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Synopsis

Introduction

Collagen, the most abundant protein in vertebrates, is found in several hard and soft tis-

sues, such as, bones, tendons, ligaments, cartilage etc. It plays a vital role in providing

mechanical support, strength, flexibility, and mobility to the human body [1]. There are

approximately 29 identified types of collagen based on the supramolecular structures, in-

cluding fibril-forming collagen, network-forming collagen, fibril-associated collagen with

interrupted triple helix, transmembrane collagen, and others. Type I collagen, known for

forming fibrils, is the most abundant among all collagen types. Each collagen type con-

tributes to tissue integrity and function: for instance, type I provides support and flexibil-

ity to bones, tendons, and skin; Type II supports joints; Type V is involved in fibrillation,

etc. [2]. Collagen has a hierarchical structure with tropocollagen as the fundamental

protein molecule. The diverse mechanical behavior of collagen based tissues is a direct

consequence of the di↵erences in their hierarchical structures. Understanding the me-

chanical properties of collagen at di↵erent length scales is not only essential to gain a

comprehensive understanding of biological tissues but also crucial for various biomedi-

cal applications like tissue engineering, wound healing, drug delivery, disease diagnosis,

treatment optimization and monitoring, etc. [3, 4].

Collagen molecules, typically of length ⇡ 300 nm, self assemble in a staggered manner

to form collagen fibrils of diameters ranging between 10s to 100s of nm. The staggered

arrangement of collagen molecules creates periodically repeating gap and overlap regions
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Figure 1: Cross-sectional view of hierarchical structure of the fibril: (i) fibril, (ii) mi-
crofibril, and (iii) molecule.

along the length of the fibril, giving rise to the characteristic D-period (67 nm) of the

fibril. The fibril structure is further stabilized by intermolecular enzymatic covalent cross-

linking (ECL) that form at the non-helical ends (telopeptides). The cross-sectional view

of collagen fibril hierarchy is shown in Fig 1.

The mechanical response of collagen has been studied at various length scales in experi-

ments. The molecular basis of toughness of collagenous tissues was established by iden-

tifying the basic mechanisms of energy dissipation during pulling of collagen molecules

using atomic force microscopy [5]. The force extension response shows multiple drops,

which were attributed to breaking of sacrificial bonds and release of hidden lengths. When

a time delay was introduced between pulling cycles, partial recovery was observed, sug-

gesting the reformation of sacrificial bonds. At the collagen molecule’s length scale,

X-ray di↵raction has directly linked sacrificial bonds or crosslinks to the folding back of

the molecule at the C-terminal telopeptides [6].

The mechanical response of the fibril depends on several factors like source of the spec-

imen, hydration, environmental condition, extent and type of cross-links, and pH, etc,.

The collagen fibrils from human patella tendon exhibit a characteristic three phase stress-

strain behavior. An initial rise in modulus followed by a plateau and in the final phase

further increase in stresses and modulus, hypothesized to be a consequence of maturity of

cross-links, before final failure. A similar three phase behaviour has also been observed

in fibril from calf skin [7]. Simulations at multiple length scales have provided interesting
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insights into various aspects of deformation and failure of collagen ranging from atom-

istic length scales, focusing on individual tropocollagen molecules, to continuum length

scales for collagen fibrils. Using atomistic simulations, the influence of hydration, miner-

alisation, viscoelastic properties, heterogeneity, etc. has been addressed at the molecular

and microfibril scales. The role of cross-link density, including enzymatic and advanced

glycation end-products cross-links, degradation, and mineralisation on the stress-strain

response has also been studied using full three dimensional coarse grain models of colla-

gen fibrils.

Research gap and problem statement

Collagen is subjected to cyclic loads during exercise and routine body movements. While

the response of collagen to monotonically increasing loads is comprehensively investi-

gated, the response to cyclic loads, resulting dissipation, and recovery are comparatively

much less studied. In a recent study, Liu et. al. [7] conducted displacement controlled

cyclic loading experiments on single collagen fibrils obtained from calf skin, within all

three regimes of stress strain response of fibril. The collagen fibrils were subjected to

10 cycles of loading up to a predetermined stretch ratio, �max, followed by unloading to

zero force. This loading protocol is referred to as series 1 loading. Subsequently, the

fibrils were allowed to relax for 1 hour. After relaxation, the fibrils underwent another 10

loading cycles with the same �max, referred to as series 2 loading. Finally, the fibrils were

monotonically loaded until they reached final failure. The stress-stretch response of fibrils

showed energy dissipation, moving hysteresis loops and associated residual strains. With

increasing number of loading cycles, the dissipation of energy during hysteresis decreases

while the residual strain increases and both finally saturate to their respective steady state

values. Collagen fibrils also showed recovery in residual strain and as well as in capacity

to dissipate energy when allowed to relax at zero force. These observations led to the hy-

pothesis that reformable sacrificial bonds within the fibrils may be responsible for these
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characteristics. Furthermore, the cyclically loaded fibrils exhibited greater strength and

toughness compared to fibrils subjected to monotonic loading. This enhancement was

believed to be due to permanent molecular rearrangements, although the specific mecha-

nism behind these improvements was not fully understood.

In the thesis, we aim to comprehensively model and understand the mechanical response

of single collagen fibrils under cyclic loading. In the first part of the study, we develop

a minimal kinetic model for a collagen fibril incorporating presence of hidden loops and

stochastic fragmentation as well as reformation of sacrificial bonds. This model e↵ec-

tively explains and qualitatively reproduces experimental features, including moving hys-

teresis loops, the time evolution of residual strain, and recovery on relaxation. In the

second part of the thesis, we approach the problem from a microscopic perspective, uti-

lizing existing molecular dynamics models [8,9] to account for experimental observations

during cyclic loading. We also incorporate the reformation of cross-links in our model to

evaluate its potential in explaining recovery and the increase in strength that may result

from cross-link reorganisation. We show that the coarse grained model is also able to

describe well the experimental data.

Kinetic model description of dissipation and recovery in collagen fib-
rils under cyclic loading

The kinetic model [10] is a generic dynamical model that incorporates the role of sacrifi-

cial bonds, assuming that the sacrificial bonds result in regions of the polymer not being

loaded. When these bonds break, there is a sudden drop in load as the hidden length is

released, as shown in Fig 2. The experimental observations, like moving hysteresis loops

and residual strain accumulation, were thought to be related to the presence of sacrificial

bonds within the collagen fibril. Based on this hypothesis, we ask if a suitably formulated

kinetic model can explain the observed experimental features. Within the framework of
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Figure 2: (a) Schematic of a polymer with a single sacrificial bond (dotted line), corre-
sponding hidden loop (shown in red) and the corresponding force-stretch ratio response.
(b) As the sacrificial bond breaks, the force drops due to release of the hidden length. (c)
Force rises again as the polymer is extended further.

the kinetic model, we treat the collagen fibril as a linear polymeric chain that has hid-

den lengths secured by sacrificial bonds. The two primary ingredients of the model are:

a reference stress-stretch relation for the available length of the polymer and stochastic

formation and fragmentation of sacrificial bonds. The reference stress-stretch relation is

first established from molecular dynamics simulations of an existing coarse-grain fibril

model [9]. The kinetic model incorporates formation and breakage of sacrificial bonds

and the corresponding release of hidden lengths at force-dependent rates based on Bell’s

theory. We estimated the model parameters by comparing with available experimental

data and used kinetic Monte Carlo methods to simulate the cyclic loading experiment.

Our model qualitatively reproduces the main features of the experiment such as time evo-

lution of hysteresis loops, energy dissipation, peak stress and residual strain etc. It is

shown that these quantities approach their respective steady states exponentially with the

number of loading cycles. We find that the characteristic cycle number associated with

this exponential decay is in close agreement with the characteristic cycle number extracted
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from the reported experimental data. The breaking of sacrificial bonds is responsible for

hysteresis (energy dissipation) and the corresponding release of hidden lengths appears as

residual strain. The magnitude of hysteresis, peak stress and residual strain after first cycle

is proportional to maximum stretch ration �max. The recovery of the fibril is proportional

to the relaxation time and spontaneous formation and breaking of sacrificial bonds at zero

force is a possible healing mechanism in the collagen fibril. The presence of a characteris-

tic cycle number has significance in the description of the time dependent cyclic response

of collagen. In particular, it has the potential of being utilised for comparison of fibril re-

sponse across animals, ages, stages of disease, level of hierarchy, response to medication,

etc. This is a promising area for future experimental investigation.

Kinetic model captures the essential physics and explain the key features of cyclic loading

experiment of a single collagen fibril. However, it does not explain the increase in strength

of the fibril post cyclic loading as observed in the experiment. It is a minimal model and

does not account for complex geometrical structure of collagen fibril. To address this, our

next step is to explore a microscopic model of collagen fibrils that incorporates dynamical

sacrificial bonds (cross-links).

Dissipation and recovery in collagen fibrils under cyclic loading: a
molecular dynamics study

In this part of thesis, we approach the problem of cyclic loading of individual collagen

fibril from microscopic point view. The aim of this work is to understand the molecular

mechanism of deformation and recovery during cyclic loading. We first utilise the ex-

isting molecular dynamics models, specifically [9] to account for observed experimental

features. We then extend this model to incorporate the reformation of cross-links or sacri-

ficial bonds that aid in recovery and evaluate its potential to explain experimental findings

such as recovery upon relaxation and increased strength that may result from cross-link
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Figure 3: Schematic diagram showing the longitudinal arrangement of collagen molecules
in a microfibril. Gap and overlap region represented by ’G’ and ’O’ respectively and D-
period is shown by ’D’.

reformation and reorganisation.

In our model, each collagen molecule within a fibril is modeled as a bead spring polymer

with three types of beads: end beads (designated as cross-linker beads E), potential cross-

linking sites (S), and normal beads (A), as shown in Fig 3. Specifically, the E-S cross-links

can be reformed during the relaxation period based on distance criteria. We use molecular

dynamics simulations to mimic cyclic loading experiments by deforming the simulation

box at a constant strain rate.

The model reproduces the key features of the experiment such as moving hysteresis loops,

residual strains, peak stress and partial recovery on relaxation. The material parameters

after relaxation were shown improve with relaxation bringing out the role of extent of

cross-linking in determining the macroscopic response. The di↵erent parameters of the

macroscopic response, such as peak stress, residual strain, dissipation, and number of

cross-links approach the steady state values exponentially fast, characterized by a char-

acteristic cycle number c⇤. This behavior is consistent with what was observed in the

analysis of the kinetic model as well as seen in the experiment [7]. We found that the

c⇤, becomes independent of the �max, approximately equal to 5, when �max lies within the

regions where cross-links break, while it remains high at the lower boundary of this re-

gion. This observation is further supported by the dependence of c⇤ on cross-link density

�. Further, the value of c⇤ ⇡ 5 is same as that obtained for the kinetic model as well as in

the experiment.
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We investigate the post-cyclic loading recovery of the fibril model by allowing the fibril

to relax and permitting cross-links to reform during the relaxation process. We observe

⇡ 50% recovery in residual strain across di↵erent stretch ratios, comparable with the re-

sults of the experiment [7]. We do not find full recovery, thus there is presumably plastic

deformation. This is because cross-links form while the strain is reducing at zero force,

thereby arresting further decrease in strain. Plastic deformation is consistent with the

viscoelastic-plastic modeling approach of Ref. [11], and the experimental results [7], but

di↵erent from the kinetic model where full recovery occurs if the fibril is relaxed for in-

finite time as no geometrical constraints are accounted for in the kinetic model. To study

the e↵ect of cross-link reformation during relaxation, we compared the response to mono-

tonic loading of two fibrils: one was subjected to monotonic loading immediately after

cyclic loading, while the other was relaxed and then subjected to monotonic loading. We

demonstrate an increase in strength and toughness in the fibril that underwent relaxation

compared to the fibril that is not relaxed. The recovery is quantified and is shown to be

more for larger stretch ratios �max.
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Chapter 1

Introduction

1.1 Collagen: Types, Biosynthesis and Significance

Collagen is the most abundant protein in vertebrates. It is found in several load-bearing

tissues like bones, teeth, tendons, ligaments, and in other tissues like skin, eyes cornea,

etc [1, 2]. Currently, there are approximately 29 identified types of collagen based on

the supramolecular structures formed by collagen molecules. These types include fibril-

forming collagen, network-forming collagen, fibril-associated collagen with interrupted

triple helix (FACIT), transmembrane collagen, and others [2, 12]. Type I collagen, which

forms fibrils, is the most abundant among all collagen. Each collagen type consists of

a triple helical region at the fundamental level, which is made up of three alpha chains.

There are approximately 25 alpha chains that combine in triplet and give rise to around

29 di↵erent types of currently known collagen [13]. Each collagen type contributes to the

structural integrity, strength, and proper functioning of specific tissues within the body.

For example, Type I collagen provides structural support, strength, and flexibility to tis-

sues such as the skin, bones, and tendons. Type II collagen plays a crucial role in provid-

ing support to joints, type V plays a role in fibrillation, etc. [2,14,15]. The most common

types of collagen along with their tissue distribution are summarized in Table 1.1.
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Type Molecular formula Polymerized
form

Tissue distribution

Fibril-Forming
(fibrillar)

I [↵1(I)]2↵2(I) fibril bone, skin, tendons,
ligaments, cornea
(represent 90% of
total collagen of the
human body)

II [↵1(II)]3 fibril cartilage, interver-
tebral disc, noto-
chord, vitreous hu-
mor in the eye

III [↵1(III)]3 fibril skin, blood vessels
V [↵1(V)]2↵2(V) and

↵1(V)↵2(V)↵3(V)
fibril (assemble
with type I)

same as type I

XI ↵1(XI)↵2(XI)↵3(XI) fibril (assemble
with type II)

same as type II

Fibril-associated IX ↵1(IX)↵2(IX)↵3(IX) lateral associa-
tion with type II
fibril

cartilage

XII [↵1(XII)]3 lateral associa-
tion with type I
fibril

tendons, ligaments

Network IV [↵1(IV)]2↵2(IV) Sheet-like net-
work

basal lamina

VII [↵1(VII)]3 anchoring fib-
rils

beneath stratified
squamous epithelia

Table 1.1: Most common collagen types and their tissue distribution, taken from Ref. [13].

Collagen biosynthesis occurs in specialized cells called fibroblasts and is a complex pro-

cess that involves several intra and extracellular processes [16, 17]. It involves transcrip-

tion and translation of collagen genes to form pre-procollagen molecules inside the cell,

and post-translational modifications. These modifications include removal of the signal

peptide, hydroxylation of lysine and proline residues, and glycosylation. The modified

pro-alpha chains assemble into a triple helix to form procollagen and transported outside

the cell, where the ends of the procollagen are cleaved by enzymes called collagen pep-

tidases, resulting in the formation of tropocollagen. These tropocollagen molecules then

self-assemble to form fibrils.

Collagenous tissues exhibit a hierarchical structure, o↵ering essential mechanical sup-

port, strength, flexibility, and mobility necessary for the optimal functioning of the human
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Figure 1.1: The hierarchical structure of collagen. Amino acids are the basic units of
collagen molecule which then assemble into fibril to form fibers and higher tissues like
tendons, bones, etc [28]. Used with permission from Nano Letters.

body. Collagen, being a key component in the extracellular matrix (ECM), also plays a vi-

tal role in cell behaviour [18], migration [19], di↵erentiation [20], and wound healing [21]

etc. However, mutations in the amino acid sequence of collagen can have significant im-

plications on the mechanical properties at all scales [22, 23]. Such mutations have been

associated with a range of diseases and conditions, including osteoporosis, osteogenesis

imperfecta, Ehlers-Danlos syndrome, and more [24,25]. It is important to understand the

mechanical properties of collagen at all scale in order to gain comprehensive understand-

ing of biological tissues [3, 26]. Understanding mechanical properties of collagen is also

crucial for various biomedical application like tissue engineering, wound healing, drug

delivery, disease diagnosis and monitoring, etc [4, 13, 27].

1.2 Hierarchical structure of collagen

The hierarchical structure of collagen is shown in Fig 1.1. Collagen molecules typically

have a length of approximately 300nm and a diameter of around ⇡ 1.5nm. Each collagen
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molecule consists of three left-handed polypeptide chains (alpha chains), which coil up

along a common axis to form a right-handed triple helix. The composition of triple helix

chains in collagen depends on the specific collagen type, which can be either a homotrimer

or a heterotrimer. In the case of collagen type I, which is the primary focus of this thesis,

it is a heterotrimer composed of two ↵1 chains and one ↵2 chain. The sequence of alpha

chains in the triple helix is characterized by repeating units of Gly-X-Y, where X and Y

frequently consist of proline and 4-hydroxyproline amino acids, respectively [29]. The

stability of the triple helix is attributed to the presence of glycine at every third residue,

along with hydrogen bonding and electrostatic interactions involving lysine residues [30].

Apart from the central major helical region, collagen molecules have two short non-helical

regions called N and C telopeptides at both ends. These telopeptides are remnants left

after the cleavage of propeptides during biosynthesis [6, 17].

At the next level of hierarchy, tropocollagen molecules self-assemble to form long colla-

gen fibrils with diameters ranging from tens to hundreds of nanometers. The simplified

structure, as shown in Fig. 1.2, illustrates the packing of collagen molecules within a fibril

along the longitudinal direction. These fibrils are further composed of multiple microfib-

rils, each consisting of five collagen molecular strands [31, 32]. Within a microfibril,

the collagen molecules align in a staggered manner along a common axis, resulting in

alternating regions of low and high density known as the gap and overlap regions, respec-

tively [33, 34]. This staggered arrangement gives rise to the observed banding pattern in

the collagen fibril with a periodicity of 67nm. The lengths of the gap and overlap regions

are 0.54D and 0.46D, respectively, where D (67nm) represents the characteristic period

equal to the sum of the gap and overlap regions.

The fibril structure is further stabilize by the formation of enzymatic cross-links between

collagen molecules. The enzymatic reaction is initiate by the enzyme lysyl oxidase, which

acts on specific lysine amino acids at the non-helical ends of a collagen molecule (N

and C telopetides) [36]. The resulting allysine then reacts with a specific lysine of an
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Figure 1.2: Simplified structure of collagen fibril. Used with permission from [35].

adjacent molecule, forming an immature divalent intermolecular bond [37]. With time,

these divalent cross-links further react with another telopeptide aldehyde group to form a

trivalent mature bond, linking three tropocollagen molecules together [38,39]. It has been

shown using x-ray di↵raction that these telopeptides take a folded conformation during

cross-link formation [6].

The full crystallographic description of type I fibrillar collagen supermolecular structure

was presented by Orgel et al. [40] in 2006, see Fig 1.3. This 3D model has become one of

the most widely used and recognized models for the purpose of modeling and simulating

fibrillar collagen. The collagen molecules are arranged in a quasi-hexagonal pattern when

viewed in cross-section, forming the fibril (see Fig 1.3 A). Five collagen molecules are

depicted within a single unit cell, representing a microfibril. The lateral arrangement of

collagen molecules within a microfibril is not entirely straight; instead, the molecules

exhibit kinks and wavy structures. Additionally, the collagen molecules are interdigitated

into each other with a right-handed twist (as illustrated in Fig 1.3 C). Fig 1.3 D and E
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Figure 1.3: (A) Cross-sectional view of fibril. (B) D-staggered collagen molecule segment
shown in crystallographic unit cell. (C) Collagen Microfibril (D) Non-helical telopep-
tide regions of collagen molecule [40]. Copyright (2006) by The National Academy of
Sciences of the USA. (E) Schematic of the U-shape folded conformation of telopetides
during cross-link formation [6,41]. Used with permission from Journal of the Mechanical
Behavior of Biomedical Materials.
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illustrate the structure of telopeptides and schematic of their folded conformation during

cross-link formation, respectively.

The structural organization of collagen is universal up to the collagen fibril level. How-

ever, beyond that point, diverse structural arrangements occur to accommodate the spe-

cific requirements of di↵erent tissues. For example, in tendons these collagen fibril forms

fibers and then fascicles [42], mineralisation of fibrils occur in bones [43], forms highly

ordered orthogonal array in cornea [44,45], etc. In this thesis, we focus on type I collagen.

1.3 Mechanical behaviour of collagen molecules and in-

dividual fibrils

Collagen is known for its outstanding mechanical properties. At the smallest length scale,

the mechanical response of the collagen molecules has been determined using AFM and

optical tweezers experiments [5,46–49]. The molecular basis of the toughness of collage-

nous tissues was established by identifying the basic mechanisms of energy dissipation

during the pulling of collagen molecules. Thompson et al. [5] conducted AFM exper-

iments, pulling collagen molecules soaked in Ca+2 ions from a glass slab at a constant

velocity and returning the tip to within 50 nm of the surface. The force-extension curve

of bovine Achilles tendon collagen showed a saw-tooth pattern, with multiple force drops

as extension increased. These drops were attributed to the rupture of intermolecular sac-

rificial bonds and the release of hidden lengths, ensuring backbone integrity while dissi-

pating a significant amount of energy. Further, a delay of 100s before the next cycle was

shown to result in an almost 50% recovery in the capacity of energy dissipation, suggest-

ing reformation of the sacrificial bonds during the waiting interval. Sun et al. [46] used

optical tweezers to pull single collagen molecules at small forces. The results fit well with

the Worm-Like Chain (WLC) model, showing a persistence length of 14.5± 7.3 nm and a

contour length of 309±41 nm. The estimated elastic modulus from the persistence length

21



Figure 1.4: (A) The three phase stress-strain response of collagen fibril from human
patella tendon on tensile loading [50], adopted with permissions from Biophysics Journal.
(B). The stress-strain response of the collagen fibril from calf skin on tensile loading also
shows typical three phase behaviour [7], adapted with permission from Acta Biomateri-
alia.

is between 0.35 � 12 GPa. Bozec et al. [48] performed force spectroscopy experiments

on collagen molecules, and in 18% of their samples, they observed a discontinuity in the

force-extension response. The region before the discontinuity fit well with the Worm-

Like Chain (WLC) model, but beyond the discontinuity, it did not. This suggests that the

curvature of the peak contains two mechanical behaviors, where the WLC model can ef-

fectively model one but not the other. This shows that collagen molecules exhibit entropic

elasticity at lower forces and energetic elasticity at higher forces.

At the fibril scale, the mechanical properties of individual collagen fibrils have been pri-

marily studied using experimental techniques such as Atomic Force Microscopy (AFM) [23,

50–52] and Microelectromechanical Systems (MEMS) [7, 53–55]. The mechanical re-

sponse of the fibril depends on several factors like source of the specimen, hydration,

environmental condition, cross-links density and pH, etc., [50, 51, 53, 54, 56, 57]. Svens-

son et. al. [50], studied the influence of enzymatic cross-links (ECLs) on the fracture

mechanics of collagen fibrils upon tensile loading. The collagen fibrils from the human

patella tendon exhibit a characteristic three-phase stress-strain behavior (Fig 1.4 A). It
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begins with an initial rise in modulus, followed by a plateau, and in the final phase, ex-

periences a further increase in stresses and modulus, hypothesized to be a consequence

of the maturity of cross-links, before reaching failure [50]. In contrast, collagen from

the rat tail tendon, a non-load bearing tissue, displays only two phases, with a plateau

in the stress-strain leading to failure. Similarly, the collagen fibril from calf skin also

demonstrates a typical three-phase behavior in the stress-strain response to tensile load-

ing (Fig 1.4 B).

In addition to enzymatic cross-links (ECLs), Advanced Glycation Endproducts (AGEs)

can also develop within the fibril through glycation reactions. Unlike ECLs, the precise

location of AGEs within the collagen molecules is not yet fully known, but they form

along the length of the collagen molecules. AGEs are known to occur as a result of aging

and diabetes [58,59]. These cross-links contribute to the sti↵ening of the fibril but causing

a loss of plasticity and toughness [60]. The degree of cross-linking, involving both ECLs

and AGEs, between tropocollagen molecules has been shown to have a significant impact

on the fibril’s mechanical response [50, 54, 61, 62].

1.4 Computational modeling of collagen molecules and

individual fibrils

The modeling of collagen molecules and fibrils has been addressed at various length

scales. In Fig. 1.5, we have illustrated an overview of the multiscale modeling approach.

Simulations at multiple length scales have provided interesting insights into various as-

pects of deformation and failure of collagen, ranging from atomistic length scales, focus-

ing on individual tropocollagen molecules, to continuum length scales for collagen fib-

rils [63–66]. These earlier simulations were based on short ⇡ 8nm collagen-like peptides

from x-ray crystallography. At the level of tropocollagen molecules, three main deforma-

tion mechanisms are observed: molecular unwinding, breaking of hydrogen bonds, and
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backbone stretching. The force-extension response of tropocollagen molecules depends

on the deformation rate and also show viscoelastic behaviour [67,68]. Mesoscopic molec-

ular model, derived from atomistic studies of tropocollagen, of ultra-long tropocollagen

molecule showed the transition from entropic elasticity at small deformations to energetic

elasticity at large deformations [69].

The pioneering work by Orgel et al. [40] in developing a full three-dimensional x-ray

crystallographic model of the full-length collagen molecule and its molecular packing

within microfibrils marked a significant advancement in collagen modeling and simula-

tions. Subsequent studies have observed di↵erences in the mechanical response between

short and full-length collagen molecules [70]. To gain further insights, all-atom steered

molecular dynamics simulations were used to investigate the mechanical properties of

collagen molecule across di↵erent segments, revealing substantial heterogeneity along

the length [71, 72].

The full-length model of the collagen molecule serves as the foundation for constructing

the microfibril model. By wrapping a single collagen molecule around in a crystallo-

graphic unit cell with periodic boundary conditions, it mimic the collagen microfibril or

the core of the fibril [73]. This detailed atomistic model of the fibril core has proven instru-

mental in studying the role of various factors, such as hydration [28], mineralization [74],

and their combined e↵ects [75] on mechanical properties of the fibril. The dry microfibril

exhibits a higher Young’s modulus of approximately 1.8 � 2.25 GPa, compared to the

hydrated state with around 1.2 GPa [28]. Notably, the microfibril’s Young’s modulus is

approximately 10 times smaller than that of single molecules, highlighting the diversity

in properties as a consequence of collagen’s hierarchical structure. Uzel et. al. [41],

incorporated the U-shaped enzymatic cross-link structure [6] between C-terminal seg-

ment from one molecule and helical segment from another molecule into an all-atomistic

model. The chains with cross-links showed improved mechanical response. This U-shape

structure has an equivalence with the structure of sacrificial bonds [76]. Additionally, the
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(a)

(b)

Figure 1.5: Overview of multiscale modelling approach for (a) collagen molecules and
(b) collagen fibrils/microfibrils.
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mechanical properties of the fibril, such as tensile modulus and stress-bearing capability,

have been found to increase with higher mineralisation density [74]. Moreover, increased

hydration leads to stress-strain nonlinearity, but the presence of mineral content in hy-

drated fibrils reduces this e↵ect during tensile stress [75].

The collagen molecules are long, with thousands of amino acids in each chain of the

triple helix. It is computationally challenging to deal with more than one molecule with

full atomistic details, making it impractical to simulate the entire fibril using atomistic

simulations. Using mesoscopic molecular model with idealized two-dimensional repre-

sentation of collagen fibril, large deformations without catastrophic failure were shown

to be possible due to molecular stretching as well as other competing mechanisms such

as intermolecular sliding and breaking of cross-links between collagen molecules [77].

Depalle et al. [8] proposed a more realistic coarse-grained model of collagen fibril, which

considered the full three-dimensional structure of the fibril and incorporated enzymatic

cross-links at their physiological locations. The parameters for this model were derived

through a bottom-up approach from atomistic simulations of short collagen molecules

in earlier studies [65, 69, 78]. By distinguishing between mature and immature cross-

link properties, the model successfully reproduced the three-phase stress-strain response

observed in experiments [50]. A similar molecular dynamics (MD) simulations of a three-

dimensional model explored the e↵ects of degradation on the overall mechanical response

of the fibril [9]. The study considered three types of degradation, including surface, vol-

ume, and cross-link removal, and demonstrated that even with minor degradation, sig-

nificant changes in mechanical properties were observed, highlighting the importance of

molecular organization in collagen fibrils. Recently, there have been advancements in

modelling collagen fibrils by incorporating advanced glycation end-products (AGEs) in

addition to enzymatic (ECLs). A high content of the AGEs led to an increase in the

strength of the fibril, but it fails abruptly because of backbone failure and doesn’t dissi-

pate much energy through cross-link breakage [79]. The degree of cross-linking, includ-

ing both ECLs and AGEs between tropocollagen molecules, has been shown to have a
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significant impact on the material’s mechanical response [50,54,61,62,79]. The extent of

the mineralisation also enhance mechanical properties of the fibril [80, 81].

1.5 Research gap and problem statement

Collagen is subjected to cyclic loads during various body movements and physical ac-

tivities, such as exercise and everyday motion. While the response of collagen to mono-

tonically increasing loads is comprehensively investigated, the response to cyclic loads,

resulting dissipation, and recovery are comparatively much less studied, ranging from

single fibril scale [7, 52, 55, 82] to macroscopic tissue length scale [83–87]. For isolated

collagen fibril, Shen et. al. [55] performed fatigue test on isolated collagen fibrils and

reported four di↵erent stress-strain response: linear to failure, perfectly plastic, perfectly

plastic-strain hardening, and nonlinear strain softening. All fibrils exhibited significant

hysteresis and a residual strain (strain at zero force). A recovery in residual strain was

also observed, which was dependent on the amount of time spent at zero force. Similar

features have also been observed in experiments at tissue length scale [85, 86].

In a recent experimental study, Liu et. al. [7] conducted displacement controlled cyclic

loading experiments on single collagen fibrils obtained from calf skin, within all three

regimes (see Fig 1.4 B) of the stress-stretch response. The stress-stretch reponse of fibril

on cylic loading within regime II is shown in Fig. 1.6. The collagen fibrils were subjected

to 10 cycles of loading up to a predetermined stretch ratio, �max, followed by unloading

to zero force. This loading protocol is referred to as series 1 loading. Subsequently, the

fibrils were allowed to relax for 1 hour. After relaxation, the fibrils underwent another

10 loading cycles with the same �max, referred to as series 2 loading. Finally, the fibrils

were monotonically loaded until they reached final failure. The stress-stretch response of

fibrils showed energy dissipation, moving hysteresis loops and associated residual strains

(Fig. 1.6 a). With increasing number of loading cycles, the dissipation during hysteresis
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Figure 1.6: (a) Stress-stretch response of the collagen fibril on cyclic loading within
regime II. (b) Zoomed version of point (a). (c) Evolution of residual or inelastic strain
(d) Elastic modulus (c) Hysteresis (energy dissipation) with the number of loading cycle
for both series 1 and series 2 loading [7]. Adapted with permission from Acta Biomateri-
alia.
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decreases while the residual strain increases and both finally saturate to their respective

steady state values. Collagen fibrils also showed recovery in residual strain and as well

as in capacity to dissipate energy when allowed to relax at zero force (Fig. 1.6 c, e). It

was conjectured that these features could be due to the existence of reformable sacrificial

bonds within the fibrils. Finally, the fibrils which were cyclically loaded showed an in-

crease in strength and toughness, compared to monotonically loaded fibrils. However, the

exact mechanism responsible for these enhancements remains unknown and is speculated

to involve permanent molecular rearrangements within the fibril structure. With respect

to modeling cyclic response of collagen, there are recent advances in understanding of the

energy dissipation and wave propagation properties of collagen at molecular, microfibril

level due to transient loading using fully atomistic models [88–90] and continuum consti-

tutive model [11].

1.6 Thesis organisation

This thesis is organised into five chapters. In this chapter, we provide an overview of col-

lagen, its biosynthesis, and its significance. We also explore the hierarchical organization

of collagen, drawing insights from experimental studies and computer simulations. As

we proceed, we focus our attention on the central research problem of this thesis, which

is to comprehensively model and understand the response of a single collagen fibril under

cyclic loading conditions.

In Chapter- 2, we have briefly introduced the tools used in this thesis to perform simula-

tions. We discuss the fundamentals of molecular dynamics simulations, covering aspects

such as interaction potentials, boundary conditions, thermostats, etc. We also discuss

another important simulation technique called kinetic Monte Carlo simulations and its

principles and applications.

In Chapter- 3, we introduce kinetic model formalism and develop a kinetic model for
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a collagen fibril, incorporating hidden loops, stochastic fragmentation, and reformation

of sacrificial bonds. Model reproduces characteristic features observed in experimental

data, including moving hysteresis loops, time evolution of residual strains and energy

dissipation, and recovery on relaxation. The approach to the steady state is controlled by

a characteristic cycle number for both residual strain and energy dissipation, aligning well

with reported experimental data.

In Chapter- 4, we address the cyclic loading response of the fibril from a microscopic per-

spective by modifying an existing coarse-grained molecular dynamics model for collagen

fibril. The model, initially with cross-linked collagen molecules, is extended to incorpo-

rate the reformation of cross-links, allowing for potential fibril recovery. We show that our

model successfully replicates the key features observed in experimental data. In addition,

it also provides an explanation for the non-zero steady-state hysteresis and plastic defor-

mation observed in the experiment. We also show that the characteristic cycle number,

describing the approach towards steady state, has a value similar to that in experiments

and in the kinetic model. We also highlight the influence of the degree of cross-linking

on key macroscopic response features to cyclic loading.

In Chapter- 5, we finally conclude the thesis with a comprehensive summary of the results

obtained, followed by a discussion on the future directions and exploring how the results

of this thesis can be extended for new advancements in the field.
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Chapter 2

Simulation techniques

In this chapter, a brief introduction to both molecular dynamics (MD) simulations and

kinetic Monte Carlo simulations is given. More details can be found in the Ref. [91–93]

2.1 Molecular dynamics Simulation

2.1.1 Introduction

Molecular dynamics (MD) is a powerful computational technique for simulating the mo-

tion of particles interacting with each other via an interaction potential. MD provides use-

ful insights into the structural dynamics, thermodynamics, and kinetics of many systems

by performing simulations at the atomic scale. The fundamental principle of molecular

dynamics simulations lies in solving Newton’s equations of motion for each atom in the

system. For example, consider a system of N particles interacting with each other with a

potential U(r). The force on ith particle is given by

Fi = mir̈i = �riU(r), (2.1)
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where, mi is the mass and r̈i is acceleration of the particle. By numerically integrating the

above equations with appropriate boundary conditions and initial conditions over small

time steps, one can follow the trajectories of atoms and obtain their positions and veloci-

ties at each time step, allowing the simulation of the system’s behavior over time.

In the context of biological systems and materials science, molecular dynamics simu-

lations have become an indispensable tool for understanding the behavior of complex

biomolecules, such as proteins, and lipids, as well as the mechanical properties of materi-

als like polymers, nanomaterials, etc. Here, we provide an overview of molecular dynam-

ics simulations, including their underlying principles, force fields, integration methods,

boundary conditions, etc.

2.1.2 Interactions

The interaction potential, also known as the force field, is a central component that gov-

erns the interactions between particles (atoms, molecules, or ions) in the simulated sys-

tem. The interaction potential describes the potential energy associated with the pairwise

interactions between particles, which influences their behavior and governs the dynamics

of the system. There interaction potential typically consists of bonded and non-bonded

interactions.

U = Ubonded + Unon�bonded, (2.2)

The bonded interactions typically include bond stretching (bonded pairs of atoms moving

closer or farther), angle bending (angular deformations around bond centers), and dihedral

(torsional) rotations. These interactions are often described by harmonic or more complex

potential functions. The non-bonded interactions includes Van der Waals interactions,

electrostatic interaction, hydrogen bonding etc. The choice of potential or force field

depends on the nature of the system. There are several known force fields used in atomic

and molecular simulation such as CHARMM, AMBER, etc.
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In the context of this thesis, collagen molecules are modelled as neutral bead-spring poly-

mers. We have considered only bond stretching and angle bending in bonded interactions

and the Van der Waals interactions using Lenard Jones potential for non-bonded pairs.

The most general form of interaction potential for any neutral polymer is given below:

Bonded potential:

The bond stretching potential energy function describes the interactions between the di-

rectly bonded beads. A common choice for bond stretching is the harmonic potential:

Ubond(r) =
1
2

kbond(r � req)2, (2.3)

where, Ubond is the bond stretching potential energy, kbond is the bond stretching force

constant (bond sti↵ness), r is the current bond length, and req is the equilibrium bond

length. The bending potential energy function describes the interactions between three

consecutive beads in a polymer and quantifies the energy associated with deviation of

bond angle from its equilibrium value. A common choice for bending interaction is also

the harmonic potential:

Uangle(✓) =
1
2

kangle(✓ � ✓eq)2, (2.4)

where, Uangle is the bending potential energy, kangle is the bending force constant, ✓ is the

current bond angle, and ✓eq is the equilibrium bond angle.

Non-bonded potential:

The non-bonded interactions are typically modelled using the Lennard-Jones (LJ) poten-

tial for Van der Waals interactions and the Coulombic potential for electrostatic interac-

tions. The LJ potential, as shown in Fig. 2.1, is widely used in molecular simulations

to describe the non-bonded interactions between neutral atoms/beads. It captures both

attractive Van der Waals forces and repulsive excluded volume e↵ects. The potential is

33



Figure 2.1: Lenard-Jones potential.

given by:

ULJ(ri j) = 4"
2
666664

 
�

ri j

!12

�
 
�

ri j

!63777775 , (2.5)

where, ULJ is the Lennard-Jones potential energy, " is the depth of the potential, determin-

ing the strength of the interaction, � is the finite distance at which the inter-particle poten-

tial is zero (size of the bead), and ri j is the distance between the centers of two interacting

particles. The LJ potential has an attractive term ( / r�6) dominating at large distances

and a repulsive term ( / r�12 ) dominating at short distances. The balance between these

terms leads to a stable potential well at the equilibrium distance (rmin = 21/6�), represent-

ing the most stable configuration between particles with ULJ(rmin)=-✏. The Lennard-Jones

(LJ) potential represents a long-range interaction between particles. To enhance compu-

tational e�ciency, the potential is truncated at a cuto↵ distance of rc = 2.5�, beyond

which the force is considered negligible, set to zero, and shifted (ULJ(r)-ULJ(rc)) to avoid

discontinuity in potential energy at the cut-o↵ distance.
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2.1.3 Time integration of equation of motion

The equation of motion for system of N interacting particles can be written as:

mir̈i =
X

i, j

Fi j, (2.6)

where, mi is the mass of ith, ri is the position of particle and Fi j force between ith and jth

particle. These equations of motion are solved using an integrator to determine the posi-

tions and velocities of particles. One of the most used integrator in molecular dynamics

simulations is the velocity-Verlet algorithm [94]. It has an error of the order of �t4, where

�t is the time step. At time t + �t, the velocity-Verlet algorithm update the positions and

velocities as follows:

ri(t + �t) = ri(t) + vi(t)�t +
Fi(t)
2mi
�t2, (2.7)

vi(t + �t) = vi(t) +
�t

2mi
(Fi(t + �t) + Fi(t)) , (2.8)

By iteratively applying these equations for each time step, the velocity-Verlet algorithm

calculates the positions and velocities of particles, allowing the simulation to progress in

time. This integrator ensures both accuracy and stability, preserving energy conservation

and volume in phase space, making it a favored and widely adopted choice for Molecular

Dynamics (MD) simulations.

2.1.4 Periodic boundary conditions

In Molecular Dynamics simulations, we often want to study the behavior of a system that

is much larger than what we can directly simulate. However, simulating such a large sys-

tem with billions of particles would be computationally impractical. Periodic Boundary

Conditions (PBC) enable simulating a small box of particles, where particles that reach

one edge reappear on the opposite side. This wraps the system around itself, creating
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an e↵ective simulation of an infinite system. PBC reduces edge or finite size e↵ects and

allows studying bulk properties accurately.

PBC, on the other hand, allows particles to interact not only within their own simula-

tion box, but also with particles in periodic replica boxes, resulting in an endless series

sum of interactions. The minimum image convention is used to simplify computations

for systems having short-range interactions. This convention concentrates on interactions

between a particle and its nearest neighbour or periodic image, e↵ectively reducing the

infinite series to a finite one and increasing the e�ciency of the calculations. The interac-

tion cuto↵ (rc ) must be less than half the length of the box (L/2) for appropriate results.

We can e↵ectively simulate short-range interactions using the minimum image conven-

tion without needing to include interactions with all particles in the system.

2.1.5 Thermostats and barostats

In molecular dynamics simulations, when we simply integrate the equations of motion,

we are essentially simulating the system in a microcanonical ensemble where the total

energy is conserved. However, in many real-world scenarios, we are interested in sim-

ulating systems under di↵erent conditions, such as at a constant temperature or constant

pressure, which correspond to the canonical (NVT) or isothermal-isobaric (NPT) ensem-

bles, respectively. Various methods have been developed to achieve these conditions,

allowing for simulations in the canonical (NVT) or isothermal-isobaric (NPT) ensembles.

The following is a brief introduction to some of the most used methods.

Langevin thermostat

The Langevin thermostat introduces both a frictional force and a random force to the

particle’s momenta, ensuring that the simulation reaches and maintains the desired tem-

perature. It utilizes stochastic forces to control the temperature of a particle moving in

the presence bath of smaller particles. These smaller particles create a damping force,
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represented by ��i pi, where �i is the friction coe�cient and pi is the momentum of the

ith particle. Additionally, the kinetic energy of the smaller particles leads to random kicks

given to the larger particle. In summary, the Langevin thermostat modifies the equations

of motion for each particle as follows:

dpi

dt
= Fi � �i pi + ⌘i(t), (2.9)

where Fi is the force acting on atom i due to the interaction potential, �i is the damping

factor (friction coe�cient), and Ri(t) is a zero-averaged random force. The random force

has the property:

h⌘i(0)⌘i(t)i = 2mi�ikBT�(t), (2.10)

where T is the desired temperature, kB is the Boltzmann constant, mi is the mass of the

particle, and �(t) is the time-step. This thermostat is useful to mimic implicit solvent.

Nose-Hoover thermostat

The Nose-Hoover thermostat, proposed by Nose [95] and further modified by Hoover [96].

This deterministic algorithm introduces an additional degree of freedom (s), which mimic

a heat bath. The extended Lagrangian of the system is given by:

L =
NX

i=1

mis2q̇2
i

2
� U(q) +

Qṡ2

2
� gkBT ln s, (2.11)

where mi is the mass of the ith particle, qi is its coordinate, Q is the mass associated with

s, g is the number of degrees of freedom of the system, and kB is the Boltzmann constant.

The equations of motion for the particles are then described by:

dqi

dt
=

pi

mis2 ,
dpi

dt
= �@U
@qi
,

ds
dt
=

ps

Q
,

dps

dt
= mis2 B

kBT
� gkBT, (2.12)
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2.2 Kinetic Monte Carlo Simulation

Kinetic Monte Carlo (KMC) simulation is a computational technique used to simulate the

time evolution of complex processes in nature. Unlike molecular dynamics, which in-

volves solving classical equations of motion and tracking individual atomic movements,

KMC focuses on the stochastic behavior of macroscopic events and their probabilities.

Its flexible time step adapts to di↵erent processes’ timescales, enhancing computational

e�ciency. It is particularly useful for investigating the kinetics of processes that occur

via random events and are influenced by probabilities, such as di↵usion, adsorption, des-

orption, chemical reactions, etc. KMC simulations can handle large systems and long

timescales, providing detailed information about the kinetics and non-equilibrium behav-

ior of the system.

In KMC simulations, the system is represented by a network of discrete states, and tran-

sitions between these states occur probabilistically. Each state represents a specific con-

figuration or arrangement of particles, and the transitions between states correspond to

elementary processes or events that can take place in the system, such as breaking of a

bond or di↵usion of a particle, etc. The basic steps of a Kinetic Monte Carlo simulation

are as follows:

1. Initialization: The initial state of the system is set up with a given configuration of

particles.

2. Events identification: All possible elementary processes (events) that can occur in

the current state are identified. These events could include di↵usion of particles,

chemical reactions, or other transformations.

3. Rate calculation: The rates of all individual events (e.g., a specific particle move-

ment or a single reaction), denoted by ki are calculated. These rates, in general, can

depend on force, activation energy, temperature, etc. The sum of the rates of all
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events is denoted by R, such that

R =
X

i

ki, (2.13)

4. Time step: An appropriate time step �t is chosen to ensure that only one event

occurs during each time step. A common approach is to set �t based on the fastest

event in the system, typically as:

�t =
0.1
R
, (2.14)

5. Event Execution: The probabilities (ki�t) of all the events are calculated, and an

event is selected based on a random number decision to be executed, and the system

is updated according to the changes associated with that event. For example, parti-

cles may move to neighbouring lattice sites, undergo chemical reactions, or change

their internal states.

6. Time Update: The simulation time is incremented by the generated time increment

�t.

7. Repeat: Steps 2 to 6 are repeated, generating a sequence of events and updating

the system until a specified simulation time is reached or a certain number of events

have occurred. This give a single trajectory of the system.
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Chapter 3

Kinetic model description of dissipation

and recovery in collagen fibrils under

cyclic loading

The content of this chapter is published in Ref. [97].

This chapter aims to explain the key experimental features observed during cyclic loading

experiments, as described in Sec 1.5. These features include the time evolution of hys-

teresis loops and residual strain, among others. They are thought to be connected to the

presence of sacrificial bonds within the collagen fibril, forming the basis of our model’s

hypothesis. To achieve this, we adopt the kinetic model approach, which incorporates

sacrificial bonds.

Dynamic sacrificial bonds within polymers have been successfully incorporated in sim-

plified models called kinetic models. The saw-toothed stress-strain response of collagen

molecules has been simulated using deterministic kinetic models of a worm-like chain

with additional sacrificial bonds whose breakage results in the release of a hidden length,

resulting in a drop in force [10,76]. Historically, two state kinetic models have been used
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to describe the force-extension response of single protein pulling experiments [98–100].

Here, within the framework of kinetic models, we develop a minimal stochastic kinetic

model for collagen fibrils that incorporates dynamic reformable sacrificial bonds with hid-

den lengths. We show that the proposed model is able to reproduce the main qualitative

features of the cyclic loading experiment [7], suggesting that the essential physics is cap-

tured by the kinetic model. By choosing realistic model parameters, we reproduce key

quantitative features of the experimental data.

3.1 Model

3.1.1 Kinetic model formulation

We first describe the basis of kinetic models and how they incorporate the dynamic for-

mation and breaking of sacrificial bonds. We then give the details of the specific kinetic

model that we develop for simulating the cyclic response of a fibril.

Consider a linear polymer whose contour length, in the absence of sacrificial bonds, is Lc.

Let bond length be b such that number of monomers are N = Lc/b. Each sacrificial bond

creates a hidden loop that prevents a part of polymer backbone from taking any load, as

shown schematically in Fig. 3.1. When hidden loops are present, the available length La,

of the polymer backbone is less than Lc and is given by

La = Lc �
X

i

`i, (3.1)

where `i is the length of the ith hidden loop. The length of the hidden loops are chosen

from a distribution P(`).

We denote the stress-stretch relation of the polymer by �(�), where � is the stretch (note

that � = 1 + ✏, where ✏ is the strain). We assume that �(�) increases monotonically with
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Figure 3.1: (a) Schematic of a polymer with a single sacrificial bond (dotted line), corre-
sponding hidden loop (shown in red) and the corresponding force-stretch ratio response.
(b) As the sacrificial bond breaks, the force drops due to release of the hidden length. (c)
Force rises again as the polymer is extended further.
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Figure 3.2: (a) Cross-sectional view of coarse grained MD model of collagen fibril. (b)
Cross-sectional view of a single microfibril. (c) A single collagen molecule as a bead
spring linear polymer.

�. Sacrificial bonds are created and broken with rates kb and k f which are in general

dependent on the force acting on the polymer. For a given macroscopic extension, when

a sacrificial bond is created, La decreases, thus increasing the strain, and hence the force.

Similarly, when a sacrificial bond breaks, La increases, thus decreasing strain, and hence

there is a drop in force. The rates of formation, kb, and fragmentation, k f , of sacrificial

bonds have been earlier modeled [10], according to Bell’s theory [101], as

k f = ↵0 exp
 

F�x f

kBT

!
, (3.2)

kb = �0 exp
 �F�xb

kBT

!
, (3.3)

where ↵0 and �0 are rates of fragmentation and formation of sacrificial bonds at zero force,

�x f and �xb are distances to transition state, F is the force felt by the sacrificial bond, kB

is the Boltzmann’s constant and T is the temperature.

3.1.2 Determination of stress-stretch relation

We now describe the implementation of the kinetic model for a collagen fibril. A fibril

consists of a collection of collagen molecules that are linked to each other through en-

zymatic crosslinks. Within the kinetic model framework, we treat the collagen fibril as

a coarse grained linear polymer. The crosslinks are treated as dynamic sacrificial bonds
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Figure 3.3: Stress-stretch relation �(�) obtained from MD simulations of a fibril in which
breakage of bonds (including backbone and other enzymatic cross-links) is disallowed.
The data is fitted to a polynomial of degree nine. The x-axis has been shifted to ignore
the knee region.

that can be created or broken with rates described in Eqs. (3.2) and (3.3).

To first establish the stress-stretch response of collagen fibril without any creating or frag-

mentation dynamics, we use an existing coarse grained three dimensional MD model [9],

but here we disallow any fragmentation of crosslinks. In the coarse grained MD model (as

in Ref. [9]), shown schematically in Fig. 3.2, each collagen molecule is represented by a

linear bead-spring model of 215 beads [see Fig. 3.2(c)]. To create a microfibril, five col-

lagen molecules are arranged in a staggered manner along the longitudinal direction such

that the arrangement is a pentagon in the cross-sectional view [see Fig. 3.2(b)]. A repeated

hexagonal arrangement of multiple microfibrils forms a fibril [see Fig. 3.2(a)]. Within

each microfibril, the collagen molecules are inter-connected through cross-links. We con-

sidered the case of hundred percent cross-linking (� = 100%), which implies that the ter-

minal ends of all collagen molecules form crosslinks with neighbouring molecules. A

detailed description of the model, the values of the parameters used, and details of simu-

lation are provided in Appendix A.

The stress-stretch relation �(�), where � = x/La and x is the end-to-end distance of the

polymer, obtained from MD simulations is shown in Fig. 3.3, where for bench-marking,
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Figure 3.4: (a) Schematic of evolution of available length during a series of cycles fol-
lowed by relaxation at zero force. (b) Relaxation dynamics of fibril of length Lc(with
no sacrificial bonds). At long time fibril equilibrates to initial experimental length La,0.
Relaxation curve averaged over 1000 runs.

we have compared the data with the results of Ref. [9], where crosslinks break beyond

a threshold strain. For convenience of use in the kinetic model, we fit a ninth order

polynomial

�(�) =
9X

n=1

an(� � 1)n, (3.4)

to the data.
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3.1.3 Determination of parameters and rates

We now describe how to determine model parameters: Lc, P(`), ↵0 and �0. At zero force,

sacrificial bonds form and break spontaneously with rates �0La/b and ↵0Nb respectively,

where Nb is the number of sacrificial bonds present at any instant. At steady state, rate of

fragmentation and formation of bonds should be equal, implying

↵0hNbi =
�0hLa,0i

b
, F = 0, (3.5)

where the zero in the subscript of La,0 denotes the reference time after steady state is

reached, taken to be t = 0. Also, hLa,0i = Lc � hNbih`i where h`i and hNbi are the average

loop size and the average number of loops respectively. Substituting for hLa,0i in Eq. (3.5),

we obtain

hNbi =
Lc�0

↵0b + �0h`i
, (3.6)

Lc

La,0
= 1 +

�0

↵0

h`i
b
. (3.7)

We estimate Lc/hLa,0i from the experimental data [7]. To do so, we assume that after

20 cycles, most of the sacrificial bonds are broken and hidden lengths appear as residual

strain. Equating the ratio Lc/hLa,0i to the experimental residual extension of ⇡ 1.15 after

20 cycles, as shown in Fig. 5(c) of Ref. [7], we obtain Lc/hLa,0i = 1.15. The initial length

of the fibril is known to be hLa,0i = 30 µm, thus fixing Lc. The inter-monomer distance

b is chosen to be b = 1.4 nm, equal to the inter-bead distance in the MD model [9].

To choose the distribution of the hidden loop sizes, we proceed as follows. In kinetic

models for collagen, the loop sizes were chosen proportional to the contour length of

the polymer [10, 76]. However, in fibrils, we expect the hidden length released from

breakage of sacrificial bonds (representing a cumulative e↵ect of cross-links at MD length

scale [8, 9] and the U-shaped telopeptides at the atomistic scale [6]) to be order of a few
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monomer lengths, as the equilibrium distance of cross-links (⇡ 10 Å) is less than the

equilibrium distance of the LJ potential (⇡ 16.5 Å). We assume the hidden loops to be on

an average four monomer lengths.

We make the choice of P(`) to be a uniform distribution U[2b, 6b]. We will argue that this

choice is consistent with the MD-model for fibrils, as well as show that the results are not

sensitive to the choice as long as the perturbations to P(`) are not significant. With this

choice of P(`), we obtain h`i = 4b.

On substituting these values of Lc/hLa,0i, b and h`i in Eq. (3.7), we obtain �0/↵0 = 0.0375.

Then from Eq. (3.6), we obtain hNbi/(Lc/b) ⇡ 0.0326. We now argue that this num-

ber that follows from the experimental residual strain has the correct order of magni-

tude. The kinetic model represents a fibril with diameter of a single microfibril, such that

215 monomers in the kinetic model represents 215 ⇥ 5 monomers of the microfibril. A

molecule in the microfibril has two crosslinks. This corresponds to 10 sacrificial bonds

per 215 monomers in the kinetic model or equivalently we expect hNbi/(Lc/b) ⇡ 0.047.

Among these, some will be broken at zero force, and the calculated result hNbi/(Lc/b) ⇡

0.0326 makes sense.

Knowing the ratio �0/↵0 = 0.0375, we would like to now fix the values of ↵0 and �0. For

this, we use the fact that as part of the cyclic loading experiment [7], recovery of residual

strain is also studied. In the experiment, the fibril is cyclically loaded for 10 cycles fol-

lowed by relaxation at zero force for 60 minutes, as shown schematically in Fig. 3.4(a).

We will choose an ↵0 for which the relaxation time matches with the experimental data.

For doing so, we take a polymer of length Lc with no sacrificial bonds which roughly

mimics the state after 10 cycles. We then equilibrate the system at zero force. After equi-

libration, the available length is La0 , as shown in Fig 3.4(b). The relaxation dynamics from

our model matches well with the experiment (experimental data shown as solid circles)

for ↵0 = 1.69 ⇥ 10�4s, as shown in Fig 3.4(b).

Finally, we describe how we fix the parameters �x f and �xb, as defined in Eqs. (3.2) and
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Table 3.1: The parameters for the kinetic model for collagen fibril.

Parameter Description Value
La,0 available length at zero force 30 µm
Lc contour length 1.15 La,0

b bond length 1.4 nm
P(`) loop size distribution U[2b, 6b]
h`i mean loop size 4b
�0 formation rate of sacrificial bonds at zero force 6.32 ⇥ 10�6s�1

↵0 fragmentation rate of sacrificial bonds at zero force 1.69 ⇥ 10�4s�1

�x f distance to transition state .01 nm
�xb distance to transition state 0
v pulling velocity 125 nm/s
T temperature 298 K

(3.3). The force F in these equations is the force felt by the sacrificial bonds. Since the

sacrificial bonds or crosslinks are between di↵erent collagen chains and transverse to the

direction of loading, we have no direct way of measuring F. Instead, we approximate it

by the force in a chain. In the MD simulations, the force in a chain is �A0/185, where

A0 is the cross-sectional area of the fibril, and 185 is the number of chains. We then treat

�x f as a parameter. Note that �x f controls when the stretch ratio at which fragmentation

of sacrificial bonds is enhanced. We perform a parametric study of the dependence of

the stress-stretch response for uniaxial loading on �x f . We choose that value of �x f for

which the strain at which deviation from the initial linear behavior coincides with that in

the experiment. Using this procedure, we converge on �x f to be .01 nm. We notice that the

formation rate is low and during the pulling experiment, there are very few reformations

of sacrificial bonds. We therefore choose �xb to be zero, and check that even if a non-zero

value is chosen, the results do not change.

The values of the di↵erent parameters are summarized in Table 3.1.
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Figure 3.5: (a) The mean stress-strain response of the polymer under monotonic loading
obtained using kinetic model. It shows three distinct regions which are roughly demar-
cated by the vertical dotted lines. �max

1 , �max
2 and �max

3 correspond to the maximum strain
applied in the three di↵erent cyclic loading protocols. (b) The mean number of sacrificial
bonds for a given strain for monotonic loading.

Figure 3.6: The macroscopic stress-stretch response for cyclic loading for (a) �max = 1.1
(region-I), (b) �max = 1.2 (region-II), and (c) �max = 1.3 (region-III). In all the three cases,
the response shows moving hysteresis loops which saturate with loading cycles for both
series 1 (first 10 cycles) and series 2 (next 10 cycles after 60 minutes relaxation at F = 0)
loading.
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3.1.4 Simulation Protocol

The system evolves in time through constant time steps dt. In this time interval, the

probabilities of fragmentation (pf ) and formation (pb) of sacrificial bonds are given by

pf = k f Nb(t)dt and pb = kbNf (t)dt where, Nf (t) = La(t)/b is the number of free sites

and Nb(t) is the number of sacrificial bonds. The time step dt is chosen such that the

probabilities are much smaller than 1 at all times. Whenever a sacrificial bond forms, a

hidden loop of length ` is assigned from distribution P(`). When a sacrificial bond breaks,

a hidden length of a randomly chosen loop is released. The available length gets updated

as La ± ` depending on breaking/formation event of sacrificial bonds. The rates are also

updated depending on the current force and current La.

We start with a polymer of length Lc with zero sacrificial bonds and equilibrate the system

at zero force. After equilibration, to do cyclic loading, we pull at a constant velocity such

that v = dx/dt, where x = �La(t) is the end to end distance. The time-dependent stress

�(x, La(t)) is calculated using Eq. (3.4) and the corresponding rates are determined. The

polymer is pulled up to a pre-decided stretch ratio �max after which the pulling velocity

is reversed to �v, and the polymer is stretched back to zero force. This completes one

loading cycle.

3.2 Results

3.2.1 Uniaxial loading

To establish the e↵ectiveness of the proposed kinetic model, we first simulate response

of the fibril chain polymer to monotonically increasing load. The average macroscopic

response obtained from 16 realizations is shown in Fig. 3.5(a). For each run, the sys-

tem is first equilibrated at zero force, after which displacement (end to end distance) is
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increased at a constant velocity of 125 nm/s. The macroscopic response exhibits three

distinct regions: an initial region (region-I) where stress increases linearly with strain, an

intermediate region where stress is weakly increasing with strain (region-II) and a final

region where the stress increases non-linearly with strain (region-III). These qualitative

features, of three distinct regions, of the macroscopic response are consistent with what

has been observed in pulling experiments of collagen fibril [7, 50].

The existence of three distinct regimes is better understood in terms of the number of the

intact sacrificial bonds at any given strain. In Fig. 3.5(b), we show the mean number of

sacrificial bonds for a given applied strain. For small strains, corresponding to region-I

there is only a marginal decrease from its initial equilibrium value. Further increase in

strain, corresponding to region-II, results in a sharp decrease in the number of sacrificial

bonds, thereby releasing hidden lengths and causing relaxation in the stresses. Finally all

sacrificial bonds are broken in region-III. The change in slope of the stress-strain curve in

region-II occurs due to breaking of sacrificial bonds.

3.2.2 Cyclic loading

We next simulate the cyclic loading patterns reported in Ref. [7] to compare the charac-

teristic features of the mechanical response seen in the experiment with our simulations.

Cyclic load is applied such that in each cycle the chain is stretched upto a maximum

stretch ratio, �max. As in Ref. [7], we also consider �max to lie in the three distinct regimes

by choosing it to be �max = 1.1, 1.2, 1.3 (the corresponding positions on the macroscopic

response is shown by red circles in Fig. 3.5(a)) and these stretch ratios are representative

points of regions I, II and III. The fibril is subjected to cyclic loading using the protocol

described in Sec. 3.1.4 with pulling speed v = 125 nm/s, chosen to be same as in exper-

iment [7]. The polymer is subjected to 10 loading cycles (series 1) and then relaxed at

zero force for 60 minutes, and then subjected to 10 more loading cycles (series 2).
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Figure 3.7: The variation of number of sacrificial bonds with loading cycles for both
series 1 and series 2 and for di↵erent stretch ratios, �max. The dashed line corresponds to
discontinuity due to relaxation before series 2 loading. After relaxation, there is a partial
recovery in number of sacrificial bonds for all �max. Color scheme used for cycles is same
as in Fig. 3.6

We first present results for the variation of the stress-stretch curve with cycles. The stress-

stretch ratio curves show hysteresis, as evident in Fig. 3.6. The first cycle exhibits hys-

teresis as well as residual strain at a completely unloaded state. Further cycling results

in the subsequent hysteresis loops to shift to the right implying accumulation of residual

strains. The hysteresis loops eventually tend to reach a steady state with number of cycles

for both the series and for all three representative values of �max. These features from

the simulations of the kinetic model are consistent with the observed trends in the experi-

ment [7].

In the associated number of intact sacrificial bonds, shown in Fig. 3.7 with fading shades

of red and blue for series 1 and 2 respectively, the progressive breakage patterns with

increasing cycles is clearly evident. For �max = 1.1, the first cycle results in breakage of

10% bonds and in subsequent 9 cycles there is a further gradual reduction in sacrificial

bonds, slowly reaching a steady state. During the waiting interval, bonds reform (shown

with dashed line). The cyclic loading of series 2 causes the number of sacrificial bonds

to gradually decrease again. For �max
2 , however, most of the breakage occurs in the first

cycle as the number of shows a dramatic decrease (by more than 50%). Subsequent cycles
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Figure 3.8: The evolution of residual strain with number of loading cycles for both series
1 and series 2 for di↵erent stretch ratios, �max. The magnitude and final saturated value of
residual strain depends on the maximum stretch ratio, �max.

show comparatively lower rate of breakage per cycle. Interestingly, for a similar waiting

interval, the reformation of bonds is significantly higher than for �max
1 and this could

be attributed to the comparatively larger available length from more number of broken

bonds. For the cyclic loads with �max
3 , first cycle results in breakage of more than 90% of

the sacrificial bonds. Since most bonds are already broken further cycling does not a↵ect

the overall status of intact bonds appreciably. Waiting period recovers 50% of the initial

bonds which again break primarily in the first cycle of the series 2.

The residual strain accumulates with increasing cycles and reaches a steady state for both

series 1 and series 2 loading for all three �max (see Fig. 3.8). During the relaxation period

between the two series, the residual strain reduces by approximately 50%. The magnitude

of the residual strain when steady state is reached depends on �max (see Fig. 3.8). It can

be seen that the steady state residual strains follows the order of �max
3 > �max

2 > �max
1 ,

in agreement with the experiments [7]. The residual strain increasing with �max is due

to the larger number of sacrificial bonds breaking in the first cycle itself for higher �max,

as shown in Fig. 3.7. It can also be seen that number of sacrificial bonds reform during

relaxation which accounts for recovery in residual strain.

The energy dissipated per cycle (area under the loading-unloading curve) decreases with
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Figure 3.9: The evolution of energy dissipation with number of loading cycles for both
series 1 and series 2 and for di↵erent stretch ratios, �max. The data from 2nd cycle onward
is zoomed and shown in the inset figure.

increase in the number of cycles and reaches steady state for both series 1 and series

2 loading (see Fig. 3.9) for all chosen stretch ratios. There is a partial recovery in en-

ergy dissipation after relaxation as seen from first cycle of series 2 loading (see Figs. 3.6

and 3.9). The area of the hysteresis loop after the first cycle also follows the pattern

�max
3 > �max

2 > �max
1 . This is because the first cycle of region-III has maximum number

of sacrificial bond breaking compared to the other two regions, as evident from Fig. 3.7.

Restoration of sacrificial bonds on relaxation accounts for recovery in energy dissipation.

We now quantify the approach of residual strain and energy dissipation to their respective

steady state values. We find that the deviation of residual strain and energy dissipation

from their steady state value has an exponential decrease to zero with number of loading

cycles (see Fig. 3.10, where the data for �max = 1.1 and �max = 1.2 are shown). We ex-

tract the experimental data for these quantities from Ref. [7] and find that the exponential

decrease is also seen in experiment (see Fig. 3.10). This allow us to determine a charac-

teristic cycle number c⇤ defined as:

✏r(c) � ✏r(1) / e�c/c⇤ , (3.8)
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Figure 3.10: The variation of the deviation of (a) residual strain and (b) area of hysteresis
loop from their respective steady state values with number of loading cycles. The cor-
responding experimental data from Liu et. al. (2018) [7] are shown with squares. Both
quantities approaches steady state exponentially. The best fits are shown by dashed lines.

Figure 3.11: The variation of characteristic cycle c⇤ with the maximum stretch ratio, �max

obtained for (a) residual strain and (b) energy dissipation.

where ✏r(c) is residual strain at cycle c, ✏r(1) is the steady state value of residual strain.

We compare the characteristic number of cycles, c⇤, obtained for residual strain from

simulations and experiments of Liu et al. [7] in Fig. 3.11(a). We use the average c⇤ of

series 1 and 2 for the both simulations and experimental data. Since c⇤ is not quoted in

the experiments, we fit the extracted experimental data to obtain c⇤. From simulations,

for small �max, in regime I, we find the polymeric chain takes larger number of cycles

(⇡ 16) to reach steady state. This large value of c⇤ for small stretch ratio is understood

as ideally, polymer should take infinite cycles to reach steady state within elastic regime.
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Figure 3.12: The variation of peak stress with number of loading cycles for di↵erent �max
1 ,

before (series 1) and after relaxation (series 2). Peak values of stress depends on �max and
show a partial recovery on relaxation (series 2).

With increasing �max, c⇤ decreases. In region II, the steady state is reached at significantly

lower cycles (⇡5) and there is marginal decrease with increasing �max. Further increase

in �max, corresponding to region III, shows again a further drop in c⇤ implying faster

approach to steady state in stress-lambda response. Experimental data compares very well

in the region II as it also exhibits marginal change with increasing �max, and in region III

there is decrease in c⇤ with increasing �max.

We also compare the value of characteristic cycle c⇤, obtained for energy dissipation from

simulations and the extracted experimental data as shown in Fig. 3.11(b). We obtain a

similar trend of c⇤ with �max for energy dissipation also. The value of c⇤ is large in region-

I, then it decreases with �max, it shows some plateau in region-II and then further decreases

sharply in region-III. Again, we see a good match with experimental results.

Finally, we study two more quantities studied in the experiment: peak stress and elastic

modulus. The peak stress (stress at �max) decreases with number of cycles for both series

1 and 2 and for all three stretch ratios (see Fig. 3.12). It also approaches the steady state

exponentially . The peak stress in the first cycle in a particular region depends on choice

of �max and follows the order: �(�max
3 ) > �(�max

2 ) > �(�max
1 ).
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Figure 3.13: Elastic modulus E1 remains invariant to cyclic loading for both series and
in all three regions while E2 (for region-II and III) becomes constant after first cycle and
then remains invariant to cyclic loading.

We define two elastic moduli E1 and E2 in accordance with the experimental study [7].

The elastic modulus E1 is calculated from the slope of the stress-stretch (Fig. 3.6) curve

up to � ⇡ 1.02 whlie E2 is calculated from the slope (where d�/d� ⇡ constant) of the

stress-stretch curve in region-II. We find that E1 is not a↵ected by cyclic loading for all

three stretch ratios while E2 becomes a constant after the first loading cycle and then re-

mains invariant to cyclic loading for �max
2 and �max

3 in both series loading (see Fig. 3.13).

However, the extent of transition region between region-I to region-II decreases with cy-

cles within �max = 1.2, 1.3 (see Fig. 3.6(b) and (c)) and these feature are also observed

in the experiment. Our results are in good agreement with the cyclic loading experiment

(see Figs. 3, 4, 5 in Ref. [7]).

3.3 Conclusions and Discussion

Experimentally, the stress-stretch response of a single collagen fibril subject to cyclic

loading [7, 55] within a fixed stretch ratio � is known to show moving hysteresis loops

and residual strains that increase and saturate with number of cycles. The fibril is known

to show recovery in energy dissipation as well as residual strains on relaxation. These
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features were thought to be related to the presence of sacrificial bonds within the fibril [7].

To test this hypothesis, we develop a stochastic kinetic model specifically for collagen

fibril. The model treats the collagen fibril to be a polymeric chain that has hidden lengths

secured by sacrificial bonds. The two primary ingredients of the model are: a reference

stress-stretch relation for the available length of the polymer and stochastic formation and

fragmentation of sacrificial bonds. The reference stress-stretch relation is first established

from molecular dynamics simulations of an existing coarse-grain fibril model [9]. The

kinetic model incorporates formation and breakage of sacrificial bonds and release of

hidden lengths based on Bell’s theory. We estimated the model parameters by comparing

with available experimental data and used kinetic Monte Carlo methods to simulate the

cyclic loading experiment.

The model qualitatively reproduces the main features of the experiment such as time

evolution of hysteresis loops, energy dissipation, peak stress and residual strain etc. It is

shown that these quantities approach their respective steady states exponentially with the

number of loading cycles. We find that the characteristic cycle number associated with

this exponential decay is in close agreement with the characteristic cycle number extracted

from the reported experimental data. The breaking of sacrificial bonds is responsible for

hysteresis (energy dissipation) and the corresponding release of hidden lengths appears as

residual strain. The magnitude of hysteresis, peak stress and residual strain after first cycle

is proportional to maximum stretch ratio �max. The recovery of the fibril is proportional

to the relaxation time and spontaneous formation and breaking of sacrificial bonds at zero

force is a possible healing mechanism in the collagen fibril.

The presence of a characteristic cycle number has significance in the description of the

time dependent cyclic response of collagen. In particular, it has the potential of being

utilised for comparison of fibril response across animals, ages, stages of disease, level of

hierarchy, response to medication, etc. This is a promising area for future experimental

investigation.
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While generalizing the kinetic model to other biological polymeric materials or collagen

types, careful consideration should be given to its core assumptions and mechanisms,

like whether these systems share similar features, such as sacrificial bonds and hidden

lengths. A validation of the system through simulation data or experiments will be crucial

to knowing the nature of hidden lengths and loops and determining whether they arise

from physical attributes or emerge from entanglements and de-entanglements. The force

law, which is an important ingredient in the kinetic model, is also material-specific. A

knowledge of phenomenology is required while generalizing the kinetic model to other

systems, and existing MD simulations can give an idea of inputs to the model.

The kinetic model is able to reproduce the majority of the characteristic features of the

fatigue experimental data in Ref. [7], thus providing an insight into the essential mecha-

nisms at work. It is a minimal model that does not explicitly take into account the geo-

metrical features of the model, including complex hierarchical structure and biochemical

environments. The strength of sacrificial bonds is known to depend on the type of ionic

environment [5]. The kinetic model is based on a macroscopic force law determined from

a microscopic model restricting bond breaking. In a real-life scenario, during loading, a

complex stress field could result at the fibril level depending on load path selection and

load partitioning in the fibril because of its hierarchical structures. However, as the kinetic

model captures key features of the experiment, these details may not be relevant or may

be averaged out at this scale.

One feature that kinetic model is not able to explain is the experimental observation that

the strength of a fibril, that has undergone cyclic loading, is increased. This suggests

that while the model e↵ectively captures key features of the mechanical response, it may

not fully account for all the mechanisms at play. This increased strength could be due

to permanent rearrangement of molecules inside the fibril, making the feature history-

dependent. It is to be noted that reformation of sacrificial bonds, as in the present kinetic

model, can only lead to recovery of strength up to the virgin sample, which is independent
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of past history. It is possible that the observed gain in strength may be accounted for by

a three-dimensional model of a fibril incorporating detailed microscopic interactions. It

would thus be of interest to develop a coarse grained model for the fibril that incorporates

sacrificial bonds. In addition, it will provide a microscopic basis for the validity of the

kinetic model, as well as allow for a determination of parameters. A microscopic model

would also have a characteristic relaxation time, which is assumed to be zero in the present

kinetic model, which will have an additional contribution to the hysteretic response.

Interestingly, at tissue scale also, the stress-strain response exhibits moving hysteresis

loops, residual strain, etc [85]. Linka et. al. [102], proposed a constitutive damage model

that reproduces the experimental results of the tendon overloading experiment [85]. The

kinetic model described in this chapter, with suitable modifications, would also be ideally

suited to explain the results at tissue level.
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Appendix A: Coarse grained collagen fibril model

In this appendix, we describe the coarse-grained model for the fibril that we have used for

MD simulations. The model is from Ref. [8, 9].

A collagen molecule is represented by 215 beads connected with spring to each other.

The distance between two consecutive bead is b = 1.4 nm, which is roughly equals to

the diameter of collagen molecule. Five collagen molecules are arranged in staggered

manner in z-direction while in pentagonal geometry in x-y plane to form a microfibril,

as shown in Fig 3.2. This staggered arrangement of collagen molecules give rise to the

characteristic D-period of collagen fibril (67nm). The diameter of a single microfibril is

⇡ 3.5 nm. Terminal beads of each tropocollagen molecule forms a divalent or trivalent

cross-link within a microfibril. In divalent cross-link, end beads of a molecule forms a

single connection with a nearest bead from it’s neighbouring molecule while in case of

trivalent cross-link, the end beads forms two connection with the closest beads from it’s

nearest and next-nearest collagen molecule. These terminal connections represents the

enzymatic cross-links in fibril. We have considered the case with hundred percent cross-

link (� = 100%), which means all the terminal ends will from a cross-links with their

neighbouring molecule. The ratio of trivalent (33%) and divalent (66%) cross-links has

been kept fixed. Now, 37 of these microfibrils are arranged in a hexagonal close packing

to represent a collagen fibril. The length and diameter of fibril model are 343.6 nm and

25.9 nm respectively. The periodic boundary conditions has been used to mimic the fibril

of infinite length. Periodic boundary condition ensures the D-periodicity of the fibril

structure.

The non bonded interaction between beads of fibril is given by Lenard-Jones potential as

:

ULJ = 4✏
"✓�

r

◆12
�

✓�
r

◆6
#
, (3.9)

where r is the distance between interacting beads and � is the distance parameter and ✏ is
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Table 3.2: The parameters for the MD-model of fibril.

Model parameters Value
✏- LJ energy parameter (kcal mol�1) 6.87
�- LJ distance parameter (Å) 14.72
✓0- Equilibrium bending angle (degree) 180
k✓- Bending strength constant (kcal mol�1 rad�2) 14.98
r0- Equilibrium distance (tropocollagen) [Å] 14.00
r1- critical hyperelastic distance (tropocollagen) [Å] 18.20
rbreak- bond breaking distance (tropocollagen) 21.00
kT0- Stretching strength constant (tropocollagen) [kcal mol�1 Å�2] 17.13
kT1- Stretching strength constant (tropocollagen) [kcal mol�1 Å�2] 97.66
r0- Equilibrium distance (divalent crosslink) [Å] 10.00
r1- critical hyperelastic distance (divalent crosslink) [Å] 12.00
rbreak- bond breaking distance (divalent crosslink) 14.68
kT0- Stretching strength constant (divalent crosslink) [kcal mol�1 Å�2] 0.20
kT1- Stretching strength constant (divalent crosslink) [kcal mol�1 Å�2] 41.84
r0- Equilibrium distance (trivalent crosslink) [Å] 8.60
r1- critical hyperelastic distance (trivalent crosslink) [Å] 12.20
rbreak- Bond breaking distance (trivalent crosslink) 14.89
kT0- Stretching strength constant (trivalent crosslink) [kcal mol�1 Å�2] 0.20
kT1- Stretching strength constant (trivalent crosslink) [kcal mol�1 Å�2] 54.60
m- mass of tropocollagen bead [a.m.u] 1358.7
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energy parameter (depth of potential).

The bending energy (U✓) between three consecutive beads of collagen molecule is given

by harmonic interaction as :

U✓ = k✓(✓ � ✓0)2 (3.10)

where k✓ is bending strength and ✓0 is equilibrium angle.

The interaction between bonded beads is defined by a bi-harmonic potential as:

Fbond = �
@Ubond

@r
=

8>>>>>>>>>>><
>>>>>>>>>>>:

kT0(r � r0) for r < r1,

kT1(r � r0) for r1  r < rbreak,

0 for r > rbreak.

(3.11)

where r0 is the equilibrium distance between two beads, kT0 and kT1 are spring constants

between distances 0 to r1 and 0 to rbreak.

The simulations were performed using LAMMPS [103]. Time step was set to �t = 10 f s,

and the equations of motion were integrated with langevin thermostat with drag coe�cient

1000 f s and temperature 310 K. The fibril was equilibrated for 20 ns and then a constant

strain rate of 107 s�1 was applied. All the parameters used in simulation are given in

Table 3.2. These parameters have been developed for collagen molecules in Refs. [65,78]

and specifically for the fibril model in Refs. [8, 9].
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Chapter 4

Dissipation and recovery in collagen

fibril under cyclic loading: a molecular

dynamics study

The content of this chapter is from Ref. [104].

This chapter aims to explain the key experimental features observed during cyclic loading

experiments, as described in Sec 1.5 using a microscopic approach.

Di↵erent approaches have been used to model the macroscopic response of fibrils un-

der cyclic loading. In last chapter, we proposed a kinetic model for collagen fibrils

that takes into account the presence of hidden loops, stochastic fragmentation, and the

stochastic reformation of sacrificial bonds [97]. This kinetic model was a generalisation

of the kinetic model for collagen molecules that incorporated sacrificial bonds and hid-

den lengths [10, 76]. The kinetic model for fibril successfully replicated the key features

observed in experimental data [7], including the movement of hysteresis loops, the time

evolution of residual strains and energy dissipation, and the recovery observed during re-

laxation. We demonstrated that the approach towards reaching a steady state is influenced
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by a characteristic cycle number for both residual strain and energy dissipation, and our

findings were consistent with the experimental data of Ref. [7]. Within a continuum me-

chanics approach, a constitutive model was proposed that accounts for both viscoelastic

and plastic deformations [11]. The model parameters were fitted using experimental data,

and the experimental phenomena was well-reproduced by the model. The model predicts

plastic deformation, and improved performance after relaxation.

Both modeling approaches discussed above are at the macroscopic level. The kinetic

model is a minimal representation that does not incorporate the geometric properties of

the collagen fibril. While it captures the dominant energy dissipation mechanism due to

breaking of cross-links (sacrificial bonds), it fails to capture plastic deformation as well

as non-zero steady state hystereses loops observed in experiments. The continuum mod-

els [11] are based on phenomenological laws that have a substantial number of parameters

that have to be fitted to the experimental data. While it is a powerful tool for large scale

analysis, it is not possible to gain an insight into the molecular basis of the dissipation

and recovery mechanisms. Here, we approach the problem of cyclic loading from the

microscopic point of view using molecular dynamics (MD) simulations.

In this chapter, we build upon existing MD models [8, 9] to account for the experimental

features observed during cyclic loading. We show that existing models of fibrils, when

subjected to cyclic loading, are able to reproduce the time evolution of hysteresis loops

and the accumulation of residual strains, as observed [7] in macroscopic responses of col-

lagen fibrils subjected to cyclic loading. However, these models cannot account for the

recovery of the collagen fibril on relaxation. We incorporate dynamic cross-link reforma-

tion into the MD model during relaxation and demonstrate that this feature allows us to

reproduce experimental findings such as recovery upon relaxation. Further, this reforma-

tion of cross-links increases the strength compared to the strength of the fibril post cyclic

loading. We also show that the characteristic cycle number, describing the approach to-

wards steady state, has a value similar to that in experiments. Compared to earlier kinetic
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models, the MD model is able to obtain non-zero steady state hysteresis loops and account

for plastic deformation, as observed in experiments.

4.1 Model

4.1.1 Geometry of the collagen fibril model

We first describe the geometric details of coarse-grained fibril model and how cross-links

or sacrificial bonds that break and reform are incorporated into the model. The model is

a modification of existing three dimensional coarse grained models for collagen fibrils in

the literature [8, 9].

A collagen molecule is represented by a linear bead-spring polymer of 217 beads, as

shown in Fig. 4.1b(iii). The distance between two consecutive beads is b ⇡ 1.4 nm. In a

microfibril, five collagen molecules are arranged parallel to each other but in a staggered

fashion longitudinally, as shown in Fig. 4.1a, and in a pentagonal geometry along trans-

verse direction, as shown in Fig. 4.1b(ii). The diameter of a single microfibril is ⇡ 3.5

nm. 37 of these microfibrils, arranged in hexagonal closed packing, represents a collagen

fibril, as shown in Fig. 4.1b(i). The staggered arrangement of collagen molecules results

in a repeating gap and overlap region which give rise to the characteristic D-period (67

nm) of the collagen fibril.

It is known that collagen molecules self-assemble into fibril structure and end regions of

collagen molecules (called telopeptides) forms enzymatic cross-links with their neighbor-

ing molecules to further stabilize the structure. This indicates that the end regions must

have a high a�nity for specific regions on the collagen molecule in order for self assembly

to result in fibril formation with a precise D period. In line with this concept, we consider

three types of beads (E, S and A) in each collagen molecule, as shown in Fig. 4.1a. ‘E’

(shown in red) represents the end beads of each collagen molecule, ‘S ’ (shown in blue)
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(a)

(b)

Figure 4.1: (a) Schematic diagram showing the longitudinal arrangement of collagen
molecules in a microfibril. Gap and overlap region represented by ’G’ and ’O’ respec-
tively and D-period is shown by ’D’. (b) Cross-sectional view of the hierarchical structure
of the fibril: (i) fibril, (ii) microfibril, and (iii) molecule.
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represents the possible sites for cross-link formation (E-S sacrificial bond) and ‘A’ (not

shown) represents the remaining atoms in each molecule. In our model, the location of po-

tential cross-linking sites (‘S ’ beads) is chosen such that self-assembly could in principle

lead to a fibril structure with a ⇡ 67 nm (D) periodicity, which is well accepted number

for type I collagen fibrils. However, variations exist across tissues and collagen types, and

uncertainties of the order of 2 nm have been reported in the value of D-period [105–107].

Based on this, the ratio of the D-period to the bond length (D/b) is calculated to be ap-

proximately 48. Therefore, 48 bonds correspond to a single D period. In addition, the

arrangement of collagen molecules in a microfibril indicates that the second, third, fourth,

and fifth molecules are staggered by D, 2D, 3D, and 4D, respectively. As a result, beads

with indices 49, 97, 145, and 193 are classified as S type. We have also chosen the

gap and overlap regions as G = O = 0.5D, which is equivalent to 24 bond lengths (b).

Consequently, beads with indices 25, 49, 73, 97, 121, 145, 169, and 193 in each collagen

molecule are considered to be type S , as shown by the blue beads in Fig. 4.1a. Our choice

of G = 0.5D is close to the experimental value of G ⇡ 0.54D [28,33]. Our choice ensures

the possibility of cross-linking sites being symmetric with respect to the two ends of the

collagen molecules. Thus, self assembly of these molecules will automatically result in

the well-known periodically staggered pattern of the molecules in a fibril. This choice of

gap and overlap, however results in slightly higher value of peak stress as compared to

the earlier simulations with di↵erent gap and overlap regions [8, 9].

4.1.2 Interaction potential and parameters:

The interaction potentials and parameters closely follow that of Refs. [8, 9]. The interac-

tion between all directly bonded beads including backbone of collagen molecules and the
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cross-links is given by a biharmonic potential as:

Fbond = �
@Ubond

@r
=

8>>>>>>>>>>><
>>>>>>>>>>>:

kT0(r � r0), r < r1,

kT1(r � r0), r1  r < rbreak,

0, r > rbreak.

(4.1)

where r0 is the equilibrium distance between two beads, r1 is the hypercritical distance,

rbreak is the bond-breaking distance and kT0 and kT1 are spring constants. The bending

interaction between triplet of consecutive beads along the backbone of each collagen

molecule is given by a bending potential:

U✓ =
1
2

k✓(✓ � ✓0)2, (4.2)

where k✓ is bending strength and ✓0 is equilibrium angle. There is no bending interaction

in triplets that includes the cross-linking beads (S -type). The interaction between all non-

bonded beads is given by Lennard-Jones potential as:

ULJ = 4✏
"✓�

r

◆12
�

✓�
r

◆6
#
, r < rc = 2.5�, (4.3)

where r is the distance between beads, ✏ is the strength of the potential (energy parameter),

� is the diameter of monomer and rc is the cut-o↵ distance. The numerical values of the

di↵erent parameters are given in Table 3.1.

The interaction between all non-bonded beads is given by Lennard-Jones potential as:

ULJ = 4✏
"✓�

r

◆12
�

✓�
r

◆6
#

rc = 2.5 �, (4.4)

where r is the distance between beads, ✏ is the strength of the potential (energy parame-

ter), � is the diameter of monomer and rc is the cut-o↵ distance. The parameter details

for all the described interactions is given in Table 3.1. These parameters were deter-
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Table 4.1: The parameters for the coarse-grained MD-model of fibril.

Model parameters Value
✏- LJ energy parameter (kcal mol�1) 6.87
�1- LJ distance parameter for all non-bonded beads (except E-S pairs)(Å) 14.72
�2- LJ distance parameter for E-S pairs (Å) 10.0
✓0- Equilibrium bending angle (degree) 180
k✓- Bending strength constant (kcal mol�1 rad�2) 14.98
r0- Equilibrium distance (tropocollagen) [Å] 14.00
r1- critical hyperelastic distance (tropocollagen) [Å] 18.20
rbreak- bond breaking distance (tropocollagen) 21.00
kT0- Stretching strength constant (tropocollagen) [kcal mol�1Å�2] 17.13
kT1- Stretching strength constant (tropocollagen) [kcal mol�1Å�2] 97.66
r0- Equilibrium distance (divalent cross-link) [Å] 10.00
r1- critical hyperelastic distance (divalent cross-link) [Å] 12.00
rbreak- bond breaking distance (divalent cross-link) [Å] 14.68
kT0- Stretching strength constant (divalent cross-link) [kcal mol�1Å�2] 0.20
kT1- Stretching strength constant (divalent cross-link) [kcal mol�1Å�2] 41.84
m- mass of tropocollagen bead [a.m.u] 1358.7

mined through all-atom simulations of a small collagen stretch using a bottom-up ap-

proach, considering crystallographic water and a skin of water around each tropocollagen

molecule [78].

We utilized LAMMPS commands such as fix bond/break for bond breaking and fix bond/react

for bond reformation. These commands are well-explained in the LAMMPS documen-

tation [103]. In brief, when bonds break, the bonded interaction is turned o↵, and corre-

sponding beads interact only with the LJ potential. The reverse is true for bond reforma-

tions.

To implement reformation, we consider ‘E’ and ‘S ’ type atoms as special atoms. When

a pair of ‘E’ and ‘S ’ atoms approach closer than a certain distance say r0, a cross-link

or bond can form between them, provided neither of the participating beads is part of

any existing cross-link. Once a bond is formed, the new E-S bond is assigned the same

parameters as those of a divalent cross-link. We set r0 = 14Å, which is smaller than

rbreak = 14.68Åand LJ distance parameter for non-bonded E-S pairs to be (�2 = 10Å). In

earlier models [8, 9] LJ parameter (�1 = 14.72Å) was the same for all non-bonded pairs.
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If the E-S bond had length �1, two non-bonded atoms will typically not come closer than

�1 = 14.72Å, which is larger than both the bond breaking distance (rbreak = 14.68Å) for

divalent cross-link and also r0. The equilibrium distance rmin = 2 1
6�1 = 16.52Åis also

greater than rbreak. For bond reformation to take place, the distance between non-bonded

E-S pairs must be less than or equal to r0. With �2, rmin is 11.22 Å, allowing for the

reformation of E-S bonds.

4.1.3 Simulation protocol:

The simulation were performed using LAMMPS [103]. Time step was set to 10 f s. The

fibril model used in the simulations had an initial cross-link percentage of �, which in-

dicates the fraction of end molecules that are cross-linked. Periodic boundary conditions

with a box size of length (L + G) is used to mimic the fibril of infinite length with al-

ternative gap and overlap regions, where L is length of collagen molecule. No explicit

solvent has been considered during simulations. The system is first equilibrated for 20 ns

at zero pressure in the NPT ensemble with Nose-Hoover thermostat and barostat settings

of 298 K and 0 Pa, respectively. The choice of NPT emsemble during equilibration is

motivated by the fact that the fibril relaxation in the experiment was conducted at zero

force. The relaxation times for the thermostat and barostat are fixed to 1 and 10 ps. A

constant strain rate of 107 s�1 was then applied along fibril length, and the equations of

motion were integrated with a Langevin thermostat using a drag coe�cient of 1 ps. For

the cyclic loading simulation, the box was deformed up to a fixed strain (�max) and then

the direction of the applied strain rate was reversed to continue deformation until the force

reached zero, which completed one loading cycle.
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4.2 Results

4.2.1 Uniaxial and cyclic loading of fibril model with no-reformation:

We first examine the macroscopic behavior of the coarse-grained model and its depen-

dence on the extent of cross-linking, under monotonically increasing applied strain. The

box was subjected to a constant uniaxial strain rate of 107 s�1 along the longitudinal di-

rection (z-axis). Initially, a fraction �, out of the maximum possible cross-links allowed,

were created. For this analysis, cross-links, once broken, were not allowed to reform for

benchmarking with earlier studies. The stress-strain response observed for di↵erent �,

shown in Fig. 4.2, shows an initial linear behavior, followed by a non-linear regime, and

a final sharp drop after peak stress. The initial linear regime is independent of �, while

the non-linear regime, depending on �, shows a combination of hardening as well as soft-

ening regimes. When the extent of cross linking is large, the response is predominantly

hardening, whereas for low extent of cross linking, it is predominantly softening. Further,

we observe that for large strains, the stresses are independent of �. These observations

are consistent with earlier results. We note that, for � < 100%, the stress-strain response

could depend on cross-linking configuration. We have chosen initial cross-linking config-

uration for each � randomly.

The key features of the macroscopic response can be better understood in terms of the

number of the intact cross-links at any given strain (see Fig. 4.3). For small strains, the

number of cross-links shows no noticeable change until the strain corresponding to peak

load (see Fig. 4.2) is reached. Further deformation results in a sharp decrease in the num-

ber of intact cross-links which correlates well with the sharp decrease in the stresses seen

earlier. For even larger deformations, the number of cross-links again do not noticeably

change with strain, though the stationary values depend on the given �, even though the

stresses were seen to be independent of � at these strains. This can be attributed to the
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Figure 4.2: The stress-strain response of the collagen fibril model to applied uniaxial
strain for di↵erent percentages of cross-links (�) present. Data are averaged over 5 inde-
pendent runs for each curve for same initial configurations.

resistance o↵ered by the chains sliding past each other to be similar irrespective of the

remaining intact cross-links.

We now examine the dissipative response of the fibril to cyclic loading for the case

� = 100%, when all the end atoms are cross-linked to a neighboring atom. We per-

form cyclic loading simulation with maximum stretch ratio �max = 1.36, using the pro-

tocol described in Sec. 4.1.3. We choose this particular �max = 1.36 as it falls in the

regime where cross-links are actively breaking (see Fig. 4.3). The fibril is subjected to 10

loading-unloading cycles as in the experiment of Ref. [7]. The stress-strain curves show

the presence of dissipative hysteresis loops (see Fig 4.4) in which the maximum stress as

well as dissipation per cycle changes with increasing number of cycles. Furthermore, a

residual strain is observed consistent with experimental data. The associated hysteresis

loops shift to the right with number of loading cycles showing accumulation of residual

strain. These results reproduce features that were observed in cyclic loading experiment

of fibrils [7].

To gain insight into the microscopic mechanism behind the features of the hysteresis

loops in Fig. 4.4, we examine the associated time evolution of the number of cross-links,

as shown in Fig. 4.5. During the initial cycles, a higher fraction of the cross-links break.
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Figure 4.3: The number of cross-links at a given uniaxial strain for di↵erent percentages
of cross-links (�) present. The red dots represent stretch ratios corresponding to peak
stress in Fig. 4.2. Data are averaged over 5 independent runs for each curve for same
initial configurations.

Figure 4.4: The stress-strain response of the collagen fibril model for strain controlled
cyclic loading of a typical realization with � = 100% and maximum stretch ratio �max =

1.36.
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Figure 4.5: Time evolution of the number of cross-links under cyclic loading, correspond-
ing to the stress-strain response shown earlier in Fig. 4.4.

However, as the number of cycles increases, the rate of cross-link breakage per cycle

decreases. This trend continues till the number of cross-links eventually approaches a

steady state. The observed lowering of peak stress as well as accumulation of residual

strain in Fig. 4.4 appears to be a direct outcome of the rupturing of the cross-links which

make the fibril more compliant.

We next quantify the time evolution of the characteristic parameters of the stress-strain

response to cyclic loading. To do so, we obtain the mean value of the parameters by

averaging over 10 realizations. As seen in the typical realization earlier, the average num-

ber of broken cross-links per cycle also decreases with increasing number of cycles (see

Fig. 4.6). Further, the associated residual strain, shown in Fig. 4.7, exhibits a correspond-

ing increase to a steady state value of ⇡ 10% which falls within the range reported in

experiment [7]. The dissipation, evaluated as the area of the hysteresis loop, is seen in

Fig. 4.8 to have a marginal increase in the first two cycles before decreasing to a steady

state value. The associated peak stress decreases monotonically with number of cycles to

a steady state value, as seen in Fig. 4.9.

We now quantify the approach of the residual strain, energy dissipation, peak stress, and

the number of broken cross-links per cycle to their corresponding steady-state values. As
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Figure 4.6: The average number of broken cross-links per cycle under cyclic loading,
based on ten runs.

Figure 4.7: The evolution of residual strain with the number of loading cycles, averaged
over ten runs.
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Figure 4.8: The evolution of energy dissipation with the number of loading cycles, aver-
aged over ten runs.

Figure 4.9: The variation of peak stress with the number of loading cycles, averaged over
ten runs.
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we found earlier for the kinetic model [97] and in the experimental data, we find that in

the MD model too, the approach to the steady state is exponential with number of cycles

c (see Appendix B).

q(c) � q(1) / e�c/c⇤ , (4.5)

where q(c) represents the value of the relevant parameter after c cycles. This allow us to

extract the characteristic cycle number c⇤. The value of c⇤ is only weakly dependent on

the choice of parameter for fixed �max (see Appendix B).

The characteristic cycle number c⇤ depends on the choice of �max, as can be seen from

Fig. 4.10 where c⇤ extracted from �max, residual strain and dissipation are shown. If �max

is close to the lower boundary of the region of stretches when cross-links break, then value

of c⇤ is relatively high. As �max is increased and lies within the range when cross-links

break, then c⇤ becomes independent of �max and is approximately 5. The dependence of

c⇤ on �max is also compared with that seen for kinetic model with sacrificial bonds [97]

and experimental data in Fig. 4.10. We note that the ranges of stretches were di↵erent for

kinetic model and experiment, and we have done a linear extrapolation to make the ranges

coincide. We conclude that the results of MD are in good agreement with that of kinetic

model as well as experiment.

We further examine the dependence of c⇤ on the extent of cross-linking �, as shown in

Fig. 4.11. We choose �max = 1.345 for which c⇤ is relatively high for � = 100%. Cross-

links are removed to achieve the desired �. When � is decreased, c⇤ quickly decreases to

a �-independent value which coincides with the value of c⇤ for � = 100% but higher �max.

This result can be understood by the rationale that while �max = 1.345 results in rupturing

of only few cross-links for � = 100%, it lies well within the range of stretch ratios where

significant number of cross-links break for smaller �.
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Figure 4.10: The variation of characteristic cycle, c⇤ with the maximum stretch, �max.
For the MD model,c⇤ extracted from �max, residual strain and dissipation are shown. The
stretch ratios for the kinetic model data and experimental data have been rescaled and are
as reported in Ref. [97].

Figure 4.11: The variation of characteristic cycle, c⇤, extracted from �max, with the cross-
link percentage, �, for �max = 1.345.
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4.2.2 Role of cross-link reformation on fibril recovery

Having characterized the dissipation caused by cyclic loading, we now focus on the re-

covery when the fibril is allowed to relax at zero force after 10 cycles. Any pair of E and

S atoms that approach less than a distance r0 = 14Åform a cross-link instantaneously,

provided neither atom is already part of any cross-link. The number of cross-links that

reform increase with time till they saturate while the associated stretch ratio decrease with

time to a steady state value, as can be seen in Fig. 4.12(a) and (b) respectively. The sat-

uration value of number of reformed cross-links increase with �max while that of residual

strain decrease with �max. We find that the recovery in strain in approximately 50% for all

�max. This is comparable with the recovery seen in the experiment. We note that we could

have introduced a time scale into the reformation process by associating a finite rate for

the formation of cross-links. However, we find that saturation values are independent of

the reformation rate. In the data shown in Fig. 4.12, we set reformation rate to infinity as

it is not practical to simulate relaxation for 60 minutes as in the experiment.

To investigate the role of cross-link reformation on the macroscopic response of the fibril,

we compare the following two cases. In case 1, the fibril is directly subjected to monotonic

loading after 10 cycles. In case 2, after 10 cycles, we equilibrated the system for 20ns at

zero force and then subjected it to monotonic loading. During the equilibration process,

the cross-links were allowed to reform. We find that after relaxation (case 2), the fibril

shows increased strength and toughness (see Fig 4.13). The di↵erence in peak stress and

toughness between the two cases become more significant as the maximum strain, �max,

is increased. This can be attributed to the fact that at higher �max, a larger number of

cross-links are broken during the initial cyclic loading, resulting in more available free

ends for cross-link reformation and recovery. It is important to note that while there is

an increase in strength and toughness after the relaxation process, it does not exceed the

original strength and toughness of the undamaged fibril. This observation indicates the

presence of permanent plastic deformation resulting from cyclic loading, and it suggests
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(a)

(b)

Figure 4.12: Time evolution of (a) number of cross-links and (b) stretch ratio for during
relaxation at zero force after 10 cycles for di↵erent �max.
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Figure 4.13: Comparison of (a) peak stress, �max and (b) toughness of a fibril subjected to
monotonic loading with and without relaxation after being loaded for 10 cycles. Cross-
links reform during the relaxation process.

that full recovery is not achievable within the framework of current model.

Similar features – improved characteristic parameters after relaxation – can be seen for

both residual strain and total number of cross-links, as shown in Fig. 4.14. The change is

more significant for larger �max.

4.3 Discussion and Conclusions

Collagen, a widely present biomaterial, is of great importance, but there is currently less

research focusing on fatigue experimental studies of individual collagen fibrils [7, 52, 55]
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Figure 4.14: Comparison of (a) residual strain (b) total number of cross-links of a fibril
subjected to monotonic loading with and without relaxation after being loaded for 10
cycles. Cross-links reform during the relaxation process.
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when compared to the number of experiments on monotonic loading. In this paper, with

emphasis on the experiment by Liu et. al [7], we studied the dissipation and recovery of

a collagen fibril when subjected to cyclic loads using molecular dynamics simulations of

coarse grained models. Existing models for collagen fibrils, that have been obtained by

coarse graining atomistic models, were earlier able to reproduce the macroscopic response

to monotonic loading. Here, we incorporated reformation of cross-links or sacrificial

bonds that aids in recovery. We show that the simulations reproduce key features of the

cyclic loading experiment of Ref. [7] such as moving hysteresis loops, residual strains,

partial recovery on relaxation etc, and their dependence on di↵erent stretch ratios. The

material parameters after relaxation were shown improve with relaxation bringing out the

role of extent of cross-linking in determining the macroscopic response.

The di↵erent parameters of the macroscopic response, such as peak stress, residual strain,

dissipation, and number of cross-links approach the steady state values exponentially fast,

characterized by a characteristic cycle number c⇤. This behavior is consistent with what

was observed in the analysis of the kinetic model [97] as well as seen in the experi-

ment [7]. We found that the c⇤, becomes independent of the �max, approximately equal to

5, when �max lies within the regions where cross-links break, while it remains high at the

lower boundary of this region. This observation is further supported by the dependence

of c⇤ on cross-link density �. Further, the value of c⇤ ⇡ 5 is same as that obtained for the

kinetic model as well as in the experiment.

We investigated the post-cyclic loading recovery of the fibril model by allowing the fibril

to relax and permitting cross-links to reform during the relaxation process. We observe

⇡ 50% recovery in residual strain across di↵erent stretch ratios, comparable with the re-

sults of the experiment [7]. We do not find full recovery, thus there is plastic deformation.

This is because, during relaxation at zero force, cross-links form between the closest pos-

sible cross-linking sites, thereby often arresting further decrease in strain. Additionally,

the remaining free ends do not reach the reformation sites due to their interaction with
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other beads. The plastic deformation is consistent with the viscoelastic-plastic continuum

modeling approach of Ref. [11], as well as the experimental results [7], but di↵ers from

the results for the kinetic model [97] where full recovery occurs if the fibril is relaxed for

infinite time. This is because the kinetic model is a minimal model that does not account

for the complex geometrical structure of the collagen fibril.

The molecular dynamics model also reproduce additional features that are absent in ki-

netic models. The non-zero steady state hysteresis loops seen in experiments are well-

reproduced in our simulations of the MD model, but absent in the existing kinetic models,

where the steady state value of hysteresis approaches zero. This can be attributed to the

realistic time-delays inherent in the MD model, but absent in the kinetic models.

To study the e↵ect of cross-link reformation during relaxation, we compared the response

to monotonic loading of two fibrils: one was subjected to monotonic loading immediately

after cyclic loading, while the other was relaxed and then subjected to monotonic loading.

We observed an increase in strength and toughness in the fibril that underwent relaxation

compared to the other one. However, this increase did not exceed the strength of the un-

damaged fibril under monotonic loading. This gain in strength, compared to no relaxation,

is as in the viscoelastic-plastic model [11]. However, in the experiment of Liu et al. [7],

the fibril that was directly subjected to monotonic loading immediately after cyclic load-

ing, without relaxation, exhibited an increase in strength compared to the original fibril.

This aspect is not reproduced neither in our molecular dynamics simulations, nor in the

viscoelastic-plastic model [11] or kinetic model [97]. Understanding this phenomenon

within models is a promising area for future study. We note that in kinetic models for

collagen molecules [10], an increase in the peak force with relaxation was observed due

to restoration of more sacrificial bonds. However, the comparison of peak force is done

with a configuration that has no sacrificial bonds. Within the MD model considered in this

paper, one possible mechanism of increasing strength of fibrils subjected to cyclic loading

is to allow reformation of cross-links during loading. This may allow for re-organisation
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of cross-links that is optimised for withstanding larger strains, thus increasing strength.

Understanding the phenomenon of increased strength post cyclic loading, within models,

is a promising area for future study.

We also note that energy dissipation can show an increasing behavior with the loading

cycles if the cyclic loading is done for small stretches (�max), within the range where

cross-links break. For example, energy dissipation increases until 3 cycles for �max = 1.35

before exhibiting an exponential decline (see Appendix C).

In the MD model, the range of stretch ratio (�max) in which cross-links break is relatively

narrow compared to both the kinetic model [97] and the experimental observations [7].

The majority of cross-links break within the range �max ⇡ 1.34�1.37. In contrast, the ki-

netic model has a wider range for bond breaking, which is comparable to the experiment.

This di↵erence is due to the stochastic nature of the kinetic model where cross-links can

break at di↵erent strain thresholds. In contrast, the cross-links in the MD model break at

the same strain thresholds resulting in a narrower range of stretch ratios.

For the reformation, we could have introduced a new time scale in the form of rate of

reformation. In the current study, we used an infinite rate, that is two atoms that are closer

than the minimum distance form a bond instantaneously. Inclusion of a finite rate would

slow down the reformation rate, but we have checked that the final number of cross-links

is largely independent of this rate. Given that the relaxation times scale in the experiment

is order of 60 minutes, our approach is justifiable provided we only analyze the steady

state values and not the time-dependence.

The MD model that we studied has some limitations. Even though the MD model takes

into account the three dimensional structure of the collagen fibril, it is still a simplifi-

cation of the complex collagen fibril and it’s mechanics which also depends on several

environmental factors like hydration etc. The parameters of these models are derived

from atomistic simulation of small stretch of the collagen molecules with few bounded

water molecules. The di↵erence in parameters could arise because of intrinsic hetero-
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Figure 4.15: The (a) residual strain, (b) hysteresis, (c) peak stress and (d) number of
broken bonds per cycle approach their respective steady state values exponentially fast.
The data are for �max = 1.36.

geneity of the collagen molecule itself. Further, the stress-strain response and hence the

value of the c⇤ could depend on the distribution of the cross-link for � < 100%. One could

do the same analysis done in this paper including trivalent cross-links and combination

of trivalent and divalent cross-links and/or Advanced Glycation Endproduct cross-links,

which occur as a result of aging and diabetes [79].

Appendix B: Approach of the characteristic parameters to

steady state

We find that the di↵erences of residual strain, energy dissipation, peak stress, and broken

bonds per cycle from their steady state values decrease exponentially to zero with the

number of loading cycles, as can be seen in Fig. 4.15.
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Figure 4.16: (a) The stress strain response (b) evolution of energy dissipation and (c)
number of broken cross-links per cycle (d) residual strain under cyclic loading for �max =

1.35.

Appendix C: Non-monotonic response for �max = 1.35

During cyclic loading, it is possible that hysteresis as well as number of cross-links can

show a non-monotonic behaviour with cycle number, i.e., increasing for a few cycles

before decaying exponentially to the steady state. This happens for smaller values of

values of �max which are closer to lower boundary of the bond breaking regime. An

example can be seen in Fig. 4.16, where the data for �max = 1.35 is shown. As described

in the main text, the initial transient behaviour disappears as �max is increased. However,

residual strain shows monotonically increasing behaviour with the number of loading

cycles for all values of �max.
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Chapter 5

Conclusions

This thesis aims to comprehensively model and understand the mechanical response of

individual collagen fibrils under cyclic loading. Collagen holds immense significance

as a widely present biomaterial in living organisms. Experimentally, the stress-stretch

response of a single collagen fibril subject to cyclic loading within a fixed stretch ratio �

is known to show moving hysteresis loops and residual strains that increase and saturate

with number of cycles. The fibril is known to show recovery in energy dissipation as well

as residual strains on relaxation. These features were thought to be related to the presence

of sacrificial bonds within the fibril. Furthermore, the cyclically loaded fibrils exhibited

greater strength and toughness compared to fibrils subjected to monotonic loading. This

enhancement was believed to be due to permanent molecular rearrangements, although

the specific mechanism behind these improvements was not fully understood.

In the first part of this thesis (Chapert-3), we develop a kinetic model for a collagen fibril

incorporating presence of hidden loops and stochastic fragmentation as well as refor-

mation of sacrificial bonds. We show that the model reproduces well the characteristic

features of reported experimental data on cyclic response of collagen fibrils, such as mov-

ing hysteresis loops, time evolution of residual strains and energy dissipation, recovery on

relaxation, etc. We show that the breaking of sacrificial bonds leads to hysteresis (energy
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dissipation) and the release of hidden lengths, results in residual strain. The spontaneous

formation and breaking of sacrificial bonds at zero force is a possible healing mechanism

within the collagen fibril. We show that the approach to the steady state is controlled by

a characteristic cycle number for both residual strain as well as energy dissipation, and is

in good agreement with reported existing experimental data.

In the second part of this thesis (Chapter-4), we approach the same problem from micro-

scopic point of view. We modify an existing coarse grained molecular dynamics model

for collagen fibril with initially cross-linked collagen molecules by incorporating reforma-

tion of cross-links and evaluate its potential to explain possible recovery on relaxation and

increased strength resulting from reformation and re-organization of cross-links. Using

molecular dynamics simulations, we show that our model successfully replicates the key

features observed in experimental data, including the movement of hysteresis loops, the

time evolution of residual strains and energy dissipation, as well as the recovery observed

during relaxation. It also explains the non-zero steady-state hysteresis and plastic defor-

mation observed in the experiment. We also show that the characteristic cycle number,

describing the approach towards steady state, has a value similar to that in experiments.

We also emphasize the vital role of the degree of cross-linking on the key features of the

macroscopic response to cyclic loading. We showed an increase in strength and tough-

ness in the fibril that underwent relaxation after cyclic loading compared to the other one,

which was not relaxed.

The kinetic model presented in the first part of the thesis is a minimal model without a

specific geometry, yet it remarkably captures the essential physics, accurately represent-

ing observed experimental features. It yields a crucial quantity, the characteristic cycle

number c⇤, which is further validated by experimental results and a more detailed MD

model (based on the full three-dimensional structure of the fibril) described in the second

part of the thesis. The existence of this characteristic cycle number holds significance

in understanding the time-dependent cyclic response of collagen. In particular, it has
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the potential of being utilised for comparing fibril responses across various factors, such

as animals, ages, disease stages, hierarchical levels, responses to medication, etc. This

presents a promising area for future experimental investigations.

Furthermore, it is worth considering that the stress-strain response of the fibril, and con-

sequently the value of c⇤, might be influenced by the distribution of cross-links. A similar

analysis using the MD model, as demonstrated in the second part of the thesis, could be

conducted by incorporating various types of cross-links, such as trivalent cross-links, a

combination of trivalent and divalent cross-links, and Advanced Glycation Endproducts

(AGEs) cross-links that occur due to aging and diabetes. Exploring the impact of dif-

ferent cross-link distributions could provide valuable insights into how these structural

variations a↵ect the mechanical behavior of collagen fibrils.

The models described in this thesis primarily focus on simulating the immediate me-

chanical response of collagen fibrils to cyclic loading. It does not take into account the

long-term e↵ects of prolonged stress that could be due to aging or disease progression. To

cover these aspects more comprehensively in the future, the models could include factors

like biochemical changes, how sacrificial bond dynamics change over time, and potential

structural modifications in collagen fibrils due to prolonged stress. At the level of the

kinetic model, this should involve including time-dependent rates as well as macroscopic

laws, and structural modification could be introduced at the level of the MD model. As

biological tissues are living materials, it will also be important to consider active inter-

actions, coupled physics, the role of water and fluids, and piezoelectric e↵ects. These

extensions of the models might be crucial for applications in biomedical research, partic-

ularly contributing to our understanding of disease progression and the development of

therapeutic strategies.

Overall, the work presented in this thesis not only proposes future directions for experi-

ments but also significantly contributes to the current understanding of the fundamental

mechanical behaviour of collagen fibrils under cyclic loading. Additionally, it suggests
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several avenues to extend the proposed models, which could lead to interesting and valu-

able results. The study opens up exciting possibilities for further research in the field of

collagen mechanics and sheds light on o↵ering valuable insights that could contribute to

advancements in biomaterials and medical applications, particularly in understanding tis-

sue mechanics and disease-related alterations.
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