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Summary

The core part of this thesis deals with computing higher order QCD and QED corrections
for the processes involving Higgs boson in the final states and the Drell-Yan (DY) process

by employing the perturbative theory within the SM.

In the first part, we discuss the fixed order approach to compute higher order corrections
concerning two kinds of observables: (1) QCD corrections for the di-Higgs production to
second order, and (2) mixed QCD-QED corrections to Higgs production at second order.
For both these processes, the dominant gluon contributions are known to unprecedented
accuracy, and hence our motive is to capture the corrections arising from the sub-dominant
bottom-quark annihilation channel. Computing di-Higgs production provides valuable
information on the trilinear self-coupling of Higgs boson and thereby on the shape of
Higgs potential. The computation of QCD-QED corrections involves dealing with the
interference effects of QCD and QED interactions. Using the exact NNLO result obtained
from the fixed order computations, we investigate their ultraviolet and infrared structure.
Numerical analysis on both these results at the LHC energy manifests the reduction in

unphysical scales, hence confirming the reliability of our results.

In the second half of the thesis, we address in detail the higher order QCD corrections
at the threshold approximation. We present a systematic framework for studying the cor-
rections arising from the threshold logarithms — also known as soft-virtual corrections —,
in particular, to the differential rapidity distribution for producing arbitrary colorless final

states. We also discuss a systematic way of resumming threshold logarithms to all orders



in double Mellin space. Resummation is required due to certain large logarithms at the

threshold limit, which may question the reliability of perturbative corrections.

While the singular structure of threshold logarithms dominate, the sub-dominant next-to-
threshold corrections are also vital for any precision studies as they give rise to numeri-
cally sizeable contributions. This topic is discussed in the last part of the thesis in great
detail. These sub-leading logarithms also spoil the reliability of the perturbation series
due to its significant contributions at every order. The canonical resolution through re-
summation for the next to SV terms is unfortunately hard to achieve. Nevertheless, we
propose a framework for the same, limiting only to the diagonal partonic channels. We
conclude by noting that the NSV logarithms demonstrates a rich perturbative structure

that needs to be explored further.
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Introduction

The richness of diverse phenomena in our universe stems from the physical principles that
act at the level of elementary particles. Interaction of these particles constitutes the atoms
and molecules that define the objects in our everyday world. Search for these particles,
deciphering how they interact and what are their properties are centuries-long. The notion
of elementary particles has progressed through histories, from ‘the ancient five’ to the
concept of electrons, protons and neutrons. In the recent past, the protons and neutrons are
also found divisible in terms of entities called quarks. Today, with our current knowledge,
we sum up the fundamental constituents of nature as the matter particles — composed of
quarks and leptons — and force carrying particles — known as bosons. It is these quarks,
leptons and bosons, when cobbled together, account for all the complexity and beauty of

our visible world at the sub-atomic scale.

The theory that best describes (so far) the behaviour of these elementary particles and
almost all their interactions is called the Standard Model (SM) of particle physics. The
development to its current shape took several decades, driven by the collaborative efforts
of many brilliant minds around the world. Since its formulation, the SM predictions
have been scrutinized and verified through a series of discoveries and experimentation.
Among its significant successes are the observations of W and Z boson in 1983 at CERN,
the discovery of top quark in 1995 at Fermilab and the recent breakthrough discovery of
Higgs boson in 2012 at CERN’s Large Hadron Collider (LHC), which marks the inventory

of last, missing particle of SM.



The SM relies on the mathematical framework of Quantum Field theory (QFT), in which
particles are described in terms of a dynamical field that pervades space-time. The dynam-
ics of this field are controlled by a Lagrangian constructed from underlying symmetries
of the system. These symmetries are primarily classified as global and local or gauge
symmetries that enforce the physical properties to be invariant under certain transfor-
mations. The global symmetries are associated with properties of the particle and are
inherent to the system as a whole. On the other hand, the local gauge symmetry is an in-
ternal symmetry related to particle interactions. The modern version of SM relies on the
local SU(3)¢c x SU(2)L x U(1)y gauge symmetry: each of them manifestly gives rise to a
fundamental interaction. The SU(3)¢ describes the theory of strong interactions — Quan-
tum Chromodynamics (QCD) — with the conserved color charge. Whereas SU(2). de-
scribes the weak 1sospin interaction acting only between left-handed fermions, and U(1)y
is characterized by electromagnetic interactions. The weak and electromagnetic interac-
tions are partly unified in spontaneously broken electroweak (EW) interactions, described
by SU(2)., x U(1)y. Each of these interactions is mediated by gauge bosons, which are

gluons for strong force and photons, W- and Z- bosons for EW interactions.

Three different families of elementary particles characterize the modern SM. The first
family are consists of matter particles — quarks and leptons of 6 each and comes with
half-spin — called fermions and are arising from the quantization of fermion fields. The
fermions appear in three generations, which are identical in every attributes except in their
masses. The first generation is responsible for all the stable matter in the universe, while
the second and third are less stable heavier particles. The second family of elementary
particles are the gauge bosons — quanta of bosonic fields — which are carriers of strong and
electroweak interactions. In addition to these gauge bosons, there is a third boson, known
as Higgs boson, arising from the excitations of Higgs field, which represent the third
family and the only known single scalar particle of SM. The Higgs field is brought into
the SM to explain the spontaneous breaking of electroweak symmetry. Unlike the pre-

dictions from the gauge symmetries, which enforce the particles to be massless, the W-



and Z- bosons are found to be massive in reality. This discrepancy is explained through
Brout-Englert-Higgs-Kibble mechanism [1-5] which implements spontaneous breaking
of electroweak symmetry to yield mass for these SM particles. This mechanism, how-
ever, additionally predicts the existence of the Higgs field — as what we call it today.
Although originally conceived to explain the origin of W and Z boson masses, the BEH
mechanism later extended to account for the mass of any sub-atomic particles. Particles
that interact with the Higgs field acquire masses, and the strength of its coupling with
Higgs determines how massive the particle is. Those particles which do not interact with
the Higgs field — photons, gluons and possibly neutrinos — remains massless. Built on
spontaneously broken electroweak theory with the unbroken strong interaction and incor-
porating the Higgs mechanism, the SM completely account for the physical realities at

the sub-atomic level.

All those achievements obtain for the SM, however, do not stop the need for further
exploration. Despite its spectacular success, the SM in its current shape leaves many
observed phenomena unexplained. Presently the theory incorporates three out of funda-
mental forces, while the fourth force and the familiar one in our everyday lives, gravity,
as described by the general theory of relativity, is not part of the SM yet. Further, the
model fails to explain the existence of neutrino masses and their hierarchy and the origin
of matter-antimatter asymmetry in the universe. Also, it does not include a suitable can-
didate to explain the nature of dark matter and the dark energy content of the universe.
These mysteries motivate us to keep searching for physics beyond the standard model
(BSM) hidden in the dark recesses of the universe. However, neither any experimental
hints exist for the origin of these phenomena yet, nor we have any precise energy scale
or coupling strength for new physics to explain them. In parallel, many questions remain
unanswered about the origin of the Higgs boson: whether it is an elementary particle or a
composite state of confined particles, how does its mass generate, or what is the mecha-

nism behind its self-interactions.



To address these questions requires precision measurements of Higgs boson properties
and EW interactions above the weak scale, for which the exclusive tools are the high
energy colliders. In the last fifty years, we have received an enormous wealth of in-
formation from experiments at particle colliders. From CERN’s Large Hadron Collider
(LHC), which is the largest among all the colliders till today, around fifteen million bil-
lion proton-proton collisions are already taken place in a decade. The experiments at LHC
via Run-I and Run II phase hint that the new physics effects probably do not appear as
clear resonance signals but as tiny systematic deviations from the SM predictions. Hence,
the searches for the new physics essentially depend on our ability to obtain high-precision
theoretical predictions within the Standard Model combined with the high calibrated mea-

surements at the colliders.

At the experimental end, this undertaking is facilitated by continuously upgrading the
detectors with improved collision energy and luminosity. Through LHC histories, the
collision energy has improved from 7 to 13 TeV, which possibly will increase to 14 TeV
in the next run. The upcoming High-Luminosity LHC will further enhance the preci-
sion, allowing for per cent-level estimations, hence providing better chances to track rare
phenomena and improve the statistically marginal measurements. This scenario calls for
immense efforts from the theory side to produce (at least) the same level of precision as
data for a reliable comparison between them both, which is crucial for several essential

physics goals of the LHC program.

In improving theoretical precision, higher order QCD and EW corrections play an essen-
tial role. Over the past few decades, several attempts have been made to incorporate these
higher order radiative corrections into the observables at colliders. Often observables are
expressed in terms of cross sections, mainly by either differential cross sections in one or
more variables or by integrating over the fiducial region of the detector surrounding the
particle collision site. A well-employed technique to perform the cross section in SM or

BSM is based on perturbation theory; under this prescription, an observable is expanded
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in powers of coupling constants present in the underlying Lagrangian. For QCD, the cor-
responding expansion parameter is the strong coupling constant a,, whose series plays
a dominant role for a large variety of processes at the typical LHC energy scales. For a

given process, perturbative QCD (pQCD) corrections take the form:

0)

oc=0?+a,0V +a,0% +--- (1.1)

Here, the first term is leading order (LO) or Born cross section, the second is called
next-to-LO (NLO) corrections to Born cross section and so on so forth. Each new term
in the expansion (1.1) put forth new QCD interactions in the form of closed loops or
radiations of partons both suppressed by factors of @,. Despite this suppression, these
higher order radiative corrections are crucial for achieving the required precision as that

of experiments.

Achieving a full QCD correction to any order is not easy, and with increasing perturbative
order, the complexity rises substantially. The non-Abelian nature of the theory and rela-
tively large coupling entails the inclusion of a plethora of sub-processes in higher orders,
making the task non-trivial. Nevertheless, tremendous efforts in these directions in the
past few decades lead to remarkable achievements. Now we have advanced techniques
for automating NLO computations, and we are in (almost) good shape with next-to-NLO

(NNLO).

However, with the increase in loops and legs, the complexity proliferates, making the ex-
act computation highly challenging. Considering N°LO, the exact computation is avail-
able only for the simplest (2 — 1) processes [6—8]. In this scenario, in the absence of exact
fixed order results, one could attempt different methods to capture the dominant contribu-
tions to a physical observable by evaluating the quantity in certain limits. In general, the
perturbative corrections get contributions from hard, soft and virtual parts corresponding
to those arising from energetic, soft and virtual gluons, respectively. For a heavy invari-

ant mass production at the hadron colliders, such as the Higgs or Z-boson productions,
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the dominant contributions originate from the soft regions. Hence, these corrections are
numerically significant at LHC. Besides, (almost) zero momenta of real emissions at soft
region lead to their all order exponentiation. Hence, capturing these corrections are crucial
for theoretical understanding as well. These contributions cobbled with the pure-virtual
corrections, in general, known as soft-virtual (SV) or threshold corrections. The term
threshold is because these corrections are the ones contributing at the extreme production
threshold. It is also known as soft due to the soft emissions in this kinematical region.
These corrections play a crucial role in the absence of exact predictions at a certain order

in the coupling constant.

The core part of this thesis deals with computing higher order QCD and QED corrections
for the processes involving Higgs boson in the final states and the Drell-Yan (DY) process

by employing the perturbative theory within the SM. The thesis comprises three parts:

1. The fixed order approach — we compute the complete behaviour of inclusive observ-

ables at a fixed order in the coupling constant present in the underlying Lagrangian.

2. The threshold approximation — by addressing the QCD correction that appears at
the extreme production threshold, we study the general infrared (IR) and ultraviolet
(UV) structure of scattering cross sections, considering a differential observable.
Following these studies, we able to develop a framework for resumming the leading

power (LP) large logarithms at the production threshold.

3. The next-to-threshold or next-to-SV (NSV) approximation — In the last chapter, we
extend the study at threshold approximation by including sub-leading corrections
that arise from the next to leading large logarithms, also known as next to LP (NLP)
logarithms. By studying their UV and IR structure, we propose a framework for

resumming these NLP logarithms.
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Outline

The thesis comprises a selection of published works and preprints that provides a com-
prehensive picture of higher order computations of physical observables at LHC. A con-

densed outline of the thesis is as follows.

In chapter 2, we start with a brief overview of the basic principles of QCD and a discussion
on methods to compute higher order corrections in perturbative QCD. We also review a
framework to compute threshold corrections in great detail, which will play a notable role

in our later results.

In chapter 3, we discuss the NNLO computation of di-Higgs productions in the bottom
quark annihilation channel. This production channel is a valuable avenue to investigate
the trilinear coupling and Higgs potential, which is one of the significant challenges in the
next phase of LHC. At NNLO, two classes of diagrams contribute — vertex type diagrams
and t- and u- channel ones. For the computations, we use in-house routines based on
FORM and Mathematica packages. Since the complete result of #- and u- channels are
challenging (at present), we compute them at the SV approximation. Numerical analysis

at LHC energy illustrates the reliability of our predictions.

The state-of-the-art QCD corrections have reached such accuracy that requisites the in-
clusion of precise predictions of mixed QCD-EW theory. This possibility is explored
in chapter 4 for the bottom quark induced Higgs boson productions. Since the compu-
tation of complete EW corrections is more involved, as a first step, we compute all the
QED corrections up to second order in the coupling constant «,, taking into account the
non-factorizable or mixed QCD-QED effects through o, corrections. The computation
involves dealing with QED soft and collinear singularities resulting from photons and
massless partons, in addition to the QCD ones. We systematically investigate the struc-
ture of QCD and QED IR singularities up to second order in their couplings, taking into

account the interference effects. In the process, we obtain the mass anomalous dimension
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and renormalization constant of Yukawa coupling as a bonus point. We also discuss a set

of rules which connects the QCD, QED and mixed QCD-QED results.

In chapter 5, we discuss the threshold corrections for a differential rapidity observable
associated with the Higgs production. In particular, we address the higher order QCD
corrections to this observable for generic n-colorless final states. The formalism is based
upon the collinear factorization of differential scattering and RG invariance. The soft part
remains similar to Sudakov-type processes, while for the virtual corrections, the kinematic
dependence is much more involved. In addition to the threshold rapidity corrections, we

discuss a framework to resum the threshold logarithms in rapidity variables.

In the last chapter 6, our concern is to extend the threshold framework to include the next-
to-threshold or next-to-SV corrections, which attracted considerable attention in recent
time. While SV singular structure dominates, the next-to-SV ones are also large and pro-
duce numerically sizeable corrections. Hence computing them in the absence of complete
result at a given order is essential in precision studies. In this context, we propose a frame-
work with the logic of IR factorization and RG invariance. We show that similar to SV the
next-to-SV logarithms also exhibit an all order perturbative structure. This idea enables
us to propose a formalism to resum certain next-to-leading power logarithms, which is

the first of the kind in literature beyond leading logs.
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Review of perturbative QCD

To start with, let us review some basics of QCD. It is to be noted that this chapter is by no
means intended for a complete review, rather a short introduction to fix the conventions

and notations. For more details, the reader is referred to [9—12] and the standard texts.

Basics of QCD

Quantum Chromodynamics — or QCD - is the theory of quarks, gluons and their inter-
actions. This field theory is a non-Abelian gauge theory based on the SU(3) gauge sym-
metry. It has a similar structure as QED — electromagnetic interaction— but with a subtle
difference that the gauge boson — gluon — carries color charge. Hence in addition to the
interaction with quarks, gluons interact among themselves too. Consequent to this fact
comes the aspects of asymptotic freedom, which defines the success of QCD to describe
the strong interaction. The critical implication of asymptotic freedom is that it explains
the point-like behaviour of quark at short distances and offer a mechanism for the strong

confining force at large distances. The short distance physics is the realm of perturbative

QCD.

In the following, we briefly outline the QCD Lagrangian, followed by the aspects of
asymptotic freedom and the running coupling constant. We also discuss parton model and
how it modifies when the QCD radiative corrections are applied. In subsequent sections,

we briefly address fixed order computation techniques and the threshold framework.
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QCD Lagrangian

The perturbative analysis of any process in QFT requires the use of Feynman rules de-
scribing the interactions in theory, which can be derived from the underlying Lagrangian
density. For an SU(N.) gauge group encapsulating the interaction of fermions with the

non-Abelian gauge bosons, the Lagrangian density is given by:
L = Lclassical + Lgauge—fixing + Lghost (21)

The classical Lagrangian takes the form:
! a a,uy N —f .
Lclassical = _Zgﬂvg ot Z wa,i (l'}/;ﬁﬂﬂ’,‘j - mféaﬁd,-j) W[/;,j (22)
7=

These terms represent the interaction of spin-1/2 quarks with mass m and massless spin-1
gluons. The gamma matrices satisfy the anti-commutation relation: {y*,y”"} = 2g*”. The

field strength Gy, is derived from the gluon field Gy,
Gi, = Gy = 9'Gy + 8,/ GG, (2.3)

and dff; ; 1s the fermionic quark field. The third non-Abelian term in Eq.(2.3) distinguishes
QCD from QED, giving rise to triplet and quartic gluon self-interactions and ultimately to
the property of asymptotic freedom. The coupling constant g, determines the strength of
interaction between quarks and gluons, and f is the structure constants of the SU(N,)

group. The indices in Eq.(2.2) dictates :

a,b,---: colorindices in the adjoint representation = [1, - - - ,NC2 -1],

i, j,---: color indices in the fundamental representation = [1,--- ,N.],
a,f,---: Dirac spinor indices = [1,--- ,d],

u,v,---:  Lorentz indices = [1,--- ,d]. 2.4)
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where d is the space-time dimensions. The covariant derivative Z)fj acting on the adjoint

and fundamental representations takes the form

Dﬂ,ab = 5abap - gsfabc GZ

Dyij = 6ij0u — 18(T);; G, (2.5)

respectively. The T are the generators of the fundamental representation of SU(N,),

which are related to the structure function through
[T“, Tb] Y (2.6)

A representation for 7¢ is provided by the Gell-Mann matrices, which are traceless and

Hermitian and are normalized with
tr TT% = Tp6® with Tp = 1/2. (2.7)
They also satisfy the completeness relation given by:

1
Z TéTkl = ( Ok — ﬁcs,-l,-ak,) (2.8)

With the above choices, the color matrices obey the following relations, which are often

useful in simplifying the color algebra :

Z (TaTa)ij = Crdj

fabc'fabd — CAécd (29)

where Cp = = N, are the quadratic Casimirs of the SU(N,) group in the

2N
fundamental and adjoint representation respectively. For QCD, the SU(N.) group index

N, = 3 and quark flavor ny = 6.
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The second term in the Lagrangian in Eq.(2.1) is the gauge fixing term, which is required
to perform the perturbation theory consistently. This term originates because, while quan-
tizing, the gluon propagator cannot take an unambiguous form without choosing a gauge.
The reason behind this is the presence of gauge degrees of freedom inherent in the classi-

cal Lagrangian. The choice of gauge is:

1 a
L=-5 (a2) (2.10)

which fixes the gauge in a covariant way with an arbitrary gauge parameter &. A typical
choice of setting ¢ = 1 in Eq.(2.10) gives Feynman gauge. In this thesis, we use the
Feynman gauge throughout unless we specify otherwise. However, we emphasize that
the choice f gauge do not alter the physical results. The immediate consequence of gauge
fixing in QCD is that it generates new particles called Faddeev-Popov ghosts — spin-0

particles but having Fermi statistics. The Lagrangian for the ghost field is given by
Lghost = (au)(a*) D,u,ah Xb (2.11)

where D, ,, 1s defined in Eq.(2.5). The ghost field y“ cancel the unphysical degrees of
freedom, which would otherwise propagate in covariant gauges. These particles never
appear as external physical states but in closed loops interacting with gluons. Now we
have the full Lagrangian as given in Eq.(2.1), which can be used to derive all the Feynman

rules. See Appendix-A for the complete list of QCD Feynman rules.

There are essentially two first principle approaches to solving the QCD Lagrangian —
lattice QCD and perturbative QCD.'. The complete approach is lattice QCD, where one
discretizes the space-time and consider the values of quark and gluon fields at all the edges

of the resulting 4-dimensional lattice. The method has been successfully used in a range

IThere are, in addition, effective field theory methods where one can solve the specific limits of QCD
with certain inputs taken from lattice or perturbative QCD. Also, there are yet another set of techniques
that makes use of AdS/CFT correspondence to relate the QCD-like models at the strong coupling to weakly
coupled gravitational models

18



of contexts such as CKM matrix; however, it is implausible to use them for computations

of LHC scattering processes with the current knowledge along this direction.

The method that is widely used for collider physics is the perturbative QCD approach,
which is based on an order-by-order expansion in the strong coupling constant o, = % <

1. For a given observable o, the expansion looks :
o =0+ a,0 +a/§0'2+~~- , (2.12)

where computing lower-order terms of the series are sufficient, with an understanding
that the rest are negligibly small. The coefficients o; is computed using Feynman dia-

grammatic techniques. In this thesis, we deal with the perturbative applications of QCD.

Asymptotic freedom and running coupling

As mentioned earlier, QCD exhibit asymptotic freedom and confinement. Due to the
confinement, the quarks and gluons are strongly interacting at low energy, while at high
energy, they are asymptotically free and do not interact. Hence, the coupling constant
decreases for high energies, enabling the perturbative expansion around the free field
theory. The expansion parameter for QCD is the strong coupling constant,a, and the
series takes the form given in Eq.(2.12). For computations, the standard methodology is
to use the Feynman diagrams that contribute to every order in the coupling constant. This
comprises loop and phase space integrals at higher orders, which involves divergences
beyond the leading order terms. The origin of these divergences can be traced from mainly
two categories. The first one is when the loop momenta approach infinity — so-called
ultraviolet (UV) divergences — and the other category arises when the emissions in the
scattering process go soft or collinear to external partons — commonly called infrared (IR)
divergences. In this section, we focus on UV divergences. Both of these divergences

can be regularized using dimensional regularization [13], in which the dimensionality of
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space-time is analytically continued from 4 to d = 4 + €. Hence divergences will show up

poles in €.

The UV divergences can be removed by performing a suitable redefinition of the coupling
constants and fields — the process is known as renormalization. This redefinition involves
absorbing the UV divergences into a few parameters — known as renormalization constant
—, and each consists of introducing some scale parameter that is not intrinsic to the theory
but tells how we did the renormalization. The new scale is called the renormalization
scale. It is to be noted that this scale is an unphysical one, and our physics is independent
of them. We denote the unrenormalized or bare physical quantity with a hat on the nota-
tion and the renormalized ones without the hat. Renormalization of a given bare quantity

F can be represented in general as:

F = Zp(ug) F(ug) - (2.13)

Here the Zr is the renormalization constant which absorbs all the UV divergences of F,
and the quantity F is UV finite’. For the renormalization procedure, we use minimal

subtraction (MS) scheme.

Running of QCD coupling

As we have seen, the theory must be renormalized, however, the physics is invariant to the

renormalization scale. Running coupling is a consequence of this renormalization group

— G

invariance. The fact that the physical quantity a, =

is independent of uy leading to the

renormalization group (RG) equation :

“12?% =Bad)  Blawd) == a2 (2.14)
IUR n=0

2 The dependence on the ug-scale comes only through the presence of g
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where the available 3;’s [14-21] are

11 2
Bo = ?CA - gnf s
34 10
B1==Ci-2n;Cr — —=nsCa,
3 3
2857 1415 79 11 205
ﬂz = 34 i— 34 Cil’lf 54CAnf 9 Cpnf 18 CFCAI’lf +CFflf,
17152 448 4204 352
3 = ( 43 + T{:;) CACFTI% ( 7 + T{g,) CACFTFI’lf
424 7073 656 7930 224
o CaTr ( 243 4*) CiCrTrns + ( 81 53) CiTiny
1232 39143 136 150653 44
—CyTind +[-—— CiT - ch
T 243 FF”f+( 81 éV’) e ( 486 9§)
1352 704 512 1664 N.(N? + 6)
( 77 §3)CFT2 §+46C TFI’lf +( 9 — 3 3)I’lf 43
704 .\ 512\ ,(N*-6N?+18) .\ 80 .\ 704\ N2(N? + 36) 2.15)
9 T3 ST oen2 9 " 3% 2 '

where n; being the number of light quark flavors and T = 1/2. Using only £, and

ignoring the fact that the n; depends on ug we get a simple solution

a,(u3) 1
1+ foas(43) In % " poln

as(ug) = , (2.16)
where u 1s a reference scale. In the second solution, we chose non-perturbative constant A
as the reference scale. The negative sign in Eq.(2.14) is the origin of asymptotic freedom,
which is, in fact, the consequence of the color charge of gluons. As far as the nf <
11C4/2 = 33/2, the negative sign retains and consequently, the coupling becomes weaker
with increasing scales. This essentially leads to a free theory with no interaction between
quarks and gluons at high energy or short distances. Conversely, the perturbative coupling
grows at low energies or long distance, causing the quarks and gluons to be tightly bound
into hadrons. With the large coupling, the perturbative expansion gets unreliable. The
scale at which it fails is known in the name of A or Agcp, which is typically the order of

some hundreds MeV, beyond which the realm of non-perturbative physics arises.

21



Quark masses

Let us conclude this section with a brief discussion on quark masses. The quark masses

behave similarly to the gauge coupling itself. Running quark masses can be defined as

MR d/l
m(uz) = miug) exp (— f —1 +ym<asu>>]) (2.17)

Ho

Here y,,(a,) is a perturbative quantity, similar to the Sa;). As ug increases, g(ug) de-
creases and hence m(ug) vanishes. Consequently, the perturbative theory becomes, effec-
tively, a massless theory. From the QCD phenomenology, the light quarks — up, down,
strange — can be taken effectively as massless theory, but for the case of heavy quarks —

charm, bottom, top — the running mass should be taken into account.

Parton model and Collinear factorization theorem

By itself, asymptotic freedom is a striking result and beautifully explains the behavior of
quark-gluon interactions. However, in nature, isolated quarks or gluons do not exist. Not
the partons, but protons involves in high energy colliders, but whose interactions cannot
be described by perturbative QCD (pQCD) methods. For studying these processes, in
general, we adopt Parton model, which describe how a hadron interacts via its constituent

partons.

The original parton model was proposed by Feynman, which relies on the basic assump-
tion that the hadron interactions are due to the interaction of its constituents. Hence, the
structure of the hadron may be described by an instantaneous distribution of partons. This
model is proposed in infinite momentum frame, where each parton is assumed to carry a
fraction of proton momentum, P. That is to say, the i parton gets the momenta p; = x;P
following a distribution ﬁ(xi), where x; is the fraction defined as 0 < x; < 1. The f;(xi)

is generally called the parton distribution functions or in short pdf’s. From this, the mo-
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mentum sum rules are expected as:

1
d f(x) = 1 2.18
fo xef(x) (2.18)

which is a consequence of the momentum conservation. Also, the proton flavor conserva-

tion says:

1 1
fo dx (fu(x) - fuv) = 2, fo dx (fu(x) - fax)) = 1 (2.19)

Based upon these assumptions, the hadronic cross section, o, for a high energy process

can be expressed in terms of the cross section for partons & as:
1 A A
Onyiy(Prs P2) = Zf dxidx; fo(x1) fo(x2) Gap(x1P1, x2P2) . (2.20)
ap V0

Here, the partonic cross section is a perturbative quantity, while the pdf’s fi(x) are non-

perturbative objects.

The above picture is a naive parton model description, which will not survive when QCD
corrections are included. Accommodating radiative corrections modify the model to the
so-called improved parton model, where the pdf’s and the partonic cross section acquire
a new energy scale dependence. To understand this, let us briefly look into the details of

radiative corrections and the divergence structures.

Radiative corrections and factorization

In pQCD, the partonic cross section is expanded in terms of a;:

Gij= ) a6l (2.21)

The coefficients oA'g.) are calculated using Feynman diagrammatic approach. In general,

these coefficients gets contributions from loop diagrams and real emissions for [ > 1,
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which give rise to UV and IR divergences. We have already discussed the origin of UV

divergences and how to remove them using UV renormalization.

On the other hand, the IR divergences appear due to soft gluons and massless collinear
partons in the loops. They respectively give rise to soft and collinear divergences. In
the physical observables, the soft and the collinear divergences coming from virtual dia-
grams cancel against those resulting from the phase space integrals of the real emission
processes. Due to the Kinoshita-Lee-Nauenberg (KLN) theorem [22, 23], the cancella-
tion takes place order by order in perturbation theory. While the soft divergences cancel
entirely, the collinear divergences resulting from initial massless states do not cancel at
the sub-process level and must be treated separately, which is done using the technique
called mass factorization. The logic is similar to the renormalization technique: to factor
out these initial state collinear divergences in a process independent way and absorb them
into the bare parton distribution functions. As in renormalization, this will introduce a
new energy scale dependence called factorization scale up. The resulting finite pdf is a

measurable quantity. Schematically, we can express the redefined partonic cross section:
Gap(x1 Py, X2P2) = Z Ih(up) Aea(x1 Py, x2Pa, ) Tan(u) - (2.22)
cd

The 4,,(14%) is a finite quantity, called partonic coefficient function and the collinear sin-
gularities are encapsulated in I'(u%.), namely mass factorization kernels or Altarelli-Parisi

(AP) [24] kernels. Absorbing them into bare pdf’s gives the finite pdf:
i) = 3 By ). (2.23)
J

The resulting finite pdf is a measurable quantity and are universal, which means that it

does not depend on the process under study.

Accommodating the radiative corrections and thereby factorization scale dependence in

the (naive) parton model modify them to the so-called improved parton model. We sum-

24



marize the details of the improved parton model below.

Improved parton model

For a process:
h(Py) + hay(Py) = F({gi}) + X (2.24)

where two hadrons 4; with momenta P;, i = 1,2 collide and produces the heavy final state
F, the cross section takes the general form in the improved parton model in terms of finite

quantities:

A
Oy (P1, Pa) = Z fdxldxz FaCxt, ) fo(xos ) Aap(x1 Py, X2 Py, i) + O(é) . (2.25)
ab

The X denotes any final inclusive hadrons. In the following we summarize the recipe of

improved parton model

e The incoming hadronic beam is equivalent to the incoherent sum of its constituent
beams, with its longitudinal momentum distribution defined by the parton distribu-

tion functions.

e The short distance partonic cross section is a perturbative quantity:

(9

Aap(x1 Py, X2 Pa, pi) = Z a(uz) A0 (x\ Py, x2Po, 11, (%) (2.26)
7

while the long distance pdf’s belongs to non-perturbative regime. However, the
pdf’s are universal, by which we mean that they do not depends on the process of

study.

e The evolution of the pdf’s with the scale ur can be expressed in terms of Dokshitzer-
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Gribov-Lipatov-Altarelli-Parisi (DGLAP) equation
0 ' dz X
iy = Y, [ Ey(aiing) 5(2ai) 2.27)
Here, the P;; are called splitting functions.

Together they are called the collinear factorization theorem. The factorization scale ur is
an arbitrary scale whose dependence is compensated between the short and long distances.
Note that we have now two unphysical energy scales in the problem — renormalization
scale, ug, at which a; is evaluated, and the factorization scale, uz, at which the collinear
singularities factorize. Both these scales should have the same order, and it has to be
chosen of the order of energy scale of the hard process to avoid large logarithms in the

perturbative expansion.

Our goal is to improve the accuracy of short distance partonic cross sections by com-
puting higher order radiative corrections, which is the topic of concern in this thesis. In
the next section, we briefly discuss different approaches for performing the higher order

corrections.

Fixed order computations in QCD

The primary approach to compute the higher order QCD effects is the fixed order expan-
sion. This amounts to expanding the desired observable in powers of the strong coupling
constant and then retaining only the first few orders. Being substantially small, each next
term in the expansion gives minor corrections to the previous one and hence, at least from
the naive comparison, the higher order corrections can be disregarded. In that case, the
result with the first few orders can be an excellent approximation to the complete result;
we call them fixed order approximation. Given that the perturbative expansion is well be-

haved, the fixed order approximation gets closer to the actual value by adding more terms
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in the expansion.

Retaining the perturbative expansion of bare partonic cross section to n'-order gives:

n

GFap(01 P, xaP) = Y d (k) 6000 Py, xaPo, i) + O™ (2.28)
l

Since a,; < 1, the contributions comes from O(a™*") expected to be small and can be dis-
carded, provided that they are not large enough to surpass the suppression from a"*!. The
first non-zero term in this expansion is called leading order (LO) or Born approximation,
and the consequent terms refer to next to LO (NLO), next to NLO (NNLO) corrections
and so on. In general, if the expansion is retained to k™ order, we call them N¥LO order

corrections to the Born.

The leading order term in a perturbative expansion may vary from process to process. For
instance, for the case gluon induced Higgs production cross section, the first non zero
terms come at a> order while for the case of Higgs production from bottom quark anni-
hilation, the leading term constitutes to O(a’) term. Hence the most general perturbative

expansion reads:

n

Fa(XiP1, X2 Py) = al(uy) ) () 600 Py, 2Py, i) + O (2.29)
=0

where the A is decided by the LO process. Beyond the LO, the contribution appears from
virtual corrections and/or from real radiation corrections. These contributions give rise to
loop as well as multi-particle phase space integrals. Looking into more details, consider

a partonic sub-process:

a(py) + b(p2) = F(q) + Z ri(k;) . (2.30)

J=1

where the collision of partons a and b produce the final state F' along with m partons
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through real radiation. The partonic cross section for this process has a general structure:

. Fab

Tab = 5%

\j"dPSIanvuquP. 2.31)

Here the M, is constructed from the Feynman diagrams contributingtoa + b — F
order by order in perturbation theory. The ¥, refers to the numerical constant coming
from the symmetry factor and/or color and spin averaging. The dPS .,, represents the

(1 + m)-particle phase space measure defined by

fﬂ&msz@HTM®W%WWmﬂmw—Zh) (2.32)

=1 =1

o |2
Mab—)F

At LO, the contribution arises only from the born matrix square, , and from one
particle phase space. Whereas at NLO, corrections appear from emission of an additional

parton (6‘517) as well as from one-loop contributions (&Xb)' This gives rise to :

1
o) = 5 | 4P oY+ f dPS, 6% . (2.33)
s
with
A 0),f 1 A 0 2
Gy = 2Re(MGT M) 6l = MG (2.34)
At NNLO, the contributions are more involved:
1
Gup = 55 | dPS1 G5 + f dPS, 68 + f dPSs 6%F. (2.35)
where:
. oA _ (0) 2
e double real (RR) corrections: 6% = |Mab_) pin

: : .oA _ 0).F QY]
e real virtual (RV) corrections: 6%/ =2 Re (Mab_) oM e +1)

. N 2
e double virtual (VV) corrections: 6% = 2 Re (Mfg)’_t MO F) + M)
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We present the details of these computations in the subsequent chapters. As mentioned
earlier, these corrections show up divergences in UV and IR end, which is resolved by us-
ing renormalization and mass-factorization techniques and hence obtain a finite partonic
coeflicient function. In the concluding note, we emphasize that, for the fixed order pertur-

bative theory to be applicable, the contributions at any order should satisfy 6'22 < 6'3;1).

If the contributions are such that 6_((11;) ~ 0“22_1), then truncating that perturbative expansion

will give rise to unreliable theoretical predictions.

Effects of threshold corrections and Resummation

The fixed order predictions have limitation in their applicability due to several enhanced
logarithms, which are originating from mainly three categories: UV origin, Collinear
origin and Soft origin . As discussed in previous sections, the logarithms of UV origin
can be absorbed into the running coupling constant and collinear origin into the parton
distribution functions. While, for the soft regions, the large logarithms occurs due to
soft-gluon emissions. Despite the cancellation of divergences of these soft emissions
with those of virtual gluons, the soft gluons effects can still be significant in kinematic
configurations where high unbalance between real and virtual contributions persists. In
such cases, the fixed order convergence is questionable. An alternative approach to treat
these regions is by reorganizing the perturbative expansion by an all-order summation of

a class of large logarithms; the technique is known in the name of resummation.

In addition to the dominance at the partonic level, for certain observable, the pdfs also
get large at soft regions, hence improving their role at the hadronic level. These cor-
rections are, in general, known as soft corrections. Supplemented them with the virtual
contributions account for the soft-virtual or threshold corrections. This section briefly re-
views a formalism to capture the threshold corrections for the inclusive process and their

resummation framework.
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Threshold framework

The emission of soft gluons defines the threshold limit, where the final colorless state
carries almost all the incoming center of mass energy. Denoting the final state invariant
mass as ¢g> and § = (p; + p,)* as the center of mass energy of incoming partons, the

threshold limit can be defined in terms of the dimensionless partonic scaling variable:

2
z % 1. (2.36)

Recall from the factorization theorem that the finite partonic coefficient function can be

related to the bare partonic cross section and mass factorization kernels I” as:

Aea(Z, G% 15

-1 é-a e 256 —
LD = Y (o) 020V i A

a,b

In the threshold limit, this finite partonic coefficient function decomposes into :
i@ @ iy) = A 6 pp) + A5 ¢ pp) (2.38)

where the 45Y(z, ¢*, u7) contain only distributions of the form:

{6(1 -2),Di(z) = [M—_Z)] } (2.39)

1-z2

while the 47%"(z, ¢*, u7.) constitutes to all the regular terms in z, which include logarithms
of the form In'(1 — z) and polynomial of (1 — z). Note that logarithms In‘(1 — 7) also give
rise to divergences, however they are suppressed to the threshold ones. The corresponding
contributions are often called next-to-soft or next-to-threshold corrections, which will be

discussed in detail in subsequent sections.

We focus on SV contributions, which arise only from 4, for DY, 4,; for Higgs boson

production in bottom quark annihilation and 4,, for Higgs boson production in gluon
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fusion. For convenience, we denote these coefficient functions collectively by 4; with
I = g, b, g respectively refers to DY, bb — H and gg — H production processes. In this
context, it is sufficient to keep only those components of mass factorization kernels and
of &, that upon convolution gives 6(1 — z) and D;(z) terms in (2.37). These contribu-
tions only come from diagonal terms/channels. For instance, in the case of DY, the mass
factorized result 4,; either have convolutions involving only diagonal terms/channels, like
043 ®1 4, ® 135 or those containing one diagonal and a pair of non-diagonal ones/channels,
for example 6, ® I'y, ® I'y,. The former gives SV terms upon convolutions, while the
latter contributes only beyond SV terms. Hence the mass factorized result will be in
terms of only diagonal terms/channels, and the sum over different partonic channels can
be dropped. The diagonal terms are denoted with index / where I = ¢, b, g respectively

refers (04, I '4q)s (Tpp, I'hpy), and (0 g, I'y,). This gives rise to:

Az, ¢, 17
Z

53z, 4% €)

-1
= (MG@up.e) ® &I (2,12, €) (2.40)

The superscript sv indicates that we keep only those terms which gives 6(1 — z) and D);

after the aforementioned convolutions.

In constructing threshold enhanced cross section, we start with the decomposition of the
cross section in terms of pure virtual contributions # and soft-collinear distribution func-

tion S in the following way:
2
5@ = ) (Z0d) F@P S-S (24D

where o® is the born factor. The quantity In S’ is obtained after factoring out the pure
virtual contributions from the total inclusive cross section and thus it embeds all the
contributions coming from real-virtual and real emission processes only. Consequently,

when combined with Eq.(2.40) we get an all-order decomposition formula for the mass-
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factorized partonic threshold cross section as,

A @) = P4 (Zw) 1 (@Po(1 - ) ©In S, ¢ )

-1
& (I @y 0) &I (zu}e). (2.42)

Here, the symbol ® denotes the Mellin convolution which is defined for functions f;(x;),i =

1,2,---,nas,:

n

fiehe - ef@=]] ( f dxifi(xi)) 5@ - xxy e x,). (243)

i=1

In consequence to the above decomposition formula, the 43" can be expressed in terms of
certain building blocks: form factor ¥/, soft collinear distribution S, and mass factor-
ization Splitting kernels I';. The governing differential equation corresponding to each of
these building blocks paves the way to get an all-order structure for 43", which we will
unravel subsequently. Each of these building blocks has a perturbative expansion in pow-
ers of the bare strong coupling constant, which is related to the renormalized one through
renormalization constant Z,_:
%

aS. = (—2) Za () a5 (1) » (2.44)

R

where S = exp [(yg — Indn)e/2)] with yg being the Euler Mascheroni constant. The scale
Uo 1s an arbitrary mass scale introduced to make g, dimensionless in d-dimensions. From

RG equation, we get

2
Za, () = 1+ a,(up) [;ﬁo

4 1 8 14 2
2,2 ) 3,2 3
+ ag(ug) [;ﬁo + 2/31 + a;(ug) [gﬁo + @ﬁoﬁl + §ﬁ2

16 46 1(3 10 1
+ dy(up) [gﬁé + gﬁ?ﬁl t 3 (Eﬁ% + ?,30,32) + 2—6,83} : (2.45)

In the subsequent sections, we discuss the building blocks in detail.
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Form factor

The virtual contribution is captured through the form factor, which is defined by the born

factorized square matrix element as

00 134 00 k5 O A1®)

A Q2 : k Ak ok Q2 : <M1 |MI >
Fl= ) als: (— Fro= Y ast|S5| ——, (2.46)

Z Z ( Mgo)l M§0)>
where 0? = —¢? and M is the k-th order unrenormalized matrix element of the underly-
ing partonic process a(py) + a(p,) — F(q). Form factor for the DY process is the matrix
element of vector current quytpq between on-shell quark states, while for the Higgs bo-
son production in gluon fusion (bottom quark annihilation), it is the matrix element of

G, G"™ (¥, 0, between on-shell gluon (bottom quark) states.

In dimensional regularization, the form factor satisfies the following first-order differential

equation [25-29]:

d 1 Hy Q> u
2 Ien 2 2 0y — 1, Hr 1|4 R
Q d_Qzln/(?(aSaQ s 1 96)_ §|:K (aS9 l.7,6)+G (asa E’,L?’E . (247)
which follows from the IR factorization, gauge and RG invariances. Here, all the singu-
larities are captured in Q*-independent function K, whereas G’ collects the remaining
terms which are finite as € — 0. Further, the RG invariance of ¥/ leads to

2 2 2
2Lk (a Hr e) _ 2L (a O Hi e) = Ala,d)  (2.48)

S /12 s Rd/-llze s Iu%e ’ #2 b

where A! are the standard cusp anomalous dimensions and is a perturbative quantity.

Al = Zaﬁ (1z) AL (2.49)



The solution to the RG Eq.(2.48) is obtained as [30,31]:
12 o0 122 k3
K (a #_1; e) = ) akst (ﬂ—’;) K!(e) (2.50)

with

1
Ki(e) = E{ - 2A{},
Kz(E):Z 2ﬁ0A1 +g —A2 s

1( 8 1(2 8 1( 2
Ki(e) = —3{ - gﬂéf‘{} + —2{—ﬁ1A{ + —ﬁoAé} + ;{ - §Ag},

1 1(1
Kli(e) = {4,8(3,A’} 5 { ,80,81A’ 6ﬁ3A§} + g{gﬁzA{ +B1AL + 3ﬁ0Ag}
1 1
- Z{ - EAQ} (2.51)

Similarly, RGE of G gives the solution:

. 0% i b dA?
G’(a ?e’ﬂR ) G' (a(Q*).1.€) + sz ?A’(as(&l,%) (2.52)

where the boundary term G’ (aS(QZ), 1, e) has a perturbative expansion:

[

G (a(Q%).1.€) = Y d“(0*)Gi(e). (2.53)
k=1
Performing the integral in Eq.(2.52) results:

Qzld/lz 00 R 'uz
[£ Lo o) - yatst (&

k=1

ks 2\k5
l(%) —~ 1] Ki(e). (2.54)
M

R

Substituting Eq.(2.51),(2.53) and (2.54) in Eq.(2.47) gives the following general structure
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for the form factor:

with

00 k5
InF @, 0212 €) :Z&’j "( 2) £le) 2.55)

Lle) = 12 - 2A{} + E{G{(e)},
1

1 1
Lo =5 ﬁoA{}+;{—5A§—ﬁoG{<6>} { G’(@}

{
d
Lie) = é{ § %A{} + %{%ﬁlf\{ ﬁoA' + ﬁOG’@}
N é{ g ,BIGI(E) ,BOG (e)} { G’(e)}
Lie) = é{A{ 8} + é{ - —Aéﬁ% - —A{ﬁoﬁl - 2B;G (e))}
é{%Aéﬁo + AN+ A{ﬁz + ,Bo,BlGl(f) + 3ﬁoG£<e»}
+ é{ - %Aﬁ gﬁzG{ (€) - Eﬁng(e) - EﬁoGé(e)}
v é{iGﬁ(e)}. (2.56)

Here, the coefficients G/ encapsulated the information about the hard process, while all

other factors are universal quantities. It is interesting to note that, at a given order in a,

coeflicients of all the poles but the single one contains only information from the lower

orders, and hence can be predicted from the known lower orders. Comparing against

the explicit form factor results, it has been observed [32, 33] to satisfy the following

decomposition in terms of collinear (B'), soft (f’) and UV (y') anomalous dimensions:

Glle)=2(Bl —yl))+ fl +x| + Z g, (2.57)
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where the constants C! is given by:

x1=0,

X5 =—2Bog)"

Xh==2B1g" = 2B (85" +2p0g}’)

X4 = 28287 = 281 (85" + 4Bogt?) — 280 (g5 +2B0gs” + 4B0g}) - (2.58)

The anomalous dimensions are expanded in powers of a,(u%) as

(o)

i) = ) alui)yt, (2.59)

J=1

where Y = A, B, f,y. As a consequence of recent calculations, the light-like cusp anoma-
lous dimensions are available to four loops [34-38] in QCD. The soft and collinear
anomalous dimensions to three loops can be extracted [32,33] from the quark and gluon

collinear anomalous dimensions [39,40] through the conjecture [32]
y' =2B"+f'. (2.60)

The partial results of the soft and collinear anomalous dimensions at four-loop can be
obtained from [38,41-43]. For the reader’s convenience, we enlist the values of these

anomalous dimensions in Appendix B.

The constants gf’k can be extracted from the explicit results of form factors. The com-
putation of quark form factor for DY process and Higgs boson productions are partially
available to fourth order in QCD [38,44-51]. For completeness, we present the results
of gf’k for quarks in Drell-Yan process, gluon (bottom quark) in Higgs production from

gluon fusion (bottom quark annihilation) channel up to third order in Appendix C.
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Operator renormalization constant

In certain processes such as Higgs production from gluon fusion, it involves an effective
Lagrangian which manifests a non-conserved operator. In such cases, strong coupling
renormalization is not sufficient to preserve the UV finiteness of the theory, rather an
additional renormalization is required, which is generally called overall operator renor-
malization. This additional renormalization is performed through the operator renormal-
ization constant Z’. This is a property inherently associated with the operator and it should
not be mix with the UV renormalization constants for the couplings present in the theory.
For conserved operator, such as leptonic pair production in DY, this quantity is identically

one. The Z! satisfies the following RG equation:

[ee)

d .
2 I N 2 2 _ i, 2\a 1
Higa InZ" (&, pio 1’ €) = § a2yl (2.61)

R i=1

where y!’s are the UV or mass anomalous dimension. We already come across this quan-
tities in the form factor and are given in Appendix B for I = ¢, g, b. Solving the above RG

equation, one obtain the solution for the Z’ as given by:

2\ €
(K 1 2
var (3] sfale o -2

Ion 2 2 AR I
Z(ag, ug, - €) = 1 + ag 17 SGEZ)/O
1 A3:“1233§31413 N 8 o
T\ s 2 Se 3 5()’0) _4,80(7’0) +§:3070

2 8 1(2
+—27’(1)7’{—gﬁl)’é—gﬁo)’{)+g(§7§)]

2\ 2€
cat(S2) st 23 00 - am00)' + 2 G1) - 4581

e 3
1 2 4 2 22 8
+g 2(7(1)) 7{_§ﬁ1 (7(1)) —?507{)7{+§ﬁ0,81y6+6,83y{)
(1, 2 4 1 1/1
e 5(71) +3%7 =3B % -Bivi—35b 7§)+;(5 yg)] (2.62)
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Mass factorization Kernel

The collinear singularities resulting from the massless partons, when their emissions are
parallel to any initial states, are removed by absorbing them into bare parton distribution
functions. The resulting renormalized pdf’s are finite and measurable quantity. This
mass factorization procedure is performed at factorization scale ur. As discussed before,
it introduces mass factorization kernels I';’s which essentially absorbs the initial state
collinear singularities. These kernels, in MS scheme, satisfies following RG eq:

y%ﬁﬂj(z,ﬂ%, €) = % Z Pi (Znu%“) ® 1y (Zn“lzﬁ 6) (2.63)
F k

where, P;; (z, u%) are Altarelli-Parisi splitting functions (matrix valued). Expanding P;; (z, ,u%)

and I';(z, 1%, €) in powers of the strong coupling constant we get

(o)

Pz ) = ) d WP @), (2.64)

k=1

As discussed before, since our focus is only SV part of cross section, only diagonal terms
of splitting function contributes to our analysis, and hence those give rise to beyond SV are
dropped. Hence, by conveniently expressed in terms of index /, we obtain the following
structure:

PP(2) = 2(Bl,,6(1 - 2) + A, Do(2)) + P, (2) (2.65)

reg,l

Note here that P(r];)g ,(2) contains terms of the form In(1 - z) and O(1 - z). We will come
across these terms in the subsequent chapters while discussing about the next-to-SV con-
tributions. For the time we focus only on the SV part of splitting functions. After solving

RG equation of the kernel in dimensional regularization, we get [30,31]:

00 2 k%
iz}, €)= 8(1-2) + Y ak st (l;%) rPae, (2.66)
k=1
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The coefficients [ ;k) are expressed in terms of splitting functions:

F(])(Z,E)— {P(O)(Z)}
rPze = —{ — BoP(2) + P<0>(z)®P§0’(z)} 1{ Pz )}

1
e = { P =P @ P + PP @ P @ P“”}

1 1 1 1
+ —2{ ~ §ﬁ1P§°> +-PPepP) - ﬁOP(l) + =PV o Pf”}
€

6 ! 173
L1
)

1 11 1
F;4)(Z’ €)= g{ _ zﬁSP;O) + gﬁ(z)PEO) ® Pgo) _ EIBOPEO) ® Pgo) ® PEO)

1 4 1
(0) (0) (0) (0) (0) (0) (0)
+ 24P ®P ®P ®P } 3{§ﬁ0ﬁlpl —§ﬁ1P1 ®P1

1 (0) (0) (6] 7 0 (1) 1 (0) (1) 0
+ﬁP1 ®P1 ®P1 —Eﬁopl ®PI +EP1 ®P1 ®P1

+382P" —

5 0 5 o pO . Lom o pO) o pO
ZBOPI ®Pl +§Pl ®P1 ®P1

1 L, po 1 p0 g po o Lom o o
+§{_8ﬁ2P1 e ﬁlp’ tghreh

1 11
BoP? + 4P§2) Pﬁo)} {4P§3)}. (2.67)

These quantities are universal and independent of the operator insertion.

Soft Collinear distribution

Since the IR behavior of the pure virtual amplitude is completely universal and indepen-
dent of the number of external colorless particles, the combined contributions from the
real emission diagrams and mass factorization must also exhibit the same universality to
get the finite cross section. By employing this universality and imposing the constraint of
the finiteness on the cross section, we determine the universal contribution from the latter

part to obtain the SV cross section, which we now turn to.
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Owing to the decomposition formula given in (2.42) and the universal factorization of
the IR singularities, one can write a first order differential equation, similar to the KG

equation of form factor, for the soft-collinear distribution function as,

2
R

2 d

2
e InS! = l[fl(&s, ';%, €, z) + 5;(&5, q—z,

5 s )] (2.68)

P
tNlt

o . L .
Here the quantity K embeds all the soft divergences from the real radiation, which cancels
with the ones coming from the virtual diagrams. The initial state collinear singularities,
which arise from both the virtual and real emission diagrams, are respectively present in

F'and S’

«v» and upon incorporating the mass factorization kernels, I, all of these cease

to exist. The final state collinear singularities are guaranteed to cancel upon summing
over final states, as dictated by the KLLN theorem. Consequently, the SV cross section
in (2.42) is free of all the divergences and the finite contributions coming from the soft
enhancements associated with the real emission processes are denoted by Eiv which is a

function of (z, €).

In addition, the RG invariance implies:

=

LR (0 ,2) = i G 0 L

2 I 2
= -l w\lss 5> —5,2) = Ala;(up)) 6(1 —2),  (2.69)
“dpg Hy ) g

This RG invariance and by demanding the finiteness of SV cross section, supplemented
with an understanding on the structure of Feynman integrals provide a unique solution for

the IR structure of soft distribution at threshold:
Sy ¢, 17,2, €) = Cexp (20 (&, ¢ 117, 2, €)) (2.70)

where the functional form of ®! is:

00 ‘ 21_ 2 i% . . .
%=Z%@%¥H54£ﬂwa 2.71)
i=1
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The symbol C refers to “ordered exponential” which has the following expansion:
f@) — 1 !
CY =6(1 -2+ f@+ 5 (fON@) +-- (2.72)

The symbol ® refers to the Mellin convolution and f(z) is a distribution of the kind 6(1 —z)

and D;(z), where D;(z) is defined as,

In'(1 -z
Di(2) = (—( )) | @.13)
(1-2) ),
. . o (1 —2)°\5 .
Here the subscript + means that 9;(z) is a plus distributions. The term (—2) in the
u
P'(z, €

comes from the

parenthesis of Eq.(2.71) results from two body phase space while
-z

square of the matrix elements for corresponding amplitudes. In general, the term ¢*(1—z)?

inside the parenthesis is the hard scale in the problem and it controls the evolution of @’

at every order. The explicit form of the solution in terms of anomalous dimensions and

certain universal quantities reads as the following [30,31]:

n 1 1{=

¢{1) = 2 2A{) + E(gi(f))

n 1 1/(1 — 1 —

bl = = —,3014{) + Z(EAé —ﬁogi(G)) + 2—6§;(6)

n 1/(8 1 2 8 4 —

Py = a §ﬁ<2)A§) + g( - §ﬁ1A{ - §ﬁoA§ = gﬁ%gi(f))

1/(2 1 - 4 — 11~
+?(§A§ - gﬁlgi(ﬁ) - gﬁogg(f)) + ;(ggg(f))

A 1 1(2 3 —
b4y = 5( —BSA{) + g(gﬁoﬁv“{ + Eﬁ%Aé - 2ﬁ(3)gf(€))

1(1 1 3 4 — _

- (EﬁzA{ - FPAL = oAl + <FBiG\() + 3ﬁ3g§<e>)
1/(1 1 — 1 — 3 — 1{1—=

+;(§Ai - gﬁzgke) - 3BiGa(e) - Eﬁogke)) + ;(nga) (2.74)
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. | . . I .
where the finite quantity G, are related to its renormalized counterparts G;(€) in the

following way:

Sa(P 55l - Saa-gio e

i= i=1

we find

— 1 — 1
Gsv,l(e) = gl (6)

— 7 1 — 1 — I

Gy ,(e) = Z( - 205G, (E)) + G, (e)

— 1 1 =1 1 —1 —1 —1
Gyse) = g(“ﬁogl (6)) + E( - B1G, (6) — 4B0G, (6)) +G; (6)
— 1

Gsf/,4(6) = ( 8ﬁ0g1 (f)) ( ,30,31Q1 (e) + 12,80Q2 (6))

1 2 —1 —1 —1 —1
+;( ~ 352G () — 281G, (6) - 6B0G5 (6)) +G,(€) (2.76)

—I
Through explicit determination of the quantity G, (€), it was found that it is dependent

only on the initial partons and can be further decomposed as:

Gi

Glo=-f+x+> 6" X=X (=5 2.77)
k=1 i

The results of finite coeflicients éil’k(e) are given in Appendix C :

One of the most salient features of the @ is that it satisfies the maximally non-Abelian

property:

ot = S, (2.78)
Cr

This property essentially signifies its universal behavior. Moreover, it is independent
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of the external quark flavors, as expected from the infrared behavior of the scattering
amplitudes. This is understood as the soft part of the cross section is always independent
of any quantum numbers such as spin, color and flavor once the born is factored out;
rather, it depends only on the gauge interaction, which is SU(N,) for the current case. The
aforementioned non-Abelian property is explicitly verified to NNLO in refs. [30,31] and
in ref. [52] it is conjectured to be valid even at N°LO QCD which is demonstrated through
explicit computations in refs. [53, 54]. The flavor dependence of the ®' was exploited in
ref. [55] to calculate the SV cross section at N°LO for the Higgs boson production in
bottom quark annihilation. However, whether the validity of this property holds beyond

N3LO with generalized Casimir scaling [56] needs to be addressed in future.

The SV cross section

Having the IR structure of virtual contributions and real emissions, we get a general struc-

ture of SV cross section, with an expansion in powers of coupling constant:

o0

i) = ) d WA @ i ). (2.79)
i=1

where, 4 ;V’(i) defines the finite partonic coefficient function at each order. At the individual
level, the building blocks form factor, Splitting kernel and soft-collinear distribution con-
tain singularities. However, together they cancel and give rise to a finite partonic SV cross
section, expressed in terms of universal anomalous dimensions and process dependent
terms. Substituting explicit results of anomalous dimensions, S-functions and process de-
pendent terms, we obtain the results of Higgs production from gluon fusion and bottom

quark annihilation and for the DY process, which is available in [30,31,52-55,57-59].
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Resummation

The threshold corrections dominate when the partonic scaling variable approaches its

kinematical limit, that is when z — 1. They manifest in terms of distributions of the form

{6(1 9, D) = [M] } (2.80)
-z |,
This will be evident by noting:
1 ks I
0= = —6(1 -2) +( “[a -] ) (2.81)

When z — 1, the In(1 — z) become very large, on the other hand a, very small so that the
product = a; In(1 —z) ~ 1. In such cases, fixed order truncation will not be justifiable, and
one needs to take care of these logarithms to all orders by doing resummation. The Re-
summation technique provides an alternative perturbative expansion that considers these
large logarithms in the expansion and produces reliable results while truncating. In fact,
the presence of large logarithms is an artefact of truncating the series. When we expand

the series to all orders, it should give a physically acceptable result.

In order to construct a resummation framework, we employ the structure of soft-collinear
distribution, which we obtained in last section. Using the relation (2.81), and by factoriz-
ing the soft divergences from Eq.(2.71), we obtain an integral representation for the soft

collinear distribution :

o/ (ay, q* 12, 2, €)

*(1-2)?
({ ) ) alatra-2).9))

=
=

+5(1 - 2) Z ("—2) 5T

) 2\i5
(1_Z) Z”(MR) Si K, (e) (2.82)
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Some remarks are in order. The third line in the above equation exactly cancels with the
D, term of the mass factorization kernel. The ¢! in the second line contains both pole
and finite terms. The poles cancel with those of form factor and 6(1 — z) part of mass

factorization kernel.

Since the integrand involves many convolutions, it is convenient to solve it Mellin N-
space, where all the convolutions turn to normal products. The Mellin transformation of

a function f(z) is defined as:

1
MLFIN) = f dz 21 £(2) (2.83)

0

Also the Mellin transformation of convolutions given in Eq.(2.43) becomes:
MI[A ® B](N) = M[A](N) M[B](N) (2.84)
The threshold limit in N-space is defined as:
z — 1 transformsto N — oo (2.85)

Similarly, the 6(1 — z) becomes a constant, and distributions of the form D;(z) become

logarithms of the form In N.

Adding the form factor and mass factorization kernel with the soft factor given in Eq.(2.82)
and performing the coupling constant renormalization and finally solving them in Mellin

space we get the resummed formula. In Mellin the finite SV cross section reads as:

I 1,2 2 2 b1 700 g2 I 2 I 2 2
Ay = C)(q* - 17 exp f dz— f A (a) + D (ag’ (1 - 2))
0 - q

= C)(q* 1 13) exp (In gh(a,(up)) + G (w))

= 20" o 117) exp (G () (2.86)
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where, w = 2Bpa;In N and D! (as(qz(l - z)z)) are the well-known threshold exponent

n [60] which is related to the SV coefficients though:

D' (a,(4(1 -z ia (¢°(1 - 2°) D]

i=1

26, V(a; ((1-27) ) (2.87)

e=0

The quantity C} is dependent on the hard process under study, which is basically the
6(1 — z) part of form factor and soft factor and is N-independent. The remaining part
in the above integral is universal. Mellin transformation in Eq.(2.86) produced an N-
dependent (va(w)) and N-independent part (In g{)). Adding the N-independent part with

the C! produces g}

T0(q% 1as 1) = Ch(qP 1k 1) gh(as(ud)) (2.88)

which can be expanded in terms of as(,ulze) as,

(o)

R = ) auREh - (2.89)

i=0

The above integral Eq.(2.86) is first employed in Seminar works by Stermann [61], Catani
and Trentedue [60]. The G}, collects and resums all large-N logarithms to all orders and

can be expressed as a resummed perturbative series as:

Gllv(qz, w)=InN gl(q w) + gz(q w) + ay g3(q w) + a g4(q W)+ (2.90)

The coeflicients gg,,. and g/ are given in Appendix E. Each term in the above perturbative
expansion produces all order result. The first term resum every highest logarithm to all
orders, the next term resums next to highest logarithms and so on. These terms, together
with gé in the same accuracy, gives leading logarithm (LL), next-to-leading logarithms

(NLL) and so on respectively. Adding each term in this perturbative expansion improves
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logarithmic accuracy.

We will discuss the resummation framework in great detail in subsequent chapters. In
addition to the resummation for threshold logarithms, we propose a framework for re-

summing the next-to-threshold logarithms in the last chapter.
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Higgs pair production from

bb-annihilation to NNLO in QCD

In this chapter, we present the cross section for bottom quark induced di-Higgs produc-
tions at NNLO. Among two kind of contributions, we present the exact NNLO corrections
for the dominant one. To compute the remaining ones, we adopt the threshold framework
that we discussed in last chapter. Numerical analysis establish that the inclusion of higher
order terms reduce the uncertainties resulting from the unphysical scales. The materials
presented in this chapter are the result of original research done in collaboration with

Pooja Mukherjee, V. Ravindran et.al and are based on the published article [62] .

Prologue

Ever since discovering the Higgs boson [63, 64], understanding this scalar particle’s na-
ture has been the critical objective of the LHC and future colliders. The measurements
explored so far at the LHC in the Higgs production and decay channels points out towards
the particle being the long-sought Higgs boson of SM of elementary particles [65-76].
For instance, the mass of Higgs (125.38 + 0.14) GeV [77], its zero spin, its couplings to
vector bosons and fermions within 5% accuracy [78,79]. Despite of all these successes of
Higgs programme at the LHC, the nature of Higgs potential remains elusive. The relevant

parameters to constrain the Higgs potential are the self couplings of Higgs boson such as
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trilinear (/lgM) and quartic couplings (AEM). As shown, within the SM, the Higgs potential

after the electro-weak symmetry breaking (EWSB) takes the form:

2 2
£5-T¢w - BN - Mg, M= TE M= G

2
_h

2027 8v2’

where ¢(x) denotes the Higgs field and v ~ 246 GeV is its vacuum expectation value (vev).
In the SM, the Higgs self couplings are related to its mass and the vev of Higgs field, which
is linked to the Fermi constant Gy = 1.16637881075 GeV~2 [80] by v = (V2Gr)'/2.
Hence, the SM values for 3™ and A3™ are found to be ~ 0.13 and ~ 0.03, respectively.
However, these values can be modified by the presence of beyond the SM (BSM) physics

scenarios, which, in turn, suggests their independent measurements.

While the quartic Higgs self-coupling (23™) lies beyond the reach of LHC [81,82], various
studies shows that the trilinear self-coupling, (A3™) might be accessible via the Higgs pair
production processes [83—90]. Though this measurement is difficult due to the small
production cross section and the presence of large QCD backgrounds, the study for the
high luminosity LHC indicate that the Higgs boson pair production due to gluon fusion
can predict /lgM with O(1) accuracy. At present the most stringent constraint on the A3 is
given by ATLAS and CMS within the range of (-2.3, 10.3) and (-3.3,8.5), respectively,
times the SM value [91] with the assumption that no other Higgs boson couplings deviate

from their SM value.

A direct way to access the trilinear coupling is the process of producing a pair of Higgs
bosons. This can be attained through several partonic channels, viz gluon fusion, vector
boson fusion, associated production with a vector boson or a pair of heavy quarks. Among
these, the gluon fusion channel has, by far, the largest cross section since it gets the large
gluon luminosity at the LHC. On the theoretical side, the state of the art for the gluon
fusion channel has reached an impressive accuracy of N’LO in strong coupling constant
and also next-to-next-to-leading logarithmic (NNLL) accuracy for the threshold resum-

mation. (See Fig.3.1 for the LO contributions to this channel and for a brief overview

50



see [92-108] ). However, being heavy quark loop-induced (See Fig.3.1), this production

channel gets minuscule cross section in the SM. The total Higgs boson pair production

A
X

g ‘H 8

Figure 3.1: LO contributions to Higgs boson pair production from gluon fusion channel.

cross section is approximately three orders of magnitude smaller than that of single Higgs
production. In addition, the presence of extensive background makes its measurement
experimentally challenging. Hence unless contributions from BSM physics enhance the
production cross section, measurement of this channel will require a considerable inte-
grated luminosity. On the other hand, in such a scenario, the sub-dominant channels in
the SM could possibly become interesting as they would receive substantial contributions
from new physics. One such channel is the production of a pair of Higgs bosons in bottom
quark annihilation. In certain supersymmetric models, like the Minimal Supersymmetric
SM (MSSM) [109], the bottom quark Yukawa coupling is enhanced with respect to the
top quark Yukawa coupling, in the large tan 8 region, where tan £ is the ratio of vev’s of up
and down type Higgs fields in the Higgs sector of the MSSM. Hence precise predictions

for this channel is of high importance.

While a plethora of work has been performed to reach ultimate precision for the gluon
channel, the sub-dominant channels have not received much attention. This chapter
mainly concerns the bottom quark annihilation channel where the Higgs boson couples to
bottom quarks through the Yukawa coupling. The NLO corrections for this channel was
first obtained in [110] and later in [111-113] considering several BSM scenarios. For the
latter, the bottom quark annihilation process dominates over the gluon fusion even at the
LO level. In addition, their NLO QCD corrections are not only sizeable but also larger
than the supersymmetric QCD corrections. To stabilize the cross section with respect to

higher order radiative corrections, NNLO corrections to this channel are desirable, which
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is the focus of this chapter.

The chapter is organized as follows. In Sec.[3.2], we discuss the Lagrangian, kinematics
and the classes of diagrams that are relevant for our computation. The computational de-
tails are mentioned in Sec.[3.3] with the structure of UV and IR divergences. We present
the relevant analytic results for the inclusive cross sections in Sec.[3.4] and their numeri-

cal impact in Sec.[3.5]. Finally, we summarize our findings in Sec.[3.6].

Theoretical Framework

To begin with, we briefly review the theoretical framework for the production of a pair
of Higgs bosons via bottom quark annihilation at hadron colliders. We work in dimen-
sional regularization (DR), in which all the fields and couplings of the Lagrangian and
the loop integrals that appear in the Feynman diagrams are analytically continued to
d = 4 + € space-time dimensions. In addition, we perform traces of Dirac y-matrices

in d-dimensions.

The Yukawa interaction

Within SM, the interaction part of the Lagrangian that is responsible for the production is

given by,

L = =) (x) (3.2)

where ¢, (x) 1s the bottom quark field. A, is the Yukawa coupling which after the EWSB
is found to be m,,/v, where m;, is the bottom quark mass and v the vev of the Higgs field.
In the SM, the ratio of the top quark Yukawa coupling (4,) and the bottom quark Yukawa
coupling (4,) is found to be approximately 35 i.e. A,/4, = 35. In addition, the bottom

quark flux in the proton-proton collision is much smaller than the gluon flux. Hence, the
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contribution from this channel is sub-dominant as compared to the gluon fusion channel.
However, in the MSSM [109], this ratio depends on the value of tan 8, which can increase

the contribution resulting from the bottom quark annihilation channel. At LO,

—cota for ¢ = h,
MSSM

t _ m; 1 . _
AVISSM - f¢(a)m_htan_ﬂ’ with  f4(@) = tana for ¢ = H, (3.3)

cotg for ¢ = A,

where h is the SM like light Higgs boson, H and A are the heavy and the pseudoscalar
Higgs bosons, respectively. The parameter « is the angle between weak and mass eigen-
states of the neutral Higgs bosons 4 and H. Since the bottom quark mass is much smaller
than the other energy scales that appear at the partonic level, we set the former to zero
except in the Yukawa coupling in perturbation theory [114—116]. In particular, the finite
mass effects from the bottom quarks are found to be suppressed by the inverse power
of the mass of the Higgs boson. The number of active flavors ny = 5 and we work in

Feynman gauge.

Kinematics

At the LO, the scattering process responsible for the di-Higgs production in bottom quark

annihilation channel is given by

b(p1) + b(p>) — H(ps) + H(pa), (3.4)

where p;, p, are the momenta of incoming bottom, anti-bottom quarks with p? = p2 =0

and p;, ps are the momenta of the final state Higgs bosons with p? = p3 = m;. The

associated Mandelstam variables are,

s =(p1+ ), t=(p1—p3) u=(py— ps), (3.5)
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which satisfy the relation s + ¢ + u = Zm}zl. For convenience, we use the dimensionless

variables x, y and z defined in [117] as follows

1+x)7°
s = mﬁ( ») , t=—my, u=-mz. (3.6)
x

The variables x, y and z satisfy

(1+ x)?
X

-y—-z=2. 3.7

The final result will be expressed in term of logarithms and classical polylogarithms,

which are functions of these scaling variables.

Classification of Feynman diagrams

Two mechanisms contribute to the production of Higgs pairs through bottom quark anni-
hilation in the standard model. One is the vertex type of digrams, we call them class-A,
which contains single Yukawa and trilinear couplings. The latter kind of diagrams is
quadratic in Yukawa coupling. At LO, we have three Feynman diagrams, one class-A,
and rest class-B diagrams. The same classes of diagrams contribute beyond LO. We elab-

orate on these classes of diagrams below:

e Class-A: It contains diagrams where an off-shell Higgs boson is produced through
bottom quark annihilation, which then subsequently decays to double Higgs final
states (H* — HH). These diagrams are proportional to 3™, as can be seen from
Fig. 3.2. Note that, the decay part does not get any QCD corrections. Consequently,
the QCD corrections to class-A diagrams are identical to those for producing a
single Higgs boson in bottom quark annihilation, which is known up to three-loop
level in QCD [51]. (Various works on single Higgs production from bb-channel can

be seenin [51,55, 118-125])
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S

Figure 3.2: Illustration of Class-A diagrams; Born, one and two-loop examples.

e Class-B: In this class of diagrams, both the Higgs bosons coupled directly to the
bottom quarks. Hence they are proportional to /li as shown in Fig. 3.3. For this kind,
at two loops level, one encounters a new set of diagrams, the singlet contributions,
where the Higgs bosons are produced from a closed bottom quark loop as shown
in Fig. 3.4. In the singlet contributions, we have dropped the effects of top quark
loops and considered only those coming from bottom quark loops. The top quark
contributions are already included in the gluon initiated sub-processes obtained in

the heavy top limit in [98] for the Higgs pair production at the LHC.

-H b> ~---H

Y

S b

Y / 4

111118
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Figure 3.3: Illustration of Class-B diagrams; Born, one and two-loop examples.
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Figure 3.4: Illustration of special set of Class-B diagrams, the singlet contributions.

General structure of amplitude

In this section, we describe how the general structure of amplitudes can be obtained us-
ing the projector technique for the process given in (3.4). The projectors are defined by

analyzing the tonsorial structure of the given amplitude, which is valid to all orders in
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perturbation theory. Each projector will isolate the coefficients of particular tensor struc-
tures. For the given amplitude, since it contains two fermions and two scalars, the general

structure takes the form:

Mij = 9(p)(C1 + Ca p3 Ju(p1)6;

= (C171 + C272) 0ij, (3.8)

where 7, are the independent tensor with and the C,, = C,,(x,y,z) with m = 1,2 are the

corresponding scalar coefficients. Here, the tensor structures 7, are defined as:

T1 = v(p2)u(pr) (3.9)

T2 = v(p2)p,u(pr) .

The 6;; in Eq.(3.8) is because, in color space, the amplitude is diagonal in the indices (i, j)
of the incoming quarks. We use symmetries such as Lorentz covariance, parity and time-
reversal invariances to parameterize the amplitude. In addition, we have dropped those
terms that vanish when the bottom quarks are massless. The coefficients C,,,, m = 1,2, can
be determined from the amplitude M;; by using appropriate projection operators denoted
by P(C), i.e.,

Co = Ni D PCIM;S;, (3.10)

where the sum includes spin, flavors and colors of the external fermions and N, is the
number of colors in SU(N,) gauge theory. In d-space-time dimensions, the projectors that

satisfy Y, P(C,))T» = 1 and ), P(C,,)T,, = 0V m # n, are found to be

1 .
PCy) = 57'1',
1 i

P = Sl — o —wy =l 2

(3.11)
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Since the application of projection operators on the amplitude gives only Lorentz scalar
functions, the algebraic manipulations with loop integrals become straightforward. The
square of the amplitudes that contributes to the total cross section can now be obtained

from the coefficients C; and C, using
My = N [ICIPTAT, + ICoPTTS + CiCITA TS + ClCaTa T | - (3.12)

Note that these coefficients are, in general, complex due to the Feynman loop integrals.
We expand the amplitude M;; as well as the coefficients C,, in powers of the strong cou-
pling constant defined by a, = g2(u%)/167%, where g; is the renormalized strong coupling

constant and ug is the renormalization scale:

M= dM?, C,=) dcl, (3.13)
=0 =0
and consequently
M) = (CVT1 +C)T3) 635 (3.14)

The coeflicients MS) completely describe the amplitudes order by order in perturbation
theory. Our next task is to compute these coefficients ¢l om=1,2, up to two loop level,

i.e., up to O(a?) in perturbative QCD.

Calculation of amplitudes

In this section we describe the computational details of the coefficients C,, for the process

bb — HH up to two-loop level in QCD perturbation theory.
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Computational details

As can be seen from the form of 77 in Eq. (3.8), only Class-A diagrams contribute to C,
and Class-B to C,. Since the Class-A diagrams are already computed to three loops in
QCD [51], in this section, our focus is to discuss how the scalar function C, in Eq. (3.10)
is computed order by order in perturbation theory. As we mentioned, we use dimensional
regularization, in which the space-time dimensions are taken to be d = 4 + € and perform
traces of Dirac y-matrices and contraction of Lorentz indices in d-dimensions. For con-
venience, we work with the bare form of the Lagrangian and evaluate the coefficient C,
in powers of bare coupling constant &,, where a, = 8>/16x°, g, being the dimensionless
strong coupling constant. Beyond LO, one- and two-loop amplitudes containing massless
quarks, anti-quarks, and gluons develop UV and IR divergences. These divergences can

be regulated using dimensional regularization. We will come to this point in later sections.

To generate Feynman diagrams, we have used QGRAF [126] at every order in the strong
coupling constant. Beyond one-loop, a large number of Feynman diagrams contributes to
the amplitude. The number of diagrams contributes to tree level, one and two-loop are
2, 10, and 153 respectively, excluding tadpole and self-energy corrections to the external
legs. Multiply these amplitudes with the projection operator $(C,) defined in Eq. (3.11)
will give rise to the scalar function C,. Substitution of Feynman rules and computation of
various traces involving Dirac and Gell-Mann matrices are done using in-house routines
that use publicly available packages such as FORM [127] and Mathematica. At this stage,
we end up with a large number of one- and two-loop Feynman integrals. The projection
operators guarantee that all the tensor integrals are converted to scalar integrals. We
rearrange all the Feynman integrals into a few chosen integral families through shifting
of loop momentum. To achieve this, we use the package Reduze2 [128]. At one-loop, the

following three integral families can accommodate all the Feynman integrals

{Pl’?lih pl:i,i+1a P1:i,i+l,i+2} ) (315)
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where, i takes one of the values {1, 2, 3} whose elements are arranged cyclically. A typical
two-loop topology contains at most seven propagators. However, there are nine different
Lorentz invariants (k;.k;, k;.p;) which can appear in the numerator of an integral. Hence,
we introduce two auxiliary propagators in each of the two-loop integral families. The

following two sets describe the six integral families that we use at two-loops,

{Po, P1, P2, Pris Paiis Priiints Priivt Priiintivas Priietiva} »

{PO’ ?l ’ PZa P1:1'5 P2:1" pl:i,i+l ) P2:i,i+l ) ?O:i+2’ Pl:i,i+l,i+2} . (3 16)

Here,

Po = ki’ Poi = (ky —Pi)z, ¢)a:ij = (kq — Di _pj)29 Pa:ijk = (kq —Pi—Dj —Pk)z,

Po =(ki —ka)*,  Poi = (ki —ka— p)*.

This large number of Feynman integrals belonging to different integral families and can
be written in terms of a smaller set of integrals, so-called master integrals (Mls). This can
be achieved by using the integration-by-parts (IBP) [129, 130] and the Lorentz Invariance
(LI) [131] identities, which are implemented in the Mathematica based package LiteRed
[132]. Finally, we obtain 10 and 149 MIs at one- and two-loops, respectively. These Mls
are analytically known from the seminal works of Gehrmann and Remiddi [117, 133].
We use them by systematic transformation and hence obtain the two-loop result for the
coeflicient C, which are expressed in terms of Laurent series in €. As mentioned before,
these unrenormalized coefficients contain both UV and IR divergences, which appear
as poles in € at every order in a,. In previous chapter, we briefly discussed how the
renormalization of the strong and the Yukawa couplings render these coefficients UV
finite, leaving only IR divergences. In the following section, we demonstrate them in

detail by considering the case of bb — H process.
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Ultraviolet renormalization

Beyond LO, the scalar function C, computed in powers of the bare coupling constant a;
encounters UV and IR divergences. In this section, we describe how to deal with UV
divergences. Perturbative expansion of the amplitude for the aforementioned process in
terms of the bare strong and Yukawa couplings is given by:
3 2
My = ( d ) [M(O) (Zes oy + (2 ) MO+ 0(“)] (3.17)
Ho Ho

€/2
0

where /\?(fi) is the I loop unrenormalized amplitude. Note that the entire amplitude is
proportional to the square of 1, the bare Yukawa coupling. Similarly, the coefficient C,

replicates similar perturbative expansion of the following form,

. 2
C, = Ap s.| |60+ S e 4 S C(2> +0@)| . (3.18)
€/2 Mo Ho

Hg

To perform the UV renormalization of the amplitudes we use the modified minimal sub-
traction (MS') scheme, where the renormalized strong coupling constant ay is related to
the bare strong coupling constant, &, through the renormalization constant Z (/,lee, e) at the

renormalization scale ug as

&—jse =27, (13e). (3.19)
Ho R

where The scale y is an arbitrary mass scale introduced to make g; dimensionless in d-
dimensions. The coupling renormalization constant Z (,ufe, 6) up to four loop is given by
Eq.(2.45). The constants 8y and B, are the coefficients of g function which, for n light

quark flavors, are given in Eq.(2.15).

Similar to ag, the Yukawa coupling constant A, needs to be renormalized as well, as ex-

plained in Sec.[2.3.1]. This has been done as shown below at the renormalization scale
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HR:

A

A A
—EI;ZSE = _51/7224 (,u,ze, 6)
Ho Mg
_ Ab 1 lz(l) 2 1 Z(2) 12(2) 0 3 3.20
= €n +as ; 1,1 +aS g /l,2+g A,1 + (as) ’ ( . )
Mg

where A,(u%) is the renormalized Yukawa coupling and the coefficients ZEZ)J are given by

3, 97 10
Z) = 6Cp, 21 = 18C. + 6BoCr, Z\) = SCr+ < CrCa= 5 Crny T, (321)

Having the strong as well as Yukawa coupling renormalized, now we can express the

coeflicient C, in terms of the renormalized couplings:

€/2

2

A

o[ e ot v o] a2
Hg

where the coeflicients C(Zl) are obtained using Eq. (3.19) and (3.20) in Eq. (3.18) and

comparing with Eq. (3.22):

e = en,
12 0 14
2 € Fp ,u; 2
12 1 97 20 4
c = [2(6@% +BoCr) + E(3C% + 5 CrCa - 7CanTF)] ¢y
2 6Crl a1, 1 4
i 2 [@ F 2RO — P (3.23)
Hp | € € Hg

These constants C(zl), [ =0,1,2, are now UV finite. However, they are sensitive to IR

divergences which will be the topic of our next section.
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Infrared divergences and their factorization

Besides UV divergences, the amplitudes beyond LO suffer from infrared divergences,
particularly soft and collinear type divergences. The soft ones arise from the soft gluons
and the collinear from the massless quarks and gluons in the loops. The details of IR

divergences and how we resolve them are given in Sec.[2.1.3].

While all the IR divergences that appear in the amplitudes do not pose any problem for the
physical observables, they provide valuable information about the universal structure of
the IR divergences in QCD amplitudes. In fact, it can be shown that these divergences sys-
tematically factor out from the amplitudes to all orders in perturbation theory [134, 135].
These factored IR divergences demonstrate the universal structure in terms of certain soft
and collinear anomalous dimensions. An elegant proposal was put forth by Catani, who
predicted IR pole structure of the amplitudes up to two-loop level in non-abelian gauge
theory [136]. He demonstrated that the n-particle QCD amplitudes factorize in terms
of the universal IR subtraction operator denoted by 7. This Z-operator has a dipole
structure [136] containing process independent universal cusp and collinear anomalous
dimensions. Thanks to the wealth of results from two-loop calculations of the three-
parton ggg amplitudes [137] and 2 — 2 scattering amplitudes [138—140], that involve
non-trivial color structures [140, 141], the 7 -operator is completely known up to two-loop
level. In [142], the authors provide further insight on the factorization and resummation
properties of QCD amplitudes in the light of Catani’s proposal and demonstrate a con-
nection between divergences governed by soft and collinear anomalous dimensions, see
also [143, 144]. Following [136] we express one and two-loop UV renormalized ampli-

tudes in terms of the 7 -operator as

CY(e) = CY"™M(e),
C(e) = 21"V (e) + C™(e),

CP(e) = 4T (eCP(e) + 213 ()CY (€) + CP™(e). (3.24)
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The matrix elements of the subtraction operator for the bottom quark, 7, are given by

ki 4Cp  3C 5\
o = Tarep\ @ T e 12
1 280\ . e T(1+e)( Po
)] — (1) (1) 0 €)) 2
[b (6)— —E_Z.b (6)(Ib (6)—?)+m(—?+l()[b (2E)+2Hb (6),

(3.25)

with K [136] and Hl(f) [142] are given as follows:

67 2 10
e[ 2o u,

186 9

< e 245 23 13
HY = (-2) =2 _Zocp (-2 + 2 - 2
b (ﬂ,% T(+e)e| a6 35

3 3 25 1
+C12,: (E — §§2+3§3)+Cpl’lf(ﬁ - g{z)] (326)

We simplified the expressions C(Zi)’ﬂ“(e) at the level of color factor and also for each color
factor, in terms of the uniform transcendentality. We find, the resulting expressions are
free of IR divergences and hence are finite as € — 0. This is following Catani’s predic-
tions for the IR poles, which serves as an important check on the correctness of our com-
putation. Although the singlet contributions, which are proportional to the color factor
Crn, Tk, for n, = 1, develops IR divergences at the intermediate stages of the computa-
tion, they cancel among themselves to give rise to a finite piece. This is consistent with
the IR pole structure predicted by Catani. The finite coefficients, Cg)’ﬁ“, i = 1,2, obtained
in Eq. (3.24) contain multiple classical polylogarithms, which are functions of the scal-
ing variables x and y. These polylogarithms can be attributed to different transcendental
weights. We present these finite finite coefficients C’g)’ﬁn,l =0, 1,2 in the attachment with

the arXiv submission of [62]
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Inclusive Cross Section up to NNLO

In this section, we describe in detail the computation of inclusive cross section up to
NNLO level for producing a pair of Higgs bosons resulting from class-A and class-B
diagrams. The hadronic cross section can be expressed in terms of partonic cross sec-
tions appropriately convoluted with the corresponding bare parton distribution functions

fu(x),i=1,2as

o = Zfdxlf‘“(xl)fdxlﬁiz(XZ)OA-ZZ(xl’xz,mi)a (3.27)

a,az

HHi

where x; are the momentum fractions of initial state partons and a1» = ¢,4,8. G,

S
the UV finite partonic cross section for producing a pair of Higgs bosons along with ny
number of colored particles (partons) through the reactions a,(p;) + ax(p2) — H(q) +

H(q,) + X(k.) and is obtained using

2 nx J— 2 ny
Gt = %l—[ f do(gn | | f dpke) D Mo PR (p1+ 2= ) gu— Y k)
n=1 n=1 c=1

(3.28)

where p;,q; and k. are the momenta of incoming partons, final state Higgs bosons and
partons respectively. In d-dimensions, the phase space measure d¢(p) of a final state
particle with momentum p and mass m is given by

dd_lﬁ

a2 G2

d¢(p) =

where p® = /m? + |ﬁ|2 M,,4, 1s the amplitude for the process a;(p)) + ax(p2) —

H(q,) + H(g2) + X(k.) and is calculable order by order in perturbative QCD. The symbol
3 indicates that we have to sum over all the quantum numbers of final states, average over

initial states and finally include the symmetry factor for final state identical particles. For
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convenience, we classify the partonic channels that contribute to M,,,, into class-A and
class-B. We find that these channels do not interfere for the case of inclusive cross sec-
tion and the invariant mass distribution of Higgs boson pairs. Hence, the hadronic cross

section in Eq.(3.27) decompose as:

ot = gliH 4 it (3.30)

We treat them separately and are discussed in the following sections.

Cross section for class-A diagrams

For the class-A diagrams, the amplitude M,,,, factorizes into a product of two sub ampli-
tudes, where one of them describes the production of a single Higgs boson with virtuality,
g* and the other encapsulates its decay to a pair of on-shell Higgs bosons. By suitably
factorizing the phase space we can describe the entire reaction as a continuous process of
producing a single off-shell boson with different virtualities, subsequently decaying to a
pair of on-shell Higgs bosons. In other words, we can write 6% for class-A diagrams as

A dQZA * 2 N
Tl = | 5 O35 ) [Pul@)| 24075~ (q) (3.31)

where the Py (g?) is the Higgs boson propagator, given by

i

Pu(q’) = — (3.32)

q> —m3 + ilymy,

with ', the decay width of the Higgs boson. The cross section that describes the produc-

tion of a Higgs boson with virtuality ¢ is given by

nx

. 1= 7
o) =5 | | [ otk [ dota) ML, P@rrs (o 42— - k).
c=1

c=1

(3.33)
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Here Mf;laz is the amplitude for the production of an off-shell Higgs boson with the
virtuality ¢* and ny number of colored particles'. Similarly, the decay rate ' ~#H is

given by

: NS | gt
ri =" "2 [ f dg(q,) ) ML en'6%(a - ) ). (3-34)
n=1

2
n=1
with M =HH describing its decay into a pair of on-shell Higgs bosons. The decay rate
=11 g straightforward to compute and in 4-dimensions it is found to be

_ 9B(g*)m,

it g = B@) = |1

2
h

, . 3.35
32mv2q (3-35)

Va

Substituting Eq. (3.31) in Eq. (3.27) and using Eqgs. (3.33, 3.34), we obtain (TfZH in
Eq. (3.30):

ot = d—CIZD (@) (¢ (3.36)
A = x H q )04 g .

with

AREDY f dxi fo, (1) f A2 fo, ()Y 0, 2 )

ap.az

Du(q®) =2q T =11 |Pu(e®| (3.37)

where the partonic scaling variable z = ¢*/s. Note that " is known exactly up to NNLO
level [123] and N°LO level [31,55] in the soft plus virtual approximation for on-shell
production of single Higgs boson. Hence, following [123], we can express o/ (¢%) in

terms of IR finite coefficients convoluted with renormalized parton distribution functions

'Note here that, the notation ¢ in the delta function in Eq.(3.33) denotes the momentum of system of
colorless states and do not confuse with the notation given to represent quarks

66



[l piz) as

o (@) =l (@) ) f dx) fo (1, p7) f A% fo (2, HF) Z A a2 @ s 1R)

ap,az

(3.38)

where ol (¢?, %) = mml(u)/(6¢*v*). The partonic coeflicient function A4, can be

expanded in powers of strong coupling constant as

[ee)

M@ @t i) = D @GRAD, (@ @i i) (3.39)
i=0

Substituting Eq. (3.38) in Eq. (3.36) and making suitable change of variables, we obtain

q*=xzS

1 1
dx .
o= f 2 P (5. 17) f dz |0t (@, D@V A para@ T 170 117

ayaz

(3.40)

where T = 4m,21 /S, S = s/x1x,, the hadronic center of mass energy of incoming hadrons

and the partonic flux @, (x, u%) is given by

La X
Doy (X, 7)) = f %ﬁlw,uimz(;,u%). (3.41)

In the next section, we use Eq. (3.40) to obtain the numerical impact of class-A diagrams

to the inclusive production cross section.

Cross section for class-B diagrams

We now describe how the contributions from class-B diagrams in Eq. (3.30) can be ob-
tained. Since class-B diagrams comprise #- and u- channels, the corresponding ampli-
tudes do not factorize like class-A diagrams. This makes the computation technically

more challenging beyond NLO level. However, one can obtain certain dominant contri-
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butions of class-B processes resulting from soft gluon emission as they are process inde-
pendent. Using the contributions from soft gluons, as described in Sec.[2.3.1], and those
from the two-loop virtual processes computed in the previous sections, we can readily cal-
culate the soft plus virtual contribution up to NNLO level, a first step towards obtaining

the total NNLO contribution from class-B.

For the class-B, the leading order contribution results from the Born process b+b — H+H
contain ¢ and u channels. At NLO, one loop virtual corrections to Born and real emission
processes b + b —> H+H+ g and b(E) +¢g > H+H+ b(E) contribute. The UV
divergences that are present in the virtual processes to Born processes are removed using
MS renormalization scheme. The soft and final state collinear divergences in both virtual
as well as real emission processes cancel among each other while the initial state collinear
divergences are factored out and absorbed into bare bottom quark densities in the MS
scheme through the mass factorization. For the sub-process b(E) +g > H+H+ b(z),
we encounter only collinear divergences, and they are removed by mass factorization.
We achieve this by using the semi-analytical method, namely the two cut off phase space

slicing [145], which is summarised in the section below.

NLO corrections to class B: Phase space slicing approach

In this section, we summarise the computation of NLO corrections of class-B diagrams
using the phase space slicing approach. The same approach has been used for the first
computation of NLO correction to the production of a pair of Higgs bosons in bottom
quark annihilation process [110]. In this method, for the real process b+b — H+H+g, two
slicing parameters ¢, and J. are introduced to separate three-body phase space into sofft,
hard collinear and hard non-collinear regions. Whereas, for the real process g + b(b) —
H+ H+ b(E), we need to introduce only ¢, as these are free from soft divergences. The
slicing parameter d, divides the real emission phase space into soft and hard regions. Soft

region is the part of phase space where the energy of gluon in the center-of-mass frame of
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incoming partons is required to be less than &, v/s/2, and the rest is called hard region. The
latter contains collinear configurations where the two massless partons become collinear
to each other, leading to collinear singularities. Similarly, the ¢, is used to divide the
hard region into hard-collinear and hard non-collinear regions denoted respectively by
HC and HC. Keeping these slicing parameters d; and ¢, infinitesimally small, the virtual
loop integrals and the soft and collinear sensitive phase space integrals are computed
within the method of dimensional regularization. The corresponding singularities show

up as poles in dimensional regularization parameter €.

We describe below the essential steps that are followed in dealing with IR singularities
in phase space slicing method. We start with UV finite hadronic cross section at NLO

HH+1

level, denoted by do . It gets contribution from real emission partonic sub-process
a, + a, » HH + a; where the final state consists of a pair of Higgs bosons HH and a3, a
single partonic state. We divide the phase space of a; into three regions using two slicing

parameters as

do(S,, 6., €) = da5(5,, €) + do™TC(S ., 5., €) + A5, 5,) . (3.42)

The soft (do"™5(8,, €)) and hard-collinear (do"#HC(§,, 5., €)) contributions can be com-
puted analytically when the slicing parameters are infinitesimally small within the dimen-
sional regularization. Soft and collinear singularities appear as poles in € and are cancelled
against those resulting from the virtual diagrams as well as from the counterterms that are
HH

used to perform mass factorization. In other words, the following sum, denoted by do;,

is finite as € — O:

dofifty(u2) = do'™V (e) + do"™*' (6, 6., €) + Ao (8, 8., €, 117 (3.43)

where do"V(¢) is the contribution from virtual corrections to Born level processes. The

counter term do"?CT(§

6 Oc,y €, ,u%) that removes the initial state collinear singularities is
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defined at the factorization scale yr. While the sum given by

d0_8+(V+7‘{C+CT(6 HH,S((S HH,(V(E)

5> 0cs ,u%“) =do 5 €) + do

+ dO'HH;HC((Ss, (sc’ E) + dO'HH’CT(dm 50 €, ,U%—) . (344)

is free from soft and collinear poles in €, it depends on the slicing parameters. However,
when the above sum is added to the hard non-collinear contributions (dO’HH’%), that is,

do-gflo %) = lim (do_S+W+7{C+CT(6S’6C) +d0'HH’WC(6S,6C)) (345)

05,0.—0

the resulting contribution, Eq. (3.45), is guaranteed to be independent of the slicing pa-
rameters in the limit when they are taken to be infinitesimally small. For the sub-process,
g + b(b) = H + H + b(b), we encounter only collinear divergences and hence we require

a single slicing parameter J. to obtain infrared safe observable.

For completeness, we present the individual contributions that are required in phase space
slicing method to obtain inclusive cross section up to NLO level from class B diagrams.

The virtual contribution for the sub-process initiated by b and b is found to be

€ €
HHY NEARRACES) 16 12
do = as(/JF) (IJ—%) mdxld)(fz CF —g + ?

X dO':%H’(O)(x], X7, e)(fb(xl)fg(m) +(x; & xz))

+do !V (xy, xa, ) f(r) f(02) + (1 © 1) )] (3.46)

bb.fin

after setting renormalization scale ug = ur. The finite part of the virtual corrections,

dotiv

. can be obtained in terms of C, given in Eq. (3.14). The soft contribution is given

by

€
Sra+9) (1_6 1616,

S
dO'HH’S ~ as(ﬂ%‘) (’u_%) m F + 8 1112 65)

€2 €
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X (dot Oy, x, ) fy(x) f(0) + (11 © X)) dxidxs.  (347)

The sum of hard-collinear and counter term contributions from both b annihilation and

gb(b) scattering processes, is found to be:

Sr(+%9)

HC+CT _ 'NEAE
do =a,(ur) (,u%) —F(l To dxidx,

X

1 ~ 1.
do M (x1, 2, e>{5fb(x1, HEo oo, 1) + 5 J500, ) oo, )

1 s

1
+2 (—— +=In— )Ab_>h+g To(xt, ur) fo(x2, pip) + (X1 © x2) }] (3.48)
€ 2 u

Using the diagonal splitting function Pp,(z), we find

1
d 3
Apsprg = f ZP(z) =4C (2 Iné, + 5), (3.49)
1

—5,

and from the non-diagonal ones, we obtain
1-6 1
. tdz (X ~ dz . (x -
Folx, uz) = f ?fb (Z,lhzv) Ppy(z) + f ?fg (E,#%)Pbg(z)’ (3.50)

with
~ 1 -2 S ,
P;j(z) = P;ij(z)In 60——2 + 2Pij(z) , (3.51)
Z 1953

where P;(z) [145] are € dependent part of splitting functions, that is
Pij(z,€) = P;j(2) + €P{}(2) . (3.52)

Adding all the order a; pieces together: the virtual cross section doV in Eq. (3.46),

HH.S

the soft piece do in Eq. (3.47) and the mass factorized hard-collinear contribution

doTHCHCT a5 given in Eq. (3.48), we find that the poles in e cancel in the sum given in

Eq. (3.45) giving IR finite NLO contribution from class-B diagrams.
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NNLO corrections to class B: Soft-Virtual approach

Going beyond NLO for the class-B diagrams requires a dedicated computation taking
into account pure virtual contributions presented in last section, the double real and single
real-virtual contributions. The inclusion of the later contributions is beyond the scope of
the present work. However, we can compute the SV contribution resulting from class-
B diagrams. To achieve this, we follow the general formalism presented in Sec.[2.3.1],

which is applicable to both classes of diagrams.

We begin with the UV finite partonic cross section for producing a pair of Higgs bosons

and ny partons, namely for the process b(p;) + E(pz) — H(q) + H(qy) + X(k.),

2
é-bE = 2is 1:1[ fd¢(Qn) 1—[ fd¢(k )Zlebl (Zﬂ)déd Pl + Py — an Z (3.53)

c=1

where ¢ counts the number of partons in the final state. The dominant soft gluon contri-
butions to partonic reactions are proportional to terms such as (1 — z) and + distributions
of kind Dj(z) = [l“(l Z)] . Such contributions result only from bottom quark annihilation
sub-processes. They themselves do not constitute infrared safe observables until we in-
clude pure virtual contributions and mass factorization counter-terms. The resulting one

is called SV contribution.

In the soft limit, the square of the real emission partonic matrix elements factorises into
hard and soft parts and similarly the phase space splits into their respective parts. The soft
part when combined with the pure virtual corrections and the mass factorization counter

terms, will give infrared safe SV part of the cross section:

f dg ] ﬂ f do(gn) > IMOP @Y (py +P2—an)
f d¢<q>ﬂ f dg(ko) Y M| <2n)“6d( L+ pr-q- Z ] (3.54)
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where M;%) is the Born amplitude for producing a pair of Higgs bosons in bottom quark
annihilation and M® is the SV part of amplitude M,;. The second line of the above
equation can be computed order by order in perturbation theory for any colorless state
with momentum ¢ in a process independent way as the amplitude for the production of a
pair of Higgs bosons factorises out at every order. Beyond LO, the virtual corrections to
Born amplitudes and multiple soft gluon emissions arising from tree level as well as from
loop corrected amplitudes contribute to the SV. While the singularities from soft gluons
cancel between real and virtual amplitudes, the initial state collinear singularities can be
removed only after adding appropriate mass factorization counter terms computed in the
soft limit at the factorization scale ur. The resulting hadronic cross section will be free of

soft and collinear singularities:

d 2 1 2
O'HH’SVqu—qzZfdxlfb(xla/"%)deZfb(XZ,,u%)z_sl_lfd¢(q'1)
bb n=l

2 N
x Qo (pr+pa= D @)D, D AN (- ah o ) (359

n=1 i=A,B

where z = ¢*/s, i runs over both the classes of diagrams. Following the threshold frame-
work in Sec.[2.3.1], the finite coeflicients 47} can be computed order by order in per-
turbation theory using one and two-loop virtual amplitudes, soft distribution function and
diagonal mass factorization kernels. We expand 47} in powers of strong coupling constant

as,

A3 =" al@) 43,9 (3.56)

J=0

§V,(j)

where we have set u; = u;. = ¢*. The coefficients, 4},

for j = 0, 1,2 can be expressed
in terms of the cusp A?, the soft qu and the collinear B? anomalous dimensions that are

present in the virtual amplitudes and in the soft distribution function [31]:
A0 =5(1 =) IMGP,
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AW =5(1 - 2) {|M§f’0>|2 (2@‘1”1) + MM + MﬁfQM:(g”} + Do(IMG P (-217)
+ DiIMG I (4A1)
AP =5(1 - z){|M§}O)|2 HIMOP(G +2@G) ) +280G) - 85:A1SY
- 200 - SEA) + MIME + MOMD
+ MOMO(447) + MOMED + MOME (= 2f7 - 4BY) + MP MY
+ MUMED + MM (2G)) + MM + MM (4A)
+ MOM (=27 - 4B) + Mg?gM;(g“(zé‘f")} + @o(z){wf.fi;lz( ~2 - 4f/G)"
_48,G" + 1643(A%) + BLALFT) + MM (= 2£1) + MMV (= 217 )}
+ D (z>{|M§f3}|2(4(ff)2 FAAL+ BATG) + 4By f7 - 164,(A7Y?)
+ MOMO(447) + Mg?gM;(gw(m)}

+ Dz(z)wfgﬁ{ — 1249f0 - 4/30Af} + Ds(2)IM,{8(AD?. (3.57)

where {, = 1.64493407 - .-, = 1.20205690 - - - and ijk) are obtained from Eq. (3.14)

by defining M,,, = MJ,,, and expanding in powers of € as
M= > éMY. (3.58)

k=—2j

The cusp, collinear and soft anomalous dimensions are given in Appendix B. The univer-

—4-() o .
sal constants QZ " for the quark-initiated process are given by:

q,

G
—q. 7
§[112 =Cr (553) ,

L= Cr(-30)

328 70 32

—q,1
Qg = Cpny (—H + 3(2 + ?53) + CACF(

2428 469
81 g 2

176
+ 457 - Té) . (3.59)
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Finally, defining 4, (z, ¢%, u2, 3) by

—SV
i@ @ 1 1)

n=1

e dsd S
N ]—1[ f dd (g 25 [m =g
_ 2
XY IMOPES A5 (- a2 P iboiy) - (3.60)
i=1
HH,sv:

we obtain o

(3.61)

1 1
O_HH,SV — f dx @maz(x’ﬂ%) f dZ A;IGZ(Z’ q2’ ,U%-, ,Lli))

q*=xz8

We have used the above formula to study the numerical impact of SV part of the par-
tonic cross section resulting from class-B diagrams up to NNLO level on the inclusive

production of a pair of Higgs bosons.

Phenomenology

In this section, we present in detail the numerical impact of our analytical results obtained
in the previous sections. We mainly focus on the inclusive cross section for producing a
pair of Higgs bosons at the LHC with the center-of-mass energy VS = 14 TeV. We use
MMHT2014(68cl) PDF set [146] and the corresponding a, through the LHAPDF-6 [147]
interface at every order in perturbation theory. We use the running bottom quark mass
renormalized in MS [123] scheme with the boundary condition m,(m;) = 4.7 GeV. Both
as(u%) and my,(u%) at various orders in perturbation theory are evolved using appropriate
QCD g-function coefficients and quark mass anomalous dimensions. Similarly, the PDFs
are evolved to factorization scale yr using the splitting functions computed to desired ac-
curacy in the perturbation theory. We choose the Higgs boson mass m;, = 125 GeV and
its total decay width I, = 0.001 GeV. In our analysis, we have included all the partonic
channels upto NNLO level for the class-A diagrams while for the class-B, we could do

this only up to NLO level, however, at NNLO level we have included SV contributions.
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Figure 3.5: The total cross section for di-Higgs production in bb annihilation at various order in
ag as a function of (/,ti/u(z)) on left panel with ur = uy and as a function of (,u% //J%) on right panel
with pug = uo with central scale g = 2my, and s = 14 TeV.

We find that this approximation does not change our conclusion as the dominant contribu-
tion results from class-A. To illustrate this point we state some of our observations from
our numerical results. We find that the LO contributions from class-A diagrams are three
orders of magnitude larger than those from class-B diagrams. We also find that NLO
contributions change the LO cross section by —1.096% and at the NNLO level the change
is about —8.095%. The numerical result manifests the fact that the SV contribution pre-
sented in this work not only gets the dominant contribution from class-A but also the
stability of our NNLO result for di-Higgs production from the bb annihilation channel.
We find that the contribution from bottom quark annihilation processes is three orders of
magnitude smaller than from the gluon fusion processes [102] (See Table 3.1). However,

former ones need to be included for the precision studies at the LHC.

Channel LO[fb] NLO[fb] NNLO[fb]
bb — H 0.02821 0.03169 0.02970
0g — H 17.06 31.89 37.55

Table 3.1: Inclusive total cross section for the di-Higgs production in dominant gluon fusion
chennale and sub-dominant bottom quark annihialtion channel for ug = urp = my, /2.

Having studied the size of the corrections both at NLO and NNLO level, it is important to
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Figure 3.6: The total cross section for di-Higgs production in bb annihilation at various order in
ay as a function of the mass scale p with (up = ug = ) for /s = 14 TeV.

quantify the uncertainties resulting from the mass scales introduced in our calculations.
Recall that the renormalization of the UV and the initial state collinear divergences en-
forces the introduction of mass scales namely ug and pr respectively. The pg dependency
shows up in the coupling constant as(,ufe), the mass mb(plze) and in the mass factorized
partonic cross sections at various orders in perturbations theory. The coupling constants
are evolved using the appropriate QCD S-function coeflicients and quark mass anomalous
dimensions. The ufr scale dependency comes from the PDFs that are evolved using split-
ting functions computed in the perturbation series. But the cross section, like every other
physical observables, is expected to be independent of these arbitrary mass scales. This
crude fact manifests the scale independency if we sum the perturbative predictions to all
orders in perturbation theory. Since we have truncated the series, there is a residual scale

dependency. In the following we aim to study this by varying both pg and pp scales.

In Fig. 3.5, we show the variation of our fixed order predictions with respect to ug (on
the left panel) and ur (on the right panel) for a particular choice of central scale yy = 250
GeV. We can see that except for the small ug and pp region, which is in the region below
Ur = my, there is an overall reduction of the scale dependency with increasing order of

perturbation theory. We observe that both NLO and NNLO results attain a much faster
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stability against the variation of the scales than the LO cross section. At the leading order,
there are no ug or ur scale dependent logarithms that can compensate those coming from
the Yukawa coupling and parton distribution functions, and hence LO has large scale

dependency. However, the inclusion of higher order terms that contain logarithms of

| (&4 | LOIfb]x10™" | NLO[fb]x10~" | NNLO[fb]x10™|
(2,2) 0.3587 0.3416 0.3119
2.1) 0.2951 0.3191 0.3098
(1,2) 0.3994 0.3384 0.2976
(1,1) 0.3286 0.3250 0.3020
(1,12) 0.2502 0.3032 0.3031
(1/2,1) 0.3704 0.3246 0.2879
(1/2,1/2) 0.2821 0.3169 0.2970

Table 3.2: 7-point scale variation for central scale at my, = 125GeV, k = 1

these scales provide partial cancellation at every order in perturbation theory. Hence the
inclusion of NLO and NNLO pieces reduces the dependency on the scales considerably.
In Fig. 3.6, we have set ug = ur and varied the cross section with respect to a single
scale . It can be observed that LO attains stability much faster compared to the case
when pg is not equal to up. This can be comprehended from Fig. 3.5, where the LO
contribution behaves exactly in an opposite way with respect to the variation of both the
mass scales. So the stability in the leading order seen in Fig. 3.6 attributes to the fact
that there is a significant cancellation happening between the ug and up scale variations
of the cross section. We also show the 7-point scale variation for the central scale at
my, = 125 GeV in Table 3.2. This variation spans the entire region from ug, ur = my/2 to
Ur, i = 2my, and hence captures the uncertainty in this region. The 7-point scale variation
for a different value of central scale is also shown in Table 6.4. Table 6.5 contains the %-
uncertainty from the scale variation at two different central scales. It can be seen that the
leading order cross section has a huge scale uncertainty which implies the unreliability of
the result. But the scale dependency starts to reduce when we include the higher order

corrections.
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| (&, Z) [ Lorb]x10"" | NLO[fb]x10~" | NNLO[fb]x10~"]

Kkmy > kmy,
(2,2) 0.3765 0.3617 0.3256
(2,1) 0.3254 0.3384 0.3210
(1,2) 0.4150 0.3594 0.3110
(1,1) 0.3587 0.3416 0.3119
(1,1/2) 0.2951 0.3191 0.3098
(1/2,1) 0.3994 0.3384 0.2976
(1/2,1/2) 0.3286 0.3250 0.3020

Table 3.3: 7-point scale variation for central scale at my, = 125GeV, « =2

Central LO[fb]x10™" | NLO[fb]x10™" || NNLO[fb]x10"!
Scale(GeV)
466 o8 || 0.302073278%
125 0.32861 313505 | 0.325073308% ~4.669%
4.392%
250 0.3587+139%% | 0.3416*3210% || 03119554

Table 3.4: %-scale uncertainty at LO, NLO and NNLO

Summary

To summarize, we have systematically computed the inclusive cross section for the pro-
duction of a pair of Higgs bosons in the bottom quark annihilation up to NNLO level
in perturbative QCD. We find that the diagrams contributing at NNLO can be classified
to two classes, with no interference terms between them. For obtaining the corrections
coming from class-A, we use the result of single Higgs production from bottom annihila-
tion channel. For class-B, the evaluation of full NNLO inclusive corrections are hard to
achieve. However, we obtained the correction at the soft limit using the threshold frame-
work explained in chapter 3. We have analyzed these results numerically at the LHC
energy, which demonstrates that the inclusion of higher order terms reduces the renor-
malization and factorization scale uncertainties, and hence making the predictions more

reliable.
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NNLO QCD&QED corrections to

Higgs production in bb annihilation

In this chapter, we investigate the NNLO corrections resulting from the interference of
QCD and QED interactions for the bottom quark induced Higgs productions. We also
discuss their general structure using the threshold framework presented in chapter 3. In
the process, we obtain the QED mass anomalous dimensions upto second order. The ma-
terials presented in this chapter are the result of original research done in collaboration

with Pooja Mukherjee, V. Ravindran et.al and are based on the published article [ 148].

Prologue

The efforts to compute the observables related to top quarks and Higgs bosons have been
going on for a while as these observables are sensitive to high scale physics. Since the
dominant contributions to these processes are known to unprecedented accuracy, the in-
clusion of sub-dominant contributions and radiative corrections is essential for any con-
sistent study. This chapter explores the possibility of including EW corrections to Higgs
boson production in bottom quark annihilation, which is sub-dominant. While this is a
sub-dominant process at the LHC, in certain BSM contexts, the rates are significantly

appreciable, leading to interesting phenomenological studies.

Unlike the dominant channel, which is gluon-induced Higgs boson production, the bot-
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tom quark annihilation channel has not received much attention in the context of EW
corrections, presumably because it is already sub-dominant at the LHC. The complete
EW corrections are much involved. Hence in this chapter, as a first step towards this, we
attempt to include the QED corrections to the inclusive production for the aforementioned
channel. Though these corrections are sub-dominating for the collider physics, however,
from the naive power counting the QED coupling constant & ~ a2, where a; is the QCD
one. Hence we expect that, the corrections obtained from this work could be comparable

to the fixed [8] and resummed [149] results solely from third order in perturbative QCD.

Recently in [150], a suitable algorithm, called Abelianization, has been developed by
studying the group theory structure of QCD and QED amplitudes that contribute to the
partonic sub-processes of DY production. The algorithm contains a set of transformations
on the color factors/Casimirs of SU(N,) that transforms QCD results for the partonic sub-
processes to the corresponding QED results. This way both pure QED and the mixed
QCD-QED contributions to inclusive production cross section for the Z boson in DY
process have been obtained in [150] at NNLO level. Following this approach, we can in
principle proceed to obtain pure QED and mixed QCD-QED contributions to the bottom
quark annihilation process from the QCD results. However, in order to scrutinize the very
approach of Abelianization, we explicitly compute the pure QED and mixed QCD-QED
corrections to inclusive production of the Higgs boson in bottom quark annihilation up
to NNLO level in U(1) and SU(N,) x U(1). In addition, we reproduce the same for the

production of Z boson in DY process.

The computation beyond the leading order involves evaluation of virtual and real emission
processes. As discussed before, these contributions are sensitive to UV, soft and collinear
divergences. We compute them in dimensional regularization, hence divergences appear
as poles in dimensional parameter € = d—4, where d being the space-time dimension. The
UV divergences are removed in MS scheme. While the soft divergences cancel between

virtual and real emission processes in the inclusive cross section, the collinear divergences
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are removed by mass factorization. Both the UV and mass factorization counter terms are
determined using factorization property of the inclusive cross section and obtain collinear
finite contributions to the Higgs boson production in bottom quark annihilation and Z
boson production in DY. In the process, we also obtain the universal IR anomalous di-
mensions and consequently the renormalization constant for the Yukawa coupling up to

two-loop level in both QED and mixed QCD-QED ones.

We begin the chapter with a discussion on the theoretical framework in Sec.[4.2]. In
Sec.[4.3], we briefly describe the methodology to compute higher order QCD and QED
corrections to various partonic and photonic channels contributing to the inclusive cross
section. We also investigate the UV and IR structure of the form factors and cross sec-
tions using K+G equation and obtain the mass factorized cross sections, which is done
in Sec.[4.4]. Further the Abelianization procedure is discussed in Sec.[4.5]. Finally, the
phenomenological impact of our theoretical predictions are presented in Sec.[4.7] and

summarize in Sec.[4.8].

Theoretical framework

The Lagrangian corresponds to the gauge group SU(N.) x U(1), where SU(N,) is the

gauge group for strong interaction and U(1) for electromagnetic interaction, is given by:

L= (i) - mog ) - 166~ (T (76

Here ¢ represents the fermionic field in the fundamental representation of the SU(N,)
group withm = 1,--- N, and £ is the gauge fixing parameter. The covariant derivative
D’;j = 0"0;; — ig(T°), jG’C’ — ieA*6;;. The gluonic and photonic field strength tensors takes

the form in terms of gluon gauge field G;; and photon gauge fields A, respectively as:

e, = 0,G% — 0,G + ig, f”bCGZG;’,
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ﬂv = apAv - avAp ’

Here both Gy, (@ = 1,--- ,N? — 1) and A, belong to the adjoint representation. We
use the standard perturbation theory for our computations in which various quantities
are expressed in powers of a, = g2/16x* and a, = ¢*/16x°. Here g, and e are strong and
electromagnetic coupling constants respectively. We treat the quarks and leptons massless
as we are interested in quantities in the high energy limit. The computations beyond
LO involves virtual and real emission processes which are often sensitive to divergences
coming from UV and IR end. The IR divergences arises: (1) from massless gluons of
SU(N.) and massless photons of U(1), and (2) (almost) massless collinear quarks and
leptons. We perform these higher order computations in dimensional regularisation where
the divergences appears in terms of € = d — 4, with d being the space-time dimension.
Also we use MS -scheme to renormalize the fields and the couplings in the theory. The

number of active flavors is taken to be n; = 5 and we work in the Feynman gauge.

For the Higgs boson production from bottom quark annihilation, the Lagrangian includes
additional interaction term described by the Yukawa interaction A, which is given in
Eq.(3.2). The Yukawa coupling which, after the EW symmetry breaking, is found to be
m, /v, where v is the vacuum expectation value (vev) of the Higgs field ¢(x). The ¥, (x)

and m,;, denote the bottom quark field and mass, respectively.

As discussed in the previous chapter, in the SM, the Higgs boson production through
bottom quark annihilation is sub-dominant compared to gluon fusion through top quark
loop. One finds that the bottom Yukawa coupling is 35 times smaller than top quark
Yukawa coupling and in addition, the bottom quark flux in the proton-proton collision is
much smaller than the gluon flux. However, in certain BSM scenarios such as the MSSM
[109], the ratio of the vevs of Higgs doublets can increase the contributions resulting from

the bottom quark annihilation channel (See (3.2.1) for more details).

The inclusive cross section for the production of a colorless state, such as Higgs produc-
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tion from gluon fusion or bottom quark annihilation, in the hadronic collisions is given

by
7.4 = 0a) Y, [ dndehi s e i) duts. P idosi) . (42
cd

where o is the Born cross section and fa(x,-,,u%) are pdf’s for a = ¢, ¢, g and photon
distribution function (phdf) if @ = y. The scaling variables x; is their momentum fractions.
The partonic sub-process contributions 4., are normalized by the Born cross section. The
scales ug and up are renormalization and factorization scales. S and s = x;x,S are
hadronic and partonic center of mass energy, respectively. ¢ is the invariant mass of
the final colorless state. 4.; can be expanded in powers of the QCD coupling constant
as = g2(u%)/167* and QED coupling constant a, = €*(u%)/167%, g, and e being the strong
and electromagnetic coupling constants, respectively. That is, after suppressing ug and g

dependence,

(o)

Aedes @i i) = ), ab(hii) @) 457 i 1) (4.3)

i,j=0
with 4%” = §(1 - z) and z = ¢*/s. Unlike the 4") given in Eq.(3.39), where the index
i dictates the perturbative order of QCD corrections, here we have two indices (i, j) to
represent the same for both QCD and QED respectively. In the following, we describe the

methodology to compute Aii’lj) up to second order in the couplings.

Methodology

In this section, we briefly describe how higher order perturbative corrections A(Ci[’lj " in Eq.
(4.3)) are computed. Beyond LO, the partonic channels consists of one and two loop
virtual sub processes, real-virtual and single and double-real emissions (See Sec.[2.2]).

Some sample diagrams are are presented in Fig. 4.1. Sub-processes involving virtual di-
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Figure 4.1: Mixed QCD-QED contributions at NNLO. From left the sample diagrams of (1)
double virtual, (2) real virtual and (3) double real respectively have shown. Here the the wavy
line indicates the photon, curly ones the gluon and the dashed line the Higgs boson.

agrams are sensitive to UV singularities. Due to the presence of massless gluons and
photons, we encounter soft singularities in both virtual and real emission sub-processes.
In addition, we encounter collinear singularities as well, since the quarks are treated mass-

less. We use dimensional regularization to regulate all these singularities.

To generate Feynman diagrams we have used the program QGRAF [126]. An in-house
FORM [127] code is used to perform all the symbolic manipulations, e.g. performing
Dirac, SU(N,) color and Lorentz algebra. We encounter a large number of loop integrals
at this stage coming from the virtual diagrams. In order to reduce them to a minimum set
of master integrals, we use IBP identities through a Mathematica based package, namely
LiteRed [132]. For the virtual processes, at two loop level, the form factors in QCD,
QED and mixed QCDXxQED require four MIs. For those processes that involve pure real
emissions with or without virtual diagrams, we use the method of reverse unitarity that
allows one to use IBP identities to reduce the resulting phase-space integrals to a set of
few MIs. These Mls are matching with those given in [151]. For the RV type of processes
at NNLO level we need 9 MIs for QCD and 8 MlIs for both QED and mixed QCD-QED.
Whereas, for the pure real emissions at NNLO, 24 MIs are required for QCD, QED and
mixed QCD-QED processes. Substituting these MIs, we obtain contributions to each sub-
process with their singularities expressed in terms of €. We discuss the structure of these

singularities in the following section.
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UV and IR structures in QED and QCD-QED

Having computed all the partonic channels that contribute to the hadronic cross sections
in QED and QCD-QED, now we can investigate the underlying UV and IR structure of
U(1) gauge theory and the mixed gauge groups with massless fermions, which is the focus
of this section. For the SU(N,) group, similar studies can be find in [40, 136, 142, 152—
155]. In order to explore the IR structure, we study the production of a Z-boson namely
the Drell-Yan process, in addition to Higgs productions, in hadron colliders to the same

accuracy in QCD, QED and QCD-QED.

To start with, we focus on the UV divergences coming from the virtual sub processes. In
order to avoid those divergences, we renormalize the coupling constants a. using suitable
renormalization constants Z, , where ¢ = s, e corresponds to QCD and QED coupling
constants respectively. The Z, relate the bare couplings a. to the renormalized ones

a.(u%) at the renormalization scale g in the following way,

a_ _ac(uz)

@ 2

Za, (as(}). aci}). €) (4.4)

where a, = {ay, a.}. Recall: a, = §;/16x* and a, = 2*/167* and S = exp[(y¢ — In4n) £].
Mo 1s an arbitrary mass scale introduced to make a, and a, dimensionless in d-dimensions.
Since the bare coupling constants @, is independent of the renormalisation scale g, the

couplings a.(u%) satisfy the renormalisation group equations given by:

d &
,Ufed—z InZ, = 3 + Ba(as(g), a.(up)) - 4.5)
My

When both the interactions are simultaneously present in the perturbation theory, the beta

functions g, will involve both the couplings a, and a,, as given by:

Bo, == Bydal,  Pu=-) Bal’dl. (4.6)

i,j=0 i,j=0
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As can be seen from above expressions, the mixing of both these couplings in the beta
functions start to appear from the third order onward, where (i + j) > 3 in Eq.(4.6). (More

details can be found in [156]).

Substituting Eq.(4.6) in Eq.(4.5) and solving for the renormalization constants Z, up to

two-loops, we obtain

Z,, =1+ as(@) + asae(ﬁ—gl) + 42 (% + @)

€ S\ e €
2 ’ Y 4 ) /

Z, =1+ a(ﬁ) + aeas(@) +a? (@ + @) 4.7)
€ € € €

In the present case, only one loop S i.e. By and 5, appear. They, along with the other

B’s [156,157], are given by'.

11 4 , 4
Boo = ?CA - §nfTFa Boo = 3 (Nc ; 6’3, + Z 6,2) ,
p=2(Sar ). menan e |
q ! q l
34 20
Bio = (?cf, =5 CansTr - 4CanTF) . Bl =—4Cr {Nc A e?] - (48)
q !

Recall that C4 = N. and Cr = (NC2 —1)/2N,. n¢(n;) are the number of active quark (lepton)

flavors and e, ¢; refers to electric charge for quark g and lepton / respectively.

In addition to the QCD and QED coupling renormalization, we perform the renormaliza-
tion for the Yukawa coupling through overall operator renormalization constant Z5(as, d,),

which satisfies the RG equation:

d -
Mz 2 = 7+ 9,7 (0,00, ap) 4.9)
Hr

'Note that 8 o are pure QCD beta’s as given in Eq.(2.14). We define them again, since we need to take
care of both QCD and QED indices simultaneously.
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whose solution in terms of the anomalous dimensions yg’j ) up to two loops is found to be

Zy)(as,a.,€) =1+ as{é(z),;l,m)} + af{é(Z(yg’O))z 4 2,800721’0)) N éy(bz,o)}
cal L)+ S0 + 26 + L)

1 1
+asad 5477 + -] (4.10)

Note that while the UV singularities factorize through Z,,, singularities from QCD and

QED mix from two loop onward. For QCD, y,(j’o) is known to four loops [158]. Using

universal IR structure of the amplitudes and cross sections in QED, we determine yl(f’j) up

to two loops in QED i.e. for (i, j) = (0, 1), (0,2) and in QCD-QED i.e. for (i, j) = (1, 1).

As discussed in Sec.[2.3.1], the IR structure of partonic cross section in the soft-virtual
limit is constructed using the form factors, soft distributions and mass factorization ker-
nels. We have already seen the structure of these quantities in the QCD perturbation
theory in previous chapters. Now in this section, we study their structure for the case of

mixed QCD-QED and pure QED.

Form factors

We begin with the discussion on the form factors (FF). The bare form factor is denoted by
Fi@s, a., 0%, %), where I = g, b denotes the DY process and the Higgs boson production
in bottom quark annihilation respectively. As mentioned, our computations are performed
in the perturbative framework where both QCD as well as QED interactions are taken into
account simultaneously. Hence all the quantities,including form factor, depend on both
QCD and QED coupling constants. In addition, we find that the UV renormalized form
factors demonstrate the factorization of IR singularities. Using gauge and renormaliza-

tion group invariance, we propose Sudakov integro-differential equation for these FFs,
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analogous to the QCD one. In dimensional regularization, they take the following form:

d 1 Hi Q® 1
2 _ A~ R A R
0 5 n%i = S|, /7,6) +G(la), pa ). (4.11)
where {a.} = {a,, a.} and Q> = —¢? is the invariant mass of the final state particle:
mi ,  for Drell-Yan,
q = (4.12)
m; for Higgs production,

where m;,;_ 1s the invariant mass of the lepton pairs. Explicit computation of the form
factors shows that IR singularities, resulting from QCD and QED interactions not only
factorize but also mix beyond one loop level. In other words, if we factorize IR singulari-
ties from the FFs, the resulting IR singular function can not be written as a product of pure
QCD and pure QED functions. More specifically, there will be terms proportional to af;ai ,
where i, j > 0, which will not allow factorization of QCD and QED ones. Hence, K; will
have IR poles in € from pure QED and pure QCD in every order in perturbation theory
and in addition, from QCD-QED for the orders starting from O(a,a.). On the other hand,
overall factorization of IR singularities implies that all the IR singularities contributes to
the constants K;, while the G;s will have IR finite contributions when € — 0. Since, the
IR singularities of FFs have dipole structure, K; will be independent of ¢*> while G;s are
contains logarithms in ¢>. Since the (f'l are renormalization group (RG) invariant, so does

the sum K; + G;. Thus, the RG invariance of 791 implies

d /,[2 d QZ #2
2 ~ R _ 2 A R _ )
luR_d,Ulzg Kl({ac}, 2 6) = _#R_dﬂlzg Gl({dc}, E, 2 6) = -A({a.(up)}), (4.13)

where A, are the cusp anomalous dimensions. The solutions to the above RG equations

for K; can be obtained by expanding the cusp anomalous dimensions (A;) in powers of
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renormalized coupling constants as(ylze) and ae(/.l%e) as

Allauih) = Y diuialup A, APV =0, (4.14)
ij
and K; as
(i+)5
KiGne)= Y Agag(z B ik, KO =0, 4.15)

i,j

where A“? and A®? result from pure QCD and pure QED interactions and A®” with
i, j > 0 from QCD-QED. The perturbative solutions to the RG equation for K; in Eq.(4.13)

are found using RG equations for the couplings a, and a,:

K;l,(}) _ é( _ ZAE]’O)), K;Z,O) _ é(zﬁooAgl’m) + é( _A(Iz,O))’
K;O,]) _ é( _ 2A§0’1)), K;o,z) _ é(zﬁ’ooAgo’l)) + é( _AEO,Z)).
K" = %( - ASMY). (4.16)

Unlike K;, G; do not contain any IR singularities but depend only on Q* and hence we

expand them as

2 2 1 d/12
Gi(1d), S 2% ) = Gi(ta(0D) 1,0) + f —FAlaPuph) @17
Hy 12 2 A

HR

where the first term is the boundary condition on each G, at u% = Q. Expanding A; in

powers of a, and a, and using RG equations for QCD and QED couplings, we obtain

1 2 i+ ..
ﬁ)z d/l;A,({ac(/lzﬂ })_Z”‘Aé(zg)(l s S(H])[(Qz )< +)s — 1]k (e).  (4.18)

e ij R

Expanding the finite function G;(a,(Q?), a.(Q?), 1, €) as,
Gi{a QM) 1,€) = )" di(Q)al(QG (e, (4.19)
bj
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substituting the solutions of K; and G, in Eq.(4.11) and performing the integration over

0 we get
nfi= 2 A’s&é(f ) s 1), (4.20)

where,

219 = 5(-240) + (6" o)

Ly = é( —2AP") + é(GﬁO G)

25310) _ é(ﬁ Al 0)) + é( B %A?O) s G(lO)(E)) 1 (G(ZO)(E))

Ly = é(ﬁaoA?’”) + é( ;AE‘) =BGy (©) + 5 i 5:(G"2@).

LD = é( - %A?’“) + i(Ggl’”(e)). (4.21)

The derivations are followed the same way as the case of QCD, which in detail are given
in Sec.[2.3.1]. Similar to the QCD [32, 33], the finite coefficients G(i’j)(e) are observed to
satisfy the following decomposition in terms of collinear (B(’ M, soft ( fz(l )y and UV (y(' )

anomalous dimensions as
Gy (€) = 2B — 3Py 4 [0 4 )0+ 3 gl (4.22)

with

(1,0) 0.,1) (1,1)
X[ _0’ XI _O’ X[ _0’

ng = _25008},10 > Xgo 2 = = =28 gl 01 - (4.23)

Now we have the general structure of form factor up to second order in coupling constants
for QCD, QED and QCD-QED as given in Eq. (4.20) . Also we explicitly computed the

virtual corrections for Drell-Yan process and bottom quark induced Higgs production,
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which are performed using the methodology described in the previous section. By com-
paring the explicit computations with the general structure of form factor, we can obtain

many useful information which is our next focus.

The analytic expression for the unrenormalized form factor (791) in powers of (a;) and (a.)

takes the following form:

= 1ol L) oo+ (L) ST+ eacird, + ConTer]
2 €
+ &e(lQl—)zSe[eiﬁ’] + AZ(Q ) (N Z - ),
.y (%) S{ocrerty). (4.24)

I = g, b denotes the Drell-Yan pair production and the Higgs boson production in bottom

quark annihilation, respectively. The coefficients 7', 75, 7, and 7, are

8

6 3 4
T]q:—g+——8+§2+6(8—Z{2—§§3) ( 8+§2+—7§2+ 53)"'6 (8—52

949 7
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839 56 9 L (27911
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32 80 20 24 77 2777 10
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2

202 Sl BNl NN Ty 7 I it
9 el sz O e S xS
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Similarly, the coefficients 7,77, 77, and 77, are

Fh = —§—2+§2+e(2—§§3) (—2+1§2+4—75§)+e3(2—1§2—l§3

62
31 A 1 949 7
" _4253 B %55) e (_ 2t et 320§2 2ag0e t 176" 14453)’
32 1 1 128
Ty = =3 (16 - 8) + - ( —16- 120, + TQ) +22+ 120, — 1383 - 3045
48 , 202 56 92 213
el -32-180+ =0+ =20 - =0l + =5 |+ € —gz - —gz
5 3 3 5
L2235 436 652 , 63
Z5-20+ 06+ 228 20),

20733 2\ 9 27
305 6353 245 1171 , 2923 89 5l
9 3 a3 T T 0 T 5g Bt g 2 55

,[ 49885 4733 +11819§2 8093+7667§ 127{{
1458 324 %% 720 °% 280°% ' 81 0 36 07

569 2411
53 §5 ;

44 1 134 440 11 1655 103 44
Fry = +— ( 452) (— —§2 - 26{3) T —lfz —522

b 16 40 1 184 4 832 3748 46
722" @*@*2(‘7“9) B 342‘—53“(‘%‘#
130 , (16870 208 41 ., 598 121
{2 >7 3) ( 79 g(z—%é? ——53——5243——(5)

(4.26)

Compring these explicit form factor results with the general expression in Eq.(4.20), we
obtain the structure of the cusp anomalous dimensions (Ay’j)) for the case of QED and

mixed QCD-QED. For QCD they are known to 4-loop and presented in Appendix B. We
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find Ay’j) up to two loops as:
67 10
(1,0) _ 2,00 _
AI =4CF, AI = SCACF(E - 42) + SCFI’lfTF( - 3) 5

A(IO’I) = de7, Ago,z) = 8e?(NZj: e + i 612)( - ?) ,

L1 _
A =0, (4.27)

Unlike A;i’j ), the other anomalous dimensions Bgi’j ), I(i’j ) and 7§i’j ) can not be disentangled

either from 7:'(1 or %, alone. In order to disentangle B?’j) and fl(i’j), we study the partonic
cross sections resulting from soft gluon and soft photon emissions, namely soft distribu-

tions, in the next section.

Soft distributions

Before going to the extraction of soft or collinear anomalous dimension, let us briefly de-
scribe how we obtain the soft contributions arises from the real emission sub-processes.
This has been discussed in detail for the case of QCD in Sec.[2.3.1]. The soft distribu-
tions, @;, are governed by the cusp and soft anomalous dimensions , where J = ¢,b, g
refers to DY process, Higgs production from bottom quark annihilation and gluon fusion
respectively. For the case of QCD, one finds that the quark and gluon soft distributions
are related through ®, = @, = (Cr/C4) ®,, which is found to be true up to three loop
level [30,31,52]. This relation is expected to hold since the ®, and @, are defined by the
expectation value of certain gauge invariant bi-local quark and gluon operators computed
between on-shell quark and gluons fields. The Wilson lines made up of gauge fields make

these bi-local operators gauge invariant. (See [60,61, 159-163] for more details).

We can use the partonic sub-processes of either DY process or the Higgs boson production
in bottom quark annihilation namely &z or 6,; normalized by the square of the bare form

factor ?A'q or ?A'b to obtain ®;. In general ®;, which is function of the scaling variable
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7 = ¢*/s, is defined as,

G17(2)
ZIF

Cexp (20,(2)) = I1=q,b (4.28)

with Z, = 1 and Z, = Z,, being the overall renormalization constant. Recall that the
Drell-Yan process does not require additional operator renormalization and hence Z, = 1
and the corresponding UV anomalous dimensions vy, = 0. Whereas, the Yukawa coupling
require additional renormalization which is dictated by nonzero vy;’s. The symbol C refers

to “ordered exponential” as given in Eq.(2.72).

We can compute the UV finite 6; at every order in renormalized perturbation theory.
Since, we have not determined Z,,, we can only compute the unrenormalized partonic
cross section &,; = 6 ;/Z. From the explicit results for 6 ; and the form factors ¥, using
Eq.(4.28) we obtain ®; up to second order in ay, a, and a,a.,. We find @, = ®, up to

second order in the couplings demonstrating the universality.

In [30,31], it was shown that the soft distribution function ®; satisfies Sudakov integro-
differential equation analogous to the form factor ?A} (See Eq.(4.11)) due to similar IR
structures that both of them have, order by order in perturbation theory. That is, @,

satisfies

d 1=, P
qzd_q2cD, = E[Kz({ac}, ':% €, z) + Gst({ac}, Z—IZ?, /:T’; €, z)] , (4.29)

where, the IR singularities are contained in K and the finite part in G. The RG invariance

of ®; implies

d — d —
Hr=— K1 = —uz=—5Gou = Alfa.(up)Hs(l - 2). (4.30)

duz duz

Note that, the same anomalous dimensions govern the evolution of both K, and G,. This

ensures that the soft distribution function contains right soft singularities to cancel those
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from the form factor leaving bare partonic cross section to contain only initial state
collinear singularities. The later will be removed by mass factorization by appropriate
DGLAP kernels. Expanding E,({ac}) and ESV,I({aC(qz)}, 1,€,2) in powers of {a.} as has
been done for K;({a.}) and G;({a.}) (see Eq.(4.15) and (4.19)), with the replacements of

—(i,))

K" byK,” and

Guilladgdh 1,62 = Y dlg)al(g)Gy (€. 2). (431)

i,j

the solution to Eq.(4.29) is found to be

(] = 2\ "
o/(lac). ¢ e = Y alal (u) S“*”((’1 ’)E)ab(’”() (432)
ij

where,
1
39 (e) = W[ K, (e +Gu )] (4.33)

The coefficients G o, ,(e) are related to the finite function G, 1({ac(gd}) 1, €, z) defined in
Eq.(4.31) through the distributions 6(1 — z) and D;(z). Thus expanding G " (e) in terms

of the a,(¢*(1 — 2)*) and a.(g*(1 — 2)*) we write,

2
i ni (DN 5 (i.) ; ol
daial(Z) T sMGUe = digd) @) G, ( (4.34)

i,j i,j

where g2 = ¢*(1 — z)*. The IR finite éy’j)(e) are observed [30,31] to satisfy the following

relation:

(0.)) i —. —®)
G @@=+ X"+ > G (4.35)
k=1
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where, for up to two loops

—=(1,0) —(0,1) —(1.1)
X] _0’ X] _07 X] _0’

_ . —(1)
Y20 = “2B00 Grro» X" = =28 Gron - (4.36)

—&)
The constants G, ;; up to two loops are found to be:

G =Cr(~30), Go=Ci(35), Goo=Cr(~223).

G = (-36), Gu=a(20). Gu=a(-24).

G =0,

Groo = ConyTr( - % + ?42 + ﬁ4“3) + CACF(Z;?S - @42 +44 - @és)
Grop = & NZ &+ Z &) - @ %52 ¥ 743). (4.37)

Comparing the soft distribution functions ®,;, I = g, b, obtained from the explicit com-
putation up to second order in coupling constants against the formal solution given in
Eq.(4.32), we can obtain A" and £ for (i, j) = (1,0),(0,1),(1,1),(2,0),(0,2). We

obtain:

(10) _ (O _ (1,1) ~0

I —JI
(20) —C CF( _ _52 - 284’3 + g) + CanTF( OH - %)
(02) — el NZ e+ Z e 224) (4.38)

Now that we have f;' D tis straightforward to obtain ij"’) in Eq. (4.22) from the explicit

results on Gf]' D as )/g ) = 0 for DY. This way we obtain,

B! =3C,, B =32, B}M=cC 6’2(3 — 240, +4843),
17 4 32
B(qZ,O) {CF(3 24{2 + 482;3) + CACF(? + —42 - 24{3) + CFI’lfTF( - 5 - _{2)}
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4 32 )}

B = —{ Y3 -240 +485) + & NZ &+ Z i) -3-3¢& (4.39)

Considering B(’ = B(’ ) we determine the UV anomalous dimension (y,(y ’)) from Gg’j)

of Eq.(4.22) which is known to second order. They are found to be:

YO =30, YO =32, YD =3¢,
Y20 = 362 + %CACF - g—OCanTF,
7 = ;t loeb (VD e+ Z ; (4.40)
k<0
Alternatively, taking B(’ 7 = BJ and f(’ P = £, we can determine y( /) by comparing

the difference G(b’”) - G;’”) obtained using DY and Higgs boson form factors ‘Tq and 7, at
€ = 0 against the formal decomposition of G?’j ) given in Eq.(4.22). Substituting the above

UV anomalous dimensions in Eq.(4.10), we obtain Z,, to second order in the couplings.

Using the renormalization constants Z, , Z,, and Z,, for the coupling constants a;, a, and
the Yukawa coupling, we obtain UV finite partonic cross sections. The soft and collinear
singularities arising from gluons/photons/fermions in the virtual sub-processes cancel
against those from the real sub-processes when all the degenerate states are summed
up. The remaining initial state collinear singularities are removed by mass factorization.
Collinear factorization allows us to determine the mass factorization kernels Iy, and I'y,
up to two-loop level for U(1) and SU(N,) x U(1) cases. Since I',, and I, are governed by
the splitting functions P,, and P,,, we extract them to second order in couplings. In [164],
these splitting functions up to NNLO level, both in QED and QCDXQED, were obtained
using the Abelianization procedure. The splitting functions that we have obtained by de-
manding finiteness of the mass factorised cross section, agree with those in [164]. The
resulting expression for the finite partonic cross section is presented in later sections. Be-
fore going to that, let us briefly discuss the abelianization procedure which is the focus of

next section.
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Abelianization procedure

In [150], QCD-QED corrections to the DY process were obtained by studying the SU(N,)
color factors in Feynman diagrams that contribute to QCD corrections. This led to an
algorithm namely Abelianization procedure which provides a set of rules that transform
QCD results into pure QED and mixed QCDXQED results. Unlike in [150], without
resorting to Abelianization rules, we have performed explicit calculation to obtain the
contributions resulting from all the partonic and photonic channels taking into account
both UV and mass factorization counter terms. Using these results at NNLO in QCD,
QCD-QED and in QED, we find a set of rules that can relate QCD and QED results. Note
that if there is a gluon in the initial state, averaging over its color factor gives a factor
(1/ (N? - 1)). This is absent for the processes where photon is present instead of gluon
in the initial state. Also, for pure QCD or QED, the gluons or photons are degenerate
and hence one needs to account for a factor of 2. Taking this in account, we obtain a
set of relations among QCD and QED results, which are found to be consistent with the
procedure used in [150]. These relations are listed in the following tables for various

scattering channels:

Rule 1 : quark-quark initiated cases

| QCD | QCD-QED | QED |
C% 2C Fel% e‘g
CrCa 0 0
CrnsTr 0 ei (Nc 2 efj + 21612)
CrTr 0 Nceieé *

*e; = e; when both initial quarks are bottom quarks.

Rule 2 : quark-gluon initiated cases: After multiplying 2C4Cp for the initial state gluon

| QCD | QCD-QED | QED |
CAC%; CACFei CAeZ‘
C3Cy 0 0
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Rule 3 : gluon-gluon initiated cases After multiplying 2C4CF for each initial state gluon

| QCD | QCD-QED | QED |
cc: | Ccre c2é
C3Cr 0 0

Mass factorized partonic cross sections

In this section, we present the finite partonic cross sections Ai;j) that we obtained af-
ter mass factorization. Expanding these cross section in powers of strong and electro-

magnetic coupling constants:

(o)

Aed@ @5 15, 12) = ) (1) alup) 450 (@ & 3 113) (4.41)
i,j=0

In QCD, Ai’g for bottom quark annihilation is known [123, 165], but we present here for
completeness. In the following, Ai’g, i = 1,21sin SU(N,) gauge theory, while A(C);Ij, j=12

is in U(1) gauge theory.

A" =6(1 -2),
AZIE,(» =Cp [6(1 - z){ -4+ 84“2} + 16D (z) + {4(1 -2)-8(1 +2)In(l —2)

4(1 + %)
)

1
4y == S 1+ 2)(=3+70) + 2(1 -2z +22%)In(1 = 2) + (= 1 + 22— 227) In(z).

8
420 =2 [5(1 -2 {16 n ggg - 604“3} +256D(2)¢5 + Di(2) { — 64— 128{2}
+128D5(2) + { - 4( 26+ 11z + 13z2) + %( —7-10z + 11z2) In(1 - 2)In(z)
— 2
4 2 2 2 2 3 2
_ 1—(23 +39z2%) In’(1 — 2)In(z) + 1—(7 +30z — 342% + 122°) In’(2)
—Z —Z

(1+ 152 + 429 In’(2)

16 2 2
+ 725 - )@ - 35—

101



+ 1—( — 16 + 13z — 622 + 62°)Liy(1 — 2) + —(7 9z%)In(1 — z)Lix(1 - z)

- 11—_Z(3 + 22 +22°) In(z)Lix(1 — 2) + 14—_Z( —1+2)Liz(1 -2)
-~ %(9 +972 + 82%)S12(1 — 2) + 8(11 = 102)4, — 11—_6Z( -2 -7+ 7)) In(2)6
—128(1 + 2)&3 + 12(—=4 + 92) In(1 — 2) + 64(1 + )&, In(1 - 2)

—-32(1-2)In*(1 —2) —64(1 + ) In(1 = 2) + li_z(m —z+2°)In(z)

— 48225, In(1 + 2) + 16(~1 + 22) In(z) In(1 + z) + 40z* In*(z) In(1 + z)

— 4877 In(z) In*(1 + 2) + 16(=1 + 27)Liy(~2) + 482* In(z)Lis(~z)

—967% In(1 + z)Liy(—z) — 16z°Liz(~z) — 96Z251,2(—Z)}]

166 232 1616 176
+ CaCr [6(1 -2) { —§z - —52 84“3} + Z)o(z){ >t 342 + 564”3}
+ zm@{% — 3242} -~ 1;—6@2@) + {—( 595 + 944z + 3517%)
__¢ (61 = 31z +407%) In(z) + 32 (7 +47*) In(1 - 2)In(z)
3(1-2) < < 2 3(1-7) 4 Z Z
— — 2 3) 1n2 8 2 _ 2
3 —z)(61 +48z — 132" + 367°) In“(2) + a —z)(l +722)In(1 - 2) In*(z)
_ 2 A 3Y\1n3() _ _ 2 3N 5 (1 _
3(1_Z)(3+7z 277)In’(2) 3(1_Z)( 29 + 27z —-27z" + 18z”)Lix(1 — 2)
8
*3 f 3 ?)In(1 — 2)Liy(1 - 2) + 0-2 (3 +22%) In(z)Lix(1 - 2)

_ B iDL -2+ (1+2)(5 - 52+ 42)8,12(1 - 2)

8
(1 -2) (1 z)
- 5(22 +252)0 — 28(1 + 2)&5 — §(—40 +2992) In(1 — 2) + 16(1 + 2)& In(1 = 2)

(1 +2)(1 = z+ 22 In(z) + 24225 In(1 + 2)

88 ) 8
+?(1 +2)In"(1 —2) + -2
—8(=1+22) In(@) In(1 + z) — 20z* In*(z) In(1 + 2) + 24z° In(z) In*(1 + 2)

— 8(=1 + 27)Lis(~z) — 247% In(z)Liy(~z) + 482% In(1 + z)Liy(~2) + 8z°Li3(~z)
+ 48z251,z(—z)}]

16 &80 448 64 320
+ G Ty [5(1 -2) {— - —52 + 1653} + DO(Z){_ - —52} - TDI(Z)

8 2
302 z)(7 —4z+7z7)In(z) - ﬁ(l + 552)

+ 6?Z)z(z) + {
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_ 64 5 B 4 ) 5 2
30 _Z)(l +2°)In(1 — 2)In(z) + 30 _Z)(S +7z°)In"(z) + 3 (1+2)0
+ %(1 +42)In(1 - 2) - 33—2(1 +2)In’(1 - 2) - 30 _Z)Liz(l —z)}

2 1
+ CyTy o1+ 2)(208 — 635z + 4877%) — 9—6(—1 +2)(4 = 537+ 22725 In(1 - 2)
Z Z
- ?(—1 +2)(4+Tz+42%)In*(1 —2) + 16( = 1 + 4z + 425 In(1 — 2) In(z)
Z
8
+ 3—(16 — 37+ 2122 + 82°)Lir(1 — 2) + 64(1 + 2) In(1 — 2)Lir(1 — 2)
Z
- 3_2(4 +3z-32"-32), + 6(87 — 2527+ 38z°) In(z) — 32(1 + 2)4; In(2)
2
+32(1 + 2)In*(1 = 2) In(z) — 2(1 + 5z + 122°) In’(z) + ?0(1 +2)In’(2)
32
—-32(1 +2)In(1 — 2)In’(z) - ?zz In(z) In(1 + z) — 16(1 + z) In(z)Liy (1 — 2)

- 33—222Li2(—z) — 64(1 + 2)Liz(1 —2) + 32(1 + 2)S; (1 - Z)}] )

16
AGY =CRl2(=1 +2)(57 - 132) + 0+ 2)in(l - 2)In’()

4
- 3+ 72 +27)In° —— (9 + 1929 In*(2) In(1
3(1+Z)(+Z+Z)H(Z)+1+Z(+ 72)In*(z) In(1 + z)

8 .
— 1—+Z( — 14529 In) In*(1 + 2) — 8( =7 = 5z + 3z*)Lir(1 — 2)

16 . 64 .
— ——(=3-2722+72)In(x)Li(1 — 2) = ——(1 + 22) In(1 — z)Lix(~z)
1+z 1+7
8(5+ 1122 , 16 .
+ 80+ 112) In(z)Lir(=z) — —— (= 1 + 5z%) In(1 + z)Lix(~z)
1+ 1+z
8 . 8 .
T Z( —7—z-822+27)Lis(1 —z) - 1—+Z(1 + 37%)Li3(—2)
64 -z 64 -2
— (1 +Z?)Li — —(1+2)Lis( - —=
+1+z( +Z) 13(1+z) 1+z( +Z)13( 1+z)
8

16
1 z( —9+2-42 +22)S1,(1 - 2) - 1—+Z( —1+52%)S2(-2)
+32(1 +2)In(1 = 2)In(z) — 16—:_!(1 +7%)In(1 = 2) In(z) In(1 + 2) + 84,
32 8 8
~ T (DI =290 = (= 14 52) In(1+ 98 = 7 —(1+ )55
+64(1 —2)In(1 —2) + 4(-8 + 52) In(z) + 11—fz(1 + 2z2){2 In(z)

—4(1 + 27+ 32%) In*(2) + 16 In(2) In(1 + 2) + 16Lix(=2)
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8
+ CoCy|57 — 70z + 1377 - r(l + 72 In(1 — 2) In’(2)
Z

2 2
+ 3(1 + Z)(3 + 7Z2 + 2Z3) 1H3(Z) + 13_+Z(1 + Zz) ln(l - Z) h’l(Z) ln(l + Z)
— L(9 + 1922) 1n2(Z) In(1 +2) + i( -1+ 522) In(z) 11’12(1 +7)
I+z 1+z

+4(—7-5z+32)Li(1 - 2) - %(3 +272 - 2) In(zx)Lix(1 - 2)
<
32 5 . 4 2 .
+ ——(1 +z°) In(1 = z)Liy(—z) — ——(5 + 11z°) In(z)Liy(-z)
l1+z¢ I +z

8 4
+ ——(—1+52%)In(1 + 2)Lix(—z) + —— (7 + z + 82> = 22°)Lis(1 — 2)
1+z2 1+z2

4 , 32 o l=zy 32 P
+ ——(1 +3z%)Lis(-2) - ——(1 + Z2)L +—(1+7)L
1+Z( 7 )Li3(-2) 1Jrz( ) 13(1+Z) 1+Z( Z) 13( 1+Z)

4 8
+——(=9+z-42 +27)S12(1 = 2) + —— (= 1+ 57%)S 1 2(~2) — 4L
1+z 1+z

+ 11—+6Z(1 +22)In(l = )&, + li—i-z( —1+522)In(1 +2)& + liu(l + 224
+32(-1+2)In(1 — z) — 2(—-8 + 52) In(z) — li-l-z(l + 2729 In(z) — 8Liy(—2)
— 16(1 + 2) In(1 — 2) In(z) + 2(1 + 2z + 3z%) In’*(z) — 8 In(z) In(1 + 2)
+ C¢Tg 2%(-1 +2)(208 — 707z + 7037%) — ;—i(z — 1)(4 - 53z +227%)In(1 - 2)
-~ ;—j(—l +2)(4+ Tz +42%)In*(1 = 2) + 16( = 1 + 4z +4z2%) In(1 - 2) In(2)
- %(3 + 15z + 402%) In*(2) + 3%(16 — 37+ 2122 + 82°)Lix(1 — 2)
+64(1 + ) In(1 — 2)Liy(1 - 2) + ;—j(—l +2)(4 + Tz + 429
+ 3(93 — 2647 + 2022) In(z) — 32(1 + 2)& In(z) + 32(1 + z) In*(1 — 2) In(z)
—32(1 +2)In(1 — z) In*(z) + ?(1 +2)In°(z) — 16(1 + 2) In(z)Lix(1 - 2)
— 64(1 + 2)Lis(1 — 2) + 32(1 + 2)S12(1 - 2)|,

A% =CpTy 2L7Z(—1 +2)(208 — 707z + 7037%) — 9%(—1 +2)(4 - 53z +227%) In(1 - 2)
- 3%(—1 +2)(4+T7z+42)In*(1 —2) + 8( = 1 + 4z + 4z2°) In(1 — 2) In(2)
- %(3 + 15z + 402%) In*(2) + 3%(16 —3z+ 2122 + 82°)Lix(1 — 2)

+32(1 +2)In(1 — z)Lir(1 — 2) + 3%(—1 +2)4+T7z+ 4Z2)§2
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+ %(93 — 264z + 202°) In(z) — 16(1 + 2)&> In(z) + 16(1 + z) In*(1 — ) In(z)
—16(1 + z) In(1 — z) In*(z) + %(1 +2)In’(z) — 8(1 + z) In(z)Lir(1 - z)
—32(1 + 2)Liz(1 — 2) + 16(1 + 2)S 5(1 - z)] :
A% :CFTF[ ~ 13—6(—1 +2)(=1 +3z) - 13—6z2g2 + 2(1 +2)(=1 +32)In(z) + gzz In%(2)
- 33—2z2 In(z) In(1 + 2) - 33—2z2Liz(—z)},
4 =CFH( — 129 + 658z — 5497%) + (64 — 197z + 1362%) In(1 — z)
—3(11 =32z +232%) In*(1 — 2) + ?(1 —27+22%)In’(1 - 2)
+4(7 =32z + 2775 In(1 - 2) In(z) — 3(7 — 14z + 22z°) In*(1 - z) In(z)
+ %( — 19 + 140z — 76z%) In*(2) + 4(3 — 6z + 10z°) In(1 — z) In*(z)
+ é( — 9+ 18z - 5222) In*(z) — 4(1 + 2)(1 + 32) In(z) In(1 + 2)
— (13 + 16z — 287%)Liy(1 — 2) — 2(1 — 2z + 26z°) In(1 — 2)Lir(1 — z)
—4(1 + 2)(1 + 32)Liy(—2) + 6( — 1 + 2z + 62°)Lis(1 — 2)
—2(7 - 14z + 3429)S15(1 — 2) + 2(5 — 162 + 62°)5 — 8(1 — 2z + 22%) In(1 — 2),
+2(19 - 38z + 507%)43 — %(35 — 301z + 214z°) In(z) + 8(1 — 2z + 622)¢, In(z)
—2(=1 + 22) In(z)Liy(1 — z) — 16z° In(z)Lin(~z) + 32z°Liz(~z)
+Cy 5%( — 208 + 1185z — 2598z + 15132%)
+ 9%(16 — 2287+ 577+ 1822°) In(1 — 2) + 3iz(l —2)(16 + z + 14522 In*(1 — 2)
+ 13—3(1 —27+22%) In*(1 — 2) + 2(1 — 28z + 622%) In(1 — z) In(z)
+2(1 + 22z — 6%) In*(1 — 2) In(z) + é( — 3+ 108z — 2927%) In*(z)
+2( =3 - 14z +22%) In(1 - 2)In’(z) + 2(1 + 2)(3 + 52) In(z) In(1 + 2)

—8(1 + 2z +22%) In(1 = 2) In(z) In(1 + 2) + 6(1 + 2z + 22*) In*(2) In(1 + 2)

2
+ 3—(16 — 127 + 4827 + 5377 )Lir(1 — 2) + 2(13 + 22z + 10z%) In(1 — z)Lix(1 — 2)
Z
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(2,00 _
4 88

— 8(=1 + 2)*In(z)Lix(1 — z) + 2(1 + 2)(3 + 5z)Lis(~2)
—8(1 + 2z + 27 In(1 — 7)Lis(—z) + 8(1 + 2z + 27%) In(z)Lis(—2)

— 4(7 + 18z + 62°)Li3(1 — 2) — 4(1 + 2z + 27*)Li3(-2)

— 8(1 + 2z + 22%)Lis( ) +8(1 +2z+2z2)Li3(i ;i)

__—Z
1+z
8

+ 3—( — 24371522 +202°)0, — 16(1 — 2 + 225 In(1 — 2)& — 2(1 + 4z + 22°) &3
Z
1 1

+ §(102 — 667 — 5657%) In(z) + 82(—5 + 22)(> In(z) + §(5 + 142)In’(2)

+16(1 + 3z + 2%)S (1 — z)] ,

2(=1 + 2)(10 + 59z2) — (2(=1 + 2)(23 + 752) In(1 — 2))
+16(=1 + 2)(1 + 32) In*(1 —2) — 4( = 5 — 16z + 4z%) In(1 — 2) In(z)
— 8(1 + 22)* In*(1 - 2) In(z) + 4(1 + 22)* In(1 — z) In*(z)
—~ %(1 +4z+82%) I’ (2) + 6(1 + 2z + 22%) In*(z) In(1 + 2)
—4(1 +2z+222) In(2) In*(1 +2) + 4( = 1 + 4z + 1425)Lix(1 — 2)
—16(1 + 22)*In(1 — z)Li>(1 — 2) — 4(1 + 22)* In(z)Lix(1 — z)
+4(3 + 62 + 22°) In(z)Lix(—2) — 8(1 + 2z + 22%) In(1 + z)Lix(—2)
+16(1 + 22)°Liz(1 — 2) + 4( = 3 — 62 + 27%)Lis(=z) — 4(3 + 18z + 14z%)S (1 — 2)
—4(=4-92+ 122 + 8(—= 1 =22+ )5 + (= 15— 48z + 1217%) In(z)
+8(1 + 42+ 52°) In(z) — 2(2 + 15z + 422 In*(2) — 4(1 + 2z + 229)& In(1 + 2)
+8z1In(z) In(1 + 2) + 8zLis(=z) — 8(1 + 2z + 22%)S; 2(~2)
C |1

(=1 +2)(1 +2497) + 22(3 +2572) In’(z)

TN -D|3

+ gz(—3 +22) In(z) In(1 + 2) — 6(1 + 2z + 22°) In*(2) In(1 + )

+4(1 + 22+ 229 In(z) In*(1 +2) + gz(—3 + 27)Lix(~2)

— 12(1 + 2z + 22%) In(z)Liy(=z) + 8(1 + 2z + 22°) In(1 + z)Lix(~2)
+12(1 + 2z + 22°)Lis(—z) — 4(1 = 2z + 222)S12(1 — 2) + gz(—3 +22)5

2
+8(1 + 224 22°) 5 — §( — 2440z + 8779 In(2) + 4(1 + 2z + 22°)& In(1 + 2)
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+8(1 +2z+ 2z2)sl,2(—z)] .

The corresponding results from the QED and QCDXQED are found to be
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Partonic cross sections contributing to pure NLO and NNLO QED corrections:
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(4.43)

(4.44)

(4.45)

(4.46)

(4.47)

(4.48)

CACr—Cael,C3—0

(4.49)

(4.50)

4.51)

(4.52)

(4.53)

(4.54)

(4.55)

(4.56)

(4.57)

The constants {; = Y, %, k € N denote the Riemann’s /-functions. In our results, we
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have ¢, and {3 which take the values:

> =1.64493406684822643647 . ..

{3 =1.20205690315959428540 ... .. (4.58)

Also, the Spence functions [166, 167] Liy(x) and Lis(x) are defined by

, — xk *In(1 - ¢
Lixv) = )| 2=—f Dar,
1 0

k X T ;
_ f Lo@® . (4.59)
2 0 t

| =

b

>~
Il

Liz(x) =

=~
1l
—_

Ngk
Sk

and the Nielson function S;,(x) as

1 (dr
Si2(0) = 3 f 71112(1—m). (4.60)
0

In the next section, we study the numerical impact of the these partonic cross sections at

the LHC energies.

Numerical Impact

In this section, we study the numerical impact of pure QED and mixed QCD-QED cor-
rections over the dominant QCD corrections up to NNLO level to the production of the
Higgs boson in bottom quark annihilation at the LHC. We focus mainly for the center of
mass energy of VS = 13 TeV. Since we include QED effects, we need phdf inside the
proton in addition to the standard pdfs. For this purpose, we use NNPDF 3.1 LUXqed
set [168], MRST [169], CT14 [170] and PDFALHC17. The pdfs, phdfs and the strong
coupling constant a, can be obtained using the LHAPDF-6 [147] interface. We have used

the following input parameters for the masses and the couplings:
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my = 80.4260 GeV my(mp) =4.70 GeV
mz =91.1876 GeV as(my) =0.113
my, =125.09 GeV a, =1/128.0

Both a,(ug) and m,(ug) are evolved using appropriate QCD gS-function coefficients and
quark mass anomalous dimensions respectively. However, we have considered fixed a, =
4ra, throughout the computation.

1.6 T T T T T T T

1.4 H o =

NNLO 02

1.2

1k

0.8 |-

Total cross section (pb)

0.6

6 8 10 12 14 16 18 20 22

Centre of mass energy (TeV)

Figure 4.2: The total cross section at various perturbative orders at energy scales varying from
6 to 22 TeV at LHC. The index ‘ij’ indicates that QCD at ‘i’-th order and QED at ‘j’-th order in
perturbative theory are included.

The Higgs boson production cross section from bottom quark annihilation at the present
energy of LHC is not substantial. For example, at 13 TeV, the third order QCD cor-
rections contribute almost 1% to the NNLO, while the mixed QCD-QED corrections
contribute around 0.1% on top oftf the NNLO contributions. However, for the high lu-
minosity LHC, measuring them at higher center of mass energy would give larger con-
tributions and it will improve the precision. Hence, we have first studied how the cross
section varies with the center of mass energy of LHC. In Fig. 4.2, we plot the inclu-
sive production cross sections at various orders in perturbative QCD and QED for the
range of CM energies between VS = 6 to 22 TeV. In the inset, the index ‘ij> indi-
cates that QCD at ‘i’-th order and QED at ‘j’-¢h order in perturbative theory are included.

In Fig. 4.2, we have used NNPDF31_lo_as_0118, NNPDF31_nlo_as_0118_luxged and
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NNPDF31_nnlo_as_0118_luxged for LO, NLO and NNLO, respectively. The scales (uz)
and (ur) are kept fixed at my, and m; /4, respectively. We note that in Fig. 4.2, the pure
QED contributions are large. This is due to the fact that we consider leading order QCD
running of Yukawa coupling which gives larger Born contribution compared to pure QCD.
However, if we consider same running of Yukawa coupling, the NLO QCD effects are 50

- 500 times larger than NLO QED effects, depending on the scale choice.

0.0 A0 AO.D A20 ALD A0.2) Total
Aoo  1.0181 1.0181
Ay 1.1362 -0.1810 0.9552
Ador 1.2219 0.0030 1.2249
Ay 1.1433  -0.1683 -0.1935 0.7816
4 11542 -0.1699 0.0029 -0.0005 0.9867
Ay 1.2422 0.0031 -3107°  1.2453

Table 4.1: Individual contributions in (pb) to various perturbative orders at \JS=14 TeV.

AO’O AI,O AO’I A2’0 Al,l AO,Z Total
Aoo  0.3911 0.3911
A9 0.4588 0.1557 0.6145
Aor 0.4935 0.0003 0.4938
Ay 04726 0.1614 0.0220 0.6561
411 04771 0.1630 0.0003 1.510°* 0.6406
Ay 0.5135 0.0003 6107°% 0.5139

Table 4.2: Individual contributions in (pb) to various perturbative orders at NS=13 TeV.

In order to understand this in more detail, we study the impact of different contributions
to the cross sections resulting from QCD, QED and mixed QCD-QED at various orders
in perturbation theory. The results are tabulated in Table 4.1 for VS = 14 TeV and for the
scale choice ug = ur = my. The A% indicates sole i-th order QCD and j-th order QED
corrections to the total contribution. Whereas the 4;; indicates the total contribution. For
instance, 4;; means A% + A1 4 JOD 4 40D “or in other figures which is denoted by
either LO, NLO or NNLO e.g. 4;; means NNLOy;. In Table 4.2, a similar study has been

performed for VS =13 TeV and the scales Ur = My, , pp = my,/4.
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As we discussed, the fixed order predictions depend on the renormalization and factoriza-
tion scales. The uncertainty resulting from the choice of the scales quantify the missing
higher order contributions. We have studied their dependency by varying them indepen-
dently around a central scale. Fig. 4.3 shows the dependence of the cross section on the
renormalization scale for the fixed choice of the factorization scale ur = my;/4. It clearly
demonstrates the importance of higher order corrections as the uy variation is much more

stable at NNLO,, compared to the lower orders.

T T
sqrt(S) = 13 TeV ; Pp = my/4.

0.45 | 4

Total cross section (pb)

0.4 1

0.35 |- —

03 =

0.25 I I I I I I
200 400 600 800 1000 1200

Renormalization scale (GeV)

Figure 4.3: The renormalization scale variation of the total cross section at various perturbative
orders in QCD.

1.8

Lo - T
NLO 10 sqrt(S) = 13 TeV ; yg = my,

1.6 HNNLO 20 ———- .
14+ g

1.2 4

Total cross section (pb)

0 I I I I I I
200 400 600 800 1000 1200

Factorization scale (GeV)

Figure 4.4: The factorization scale variation of the total cross section at various perturbative
orders in QCD.

In Fig. 4.4, we present the dependence on the factorization scale keeping the renormal-
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ization scale fixed at m;,. Similar to the pg variation, pp variation improves after adding
higher order corrections. To illustrate their dependence when both the scales are changed
simultaneously, we present the cross section by performing 7-point scale variation and the

results are listed in Table 4.3. We used NNPDF31_nnlo_as_0118_luxqed for this study.

(5 5) (23) @5 (1) (1) () (B3 (33)
NNLO (pb) 0707 0.643 0690 0.656 0.562 0.661 0.606

NNLO;; (pb) 0.759 0.602 0.780 0.641 0.445 0.682 0.498
NNLOy, (pb) 0.728 0.465 0.804 0.514 0.250 0.574 0.279

Table 4.3: 7-point scale variation at \VS=13TeV.

The perturbative predictions also depend on the choice of pdfs and phdfs. There are sev-
eral groups which fit them and are widely used in the literature for the phenomenological
studies. In order to estimate the uncertainty resulting from the choice of pdfs and phdfs
we present the NNLO results from various pdf sets in Table 4.4 for VS=14 TeV and
Ur = urp = my. In Table 4.5, we repeat the study for VS=13 TeV and ug = my and

ur = my/4.

MRST NNPDF CT14 PDF4LHC

NNLOy, (pb) 0.7805 0.7816 0.7574  0.8546
NNLO;; (pb) 0.9691 0.9867 0.9644 1.0625
NNLOg, (pb) 1.2020 1.2453 1.2288 1.3123

Table 4.4: Result using different pdfs at \S=14 TeV.

MRST NNPDF CT14 PDF4LHC

NNLO, (pb) 0.6610 0.6561 0.6398 0.7178
NNLO;; (pb) 0.6451 0.6406 0.6259 0.6996
NNLOg, (pb) 0.5252 0.5139 0.5030  0.5605

Table 4.5: Result using different pdfs at \S=13 TeV.

We have also studied the uncertainties resulting from the choice of pdf set [147]. Using
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NNPDF31, in Fig 4.5, we plot the variation of the cross section with respect to different
choices of pdf and phdf replica. The central value and pdf uncertainties are given by the
average and standard deviation over the replica sample, and are denoted in Fig 4.5 by the

thick line and shaded region, respectively.

1.6 T T T T T T

NNPDF31
[ MR = My ; He = My/4

Total cross section (pb)

! ! ! ! !
6 8 10 12 14 16 18 20 22

Centre of mass energy (TeV)

Figure 4.5: pdf uncertainties.

Summary

In this chapter we explored the possibility of including mixed QCD-QED as well as pure
QED corrections to Higgs boson production in bottom quark annihilation channel. The
computation involves dealing with QED soft and collinear singularities resulting from
photons and the massless partons along with the corresponding QCD ones. We have sys-
tematically investigated the structure of these singularities up to second order in the QCD
and QED couplings, taking into account the interference effects. We observe that, while
the IR singularities factorize as a whole, the IR singularities from QCD do not factorize
from that of QED leading to mixed/non-factorizable QCD-QED IR singularities. In addi-
tion, by computing the real emission processes in the limit when the photons/gluons be-
come soft, we have studied the structure of soft distribution function. Using the universal

IR structure of the observable, we have determined the mass anomalous dimension of the
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bottom quark and hence the renormalization constant for the bottom Yukawa. We also dis-
cussed the relation between the results from pure QED, pure QCD and mixed QCD-QED
through a set of rules which is found to be consistent with the so-called Abelianization
procedure given in [150] for the case DY. Having obtained the complete NNLO results
from QED and QCD-QED, we have systematically included them in the NNLO QCD
study to understand their impact at the LHC energy. We find that the corrections are mild
as expected, however, these higher order corrections from QED and mixed QCD-QED

improve the reliability of the predictions.
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Threshold rapidity corrections for

n-colorless particles in QCD

In this chapter, we extend the threshold framework to obtain threshold rapidity distribu-
tion for a generic n-number of colorless productions. We present a universal soft collinear
operator, which when applied to the virtual corrections of any colorless production pro-
cess will give rise to SV or threshold corrections. Besides, we also provide a universal
operator to perform the threshold resummation to N°LL logarithmic accuracy. The ma-
terials presented in this chapter are the result of original research done in collaboration

with Pooja Mukherjee, V. Ravindran et.al and are based on the article [171]

Prologue

Among different observables, the differential cross-section allows a wider range of com-
parisons with the experimental data. Over the past few decades several attempts have
been made to incorporate the higher order QCD and EW radiative corrections to this ob-
servable. The topic of this chapter is concerning the differential cross-section with respect
to rapidity, in particular, we address the question of computing the higher order QCD cor-
rections to this observable for any generic process at hadron colliders with all the final

state particles as colorless.

Despite its high importance, unlike the inclusive cross-section, the differential rapidity
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distribution and its radiative corrections are computed only for a limited number of scat-
tering processes. The rapidity distributions in Drell-Yan and of the scalar Higgs boson
were computed to NNLO QCD in [172,173] and [174], respectively. In case of the scalar
Higgs boson produced through gluon fusion, the N*LO QCD correction was incorporated
in [175]. Shortly before, it was approximated in [176] in the formalism of g7-subtraction.
For the Higgs boson production through bottom quark annihilation, it was computed to

NNLO in [177].

Needless to say, achieving a full QCD correction to any order is not easy and with increas-
ing perturbative order, the complexity level increase substantially which often prevents us
from achieving it. In this context, SV approximation play an essential role, to obtain large
contributions. In previous chapters, we discussed the threshold framework in the context
of inclusive corrections. In this chapter we focus on the structure of differential scattering
cross sections. These topic is studied in the past in [178, 179], where the authors present
a formalism to incorporate the soft-gluon contribution to the rapidity distribution for the
production of a single colorless final state. In the present work, we extend this formalism

to the case of any number of final state colorless particles in hadronic collisions.

The formalism is based on QCD factorization, which dictates that the soft part of the real
emission diagrams factorizes from the hard contribution, and renormalization group (RG)
invariance. The factorized soft part is conjectured to fulfil a Sudakov type KG differ-
ential equation with respect to the final state invariant mass square. As a consequence,
it is found to get exponentiated which not only provides us with the fixed order result
under soft limit but also enables us to perform a resummation in the soft limit. For the
production of arbitrary number of colorless particles in hadronic collision, the soft part
essentially remains identical to the case of Sudakov type (2 — 1)-process since the real
emission can only takes place from the initial state partons. Using this idea, we extend the
formalism [178] to the case of 2 — n scattering, where n denotes the number of final state

colorless particles. For this purpose, we combine the virtual matrix element that captures
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the process dependence, the universal soft part and the mass-factorization kernels in an el-
egant way. In addition, we also show how naturally it leads to the threshold resummation

for the same observable.

In the literature, several results for the rapidity resummation employing different methods
are available. In [180], following the conjecture given in [181], the resummation of rapid-
ity of W* gauge boson and in [182] of Drell-Yan are computed in Mellin-Fourier (M-F)
space. A detailed theoretical underpinnings and phenomenological implications of thresh-
old resummation of rapidity are examined in [183] emphasizing the role of prescriptions
that take care of diverging series at a given logarithmic accuracy. Our method belongs to
a category, so called direct QCD approach [60], which is based on [178, 179, 184], where
we resums the soft gluons in two dimensional Mellin space (M-M). In [185], the merits

of different approaches are discussed in details.

One of the salient features of our formalism is that the soft part that enters into the rapidity
distribution is shown to be connected to the respective part of inclusive cross-section
through a very simple relation involving gamma function of the dimensional regulator.
This relation was used to extract the required soft part from the respective quantity of
the SV cross-section [52, 186]. The main goal of this chapter is to present the formal
methodology of computing threshold rapidity corrections for any generic process of 2 —

n kind at hadron collider.

The chapter is organized as follows: in Sec.[5.2], we introduce the notion of soft-virtual
correction in the context of differential rapidity distribution and then describe our formal-
ism in details in Sec.[5.2.1]. The universality of soft part leads us to define a quantity
called the differential soft-collinear operator that essentially captures the process inde-
pendent part, is also introduced in Sec. 5.2.1. In Sec.[5.4], we extend our formalism to

incorporate the threshold resummation of the rapidity distribution.
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Soft-virtual rapidity distribution

We begin by introducing the regime of soft gluon contribution to differential rapidity dis-
tribution for the production of n-number of colorless particles in hadron collisions within
the framework of perturbative QCD. Our prescription that we will develop subsequently
to capture this contribution is within the scope of QCD improved parton model where the
collinear divergences factorize to all orders in strong coupling constant @, = g>/4m. We
consider a generic hadronic collision between two hadrons H, ;) having momentum P,

that produces a final state consisting of n-number of colorless particles, denoted as F;(g;)

H\(Py) + Ho(Py) = ) Fi(g) + X. (5.1)
i=1

Through the quantity X, we represent an inclusive hadronic state. ¢; stands for the mo-
mentum of corresponding colorless particle F;. We denote the invariant mass square of
the final state by ¢*> which is related to the momenta {g;} through ¢*> = (3, ¢;)*. Without

loss of generality, the rapidity of the final state invariant mass system is defined as

Tn(f24) (5.2)
2 Py-q

y

The differential rapidity distribution at the hadronic level can be written as

d2

dydq?

1 1 '
W= Z fod)ﬂfodX2fa(xl,ﬂ,2v)fb(xQ,u%)£dZ(S(T—lexz)

a,b=q.9.8
2 1 (P,-

xf[dPSm] ‘Mab 6(y——ln( 2 q)). (5.3)
2 \Pi-q

o (T, qz, y) = op(T, qz) W(r, qz, y) with

Here, o is the LO contribution normalized by the delta function. The dimensionless

. 2 2 A . . .
variables, 7 = % and z = L, where S and § are respectively the hadronic and partonic

3} b

center-of-mass energies. We denote the fraction of the initial state hadronic momentum
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carried by the partons (a, b) that take part in the scattering at the partonic level as x;(),
and these are constrained through the relation 7 = zx;x; as reflected by the presence of
the respective d-function in the definition of W. The f,) are the pdf’s renormalized at
the factorization scale uy and the coupling constant is renormalized at the scale ug. The
mass-factorized scattering matrix element is denoted through M,, containing an overline
to signify the sum and average over all the quantum numbers for the final and initial state
particles, respectively. The corresponding m-particle phase space is [dPS ,,]. Note that
the numerical value of the integer m depends on the number of radiated partons which is

solely controlled by the perturbative order we are interested in.

We confine ourselves to the regime where the leading order processes can only be initiated

through color neutral quark or gluon channels,

a(p) +a(p2) > D Filg) and  g(p))+8(p2) = ) Filg) (5.4)

n
i=1 i=1
with the corresponding momenta p;;). Moreover, we are interested in computing the
differential rapidity distribution only in the soft limit which constrained all the partonic
radiation to be only soft. In order to define the soft limit for the rapidity distribution, we

choose to work with a set of symmetric scaling variables x(l’(z) instead of y and 7 which are

related through

40
ln(—l) and 7=x0x). (5.5)

X

Note that unlike the inclusive cross-section, the choice of variables which one needs to
take in order to define the soft limit is not unique and as it turns out, our choice of these
new set of variables is crucial for our prescription. In terms of these variables, the partonic

contributions arising from the subprocesses are found to depend on the ratios

Zi = —, (5.6)
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which play the role of scaling variables at the partonic level. After evaluating the o-

function integration over z, the W(r, g%, y) in (5.3) can be rewritten as

dz dz xJ
W, 9, ) —Zfo : f _zfa( ,ﬂF)f( i,u%) Aga (2122 AP - qid 1)
X X

(5.7)

with the coefficient function defined as:

Aap (21,20 AD; - @b 17) = f[dPSm] [Ma, ’ (5(y - % In (Z Z)) . (58)
Being a scattering process containing n-number of final state colorless particles, the par-
tonic coeflicient function does, in fact, depend on the Mandelstam variables constructed
out of all the independent external momenta which is concisely denoted through {p; - gi}.
In order to find the definition of soft limit in terms of the new partonic scaling variables,
we take the double Mellin moment of W with respect to the variables N, which turns

out to be

W(N,, N,) = f dxO(yM! f dxXy)M W, x9)

= > FulND) Fo(N2) Ay (N1, No) (5.9)
ab

All the quantities with functional dependence of N, are in Mellin space where the soft
limit is defined by the simultaneous limit of Ny — oo. In terms of partonic scaling
variables this condition gets translated to z;2) — 1. Note that we normalize the coefficient

function 4, 4, in such a way that at the leading order W satisfies
W0, 20, ¢ uz) = We = 6(1 — x6(1 — x9). (5.10)

In the following section, we will present the prescription to calculate the infrared safe SV

differential rapidity distribution to N*LO in QCD for any 2 — n scattering process which
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can be computed order by order in perturbation theory in terms of a,(u) = a,(u3)/4x:

A (2120 8P - @b 1F) = @) Y dS@RAN (21,20, 4% Aps - @eb i i3 - (5.11)
k=0

A is the order of strong coupling constant at the leading order partonic process.

Soft-collinear operator for SV rapidity distribution

In this section, we setup a framework to compute the soft-virtual corrections to the rapidity
distribution to all orders in strong coupling constant. The infrared safe SV rapidity distri-
bution can be obtained by combining the UV renormalized virtual matrix elements with
the soft gluon contribution and performing appropriate mass factorization to get rid of
initial state collinear singularities. It is well-known that the combined soft and collinear
divergences, conveniently denoted as IR, in virtual matrix elements factorize from the
corresponding UV renormalized part to all orders in perturbation theory. In dimensional

regularization we can write

Mo (P} aids i) = 1im Z2) (6% 115 €© Mo ({03} i) €) (5.12)

with the space-time dimensions d = 4 + €. Without loss of generality, we choose the
renormalization scale to be equal to the scale of aforementioned factorization which, of
course, in general can be different. Upon multiplying the renormalization constant Z, ir,
the IR divergent part of the UV renormalized matrix element M,, gets compensated and
we end up with the finite part of the matrix element M, ,. The renormalization constant
is a universal quantity as it is independent of the details of the process, it only depends on
the nature of external color particles. It is fully independent of the number and nature of

external colorless particles.
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Expanding the Z;r(¢%, i, €) in powers of a,(uz)":
Zir(@ s 13 ©) = 1+ ) dGR) Zi(@ € (5.13)

with the coefficients Z*

71r Up to four loops by setting pr =

! I |
zZ0 = Z{ - 240} + {1+ 2B - malif,
1 mn
78, = {2(A{)2} +{ = 2408 - 4ALB - 30a] + 2m(aD%i} + S + 2Bl
I I
+2(Bl)* - EAQ +Bofl +2BoB. — 30,(A)? — nAl fli — 2nAIBLi - nﬁoAgi} + —{
€

1.
B) - EﬂAél} ,

A
Zn = | - 3D} + S+ Al B+ gl - 2malih + Sf - Al

—4ATB T — 4AT(BIY? + ATAL - 5B0AT fI — 108,AT B! - %ﬁgfx{ + 64,(A1)?

£ 2n(AD fli + 4n(AlYBli + 5nﬁo(A{)2i} ; é{é( £ + BUFY + 2B !

16
+3 (B’) - —A 2/l = A2BI — ALSY = 24185 — S RIAT+ Bo(f)” + 4BoBL S

10 4 8
+4Bo(B1)” = B0z + 3B + 3B0B1 = 3L - 6L(A1)B1 — 60:B0(A1)”
1 3
- EnA’( fh2i - 2nAL B! fli — 2mAL(BL)?i + EnA’Agi —21BoAl fli — 4nBoAl BLi
2 2
n/sgA’z  rl(ALY } + —{ SHLF 4 BLL 4 BLA + 2B1BL - AL+ SAif]
1 1
+ gﬁlB{ + gﬁofz’ + gﬁoBé — 3L AAL - E”Aéffi — A} Bji — E”A{lei — mA{Bji
2 2 V11 2 1
— gﬂ'ﬁlA{l — —ﬂﬁoAél} + Z{gf?’[ + gB:I)’ — gﬂAgl} .

1 1( 4 8 4
Zin = {5300+ S{ - DA - S B! - 6l + reali)
+ g{(A{ Y(fH? + 4AD? BT + 4ADA(BY? — (AD?AL + 8Bp(AD) f!
+ 168,(A)*B! + g 2(AD? — 64,(ADY — 2 (ALY fli — 4n(AL)’Bli

1
- Srpo(AD)'i} + g{ ~ ALY = 2ATBIY — 4AL B - SALB

ISee [32, 152,187, 188] for an elaborated discussion on the universality of subleading infrared poles in
form factors.
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1 1 1 3
+ Eﬁzfll + BB + Eﬁlle +B1B + 5ﬁ0f31 +BoB; — ZQ(Aé)z - 205,A1AL
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- SBALi - EnﬁoAgi} i Z{Z fl+ 3B - ZnAgi}. (5.14)

The anomalous dimensions that appear in the aforementioned results are expanded as:

[

X' () = ) alGiX], (5.15)

=

where X = A, B, f. For processes involving only conserved operator, such as Drell-Yan,
the coupling constant renormalization is sufficient to get rid of all the UV divergences.
However, for other processes, such as the Higgs boson production in heavy quark effective
theory, additional operator renormalization is required. This is a property inherent to the

operator itself.

In order to get the infrared safe and finite differential rapidity distribution, we need to
combine the UV renormalized virtual matrix element to the real emission contributions in
the soft limit and perform mass factorization which ensures the removal of collinear sin-
gularities arising from the initial state colored particles. Therefore, the universal nature of
IR divergences in virtual matrix element implies that the combined contribution from the
real emission diagrams and mass-factorization kernels must exhibit the same universality.
By employing the criteria of universal IR structure and imposing the finiteness property of
the rapidity distribution, we develop the prescription to compute the rapidity distribution
under SV approximation for any generic 2 — n scattering process and present the re-
sult in terms of universal quantities to N*LO QCD. Once the pure virtual matrix element
for any process of the kind under consideration becomes available, our expression can

immediately be employed to calculate the SV rapidity distribution at that order in QCD.

We propose that the coefficient function for the rapidity distribution in Eq.(5.11) can be

written as a Mellin convolution of the pure virtual contribution ¥, soft-collinear distribu-
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tion @, and mass-factorization kernel I, which read as

A3 (21222, Aps - @b p) = IMPPIF Ups - quho g ©F (1 = 21) 8(1 - 22)

® Cexp [Z@Q’Sv(zl,@, 7, e) — CInIy(z1, 1, ©)5(1 — 25)

— CInTy(z, 12, ©6(1 - zl)] . (5.16)

Since we are confining our discussion to only those scattering processes with initial state
quark-antiquark pair of same flavours or a pair of gluon, we conveniently use the index
I, where I = g, b, g respectively refers to Drell-Yan process, Higgs production via bot-
tom quark annihilation and from gluon fusion channel. The pure virtual contribution is

captured through the form factor 7, that is defined as

MM

e (5.17)
MM

Fl=1 +Za§?”(k) =1+

=1
where Mgk) represents the k-th order UV renormalized matrix element of the underly-
ing partonic level process a(p;) + a(p>) — >, Fi(q;)). The symbol “C” stands for the

convolution whose actions on a distribution g(z;, z») is defined as
8(21,22) 1 1
Ce* 25(1—Z1)5(1—Zz)+ﬁg(zl,22)+5(g®g)(21,Zz)+~-, (5.18)

where ® denotes Mellin convolution. In the context of SV corrections, we encounter only
o(1 - z;) and Dj(z;), where

(5.19)

i1 =z
Di(z) = [M]

(1-z)

The contribution from the real emission diagrams is contained in soft-collinear distribu-
tion @/, . The soft divergences arising from the real emission and virtual diagrams, which
are respectively encapsulated in @, , and ¥, get cancelled. The final state collinear sin-

gularity is guaranteed to go away, as dictated by KLN theorem, once the sum over all
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the final states is performed. The mass factorization kernel takes care of the initial state
collinear singularities. As a result, the coefficient function AW in (5.16) becomes finite.
By demanding the finiteness of this quantity we can put a constraint on the soft-collinear
distribution which turns out to be a Sudakov type RG equation. This has profound im-
plications which not only reveals a significant amount of insights about the IR world but
also it enables us to perform threshold resummation as we will see in the next section. To
be more precise, the solution of the RG equation results an all order exponentiation of the
soft-collinear distribution. So, the whole job of computing the SV correction depends on
our ability to determine and explore the unknown distribution @fl’sv to which we now turn

to.

As we have discussed, the soft-collinear distribution essentially captures the contribution
arising from real emission diagrams which only can occur from colored partons. Natu-
rally, @fl’sv for Sudakov form factor i.e. 2 — 1 and 2 — n scattering should essentially
be identical. The presence of more Mandelstam variables in the latter process just makes
it more involved in its kinematic dependence when it is expressed in terms of {p; - gi}.
However, in terms of the total invariant mass square of the final state colorless particles
i.e. ¢°, it has to be exactly same as that of Sudakov process. In [178], it was conjectured to
satisfy a integro-differential RG equation to all orders in QCD coupling constant. The un-
derlying reason behind this all order conjecture is inspired by the akin integro-differential
Sudakov equation [26-28] fulfilled by the form factor whose solution is present explicitly
to five loops order in massless QCD in [30, 31, 33, 189]. By integrating the differential
rapidity distribution, we get the inclusive cross-section. Upon taking the Mellin moment

with respect to the same Mellin variable N of this relation we get

1
f dx f A0 ‘d‘T_ f dre o (5.20)
0

By taking the limit N — oo on both sides of this relation, we can relate the soft-collinear

distributions in rapidity and that of inclusive cross-section. This is remarkable in a sense
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that given the soft-collinear distribution for inclusive cross-section, we can automatically
calculate it for the rapidity. Since this is the only quantity that is unknown in comparison
to the ingredients for the computation of SV cross-section, we can immediately calculate
the SV rapidity distribution. The @iz,sv for the Sudakov form factor is determined to NNLO
in [178] and in [190] at N°LO in QCD. In the work presented in this chapter, for the first
time, we present the general analytical form of @gl,sv in terms of universal quantities at
N*LO for any generic 2 — n scattering. One of the most notable features of this quantity

is it satisfies the maximally non-Abelian property:

Ca
¢LILSV = C_FQZ’SV ’ (521)

where the C4 and Cr are the quadratic Casimirs in Adjoint and fundamental representa-
tions of SU(N,), respectively. This essentially signifies the universality of the real emis-
sion in the soft limit. Needless to say, it is also quark flavour blind. This relation was
explicitly verified to NNLO in [178] and at N°LO in [190]. We expect the Casimir scal-
ing to hold true to all orders in perturbation theory since it originates entirely from the
soft-collinear part of the differential cross-section, and therefore it would indeed be inter-

esting to see whether truly it holds beyond N3LO with generalised Casimir scaling [56].

We decompose all the quantities into its singular (sing) and finite (fin) parts as

¢LILSV = djfl,sing + @fl,ﬁn ’
In F] =1In Fl,sing +In Fl,ﬁn s (522)

Then, Eq.(5.16) can be recast into

A5y =IMPRIFLAp; - aid ¢ 1P = 20)5(1 = 25)
® Cexp| 20, (21,2207, 143) — CIn Tyanans i 13001 = 22)

CIn Tz 2o i2)5(1 — zo] oL, (5.23)
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where

L =|Z11r(q%, . ©FS(1 —2) ® Cexp [ZQS’Smg (Zl’ 24" Ky E)

— CIn Ly ging 21, 12, ©5(1 = 22) — C I g (22, 12, ©5(1 — zo] . (5.24)

Through the decomposition of the quantities into singular and finite parts in Eq.(5.22), we
put together all the singular components of the rapidity distribution into I}, which must
be unit distribution 6(1 — z;)d0(1 — z,) in order to get a finite AZYI. In Eq. (5.23), the form
factor and the leading order matrix element are the only process dependent quantity. The
remaining part which comprises of the finite segments of the soft-collinear distribution

and mass factorization kernel is a process independent universal quantity which we call

as differential soft-collinear operator

8421, 22, 4 o 117) = Cexp |20 5, (21, 22, €% 1) = CIn Ty in(@1, o 11)5(1 = 22)

N T (2 2 12)5(1 — zo] . (5.25)

The expression of S} being process independent can be used for any generic 2 — n

scattering process. Hence Eq. (5.23) reads as
Ay = IMPP | Fraal® 61— 21) 6(1 - 22) ® S} (5.26)

We can calculate the SV coeflicient function for the rapidity distribution order by order
in perturbation theory by expanding it in powers of a, according to Eq.(5.11). The results
of S}, for any generic process up to N*LO QCD is given in Appendix D for 12 = pi% = ¢
Also, the universal light-like cusp-, soft- and collinear anomalous dimensions are given

in Appendix B. The anomalous dimensions are expanded in powers of a,(u3) as

X'(up) = ) alGiX], (527)

=1
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where X = A, B, f. Thanks to recent calculations, the light-like cusp anomalous dimen-
sions are available to four loops [34—38] in QCD. The soft and collinear anomalous di-
mensions can be extracted [32,33] from the quark and gluon collinear anomalous dimen-

sions [39,40] through the conjecture [32]
Y =2B" + f! (5.28)

to three loops. At four loop, only partial results are available in [38,41-43].

Results of SV rapidity distribution

In this section, we present the explicit results of A7, defined in (5.26) for the Drell-Yan
(I = g), and the Higgs boson productions through gluon fusion (I = g) as well as bottom
quark annihilation (I = b) at fourth order in coupling constant. Expanding them in powers

of ay(u%) through

A3 ({Pj : Qk}’Zl,Zz,qz,,u%-) = 6(1 — 7)6(1 — Zz)lMgoénlz

+ Z ay(up A, (’) i} 21,Zz,q2,,u;2r,u§). (5.29)

Setting u2 = p% = ¢*, in the following, we provide only the new results, and the old
results for Drell-Yan and Higgs boson productions can be found in [125, 178, 190]. The
results with explicit dependence on uy and uy are provided up to N*LO in the ancillary

files supplied with the arXiv submission of [171].
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The symbols )(;’. and )(5 denote the unknown coeflicients of the color factors in four loop
form factors of the Drell-Yan and of the Higgs boson production through gluon fusion,
respectively. For the case of Higgs boson production in bottom quark annihilation, only
the n} and ni contributions to the four loop form factor are available in the literature [47].
As a result, the unknown coefficients corresponding to O(ny) and O(n?.) color factors
are denoted by x? and x%, respectively. Also the symbols fZ e g and bZ’j, where

= {d%deed n,C3 nyCrCy, doe4di>, C1.C%, C3.Cy, Cr} are the unknown coeflicients
of the color factors in four loop soft and collinear anomalous dimensions. In the afore-

mentioned equations, 14, is proportional to the charge weighted sum of the quark flavours

and N, = (ng —4)/n. [49]. Following [37], we have

dedded  NAN2+36)  dPedPed  NJAN?2+6)  dPldPd  NP—6N?+18

Ny 24 ’ Ny, 48 Ny, 96N?2 ’
(5.33)

Ne -1 2
CA:NC, CF: 2N . NA:NC—I, NF:NC. (534)
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Soft-collinear operator for threshold resummation

In this section, we develop the resummation formalism for the differential distribution
with respect to the rapidity variable y, for the production of n-colorless particles. Earlier
we have seen that differential soft-collinear operator, Sf, in Eq.(5.25), embeds universal-
ity of all the soft enhancements associated with the soft gluon emissions. Besides being
the process independent operator, interestingly it also exhibits an exponential behaviour.
Recall that the threshold resummation [191] relies on the fact that the soft contribution
exponentiates to all orders in perturbation theory, owing to the Sudakov differential equa-
tion and the renormalization group invariance. Following the same argument we proceed

towards the resummation formalism for differential cross-section as well.

The relevance of resummation of differential cross-section arises from the fact that, in
the limit i) — 1, the logarithms of type (a? In™'(1 = z) In"*(1 = 25))/((1 = 21)(1 — 22))
for my + my < 2(n — 1), give rise to large contributions which could potentially spoil
the reliability of the perturbative series. Hence a systematic way of exponentiating these
large logarithms and resumming them to all orders in perturbation theory becomes in-
dispensable. In [60] it was shown, in the context of differential distribution with respect
to the Feynman variable x, that the potential logarithms which give dominant contribu-
tions in certain kinematic regions can be resummed to all orders in perturbation theory
in Mellin-Mellin (M-M) space approach. This approach was also extended to rapidity
distributions in the earlier works (See [184, 192] for details). Note that this approach is
different from the Mellin-Fourier (M-F) approach [181] proposed by Laenen & Sterman.
In M-F formalism partonic cross-section is expressed in terms of scaling variable z and
rapidity variable y and then the threshold limit is taken only for z — 1 which resums delta
(6(1 — z)) and distributions (D;(z)), but for rapidity variable y only delta (6(y)) piece is
resummed. In [192], a detailed numerical comparison has been made in between M-M

and M-F approach and found that both the approaches converges to a few percent correc-
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tion to the fixed order prediction at NNLL level. In the following we further extend the
M-M approach and derive the resummation formalism for the production of n-colorless

particles in a partonic collision.

Within the framework of M-M approach, both the partonic scaling variables z,(,) are si-

multaneously taken to the threshold limit 1 and the corresponding delta, 6(1 — z;), and

{(1=7: . .
[%L, are resummed to all orders in perturbation theory.

plus distributions, Dj(z;)

Due to the involvement of convolutions in the z;(;) space, the resummation is performed
in two dimensional Mellin space where the differential cross-section is expressed in terms
of simple normal products. In the following we derive the generic formalism in terms
of the Mellin variables N; and N, corresponding to the z; and z, variables, respectively.
Hence the threshold limit z;;y — 1 translate to Ny — oo in Mellin space and the large

logarithms proportional to In Ny are resummed to all orders in perturbation theory.

To derive the all order behaviour of the SV differential cross-section, AZYI(ZI,ZZ), in the
two dimensional Mellin space with N; = N;e”t, we begin with the Mellin moment of the

same, which takes the following form:

1
A w = | [ f dz2 ™| 430p; - ai) 2, 22). (5.35)
0

i=1,2

v is the Euler-Mascheroni constant. In the previous section in (5.16), AZZ, is decomposed
into constituents corresponding to the virtual as well as the soft-collinear real emission
contributions. Now in this section, we further decompose those contributions into a pro-
cess dependent and a process independent quantities. We denote the process dependent

coefficient C/,  in the context of 2 — n scattering process as,

Cho(1ps - @i o 113) = IMPPIF 160 - @i @ )PS5 (@ o). (5.36)

Here C/, accounts for all the finite contributions coming from the virtual corrections

and the coefficients proportional to 6(1 — z1)6(1 — z) of the real emission contributions.
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Besides, it also contains the finite part of the mass factorized kernel 74, in terms of
In(u?./u%) which results from the coupling constant renormalization. The quantity SI o
which we name as the differential soft-collinear operator for threshold resummation, em-
beds the 6(1 — z;) contributions from the soft distribution function QDLIZ,SV and from /' 5, in

the following way:

SLG g 7 = exp (29 5(g o 1) — 210 Ty (117 - (5.37)

The subscript ¢ indicates 6(1 — z;)d(1 — z») coefficients of the aforementioned quantities.

Expanding in powers of a,(u3), it takes the form in z-space with ¢* = u% = 13 :

S TG o ) = 1+Za<uR>Sﬁ,t;i<q S 113). (5.38)
with

Sim =261
Sina =Gy + 2600 + 280G
Sis =§é2:§+2é“ 7 +—(G”1)S+§ﬁ1g~21 + 3Gy + oG G —ﬁogdl,
32?2‘;”’1+1(§ D gdl as + 26,65 + (Q D+ BG L +BIG
+ ﬁlgdl 71+ PGy + 260G d2+ ﬁonl 7ia + 460Gy G
+ABBGy + 280G, + 260G + ﬁogdl i1+ 463G

(5.39)

where Qf/j are given in Appendix C.

In a similar way, we denote the process independent contributions to 4’ as cDI " which

comprises of the terms proportional to plus distributions from @, and I'; 4,. Mathemat-
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ically it can be written as,

D (21, 20, ¢ 1) = 2D (21,22, 47) — CIn Ty (21, p13)0(1 — 22)

—CInTyp(z2, up)(1 = 21) (5.40)

where the subscript D indicates the terms proportional to plus distribution which includes,
Di(z1)0(1 =z2) , Di(z2)6(1 —z1), and D;(z1)D;(z2). Similar to the inclusive case, following

the approach given in [178], @ff” can be expressed in an integral form given as,

I.res 202N _
D, (21,20, 47 MF) =
+

L (7 d2
8(z2) (—{ f A" (a(4)) + D} (a,(q’z))) })
21 sz A
dD!(a,(z12))
dll’lZ12

+ l(é{z‘ll(as(m)) +

2 2132

}) + (71 © 12)] , (541

here the subscript + indicates the standard plus distribution and the other constants are

defined as z; = (1 — z;) and z;» = ¢°Z1Z,. The finite functions, Di, =yrd Dg’i, are

N

related to the threshold exponent D! of inclusive cross section owing to the relation given
in (5.20) ( See Eq.(2.87) and [178, 184] for more details). For completeness, we provide

the coefficients A/ and Dé’i in the Appendix B and C respectively.

Consequently the SV differential cross-section decomposes into a process dependent and

a process independent way and can be re-written in the following form:

A3, (1p; - a2 20 o p3) = Cho (1ps - @i @ 17) 61 = 20)6(1 = 22)

® Cexp(P, (21,20, %, 117) ® LY. (5.42)

Substituting (5.42) in (5.35) and after doing the two dimensional Mellin transformation

systematically, we obtain

Ay/(N1, Ny) = Cho (ip; - i 13 ) exp (In gl (P p13) + Gl (@ pp ). (5.43)
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with w = Boas(uz) In(N1N>). The first coefficient of QCD B-function is denoted by By =
(11C4 = 2ny)/3, ny is the number of active light quark flavours. Here, the decomposition
in the exponent is done in such a way that the coeflicient sz, 5 contains Ny, dependent
terms, and the remaining ones are embedded in (In gfi’o). Besides this, Gfi’ N(qz, ,u%, w) also
vanishes in the limit w — 1. Needless to say that both of these coefficients has a universal
structure in terms of the anomalous dimensions A’ and process independent coeflicients
D’ and thus are dependent only on the incoming partons. Further we combine the Ny

independent coefficients g/, with C/, ; from (5.43) and define,

gholp; - auh . ip) = Cho (1p; - ad 113 ) 8ho (2 13) (5.44)

which can be expanded in terms of a,(u3) as,

2ho(p; - ah @) = ) diwd) BroUp; - ad o iho i1} (5.45)

i=0
From (5.44) it can be seen, that the coefficient §fw contains finite contribution from virtual
corrections, differential soft-collinear operator for threshold resummation and N indepen-
dent terms coming from Mellin transformation of plus distribution. Consequently, (5.43)

gets modified as,

AN N2 = 8o (p) - a4 13) exp (Gl (413 0) ). (5.46)

where the exponent Gfl 5 can be organized as a resummed perturbation series in Mellin

Space as,

Gl (@ 1 w) = gl (@) (N1 W) + ) d () &in (@, @2 i 115 (5.47)
i=0
The explicit form in (5.46) when expanded till k-th order in powers of a,(u3), gives the

logarithmically enhanced contributions to the fixed order results ZZTI(N 1, N») up to the
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same order. The successive terms in the above series given in (5.47) along with the cor-
responding terms in (5.45) define the resummed accuracy as LL, NLL, NNLL, N°LL and
so on. In general for NLL accuracy, terms up to gil,k . must be included along with gf,,o
up to order a*(uz). The general expression for the coefficients gj,fo and gg’l. up to N°LL are

provided in the Appendix E.

The coefficients GQ’N remains unaltered even for 2 — n scattering process owing to its
universality. However, the process dependent coefficient function gfm changes for the
production of n-colorless particles due to the inclusion of process specific form factor via
(5.36) and (5.44). The results of these coeflicients appear as a product of Ny and N, in the

Mellin space, and all those terms which are only function of N; or N, cancel internally.

We have also observed that the coeflicients gfw and Gfl,N coincides with their inclusive
counterparts gé and G%, respectively in the limit Ny — N, — N, provided the coeffi-
cients Df, in (5.41) is expressed in terms of D’ of inclusive soft distribution function (See
Eq.(2.87)) using the relation (5.20). Hence we infer that all the above observations which
hold true for 2 — 1 scattering processes are further extended and verified for any generic

system of n-colorless particles in the final state.

Summary

To summarize, through this chapter we presented a systematic framework for the study
of soft-plus-virtual corrections to the differential distribution with respect to the rapidity
variable y, for the production of n-colorless particles in the hadron collider. The infrared
structure of rapidity distribution which was earlier studied in ref. [178] for Sudakov type
processes is further extended to the case of 2 — n scattering. We employ the universality
of the soft enhancements associated with the real emission diagrams. The main deviation
from the Sudakov type formalism comes from the virtual corrections where the kinematic

dependence is much more involved. The rest of the formalism relies on the collinear
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factorization of the differential cross section, the renormalization group invariance, uni-
versality of perturbative infrared structure of the scattering amplitudes, and the process
independence of the soft-collinear distribution. Besides this, we also use an additional
fact that the N-th Mellin moment of the differential distribution has a relation with its
inclusive counterpart in the limit N — oco. The mere use of this fact enables us to to get
an all order relation between the soft-collinear distribution of inclusive cross-section and

that of rapidity.
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On next to soft corrections to

Drell-Yan and Higgs Boson production

Till this point, our center of discussion was on computing higher order corrections at the
threshold approximation, the resulting contributions are the threshold corrections. In the
last chapter, we go beyond the threshold, and look into the structure of next-to-threshold
logarithms. We address not only the next-to-threshold corrections, but also attempt to
study the structure of next-to-leading power resummation. The materials presented in this
chapter are the result of original research done in collaboration with Pooja Mukherjee

and V. Ravindran and are based on the article [193]

Prologue

Before going to the discussion on next-to-threshold formalism, let us briefly summarize

the details of threshold framework that we discussed in previous chapters.

The higher order quantum effects from QCD and EW theory provide theoretical labora-
tory to understand the ultraviolet and infrared structure of the underlying quantum field
theory. This is due to certain factorisation properties of scattering amplitudes in UV and
IR regions. The consequence of the factorisation is the RG invariance which demon-
strates the structure of logarithms of the renormalisation scale ug from UV and of the

factorisation scale yr from IR to all orders in perturbation theory. The renormalisation
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scale separates UV divergent part from the finite part of the Green’s function or on-shell
amplitudes, quantifying the arbitrariness in the finite part. While the parameters of the
renormalised version of the theory are functions of the renormalisation scale, the physical
observables are expected to be independent of this scale. This is the consequence of RG
invariance. The anomalous dimensions of the RG equations govern the structure of the

logarithms of renormalisation scale in the perturbation theory to all orders.

Like UV sector, the infrared sectors of both SM and QCD are also very rich. Massless
gauge fields such as photons in QED and gluons in QCD and light matter particles at high
energies give soft and collinear divergences, collectively called IR divergences, in scat-
tering amplitudes. The IR divergences are shown to factorise from on-shell amplitudes
and from certain cross sections respectively in a process independent way at an arbitrary
factorisation scale. The resulting IR renormalisation group equations are governed by IR
anomalous dimensions. The IR renormalisation group equations are peculiar in the sense
that the resulting evolution is not only controlled by the factorisation scale but also by
the energy scale(s) in the amplitude or in the scattering process. Unlike the UV diver-
gences which are removed by appropriate renormalisation constants, the IR divergences
do not require any such renormalisation procedure as they add up to zero for infrared safe
observables thanks to KLN theorem [22, 23]. The structure of resulting IR logarithms
at every order in the perturbation theory is governed by the IR anomalous dimensions.
Hence, most of the logarithms present at higher orders are due to UV and IR divergences

present at the intermediate stages of the computations.

The logarithms of renormalisation and factorisation scales present in the perturbative ex-
pansions often play important role to estimate the error that results due to the truncation of
the perturbative series. Lesser the dependence on these scales, more the reliability of the
truncated results. Note that there are also logarithms that are functions of physical scales
or the corresponding scaling variables in the observables. In certain kinematical regions,

these logarithms that are present at every order can be large enough to spoil the reliability
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of the truncated perturbative series. Since the structure of these logarithms at every order
is controlled by anomalous dimensions of IR renormalisation group equations, they can
be systematically summed up to all orders. This procedure is called resummation. There

are classic examples in QCD. For example, the threshold logarithms of the kind

‘(1 —z)) 6.

1-z2

Di(z) = (

are present in the perturbative results of invariant mass distribution of pair of leptons in
Drell-Yan process. The scaling variable for the DY is z = M7,,_/§. Tthe invariants § and
M2, denote the center of mass energy of incoming partons and invariant mass of final
state leptons respectively. The distributions D;(z) are often called threshold logarithms
as they dominate in the threshold region namely z approaches 1. In this limit, the entire
energy of the incoming particles in the scattering event goes into producing a set of hard
particles along with infinite number of soft gluons each carrying almost zero momentum.
In particular, the logarithms of the form In'(1 — z)/(1 — z) result from the processes in-
volving real radiations of soft gluons and collinear particles. While these contributions
are ill defined in 4 space-time dimensions in the limit z — 1, the inclusion of pure virtual
contributions gives distributions 9;(z) and 6(1 — z). The terms that constitute these dis-
tributions and 6(1 — z) are called the SV contributions. ( For SV results up to third order,

see [30,31,52-55,57-59]).

The threshold logarithms in the perturbative results when convoluted with appropriate
parton distribution functions to obtain hadronic cross section can not only dominate over
other contributions but also give large contributions at every order. Presence of these large
corrections at every order spoil the reliability of the predictions from the truncated series.
The seminal works by Sterman [61] and Catani and Trentedue [60] provide resolution
to this problem through reorganisation of the perturbative series called threshold resum-
mation. Since z-space results involve convolutions of these distributions, Mellin space

approach using the conjugate variable N is used for resummation. The large logarithms
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of the kind D;(z) become functions of In’*'(N), J < iwith O(1/N) suppressed terms in the
corresponding N-space threshold limit, namely N — oo. Threshold resummation allows
one to resum w = 2as(u§)ﬁg In(N) terms to all orders in w and then to organise the result-
ing perturbative result in powers of coupling constant a,(u) = g>(uz)/167%, where g, is
the strong coupling constant. Here, 3 is the leading coeflicient of QCD beta function. If
Oy is an observable in Mellin N-space, with N being the conjugate variable to z of the

observable O(z) in z-space, then the resummation of threshold logarithms gives

In (Oy) = In(N) g0(@) + ), aluik) g0(@) + 8§ (a,(i})) (6.2)

i=0

where gOO(aS(,uIZQ)) is N independent and is given by

(o8]

8@, = D aluRgd; - (6.3)

i=0

Inclusion of more and more terms in Eq.(6.2) predicts the LL, NLL etc logarithms of O
to all orders in a,. The functions g?(w) are functions of process independent universal
IR anomalous dimensions while g(()) depend on the hard process. For the invariant mass
distribution of lepton pairs in DY, Higgs boson productions in various channels, all the
ingredients to perform the resummation of threshold logarithms in N-space up to N°LL

accuracy are available.

While the resummed results provide reliable predictions that can be compared against
the experimental data, it is important to find out the role of sub leading terms namely
In‘(1 — 2),i = 0,1,---, We call them by next-to-SV (NSV) contributions. In literature
they are also known in names of next-to-threshold or next-to-leading-power corrections
In addition to understand the role of NSV terms, the question on weather these terms can
also be resummed systematically to all orders exactly like the way the leading SV terms
are resummed remains unanswered satisfactorily. These questions have already been ad-

dressed in great detail and remarkable progress has been made in recent times leading to
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a better understanding of NSV terms. (See, [194-206] for more other works on NSV in
the literature). Motivating from the parallel works, in this chapter, we make an attempt to
study the structure of NSV logarithms by exploiting collinear factorisation, RG invariance
and with an understanding on the logarithmic structure of higher order perturbative results
coming from Feynman and phase space integrals. Through the formalism, we propose an
all order result both in z-space and in N-space, which can predict NSV terms for DY and

Higgs boson production to all orders in perturbation theory.

Next to SV in z-space

In the following, we study the inclusive cross-sections for the production of a pair of
leptons in DY and the production of a single scalar Higgs boson in gluon fusion as well
as in bottom quark annihilation. Let us denote the corresponding inclusive cross sec-
tions generically by (g%, 7). In the QCD improved parton model, o is written in terms
of parton level coefficient functions (CF) denoted by 4,,(¢%, i, 1%, z) convoluted with

appropriate pdfs, f.(x;, u%), of incoming partons:
or) = o) Y, [ dxidn i) o) An s (64)
ab

where o is the born level cross section. The scaling variable 7 is defined by T = ¢?/S,

S is hadronic center of mass energy. For DY, ¢> = M2 _, the invariant mass of the final

s
state leptons and ¢* = m; for the Higgs boson productions, with m, being the mass of the
Higgs boson. The subscripts a, b in 4,, and ¢ in f, collectively denote the type of parton
(quark,antiquark and gluon), their flavour etc. The scaling variable x; is the momentum
fraction of the incoming partons. In the CF, z = ¢?/§ is the partonic scaling variable
and § is the partonic center of mass energy and is related to hadronic § by § = x;x,$

which implies z = 7/x;x,. The factorisation scale ur results from mass factorisation and

the renormalisation scale ug from UV renormalisation of the theory. Both o and 4.,
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depend on the renormalisation scale, however their product is independent of the scale if

we include 4, to all orders in perturbation theory.

The partonic cross section is computable order by order in QCD perturbation theory. Be-
yond leading order, one encounters UV, soft and collinear divergences at the intermediate
stages of the computation. If we use dimensional regularisation to regulate all these di-
vergences, the partonic cross sections depend on the space time dimension n = 4 + € and
the divergences show up as poles in €. The UV divergences are removed by QCD renor-
malisation constants in modified minimal subtraction (MS) scheme. The soft divergences
from the gluons and the collinear divergence resulting from final state partons cancel in-
dependently when we perform the sum over all the degenerate states. Since the hadronic
observables under study are infrared safe, these partonic cross sections are factorisable in
terms of collinear singular Altarelli-Parisi [24] kernels I, and finite CFs at an arbitrary
factorisation scale ur. The factorised formula that relates the collinear finite CFs 4, and

the parton level subprocesses is given by

1, 1
Ea-ab(qz’ < E) = O-B(/li) Z Fga’(z’ /J%‘a 6) ® (EAa’b’(q29 ﬂ]2€7 'Ll%;, Z, 6)) ® Fb’b(z, /-1%“’ 6) .
ab’

(6.5)

These kernels are then absorbed into the bare pdfs to define collinear finite pdfs. Note
that the singular AP kernels do not depend on the type of partonic reaction but depend
only on the type of partons in addition to the scaling variable z and scale ur. The symbol

® refers to convolution, which is defined as in Eq.(2.43).

The partonic cross section in perturbation theory in QCD can be expressed in powers of

strong coupling constant a;:

T2 €) = ) AR N@ 7 2, €) (6.6)

i=0

We restrict ourselves to 4,; for DY, 4,; for Higgs boson production in bottom quark an-
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nihilation and 4,, for Higgs boson production in gluon fusion to investigate the structure

of NSV terms. We call these CFs collectively by A with ¢¢ = ¢g, bb, gg.

To obtain SV and NSV terms in 4.z using the mass factorised result given in Eq.(6.5), it is
sufficient to keep only those components of AP kernels I',s and of 6, that upon convo-
lution gives SV and/or NSV terms. In the mass factorised result, if we express 4,5 for DY
in terms of & ;s and IS, we either have convolutions with terms involving only diagonal
terms/channels, for example 0z ® 'y, ® I'; 7 or with terms containing one diagonal and a
pair of non-diagonal ones/channels, for example 0,,®1 ', ®I',,. The former gives SV plus
NSV terms upon convolutions while the latter will give only beyond the NSV terms. The
diagonal I'..s also contain convolutions with only diagonal AP splitting functions, P,., or
one diagonal and a pair of non-diagonal AP splitting functions P,,,a # b. We again drop
those terms in diagonal I'..s that contain pair of non-diagonal P,s. This results in I,
containing only diagonal P..s. Similar argument will go through for 4,7 and 4,, as well.
This allows us to write mass factorised result given in Eq.(6.5) in terms of only diagonal

terms &, 4.z and AP kernels I',. and the sum over ab is dropped.

In summary, since our main focus here is on SV and NSV terms resulting from quark
initiated processes for DY and gluon or bottom quark initiated processes for Higgs boson
production, we drop contributions from non-diagonal partonic channels in the mass fac-
torised result of 4. In addition, gluon-gluon initiated channels which start contributing
at NNLO onwards for DY and quark antiquark initiated channels for Higgs boson pro-
duction are also dropped as they do not contribute to NSV of 4. Since our discussion
is confined to only diagonal terms or channels, we collectively use the index [ here after,
where where I = g, b, g respectively refers to Drell-Yan process, Higgs production via

bottom quark annihilation and from gluon fusion channel:

NG oy 1, 2) = AP i 1, )

(G, 1o 115, 7). (6.7)

SV+nsv

1@ s 17 2) = O
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Beyond the leading order, the partonic channels that contribute to é'gi) gets contributions

from virtual corrections — denoted in terms of form factor (FF) — and the real emission
contributions. In FFs, the entire partonic center of mass energy goes into producing a
pair of leptons in DY or Higgs boson in Higgs boson production. While in real emission
processes, the initial state energy is shared among all the final state particles. We denote

FF of DY by ¥4 and FF of Higgs boson productions by Fo,F4.

Our next step is to factor out the square of the UV renormalised FF (Z/ #7) from the

partonic channels ; and write the resulting normalised real emission contribution as

-1 -1 A
S' @i, q' 20 = (osp) (2@ g i, 0) 1F @, 0% el

X6(1 —2) ® 5™ (¢, z, €)

Cexp (20,12, 7, 2.€) (6.8)

where 4, is the bare strong coupling constant, Q> = —¢* and Z’ is overall renormalisation
constant that is required for Higgs boson production from gluon fusion and bottom quark
annihilation. Note that S’ does not depend on ,ui and hence, S’ is RG invariant. The
function S’ is computable in perturbation theory in powers of a, and it gets contribution
from cc initiated processes containing at least one real radiation. The symbol “C" refers

to convolution and are defined in Eq.(2.72).

Substituting for &; from Eq.(6.8) in terms of ® in Eq.(6.5) and keeping only diagonal

terms in AP kernels, we find

; (6.9)

e=0

A/ g i) = Cexp (T’(qz,ﬂi,ufs,z, 6))

where ¥ is a finite in the limit € — 0 and is given by

2
(g7, ugo 7 2, €) = (ln(Z’(&s,uz,#i,e)) +In|F (@, 122, Q2,€)|2)5(1—Z)

+20/(a,, 12, ¢, z,€) — 2C1In F,(&S,,uz,,u%, Z,€). (6.10)
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It contains only the distributions and the logarithms of the form lni(l -2,i=0,1,---.
The all order result given in Eq.(6.9) is the master formula which can be used for obtain-
ing SV+NSV contributions to 4; order by order in perturbation theory provided various
functions that appear in Eq.(6.10) are known to desired accuracy. In particular, it can
predict certain SV and NSV terms to all orders in a; in terms of lower order terms. In
the above formula, we keep the entire FF and overall renormalisation constant as they are
proportional to only §(1 — z). However, in the functions S’ and In(I';), we keep only SV

and NSV terms.

In the master formula, Eq.(6.9), the form factor for the DY process is the matrix element of
vector current quyz//q between on-shell quark states and for the Higgs boson production
in gluon fusion (bottom quark annihilation), it is the matrix element of G;,G*™ W)
between on-shell gluon (bottom quark) states. Here . is the ¢ type quark field operator
and G, 1s the gluon field strength operator with a being the S U(N,) gauge group index in
the adjoint representation. These FFs are known in QCD up to third order in perturbation
theory, [32,33,38,44,46,49-51,207-211]. The overall renormalisation constant for the
vector current is one to all orders in QCD while for the Higgs boson productions, Z’s are
non-zero. For I = b, see [158] and for I = g, it is expressed in terms of QCD beta function

coefficients to all orders [212].

Perturbative results of FF in renormalisable quantum field theory demonstrate rich struc-

ture, in particular, one finds that they satisfy certain differential equations. The simplest

2 dfF”

one is the RG equation that FFs satisfy, namely u Rar =
R

0, using which we can predict the
logarithms resulting from the UV sector, i.e., the logarithms of the form lnk(,u%e), k=1,---
at every order in perturbation theory. In addition, these FFs satisfy Sudakov differential
equation [25,28-30, 142,213-215] which is used to study their IR structure in terms of

certain IR anomalous dimensions such as cusp A/ collinear B’ and soft f! anomalous
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dimensions. In dimensional regularisation, the equation takes the following form:

d Apon 1 . 2 A 2 2
de_Q2 Ing"(a,, 0% 12, €) = §[K’(as, Z—g €) +G'(a,. % Z—g e (6.11)

where Q?> = —¢*. The unrenormalised FFs contain both UV and IR divergences. UV
divergences go away after UV renormalisation. The IR divergences of the FFs can be
shown to factorise. The divergence of FFs are such that the factorised IR divergent part is
g* dependent. The consequence of these facts is that the right hand side of the differential
equation can expressed in terms of two functions K’ and G’ in such a way that K accounts
for all the poles in € whereas G’ is finite term in the limit € — 0. The RG invariance of
FFs implies, in the limit € — 0,

2 2

% LK’(&S, ’f €)= —,ﬁe%ﬁc’(as, f—; Z_I; €) = —A'(a,43). 6.12)
The solutions to Eq.(6.12) are given in Sec.[2.3.1]. Substituting these solutions in Eq.(6.11)
one can find the structure of FF in terms of IR anomalous dimensions and the pro-
cess dependent quantities. A more elaborate discussion on the structure of FF can be

found in [30]. The IR anomalous dimensions are known to three loops in QCD, see

[32,33,35,36,43,46,216,217] and for beyond three loops, see [38].

The fact that the initial state collinear divergences in parton level cross sections factorises
in terms of splitting kernels I (z, 1%, €) implies RG evolution equation with respect to

the scale up:

d 1 —
#%d—zfab(z,,u%,e) =3 Z Pu (2, aup) ® Lun(zpzn€),  a,b=gq,q.8. (6.13)
u

F a'=q,q.8

Since we are interested only in diagonal splitting kernels for our analysis, the correspond-
ing splitting functions P..(z,u%) are expanded around z = 1 and all those terms that do

not contribute to SV+NSV are dropped. The AP splitting functions near z = 1 take then
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the following form:

Pi(z.a,(uz)) = 2B'(a,u3)) (1 —2) + Pi(z a,(up)), (6.14)

where,

Pz a,up) = 2|ANau3)Do(z) + Cl(ay(uz)) In(1 - 2) + D' (a,(u7))

+0((1 - 2)). (6.15)

The above equation limited to only SV part is identical to the one given in Eq.(2.65). In
the rest of this chapter, we drop the terms in P} proportional to O((1 — z)) for our study.
The constants C’ and D' can be obtained from the the splitting functions P, which are
known to three loops in QCD [35, 36] (see [35, 36,201, 218-224] for the lower order
ones). Similar to the cusp and the collinear anomalous dimensions, the constants C! and

D" are also expanded in powers of a,(u7) as:

[ee) (o)

Cllagup) = Y diw)Cl,  D'ap) = ) dwiD}, (6.16)

i=1 i=1

where C I’ and D{ to third order are available in [35,36]. Our next task is to study the func-
tion S’ defined in Eq.(6.8) order by order in QCD perturbation theory. It should contain
right IR divergences to cancel those resulting from FF and AP kernels to give IR finite 4;.
Recall the IR structure of S in the SV limit that we discussed in previous chapters. It was
found that the function S’s demonstrate rich infrared structure in the SV approximation.
It provides framework to obtain SV contribution order by order in perturbation theory.
We have also seen that it demonstrate an all order result in z-space which allows one to
write the integral representation suitable for studying resummation in Mellin N-space.
In the following, we proceed along this direction to study NSV contributions in z-space
to all orders in perturbation theory and to provide an integral representation that can be

used for performing Mellin N-space resummation. Using Eqs.(6.9),(6.10) and the K+G
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equation of FFs as given in Eq. (6.11), it is straightforward to show that the functions S’

equivalently, @’ satisfy K+G type of first order differential equation:

q2diqzq)1 _ %[EI(&S’ IZ—IZ;, . Z) 4 61(&S’ Q_ 'Li €, Z)] , (617)

. . . . . —I .
where the right hand side of the above equation is written as a sum of K which accounts

for all the divergent terms and G which is a finite function of (z,€). In addition, @'s

satisfy renormalisation group invariance namely ,u,%% = 0 which implies
, d —i ) , d —iI ) —I )
M= K (as(up), 2) = —ur——=G (a,(ug), 2) = —A (a,(ug)d(l - 2), (6.18)
duy duy

where A" is analogous of cusp anomalous dimension that appears in K+G equation of FFs.
Integrating Eq.(6.17) after substituting the solutions of RGs for X and 51, the solution

@’ takes the most general form'

[e9)

o 1= 2
q)l(&s’ qz,ﬂz, Z,f) = Z &;(u

2 )'s i(li—_ez)éf @ ©). (6.19)
i=1

where S, = exp(5[ye — In(4x)]) with yg being the Euler Mascheroni constant. The form
of the solution given in Eq.(6.19) is inspired by the result for the production of a pair
of leptons in quark antiquark channel or Higgs boson in gluon fusion at next to leading
order in a;. The term (qz(:T_j)z)j in the parenthesis results from two body phase space
while @f (z,€)/(1 — z) comes from the square of the matrix elements for corresponding
amplitudes. In general, the term ¢?(1 — z)?/z inside the parenthesis is the hard scale in
the problem and it controls the evolution of @' at every order. The function ¢/(z, €) is
regular as z — 0 but contains poles in €. We have factored out 1/(1 — z) explicitly so that
it generates all the distributions 9 ;(z) and 6(1 — z) and NSV terms In*(1=2),k=0,---

when combined with the factor ((1 — z)*)*/* and ¢/(z, €) at each order in a,. Note that the

Note here that the solution (6.19) is different from the one given in Eq.(2.71) in the context of threshold
framework. Here, &l’ (z, €) is a general function which depends on (z, €), while the latter, ‘2’11 contains only
SV coefficients.
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term z~¢/?

inside the parenthesis does not give distributions D;(z) and 6(1 — z), however
they can contribute to NSV terms In’/(1-2), j=0,1,--- when we expand around z = 1. In
addition the terms proportional to (1 —z) in ¢/ near z = 1 also give NSV terms for ®'. We
rewrite the solution of @’ in a convenient form which separates SV terms from the NSV in
®’. Hence, we decompose @' as @ = @/ + @/ in such a way that ®!  contains only SV
terms and the remaining @/, contains next to soft-virtual terms in the limit z — 1. The
distribution d)év satisfies K+G equation given in (2.68), also see [30, 31] for details. An

all order solution for @/ in powers of @, in dimensional regularisation is given Eq.(2.71).

For convenience, we present it here:

N Oo,\i 2(1_)2i§,’ ] ~
<I>£v<as,q2,ﬂ2,e,z>=;as(qﬂ—f) S, (6.20)
where,
die) = [K (©)+Gyyi(e). (6.21)

the result of which are presented in Eq.(2.74). Similarly the integral representation for

@’ as given in Eq.(2.82) is:

g*(1 Z)zd 2

Ot z0) = (%_Z{ f % e S<AZ>)+6§(as(q2<1—z)z),e)})+

L) Soa(f) s g 6.22
+1—_Z+Zax—2 i K. () (6.22)

Having all the information about the SV coefficients, let us now study in detail the struc-

ture of ®!  using Eq.(6.17). Subtracting out the K+G equation for the SV part @/ from

nsv
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(6.17), we find that @’ satisfies

nsv

d 1 q2 lu2
GO R (G (e 6.23
q qu HSV(q ’ Z’ E) 2[ L(a ” /1123 > 2 63 Z)] s ( )
where G = G 5;,
7 M N 2
Gy (a. A €)= > d(d(1 - 2)G (2. € (6.24)
R i=1

I .
nsv*

Now integrating Eq.(6.23) we obtain the following structure for @

b ) 2 1 - z AN
QQ@wﬁﬁad=zﬁdi%rl)$#@d- (6.25)
i=1
The coeflicients ¢/(z, €) in Eq.(6.25) can be expressed as a sum of singular and finite part
in € given by,

oz, €) = ¢z, 0) + ¢ (2. 0), (6.26)

where the singular coefficients ¢’ , has an analogous structure to Eq.(2.50) with the sub-

stitution:

¢l iz € = K (e) : (6.27)

Al>—L1(z)

where L'(a(u%), z) can be expanded in powers of a,(u3) as

La(ud).2) = ) dWhLI). (6.28)

i=1

The coefficients go}l.(z, €) are finite in the limit € — 0 and can be written in terms of the

finite coeflicients G} (z. €) as,

1
SD}I(Z’ E) = EQIL,](Z’ 6) s

1 1
#1226 = 5 (G112 ) + 3-G15(z.€),
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1/4 1 1 4 1
#1220 = (38611 0) + 5( - 3616110 - $AuGLac O]+ 5-6latz. 0,
1

1 4
¢4z, €) = Z(281G1.1(z. €) + g(gﬁoﬁlglm(z, €) + 3661z, e))

1 1 1 3 1
+ (= PG = 3B1GLA(z ) = ShGla(z ) + -GLiz e, (629)
with

1O =xL @+ ) €6 (6.30)

J=1

where the coefficients y; ,(z) are:

X1.,@ =0,
X12() = —2B0G; 1 (2),
X153 = 28167\ () - 2ﬁo(g2}2<z) + 280G (z)),
X14(2) = =282\ @) = 281 (61 (2) + 4BoG1 4 (2))
=280 (61 (2) + 2B0G152) + 45361 5(D)) - (6.31)

The coefficients QZ(Z) in the above equations are parametrised in terms of In*(1 = 2),k =
0,1,--- and all the terms that vanish as z — 1 are dropped

i+j-1

Gl = G m - 2). (6.32)
k=0

The highest power of the In(1 — z) at every order depends on the order of the perturbation,
namely the power of a; and also the power of € at each order in a,;. Hence the summation

runs fromOtoi+ j— 1.

!

Decomposing into divergent and finite part, the @;, in Eq.(6.25) can be rewrite as:

1 2 2 qZ(I_Z)Z AZ 1 2 1 2 2
O (o oz) = f S @i -ze)|
12 €=

S ACRITARNIR (6.33)
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with,

*© 2\i5

Plla().2)= Y a(%) "Sigl (2 6). a=fs (6.34)

i=1
Here the first line of (6.33) is finite when € — 0 while ¢! in the second line is a divergent

term.

The fact that ®_ is RG invariant implies, from Eq.(6.33):

nsv

d
1y —kas(up), 2) = L'(ay(u3), 2). (6.35)
duy.

The fact that %7 in Eq.(6.10) is finite at every order in a; in the limit € — 0 allows us to

determine the coefficients L{ :
L =Cln(1 -z) + D!, (6.36)

which is nothing but the NSV part of AP splitting function at every order in perturbation

1

nsv*

theory. This completely fix the divergent piece of ® These coeflicients are related
to the cusp A! and collinear B! anomalous dimensions in the following way up to third

order:

D{:_A{, Dé:—A§+A{(B{_,BO),
D = - Ay - A (—Bﬁ +Br) - A3 (‘B{ +'8°) ’

2
Ci=0, Ci=(Al). Ci=24l4]. (6.37)

To see the structure of finite piece (,05», we first expand them in powers of renormalised

coupling a;:

[Se]

¢ag(1 - 2P0 = ) di(g*(1-2") g
i=1

[Se]

= d(@1-2) ) gPmia -2, (6.38)

i=1 k=0
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where the highest power of In(1 —z) are in accord with the same in Eq.(6.30). We will dis-

cuss more on this structure in subsequent sections. The coefficients <p ) can be expressed

I(Jk)a

in terms of their unrenormalized counter part G, ;s as:

L) _ 1,(1,k) —
MR k=0,1

5
|

(pé,(k) _ (; I(lk)_'_IBgI(Zk)), k=012

1
g = ( L1 | ﬁgl(Zk)+ ﬁogl(Zk)+ ﬁogmk))’ k=0,1,2.3

3
1
@i,(k) — (4 I(lk) ﬁ g[(Zk) ﬁ g[(Zk) ﬁ g[(Zk) +2,8ﬁ g1(3k)+ﬁogl(3k)
1286" “")), k=0,1,2,3,4 (6.39)

with g’ (2:3) Ql (24) g’ (2.4) g’ G are all zero.

Knowing the structure of divergent and finite pieces of ®,.,’, let us see how to obtain
the unknown coefficients Qi’fij’k)(z). At every order a', the coefficients Qi’ij’k) for various
values of k, j can be determine from 4;, ¥ %, Z/, @/, and I'; known to order @’ expanded in
double series expansion of €’ In*(1-2). In order to do this we use the available information

up to two loop level.

The explicit results for Ql U0 for bottom quark annihilation is found to be same as of

Drell-Yan till second order in a,, which are given by:

L1

3 7
T 1;(12 0 = 3Cpt, 21(13’0) - _CF(Eg2 + 54“3),

2804 290 656 44
21(21,0) — CACF( 27 - _42 - 56{3) + CFl’lf( - 7 + ?42) - 64C%~§2,
IZ,,(ZI,I) — ZOCF(CA - CF)a i(zl 2 = _8C]2~" s (6.40)

and for the Higgs boson production in gluon fusion:

3 7
G = 4ch, GV =3Cat GV =-Cil50+ 36)

2612 482 392 44
o1 - - s -2+ 4e)
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4
7= 3CalCa = ny), 2 = -8C3. (6.41)

The remaining coefficients up to second order are identically zero. Unlike the SV finite
coeflicients Q that appear in @/ (see Eq.(C.17) and more details in Sec.[2.3.1]), the
quark and gluon coefficients g’ U0 do not satisfy maximal non-abelian relation beyond
one loop. Recall that g satlsfy g = (Cr/Cy )éf’j, confirmed up to third order in a, as

shown in [30,31].

Third order contributions to 4; for DY became available very recently in [6] and for
the Higgs boson productions in gluon fusion as well as in bottom quark annihilation the
third order results were presented in [8, 225, 226]. The analytical results for FFs, over
all renormalisation constants, the functions @’ and I'; are all available up to third order
in the literature. Using these results, we can in principle extract the relevant coeflicients
ggﬁf”” to third order. In the absence of analytical results for second order corrections to
4, for positive powers of €, we can not determine the coeflicients QZE""‘) at the third order.
However, the combination of these coefficients namely <,0§ can be extracted for I = g (DY)
and I = b (bbH) and I = g (ggH) ) up to third order using the available results to third
order. We find for DY:

g = 4ce, @1V =0,

» 1402 112 328 16
#0 = CFCA( = —2853——éz)+c%<—32§2>+nch(—7+?42),
@iV = 10CrCy—10C}, @) = -4C;,
i 727211 29876 82868 176
QD;I(O) = CFC§(W+192§5— 77 {3— 31 §2+ 3 §2§3+120§22)
5143 2180 11584 2272
+C§CA(— O {2)+C3(23+48{3
32 448 155902 1292 26312 368
30T ‘:2)+”fCFCA( 729 T 9 St e 273 g)
. cz( 1309+496§ +2536g +3242) » (12656
n - —_— n
F~F 9 3 3T 7 2t I )t Cr Ty
160 704 )
27 % 277
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244 8 18436 544 964
o it S e 208 e
9 81 3 9
64 256 28
+C;’;( 3 —64§3+—{2)+nfCFCA(—7—3[;2)
3952 160
2 —— — —
+”fCF( 81 9 52)’
10 16
P = CFC§(34——{2)+C§CA( 96+—§2) (3)
1 4
+nchCA(— ?O)+nfcz( 30),
o 176 32
Y = CFCA( 27) " CF(27) (042
and for the Higgs boson production:
¢2’17(O) = 4CA, gb‘f(l)—o,
_ 1306 208 196 16
90527,(0) = CA( 77 —28{3__42) nfCA(—7+?{2),
2 2
g5 = Cf\(g)"'nfCA(_g), ¢§Z(22):—4C/24,

_ 563231 34292 113600 176 3488
= f‘( 720 T T TG T et ekt 42)
117778 1888 26780 232
(- -354)

G\ "0 T St Ty 9T 38
2653 616 40 32 , 5 1568 160 152
+”fCFCA( 7 tgatyaet 5‘:2)+”fcf‘( 729 T8 T g ‘:2)’
18988 448 1280 1528 248
o) _ 3 _ =8
3 = CA( 31 + 3 &+ 9 §)+”fCA( 31 - 843 52)
56
+I’lfCFCA(4 - —{2) + I’lfCA(27)
_ 1432 40 164 8
7 = Cf‘(_ 27 _§Z)+”fc/‘( 27 éz)+”fc‘*(27)

176 32
—g,3)
&9 = c(-57)+nci(3)

(6.43)

While the NSV function @/  for quarks and gluon are not related, they are found to be

nsv

universal up to second order in the sense that they do not depend on the hard process. For

example, to second order in a,, ®L, of DY is found to be identical to that of Higgs boson

production in bottom quark annihilation [123]. In addition, we find that they agree with

that of Graviton (G) production in quark annihilation processes [227-232]. In terms of

165



@?’(k) it translates to

o = g® = g™ i=1,2,k=0,i (6.44)

Lo lgegotl-+X Yo b+b—H+X L lg+g—G+X

Similarly, to second order in a,, @5, from Higgs boson production in gluon fusion is
found to be identical to that of graviton production in gluon fusion channel and pseudo
scalar Higgs boson production [233-238] in gluon fusion. That is,

_gs(k)
i

_ ()_Of,(k) _ ¢§,(k) i=1,2,k=0,i (6.45)

g+g—H+X g+g—A+X g+8—-G+X

However, the universality breaks at third order, namely, we find that the gbg’(k) fork=0,1

differs from that of DY production while for k = 2, 3 they agree.

@O = GO —16CACr(Cy - 2CF),
gV = @ £ 8CACR(Cy - 2CF),

g = gr® k=23 (6.46)

The origin of this violation for k = 0, 1 at third order, which has been evaluated using
the state-of-art results [6, 8, 225, 226], needs to be understood within the framework of

factorisation.

All order predictions for 4;

In this section, we discuss the predictive power of the master formula (6.9). In other
words, given Z’ F, @ and the I, up to a certain order in perturbation theory, we show
that the master formula can predict certain SV and NSV terms to all orders in pertur-

bation theory. The partonic coefficient function 4; can be expanded order by order in
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perturbation theory in powers of a,(u3) as

[

A g U 2) = Z a (WA 1 1%, 2) (6.47)

i=0
where the coefficient 4 Y) can be obtained by first expanding the exponential given in (6.10)
in powers of a,(uz) and then performing all the resulting convolutions in z-space. Note
that A;o) = 6(1 — z). We have dropped all those terms that are of order O((1 — 2)%), @ > 0.

Finally, we write the following decomposition ,

AN i 1132 2) = A5G i 11722 + AT i 1172 2)- (6:48)

Here A;V’(i) contains only SV terms, such as the distributions D;(z), (i = 0,1,---) and
o(1 — z) and next-to-SV terms, i.e., the logarithms lni(l -2), (i=0,1,---) are embedded
within AIIISV’@. Now given the distribution function D' upto a certain order in ay, there are
several SV and NSV logarithms which can be predicted to all orders in a,. For example,
we observe that if Y7 is known at leading order in a,, we can predict all the leading
distributions D;(z) and leading NSV terms In‘(1 — z) to all orders in a,. In the following,
we elaborate on this by comparing our predictions with the available N°LO results and

also predict N*LO and some higher order results for few observables.

Given P! at order ay, by expanding the master formula given in Eq.(6.9) in powers
of strong coupling constant, we obtain the leading SV terms such as (D3(Z),Z)2(Z)),
(D5(2). D).+ (D2i-1(2). Dria(2)) and the leading NSV terms In*(1 — 2),In°(1 —
2,0, ln2i_1(1 —2) at af,ai, - ,af; respectively for all i. Since C{ is identically zero,

In*(1 — z) terms do not contribute for all i. Hence we predict,

I

+aj - —40396 CiL] + O(LY)] + O0(@) (6.49)

A = a, 40 + @] - 128CRLE + O(L)| + | - S12CRLY + O(LY)]

N

Here we write In'(1-z) = L! for brevity. Also Cx = Cr for I = {g, b} i.e. for DY and Higgs
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production through bottom quark annihilation. And for Higgs production through gluon
fusion i.e. I = g, we have Cg = C4. Thus with the knowledge of one loop anomalous di-
mensions {C!, D!, AL, B!, f!} and one-loop @), we predicted the above NSV logarithms
and the known NNLO, N3LO results [8,225,226] for DY and Higgs boson productions

confirm this.

Similarly from ¥’ to order af, we can predict the tower consisting of (D3,D;), (Ds, Dy),

o (Di-3(2), Dai—a(z)) and of LY, LS, -+ L% atal,af,- -+ ,d respectively for all i. For

22720

the DY and Higgs production in bottom quark annihilation, our prediction reads as:

nsv nsv, nsv, 7040 1280
Ay = as A+ al A + ai[ = 512C; L] + ( 9 CrCa = 9 n;Cr
4096 39424 19712
¥ 1728C;)L;‘ ¥ O(Lg)] ¥ a;‘[ - SCH + (TC;CA +——Ci
7168
- Tnfc;)Lg ¥ O(Lg)] +0) (6.50)
and for the Higgs production in gluon fusion,
22592 1280
A =a 40+ @ AP 1 @t | - 512G + (S50 - G L
4096 98560 7168

Cch -

" O(Lg)] n a;‘[ - SRCH ( nfcf,)Lj " O(Lg)] 1O (6.51)

9 9

Our predictions for Li,i = 5,4 agree with the those obtained by explicit computation
[8,239]. For the comparison purpose, we have presented the logarithms only upto or-
der a*, however, the master formula can predict such logarithms to all orders in a;.
Thanks to [6, 8, 239], the third order results are now available for all these processes
allowing us to determine go} for I = g, b, g till third order. Using this, we can predict

a tower of (D3(2), D2(2)) , (Ds(2), Da(2)) - -+, (D1i-5(2), Dii—e(2)) and of L2, --- L2 at

at,a’,--- ,a respectively for all i. In the following for the illustrative purpose, we have

s Uy

presented the NSV terms L, till seventh order in a,. For DY, we find

4096 39424 19712
A = ag A + a2 A7 v ad APV + a‘s‘[{ - —C4F}LZ + {—C%CA +—

C4
1 3 9 3 O F
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7168 123904 805376
- e+ |- S ac - (T

45056 139520 4096
npCrCy + Tnfc; 7 ?CF}Lg + O(L;‘)]

- 307242)C}CA + (9088 + 20480§2)C4F

27
8192 51200 5 8192, 45056
5 5 9 5 4 8
L - L
“‘[{ 3C} {3C 3 Crny 3CCA}
72704 229376\ s (1120256 32768 81920 ,
+{( 3 T3 2) F ( 9 3 gz)CFCA g1 CF

, 194560 01120 2478080
65536 167936 180224 991232
6 6 6 5
‘[{ 15 C} { 5 CrT 7 CPut
. {(145408 5054464 s 327680 4 , (28997632
g1 FM T T FY 81
81920 3604480 9912320
- TR G )CHCn + g CiCany = CCA[1 + 0|
262144 2392064 1703936 9371648
7 7 13 7 6 6 12
EatnkiiiNo/N Y kdntiiie Cco.C4\L
“x[{ 45 F} 2 +{ 15 CFT T 135 Pt T35 CF A} z
{(1163264 , 3767168 ) ,, SSUISTT6 5 (315080704 262144 ) ]
15 15 *2)°F 205 P 405 5 o)A

917504 10092544 27754496
S Gt + L Cany - Tcgcg}Lgl +o<L;0)] +0(d), (6.52)

——=C3C }Lgo

¥ 196608§2)c2

for the Higgs production in bottom quark annihilation,

A = ag 4 + @k 4+ @l 47D 4 af 45 - 6144C1LY + O(LY)|

+a)[45 = 16384C5 L] + O(LY)| + af[ 4™ - 32768C5.L + O(LS)|

7 [Ansv’(7) 262144

+all4} . ——ciLl' + oLl + o) (6.53)

and for the Higgs production in gluon fusion,

nsv _ nsv,(1) 2 4nsv,(2) 3 4nsv,(3)
47" = as g +ag g +agdg

4096 98560 , 7168 298240
+a;‘[{— —CA} % { ct - fcg}LM{( > 2355242)c;§

3 9 9
174208 5 409 , [{ 8192 } {96256
3

5 4
+ 77 neCy— —— 77 ny }L +O(L)]
8192 } {( 12283904 262144 ) 2569216 4 81920 ,
6
AT

CS

- _CA”f 31 Al — 81 fCA}

65536 9490432 180224 671744
+O(LZ6-)] [{ }“ { 135 27— Can f}Llo {( 3

4261888 8493056 327680
- )Cf61+ —s1Cans — =g i€ }

2

O(LS)]
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262144 3309568 1703936 449429504
7 71713 7 6 12
+ — cripLd 4 c’ - C 12 ) - ==
‘[{ 45 A} ¢ { 27 A 135 Anf} ¢ {( 405

1310720 11583488 917504
+ Téz)c,l + Tcgnf — TnﬁCﬁ}LZ” + O(L;O)] +0(db). (6.54)

Our predictions for LZ, Lf and L§ terms at fourth order for 4; agree with those of [43,201—
203] predicted using physical evolution equations. As can be seen from Eqs.(6.52-6.54),
given the third order results, our master formula can predict three highest logarithms for
fifth order onwards in a,. For instance at ai, we can predict Lg, L8, LZ. Generalising this,
if we know %! up to nth order, we can predict (Ds;_2,+1(2), Dri—2,(z)) and Lfi‘” at every
order in ai for all i. Table[6.1] is devoted to summarise the predictions from the master
formula for any given order of a;. The explicit structure of 4; till four loop are presented
in the ancillary files submitted with the arXiv submission [193]. The predictive power
of the master formula to all orders in a, in terms of distributions and In(1 — z) terms in
Ay is due to the all order structure of the exponent ¥’ and this can be further exploited to

resum them. We devote a separate section for this.

| GIVEN | PREDICTIONS
’ wl(1) wl(2) wl3) () H 452) A§3) AE")
Do, D1, 6 D3, D, Ds, Dy Di-1y, Di-2)
(2i-1)
L}, L L L L
Do, Dy, 0 D3, Ds Di-3), Doi-4)
12,1}, L0 Lt L
Dy, D1, 06 Di-5), Dei-6)
L, 1 L&)
Dy, Dy, 06 Di-@2n-1y)> D@i-2n)
I ... LO L(2i—n)
70 s 7 <

Table 6.1: Towers of Distributions (D; = Di(z)) and NSV logarithms (L. = In‘(1 — z)) that can
be predicted for A; using Eq.(6.9). Here ¥') and A;’) denotes ! and A; at order ., respectively.

So far, we have compared our higher predictions for SV and NSV logarithms obtained
using the lower order results against those available in the literature and found that our all

order master formula correctly predicts these logarithms. For example, from the knowl-
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gg > H Drell-Yan (DY) bb — H
C3 | sy | =166 | 3 2272+ | 2272+ 736 + 736 +
3584, | 35844 + 307245 30724 30724, 30724,
m
Cgl| S0 | 886y, | hny |l | sy | wme ey,
2 -256 =256 2 —=111904 —-37184 —=111904 —-37184
Cany a7 7 CaCy 77 T 9 T 77 T 5 T
512{2 512{2+174 51242 512§2+7]4
2 =256 =256 =256 =256
Crny 57 57 55 =57
2816 2816 2816 2816
CaCrny =7 27 =7 =7
2 —7744 7744 7744 —7744
CACF 27 27 27 27

Table 6.2: Comparison of In*(1 — z) coefficients at the third order against exact results. The left
column stands for the exact results and the right column gives the respective contributions when
¥l is taken till two loop.

edge of the second order result for ¥/, we can correctly predict In’(1 — z) and In*(1 - 2)
terms at third order. Even though this second order information is not sufficient to predict
the lower order NSV logarithms, namely lnk(l —z)fork=3,2,1,0at a? level, we observe
that our predictions for these logarithms agree with the known results for several color
factors. In Table [6.2] we compare our predictions for 1n3(1 — z) terms at the third order,
which are obtained using ¥’ considered till a2, against the known results for the DY pro-
duction, Higgs productions in bottom quark annihilation and gluon fusion. As can be seen
from the table, the master formula correctly predicts the results for many color factors.
For instance, for DY, the predictions for color factors C3, Cpnj%, CsCrny and CiCr are
matching with the exact results. However for the other color factors, certain third order
information are required, which is represented as n; which when taken into account will

reproduce the exact In*(1 — 7) terms at third order.

171



I
nsv

More on the z-space NSV Solution ©

On the form of the solution

In this section, we discuss in detail the peculiar structure of SV and NSV solutions given in
Eq.(6.20) and Eq.(6.25) respectively, that satisfy the K+G equation (6.17). Both of them

contain divergent as well as finite terms at every order. For example, the SV part of the

I
sv?

solution, @, contains the right soft and collinear divergences proportional to distributions
o(1 = z) and Dy(z) to cancel those from the FF entirely and from the AP kernels partially
and the z dependent finite terms to correctly reproduce all the distributions in the SV part
of CFs 4;. The NSV part, ®!_, removes the remaining collinear divergences of the AP
kernels. The finite part of it when combined with SV counterpart of ®! contributes to
next-to-SV terms to CFs 4;. As we mentioned in the previous section, the z dependence
of the solution is inspired from the structure of various contributions that constitute the
next to leading order contributions to variety of inclusive reactions, namely production
of a pair of leptons in quark anti-quark annihilation, a Higgs boson in gluon fusion or
in bottom quark annihilation at hadron colliders. In addition, the renoramalisation group

equation, Eq.(6.35), brings in additional z dependent logarithmic structure through the

anomalous dimensions C/(a;) and D/ (ay).

Note that the solution given in (6.19) is organised in such a way that the term ®.  contains
only leading contributions namely the distributions such as 6(1-z) and D;(z), the so called

SV terms and the term ®!_, the sub-leading terms, i.e., the NSV logarithms ln"(l - 2).

nsv?
Even though ®! does not contain next-to-SV terms, they contribute to next-to-SV terms
to 4;, when the exponential is expanded in powers of a;. Not only do distributions result
from the convolutions of two or more distributions, they also give next-to-SV logarithms.

In addition, the convolution of distributions with next-to-SV terms in turn give pure NSV

logarithms. Hence, the leading solution ®! plays an important role for generating next-
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to-SV terms for the CFs 4; at every order in perturbation theory.

The solution (I)iV (see Eq.(6.20)) at every order in @, is found to factorise into z dependent
piece, ((1 —z)m)if/ 21%2 with m = 2, and the z independent coefficients &l’ (€). The peculiarity
of this solution is that we can retain the independence of g?ﬁf (e) with respect to the variable
z at every order in &g, thanks to presence of the factor ((1 — z)’")ie/ 2(1+Z) which not only
ensures the finiteness of SV part of CFs 4; but also gives right distributions at every
order. The factor m takes the value m = 2 for DY and Higgs productions as observed
in Eq.(6.20) and the origin of it can be traced to the number of external legs that require
mass factorisation [31]. It was observed in [31,240] that the parameter m takes the value
m = 1 for the SV part of the solutions to CFs of structure functions of Deep Inelastic
Scattering (DIS) and of Semi-Inclusive Annihilation (SIA) of hadron production and the
reason is that only one of the external legs requires mass factorisation. The uniqueness of

the structure of @f may be attributed to the fact that the entire z dependence of the solution

factorises at every order as ((1 — z)m)is/ 21—; leaving (2511 (€) z-independent.

Like SV part, the NSV part of the solution is also determined by demanding that it should
contain the right divergences to cancel those present in AP kernels. The structure of the
finite part of the solution is determined by Eq.(6.33), which when combined with SV part
of the solution, reproduces the correct NSV terms for 4;,. The perturbative structure of
higher order results allows only certain powers of logarithms at every order in perturba-
tion theory thanks to inherent transcendentality structure of Feynman integrals that appear
at every order in a, and in € in the dimensionally regularised theory. We find that the coef-
ficients gpf (z, €) are consistent with this expectaion. In addition, the solution demonstrates
an interesting structure that deserves a mention. We find that the K+G equation allows us
to construct not just one solution but a class of solutions, a minimal class, satisfying the

right divergent structure as well as the dependence on lnk(l -2,k=0,1,---:

i ) 2 1 —7) 176 )
O, = > (u) S @iz ). (6.55)
, ” ,

i=1
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The predictions from the solutions ®!_  are found to be independent of choice of @ owing

nsv,a

to the explicit z-dependence of the coefficients ¢! (z, €) at every order in &, and in €. It

i
is straightforward to show that any variation of « in the factor (1 — z)™®¢ can always be
compensated by suitably adjusting the z independent coefficients of In(1 — z) terms in
¢! /(z,€) at every order in &,. The reason for this is the invariance of the solution under
certain “gauge like" transformations on both (1 — z)™®¢ and (p}’a(z, €) at every order in a,.
Note that the logarithmic structure of go(’l’i(z, €) plays an important role. Because of this
invariance, these transformations neither affect the divergent structure nor the finite parts
of @/, ,. We find that the invariance can be realised through the renormalisation group

equation of strong coupling constant. To end, the solution given in Eq.(6.55) takes the

following integral form:

1 r-r /12 1 2 1 2
qDnsva' = fZ 714 (as(/l )7 Z) + (pf,a/(as(q (1 - Z)a)’ <, E)|e=0
HE

+90£(as(ﬂF)’ s 6) ’ (656)
The finite part 9"},0 can be expanded as
¢l ala @1 =2, 2) = D a(@(1 -2 D hP (1 - 2). (6.57)
=0

i=1

The fact that the predictions are insensitive to « relates the coefficient 953(1']() to @f’(k), the

solution corresponding to @ = 2, through

gb(ly(;)) — @{ (0)’ Sb(ly,,(ll) — DI & + 90{ (1)’ SB(IZ (g) — ¢; (0)

Py = —&(D’ Bo?”) + 75",

@2}22) = ——6/2,30D1 - a/(CI ,BOSOI(D) 902’(2)

—(I;f;)) — ¢§(O)’ 901(1) —a(DI Bip —I(O) — 2B, (,DI(O)) + "bg(l)

G = @(3BD) +BDh~ Br'B) - 6(ChE — gl ~ 280gh ) + 51

1
¢ = g~ 3pia s @p ) pa( - 26+ 1
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-1,(0)
a4

_1,(0) _I(1)

20 By = =Dy + 0@, + 28108, + 3hoag;” + ¢

+(,04

—1,(2)

wi = —Cia- ﬁzD’ & - B D& —_,301)15[ +—,3,30/2 S10)

+6,a00 + 36% L + 281395 + 3Boagt "V + gi?
g‘oi;fj) = Bo’a hs I(O) +B()2c~x ( 20z + 3 I(1>) - —ﬁla(6C2af + Sﬁoa(Dla 3<p1(1))

_12 Le 13

—12cp2( )) - —,Boa/(CIaf 205 . )) + 904( )
&y = Bo (— —D\& + & “”) + B ( Cla + 3¢5 >) +3B0a@ ) + @ (6.58)
where @ = @ — 2. The above relations are the transformations for gbi’(l.k) that are required
to compensate the contributions resulting from the change in the exponent of (1 — z) from
i€ to iae. This invariance property with repect to the parameter @ makes the solution a

peculiar one compared to SV counter part.

We would like to point out that the class of solutions parametrized by « is not the only
one that satisfies K+G equation. For example, if we do not restrict z-dependence, we can
obtain different kinds of solution. Then for such solution, we need to add more terms on
the right hand side of (6.55) in such a way that all the requirements are fulfilled. In other

words if we assume the following form for the solution,

P =2 Z (Z(I_Z)) SN () (6.59)

with various N/ .(€)’s to containing right divergent as well as finite terms and then sum

them up over as, we can obtain 4; that agrees with the known result.

In the present work, we use the minimal solution with the choice @« = 2 in Eq.(6.55)
so that the solution resembles more like the SV part. Thanks to the invariance property
of the solution, the different choices for a neither alter the qualitative behaviour nor the
quantitative predictions for 4, to all orders. For example, an alternate choice, say @ = 1
can only change the coefficients of In“(1 — z) in the 4,05[ without affecting the all order

structure and the predictions for 4;. With our choice of @ = 2, the all order solution,
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equivalently integral respresentation resembles that of SV part. We will see later that this
choice will allow us to study N-space resummation for both SV and NSV terms with

single order one term namely w = 2a,5,In N.

On the Logarithmic Structure

In the last section, we derived z space result that can correctly predict certain SV and
NSV terms to all orders from the knowledge of previous orders. This was possible due to
a peculiar logarithm structure of the solution to K+G equation at every order in a, and €,
see Eq. (6.32). In this sub section, we present an explicit result for ®°, ¢ = b to second
order in perturbation theory in order to explain the structure of SV and NSV logarithms
at a given order in a, with an accuracy of €. We have used inclusive cross section for the
production of Higgs boson in bottom quark annihilation for this purpose. The conclusions
remain unchanged as long as color neutral production in diagonal channels are considered.
To order &2, the inclusive cross section for the production of Higgs boson in bottom quark

annihilation receives contributions from a) pure real emissions

b+b—H+g, b+b—>H+g+g b+b—>H+b+b, b+b—>H+q+3,

b) pure virtual corrections through one and two loop corrections to leading order b + b —
H and c) interference of pure real emission process b + b — H + g with the loop cor-
rected process b + b — H + g. Here, g refers light quarks leaving #- and b-quarks. We
compute these parton level sub processes using the standard Feynman diagram approach.
Beyond the leading order in strong coupling, all these sub processes develop UV and
IR divergences and they are regulated in dimensional regularisation. As we encounter
large number of Feynman diagrams, we use QGRAF to generate them and an in-house
FORM routine to perform all the symbolic manipulations, e.g. for Dirac, S U(N) color and
Lorentz algebra. We use the integration-by-parts identities through a Mathematica based

package, LiteRed, to reduce Feynman integrals to a minimum set of master integrals. In
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addition, for real emission and real-virtual processes the method of reverse unitarity is
used along with IBP identities to reduce the resulting phase-space integrals to a set of few
master integrals. The master integrals for the virtual processes can be found in [50, 151]
and for the real emission in [151] up to desired accuracy in €. While individual sub pro-
cesses contain UV, soft and collinear divergences, after renormalising the strong coupling
constant a, and the Yukawa coupling A, the sum becomes UV finite. In addition, the soft
and final state collinear divergences cancel in real and virtual sub processes leaving only

initial state collinear divergences in & ;.

Since we are interested only in those terms that are proportional to distributions and NSV
logarithms In“(1 — z), we expand &; around z = 1 and drop those terms that vanish
when z — 1. In order to extract ®° from the latter, we follow (6.8), where the virtual
contributions are factored out from & giving rise to the function S’. Owing to (6.17), S’

has an exponential structure
8@’ €) = Cexp(20°(z. ¢*. o)) (6.60)

where ®° = @2 + @ . Expanding ®°  in powers of a; as

e 2 2\i%
~ Al (1 - Z) 12
(Dgsv(as’ :uz’ qz’ % E) = Z as(q—Z) ESOI (Z’ 6)

- E a;(—z) SLdL, (ze), (6.61)
. H

and using explicit results for 67;"™", Z, and F*, we obtain (I)(’) , fori = 1,2 in powers of

€. They are given by

CI)b

nsv,1

1 4
CF{Z( -~ 8) + ( — 8L, + 4) + e( — 412 + +4L, + 3{2) + Ez( - §L§ + 212
7 3 1 2 3 7 3
+30L; - (—53 + 552)) (— LI+ S0+ Eész - (553 + Eéz)Lz

)
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1 /88 1/176 664 176 1238
TL TR NN

e\ 3 9 3 9
1402 178 352 2341 2750
e Y L+ (1 - )L2 (
t o7 TG {2) ( 9 e TN Rl
356 34 4021 982 1
=560 = 2L oty = S+ 2ot =43+ CH{ 2 161
9 81 €
, 74, 13,
+ 12) + (28LZ +14L, - 3252) + e(?LZ + L2 (6 - 76{2)Lz
1/=16\ 1/-32. 112y (=32,
~8+486 0} + CF”f{z(T) e )+ (5
224\ 28 328 64 . 204 56 656
el e R D+ 222y ( ——)
+(9)Z+352 27) (9 9 3927 %7
1030 124 196
LG sy s A 1§ 62
81 95 42)} (6.62)

As can be seen from the above results, at order d,, the leading pole in € is of order one and
it is two at &2 and the increment of one unit for the leading poles is expected to continue with
the order of perturbation. However, the pole structure for 5 shows an increment of two units.
In addition, at every order in ay, for a given color factor, the combination of € and the leading
logarithm shows uniform transcendentality weight. In other words, if we assign n. weight for ™"«
and ny, for In"2(1 — z), then the highest weight at every order in € shows uniform transcendentality
w = n¢ + ny. For instance, at one loop, we find w = 1 at every order of € and at two loops it is two
(w = 2). This clearly explains that the highest power of In(1 — z) at every order in € is constrained
by the order of &, and the accuracy in € and is found to be i + j for the term &' e’/. This translates
toi+ j— 1 for ngl in Eq.(6.32) as the latter is the coefficient of €/~!'. This exercise provides an

explanation for the logarithmic structure given in Eq.(6.32), in particular the upper limit of the

summation. This logarithmic structure determines the structure of go} given in Eq.(6.38).

Precisely because of the logarithmic structure of the exponents, namely, increment by one unit,
we get logarithms in CFs with increment of two units. It is easy to understand this structure if
we observe that when we expand the exponents containing Dy(z) and lnk(l — 7) to obtain CFs,
the resulting convolutions between various orders in a; will be of the form Dy (z) ® D;(z) and/or

Di(z) ® In‘(1 = 2) which will result in leading distributions Dy 11(z) and leading NSV logarithms

lnk+l+1(1 _ Z)-
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Resummation of next-to-SV in N-space

To study all order behavior of 4; in Mellin space, it is convenient to use the integral representations

of both @/, and ®!, given in (2.71) and (6.33) respectively. Substituting the solutions for ¥, 7!

nsv

and @!

nsv

in (6.9), we find

. . . 1
and In I'7 along with the integral representations for @,

AG s 17, 2) = Ch(q? b, p17) Cexp (2%(q2,u%,z>), (6.63)
where
1 2 2 1 qZ(l_Z)z 12 2 4 2 2
Vp(g'up2) = 5 | —5 Pilas(), 2 + @(ay(q’ (1 - 97),2), (6.64)
HE
with

Qa(g*(1-2*).2) = (Léivms(qza—z)z))) +¢lag(g*(1 = 2°),2).  (6.65)

1-z

The coefficient C(I) is z independent coefficient and is expanded in powers of a S(/lee) as

[ee)

CO@ o113 = D @ GRICH AT 150 1) (6.66)
i=0

The C (’), being z-independent, is identical to the one in threshold limit and can find C (’) for DY and
Higgs production in [54]. The Eq.(6.63) is our z-space resummed result for 4; in integral repre-
sentation which can be used to predict SV and NSV terms to all orders in perturbation theory in

. . . . = .
terms of universal anomalous dimensions, A’, B/, C!, D, f!, SV coefficients G;”, NSV coefficients

1,(j.k
g (k)

. and process dependent C(I)i . We have few comments in order. The next-to-SV corrections

to various inclusive processes were studied in a series of papers [194—-197,205,206,241] and lot
of progress have been made which lead to better understanding of the underlying physics. Our
result has close resemblance with the one which was conjectured in [194] and indeed there are few
terms which are common in both the results. Our result, (6.64) differs from Eq.(31) in [194], in
the upper limit of the integral, the presence of extra term go} and the dependence on the variable

z. These differences do not alter the SV predictions but will give NSV terms different from those
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obtained using Eq.(31) of [194].

The Mellin moment of 4; is now straight forward to compute using the integral representation
given in Eq.(6.64). Note that the (6.64) is suitable for obtaining only SV and NSV terms while the
predictions beyond NSV terms such as those proportional to O((1—z)" In’(1-z)); n, j > 0in z-space
and terms of O(1/N?) in N-space will not be correct! Hence, we compute the Mellin moment of
(6.63) in the appropriate limit of N such that the resulting expression in N-space correctly predicts
all the SV and NSV terms. The limit z — 1 translates to N — co and if one is interested to include
NSV terms, we need to keep O(1/N) corrections in the large N limit. The Mellin moment of 4; is

given by
AN 1o 1) = Co(q 1o 17) exp (PR 117)) (6.67)
where
1
P ) =2 [ a0 (6.68)
0

The computation of Mellin moment in the large N limit which retains SV and NSV terms involves
two major steps: (1) Following [194] and we replace [ dz(z¥~' = 1)/(1-z) and [ dzz"~! by a theta
function 6(1-z—1/N) and apply the operators I'4(N %) and I'p(N %) on the integrals respectively;
(2)We perform the integrals over A2 after expressing ay(4%) in terms of a S(ylze) obtained using
resummed solution to RG equation of a; in (F.5). Step 1 makes sure that we retain only In/(N) and
(1/N)1In/(N) terms and step 2 guarantees the resummation of 25ya s(ﬂ,ze) In(N) terms to all orders
and also the organisation of the result in powers of as(ufe) . The details of the computation are
described in the Appendix F . The Mellin moment of the exponent takes the following form:

1 _ gl 1
YIN - g/sv,N + g/nsv,N

(6.69)

where we have split SV[{, in such a way that all those terms that are functions of In/ (N),j=0,1,---

are kept in ?’SIV’N and the remaining terms that are proportional to (1/N)In/(N), j = 0,1,--- are
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. . [
contained in Y’HSV’N. Hence,

V2, N = In(gf(as(up)) + g1 (@) In(N) + > al(up)gh (@), (6.70)
i=0

where g{ (w) are identical to those in [60, 149, 242] obtained from the resummed formula for SV
terms. For completeness, we present them in Appendix E. It is to be noted that g{ (w) vanishes in

the limit w — 0. The coefficients g(’)(a s) is expanded in powers of a; as (see [242])

In(gh(asup)) = D auRgh,; - 6.71)

i=1

The N-independent coefficients C(I) and g(I) are related to the coefficients g{) given in the paper

[149,243] using the following relation,
80(@* i i) = Co(d’s s 1) 8o(as(uig)) (6.72)

which can be expanded in terms of a s(,uI%) as,

2h(asip) = > dup)t, - (6.73)
i=0

The coefficient Eé,i are presented in the Appendix E, which are solely coming from the SV part.

Now let us discuss NSV piece. The function SVI{SV N 18 given by

l &
P = 3y 80 (8 (@) + ). 6749
with
W, N) = > (@) In“ ). (6.75)
k=0
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where g{ (w) are given by *:

1

dw = 2
: Bo "’

gz<w>=(1_1w)[D—l—2—; v /;fl(ww) Al(2+ 27 = Ly + L1 - 0

Fh(w) = ﬁ[Dé{%} +D{{ %? +Bo(1+vE - ;Lqr)} - 2—3{1 - e
+A’{ ﬁ;( —%w2+iw)—(2+2yE—Lq,+Lfr(1—w)z)}—’lg;—?%z
+A1{2/;18(w L)+§(2+2yE Ly Lo~ 260(2ye + Vs + 02— L
~ Loy + 31, - 30 -7,

gy(w) = ﬁ[D{{%(—w—ZwZ )+ % + (1 +ye - ;Lq,)(l -2L,)

+2/33(27E+7§+§z—Lqr—LqryE+ 1 q,)}+D’{ ZI)ZW+,80(2+2)/E
1
1 1
- L, )}+ DI {l—a)+ w}+Al{ﬂl(w w? + a)3+L) 2
2 Bo 3 B2 3
2 2
w I ﬁ 1 3 -2 ﬁg
—2’)/E+Lqr—Lfr+3Lfr(l—a)+?) }+A {ﬁo( g(&) —Lw)—ﬁ—%
1 _
(1__("))(“‘) +2B (2+27E qr)Lw_ﬁo(S')/E+4’}/é+4§2—4Lqr(1+’yE)
3 Bo
2 3
2 2 2 w I Byl 2
+Lq,—Lfr+3Lfr(1—w+?)w)}+Al{__( Wt —

BiB2 2 5. 7 Bz o1 1 B
—3Lw) ,30 ( —gw +Lw)w—ﬁ—%w (2—5(1) ﬂ_%

B2 1
“)+ % (2= 2yp + Ly )w + Bi( - dye — 295 — 20 + 2Ly, - ZLZ,
Bi >

+2LgyE)(1 - 2Ly) + > L3,(1 - w)’ - B(8yE +

e

1
573 + —653 +2(40 + L)

1
(14 78) = ALy ye@ + ye) - ALylo = 3L, + 313,01 - o)} | (6.76)

- 2
Here L, = In(1 — w), Ly = ln(Z—i), L¢ = 1n(2‘—§) and w = Zﬂoas(,u]z{,) In(N). Also, D{ are the
R R

threshold exponent defined in terms of ESCV :

D’ (a, (4°(1 - 2)%)) ia (41 - 2)*) D!

i=1

2 gg(a))are given in the ancillary files submitted with the arXiv submission [193]
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=2Gy, (a; (421 - 27).€) (6.77)

e=0

Also the resummation constants h’ (w) are given by *:

I 2 - Bl Byl
ho(w)—ﬂ— -y, C, +v/D;

I 2 ; B I
hy(w) = ,B_L -7 Cif

| 1 [%D 281 Dy s G
ho(w) = - ﬁ% {y +71L } ﬁ(z) —C {y2w+y2L }— ﬁ—071w+2ﬂ 72w

14 10
-2 o ) B +207 0 B + 2D1{ q,yf - Lfryf + Lfryfa) - 2)/5} - 2C{{Lqr’y129 - Lfryg

+ Lfrygw - 4y§}] ,

1 - cl
h{l(w) = M[%C{{ - nyw - nyL } + 2ﬁ_71 w— 2901(]) By Cl{ 2Lqryf + 2Lfryf
0
w 90[ @
—2L#yBw + 4 B}+ { 2 B}]
eI o) g
1 2c! C c! -
hél(w) :—2[B131{ +y1L2} ﬁzzlyfwz+B122{—2w+w2—2Lw}yf
(I -w)?l By By By
CI -1,(1) _ CI
+ _{271 w = 7’?“)2} + 231% YLy + al {qur Y — 4y, }L + 4'1(2) 2
Bo Bo Bo

— 250y B + Cz{ 2L,yE + 2L yE(1 - w)* + 472} + 280} ){Lqr% 272}

+,80CI {LqryjlB 4Lq,y§ - L;ry? + 2L§ryf3w + Syf - L%ryfwz}} ,

w [-2'®
1 3 B
hQZ(U‘)) = (] _ (,L))3 ,30 71]9
- _1,12)
1 _ (Bp )
(W) = Tor _4),{31%0{ ﬁi } 6 1(3) +2¢3(2> — 48, 901<2){ V. }]
w :¢1,(4)
4
S el
1 128 18
hp(w) = ——— %@’(2){3 —2w-2L } 4 GOy + —21 B A DYBT, 1 241Gy B
(1 - W)l g ﬁO Bo
661 PN

_I 3 _1,2 _1,2
=5 % YLy =6 DB 1 2ghDyE — 4p, 5l ){ e = 3L, YL, —2y5 + 672Lw}

1,3 1, 1,2
+ 18B0@; (){ Lyys —473} 680" (){ oV - 272}+6/3§s02( ){ 2 Ve —4LgyS

3The results of (h)(w), ki (w), hi (W), b (w), ki, (w)) are provided in the ancillary files of [193].
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+ Syf}],

2 [3B1 1) BT 14 13 13
hig(w) = m[—%’( VL + 405 D8 — 8,0 + 3808 Ly - 208 }] :

B
h§4(w):(1_w)5[ ﬁz yf}, (6.78)

We can see that in each coefficient, say g{ (w),?{ (w), h{k(w) from the SV as well as the NSV, we
are resumming in Mellin space “order one" term w to all orders in perturbation theory. This is the
consequence of the argument in the coupling constant a,(¢>(1 — z)?) resulting from the integral
over A and the function Q. The peculiarity of the series is that the SV g{ (w) comes with In N
and hence it starts with a double logarithm. This extra In N arises from the Mellin moment of the
factor 1/(1 — z), appearing in the exponent. Similarly for S”I{SV’N we note that it is proportional
to 1/N at every order as expected. Explicit In N that appear with h{k(w) results from the explicit
In(1 — x) appearing in the exponent. The sum containing g;’ ,i =1,2,-- results entirely from A’
coeflicients of P; and from the function E:V of (6.65). We find that none of the coefficients g{ (w)
contains explicit In(N). The second sum comes from C!, D! coefficients of P} and from gojc and
each term in this expansion contains explicit lnk(N ),k =0,---,i. We find that coefficient of h(’)1 1S

proportional to C{ which is identically zero. Hence, at order 612, there is no (1/N) In(N) term.

Summarising, we find that in Mellin N-space one obtains compact expression for the exponent in
terms of quantities that are functions of w = 2a S(u?e)ﬁo In(N) as we use resummed ag to perform
the integral. In addition, the resummed a; allows us to organise the N-space perturbative expansion
in such a way that w is treated as order one at every order in a s(/xfe). Both integral representation in
z-space and Mellin moment of the integral in N-space contain exactly same information and hence
predict SV and NSV logarithms to all orders in perturbation theory. The all order structure is more
transparent in N-space compared to z-space result and it is technically easy to use resummed result

in N-space for any phenomenological studies.

Let us first consider ‘}’SIV’N given in (6.70). If we keep only g and g; terms in (6.70) and expand
the exponent in powers of a; = as(yi), we can can predict leading a’ In*(N) terms for all i > 1.
This happens because of the all order structure of @/ in z-space. For example if we know @/,

to order a;, we can predict rest of the other terms of the form @\ Dy;_(z) in ®., for all i > 1. If
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we further include g, ; and g; terms, then we can predict next to leading a. In*~1(N) terms for all
i > 2. Again this is due to the fact that in z-space, knowing @/, to second order one can predict
ai D;_»(z) terms for all i > 3. In general, resummed result with terms gé’o, X -§6,n_ , and g{ oo gl

can predict . In* (N or @’ D»;_,(z) terms for i > n.

The inclusion of sub leading terms through exp (‘PI{SV N) gives additional (1/N)In/(N) terms in
N-space or In/(1 — z) terms in z-space. In perturbative QCD, C{ = 0, where I = ¢, g and we use

this in the rest of our analysis. Like the SVS’V N €xponent, ‘PI{ also organises the perturbation

sv,N

theory by keeping 2ax(;1126),80 In(N) terms as order one at every order in a;. However these terms

are suppressed by 1/N factor at every order in a;.

We find that if we keep {g{),o, g{ } in Y’SIV’N and {g{, h(I)} in ’PI{SV’N and drop the rest, one can predict
(@' /N) In*~1(N) terms for CFs for all i > 1. We call this tower of logarithms by NSV-Leading

Logarithm (NSV-LL). Similarly, knowing, along with the previous ones, {gé’l,gé} in ¥/ N and

sV,

{ gé, h{} in S”é < N One can predict (af;. /N) 1n2i—2(N ) for CFs for all i > 2. This belongs to NSV-Next-

to-Leading Logarithm (NSV-NLL). In general, resummed result with g{,--- ,g’  and hl,-- - A}

n

in P/ along with g0, - -, 8), and gl,- - -, gl | in ¥/  can predict (a}/N) In*"""*D(N) for all

nsv,N sv,N

i > n in Mellin space N and it is NSV-N"LL. We summarise our findings in the Table [6.3] below.

GIVEN PREDICTIONS

Logarithmic Resummed Aﬁ, 4’331{/ Agl;v
Accuracy Exponents

—I _ i—

NSV-LL 20.0-81- 815 ) L, Ly, Ly

—I _ i—

NSV-NLL 80,1585 85: 1} Ly Ly

—I _ i—

NSV-N2LL 80.2- 85 85. 1 Ly~

1 g 2i-(n+1)
NSV-N"LL gO,n’gn+l’gn+l’hn LN '

Table 6.3: The all order predictions for 1/N coefficients of A]IV for a given set of resummation
coefficients {gé,i, gl((w), gf(w), hl{(w)} at a given order. Here Lﬁv = % In‘(N)

We find that unlike SV resummed terms, which result from only Dg(z) and ay(g*(1 — z)?), the

resummation of NSV terms is controlled in addition by In(1 — z) at each order in a; as can be seen
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1

I, at each order along with resummed a(¢*(1 —

from (6.64). This logarithmic dependence in ©
2)%), allows one to reorganize order one terms differently from SV case. Hence, the resulting NSV

resumed result has different logarithmic structure in terms of order one w compared to that of SV.

Few remarks on the resummed result are in order in the light of previous section. Note that we

I

considered a particular solution @,

that corresponds to the case @ = 2 and summed up order
one terms w in Mellin N-space using the resummed solution to RGE of a;. While the SV part is
insensitive to @, the NSV terms, namely the resummation exponents /!(w) depend on a (@ = 2)
through w resulting from a,(¢>/N®) and the coefficients g?z(]l”(f). We had already seen how g‘p(’l’fl.k)
transforms with respect to @. The resummed result in the N-space for arbitrary « will be function
of aS(q2 /N?). This will lead to resummation of order one w, = a/,BoaS(/JI%) In N to all orders in aj.
Hence, the summation of order one w, terms with @ dependent coefficients goé”(l.k) leads variety of
resummed predictions each depending on the choice of @. However, the fixed order predictions

for the CFs 4; will be unaffected, thanks to the invariance in NSV solution. This invariance has

allowed us to choose @ = 2 to resum order one w terms analogous to SV counterpart.

There have been several attempts [199,200,204-206] in the past to understand the structure of NSV
logarithms of inclusive cross sections and its all order structure and in this context, we compare
our prediction at LL level for CF of DY, A;{}LL against that of [204]. Note that the [204] contains
NSV terms only to LL accuracy. In [204] , within the framework of soft-collinear effective the-
ory (SCET), the authors have obtained leading logarithmic terms at NSV for the quark-antiquark
production channel of the DY process to all orders in a;. This was achieved by extending the fac-
torisation properties of the cross section to NSV level and using renormalisation group equations

of NSV operators and soft functions. Using our N-space result, in the LL approximation, that is

for DY
AT =g g exp [lnN ghw) + %(g{ (W) + I (w, N))]’LL (6.79)
we obtain,
A = exp[8Cra( WP N + h’TN)] (6.80)
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where we have expanded the exponents in powers of a; and kept only terms of O(1/N). The above

N-space result can be Mellin transformed to z-space and it reads as
AR = Agfsg — 16Crayexp |8CragIn*(1 - 2)|In(1 - 2) (6.81)

The above result agrees exactly with Eq.(4.2) of [204] for u = Q. Our result given in (6.69) con-
tains terms that can in principle resum N"LL, n > 0 provided the universal anomalous dimensions
and process dependent coeflicients are available to desired accuracy in a;. Hence given three loop
results, which are available for several observables, we can perform N’LL resummation taking

into account NSV logarithms.

The numerical effects of the SV4+NSV logartihms have been studied in [244] for the invariant
mass distribution of a pair of leptons in DY process at the LHC. The numerical significance of
these contributions for fixed order calculations in QCD till N°LO is shown in [239] for Drell-Yan
process. We find the similar trend for the SV+NSV resummed results as well, wherein a significant
enhancement could be observed when the resummed NSV corrections are taken into account. This
is illustrated in Table 6.4 where we quote the SV and SV+NSV resummed results along with the

fixed order ones for the central scales Q = ug = ur = 1000 and 2000 GeV.

Q=ug=ur NNLO NNLO +NNLL | NNLO+NNLL

0.20% 0.36% 1,13%
1000 3.28761020%| 3.2993+036% | 331917 }13%
0.37% 0.32% 0.89%
2000 0.0684*037%| 0.0687+032% | 0.0692+0:8%%

Table 6.4: Values of SV and SV+NSV resummed cross section in 10~> pb/GeV at second
logarithmic accuracy in comparison to the fixed order results at different central scales .

Here NNLO+NNLL denotes the SV resummed cross section, while NNLO + NNLL refers to
the SV+NSV resummed results. Also, the uncertainity arising from renormalization, ug, and
factorization, up, scales are depicted in terms of percentage errors, which are calculated using
7-point scale variation approach. From these values, it can be observed that the uncertainity band
starts widening when we include the NSV corrections. A detailed investigation on this leads to

the fact that these large variations are mostly arising due to the ur uncertainity. Note that we
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have not included resummed contributions from other channels such as qg which are numerically
comparable to the diagonal channel. The inclusion of them can reduce the yr dependence because
different partonic channels mix under yr variations when they are convoluted with the appropreate
PDFs. However, for the case of renormalization scale variations, the partonic channels do not mix,
leading to less sensitivity of our predictions to this scale. This is evident from the Table 6.5 where
we depict the ug variations of SV4+NSV resummed results focusing only the contribution coming

from gg-channel.

Q=ug=pr | NNLO, | NNLO,; +NNLL | NNLO,; + NNLL

0.49% 0.25% 0.006%
1000 3.526004%%| 3.5376+0.25% 3.5576+0.906

0.54% 0.19% 0.0%
2000 0.0717+0:34%] 0.0721+019% 0.0725+09%

Table 6.5: Comparison of SV and SV+NSV resummed cross section in 10~> pb/GeV for
gg-channel at different central scales.

Physical Evolution Kernel

In the past, in [245], the scheme invariant approach through physical evolution equation was ex-
plored to understand the structure of NSV terms for the coefficient functions of DIS cross section.
The physical evolution kernel that controls the evolution of the physical obervables with respect
to external scale ¢ is invariant under scheme transformations with respect to renormalisation and
factorisation. This property can be exploited to understand certain universal structure of pertur-
bative predictions. By suitably modifying physical evolution kernel (PEK) [245] with the help of
scales in the strong coupling constant and using the renormalisation group invariance, predictions
at second and third orders for the CFs of DIS structure functions were made, given the known
lower order results for CFs. Even though, the predictions did not agree for some of the color fac-
tors, it was found that they were very close to the known results. Using the second order results for
DIS, semi-inclusive e*e™ annihilation and DY, a striking observation was made by Moch and Vogt

in [202] (and [43,203]) on the PEK namely the enhancement of a single-logarithms at large z to
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all order in 1 — z. It was found that if one conjuctures that it will hold true at every order in ay, the
structure of corresponding leading In(1 — z) terms in the kernel can be constrained. This allowed
them to predict certain next-to-SV logarithms at higher orders in a; which are in agreement with

the known results up to third order.

Motivated by this approach, we use our formulation that describes next-to-SV logarithms both in z
and N-spaces to study the structure of physical evolution equation and present our findings on the
structure of leading logarithms in the PEK. For convenience we work in Mellin space. The Mellin

moment of hadronic cross section o-(¢%, 7) is given by

1
on(g?) = j; drtV o (¢, 7) (6.82)

The hadronic observable o(¢?, 7) is renormalisation scheme (RS) independent namely it does not
depend on the scheme in which CFs 4, and the structure functions f. are defined. The fact that f.
is independent of g2, the first derivative of o with respect to ¢ will not depend on f.. Restricting

ourselves to SV and NSV terms, we can define physical evolution kernel X' by

’

sv+nsv

I (2 _ 2 d O'N(QQ))
Tlath M) = 4G ln(ag<q2>

qzdiqz In4}(g%). (6.83)

which is independent of any renormalisation scheme. The kernel K/ (a s(ﬂ]zg)’ N) can be computed

order by order in perturbation theory using In Afv.
K (asup), N) = ) di(up) KL, (N) (6.84)

i=1

As in [202], the leading (1/N) In‘(N) terms at every order defined by Kl

—
K, =K! , (6.85)
(1/N)In*(N)

can be obtained. Using (6.67), we find that these terms can be obtained directly from ‘PI{SV N alone
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and are given by

Ko = Al +2D!

(}<l 2480 — 2CL + 480 DY + 28 -1(1)’

Ky = 4AIBE — 86 Ch + 862 D! + 862 ¢V — 4y g,

K3 = 8L — 2455 C} + 1683 D} + 2483 @7V — 2485 @, + 680 @, ,

Ky = 16AL44 - 64B; C + 3285 D! + 6485 D — 9687 4 + 4883 35 - 880 LY. (6.86)

—
We find that the structure of ; resembles very much like that of [202]. Interestingly, the leading
logarithms at every order depends only on the universal anomalous dimensions A?, D{ and Cé, and
the diagonal coefficients (,"0[ ‘® Wwith k < i, where i is the order of the perturbation. In addition, if

we substitute the known values for these quantities in the (6.86), we obtain

K, = —8BoCr—32C%

Ky = —1682Cx - 1126,C2

Ky = —30B3Ck-— 896,80C2

Ky = —64B'Cx - %ﬁo — 860@ ¥ (6.87)

where Cgr = Cp for I = g,band Cg = C4 for I = g.

The reason for the agreement of our predictions for PEK to third order with those of [202] is
simply because of the K+G equation that ®' satisfies. In fact, K+G equation is partonic version of
the physical evolution equation and the partonic PEK given by K +G'. The logarithm sturcture
of PEK is controlled by the upper limit i in the summation over the index k in (6.38). In N-space,
the highest power of corresponding In(N) in the 1/N coefficient of X' is in turn controlled by the
upper limit on the summation in (6.32). Our predictions based on the inherent transcendentality
structure of perturbative results are in complete agreement with the logarithmic structure of CFs
or PEKs obtained from explicit results. Note that the structure of PEK (6.86) expressed in terms
of A{, C é, DI and <p1 O s straightforward to understand from K+G equations and renormalisation

group invariance. However, as was already noted in [202], the coefficient of the leading logarithms
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contains peculiar structure containing only ﬂé and ﬁf)‘l at every order in a’. In addition, if the
structure continues to be true at every order, the coefficients ¢l{’(i) has to be proportional to ,86‘2 for

every i which can be tested when results beyond third order become available.

Summary

To summarise, in this chapter, we discussed in detail the structure of SV and next-to-SV logarithms
that arises in the inclusive cross section for 2 — 1 processes, focusing on the diagonal partonic
channels. The NSV contributions are as important as the SV ones for any precision studies, as
they give rise to numerically sizeable corrections. Using IR factorisation and UV renormalisa-
tion group invariance, we show that SV+NSV contributions satisfy Sudakov differential equation
whose solution provides an all order perturbative result in strong coupling constant. We show that
like SV contributions, next-to-SV contributions also demonstrate IR structure in terms of certain
infrared anomalous dimensions. However, NSV terms depend, in addition, on certain process
dependent functions. The underlying universal IR structure of NSV terms can be further unrav-
elled when results for variety of inclusive reactions become available. In z-space, we show that
the next-to-SV contributions do exponentiate allowing us to predict the corresponding next-to-SV
logarithms to all orders. We also develop an integral representation for the exponent in the z-space,
which can further use to study these threshold logarithms in Mellin N-space. This in turn give rise
a framework for resumming the NSV logarithms in N-space. Unlike the SV part of the resummed
result, the resummation coefficients for NSV terms are found to be controlled not only by process

independent anomalous dimensions but also by process dependent gbf’(k).

The master formula that we obtain in z-space demonstrates a perturbative structure which can
predict certain SV and NSV logarithms to all orders in strong coupling constant a,, given the
lower order results. From the available results at a, and at a? for the CFs, our predictions for third
order NSV logarithms are in complete agreement with the known results available for variety of
inclusive reactions, namely DY production and Higgs productions in bottom quark annihilation
and gluon fusion. Using the corresponding CFs that are known to third order, our formalism

allows us to predict three leading NSV logarithms to all orders starting from fourth order, of
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which, we reported here the results to order a/. We have studied the logarithmic structure of

s

physical evolution kernel, in particular the leading logarithms, and found that they are controlled
only by process independent anomalous dimensions ,BO,A{, Cé, D{ and diagonal coefficients @f’(i)

at every order a'. We conclude by noting that the structure of NSV logarithms demonstrates a rich

perturbative structure that need to be explored further.
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A QCD Feynman rules

The QCD Feynman rules derived from quantised Lagrangian Eq.(2.1) is given below. The solid,
curly and dotted lines refers to quarks, gluons and ghosts respectively. The & denotes the gauge
fixing parameter. Note that, symmetry factor is multiplied appropriately and also quark and ghost

loops are multiplied by a factor of (-1).

e quark propagator

J,B I,
< — i2n)* 6 (p1 + p2) 6y (—)
)2 D1 / Py —my+ie)

b, v a,
TR
) 1 PiuD1y
S e i2m)* 6 (p1 + p2) Sup— | g + (1 — &)=
P2 P1 p% H p%

-— — . 1
i2m) 6@ (py + p2) 6ab?
|

e The interacting vertices:
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5B I,
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VD3
D2 g X1
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a,u
vP3
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125 S NS
c b
c,p d,o
P3N #pa
D2 7 AV
b,v a,u

i8; 2m)* 6 (p1 + pa + P T{; (V)op

1 ~ apc
378 Qm)* 6@ (p1 + p2 + p3) f©

X [g"(p1 — p2) + ¥ (pa — p3) + & (ps — p1)’]

~g,2m)* Y (p1 + pa + p3) fD!

G S et )
{ ( e fbdx _ fadx fcbx) P

+ ( fabx fcdx _ fadx fbcx) g g

+ ( facx fdbx _ fabx fcdx) gyo' gvp}
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B Anomalous dimensions

Here we present available cusp A’, collinear B’, soft f! and mass y! anomalous dimensions

Cusp anomalous dimension

The cusp anomalous dimensions are available to four loop. Since they exhibit generalised Casimir

scaling principle, we can write them together with: Cg = C4 for I = g and Cg = Cy for I =
q,b.

- CR{4}>

268 40
= CrCy {T - 8{2} + Crny {—E} ,

490 10722, 884 | 1764 110
2
AL = CrCi { 3 5t 3t 5 (T CRCmy {5 + 32
836 160, 11243 , [ 16
CrC - Ot - —
+RA”f{ 27 T 9 3 }+ AT\ 727
dabedqabed 3500 128 7936
Al = ANR ( TG —4“3—384{3 1287, — gz)
R
dabcddabcd

1280 256 32
+ny d NRR ( 55 - —53 + 256{2) + CRn ( §3)
2392 640 572
erCun (S - S+ 58) - e (5 - 3206+ 26
923 2240 608 224 34066 3712
*CaCn (G + S 6= S~ T3 )+ Cacrons (-

24137 2096 23104
+ o~ 12804 - ?gg) + cicRnf ( _

20320

T A T
N ﬂ 352 ) et (84278 B 3608 . 20944 162 - 88400
3 04— §2 ACr | =57 5 s 77 3 {3 =1 16)
352 3608 , 20032 3)

(B.1)
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where the quartic casimirs are given by

deldshd N (N +6) dbeddgbed (N} - 6N2 +18)

= , = , B.2
Ny 48 Ny 96N? B2

with Ny = NC2 — 1 and Ng = N, where N, = 3 for QCD.

Soft anomalous dimension

The soft anomalous dimensions f!’s are obtained as follows. They also satisfy Casimir scaling.

Hence, below we denote Cg = C4 for I = g and Cg = Cy for I = g, b.

fi=0,
22 808 112
fi = CaCr {-—(2 - 2803 + 7} + CRnf{ =0 - —} ,
352 176 12650 1316 136781
1 2
_ 176, /. _ - 192
f3 =Ca CR{ O+ 3 O 21 O 3 &+ 19205 + 750 }

+CCn __{24_@54_@4’_%
APREIN 552 TR 2T 27 T 79

32 304 1711 112 2080
+ CRCFI’lf {?{22 + 4{2 + T{g - 7} + CRI’lf {——52 g - W} (B3)

Collinear anomalous dimension

Similarly, the collinear anomalous dimension (B)’s are given as follows. They do not satisfy

Casimir scaling. However, they depends only on the incoming partons, hence Bq Bb

_o (1 2
AT ny 3(°
32 8
_c2 132 _ Sl
_CA{3 +12§3} nch{3} nsCr{2},
241 5 (29 233 8. 4, 80
B —CACF”]{ 13 }+CAl’lf{§} CA f{ 18 +§{2+§§2+?§3}

79 8 22 536 11
+Ci {7 - 1600 + §§2+ {2 2;3 _80§S}+CF’1§P{E}+C12””f{1}’ (B4
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B! = Cp{3},

3 17
= q%{E — 120 + 2443} + CACF{

88 2 16
e 12{3} + nfCFTF{ -z —4“2}

3

4496 1552 1657 988
=cﬁa{ 20+ Sl - = @+Mm—~§;}+qmﬁ{———@

410 844 151 4 1336 200
+ 160243 — —52 + —§3 + 12045 + T} + CACan{ -0 - 2—7{2 + T(s

29
+ 20} + cF3{—§22 — 32003 + 188> + 6883 — 24005 + 7}

232 20 136 80 16 17
+ Canf{—éz 52 - —{3 - 23} + Crny { 7{2 - 353 - 3}, (B.5)

Mass or UV anomalous dimension

The process dependent UV anomalous dimension y’s are obtained as:

v =3Cr,
v = %CZ + %CFCA - gcmf,
Vi = lggc} ligcz Ca + 113:;3 CrCh + (=23 +2443)Ciny

+ (—% - 2443) CrCany — ;CFI’Z; (B.6)
Ye1=0,  vh=0, ¥5=0 (B.7)
yei=Bo,  Yh=281, v =3B (B.8)
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The relevant coefficients for form

factor and Soft-collinear distributions

Here, we present the relevant coefficients required for form factor and soft-collinear distributions,

which are extracted from the available explicit results. In the following, Cx = Cp for I = ¢, b and
2_

Cr =Cyforl = g, where C4 = N, and Cfp = % are the Casimirs of adjoint and fundamental

representations.

Inclusive

Coefficients gl{’j ’s

The finite coefficients gf’j s coming from the explicit calculation of the form factor are given as

below. For the gluon form factor:

7 3 47
g-of). weohi-k w-ol-3egd e
67 1724 40 10 4511 44 67
&' = Con{ = 5w 16af+ G - S - Ta - Jaf+ Al - T o)
(C.2)
2 2027 92 7 16, } {24103 @ 16 259 , }
= Cpnf{—36 3 §3 §2 52 CAnf 486 {3 + {2 52
141677 1139 142
2 — f— — —_—— —
A{ TR SR Sl S 34243 12042} €3
6508 1376 88 368 304
& = Can{—27 i {3 - 3( 52} C%”f{_ — 48045 + 29653}
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912301 6992 100 = 232
FRPOINTLY Sttt it
Al f{ 5374 sl BT et 42}

473705 608 20384 503 1568
+CaCrng{ - Pl o+ o+ 000 + = )

324 3 27

L {_ 5035009 272 11372 142254 _g{{ ~ 128{ }
A% 2187 3 %07 T8l 2P 043 %27 g o 2

c {+ 39497339 3080 - 57830 - 104 , 221521 - 1496

A 8748 3 27 3 737 486 9
5744 , 12352 ,

T 5 27 315 }

04

(C4)

For the quark form factor in Drell-Yan:

7 3 7 47
g‘li’l = CF{{Z - 8} , 8‘1]’2 = CF{S - 543 - Z{Z} B 8(1]’3 = CF{ZQ + 42 + %(5 - 8} ’ (CS)

5813 8 37 70165 260 575 88
o = anf{_ — 4+ 542} + CACF{ e R ?gg}

162 3°° 324 3 18
(1 88
+ cF{ - 5~ 6023 + 580, - ?42}, (C.6)
129389 301 25 7
&° = CF"f{ T Toas 78T e —gg}
(109
+ CF{ 16 + 12{5 + 184{3 - —{2 — 28§2{3 + —{2}
1547797 12479 7297 653
2 sy - s - .
+ CaCr{ e =51 =~ s+ Tt lo + 34253 8, €7
536 258445 3466
= CFN4I’lfV{12 8045 + 1443 + 304, — 42} + Cpnf{ 45— 187 42 — —(2}
2 {73271 368, 19700§ 7541 _Q“ _@g}
EAUNT) 3 23T Ty ST g tr T T3 o3 2
1527 21584
+ c3{ — 199245~ 21302 + 482 — 2064, + 840403 — 53442 + e gz}
o {3702974 s 68660( N 1550084 . @g [ 12985}
AFEA 2187 STTR1 BT 43 2T g %2 2
230 3020 23402 55499 3448
2 2
+CuC { -l - TG+ 2968 + e - il
2432 , 1544853}+C c {_ 48002713 688 85883§ ) 1136{2
45 %27 7105 2 T AT 8748 3 23T Tg T T3 %3
1083305 1786 37271 , 6152 3}
— — C.8
136 2t g 98t g T T3 @ (C.8)

Here N4 = (N§—4) /N, and ny, is proportional to the charge weighted sum of the quark flavors [49].
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For the bottom quark form factor in bb — H process:

7 1 47
¢ = CF{ —2+ 42}, ¢ = CF{z - 543}, g3 = CF{ 240+ %45}, (C.9)

616 8 10
—anf{Sl —lh+ §2}+C2{+8 60§3+32§2——§2}

2122 152, 103, 88,
e Ly Ny C.10
+cACF{ e LTS 542}, (C.10)
130 3100 55, 7, 2{ 96 2}
- = 20 — - 28 -
2= Conf{ s - S - o+ B - CH{24 - 1265 - 1166 + 44 + 2800 - 23
9142 2923 1079 89 365
1 e 11
HCACH| S — 515 - S0+ o+ S0l - 528, .11
27352 320 92 40
&' = il - T+ S0~ w0 54
32899 368 15956 3173 152 772
2 — — — — — —
¢ f{ 304 3 St Ty BT g T 3 st {2}
1644 21584
+C2{603+1272§5—2142§3 + 4873 — 2758 + 624405 — z &+ 05 gg}
o {_ 6119, 41552 44551 392 1064§ }
ACFI\ = gagg — 1265~ =51 8% 3 g 4263 2
613 1940 11570 13357 2584 3634 ,
+cAc%;{—T— s — o+ 2960 + b - T hl - 03
) 1544843}+C c {4095263 L1228, 19582 1136, 34263 976
105 *2) " TAYF1 78748 3 9T g ST 33T Tge 2T g %3
L2738, 6152 4
2% 200241 C.12
- 2224 €12
—Ik
The coefficients G, s:

—lLk . . e .
The SV coeflicients G; that appear in soft-collinear distributions in Eq.(2.77) are found to be:

6" =cr(-30). G =Cr (%43), (C.13)
G\" = Cx ( - 13655) G =k (—%4243 + %55) , (C.14)
G, = cxCi (2;‘?8 - o ag- %43) + Crny ( -2 D 33—243), (C.15)
G,” = Cany (ZZS L ﬂ4“3)

v CRCA( D+ St i+ S i - 200+ 4345) , (C.16)
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11 ,(152 5 1964 _, 11000 765127 536, 59648
G; =CRrCa (63 07+ 9 O™+ 9 1575 136 O+ 3 & 77 3
1430 7135981 532, 1208 105059
-3 {5+ 9743 )+ CrCany ( e 0o - ) HEG+ A3 16}
45956 148 716509 152 605 2536
- CrCrns | —= 52 - 88 = o+ 22
+ 31 3+ 3 s 1374 )+ R an( 5H? 04+ O+ > &}
112 42727 32 1996 2720 11584
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t36 324)+ R”f(9{ 31 227 g §3+2187) (©17)
Rapidity

The coefficients éfl’(ik) that appear in soft-collinear operator in Eq.(D.1) of differential rapidity

distributions is given by:

N . 1 3 1 1
1,1 _ 13 _ 2 14 _
Gi1 = —0Cr, le CR{3, G = %CRgz, G\ = %fsck = 52 5245Ck, (C.18)
N 2428 67 328 10 8
1,1
1 LY N e C.1
Gis CRCA( 3% 4z {3) + CRnf( gl T 3%t 343) (C.19)
976 70 28 29
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Threshold exponents Dfis:

The threshold exponent Dg, that appear in the rapidity resummation formula as given in Eq.(5.41)

112 84, 808 444
1 i
D}, =0 ,Dd,zchnf(E—T) CRCA( e 28{3) (C.23)
62626 776042 208(% 53675 1711 3205 3044
=CC - 8- 28
REAny ( 729 15 o | CrCrny| 57 ~ 8- =3 9
1856 1604’2 326G
27
297029 27752 6164 1426445 176
CRCA( o 2 _ 1542 = G _ 17066 19245) (C.24)
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D Soft-collinear distribution for

rapidity distribution

In this section, we present soft-collinear distribution S, ;, as defined in (5.25), in powers of ax(,ulze)

up to N*LO. Expanding the quantity in powers of a; as

Su1(21,22, 4 o 13) = 61 = 2001 = 22) + > ah(uR) S} (21,22, 4% i 13 (D.1)
i=1
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+30(A1)* g7 = 36(A]) 0ads + 12(A1 5 — 28.GY | — 2B1Gy, — 481G ) - gﬁlf{éf,ﬁ
+2815(f]) + 6BIATL ] + 4BIALLGY | - 2B0G — 680G\ Gl — 4Bo(G )

~ 280161, - gﬁof{ G — 4ol G\ Gl + 4Boss(F) + 6Bolafl 1 + 10802 (F)° G}
+ 8B0ALLs f] + 4BoALLGY | + 10B0A L f) + 28B0A LGl + 4BoAT LGl
+8B0A1L2Gy ) + 4BoATLfI G — ABoAT G (F) + 42B0(AD s ] + 4Bo(AD 3G

~ S2B0(AD’ 00— 4Bo(AD’ (3G, — 22Bo(AD’ 5 ~ 8BuBIGy — 480G

- DRGIGTE - SEAG + BEU + 126G + 2084160, + 85661
+ SBALG A + 166D ~ 1B 0g - 8861 ) + 601 — 2o - | 6L

+ }l(éf;;ﬁ + %GQ}IG;’; +(GLD)GhL + %@3}1 " =GO - %Q(f{ Gl - %fz(le )?

~ 1 ~ ~ 3
-G =200 K64 - 30U Gy - UG + 556U - Al - A%
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—24543f1G g, + %Aé;%(f{ 7+ %(Ag)%% —2415() - NG - 2415 £6;,

— MGG, - 241G 1@ +3A1 L6 + %‘Aif%f{ £+ %Aié%(f{ G4

+ SAALG - oalalcss] + salalea ] + SAALGGH, - Al r] - 6l el
+SAD LU +4AD OGS +8AD LG G, + %(A{ VG, + %(A{ VGG
- 3D + SAPALE - Salald 15 a ] + Sl Eet:
FIBADGL ] - 6D B - o= EGE, + 1A Gz - 104D 63

b 32D+ BG4 BG4 SBGIGIE ~ BGD - po Il

- 2/3114{5392’,11 — 2B1(A])*Ls + 2B1A Lo ls + %ﬁogfj’é +,30Q~£[’21Q~2,’,12 + gﬁogij’llgij’zz
+280(GY )Gl — 3Bl fL 3 — 4Bola(f1V G — 2B0iafs Gl — 2ol fiGl

~ Ao f(GIY ~ B (1P + BB ~ 280ALG, ~ B0

— 8B0A{L5(f)? = 2B0AI LG, — 4BoATL(GL)P = 2B0AL Gl + 10B0AT ()

+ %ﬁoA{éﬁfz’ + §ﬁoA{§%f{G§j — 6B0ATALLs + 6B0AT AL 2L — 10B0(A) 456

+ HBo(AD G f] + 12B0(AD Lla Gl + %ﬁomi)zééfﬁ — 1580(A1)’ &7 + 1680(A] Y’ a5
- 15—6ﬁo<A{>34§§3 +28081G;) +BaGL + BHGT) + gﬁéég’jé;ﬁ - 683431165,

— 250G ) - 4B fI G - %ﬁé{ﬁ (F)? = 8BYAIL ] = ABIAT G + 685A Ll f]

4 - 12 ~
+ SBALEGH, +33ADPE + SSRADPE + 2860 b+ @1 o 2.

(D.2)
where
Ini(1 - z1) In‘(1 - z2)
Di = Di(z1) = [—1] , D; = Difza) [ X (D.3)
(I-z1) |, (I-22) |,
In the aforementioned equations, we define
ME = Real (M M )4a) (D.4)
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where IMgn)) is the UV renormalized pure virtual amplitude at n-th order in a; as introduced in
(5.12). Also, Gf/f are the finite coefficients coming from soft-collinear distribution, whose values

are given in Appendix C.
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E Resummation coefficients

Inclusive

Here we present the relevant resummation coeflicients for the threshold resummation in the context

of inclusive corrections. For the N-space resummation formula:

In4% =g exp(Gh) (E.1)
with go=> alg Gyv=MINgl+) dgl, (E.2)
i=0 i=0

For standard N = N exp(y), the general expressions for these resummation coefficients in terms of

. . 1,j . .
anomalous dimensions and process dependent constants (g; ’s) and B-functions are given below.

Zo1 = [éﬁl (2) +gh! (2) + B! (2 Ly -2 Lfr) + Al (5 52)], (E.3)
B2 )58 ) 2 () G ) o)
“28 Lqr) +g" G (4) (') (2) 4 f (5 Bo 52) + B! (2 Ly -2 Lf,) + B! ( ~Bo L2,
+Bo L2, +6 fo 42) +B G (4 Ly —4 Lf,) + Bl g (4 Ly —4 Lf,) + (Bl (2 12,
— 4Ly Ly +2 Lzr) + Al (5 42) + Al (g Bo &3~ 5 o & Lqr) Al G (10 42)
+ Al gt (10 52) + Al B! (10 HLy—100 Lf,) + (A{)2 (% gg)] (E.4)
qn=[00 (3)+ 87 (30) 485 (- 280 10) " (38)+ 817 (58 - 485 L)+ G
2B L+ 2R L 48R 0)+ 6 G (2)+6 61 (40)+(@6)) (- 440 L)
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—I,1\3 (4 2 4 —I,1 8
BT ) s ) om0
vl (38 -4 L)+ 22 G (40) + 611 (- 281 Ly 428 2, - 12 )

11 —1n I —11\2
el G (2) + el 61 (480) + 81 GV (- 880 Lar) 46l (6) (4) + 81 65" (2)
2 —I1 3 /4
+gl! (430) (") (=480 L)+ (&' 61 (4) + (61') (5) + £ (1050 2)

1 2 2 1 5hl 1 L1
+, (5/31 G+ 5 B G- 1056 L)+ £ 6 (1080 6)+ 71 b (1060 o)

—I,1

Bg(2Lq,—2Lf,)+B§(—230L§,+2,30L2,+12ﬁo§2)+3§g1 (4Lq,—4Lf,)

2 2
gg{1(4Lqr—4Lf,)+B{(—ﬁl Ly, +pBi L}, +6p gz+§ﬁng,-§ﬁgL3
2 1 A1 1 =12 ;=1
—12[30{2Lq,)+31 G (ZLq,—ZLf,)+Bl G (4,80Lq,—4ﬂ0Lf,)+Bl G (
2 2 I (a2
—650Lq,+4ﬁoLf,L,,,+2ﬁ0Lr+1250§2)+131 (G) (4Lq,—4Lf,)
+ Bl g (2 Ly =2 Ly )+ B g1 (480 Lo 4o Lyy) + Bl g} (-6 50 L2,
2
+ 480 Ly Ly +2 Bo L2, + 12 By gz) + Bl gl G (8 L, -8 Lf,)+ B (g") (4 Ly
—4 Lf,) + B f! (10[30 & Ly —1080 & Lf,) + B Bl (4 12, -8 Ly L, +4LJ%,)
% 3 2 2 3
+(BY) (—2/30Lqr+2/30Lerq,+2ﬁoLf,Lqr—zﬁo L3 +12B0 & Ly — 1250 &2 Lfr)
2 —I,1 2
+ (B G (4L§,—8Lf,Lq,+4L},)+(B{) g (4L§,—8Lf,Lq,+4L},)
+(BY) (qu,—4Lf,Lq,+4Lerq,—3 fr)+A (5§2)+A (3 ,8()(3—10ﬁ0{2Lq,)
=11 8
+AL G (10 gz) + AL gt (10 gz) + AL B! (10 6Ly 104 Lf,) + Al (5 B &3
16 21 iy
SSPG Ly - BGLetSROL+ < BE)+AlG, (5o
=12 =11 (16 —I,1\2
LAl G, (10ﬁo§z)+A{ G (?ﬁ0§3—20ﬁ0{2 Le)+ A1 (G) (102)

Al M I I _

A1 g |58 +A1 (1080 & +A1 ,30§3 2080 &> L,
+Al MGy (20 §2)+A’( Ly (10 gz)+A{ ff (25ﬂ0 §§)+A{ Bg(lo & Ly

16
104 L) + Al B (5 Bo &5 Ly = 5 Bo & Ly = 15Bo &2 L, + 105 o Ly Ly
—I,1
+5B0 & L3, +30 o g§)+A{ B G, (20 6HLp-200 Lf,)+A{ Bl g"! (20 & Ly
2
=200 Lyy) + AL (B) (1062 13,20 & Ly Ly +10 25 13, ) + AL 41 (25 22)

(A1) (8026 -25p0 G L)+ (41) 61" (25.8)+ (41) 1" (25.8)
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+ (1) B! (25 BlLy,-258 Lf,) +(al) (125 42)] (E.5)

Similarly, the universal N-dependent resummation coefficients have following structure.

g{:[%{{z 2In(1 - w) + 2 In(1 — w) W~ }] (E.6)
gé—[’g—i{lln(l w)}+2—2§{ In(1 - w) — w}+2—;{(ln(l cu)+11n(1 cu)2+a))(?)

0

()Lf +(1n(1 w)) }] (E.7)
gé_[ {Eu—w__ } /A;_{( 2(1ww) h(lil_wa)))+%”)(%)+(_(1L_Uw))%’
( )Lf’} 4 {2 24 wa)) " (; 1n((11 ;U))z +; a ww) - h(li]—_ a))) ~In( -w)
5@ 6 7255 g - 50)(5)+ (-5 ¢)
- w) h(lil :))))(ﬁ;))L’}Jr%{_%(1i0w)}+D{{(% (1L—uw))Lq’

(5
(1 )

(I-w 2 (1-w)

2
L2,

/3’
_[A4 l w2-w) 1 1w(2—w) 5 w2- a)) lln(l W)
=[] o+ (- )+ -

8712\l -2 3¢ 2 U-w2)™ 2 (0-w? 2 d-wp

" % w) (%)Jr(‘“) Lf’} A {2 ¢ (2)1(2 _w(;)z) +(% h(lil wa))gz - % a i)zw)z +2 a i)w)
_ 2
%1?1(1_6:;) _% )(ﬁi) +(% 6(01(2 wc)l;)) Lo+ (3 a ww)Z ; a ww) +%‘“) (fg_g)
(e (5 G o) Gl i oot (0 07+
lInl-w)? 1 &? 1 w 1In(l-w) In(l -w)
"6 (U-w? 30-w? 3(-w 20-wr (d-w

+1w)(ﬂl) +( 1w(2 w))Lr+(lw(2 w) l1(1 w)+1w)(ﬁ3)+(

—1(1 w)

3 B 6 (1-w)? 12 (1-w)? 2 3 B}
_i W2 1 w 1 In(1 - w)+ln(1 w)_l (1- )_g )ﬂlﬁ
12 (1- w)2 6 (1l-w 2 (-w? (I-w) “T3Y By

2

rrat (e a
|

—

% ) Y U-w? 2 (1-w? 20-w?\g
st (e (e G @)+ (-3 o) () s+

2
(1 -w?/\g
s 3 {3 a e (22 S ) ()
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(3 ) ) oot (- S o R L ) ()

— 2 _
O R 1 Y 1 P

)

where L, = ln(q—z) Ly = ln(
R

§NI~1 i

Differential rapidity

Here we present the relevant resummation coeflicients for the threshold resummation in the context

of differential rapidity distributions till N°LL. The resummation formula is given by:

Indl =20 exp(Ghy) (E.10)

with — gho=> dg, Gyv=WNgi +> dgl., (E.11)
i=0 i=0

The general expression for these coefficients in terms of universal anomalous dimensions and the

process dependent matrix elements M; ;, are given below.

gho =1 (E.12)
L2
— r 0,1
ght =265\ —2BiLs — flLy, +A{7‘1 +2MP0 + Al (E.13)

12 ~1,1\2 =12 . Al 1,1
g;O —2(g;’1) + Zﬁogé’l + gg’z ~2BiL;, — 4B! gg’lLf, + 2(B’)2L2 +BIgoL2, - flL,,
12 I?
ol I~ r r r
- Zﬁogfj’lqu, - 2f1’g;’,11Lq, + 2B fIL gLy, + AL q +,80f’ L +(f1y? q
3 4

L L
I AL 2 Ipl ar Al gl qr 12-ar 1,1 5 ((0,1)
+A1G, Ly, — A\B Lfr 1ﬁ0 -Alfi—=— + (@A) +4gd1MIfm

! 0,1) Iy 0,1) 2 0,1) 0,1) 0,2) I 1l
- 4BlLerIfzn 2fl ‘IrMIfm +A L lem (lezn) * 2/\/(Ifm +A2{2 +B0f1 §2

= 2
+2A1GH 0~ 241 BI Ly, 0o~ AlpoLs — AL fl Ly 02 + (AL, 2 + 24 MO

Ifm
4
+(A’)2 2 +2A{/30§—3 (E.14)
~ 3 ~ ~
Gir) | o Gin , 1o Gii a1t + app 002 5
Zio =43 TP +4BoG; Gy + 8B — + 26, Gy + Mho—- + 25"

~2BiLy, ~4BIG} Ly~ 4B1(G1) Lyr - 4B{ﬁoés,i Lyr = 2B, GZ;,‘ZLfr
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) L,
+4B{BSL}, + 2B3BoL;, + B L7, + 4(B] )ngllle +2B! ﬁogflll — 4(Bl)? 3f

- 2By)'fol}, - 2B153—

3
1Ly~ 2.6 Ly - 216 Lo 450(GL Ly
~ 2785 Ly - 4/3555;?1 Ly = 20162 Ly — 280G Loy - FIGHAL,
+ 2B f{L gLy + 2B fy LyrLyr + 4B1BoGY 1Lerqr +4B{f1G} Ly Ly
— 2B f{ L, Lyr — BiBofI L7, Lgr + AL ‘1 +,6’f +,8on L+ AL
+ALGI L2 + 283G 12, + 30 f] ggﬁLér F(f )2655}1 L2, +AlGH) L2,

. L,
+A{ﬁOQ221L2 +Algd2 ) ~ AYBi Ly Ly, — A{By Ly LG, — BiBofi LyrLy,

_ L2 3
— Bi(f{)’Ly,L}, - 2A1B] gg‘lLerz +A{(B)’L7,L;, + A’B’ﬁ@i% - AlBo ﬂ

L3 L3 L3 3
- Aipr1— - AL - -Boti~ - ~BolY o = ) - A

L3 L3 L
— 441506y~ —A{flgfflﬁ + AUBIOL = + ABIf{ Ly Ly, + AA—
4 4 4 4

L r r r = L r L r
+ AT+ SAof] 1"2 + AL’ " + (A6~ — (AD’BLy—

5 L3 6

L L ~
—(A{)zﬁo—qr (AI)ZfI qr (AI 3 qr (gfill) M§°f13,+4ﬂo§fflM§°ﬁf,

A1 a £0,1) ! 0,1) ! 0,1) I\272 A 40,1)
+ Zg lem 4B lezn 8B gdlLf”MIfm + 4'(Bl) Ly lem

I 2 0,1) Iy 0,1) 5 0,1) 15 0,1)
+ 2BlﬁOL lem 2f2 ‘IrMIfzn 4,30@ lem 4'flg lem

[ rl 0,1 172 0,1) 2 0,1) 2 0,1)
+4Blf1Ler lem+AL letn+ﬁ0f1L lem+(f1)L lem
0,1)
lfln_A1f1L3 (0,1)

I 51152 (0,1) Il 2 (0,1) 1 3
+ 240G Lo My, = 21 B L L MG 7 = AlpoLy,— M

L. fin I,fin

0,1)

1
@ADLy, —"

(0,1)
(Ml,fin)
2
0,1 0,2 0,3 ~ 3
+2MPDMPD + MU + AL + B G + 2Bofa Lo + 245G\ & + 480G

2G5 (MOR) = 2BILA (ML) - ALa(ME)

1y2 51,1 (0,2) i 0,2) 4 (0,2) 172 0,2)
+ AL, + 4gd,lM[,fin - 4BlLer1,fin = 2fiLgeM; in TALL lem
+2B0f1G5 6o + 24185 ) o+ 2418061 1o + ALGIN G — 24LBI Ly
~2A1ByLys — 2BBof{ Ly — 4ATBIGY Lynla + 241(B)) L7, &2 + ABIBoL, 2
= 2A5B0Lyrls — AlB1Lgrla = ASf{ Lyrln = 2B3f{ Lyrla = Bo(f} Y Lyrla = AL fy Lyrln

— 4A1B0GY Larls = 24 f{ Gl Lyrla + 2A1BIBoL s Lyrla + 2A1 Bl fl Ly Lyrl
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§2
+ AALLY 0 + AVBRLE 0o + 2ANB0 fILL o + AL(FLE, = + (AD’GY L2 0

~ (AP BIL, 12,00 - 24D BoL, 2 — AR AL + (A’)3L4 2 MM

0,1 1 0,1 0,1 0,1
+ 2B0fi Mo + AALG MG fljlgz —4A! B! LﬂMg Ol = 2L Bo Ly M 0

0,1 0,1 0,1 0,2
=241 Ly My 6o+ (AD LMY 6 + AT (M >)§ + 24 MPD 0 + AALS
zé“z

+ TAIBG = + AlBofl 53 + (AN’ GY G — (A BIL 5 — (ADBoLyrs

52 15!

3
+(ADL2, gz + A ME G + (A{>3§—2 +4A£ﬂo— + 241815

1.fin
4Aiﬂogi,‘1ij 4A{BiﬁoLff ~4ARL, S - X

3
+Ah ﬁ0L2 53 +4A1p, Mﬁofi 5 4 oal2g, gzé (E.15)

—(AD*fIL >

1§3

+4B2f1%2 2410 f Lqr

In the above equations, éfi’(ik) are the finite coefficients coming from soft distribution, whose values

are given in Appendix C. Also M(m " is defined in Eq.(D.4).

Similarly, the universal N-dependent resummation coefficients have following structure. These

coefficients are identical for any number of colorless productions. Rescaling them by appropriate
P~ SN S~ R / ’ Al/ D =D/ / i d / i+1 fi dl
ﬁl as 8d,1 gd,l’ 84,2 gd,2’ 843 = gd3 BOa :807 di — Ydi :80 an ﬁz :81 ﬁ , We T

—I
8.1 =%(w+<1 - w)In(1 - w)), (E.16)

_ —I—= = S —I 1 —I—=
82,2 =w (Alﬁl —Az) +In(1 - w) (A1ﬂ1 +Dy - Az) t3 In*(1 — w)A, B,

+ Ly In(1 — w)A) + LywA), (E.17)
wAy
_ 3 w —I — = — -2 —I
%i3=— - m( — Ay + 2+ W)B Ay + {(w - 2)B, - wB - 20)A,
—J — I ,8  — —I= —I—
+2D;5 - 28Dy, 1) In(1 - w)( lw{Az -Dgy, —A1ﬁ1w} - Alﬁz)

lnz(l—w) —1=2 —I 1
+ ﬁ lﬁl LfrAz(U 2LfrA

- Lqrﬁ({z; - Dy Jo - DB fw + In(1 - )+ %Lg,

)

ey (E.18)
l-w

where L, = ln(ﬁ) and Ly, = ln(

Kk

>:N|'=1N

1§Z‘ 4 18 provided in the ancillary files supplemented with the arXiv submission [171].
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l Deriving resummation formula for

SV and NSV logarithms

In this section, we evaluate the Mellin moment of ¥; o in the following way. At first, following

Eg. (6.68) we decompose ¥y into X’ \ and 2! . So, we begin with

A nsv,N*

1 N-1 _ P (1-2 732 i
Sy = f dz(z 1)( f dLZZAI(aS(/lz)+2Giv(as(q2(1—z)z))) (E.1)
> 0 H /l

1-z2 2
F

We follow the method described in [194] to perform Mellin moment. In the large N, keeping ]%]

corrections, we replace

! _ d\ (! 1
fodz(le—l) HFA(Nﬁ)j; dz@(l—z—ﬁ) (F.2)

where I'4(N %) is given in Appendix[G]. We expand I'4 in powers of Nd/dN and apply on the
integral. We then make appropriate change of variables and interchange of integrals to obtain
7 AP 2
1 _ q I 23y .o 2
do o= - fq o 7{(m - 2yj‘)A (as(2)) + G (a, (1)

# Tl @)} + T at?)

7 G2
—2(y;‘+1n(N)) f X 7A’(as(ﬁ)), (E.3)
HE
where

0
da (%)

Taas(B) = =27 +4 ) yho( - 2as®)-— ) {al @)
i=0
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(@) 5 Gu(a (), (F4)

Oa (/12)

Here B(as(1?)) is defined as, B(ay(1%)) = — § Bi air2(A?) (also see [246-248] for QCD) .

i=0

Replacing a,(1%) by

a,(1%) = (05(712?))[1— ‘(;lR)/;—(l)l o) + ((;1’2?))(2 2(1 2(1) - In(l)

B> as(12)\3 (B3
H =)= 2 - 1))+( IR)(ﬁ (2(1—l)ln(l)+ ()

P | oy B py BB
() — 5 +1 21) 2/31 12 B === (211

=3In()) - I(1 - l)))], (FS5)

where [ = 1 — Boa s(ﬂ]zg) ln(ylze /2?) and performing the integrals over A2 we obtain the result. The
entire result is decomposed into two parts. The one proportional to #, are expressed in terms of

g{ (w) given in Eq. (6.74). And the remaning part is embedded in Eq. (6.70).
Similarly we define,

q*(1-2)

1
N = 2 fo dz zN‘l{ /l—/lzLI(aS(/lZ),z)+gp§.(as(q2(1—z)z),z)}, (F.6)
M

BN

Following [194], in the large N and keeping % corrections, we replace
f]dN‘l ry(N-E f %y ! (F.7)
- — — -z— = .
X z B\Noy ) Tz =
where I'g(N diN) is given in Appendix[G] and we replace Nd/dN by

d _ i_ 2
N =Non 2B(as(2 )) da )’

(FE.8)

to deal with N appearing in the argument of a,(¢>/N?) and also the explicit ones present in <p§c.

After a little algebra, we obtain

1 _ 1 v d/lz 1 2 2 d 1 2 1 1 2
S =y [ S @ + PG FL @D N + Tl N)
N2
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2

1 q

+_
N 2

da?
75’(%(42), N), (F9)

where the functions £’ is defined as

€M) = =2 = Yi(D'(a) - C'(a) V) + ¥4C'(@y), (F.10)
and
d -
Fas(as(®),N) = 2y7¢p(a,(a®),N) - 4y§(fﬁ¢§<as<ﬂz>, N) + E(a (%), N))
d d -

#8(r8 + 7 )P { P, M + E e, W)

+%C’ (as(/lz))). (E.11)
where

& (as, N) (D'(as) - C'(ay) In(N)),

o i 0 i-3
i —1,(k) B _ d
D0 d@E P =)y, VB—;yf(Nﬁ) . (F12)

i=1 k=0

l(ay(2*),N)

Using Eq.(F.5), we perform A” integration to obtain the result in terms of hfj(w) given in Eq.

(6.74).
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Expansion coefficients I'4(x) and

I'g(x)

In the section, we present the expansion coefficients of I'4(x) and I'p(x) used in the Eqs.(F.2,F.7)

of the Appendix[F] . As in [194], the operators I'4(x) and I'g(x) are expanded in powers of x as

Ia(x) = Z —yi R, (G.1)

k=0

where coeflicients yﬁ are given by [194]
r (N )
Yo === G2)

See Eq.(25) of [194] for the definition of I'x(N). We find,

n=1,
Y?ZVE—ﬁ,

1 1
=gk ea)- oyl

1
(YE +2yg + §2)

)’?=éﬁ; 1(7E§2)+ 50— N

vi= vk 1 () + 58+ 5(rt) - vk + 3+ 30+ 3yeta 4 203),
Y5 = 1;07’5 1(7;;52) 40(97E§z) 1(712@{3)+é(§2{3)+%§5

1
- Sao (ZOyE + 5%+ 307320 + 2723 + 4083 + 20y5(30 + 243))
61

Yo = 7;0 : 1(“52) SO(VEQ) 560% * 1(“{’) é(”@é)
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5yg + 3 + 10750 + 2743 + 200045 + 10y5(32 + 243)

1, 1
=0+ =
1893 T 3VES - 240N(

+y5(2783 +4023) + 2445) :
7= ﬁyé 24110 (YEQ) : (7E§2) 56610 (re)+ 712 (ria)
112 (715(2{3) (525%) (7E§3) 10(7555) + 1—0(§2§5) + %57

(42%5E + Ty + 105750 + 54983 + 840003 + 1407330 +243)

~ 10080N
2 2 2 2
+21y3(2743 +4043) + 56(53 + 1845) + 42y£(2743 + 204245 + 2445)), (G.3)

and similarly I'g(x) is given by [194]

Ta(x) = ) v, (G4)
k=1
where yfﬂ are given by [194]
'
Vi = ¥, (G.5)
explicitly we find,
7n=1
)’129 =YE>

1
Y3 = 5(’}’% + {2),
s 14 1 1
Ya = Ve + E(YEfz) + —53,

V= b+ 3 (k) + 5+ 3(es)

V= vk + (i) + 5o (9ved) + (m@ v o(0s)+ 26
'yf=%y2 418(7E§z) 9(754“2) 560 ( &)+ 1(7E§2§3)

, e 2+1

1 3 61
B _ 7 3
78 = 50207E " 240(7E§2) 80(“52) 560(7’552) 72(7E§“)
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