ω1)∆t

(ω0 + ω1)

]
, (A.12)

〈δR‖(0)δΨ(t)〉 =
α2D

2ω0ω1

[
C − (ω0 − ω1)

ω0 − ω1

e−(ω0−ω1)∆t − C − (ω0 + ω1)

ω0 + ω1

e−(ω0+ω1)∆t

]
,

(A.13)

〈δR⊥(0)δΨ(t)〉 =
α2D

2ω0ω1

[
C − (ω0 − ω1)

ω0 − ω1

e−(ω0−ω1)∆t − C − (ω0 + ω1)

ω0 + ω1

e−(ω0+ω1)∆t

]
.

(A.14)

We display a number of autocorrelation and cross-correlation functions for the 3-

dimensional auxetic system in Figure A.1.

A.3 Long time behaviour of cross-correlation func-

tions
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Figure A.2: The figure shows the long time cross-correlation function
〈δR⊥(0)δΨ(t)〉t�0 with the various values of B from B = −1.0 to B = 1.0 in-
cluding the B = 0 case. We see that the slope of the correlation function changes
as the sign of the parameter B changes from negative to positive.

128



The expression for the cross-correlation function 〈δR⊥(0)δΨ(t)〉 is,

〈δR⊥(0)δΨ(t)〉 =
α2D

2ω0ω1

[
C − (ω0 − ω1)

ω0 − ω1

e−(ω0−ω1)t − C − (ω0 + ω1)

ω0 + ω1

e−(ω0+ω1)t

]
.

(A.15)

From Equation A.15, it is evident that there are two time scales 1/(ω0 − ω1) and

1/(ω0 + ω1). Since 1/(ω0 − ω1) > 1/(ω0 + ω1), for the long term behaviour, we

keep the e−(ω0−ω1)t term and discard the e−(ω0+ω1)t term. The resulting correlation

function, in the long time limit, can be written as,

〈δR⊥(0)δΨ(t)〉t�0 ≈
α2D

2ω0ω1

(
C − (ω0 − ω1)

ω0 − ω1

)
e−(ω0−ω1)t. (A.16)

We normalize by,

δR⊥(0)δΨ(t)〉t=0 =
α2D

2ω0ω1

[
C − (ω0 − ω1)

ω0 − ω1

− C − (ω0 + ω1)

ω0 + ω1

]
, (A.17)

which yields,

〈δR⊥(0)δΨ(t)〉t�0 ≈

(
C−(ω0−ω1)
ω0−ω1

)
(
C−(ω0−ω1)
ω0−ω1

− C−(ω0+ω1)
ω0+ω1

)e−(ω0−ω1)t. (A.18)

Equation A.18 for a choice of values of B is plotted in Figure A.2. The slope

of the cross-correlation function 〈δR⊥(0)δΨ(t)〉 changes sign as the parameter B

changes sign indicating the boundary of auxetic and non-auxetic regime. Simi-

lary the slope of the cross-correlation 〈δR‖(0)δΨ(t)〉 changes sign at the auxetic-

nonauxetic boundary, while there is no such change in the slope of cross-correlation

functions 〈δΨ(0)R‖(t)〉 and 〈δΨ(0)R⊥(t)〉 (see Figure A.3).

The correlation functions 〈δR⊥(0)δΨ(t)〉 and 〈δΨ(0)δR⊥(t)〉 are same as 〈δR‖(0)δΨ(t)〉

and 〈δΨ(0)δR‖(t)〉. Exchanging R‖ with R⊥ has no effect on correlation functions.
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Figure A.3: The correlation functions: (a) the cross-correlation function for δR⊥ and
δΨ, 〈δR⊥(0)δΨ(t)〉 (b) the cross-correlation function for δΨ and δR⊥, 〈δΨ(0)δR⊥(t)〉
(c) the cross-correlation function for δR‖ and δΨ, 〈δR‖(0)δΨ(t)〉 (d) the cross-
correlation function for δΨ and δR‖, 〈δΨ(0)δR‖(t)〉 with different values of parameter
B. We see that the correlation functions 〈δR⊥(0)δΨ(t)〉 and 〈δR‖(0)δΨ(t)〉 change
the slope with the parameter B while there is no such effect on 〈δΨ(0)δR⊥(t)〉 and
〈δΨ(0)δR‖(t)〉.

A.4 Periodic Force

The 3-dimensional system with a harmonic potential and a periodic force can be

written as,

˙δΨ = −AδΨ +B

(
1

2
δR‖ + δR⊥

)
+ ηΨ,

˙δR‖ = −CδR‖ −DδΨ− f sinωt,

˙δR⊥ = −CδR⊥ −DδΨ. (A.19)

Following the procedure of section A.1,

δΨ(t) =
Bfω

2

(
A1e

c11t +B1e
c22t + C1 cos(ωt) +

D1

ω
Sin(ωt)

)
, (A.20)
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Figure A.4: The behaviour of the systems under periodic force: The figure (a) shows
that how an auxetic system (b) a normal system behaves under a periodic force. It
can be seen that in auxetic case, both radii δR‖ and δR⊥ simulanteously increase or
decrease while in normal case, if one increases, the other decreases and vice-versa.

δR‖(t) = −BDfω
2

[
A2e

−Ct +B2e
c11t + C2e

c22t +D2 cos(ωt)

+
E2

ω
sin(ωt)

]
− fω

[
Ke−Ct + L cos(ωt) +

M

ω
sin(ωt)

]
, (A.21)

δR⊥(t) = −BDfω
2

[
A2e

−Ct +B2e
c11t + C2e

c22t +D2 cos(ωt) +
E2

ω
sin(ωt)

]
.

(A.22)

In order to get the steady state part of the solution, we discard the exponential

terms which leads to the following expressions,

δΨ(t) =
Bfω

2

(
C1 cos(ωt) +

D1

ω
Sin(ωt)

)
,

δR‖(t) = −
[
BDD2

2
+ L

]
fω cos(ωt)−

[
BDE2

2
+M

]
f sin(ωt),

δR⊥(t) = −BDfω
2

[
D2 cos(ωt) +

E2

ω
sin(ωt)

]
, (A.23)

where the constants A1, B1, C1, D1, A2, B2, C2, D2, E2, K, L and M are given by

131



the following,

A1 =
1

(c11 − c22)(c2
11 + ω2)

,

B1 = − 1

(c11 − c22)(c2
22 + ω2)

,

C1 =
c11 − c22

(c2
11 + ω2)(c2

22 + ω2)
,

D1 =
c11c22 − ω2

(c2
11 + ω2)(c2

22 + ω2)
,

A2 =
1

(C + c11)(C + c22)(C2 + ω2)
,

B2 =
1

(C + c11)(c11 − c22)(c2
11 + ω2)

,

C2 =
1

(C + c22)(c22 − c11)(c2
22 + ω2)

,

D2 =
Cc11 + Cc22 − c11c22 + ω2

(c2 + ω2)(c2
11 + ω2)(c2

22 + ω2)
,

E2 =
Cc11c22 + Cω2 + c11ω

2 + c22ω
2

(C2 + ω2)(c2
11 + ω2)(c2

22 + ω2)
,

K =
1

C2 + ω2
,

L = − 1

C2 + ω2
,

M = − C

C2 + ω2
,

with c11,22 =
−(A+C)±

√
(C−A)2+6BD

2
.

The variables δΨ(t), δR‖(t) and δR⊥(t) for auxetic and normal systems in steady

state are plotted with time t in Figure A.4.
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The  mechanical  properties  of
stem  cell  nuclei  differ  from
those  of  other  cells,  but
researchers  understand  little
about  what  determines  those
properties.  To  that  end,  we
developed  a  mathematical
model  that  shows  how  a
peculiar  mechanical  behavior
in  the  nuclei  of  mouse  stem
cells  arises  from  interactions
between  the  shape  of  the
nucleus and the compaction of
chromatin, the complex of tightly wound DNA and protein that forms chromosomes. The nuclei of
mouse stem cells can exhibit auxeticity, an abnormal response to being compressed. Our model links
this  behavior  to  the  compaction  state  of  the  cell’s  chromatin.  As  the  cell  transitions,  and  the
chromatin unravels, the cell nucleus becomes auxetic. Our results agree with experiments, and the
model  provides  several  testable  predictions.  Importantly,  the  results  suggest  a  biophysical
interpretation of  the “epigenetic landscape”—a framework  for  envisioning  how changes in  gene
expression drive stem cell differentiation—which, in turn, could help researchers guide stem cells in a
more controlled manner.
We also revisit the earlier understanding of the
adsorption of confined polymers on attractive
surfaces in light of our results from molecular
dynamics simulations of a spherically confined
neutral  polymer in the presence of  crowding
particles,  studying  polymer  shapes  and
conformations as a function of the strength of
the  attraction  to  the  confining  wall,  solvent
quality,  and  the  density  of  crowders.  The
conformations  of  the  polymer  under  good
solvent  conditions are  weakly  dependent  on
crowder particle density, even when the polymer is strongly confined. In contrast, under poor solvent
conditions, when the polymer assumes a collapsed conformation when unconfined, it can exhibit
transitions to two different adsorbed phases, when either the interaction with the wall or the density
of crowder particles is changed. 
The diffusion of  a  tracer particle along an infinitely long cylinder,
whose  inside  is  grafted  with  polymers  and  further  filled  with
crowded  particles  is  investigated  via  measurements  of  diffusion
constants. Our results show that the diffusion behavior of the tracer
particle in such a soft and flexible obstacle mesh made of neutral
polymers  is  significantly  different  from  systems  filled  with  hard
spherical crowding agents.

Figure 1: (a) Schematic of the AFM experiment. (b) Fluctuations in chromatin compaction. (c)
Definitions  of  the  variables.  (d)  Illustration  of  normal,  i.e.,  nonauxetic  behavior  in  the
experiments. (e) Illustration of auxetic behavior. The schematic plots in (f) for the nonauxetic
case and (g) for the auxetic case show how the variables used in the model behave. (h)
Schematic of an epigenetic landscape in the compaction variable.

Figure  2: Conformations of polymer under different crowder densities
and attractive wall strengths for the poor and good solvent conditions.

Figure  3:  Model  representation  of  the
simulated system. (a)The lateral view and
(b)  the  cross-sectional  view  of  the
system.
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