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Synopsis

Interacting, many particle systems exhibit a wide range of complex behaviour in-

cluding emergent phenomena that are not evident at the microscopic scale. These

systems may be in thermal equilibrium or out of equilibrium. Equilibrium phe-

nomena obey detailed balance and there exists a well-defined set of principles for

calculating thermodynamic quantities, for instance the weight of a configuration is

proportional to its Boltzmann weight. However, most of the physical phenomena

around us are far from equilibrium, and characterised by non-zero currents, lack of

detailed balance and often irreversible dynamics.

A well-studied example of nonequilibrium phenomena is cluster-cluster aggregation

(CCA), a far-from-equilibrium, irreversible stochastic process where particles or clus-

ters aggregate on contact to form larger clusters. The rates of collision depend on

both on the transport properties of the clusters as well as the details of aggregation,

and in general depend on the colliding masses. The study of CCA has a long history

since the pioneering work of Smoluchowski in 1917 [1], and its omnipresence in many

natural phenomena such as cloud formation [2], prion coagulation [3], polymers [4],

etc., continue to make it an active area of research. The most common approach to

study the kinetics of aggregation is the mean field Smoluchowski equation, which

describes the time evolution of the mean number of clusters of a given mass. This

first order non-linear di↵erential equation is exactly solvable for a few special forms

of the collision kernel, and specialised numerical techniques are required to solve for

arbitrary kernels [5]. In lower dimensions, spatial fluctuations become important,

and have been studied using renormalisation group techniques, exact solutions and

simulations.

In this thesis, we study rare events or large fluctuations in CCA, i.e., those tra-

jectories that are far from the mean or typical trajectory, thereby characterizing

1



the process completely. These rare events correspond to the tails of a probability

distribution. Although they have low likelihood, they may have high impact, such

as natural disasters, epidemics or formation of a plaque in a brain a↵ected by a

neurodegenerative condition such as Alzheimer’s disease. Large deviation theory

forms a general mathematical framework for rare events, and is based on the in-

sight that the probability of rare events decays exponentially with respect to a rate.

The quantity of interest in characterizing rare events in this framework is the large

deviation function or rate function, which is, in general, di�cult to compute.

Large deviation theory forms a general framework in which the entire formulation of

equilibrium statistical mechanics can be cast. The main outcomes of this are that a

large deviation principle for the probability of occurrence of a macrostate exists, in

the thermodynamic limit. Additionally, the large deviation function is equivalent to

the negative of the entropy in the microcanonical ensemble, and to the free energy

in the canonical ensemble. On the other hand, for systems out of equilibrium,

large deviation theory provides a consistent framework in which the large deviation

function can be interpreted as a nonequilibrium generalization of entropy, while

the scaled cumulant generating function associated with the distribution can be

interpreted as a nonequilibrium generalization of free energy.

Questions

1. Can an e�cient numerical algorithm to compute the probabilities of rare events

in CCA be designed and implemented?

2. Can an analytical formalism to obtain the rate functions, as well as most

probable trajectories for arbitrary collision kernels be developed?

3. Can the formalism be generalised to cases when the collisions are not binary,

but multiparticle?
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Model

We study the following model for CCA, also known as the Marcus-Lushnikov

model [6, 7]. Consider a collection of particles which are labeled by their masses.

Given a configuration, the system evolves stochastically in time through mass-

conserving binary aggregation:

Ai + Aj

K(i,j)
���! Ai+j, (1)

where Ak denotes a particle of mass k, and the collision kernel K(i, j) is the rate

at which two particles of masses i and j aggregate. In an infinitesimal time dt, the

probability of collision of two particles having masses i and j is given by K(i, j)dt.

Since each aggregation event reduces the number of particles, N(t), by 1, N(t)

decreases monotonically with time. Initially, there are N(0) = M particles with

equal mass m0. We set m0 = 1, so that all masses are measured in units of m0.

We note that the collision kernel K(i, j) is dependent on the physical process being

modelled.

We also study k�nary coalescence, where collisions are not binary. Consider a sys-

tem of particles, which evolves in time through the generalized coalescence process,

kA
�
�! `A, ` < k (2)

where A denotes a particle. Equation (6.1) describes the aggregation of k particles

into ` particles at constant rate �. Each collision reduces the number of particles,

N(t), by (k� `). The final absorbing state of this process contains `, `+ 1, . . . k� 1

particles, depending on the value of the initial number of particles, M .

In both the models described above, we compute P (M,N, t), the probability that

exactly N particles remain at time t, given that there are M particles initially. Here
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the time t is fixed, and N is the random variable. We also compute the quantity

P̃ (M,N, t), the probability that the C�th collision, where C = M � N for the

binary aggregation model, and C = (M�N)/(k�`) for k�nary coalescence, occurs

at time t. Here N is fixed and t is the random variable. In the large deviation limit,

P̃ (M,N, t) ⇡ P (M,N, t), (3)

and we will not make the distinction between P (M,N, t) and P̃ (M,N, t) henceforth.

We also compute the most probable trajectory for a given M,N, t.

Findings of the thesis

The answers to the questions posed above are enumerated below.

1. A Monte-Carlo algorithm to measure probabilities of rare events in

CCA

A biased Monte Carlo algorithm to measure probabilities of rare events in

cluster-cluster aggregation for arbitrary collision kernels is developed. Given

a trajectory, the algorithm flips between trajectories by modifying the waiting

times between collisions, the sequence of collisions, as well as the number of

collisions, all using local moves.

• The waiting times are modified by weighting them with a bias parameter,

such that they are biased towards the tails of P (M,N, t).

• The sequence of collisions is modified by reassigning a randomly cho-

sen collision in a rejection-free manner, such that the trajectory is only

modified locally, as shown in Fig. 1.

• The number of collisions is modified either by adding a collision after the

C�th collision, or by deleting the C�th collision, with rates that satisfy
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1M-331

1M-441

1M-824
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1M-73141 1M-72151 1M-661 

Figure 1: All possible configurations and trajectories for 6 collisions. The configu-
rations after each collision are shown inside the bubbles. For the trajectory shown
in blue, the red lines denote possible alternate paths that alter only the 4th config-
uration.

detailed balance.

• We prove the ergodicity of the algorithm by specifying a protocol that

transforms an arbitrary trajectory to a standard trajectory using valid

Monte Carlo moves.

• Rare events with probabilities of the order of 10�40 and lower are sampled,

as shown in Fig. 2. The algorithm is shown to be independent of the initial

configuration of clusters.

• The algorithm is tested for constant kernel aggregation [K(i, j) = 1] by

benchmarking the large deviation function with the exact answer (Fig. 2).

• The algorithm is characterized by measuring the autocorrelation times

corresponding to the waiting times as well as the configurations. We

find that the optimum fraction of Monte Carlo moves corresponding to

waiting time changes should be close to 1, as the autocorrelation time cor-

responding to waiting time changes shows at most a weak dependence on

M , while the autocorrelation time corresponding to configuration changes

is proportional to M2.
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Figure 2: (a) P (M,N, t) for the constant kernel for di↵erentM , keeping � = N/M =
0.8 fixed are compared with the exact solution. (b) The data in (a) for di↵erent M
collapse onto one curve when scaled, to give the large deviation function.

2. Exact calculation of the probabilities of rare events in CCA

• Calculation using Doi-Peliti-Zeldovich formalism

We develop a formalism to calculate the probabilities of rare events in

cluster-cluster aggregation for arbitrary collision kernels, using the Doi-

Peliti-Zeldovich formalism of writing the master equation in terms of an

action.

– By rewriting these probabilities in terms of minimizing an e↵ective

action, we establish, for any arbitrary collision kernel, a large devia-

tion principle with the total mass M being the rate,

P (M,N, t) ⇡ e�Mf(�,⌧), (4)

where � = N/M , ⌧ = tM , and f(�, ⌧) is the large deviation function.
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– The large deviation functions of constant, sum and product kernels

are as follows.

∗ Constant kernel [K(i, j) = 1]:

f(�, ⌧) = (5)
8
>>>>>>>>>><

>>>>>>>>>>:

� ln �
2

�2E+�2 + ln(1� 2E)� E⌧, E < 0,

0 E = 0,

�E⌧ � 2� ln 2E
�
� (1� �) ln

sinh ⌧

p
E/2

1��
+

(1 + �) ln(
p
2E cosh ⌧

p
E/2 + sinh ⌧

p
E/2), E > 0,

where E is a parameter of the theory that is determined in terms

of �, ⌧ , and is a constant of motion.

∗ Sum kernel [K(i, j) = (i+ j)/2]:

f(�, ⌧) = �(1� �) ln
1� e�

⌧
2

1� �
+
⌧�

2
+ � ln�. (6)

∗ Product kernel [K(i, j) = ij]:

f(�, ⌧) = ln
��e⌧/2+1��

⌧ 1��
+min

x

{ln x� � h(x)}, (7)

h(x) =
k
⇤X

k=1

xkFk�1(e⌧/M)

k!
, (8)

where Fk(x) are the Mallows-Riordan polynomials.

– The large deviation functions are in excellent agreement with large-

scale Monte Carlo simulations, as shown in Fig. 3.

– We show that the large deviation function for the product kernel

is singular. In particular, we show that @2f/@�2 is discontinuous

at a ⌧�dependent critical �, suggesting the presence of a second

order phase transition. This singular behaviour corresponds to the

7
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Figure 3: The LDF f(�, ⌧) with respect to � (a) for constant kernel, ⌧f = 1, (b) for
sum kernel, ⌧ = 1.2, and (c) product kernel, ⌧ = 1.4.

formation of a gel.

– The instanton trajectories for constant and sum kernels are calculated

exactly and found to match well with the simulations. However, for

the product kernel, the equation for the instanton trajectory involves

higher order moments of the mass distribution, and hence is di�cult

to solve.

– Instanton mass distributions:

∗ Using the algorithm described in Point 1, the instanton mass

distributions at typical and atypical times can be determined for

any collision kernel.

∗ We obtain the exact expressions for the mass distributions of

constant and sum kernels.

∗ For a given number of collisions, the instanton mass distribution

at the final time for both the constant and sum kernels is shown

to be invariant, and equal to the typical mass distribution.

• Exact calculation of large deviation function for the product

kernel

For the product kernel, the calculation of the large deviation function
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using the Doi-Peliti-Zeldovich formalism has an issue, which is the non-

uniqueness of the action. We provide an alternate exact solution that by-

passes the Doi-Peliti-Zeldovich formalism and instead relies on the replica

trick.

3. Exact calculation of the large deviation function for k-nary coales-

cence

• For arbitrary k, `, we derive the large deviation function describing the

probability of finding N particles at time t, when starting with M parti-

cles initially.

• The asymptotic behaviour of the large deviation function for ⌧ ! 0 and

⌧ ! 1 is computed exactly.

• The instanton trajectories for rare and typical events are obtained.
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Chapter 1

Introduction

Interacting, many particle systems exhibit a wide range of complex behaviour in-

cluding emergent phenomena that are not evident at the microscopic scale, which

may be in thermal equilibrium or out of equilibrium. Equilibrium phenomena obey

detailed balance and there exists a well-defined set of principles for calculating ther-

modynamic quantities, However, most of the physical phenomena around us are far

from equilibrium, and characterised by non-zero currents, lack of detailed balance

and often irreversible dynamics. One such phenomenon is cluster-cluster aggregation

(CCA), in which particles, or clusters coalesce on contact to form larger clusters.

The rates of collision depend on the transport properties of the clusters, as well

as the details of aggregation, and in general, on the colliding masses. The study

of cluster-cluster aggregation has a long history dating back to Smoluchowski in

1917 [1]. There are many physical phenomena in which the dominant dynamic pro-

cess is coalescence or aggregation. Examples include blood coagulation [8], cloud

formation [9, 10], aerosol dynamics [11], dynamics of Saturn’s rings [12, 13], aggre-

gation of particulate matter in oceans [14], protein aggregation [15, 3], coagulation

of soot particles [16, 17, 18], colloids [19], charged polymers [20, 21], etc. CCA also

finds applications in applied fields such as river networks [22], mobile networks [23],
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population genetics [24] and explosive percolation [25, 26], etc. In addition to direct

applications, CCA is also of interest as a nonequilibrium process obeying self-similar

scaling at large times with exponents that are universal and dependent only on

generic details of the transport.

CCA has been analyzed using di↵erent approaches. The most common approach

is to solve the deterministic mean-field Smoluchowski equation that describes the

change in the number of clusters of a given mass due to coagulation events (see

Refs. [27, 28, 29, 30] for reviews). The Smoluchowski equation for the mean mass

distribution is exactly solvable when the rate of collision is independent of the masses

(constant kernel), is the sum of the masses (sum kernel), and product of the masses

(product kernel). For the product kernel, a sol-gel transition is observed wherein the

total mass is not conserved beyond a gelling time. For the sum kernel, the gelling

occurs at infinite time [29]. In lower dimensions, spatial density fluctuations become

important and have been studied using both analytical and numerical techniques [31,

32, 33, 34]. These approaches are, however, restricted to studying the mean or typical

mass distribution and the low order moments of the mean mass distributions and

do not give information about either the probabilities of rare or atypical events or

the trajectories that lead to atypical events.

Rare events are those which occur at the tails of a probability distribution, and

have a low likelihood of occurrence. In a stochastic process, although rare events

occur infrequently, they often have a large impact. Examples include cyclones,

tsunamis, earthquakes [35], giant rogue waves in the middle of the ocean [36], heat

waves [37, 38], financial black swan events [39], neurological disorders [40] and pan-

demics like COVID-19. For predicting their occurrence in order to plan for them,

it is important to have an estimate of the probability of occurrence as well as the

atypical trajectories that lead to rare events. Also, knowing the probabilities gives

complete information about the large fluctuations of a system around its most prob-

11



able states. The behaviour of the tails of the probability distributions describing

these large fluctuations are captured by the large deviation function [41]. The large

deviation function is the central focus of study of large deviation theory. Large

deviation theory forms a general framework in which the entire formulation of equi-

librium statistical mechanics can be cast. It has been applied successfully to many

established models in equilibrium such as the Potts model and 2D Ising model. The

main outcomes of this are that a large deviation principle for the probability of oc-

currence of a macrostate exists, in the thermodynamic limit. Additionally, the large

deviation function is equivalent to the negative of the entropy in the microcanonical

ensemble, and to the free energy in the canonical ensemble. On the other hand, for

systems out of equilibrium, large deviation theory provides a consistent framework

in which the large deviation function can be interpreted as a nonequilibrium gener-

alization of entropy, while the scaled cumulant generating function associated with

the distribution can be interpreted as a nonequilibrium generalization of free energy.

Numerically, many sophisticated techniques have been developed for studying rare

events, such as importance sampling [5, 42, 43] and splitting algorithms. In im-

portance sampling, the original probability distribution is biased so that the rare

event occurs more frequently. The distribution is then unbiased to obtain the true

probability of the event. Di↵erent kinds of importance sampling methods have been

developed to sample rare events, such as instanton based importance sampling [44]

and adaptive importance sampling [45]. In splitting algorithms, events close to the

rare event of interest are realized many times while other events are allowed with a

certain probability, in the course of the simulation. Di↵erent types of splitting algo-

rithms include static and dynamic splitting, and adaptive splitting algorithms [46].

A review of the di↵erent numerical methods available for calculating probability of

rare events may be found in Refs. [47, 48].

However, there are no algorithms in the literature which measure the probabilities

12



of rare events in aggregation. The study of rare events in aggregation is a chal-

lenging problem, because the number of possible configurations after each collision

increases rapidly, which implies that sampling these configurations would be a com-

putationally expensive task. Can an e�cient numerical algorithm to compute the

probabilities of rare events in CCA be designed and implemented? Can an analyti-

cal formalism to obtain the rate functions, as well as most probable trajectories for

arbitrary collision kernels be developed? Can we analytically obtain the probabili-

ties of rare events? Can the algorithm and formalism be used to study the optimal

evolution trajectories, and mass distributions contributing to a given rare event?

Can the formalism be generalised to cases when the collisions are not binary, but

multiparticle?

Questions

1. Can an e�cient numerical algorithm to compute the probabilities of rare events

in CCA be designed and implemented?

2. Can an analytical formalism to obtain the rate functions, as well as most

probable trajectories for arbitrary collision kernels be developed?

3. Can the formalism be generalised to cases when the collisions are not binary,

but multiparticle?

In this thesis, we develop a Monte Carlo algorithm to measure probabilities of rare

events in CCA for arbitrary collision kernels, based on importance sampling, whuch

can sample events with probabilities as low as 10�40, and smaller. We also develop

an action formalism to calculate probabilities of rare events for arbitrary collision

kernels and establish a pathwise large deviation principle with total mass being the

rate. As an application, the rate function for the number of surviving particles as
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well as the optimal evolution trajectory are calculated exactly for the constant, sum

and product kernels. We also calculate the full mass distributions for the constant

and sum kernels. We apply this formalism to find the large deviation function for

the general coalescence process, kA ! `A.

The remainder of the thesis is organized as follows. In Chapter 2, we provide brief

reviews of the Smoluchowski equation and large deviation theory. We decribe the

Smoluchowski solutions for the constant, sum and product kernels, and a remarkable

exact solution by Lushnikov for the product kernel. In Chapter 3, we describe in

detail the algorithm developed to access the tails of probability distributions in CCA.

In Chapter 4, we develop a general analytical formalism to obtain the probabilities of

rare events for arbitrary collision kernels. We explicitly calculate these probabilities

for the constant, sum and product kernels. In Chapter 5, we obtain the full mass

distribution for the constant and sum kernels. In Chapter 6, we apply this formalism

to obtain the probabilities of rare events to the case of k�nary coalescence, when

more than two particles collide.
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Chapter 2

Review

In this chapter, we provide detailed reviews of the two cornerstones of this thesis -

aggregation and large deviation theory. The reviews include historical background,

and the existing results that are relevant to the work done as part of this thesis.

2.1 Review of aggregation

Much of the work on aggregation has concentrated on solving the Smoluchowski

equation for various kernels, using analytical and numerical methods. In this chap-

ter, we provide a review of the important results obtained by solving this equation,

and also some other results beyond the Smoluchowski equation.

2.2 Marcus-Lushnikov model

Consider a collection of particles which are labeled by their masses. Given a con-

figuration, the system evolves in time through mass-conserving binary aggregation
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(also known as Marcus-Lushnikov model [6, 7, 49, 50]):

Ai + Aj

�K(i,j)
����! Ai+j, (2.1)

where Ak denotes a particle of mass k, and �K(i, j) is the rate at which two particles

of masses i and j aggregate. In an infinitesimal time dt, the probability of collision

of two particles having masses i and j is given by �K(i, j)dt. The collision kernel,

K(i, j), is dependent on the transport properties of the clusters and their collisional

area of cross-section. We note that all the spatial information has been encoded into

the collision kernel. Since each aggregation event reduces the number of particles,

N(t), by 1, N(t) decreases monotonically with time. Initially, there are N(0) = M

particles with equal mass m0. We set m0 = 1, so that all masses are measured in

units of m0.

The Smoluchowski equation is a mean-field, integro-di↵erential equation which de-

scribes the time evolution of n(m, t), the mean number of clusters of mass m:

dnm(t)

dt
=

1

2

m�1X

i=1

�K(i,m� i)ni(t)nm�i(t)� nm(t)
1X

i=1

�K(m, i)ni(t). (2.2)

On the right hand side of Eq. (2.2), the first term describes the formation of clusters

of mass m, while the second term describes the depletion of clusters of mass m,

by coagulating with other clusters. Note that this is a mean field equation, i.e.,

correlations higher than first order are ignored. In other words,

hni(t)nj(t)i = hni(t)i hnj(t)i . (2.3)

The dimensions of the rate � are the inverse of time. In the following analysis, we

make the transformation �t ! t.

Equation (2.2) has been solved exactly only for three kernels - constant [K(i, j) = 1],
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sum [K(i, j) = i + j] and product [K(i, j) = ij]. Although Eq. (2.2) is defined for

infinite mass, it explicitly conserves mass for an arbitrary K(i, j), i.e.,

d

dt

X

m

mnm(t) = 0. (2.4)

However, the solution n(m, t) for certain kernels does not conserve mass. The sim-

plest kernel which exhibits this behaviour, known as gelation, is the product kernel.

In Sec. 2.3, 2.4 and 2.5, we provide a review of the solution of the Smoluchowski

kernels for these three kernels. The detailed calculations can be found in [29, 27]. In

Sec. 2.6, we describe Lushnikov’s remarkable exact solution for the mass distribution

of the product kernel.

2.3 Constant kernel [K(i, j) = 1]

The constant kernel is the simplest kernel that can be solved exactly. The mass

distribution for the constant kernel has been obtained by solving for the moments

of the mass distribution recursively. The Smoluchowski equation in this case is

dni

dt
=

1

2

i�1X

j=1

njni�j �

1X

j=1

ninj, (2.5)

with the initial condition set to be ni(0) = M�i,1, where M is the total mass of

the system. The evolution of the zeroth moment of n(m, t), denoted by n(t), which

corresponds to the total number of clusters remaining, is evolution is given by

dn

dt
= �

n2

2
. (2.6)

17



Solving the equation for n(t),

n(t) =
2M

2 +Mt
����!
M!1

2

t
. (2.7)

The first moment corresponds to the total mass M , which is conserved, i.e.,

dM

dt
= 0. (2.8)

Substituting Eq. (2.7) into the Smoluchowski equation for n1(t),

dn1

dt
= �n1n(t). (2.9)

Solving for n1(t), we obtain

n1(t) =
4M

(2 +Mt)2
. (2.10)

Using the answer for n1(t) in the Smoluchowski equation for n2(t), we obtain the re-

sult for n2(t). Solving recursively in this way, we obtain the typical mass distribution

for the constant kernel,

ni(t) =
M(t/2)i�1

(1 + t/2)i+1
. (2.11)

Equivalence to binary coalescence

The collision rates for constant kernel aggregation do not explicitly depend on the

colliding masses. This suggests that constant kernel aggregation is equivalent to the

phenomenon of binary coalescence, A + A ! A. The rate equation for the time

evolution of number of particles in binary coalescence is

dn

dt
= �

n2

2
, (2.12)

18



which is the same as Eq. (2.6). This equation can be obtained from the exact master

equation for the probability of n particles at time t, and ignoring second and higher

order correlations.

2.4 Sum kernel [K(i, j) = (i + j)]

The next kernel for which the exact mean mass distribution can be obtained is the

sum kernel. The Smoluchowski equation is given by

dni

dt
=

1

2

i�1X

j=1

injni�j � ni[in(t) +M ], (2.13)

where n(t) =
P

j
nj(t), M =

P
j
jnj(t) and the initial condition is nm(0) = M�m,1.

The equations for the moments are

dn

dt
= �Mn(t), (2.14)

dM

dt
= 0, (2.15)

dM2

dt
= 2MM2, (2.16)

dM3

dt
= 3MM3 + 3M2

2 , (2.17)

and so on, with the initial condition for all the moments being Mk(0) = M . These

equations can be solved recursively to yield n(t) = Me�Mt,M2(t) = Me2Mt etc. The

second and higher moments diverge in the limit t ! 1, implying that a macroscopic

cluster known as gel, forms at infinite time. In order to obtain the mass distribution

ni(t), we define:

nm(t) =  m(t)e
�

R t
0 dt

0(mn(t)+M), (2.18)
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Then, from Eq. (2.13), we obtain,

@ m(⌧)

@⌧
=
X

i

i i m�i, (2.19)

where d⌧

dt
= e�Mt/2. In other words, ⌧ = (1� e�Mt)/2M . Substituting the ansatz

 m(⌧) = am⌧
m�1, (2.20)

we obtain

am =
m

m� 1

X

i

aiam�i. (2.21)

The generating function for am is written as

F (x) =
X

m

amx
m. (2.22)

The equation for F (x) is

x
@F

@x
� F (x) = 2F (x)x

@F

@x
. (2.23)

Rearranging the terms and integrating,

lnF � 2F = ln
⇣ x

x0

⌘
, (2.24)

and hence

Fe�2F =
x

x0
. (2.25)

The left hand side can be rewritten in terms of the Lambert W function, z =

W (z)eW (z) by multiplying both sides by �2,

�2Fe�2F =
�2x

x0
, (2.26)
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where W (z) = �2F, z = �2x
x0

. The Lambert function can be expanded as a series

in z:

W (z) =
1X

n=1

(�n)n�1zn

n!
. (2.27)

That is,

2F =
1X

m=1

mm�1

m!

�2x
x0

�m
. (2.28)

Hence,

am =
(2m)m�1am

m!
, (2.29)

where a = 1/x0. Substituting this result in the ansatz Eq. (2.20), and the resulting

answer in Eq. (2.18), we obtain the final mass distribution,

nk(t) = M
kk�1

k!
(1� e�Mt)k�1e�Mte�k(1�e

�Mt). (2.30)

2.5 Product kernel [K(i, j) = ij]

We now present the solution for the product kernel. The Smoluchowski equation for

the product kernel is

dni

dt
=

1

2

X

j

j(i� j)njni�j � iniM, (2.31)

where M =
P

j
jnj(t). Defining the generating function G(x, t) =

P
m
mnm(t)emx

with the initial condition

G0 = G(x, 0) = Mex, (2.32)

we obtain
@G

@t
= G

@G

x
�M

@G

@x
. (2.33)
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The characteristic curves for this partial di↵erential equation have the slope

dx

dt
= M �G. (2.34)

But, it can also be verified from the partial di↵erential equation that the generating

function G(x, t) remains constant along the characteristic curve. Hence,

x = (M �G)t+ f(G), (2.35)

where the function f(G) is determined from the initial condition Eq. (2.32). From

the initial condition, we obtain

x(t = 0) = ln
⇣G0

M

⌘
. (2.36)

Substituting in the characteristic curve and rearranging, we obtain

Gte�Gt = Mte�Mtex. (2.37)

In order to obtain Gt as a power series in ex, we use the Lagrange inversion for-

mula [29]: given a function X = f(Y ), and X ⇡ Y for small Y , Y is given in terms

of a power series in X, Y =
P1

n=1 bnX
n, with the coe�cients:

bn =
1

2⇡i

I
Y

Xn+1
dX. (2.38)

Here, Y = Gt,X = Mte�Mtex. Using Lagrange inversion formula and solving,

bm =
mm�1

m!
. (2.39)
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Now, writing G(x, t) in terms of a power series in ex,

G(x, t) =
X

m

mnm(t)e
mx =

X

m

mm�1

m!
(Mt)me�mMtemx. (2.40)

The final mass distribution is

nm(t) = M
mm�2

m!
e�mMt(Mt)m�1. (2.41)

We now consider the moments of the mass distribution:

dn

dt
= �

M2

2
, (2.42)

dM

dt
= 0. (2.43)

Solving Eq. (2.42), we obtain

n(t) = M �
M2t

2
. (2.44)

we note that n(t) = 0 at Mt = 2, and is negative when Mt > 2. Naively solving for

the second moment M2(t), we obtain

M2(t) =
M

1�Mt
. (2.45)

It is evident from this result that there is a singularity at Mt = 1, where M2(t)

diverges. Further, we see that all the higher moments exhibit this singularity at

Mt = 1.

We compare the mass distribution Eq. (2.41) with Monte-Carlo simulations. The

solution matches with Monte Carlo simulations for t < 1. But, for t > 1, Fig. (2.1)

shows that this solution cannot be true, as it does not capture the behaviour of the

gel, and hence breaks mass conservation.
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Figure 2.1: Smoluchowski solution for mean n(m, t) [Eq. (2.41)] is compared with
Monte-Carlo simulations for M = 300, 1280. It is evident that the behaviour of the
gel is not captured.

This singularity is explained in terms of a phase transition known as gelation. The

product kernel is the simplest kernel to exhibit gelation/gel formation, in which a

macroscopic fraction of particles coagulates to form a gel at finite time. When the

gel forms, a phase separation occurs, such that the dominant aggregation process is

the aggregation of the gel with the small masses. The discrepancy between theory

and simulations arises because the Smoluchowski equation is defined for infinite total

mass, whereas the gel is a finite, macroscopic mass, whose number density vanishes

in the limit of infinite M .
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2.6 Lushnikov’s solution

Many attempts were made to obtain nm(t) for the product kernel from the Smolu-

chowski equation, using perturbative techniques, scaling solutions etc. But, in order

to obtain the exact solution, one must account for the gel, whose behaviour can-

not be explained in the thermodynamic limit of infinite total mass for which the

Smoluchowski equation is defined. To capture gelling behaviour, it is essential to

work in the limit of finite M . The exact solution for the mean mass distribution,

nm(t) for the product kernel was obtained by Lushnikov [7, 49, 50], by considering

such a finite system. The aggregation process is defined in terms of an exact master

equation for the probability of a configuration N = {N1, N2, . . . NM} at time t, for

arbitrary collision kernels:

dP (N, t)

dt
=
X

N�

R(N,N�)P (N�, t)�
X

N+

R(N+, N)P (N, t), (2.46)

where N� is a state from which the state N can be attained by a single aggregation,

N+ is a state which can be attained from N through a single aggregation, and

R(N,N�) and R(N+, N) are the respective rates. The evolution equation of the

generating function of P (N, t) is reminiscent of the Schrodinger equation:

d 

dt
= Ĥ , (2.47)

where  (X, t) =
P

N
P (N, t)XN . The evolution operator is

Ĥ =
1

2

X

l,m

K(l,m)(xl+m � xlxm)
@2

@xl@xm

, (2.48)

where xm and @/@xm are operators which create and annihilate a cluster of mass m

respectively. Hence, the operators corresponding to number of clusters of mass m
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and the total mass are

n̂m = xm

@

@xm

, (2.49)

M̂ =
X

m

mxm

@

@xm

. (2.50)

At t = 0, there are M monomers. A formal solution for  (t), which is consistent

with the initial condition and the mass conservation, is constructed. The mean mass

distribution nm(t) is obtained using the solution of  (t) and Eq (2.49), using the

expression

nm(t) = n̂m (X, t)|X=1. (2.51)

This remarkable solution for nm(t) captures the mean mass distribution including

the behaviour of the gel, as shown in Fig. 2.2. The final solution is given as follows:

nm(t) =

✓
M

m

◆
e(m

2�2Mm+m)t(et/M � 1)m�1Fm�1(e
t/M) (2.52)

Fm(x) =
mX

l=1

✓
m� 1

l � 1

◆ l�1X

i=0

xiFl�1(x)Fm�l(x), (2.53)

where Fm(x) are Mallows-Riordan polynomials. Lushnikov’s solution for nm(t) of

the product kernel is obtained from an exact master equation for a finite collection

of clusters, and hence solves the issues associated with the Smoluchowski solution.

Both the Lushnikov solution and the Smoluchowski solution describe the mean or

typical mass distribution. In this thesis, we are interested in studying atypical or

rare trajectories of aggregating clusters, and their distribution. The mathematical

framework for the analytical study of rare events is provided by large deviation

theory.
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Figure 2.2: Lushnikov’s solution for the mean mass distribution, n(m, t) captures
the behaviour of the gel perfectly.

2.7 Review of large deviation theory

Large deviation theory deals with probability distributions whose tails decay expo-

nentially fast, with respect to a large parameter called the rate,

P (x) ⇠ e�NI(x0), (2.54)

where N is the large parameter, x0 is a scaled random variable and I(x0) is the rate

function or large deviation function. P (x) satisfies a large deviation principle if the

limit

� lim
N!1

lnP (x)

N
= I(x0) (2.55)

exists.
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The earliest known large deviation result was the Boltzmann’s equation, i.e., the

relationship between entropy and the number of microstates corresponding to a

macrostate in an ideal gas, discovered by Boltzmann in 1877. A rigorous large

deviation result for the mean of random variables was derived by Cramer in the

1930s. There were also other important results such as the Gartner-Ellis theorem,

Sanov’s theorem etc. In 1966, the large deviation principle was defined by Varadhan,

thus unifying all previous results.

In this section, we will illustrate the large deviation principle and obtain the rate

function for the well-known random walk model. Let us consider a one dimensional

random walk where the walker can move to the left or right with probability p = 1/2.

Let the number of steps to the right and left be denoted by r and l respectively, the

total displacement by x and the total number of steps by N . We are interested in

the probability that the walker has travelled a displacement x in N steps. Then,

l + r = N, (2.56)

r � l = x. (2.57)

Solving for r and l,

r =
N + x

2
, (2.58)

l =
N � x

2
. (2.59)

The discrete probability that the walker has travelled a displacement x in N steps

can be obtained from the binomial distribution

P (x,N) =
1

2N

✓
N

r

◆
=

N !

l!r!

1

2N
. (2.60)

In order to find P (x) in the continuum limit, we take the logarithm of the above
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Figure 2.3: Large deviation rate function for a symmetric one-dimensional random
walk, with rate N.

expression and expanding the factorials using the Stirling approximation,

ln x! ⇡ x ln x� x+
1

2
ln 2⇡x, (2.61)

we obtain

P (x,N) = � ln
2⇡N

2
�

N

2

h
ln
⇣
1 +

x

N

⌘
+ ln

⇣
1�

x

N

⌘i

+
x� 1

2
ln
⇣
1�

x

N

⌘
�

x+ 1

2
ln
⇣
1 +

x

N

⌘
. (2.62)

According to the central limit theorem, the distribution of the mean of a set of

independent, identically distributed random variables approaches the normal dis-

tribution, for a su�ciently large sample size. The limit which will give the result

obtained by the central limit theorem in the case of the random walk is N ! 1 and
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x2/N is finite. In other words, the displacement is much smaller than the total num-

ber of steps travelled. Applying this limit to Eq. (2.62), we obtain the well-known

normal distribution:

P (x,N) ⇡
1

p
2⇡N

e�x
2
/2N , x,N ! 1, x2/N finite. (2.63)

From this distribution, we understand that the walker is most likely to be found

around x =
p
N . This distribution captures the most probable or mean outcome

of the random walk, and the surrounding regions, very well. However, it cannot

describe the tails of the distribution e↵ectively, as it is accurate only upto order of

the standard deviation, or
p
N . To understand the behaviour of the distribution at

the tails, we consider the limit of finite x/N , while N ! 1. That is, the walker is

far from the mean. In this limit, we obtain a large deviation principle:

P (x,N) ⇠ e�Nf(x/N), x,N ! 1, x/N finite, (2.64)

with the large deviation rate function

f
⇣ x

N

⌘
= � lim

N!1

lnP

N
=

1

2

⇥
(1 +

x

N
) ln(1 +

x

N
) + (1�

x

N
) ln(1�

x

N
)
⇤
, (2.65)

as shown in Fig. 2.3. The rate function in this case, is a strictly convex function.

The minimum of f(x/N), which approaches zero, corresponds to the most probable

displacement. This result holds true when the probability of moving to the right is

not equal to the probability of moving to the left, as well.

In general, it is not a straightforward task to compute the large deviation rate

functions for a given problem. Depending on the nature of the problem at hand,

techniques such as variational methods, macroscopic field theory, and other field-

theoretic methods are used to establish a large deviation principle and obtain the

rate function.
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Chapter 3

Monte Carlo algorithm

3.1 Introduction

Computing the probability of rare events numerically is, in general, a challenging and

computationally expensive exercise, because of the sparsity of data contributing to

these events. Often, sophisticated techniques and algorithms are required to obtain

data of reasonable robustness. Some popular techniques are importance sampling,

splitting and cloning.

In this chapter, we develop a Monte Carlo algorithm to measure probabilities of rare

events in CCA for arbitrary collision kernels. The algorithm is based on importance

sampling. The key contribution of the algorithm is to identify local modifications

to a trajectory consistent with the collision rules, as well as the probabilities arising

from collision rates and waiting times. We show that the algorithm is ergodic by

giving a protocol that transforms any given trajectory to a standard trajectory using

reversible moves. The algorithm’s e↵ectiveness in sampling low-probability events

is established by numerically reproducing the exact large deviation function for the

constant-kernel aggregation. Further, it is shown that the algorithm can obtain the

rate functions for gelling kernels, as well as the instanton trajectories for both typical
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and atypical times. The dependence of the autocorrelation times, both temporal and

configurational, on the di↵erent parameters of the algorithm is also characterized.

The content of this chapter is published in [51].

3.2 Marcus-Lushnikov model

The model has previously been described in Sec. 2.2, and is reproduced here for ease

of reference.

Consider a collection of particles which are labeled by their masses. Given a config-

uration, the system evolves in time through mass-conserving binary aggregation:

Ai + Aj

K(i,j)
���! Ai+j, (3.1)

where Ak denotes a particle of mass k, and the collision kernel K(i, j) is the rate

at which two particles of masses i and j aggregate. In an infinitesimal time dt, the

probability of collision of two particles having masses i and j is given by K(i, j)dt.

Since each aggregation event reduces the number of particles, N(t), by 1, N(t)

decreases monotonically with time. Initially, there are N(0) = M particles with

equal mass m0. We set m0 = 1, so that all masses are measured in units of m0.

We are interested in the probability distribution P (M,N, t), defined as the proba-

bility of t being the minimum time at which exactly N particles are remaining, or

equivalently the probability that the (M�N)th collision occurs at time t, given that

there are M particles of mass 1 initially. Here, we consider t as the random variable

with
R1
0 dtP (M,N, t) = 1. Also, we would like to know what the most probable

trajectory is for a given M,N, t.

When t is the typical time for givenM andN , then we expect that the most probable
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trajectory is described by the Smoluchowski equation:

dNi(t)

dt
=

1

2

X

m1

X

m2

K(m1,m2)Nm1Nm2�(m1 +m2 � i)�Ni

X

m1

K(i,m1)Nm1 , (3.2)

whereNi(t) is the number of particles of mass i at time t. This equation is solvable for

the typical trajectory for only few collision kernels: constant, sum and product [27,

28, 29]. We note that the Smoluchowski equation ignores correlations among the

particles, and also does not give any information about atypical times, the focus of

this thesis.

3.3 Monte Carlo Algorithm

We now describe a Monte Carlo algorithm to numerically determine P (M,N, t) for

any given aggregation kernel. This includes times which are atypical for a given

M,N , and hence are dominated by rare events. A trajectory that contributes to

P (M,N, t) consists of C = M � N collisions. As C increases, the number of tra-

jectories increases rapidly. Figure (3.1) shows all the possible configurations for 6

collisions. Any path from the top row to the bottom row along the directed edges

constitutes a trajectory.

To compute P (M,N, t) for atypical times t, we use a method known as importance

sampling [52]. The simulations are performed at constant M and N , and t is con-

sidered as the random variable. In addition to weights arising from the aggregation

kernel, each trajectory is weighted by ewt, where w is a biasing parameter which can

be positive or negative. Thus, the biased distribution is

Pw(M,N, t) =
1

Z
P (M,N, t)ewt, (3.3)

where Z is a normalizing factor. Positive w biases the system towards larger times
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Figure 3.1: All possible configurations and trajectories for 6 collisions. The config-
urations after each collision are shown inside the bubbles. The bubbles at a certain
level are arranged from left to right according to the order relation described in
text (see Sec. 3.3.1). For the trajectory shown in blue, the red lines denote possible
alternate paths that alter only the 4-th configuration.

and negative w towards smaller times, resulting in robust sampling of atypical trajec-

tories. We first determine P (M,N, t) without bias, i.e., for w = 0. Then, we obtain

Pw(M,N, t) for w 6= 0 and unbias the distribution using Eq. (3.3), i.e., multiplying

by e�wt. To combine the data obtained from di↵erent choices of w, we proceed as

follows. The base normalized distribution is the unbiased distribution of P (M,N, t)

obtained for w = 0. The values of w are chosen such that between two successive

choices of w, there is some overlap in the sampled times. The biased distribution is

glued on by minimizing the error in the data for the overlapping times.

The probability distribution P (M,N, t) is a sum over the probabilities of each tra-

jectory with C collisions. A trajectory is characterized both by the sequence of

collisions as well as the waiting times between consecutive collisions. In the Monte

Carlo algorithm, we introduce local modifications to the trajectory by changing both

of the above, as described below.
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To characterize a trajectory, we introduce the following notation. We will refer to the

configuration after the i-th collision as the i-th configuration. Its mass distribution,

the number of particles of mass m, will be denoted by Ni(m). Note that it su�ces to

give either the sequence of collisions or the configurations to specify the trajectory.

The waiting time between the i-th and the (i+ 1)-th collisions, or equivalently the

waiting time for the i-th configuration, will be denoted by �ti. Also, (mi,m0
i
) will

refer to the pair of masses aggregating in the i-th collision.

At each micro-step, a configuration is chosen uniformly at random, say the i-th

configuration. With probability p, the waiting time, �ti, associated with the i-th

configuration, is modified, keeping all the configurations fixed. With probability

(1 � p), the i-th configuration is modified, keeping all other configurations as well

as all waiting times fixed. We will treat p as a parameter of the algorithm.

We first describe the change in waiting times. Let the current waiting time for the

i-th configuration be denoted by �told
i
. A new waiting time �tnew

i
is drawn from an

exponential distribution [53]

P (�ti) = Rie
�Ri�ti , (3.4)

where Ri is the total rate of collision of the i-th configuration. In terms of the

collision kernel,

Ri =
MX

m1=1

MX

m2�m1

K(m1,m2)Ci(m1,m2), (3.5)

where

Ci(m1,m2) = Ni(m1)Ni(m2)�
Ni(m1) [Ni(m2) + 1]

2
�m1,m2 , (3.6)

is the combinatorial factor associated with the number of ways of choosing particles

of masses m1 and m2. For ensuring detailed balance, we first note that when the

waiting times are changed the sequence of collisions remains the same for both the

old and new trajectories. Since the waiting times are biased with weight e�wt, it
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is easy to see that detailed balance is satisfied if the new waiting time �tnew
i

is

accepted with a probability min[1, ew(�t
new
i ��t

old
i )].

Second, we describe the moves to modify the trajectory through changes in the

configurations. There are multiple ways of choosing a di↵erent pair of successive

collisions such that only the i-th configuration is changed. An example of possible

options is shown in Fig. 3.1. Consider the trajectory shown in blue. To change the

4-th configuration, keeping other configurations fixed, the paths that are marked in

red are also allowed, but each with di↵erent weights. We now formulate the general

rules to obtain the set of collisions which will preserve all configurations except the

i-th configuration.

If 1 < i < C, then the i-th and (i + 1)-th collisions have to be modified, while if

i = C, only the C-th collision has to be modified. We first discuss the case 1 <

i < C. For convenience of notation, let the pair of successive collisions be denoted

as (m1,m2),(m3,m4) respectively. The most obvious way that the collisions can be

modified is to reverse the sequence of collisions such that the collision (m3,m4) occurs

first, and then (m1,m2) occurs, provided the masses m3 and m4 exist independent

of the (m1,m2) collisions. The collisions can also occur such that the product from

the ith collision, i.e., m1 + m2, is one of the colliding masses of the next collision,

say m3. This possibility leads to the classification of the pair of collisions into three

types. A pair of collisions where m1 + m2 6= m3 or m4 can undergo only reversal

of the sequence of collisions. This type of collision will be denoted as ↵. A pair of

collisions where m1+m2 = m3 falls into two types, � and �. All the three types are

described below. The rules pertaining to all three types are given in Table 3.1.

Type ↵: m1 +m2 6= m3 or m4. Here the only possibility is to reverse the sequence

of collisions and thus there are only two pairs of collisions to choose from.

Type � : m1+m2 = m3, and there is at least one particle of mass m3 in the (i�1)-th

configuration. In this case, there are 6 possible pairs of collisions to choose from.
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Table 3.1: Given a pair of successive collisions (m1,m2) and (m3,m4), all allowed
alternate pairs of collisions that alter only the intermediate configuration i are tab-
ulated. If the product of the first collision takes part in the second, we denote the
product as m3 without loss of generality.

Type Description i-th collision (i+ 1)-th collision

↵ m1 +m2 6= m3
(m1,m2)
(m3,m4)

(m3,m4)
(m1,m2)

�
m1 +m2 = m3,

Ni(m3) > 0

(m1,m2)
(m3,m4)
(m1,m4)
(m1 +m4,m2)
(m2,m4)
(m2 +m4,m1)

(m3,m4)
(m1,m2)
(m1 +m4,m2)
(m1,m4)
(m2 +m4,m1)
(m2,m4)

�
m1 +m2 = m3,

Ni(m3) = 0

(m1,m2)
(m1,m4)
(m1 +m4,m2)
(m2,m4)
(m2 +m4,m1)

(m3,m4)
(m1 +m4,m2)
(m1,m4)
(m2 +m4,m1)
(m2,m4)

Type �: m1 + m2 = m3, but there are no particles of type m3 in the (i � 1)-th

configuration. Compared to type �, the pair of reversed collisions (m3,m4), (m1,m2)

would not occur. Thus, there are 5 possible pairs of collisions to choose from.

Each of the possibilities in Table 3.1 occurs with weight,

W (m1,m2;m3,m4) =K(m1,m2)Ci�1(m1,m2)Ri�1e
�Ri�1�ti�1

K(m3,m4)Ci(m3,m4)Rie
�Ri�ti .

(3.7)

If i = C, i.e., the C-th configuration is chosen, then any two masses from the (C�1)-

th configuration may aggregate. For the final collision, the weight of choosing a pair

is

W (mC ,m
0
C
) = K(mC ,m

0
C
)CC�1(mC ,m

0
C
)RC�1e

�RC�1�tC�1 . (3.8)

From all the allowed possibilities, we choose a particular configuration with prob-

ability proportional to its weight, thus making the choice rejection-free. A Monte
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Figure 3.2: Comparison of P (M,N, t) for M = 240, N = 168, obtained for two
di↵erent initial conditions. Initial condition 1 corresponds to the initial trajectory
consisting of C = M �N random collisions. Initial condition 2 corresponds to the
trajectory (1)M�i(i)1, formed by the collision of a particle of mass 1 with a particle
of mass M � i. The data are for the constant kernel.

Carlo move consists of 2C micro-steps.

The algorithm obeys detailed balance. Once the set of new configurations is deter-

mined, based on the current configuration, the probability of choosing a particular

configuration is only proportional to its weight, and independent of the current con-

figuration. Hence, the configurational moves satisfy detailed balance trivially. The

assignment of waiting times follows the usual Metropolis rule and hence satisfies

detailed balance.

The initial configuration is chosen by colliding a randomly chosen pair of particles at

each collision. The initial waiting times are drawn from the exponential distribution

Eq. (3.4). To confirm convergence, we check that the results do not depend on the

initial trajectory, by choosing other initial trajectories such as (1)M�i(i)1. As an

example, in Fig. 3.2 we compare P (M,N, t) for the constant kernel, obtained for

the two initial conditions discussed above. The data are indistinguishable from each

other, confirming equilibration.
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3.3.1 Ergodicity of the Monte Carlo Algorithm

The Monte Carlo algorithm modifies trajectories using local moves which are re-

versible and obey detailed balance. We now show that the algorithm is ergodic,

i.e., it allows all trajectories to be accessed. To do so, it is enough to prove that an

arbitrary trajectory, A, can transform to a standard trajectory, S, through a given

protocol. Then, to transform A to any given trajectory B, we follow the protocol

from A to S and reverse the moves from B to S.

We choose the standard trajectory S to be one where after every collision, only

one mass di↵erent from 1 is allowed at all times. That is, after i collisions, the

configuration is (1)M�i�1(i+1)1. In this trajectory, at each collision, the largest

mass collides with a particle of mass 1.

To describe the protocol of transforming an arbitrary trajectory to S, it is convenient

to introduce an ordering among configurations that have undergone the same number

of collisions. We will say that (1)N1(2)N2 · · · < (1)N
0
1(2)N

0
2 . . . if N1 = N 0

1, N2 =

N 0
2, . . . , Nk�1 = N 0

k�1,Nk < N 0
k
, where k is the smallest mass for which Nk 6= N 0

k
.

The configurations are then arranged in increasing order, as shown in Fig. (3.1). In

this representation, the standard trajectory S is the rightmost trajectory.

Consider any arbitrary trajectory A. The following transformations are applied till

no more transformation is possible :

• The lower most edge is moved to the rightmost allowed node.

• For the bottom most configuration that can be modified such that the trajec-

tory moves rightward, we choose the rightmost path.

We give an example of the above protocol for a trajectory with 4 collisions. Con-

sider the leftmost trajectory shown in blue, in Fig. 3.3(a) where the configuration

after i collisions is (1)M�2i(2)i. The protocol transforms the trajectory as follows.
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Figure 3.3: The transformation from the leftmost trajectory [blue path in (a)] where
all the configurations result from the collision (1, 1), to the rightmost trajectory, S,
using the protocol described in the text. The current path is depicted in blue, and
the possible transformations in the next collision, as prescribed by the protocol, are
denoted in red.

The lowest-most edge has two other valid choices as shown in red in Fig. 3.3(a).

We choose the rightmost of these to obtain the blue trajectory in Fig. 3.3(b). The

third configuration now can be moved rightwards along the paths shown in red in

Fig. 3.3(b). We choose the right-most configuration to obtain the blue trajectory

in Fig. 3.3(c). The bottom-most edge is now moved to the edge shown in red in

Fig. 3.3(c) to obtain the blue trajectory in Fig. 3.3(d). Finally, the second configu-

ration is moved to the right along the red path shown in Fig. 3.3(d) to obtain the

standard trajectory shown in blue in Fig. 3.3(e).

We now show that the protocol transforms an arbitrary trajectory A to the standard

trajectory S. Suppose, on application of the protocol, A is transformed to S 0.

We will now show that S 0 = S. Let the sequence of collisions in S 0 be denoted

by (mi,m0
i
), i.e., in the i-th collision, masses mi and m0

i
aggregates. We derive

the constraints that two consecutive collisions in S 0,
⇥
(mi,m0

i
), (mi+1,m0

i+1)
⇤
should
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obey. A pair of collisions falls under one of the three types, ↵, � and � as described

in Sec. 3.3.

The argument is based on the following observation. Suppose, given a configuration,

we consider two possible collisions: (m1,m2) or (m3,m4). If the trajectory due to

(m3,m4) colliding is to the right of the trajectory due to (m1,m2) colliding, then

based on the order relation, it is easy to see that min(m1,m2)  min(m3,m4).

For collisions of the type ↵, there are two possibilities (see Table 3.1) for the sequence

of collision. The reversed sequence of collisions (mi+1,m0
i+1), (mi,m0

i
) would lead to

a trajectory to the right of S 0 if min(mi+1,m0
i+1) > min(mi,m0

i
). Since we cannot

have a trajectory that is to the right of S 0, we obtain the condition, based on the

argument in the previous paragraph, min(mi+1,m0
i+1)  min(mi,m0

i
).

Now consider collisions of types � and �. The pair of collisions are (mi,m0
i
)

and (mi + m0
i
,m0

i+1). Suppose m0
i+1 > min(mi,m0

i
). Then the pair of collisions

(m0
i+1,max(mi,m0

i
)), (min(mi,m0

i
),m0

i+1 +max(mi,m0
i
)) creates a trajectory to the

right of S 0 that is allowed by the protocol. But since S 0 is the rightmost trajectory,

there is a contradiction and hence

m0
i+1 = min(mi+1,m

0
i+1)  min(mi,m

0
i
), (3.9)

that holds for all collision types ↵, � and �.

The first collision is (1, 1). To satisfy the condition in Eq. (3.9), it is clear that at

least one of the colliding masses in the second collision should be 1, as the minimum

possible mass is 1. It follows that in order to satisfy the condition in Eq. 3.9 for

every sequence of consecutive collisions in the trajectory, at least one of the colliding

masses in all the subsequent collisions should be 1.

Now consider the C-th collision. For the rightmost trajectory, the two largest masses

have to be collided. But we have already shown that one of the masses should be
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1, i.e., the second largest mass is 1. This implies that the C-th configuration is

1M�1C1. Using the property that mass 1 is used in each step, it follows that the

i-th configuration is 1M�ii1, which is the standard configuration. This implies that

S 0 = S, and hence proves that the algorithm is ergodic.

3.3.2 Large Deviation Function

To show the e�cacy of the algorithm, we compare the numerical results with the

exact solution of the model of constant kernel where collision rates are independent

of the masses. The collision kernel K(m1,m2) = �.

Exact result for constant kernel

When the collision rates are independent of masses, P (M,N, t) can be analytically

computed. After i collisions, M � i particles remain, and the total rate of collision

is given by

Ri =
�(M � i)(M � i� 1)

2
. (3.10)

Using the exponential time distribution Eq.(3.4),

P (M,N, t) =

Z 1

0

d�t0

Z 1

0

d�t1...

Z 1

t=0

d�tC�1 R0e
�R0�t0

R1e
�R1�t2 . . .RC�1e

�RC�1�tC�1�

 
C�1X

i=0

�ti � t

!
.

(3.11)

The �-function constrains the sum of waiting times to the total time t. The Laplace

transform of eP (M,N, s), defined as

eP (M,N, s) =

Z 1

0

dte�stP (M,N, t), (3.12)
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Figure 3.4: (a) P (M,N, t) for the constant kernel for di↵erent M , keeping � =
N/M = 0.8 fixed are compared with the exact solution, Eq. (13). (b) The data in
(a) for di↵erent M collapse onto one curve when scaled as in Eq. (14), to give the
rate function.

is then

eP (M,N, s) =
C�1Y

i=0

Ri

Ri + s
. (3.13)

Doing the inverse Laplace transform, we obtain

P (M,N, t) =

 
C�1Y

k=0

Rk

!
C�1X

i=0

e�Rit

C�1Y

j 6=i,j=0

1

Rj �Ri

. (3.14)

We compare the results from the Monte Carlo simulations for the constant kernel

with the exact results. Plotting the unbiased P (M,N, t) (with w = 0) as the refer-

ence, P (M,N, t) obtained from non-zero values of w are merged with the reference

distribution by appropriate normalization. In Fig. 3.4(a), the results for P (M,N, t)

from Monte Carlo simulations are compared with the exact solution for a fixed

� = N/M = 0.8 and M = 120, 160, 240. It is clear that the data are in good agree-

ment with the exact results, thus providing a benchmark for correctness. Also, we

are able to measure very low probabilities, of the order of 10�35, and even lower, at

times much larger and much smaller than the typical time.
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Figure 3.5: (a) P (M,N, t) for the constant kernel for di↵erent M , and keeping
� = N/M = 0.3 fixed collapse onto one curve when scaled as in Eq. (3.15), to
give the rate function. (b) P (M,N, t) for the constant kernel for di↵erent M , and
keeping � = N/M = 0.5 fixed collapse onto one curve when scaled as in Eq. (3.15),
to give the rate function.

For large M , P (M,N, t) for di↵erent M,N, t collapse onto one curve when scaled as

in

� lnP (M,N, t) = Mf

✓
N

M
,M�t

◆
, M,N, t�1

! 1, (3.15)

as shown in Figure 3.4(b). We then identify M with the rate and f with the large

deviation function [41]. � lnP has a minimum value of zero. We will identify the

corresponding value of time as the typical time, ttyp for M � N collisions, i.e.,

f(�,M�ttyp) = 0.

To show that the algorithm works for the full range of �, we compare the results

from simulations of the constant kernel with the exact results for � = 0.3, 0.5 in

Fig. 3.5. Excellent agreement is seen.

We note that there is an upper bound for the value of the bias w. To see this, we

observe that P (M,N, t) in Eq. (13) is a sum over (C + 1) terms, each one of which

decreases exponentially with t as e�Rit. Thus, for large t, the term with the smallest
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Figure 3.6: The large deviation rate function f(�,M�t) [see Eq. (3.15)] for fixed

� = N/M = 0.8 and di↵erent kernels, K(m1,m2) = (m1m2)
�
2 where � = 0, 1, 2.

The data are for M = 120 and M = 240.

Ri will dominate. Since the smallest rate is RC , we expect that

P (M,N, t) ⇡ RC�1e
�RC�1t

C�2Y

j=0

Rj

Rj �RC � 1
, t ! 1. (3.16)

This implies that a bias w > 1
2N(N+1) cannot be applied since the biased distribu-

tion Pw(M,N, t) would diverge, making it not normalisable. For small times, there

is no such cuto↵ for the bias.

The large deviation functions of kernels other than the constant kernel can also

be obtained using the algorithm. Depending on the form of the collision kernel

K(m1,m2), a phenomenon known as gelation occurs in aggregating systems, where

there is a non-trivial fraction of the total mass, (1 � �)M , and the rest are masses

which are much smaller than (1� �)M . In gelling kernels, collisions between large

masses are dominant. After gelation occurs, the smaller masses are consumed by

the large mass. For a collision kernel of the form K(m1,m2) ⇡ �(m1m2)
�
2 , the

criteria for gelation has been established as � > 1
2 [54, 55], where � = ⌫ + µ. Here,

⌫ and µ are the kernel parameters corresponding to the generalised homogeneous
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collision kernel, K(m1,m2) = �

2 (i
µj⌫ + i⌫jµ). Figure 3.6 shows the rate function

for the collision kernels with � = 0, 1, 2. The algorithm is able to obtain the rate

function for small and large arguments, showing that a numerical analysis similar

to the constant kernel can be done for any arbitrary kernel.

In addition to obtaining the large deviation function for the well-known constant,

sum and product kernels, we also demonstrate the usefulness of the algorithm by

determining the large deviation function for a collision kernel for which the mean

field Smoluchowski equation cannot be solved for. Figure 3.7 shows the rate function

for the Brownian kernel, K(m1,m2) = (m1/m2)1/3+(m2/m1)1/3+2, which is widely

used in aerosol physics [56].

3.3.3 Typical trajectories

In the algorithm for determining P (M,N, t), the initial condition was fixed as

N(0) = M , but the final time was varying. Now, we fix the final time to be T ,

i.e., N(T ) = N , and determine the most probable trajectory under these condi-
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tions. We will refer to this trajectory as the instanton trajectory.

To determine the instanton trajectory, we modify the algorithm as follows. The rules

to alter the configurations remain the same as before. The rules for assignment of

waiting times are modified as follows. A configuration 1  i  C is chosen. Let the

current waiting times associated with the (i�1)-th and i-th configurations be �t0
i�1

and �t0
i
. These waiting times are reassigned, keeping their sum fixed, thus ensuring

that the total time taken for C collisions to occur does not change. Let the new

waiting times be �ti�1 and �ti. Then, �ti�1 is drawn from the distribution

P (�ti�1) = NRi�1e
�Ri�1�ti�1Rie

�Ri�ti , (3.17)

where N is the normalizing factor, and �ti is fixed by

�ti = �t0
i�1 +�t0

i
��ti�1. (3.18)

Integrating over �ti�1 from �ti�1 = 0 to �ti�1 = �t0
i�1 +�t0

i
, we obtain

N =
(Ri�1 �Ri)e

Ri(�t
0
i�1+�t

0
i)

Ri�1Ri(1� e�(Ri�1�Ri)(�t
0
i�1+�t

0
i))

. (3.19)

Hence, the final distribution is

P (�ti�1) =
(Ri�1 �Ri)e�(Ri�1�Ri)�ti�1

1� e�(Ri�1�Ri)(�t
0
i�1+�t

0
i)

. (3.20)

To benchmark our simulations, we first ask how the typical trajectories look. The

trajectory obtained for a given M and �, without any constraints on the final time

and in the absence of bias, is the typical trajectory. We expect that this typical

trajectory is described by the Smoluchowski equation (see Sec 3.2). Summing over

i and dividing by M in Eq. (3.2), gives the rate of decay of the fraction of particles,

n(t) = N(t)/M with time.
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For the constant kernel K(m1,m2) = �,

dn

dt
= �

M�n2

2
. (3.21)

The solution of this equation, with the initial condition n(0) = 1 is

n(t) =
1

1 + M�t

2

, constant kernel. (3.22)

This solution describes a typical trajectory provided the number of particles are not

of order 1, which is when the Smoluchowski equation breaks down. For the sum

kernel, K(m1,m2) =
�

2 (m1+m2) and the product kernel, K(m1,m2) = �m1m2, the

solution for the Smoluchowski equation is easily obtained, and are given by [27]

n(t) =e�
M�t
2 , sum kernel, (3.23)

n(t) =1�
�Mt

2
, product kernel. (3.24)

We note that these solutions are valid before gelation, where an infinite mass forms

in finite time. Given � = N/M , the typical times ttyp for the di↵erent kernels are

obtained by equating n(T ) in Eqs. (3.22), (3.23) and (3.24) to �. To check that

the simulations reproduce the typical trajectories, we set T = ttyp, and then ask

whether the numerically obtained instanton solution matches with the solution to

the Smoluchowski equation.

Figure 3.8 shows the numerically obtained instanton trajectories for the constant,

sum, and product kernels, for typical as well as atypical final times T , for � =

0.8. For T = ttyp, the data are in excellent agreement with the solution of the

Smoluchowski equation for all the three kernels, thus providing a check for the

correctness of the implementation of the algorithm. The algorithm is also able to

obtain the instanton trajectories for atypical trajectories for times which are both

much smaller than as well as much larger than the typical times. The exact answers
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Figure 3.8: Instanton trajectories for di↵erent final times T are shown for (a) con-
stant kernel and � = 0.3, (b) sum kernel and � = 0.5, and (c) product kernel and
� = 0.8. The three times shown are for T = ttyp, ttyp/10 and 4ttyp. The data for the
typical times are compared with the exact solution of the Smoluchowski equation
[see Eqs. (3.22), (3.23) and (3.24)]. For the constant kernel, the data for atypical
times are also compared with the exact result [see Eqs. (3.25), (3.26). The data are
for M = 240.

for the atypical trajectories of the constant kernel are [57]

n(t) = �p tan
M�p(t� t0)

2
T < ttyp, (3.25)

n(t) = q coth
M�q(t� t1)

2
T > ttyp, (3.26)

where p, t0, q and t1 are determined from the boundary conditions n(0) = 1 and

n(T ) = �. The simulation results are in excellent agreement with the exact results

for the instanton trajectories for atypical events, as shown in Fig. 3.8.

We also check that the minimum of the large deviation rate function for the constant,

sum, and product kernels for � = 0.8, shown in Fig. 3.6, occurs at the typical times

as calculated by the Smoluchowski equation in Eqs. (3.22), (3.23), and (3.24).

3.3.4 Addition and deletion of collisions

We also compute P̃ (M,N, t), the probability that N particles remain at a given

time t. Here, N is the random variable of interest. A trajectory that contributes
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to P̃ (M,N, t) consists of C = M � N collisions, and in addition to the waiting

times between collisions and sequence of collisions, is also defined by the number

of collisions. No collision occurs after the final waiting time. At t = 0, there are

M particles of mass 1. A trajectory is evolved by reassigning a waiting time with

probability p1, reassigning a collision with probability p2, or modifying the number

of collisions with probability p3, such that p1 + p2 + p3 = 1. Each of these moves is

described below.

Reassign waiting times: Keeping the number of collisions C, total time for C

collisions, and sequence of collisions fixed, a configuration i is chosen. �ti is the

waiting time before the i�th configuration, and �i is the total rate of collision of

the i�th configuration. The new waiting time �t0
i�1 is drawn from the distribution

Eq. (3.20). The next waiting time �t0
i
is automatically fixed by the condition that

the sum of the old waiting times, �ti�1 +�ti is constant.

Reassign a collision: Keeping the number of collisions and the total time for C

collisions fixed, a collision i is chosen at random, and reassigned according to the

rules listed in Sec 3.3.

Add/delete collision: With equal probability, a collision is added or deleted.

In order to add a collision, two masses m1 and m2 are selected at random from the

configuration resulting from the final collision. The collision rate for these masses

are calculated, and used to generate the waiting time for the (C + 1)-th collision,

�tC+1.

In order to delete a collision, the final configuration is deleted, and the waiting times

are modified such that the new final waiting time �t0
C�1 = �tC +�tC�1.

Addition and deletion of a collision are performed in such a way that the principle of
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detailed balance is satisfied. Suppose the old trajectory consists of C collisions, and

the new trajectory consists of C + 1 collisions. The probability of the old and new

trajectories are P (C) and P (C + 1) respectively, and the weights associated with

adding a collision, and deleting a collision, are Wt(C ! C+1) and Wt(C+1 ! C)

respectively. The condition for detailed balance is:

P (C)Wt(C ! C + 1) = P (C + 1)Wt(C + 1 ! C). (3.27)

The old trajectory has the probability

P (C) =
1

RC

"
CY

i=0

Rie
�Ri�ti

CY

i=1

P (⇠i)

#
eWC , (3.28)

where ⇠i denote the possible configurations and W is a bias parameter. The new

trajectory has the probability

P (C + 1) =
1

RC+1

"
C+1Y

i=0

Rie
�Ri�ti

C+1Y

i=1

P (⇠i)

#
eW (C+1). (3.29)

The protocol for adding the (C + 1)�th collision is the following:

• Let there be L possible mass pairs which can collide, i.e., p = 1, 2, . . . L. The

p� th mass pair, (m1,m2), is chosen with probability

K(m1,m2)nm1nm2P
i,j
K(mi,mj)nminmj

. (3.30)

• Choosing the mass pair fixes the collision rate as R
(p)
C+1. Using this rate, we

choose �t0p
C
such that �t0p

C
+�t0

C+1 = �tC , from the distribution

P (�t0p
C
) =

(R0p
C+1 �RC)e

(R0p
C+1�RC)�t

0p
C

e(R
0p
C+1�RC)�tC � 1

. (3.31)
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• Now, the weight of adding a collision is

Wt(C ! C + 1) = P (⇠j)P (�t0p
C
). (3.32)

The protocol for deleting a collision just involves deleting the final configuration and

setting �tC = �t0
C
+�t0

C+1. That is,

Wt(C + 1 ! C) = 1/, (3.33)

where  is a constant.

Substituting Eqs. (3.28), (3.29), (3.32) and (3.33) into Eq. (3.27), we obtain

 =
RCeW (1� e�(RC+1�RC)�tC )

RC+1 �RC

. (3.34)

That is, addition of a collision is accepted with probability min(, 1), and deletion

of a collision with probability min(1/, 1).

Implementing the algorithm described, we see that the numerical results are in

excellent agreement with the analytical LDF, as seen in Fig 3.9.

3.3.5 Autocorrelation times

To characterize the algorithm, we determine the dependence of the autocorrelation

time on bias w, fraction � = N/M and the parameter p. We recall that p is

probability that in a given micro-step the sequence of collisions is modified, while

(1� p) is the probability that the waiting times are modified. The autocorrelation

function, ACF (⌧), for a stationary variable X is defined as

ACF (⌧) =
1

T 0

Z
T

0

0

dt[X(t+ ⌧)� hXi][(X(t)� hXi)], (3.35)
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Figure 3.9: Comparison of f(�, ⌧) keeping ⌧ = 1 fixed, for the constant kernel, with
the exact answer.

where T 0 is the total time over which X is measured, and ⌧ is the delay.

The Monte Carlo algorithm involves introducing local modifications to the trajectory

by changing either the waiting time associated with a collision or the sequence of

collisions. To measure the autocorrelation in time as well as in configuration space,

we define

t =
CX

i=0

�ti, (3.36)

Qi =
MX

m=1

m2Ni(m), i = 2, . . . , C. (3.37)

Qi is a measure of the mass distribution after the i-th collision. We choose the

second moment of mass, as it is the lowest moment that changes when the mass

distribution is modified, the zeroth and first moments being constants.
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The autocorrelation functions ACFt(⌧) and ACFQ(⌧), corresponding to t and Q

decay exponentially with time, as shown in Fig. 3.10. To decide which configuration

we should use for the Q autocorrelation, we compare the autocorrelation functions

for the C-th, C/2-th, and C/4-th collisions in Fig. 3.10 (b). We find that the

correlation time, determined by the slope of the curve on the semi-log plot, is nearly

the same for all the three data. For convenience, we choose the C-th configuration,

henceforth, to measure the autocorrelation time ⌧Q, and will drop the subscript i

from the second moment Q in Eq. (3.37). We define autocorrelation times, ⌧t and

⌧Q via

ACFt(⌧)

ACFt(0)
⇡e�⌧/⌧t , (3.38)

ACFQ(⌧)

ACFQ(0)
⇡e�⌧/⌧Q . (3.39)

The autocorrelation times ⌧t and ⌧Q are obtained by fitting these exponential func-

tions to the exponentially decaying regions of ACFt(⌧) and ACFQ(⌧), respectively.

We now characterize the dependence of ⌧t, ⌧Q on the fraction of particles remaining,

�, bias w, and the parameter p. All the simulations have been performed for the

constant kernel.

Figure 8 shows the dependence of ⌧t and ⌧Q on the bias, w for fixed � = 0.8 and

p = 0.5. For w > 0, ⌧t increases sharply with w and diverges at the cuto↵ bias [see

Fig. 3.11 (a)]. For w < 0, ⌧t increases much more slowly. We find that ⌧t decreases

with M , however, we cannot find a scaling behaviour. For the unbiased case, w = 0,

we find that ⌧t is independent of M . In contrast, we find that ⌧Q shows at most

a very weak dependence on w. It increases with M , but the data for di↵erent M

collapse onto one curve when ⌧Q is scaled by M2 [see Fig. 3.11(b)].

The variation of ⌧t and ⌧Q with the parameter p is shown in Fig. 3.12 for fixed

� = 0.8 and w = 0. ⌧t diverges as p ! 1. This is expected since, in this limit,
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Figure 3.10: Autocorrelation functions for (a) total time t and C = 60, and (b)
Qi, for i = C,C/2, C/4, where C = 24, with delay ⌧ , for the constant kernel, for
M = 120, w = 0, p = 0.5.
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Figure 3.11: The variation of the autocorrelation times (a) ⌧t and (b)⌧Q/M2 with w
for di↵erent M . The data are for the constant kernel for p = 0.5 and � = 0.8.
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Figure 3.12: The variation of the autocorrelation times (a) ⌧t and (b)⌧Q/M2 with p
for di↵erent M . The data are for the constant kernel for � = 0.8 and w = 0.

the probability of modifying waiting times tends to zero. We also find that ⌧t is

independent of M . ⌧Q, on the other hand, increases with M . However, the data

for di↵erent M collapse onto one curve when ⌧Q is scaled by M2. As expected, ⌧Q

diverges for small p because the probability of updating configurations tends to zero

in this limit.

We also checked the variation of ⌧t and ⌧Q with the parameter p for non-zero values

of w. We again find that the data for ⌧Q collapse when scaled by M2. However, we

do not find a scaling for ⌧t.

The variation of ⌧t and ⌧Q with � is shown in Fig. 3.13 for fixed p = 0.5 and w = 0.

⌧t is order 1 and very weakly dependent on both � as well as M . For ⌧Q, like before,

the data for di↵erent M collapse onto one curve when ⌧Q is scaled by M2. We also

find that ⌧Q is larger for smaller �.

From Figs. 3.11-3.13, we see that ⌧t remains small unless p ! 1, or if the positive

bias is close to the cuto↵ bias. On the other hand, ⌧Q is order of M2/100 times

larger than ⌧t. Choosing a value of p close to 1 will optimize the implementation of

the algorithm, keeping both autocorrelation times finite.
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Figure 3.13: The variation of the autocorrelation times (a) ⌧t and (b)⌧Q/M2 with �
for di↵erent M . The data are for the constant kernel for p = 0.5 and w = 0.

3.4 Summary

To summarize, we developed a biased Monte Carlo algorithm to compute probabili-

ties of rare events in irreversible cluster-cluster aggregation for an arbitrary collision

kernel. In particular, the algorithm measures P (M,N, t), the probability of N par-

ticles remaining at time t when there are M particles initially, as well as the most

probable trajectories for fixed M , N , and t. By choosing appropriate biases, the

algorithm can e�ciently sample the tails of the distribution with low computational

e↵ort. We prove that the algorithm is ergodic by specifying a protocol that trans-

forms any given trajectory to a standard trajectory using valid Monte Carlo moves.

The algorithm is benchmarked against the exact solution for the constant kernel.

To characterize the algorithm, we define autocorrelation times ⌧t and ⌧Q, corre-

sponding to the waiting times as well as the configurations. We find that ⌧t is much

smaller than ⌧Q for almost the entire range of parameters. From simulations for

di↵erent M , we find that ⌧t is at most only weakly dependent on M , while ⌧Q is pro-

portional to M2. Based on the dependence of ⌧t and ⌧Q on the bias w, the fraction
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of particles remaining � = N/M , and the parameter p which decides what fraction

of the Monte Carlo moves are changes to configurations, we conclude that it is best

to choose a value of p as close to 1 as possible.

Generalizing the numerical results for constant, sum, and product kernels, we con-

clude that there exists a large deviation principle for arbitrary kernels, where the

total mass M is the rate. This provides hints for a more rigorous treatment of the

large deviation function for the problem of aggregation. In the next chapter, we

provide a derivation of the large deviation function for some kernels.

Although this chapter deals with binary aggregation, the algorithm that we have

developed can also be easily generalized to the numerical study of the non-binary

processes kA ! `A, with suitably modified rates. Adding spatial degrees of freedom,

and transport, like di↵usion, is a problem of interest. However, generalizing the

algorithm to such systems is a challenging problem. Adding a competing process

such as fragmentation is another problem of interest [12, 13, 58, 59].Competing

processes like these can lead to phase transitions and oscillations, at least in the

mean field limit [60]. These are promising areas for future study.
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Chapter 4

Large deviation function for

P (M,N, t)

In the previous chapter, a biased Monte Carlo algorithm was developed to access

the tails of the probability distribution P (M,N, t). In this, and the next chapter,

we study the probability P (M,N, t) that exactly N particles remain at time t, or

equivalently M � N collisions occur up to time t, given that there are M parti-

cles of mass 1 initially. Here, the number of remaining particles N , is the random

variable. We develop an analytical formalism using the Doi-Peliti-Zeldovich (DPZ)

path integral method [61, 62, 63, 64, 65, 66], and establish the existence of a large

deviation principle for an arbitrary collision kernel, and obtain the corresponding

large deviation function. We calculate the exact large deviation functions and opti-

mal evolution trajectories for the constant, sum and product kernels. The content

of this chapter is published in [57].

4.1 Marcus-Lushnikov model

The model has been detailed in Sec. 2.2. We reproduce it here for ease of reference.
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Consider a collection of particles which are labeled by their masses. Given a con-

figuration, the system evolves in time through mass-conserving binary aggregation

(also known as Marcus-Lushnikov model [6, 7, 49, 50]):

Ai + Aj

�K(i,j)
����! Ai+j, (4.1)

where Ak denotes a particle of mass k, and �K(i, j) is the rate at which two particles

of masses i and j aggregate. In an infinitesimal time dt, the probability of collision

of two particles having masses i and j is given by �K(i, j)dt. The collision kernel,

K(i, j), is dependent on the transport properties of the clusters and their collisional

area of cross-section. We note that all the spatial information has been encoded into

the collision kernel. Since each aggregation event reduces the number of particles,

N(t), by 1, N(t) decreases monotonically with time. Initially, there are N(0) = M

particles with equal mass m0. We set m0 = 1, so that all masses are measured in

units of m0.

4.2 Analytical formalism

Let eP ( ~N, t) denote the probability of a system being in a configuration ~N at time

t, where ~N(t) = {N1(t), N2(t), . . . NM(t)}T, and Ni(t) is the number of particles of

mass i at time t. Initially, there are N(0) = M particles of equal mass (set equal

to 1). Our quantity of interest is the probability density function P (M,N, tf ), of

having exactly N particles remain at time tf . Additionally, we ask what the most

probable trajectory is for a given M,N, tf .
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4.2.1 Master equation to action

We first express P (M,N, tf ) in terms of an e↵ective action [67, 68]. Then,

P (M,N, tf ) =
X

~N

eP ( ~N, tf )�

 
MX

i=1

Ni(tf )�N

!
. (4.2)

The time evolution of eP ( ~N, t) is described by the master equation:

d eP ( ~N)

dt
=
X

i,j

�K(i, j)

2

h
(Ni+1+�i,j)(Nj+1)

eP ( ~N+Ii+Ij�Ii+j)�Ni(Nj��i,j) eP ( ~N)
i
, (4.3)

where Ik is the M -dimensional column vector whose j-th component equals �jk. The

first term in the right hand side of Eq. (6.14) enumerates all possible collisions that

lead to the configuration ~N while the second term enumerates all possible collisions

that lead to the system exiting ~N .

The DPZ formalism allows one to rewrite the master equation in the form of a

Schroedinger equation in imaginary time. The number of clusters of mass i, Ni,

is denoted as the eigenvalue of a number operator bNi acting on a state | ~Ni =

|N1, N2, . . . NMi,

bNi |
~Ni = Ni |

~Ni . (4.4)

The operator N̂i is expressed in terms of annihilation and creation operators ai and

a†
i
, as

N̂i = a†
i
ai. (4.5)
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The annihilation and creation operators have the following properties,

ai | ~Ni = Ni |
~N � Iii , (4.6)

a†
i
| ~Ni = | ~N + Iii , (4.7)

a†
i
ai | ~Ni = Ni |

~Ni , (4.8)

where Ii denotes the change in | ~Ni through the increase or decrease of the number of

clusters of mass i by 1. The creation and annihilation operators obey the canonical

commutation relations,

[ai, a
†
j
] = �ij. (4.9)

We now define a state | (t)i, as a linear combination of | ~Ni:

| (t)i =
X

~N

P̃ ( ~N, t) | ~Ni . (4.10)

By multiplying both sides of the master equation by | ~Ni and summing over the

configurations, we obtain a di↵erential equation for | (t)i. Further, using Eq. (4.8),

we obtain the master equation in the form of a Schroedinger equation in imaginary

time:
d | (t)i

dt
= �H({a†

i
, ai}), | (t)i , (4.11)

where the corresponding e↵ective Hamiltonian bH({a†}, {a}) is obtained as a poly-

nomial in the creation and annihilation operators:

H({a†
i
, ai}) = �

1

2

X

i

X

j

�K(i, j)(a†
i+j

� a†
i
a†
j
)aiaj. (4.12)

The dimensions of the rate � are the inverse of time. In the following analysis, we

make the transformation �t ! t. The solution of Eq. (4.11) is

| (t)i = e�Ht
| (0)i , (4.13)
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where | (0)i =
P

~N
� ~N,{M,0,0...0} |

~Ni, i.e., at t = 0, there are M particles of mass 1.

Multiplying both sides of the equation on the left by an arbitrary state h~L| and using

the relation h~L| ~Ni = 1
~N !
�~L, ~N , we obtain,

P̃ ( ~N, t) =
h ~N | (t)i

~N !
, (4.14)

where ~N ! = N1!N2! . . . NM !. Substituting the expression for P̃ ( ~N, t) in Eq. (4.2),

and multiplying and dividing by N !, we obtain,

P (M,N, t) =
1

N !
h~0|
X

k1

ak1
X

k2

ak2 · · ·
X

kN

akN e
�H(a†,a)t

| (0)i . (4.15)

We ensure mass conservation by introducing a constrained sum:

P (M,N, tf ) =
1

N !
h~0|

k
⇤X0

ki=1

NY

i=1

akie
�H(a†,a)tf | (0)i . (4.16)

where k⇤ = M �N +1, and 0 on the summation denotes the constraint
P

i
ki = M .

In order to write Eq. (4.16) as a path integral, the evolution operator e� bH(a†,a)tf is

split into a product of the evolution operators e�H✏ for infinitesimal times ✏, in the

limit ✏! 0:

P (M,N, tf ) =
1

N !
lim
✏!0

h~0|

k
⇤X0

ki=1

NY

i=1

aki

t/✏Y

n=1

e�H(a†,a)✏
| (0)i (4.17)

Using the Trotter formula and complete sets of coherent states for every infinitesimal

evolution e�H✏, a solution to the master equation can be constructed in terms of in

terms of coherent states, |zi and their complex conjugates. The coherent state |zi
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and the corresponding identity operator Î are defined as follows:

ai |zi = zi |zi , (4.18)

hz| a†
i
= hz| z̃i, (4.19)

Î =

Z Y

i

dzidz̃i
⇡

e�
P

i ziz̃i |zi hz| , (4.20)

where z̃i is the complex conjugate of zi (|zi|2 = ziz̃i), and |zi is written in terms of

creation operators as

|zi = e�
1
2

P
m |zm|2e

P
m zma

†
m |0i . (4.21)

Inserting the identity Eq. (4.20) for every infinitesimal evolution, we obtain

P (M,N, tf ) =
1

N !

k
⇤X0

ki=1

lim
✏!0

h0|
NY

i=1

akie
�

P
i ziz̃i|tf |z(tf )i hz(tf )| e

�H(a†,a)✏e�
P

i ziz̃i|tf�✏

|z(tf � ✏)i hz(tf � ✏)| e�H✏e�
P

i ziz̃i|tf�2✏
|z(tf � 2✏)i hz(tf � 2✏)| . . .

e�
P

i ziz̃i|t=0 |z(0)i hz(0)| (0)i . (4.22)

We write the coherent states |zi in terms of the number operators using Eq. (4.21).

We then evaluate the first bracket, which represents the system at the final time

tf , h0|
Q

N

i=1 aki |z(tf )i and the last bracket, which represents the system at the ini-

tial time t = 0, hz(0)| (0)i, using the following properties which arise from the

commutation relations of the operators a and a†:

ecaf(a†) = f(a† + c)eca, (4.23)

f(a)eca
†
= eca

†
f(a+ c), (4.24)
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and obtain for the first and the last brackets,

h0|
NY

i=1

aki |z(tf )i =
NY

n=1

zkn(tf ), (4.25)

hz(0)| (0)i = z̃M1 (0). (4.26)

Using Eqs. (4.25) and (4.26) and evaluating the remaining terms, which are

of the form hz(t)| e�H(a†,a)✏e�
P

i zi(t�✏)z̃i(t�✏)
|z(t� ✏)i, we obtain the probability

P (M,N, tf ):

P (M,N, tf ) =

k
⇤X0

ki=1

Z
Dz̃iDzi

NY

n=1

zkn(tf )

N !

exp

 Z
tf

0

dt

"
MX

m=1

z̃mżm +H({zi, z̃i})

#
�M ln z̃1(0) +

X

m

zm(0)z̃m(0)

!
, (4.27)

Let ⌧ = M↵t and zi(⌧) ! M�zi(t). We observe that there is no scaling possible

for z̃i, as it is a dimensionless quantity. Scaling the integrand in the exponential in

Eq. (4.27), we find that ↵ = 1, � = �1 and H ! H/M2. Further, using the Stirling

approximation,

lnN ! = N lnN �N, (4.28)

Eq. (5.7) simplifies to

P (M,�, ⌧f ) ⇡

Z
{Dz̃i(⌧)}{Dzi(⌧)}

k
⇤X

k1,k2,...kN=1

�

 
X

m

km �M

!
e�MS(�,⌧f ;{zi,z̃i}),

(4.29)

where � = N/M , ⌧ = Mt, and the action S is given by

S(�, ⌧f ; {zi, z̃i}) =

Z
⌧f

0

d⌧
X

i

z̃iżi +H +
⇣X

i

zi(0)z̃i(0)� ln z̃1(0)
⌘
�(⌧)

�

P
N

n=1 ln zkn(⌧f )

M
�(⌧ � ⌧f ) + � ln�� �, (4.30)
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where the scaled Hamiltonian is

H({z̃i, zi}) = �
1

2

X

i

X

j

K(i, j)(z̃i+j � z̃iz̃j)zizj. (4.31)

4.2.2 Euler-Lagrange equations

For large M , the integral Eq. (4.30) is dominated by the minimum of S. The Euler-

Lagrange equations corresponding to the critical point of S are

dzm
d⌧

=
1

2

m�1X

j=1

K(m� j, j)zjzm�j �

MX

j=1

K(m, j)z̃jzmzj�

✓
zm(0)�

�m,1

z̃1(0)

◆
�(⌧), m = 1, . . .M, (4.32)

dz̃m
d⌧

= �

M�mX

j=1

K(m, j)z̃m+jzj +
MX

j=1

K(m, j)z̃mz̃jzj �

P
N

n=1 �kn,m
Mzm(⌧f )

�(⌧ � ⌧f )+

z̃m(0)�(⌧), m = 1, . . .M. (4.33)

Integrating Eq. (4.32) about ⌧ = 0, where the forward field zm(⌧) = 0 for ⌧ < 0, we

obtain the initial condition z̃1(0)zm(0) = �m,1, 1  m  M , which is equivalent to

z̃1(0)z1(0) = 1, (4.34)

zm(0) = 0, 1 < m  M, (4.35)

where we use z̃1(0) 6= 0. Integrating Eq. (4.33) about ⌧ = ⌧f , where the backward

field z̃m(⌧) = 0 for ⌧ > ⌧f , we obtain the final condition:

z̃m(⌧f ) =

P
N

n=1 �kn,m
Mzm(⌧f )

. (4.36)

In summary, zm(⌧) is integrated forward in time with the initial condition given at

⌧ = 0, while z̃m(⌧) is integrated backward in time with the final condition given at
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⌧ = ⌧f .

Notice that the action is invariant under the transformation zm ! cmzm, z̃m !

c�mz̃m, where c is a constant. Let us refer to such a transformation with parameter

c as Tc. Both Eqs. (4.32), (4.33) as well as the the boundary conditions (4.34)–

(4.36) are Tc-invariant for any c 6= 0: if (zm(⌧), z̄m(⌧))0⌧⌧f ,1mM is a solution,

then Tc(zm(⌧), z̄m(⌧))0⌧⌧f ,1mM is also a solution. Therefore, the solution to

Eqs. (4.32)–(4.36) is not unique, but rather there is a 1-parameter family of solutions

labelled by c. Hence we are dealing with an example for which the naive counting

(2M ODE’s for 2M variables with 2M boundary conditions have a unique solution)

does not work. This non-uniqueness does not imply that there are issues with the

formalism as the observables (the action functional, mass disitribution, the instanton

energy, etc) are Tc-invariant. As a result, we can pick any solution from such a family,

which simplifies the concrete analysis. This is exactly what we do: using z̄1(0) 6= 0,

we choose the solution with z̄1(0) = 1. Uniqueness is then restored. The final action

is

S(�, ⌧f ; {zi, z̃i}) = �E⌧f �
ln
Q

N

n=1 zkn(⌧f )

M
+ � ln�, (4.37)

where the energy E is the value of the Hamiltonian. For the constant, sum, and

product kernels, the term
P

M

j=1 K(m, j)z̄jzj in Eq. (4.32) can be expressed in terms

of N(t),M thus decoupling the dynamics for z from z̄. This allows us to deter-

mine the rate function or action without requiring the full solution of z̃m(⌧). This

observation does not extend to arbitrary kernels.

We now argue that the validity of the Euler Lagrange equations in Eqs. (4.32),

(4.33) may be extended to all m. Given M and N , the maximum value that ki in

Eq. (4.29), and hence also in Eq. (4.36), can take is k⇤ = M�N+1. Equation (4.36)

immediately implies that z̃m(⌧f ) = 0 form > k⇤. Also note that each term of dz̃m/d⌧

in Eq. (4.33) is proportional to z̃i, where i � m. Hence, it follows that z̃m(⌧) = 0

for m > k⇤, and all ⌧ < ⌧f . Given this result, we can extend the limits of the
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summation to infinity, in the second term on the right hand side of Eq. (4.32), and

the first and second terms on the right hand side of Eq. (4.33). We also note that the

right hand side of Eq. (4.32) for dzm/d⌧ depends only on zi, where i  m. Hence,

we can formally consider Eq. (4.32) to be valid for all m = 1, . . .1.

From the Euler-Lagrange equations (4.32), (4.33), we find that the time evolution

of n =
P

i
ziz̃i, the fraction of particles, is given by

dn

d⌧
=

�1

2

X

i,j

K(i, j)ninj + E,n(0) = 1, n(⌧f ) = �. (4.38)

We will call this equation as the instanton equation. For z̃i, zi satisfying the Euler

Lagrange equations, it can be shown that H reduces to 2H =
P

i
zi

dz̃i
d⌧
. Also, we

have proved that H is a constant of motion.

We note that Eq. (4.33) is satisfied by z̃i(⌧) = 1, in which case, E = 0 [see Eq. (4.31)].

For this special case, Eq. (4.32) for zm, and hence nm, is identical to the Smolu-

chowski equation for the mean mass distribution, and thus will correspond to the

typical solution for a given time.

Equations (4.32), (4.33) and (4.37) describe the calculation of the LDF for an arbi-

trary kernel. Since N = �M , it is clear that in the limit M ! 1, keeping � and ⌧f

fixed, we can define a large deviation function

f(�, ⌧f ) = lim
M!1

�1

M
lnP (M,M�, ⌧f/M), (4.39)

thus establishing a large deviation principle for any collision kernel.
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4.2.3 Energy is a constant of motion

It follows from the Euler-Lagrange equations of motion Eqs. (4.32) and (4.33) that

H is a constant of motion. For an arbitrary K(i, j),

dH

d⌧
=
X

m

✓
@H

@zm
żm +

@H

@z̃m
˙̃zm

◆
. (4.40)

Substituting the Euler-Lagrange equations in Eqs. (4.32) and (4.33), we prove that

dH

d⌧
= 0. The Hamiltonian H is constant along a particular trajectory where the

fraction of particles remaining at time ⌧f is �. Hence, the value of the Hamiltonian,

denoted by E, is uniquely determined for a given final condition.

We will now present an exact calculation of f(�, ⌧f ) for the constant, sum and

product kernels.

4.3 Constant kernel [K(i, j) = 1]

The instanton equation, Eq. (4.38), reduces to dn/d⌧ = �n2/2 + E. Since n(⌧)

decreases with time, E < n2/2. Integrating, the solution for n(⌧) is

n(⌧) =

8
>>>>>><

>>>>>>:

�
p
�2E tan

p
�2E(⌧�⌧0)

2 , E < 0,

1
1+⌧/2 , E = 0,

p
2E coth

p
2E(⌧�⌧1)

2 , E > 0,

(4.41)

where the constants E, ⌧0, ⌧1 are fixed by the initial and final conditions in Eq. (4.38).

For determining the LDF, we also need to determine zm(⌧f ) and z̃1(0). Writing zm(⌧)

in terms of its generating function, Y (x, ⌧) =
P

m
zm(⌧)xm

� n(⌧), we obtain

@Y

@⌧
=

Y 2

2
� E, Y (x, 0) = z1(0)x. (4.42)

69



The right hand side of this equation is the negative of the instanton equation. Solving

for Y and hence zm(⌧), we obtain

zm(⌧) =

8
>>>>>>><

>>>>>>>:

�2Ez1(0)m sec2
p

�E/2⌧
h
tan

p
�E/2⌧

im�1

hp
�2E+tan

p
�E/2⌧

im+1 , E < 0,

4⌧m�1(z1(0))m

(2+⌧)m+1 , E = 0,

2Ez1(0)m sinhm�1
p

E/2⌧
h
sinh

p
E/2⌧+

p
2E cosh

p
E/2⌧

im+1 , E > 0.

(4.43)

The combinatorial prefactor in Eq. (4.29) is easily solved to be

k
⇤X0

ki=1

1 =

✓
M � 1

N � 1

◆
. (4.44)

Using Stirling’s approximation and substituting for zm(⌧) in Eq. (4.30), the LDF is

f(�, ⌧f ) =

8
>>>>>>>>>><

>>>>>>>>>>:

� ln �
2

�2E+�2 + ln(1� 2E)� E⌧f , E < 0,

0, E = 0,

�E⌧f � � ln 2E
�2 � (1� �) ln

sinh ⌧f

p
E/2

1��
+

(1 + �) ln(
p
2E cosh ⌧f

p
E/2 + sinh ⌧f

p
E/2), E > 0,

(4.45)

where E < 0, E = 0, E > 0 correspond to final times ⌧f < ⌧typ, ⌧f = ⌧typ and

⌧f > ⌧typ respectively, and ⌧typ is the typical time for the fraction of particles to

reach �.

We demonstrate the correctness of the solution as well as the procedure by compar-

ing f(�, ⌧f ) with results from both Monte Carlo simulations and the exact expression

for P (M,N, tf ). The simulations are based on the biased Monte Carlo scheme for

fixed [51] as well as number of particles, described in the previous chapter, that

accurately determines the probabilities of rare events and the instanton trajectory.

For the constant kernel, the reaction rate does not explicitly depend on the mass dis-
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Figure 4.1: Constant kernel: Comparison of f(�, ⌧) with simulation data and exact
expression for P (M,N, t) for (a) varying � for fixed ⌧f = 1, (b) varying ⌧f for
� = 0.3. The instanton trajectory in Eq. (4.41) is compared with simulation data
for (c) � = 0.3 and di↵erent ⌧f and (d) ⌧f = 1.6 and di↵erent �.

tribution and hence it is possible to write P (M,N, t) as a sum over exponentials [51].

We note that it is di�cult to extract the LDF from this expression, however, it can

be evaluated numerically. We find an excellent agreement of f(�, ⌧) with the simu-

lations and exact answer both for fixed ⌧ and varying � [see Fig. 4.1(a)], and fixed

� and varying ⌧ [see Fig. 4.1(b)]. The analytical results for the instanton solution

[see Eq. (4.41)] are also in excellent agreement with the numerical results for short,

typical and long times [see Fig. 4.1(c), (d)].
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Figure 4.2: Sum kernel: Comparison of f(�, ⌧) with simulation data for (a) varying �
for fixed ⌧f = 1.2, (b) varying ⌧f for � = 0.5. The instanton trajectory in Eq. (4.47)
is compared with simulation data for (c) � = 0.4 and di↵erent ⌧f and (d) ⌧f = 1.8
and di↵erent �.
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4.4 Sum kernel [K(i, j) = (i + j)/2]

The instanton equation, Eq. (4.38), reduces to

dn/d⌧ = E � n/2. (4.46)

Solving this equation and using the initial and final conditions,

n(⌧) =
�� e�⌧f/2

1� e�⌧f/2
�

✓
�� 1

1� e�⌧f/2

◆
e�

⌧
2 . (4.47)

The Euler-Lagrange equations for the sum kernel are:

dzm
d⌧

=
1

2

X

j

K(m� j, j)zjzm�j �

X

j

K(m, j)z̃jzmzj, (4.48)

dz̃m
d⌧

= �

X

j

K(m, j)(z̃m+j � z̃mz̃j)zj, (4.49)

Equation (4.48) has been solved in Chapter 2. We reproduce the main steps of the

calculations here for ease of reference. In order to compute zm(⌧) for the sum kernel,

we rewrite

zm(⌧) = cm(⌧) exp
⇣
�

Z
⌧

0

d⌧1
mn(⌧) + 1

2

⌘
. (4.50)

Equation (4.48) now becomes

dcm
d⌧ 0

=
1

2

X

j

mcjcm�j, (4.51)

where d⌧ 0/d⌧ = exp(�⌧/2)/2. Further, using the ansatz

cm(⌧
0) = am⌧

0m�1, (4.52)
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where am is a function of mass alone, and solving the resulting equation, we obtain

am =
m

m� 1

X

i

aiam�i. (4.53)

The generating function for am is written as

F (x) =
X

m

amx
m. (4.54)

The equation for F (x) is

x
@F

@x
� F (x) = 2F (x)x

@F

@x
. (4.55)

Rearranging the terms and integrating,

lnF � 2F = ln
⇣ x

x0

⌘
, (4.56)

and hence

Fe�2F =
x

x0
. (4.57)

The left hand side can be rewritten in terms of the Lambert W function, z =

W (z)eW (z) by multiplying both sides by �2,

�2Fe�2F =
�2x

x0
, (4.58)

where W (z) = �2F, z = �2x
x0

. The Lambert function can be expanded as a series

in z:

W (z) =
1X

n=1

(�n)n�1zn

n!
. (4.59)

That is,

2F =
1X

m=1

mm�1

m!

�2x
x0

�m
. (4.60)
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Hence,

am =
(2m)m�1am

m!
, (4.61)

where a = 1/x0. Substituting this result in the ansatz Eq. (4.52), and the resulting

answer in Eq. (4.50), we obtain the final mass distribution,

zm(⌧) =
mm�1am1

m!
(1� e�⌧/2)m�1e�

R ⌧
0 d⌧1

mn+1
2 , (4.62)

where a1 = 1 from the initial condition, E. (4.34), and

Z
⌧

0

d⌧1
⇣mn(⌧1) + 1

2

⌘
= m

⇣
E⌧ � (2E � 1)(1� e�⌧/2)

⌘
+
⌧

2
. (4.63)

The combinatorial prefactor in Eq. (4.29) is then

k
⇤X0

ki=1

NY

n=1

kkn�1
n

kn!
= eM(1��)

⇥
1�ln(1��)

⇤
. (4.64)

Substituting zm(⌧) and the prefactor in Eq. (4.29), we obtain LDF for sum kernel

to be

f(�, ⌧) = �(1� �) ln
1� e�

⌧
2

1� �
+
⌧�

2
+ � ln�. (4.65)

We find an excellent agreement of f(�, ⌧) with the simulations both for fixed ⌧ and

varying � [see Fig. 4.2(a)], and fixed � and varying ⌧ [see Fig. 4.2(b)]. The analytical

results for the instanton solution [see Eq. (4.47)] are also in excellent agreement with

the numerical results for short, typical and long times [see Fig. 4.2(c), (d)].

4.5 Product Kernel

For the product kernel the Smoluchowski equation predicts that a gel that contains

a finite fraction of the mass forms at gelling time ⌧g = 1 and gelling density �g = 0.5.
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In the discussion following Eq. (4.38), we showed that E = 0 corresponds to the

solution to the Smoluchowski equation. However, this solution cannot be correct

for ⌧ � 1 as mass is not conserved, violating the strict conservation of mass in the

Marcus-Lushnikov model. We, therefore, modify the solution for product kernel as

follows.

The probability distribution that we wish to calculate is [Eq. (4.16)]:

P (M,N, tf ) =
1

N !
h~0|

k
⇤X0

ki=1

NY

i=1

akie
�H(a†,a)tf | (0)i . (4.66)

We rewrite the unscaled Hamiltonian using number operator n̂i and total mass

operator M̂ , breaking normal ordering by using the commutation relation for a and

a†:

H 0 = �
1

2

X

i

X

j

ija†
i+j

aiaj +
X

j

(j2)n̂j

2
+

M̂2

2
. (4.67)

The last term in the above equation breaks normal ordering. To restore normal

ordering, we use the relation M̂ | (0)i = M | (0)i, where | (0)i = a†M1 |~0i, to

rewrite P (M,N, tf ) as

P (M,N, tf )=h ~N |
(
P

i
ai)N

N !
e�H

0({a†i },{ai})tf | (0)i , (4.68)

H 0 = �
1

2

X

i

X

j

ija†
i+j

aiaj +
X

j

(Mj � j2)a†
j
aj

2
. (4.69)

On introducing coherent states, we obtain the Euler-Lagrange equations to be

żk =
1

2

k
⇤X

l=1

l(k � l)zlzk�l �Mkzk +
k2zk
2

, (4.70)

˙̃zk = �

k
⇤X

l=1

klz̃l+kzl + kMz̃k �
k2z̃k
2

. (4.71)

We note that we could have followed the same procedure of introducing the operators

M̂ and n̂i for the constant and sum kernels. For these kernels, we find that the extra
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Figure 4.3: Product kernel: Comparison of f(�, ⌧) with simulation data for (a)
fixed ⌧f = 0.6 < ⌧g, (b) fixed ⌧f = 1.4 > ⌧g (c) fixed � = 0.3 < �g and (d)
fixed � = 0.7 > �g. (e) The value of � at minimum of f(�, ⌧) is compared with
Monte Carlo simulations of the typical trajectory. (f) d2f/d�2 is discontinuous with
�. inset: d2f/d�2 with � for ⌧f = 2.5. The discontinuity becomes sharper with
increasing M .
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terms (second term on the right hand side of Eq. (4.67)) are always subleading in M ,

when M ! 1. For the constant kernel, this term is
P

i
n̂i and for the sum kernel,

P
i
in̂i. Thus, these terms do not contribute to the LDF in the large deviation limit,

M ! 1. However, for the product kernel, the extra term becomes important when

a gel is present, and hence cannot be neglected.

Equation (4.70) can be solved exactly. In order to compute zk(⌧), we solve the

unscaled Euler-Lagrange equation for zk(t),

żk =
1

2

k�1X

l=1

l(k � l)zlzk�l �Mkzk +
k2zk
2

, k = 1 . . . k⇤, (4.72)

In the paragraph following Eq. (4.36), we argued that the equation for żk for any

kernel can be extended to all k = 1 . . .1. In particular, the evolution of żk depends

only on zi, where i  k. Let

G(x, t) =
1X

k=1

zk(t)x
k. (4.73)

Then, from Eq. (4.72), now considered valid for k = 1 . . .1, we obtain

@G

@t
=

1

2

✓
x
@G

@x

◆2

�Mx
@G

@x
+

1

2
x
@

@x

✓
x
@G

@x

◆
, G(x, 0) = z1(0)x. (4.74)

Making the Cole-Hopf transformation lnD(p(x, t), t) = G(x, t), where p(x, t) =

xe�Mt, we obtain
@D

@t
=

1

2

@

@p

✓
p
@D

@p

◆
, (4.75)

with the initial condition D(x, 0) = ez1(0)x. Let

D(p, t) =
X

m

am(t)f(m)pm. (4.76)

Then, substituting in Eq. (4.75) and matching the coe�cients of pm on both sides
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of the equation,
dam
dt

=
m2am
2

, (4.77)

which can be solved to obtain

am(t) = ce
m2t
2 . (4.78)

We use the initial condition to obtain f(m),

f(m) =
z1(0)m

m!
. (4.79)

Combining Eqs. (4.78) and (4.79),

D(p, t) =
X

m

e
m2t
2 (z1(0)p)m

m!
. (4.80)

In order to extract G(x, t) from D(p, t), we use Knuth identity [69]:

ln
1X

m=1

xm(m�1)/2zm

m!
=

1X

m=1

(x� 1)m�1Fm�1(x)zm

m!
, (4.81)

where Fm�1(x) are known as Mallows-Riordan polynomials [69, 7], and obey the

following recursion relation:

Fm(x) =
mX

l=1

✓
m� 1

l � 1

◆ l�1X

i=0

xiFl�1(x)Fm�l(x). (4.82)

Converting D(p, t) in terms of x, and equating the coe�cients of xm on both sides

of the equation, we obtain

zm(t) =
(et � 1)m�1Fm�1(et)Mmem(�Mt+t/2)

m!
, (4.83)
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Scaling zm(t) ! zm(⌧)M and t ! ⌧/M , we obtain

zm(⌧) =
(e⌧/M � 1)m�1Fm�1(e⌧/M)Mm�1em(�⌧+⌧/2M)

m!
. (4.84)

The term em⌧/2M is subleading in M and can be neglected. We finally obtain

zm(⌧) =
(e⌧/M � 1)m�1Fm�1(e⌧/M)Mm�1e�m⌧

m!
. (4.85)

From Eqs. (4.70) and (4.71), we find that
P

i
żiz̃i = �E 0

�M2/2, where E 0 is the

value of H 0. Substituting for zi in Eq. (4.30), and computing the combinatorial

prefactor, we obtain the LDF for the product kernel. We evaluate the combinatorial

prefactor by writing the ��function in Eq. (4.29) terms of an integral in x, and then

obtain the minimum x in the limit M ! 1 using saddle point approximation. Note

that we denote min{x} by x. We thus obtain the critical � in terms of x:

� =

P
k

x
k
Fk�1

k!P
k

xk�1Fk�1

(k�1)!

. (4.86)

The final LDF for the product kernel is then

f(�, ⌧) = ln
��e⌧/2+1��

⌧ 1��
+min

x

{ln x� � h(x)}, (4.87)

h(x) =
k
⇤X

k=1

xkFk�1(e⌧/M)

k!
. (4.88)

It is di�cult to evaluate the above expression exactly. In order to check the cor-

rectness of the LDF, we evaluate Eq. (4.87) numerically. We fix ⌧ , and for every x,

we calculate � from Eq. (4.86). We find an excellent agreement of f(�, ⌧) with the

simulations for both pre-gelling and post-gelling regimes [see Fig. 4.3(a)-(d)]. We

also confirm that the minimum of the action corresponds to the typical solution [see

Fig. 4.3(e)]. In particular, we find that this solution matches with simulation data

for ⌧ much larger than typical (see Fig. 4.5).
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Figure 4.4: Product kernel: Mass distribution at final fixed time ⌧f = 3 for (a)
� = 0.7 > �c and (b) � = 0.5 < �c.

We find that the second derivative of the rate function, @2f/@2� has a discontinuity

at a critical � [see Fig. 4.3(f)]. The discontinuity becomes sharper with M [see inset

of Fig. 4.3(f)], suggesting the presence of a second order phase transition. We now

argue that this transition is similar to the gelation transition seen in simulations

of typical events: in particular, that for � < �c, a gel is present for the optimal

trajectories. To show this, we have considered a final time ⌧f = 3. For this final

time, the transition occurs between � = 0.63 and � = 0.65 (see Fig. 4.3(f)). The

numerically obtained mass distributions for � = 0.5 < �c and � = 0.7 > �c are

shown in Fig. 4.4 for two di↵erent M . While the mass distribution is independent

of M for � = 0.7, the cut-o↵ for mass distribution for � = 0.5 is M� dependent, as

one would expect in the presence of a gel.
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4.6 Summary

In summary, we developed a formalism to calculate the probabilities of rare events

in cluster-cluster aggregation and demonstrated the existence of a large deviation

principle for any collision kernel. The LDF is calculated exactly for the constant,

sum, and product kernels. The known sol-gel transition for the product kernel

is reflected as a singular behaviour in the LDF. Our general method allows us to

obtain the optimal evolution trajectory corresponding to any rare event. These exact

solutions will serve as a guideline for the numerical investigation of rare events in

aggregation with collision kernels applicable to particular physical systems.
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Chapter 5

Mass distribution for the constant

and sum kernels

In the previous chapters, we have developed an analytical formalism and a Monte-

Carlo algorithm to find the large deviation function for arbitrary collision kernels.

Using the formalism, we could also calculate the exact large deviation functions

for the constant, sum and product kernels. In this chapter, we derive the optimal

mass distributions which contribute to typical and atypical events, for the constant

and sum kernels. The manuscript containing the contents of this chapter is under

preparation.

5.1 Large deviation function

The large deviation function derived in the previous chapter has the advantage

that z̃1(0) can be set to 1 due to symmetry considerations. However, the full mass

distribution can be obtained only by computing the solutions for both zm(⌧) and

z̃m(⌧), as nm(⌧) = zmz̃m in the Doi-Peliti formalism. As explained in the previous

chapter, the procedure for obtaining z and z̃ is to integrate z(⌧) forward in time

84



with the initial condition given at ⌧ = 0, and z̃m backward in time with the final

condition given at ⌧ = ⌧f .

In this chapter, we derive the large deviation function without introducing a con-

strained sum. This procedure gives the same Euler-Lagrange equations as the pre-

vious procedure, but we obtain an analytically tractable final condition for z̃m(⌧f ).

The derivation detailed below retains both the terms zi(⌧) and z̃1(0). The procedure

remains the same upto Eq. (4.16):

P (M,N, t) =
1

N !
h~0|
⇣X

k

ak
⌘N

e�H(a†,a)t
| (0)i . (5.1)

In order to write Eq. (4.16) as a path integral, the evolution operator e�Ĥ(a†,a)t is

split into a product of the evolution operators e�Ĥ✏ for infinitesimal times ✏, in the

limit ✏! 0:

P (M,N, t) =
1

N !
lim
✏!0

h~0|
⇣X

k

ak
⌘N t/✏Y

n=1

e�H(a†,a)✏
| (0)i (5.2)

In the previous chapter, we introduce a constrained sum here, and this is the crucial

step which leads to an action which remains invariant under the symmetry condi-

tions zm ! cmzm, z̃m ! c�mz̃m. In Eq. (5.2), we insert identity operators I for

every infinitesimal evolution e�H✏ in terms of coherent states, |zi and their complex

conjugates. The coherent state |zi and I are defined as follows,

ai |zi = zi |zi , (5.3)

hz| a†
i
= hz| z̃i, (5.4)

I =

Z Y

i

dzidz̃i
⇡

e�
P

i ziz̃i |zi hz| , (5.5)

where z̃i is the complex conjugate of zi (|zi|2 = ziz̃i), and |zi is written in terms of
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creation operators as

|zi = e�
1
2

P
m |zm|2e

P
m zma

†
m |0i . (5.6)

Using Eqs. (5.3), (5.4), and (5.5) in Eq. (5.2), P (M,N, t) is written as follows,

P (M,N, t) =
1

N !

k
⇤X0

ki=1

Z
{Dz̃i(t)}{Dzi(t)}e

�S(M,N,t;{zi,z̃i}), (5.7)

where

S(M,N, t; {zi, z̃i}) = �

Z
t

0

dt0
"
X

i

z̃iżi +H

#

+M ln z̃1(0) +N ln
X

m

zm(t)�
X

i

zi(0)z̃i(0), (5.8)

and the Hamiltonian is

H({zi}, {z̃i}) = �
1

2

X

i,j

K(i, j)
⇣
z̃i+j � z̃iz̃j

⌘
zizj. (5.9)

5.1.1 Scaling the action

Let ⌧ = M↵t and zi(⌧) ! M�zi(t). We observe that no scaling is possible for z̃i, as

it is a dimensionless quantity. Scaling the integrand in the exponential in Eq. (5.7),

we find that ↵ = 1, � = �1 and H ! H/M2. Using the Stirling formula to write

lnN ! = N lnN �N, (5.10)

and using the Laplace method in the limit M ! 1, Eq. (5.7) is

P (M,�, ⌧f ) ⇡ e�MS(�,⌧f ;{zi,z̃i}), (5.11)
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where � = N/M , ⌧ = Mt, and the scaled action can be written as

S(�, ⌧ ; {zi, z̃i}) =

Z
⌧

0

d⌧ 0
"
X

i

z̃iżi +H

#
�

ln z̃1(0)� � ln
X

m

zm(⌧) +
X

i

zi(0)z̃i(0) + � ln�� �. (5.12)

Note that the action Eq. (5.12) does not remain invariant under the symmetry

conditions zm ! cmzm, z̃m ! c�mz̃m. We do not have the freedom to choose z̃1(0).

Hence, we have to compute the full solution of zm and z̃m in order to find the large

deviation function. Such a computation yields the correct large deviation function,

calculated in the previous chapter, for both the constant and sum kernels.

5.1.2 Euler-Lagrange equations

In the limit M ! 1, keeping � and ⌧ fixed, the functional integral in Eq. (5.12)

is dominated by the minimum of S, and hence can be calculated using Laplace

method. The corresponding Euler-Lagrange equations for zm, z̃m, m = 1 . . .M , are

dzm
d⌧ 0

=
1

2

X

j

K(m� j, j)zjzm�j �

X

j

K(m, j)z̃jzmzj

�

✓
z1(0)�

1

z̃1(0)

◆
�(⌧ 0), (5.13)

dz̃m
d⌧ 0

= �

X

j

K(m, j)(z̃m+j � z̃mz̃j)zj+

z̃1(0)�(⌧
0)�

�P
i
zi(⌧)

�(⌧ 0 � ⌧). (5.14)

Integrating Eq. (5.13) about ⌧ 0 = 0 and Eq. (5.14) about ⌧ 0 = ⌧ , we obtain the

boundary conditions z̃m(⌧) =
�P

k zk(⌧)
and z1(0)z̃1(0) = 1. Equation (5.13) is identi-

cal to the Smoluchowski equation, but di↵ers in that the initial condition is z1(0) = a,

instead of n1(0) = 1. However, we can use some of the techniques used to solve the

Smoluchowski equation, as shown in Sec. (5.2) and (5.3.1).
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Solving the integral in Eq. (5.12),

S(�, ⌧ ; {zi, z̃i}) = �H⌧ + ln z̃1(0) + � ln
X

m

zm(⌧) + � ln�. (5.15)

By solving the Euler-Lagrange equations for zm(⌧) and z̃m(⌧), it is possible to com-

pute the large deviation function for specific kernels such as the constant, sum and

product kernels. For the constant and sum kernels, we have been able to verify

that this method gives the same large deviation function as obtained in the previous

chapter. In order to verify this for the product kernel, we would need to solve for

z̃m(⌧). This is an open problem.

5.2 Constant kernel

The Euler Lagrange equations for the constant kernel are given by

dzm
d⌧

=
1

2

X

j

zjzm�j � zmn(⌧), (5.16)

dz̃m
d⌧

= �

X

j

z̃m+jzj + z̃mn(⌧), (5.17)

where the fraction of particles n(⌧) =
P

m
zm(⌧)z̃m(⌧), with the initial and final

conditions

zi(0) = a�i,1, (5.18)

z̃i(⌧f ) =
�P

m zm(⌧f )
, 1  i  k⇤, (5.19)

where k⇤ = M � N + 1 is the size of the largest cluster that can form for a given

M,N . From the Euler Lagrange equations, the instanton evolution equation for

n(⌧) is
dn

d⌧
= E � n2/2. (5.20)
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The solution for n(⌧) is given by

n(⌧) =
p

2E coth
(⌧ � ⌧0)

2
, (5.21)

where ⌧0 is fixed using the initial condition, n(0) = 1. The energy E is fixed by the

final condition, n(⌧f ) = �.

5.2.1 Solution for zm(⌧)

In order to solve for zm(⌧), we define its generating function:

G(x, ⌧) =
X

m

zm(⌧)x
m. (5.22)

Then,
@G

@⌧
=

1

2
(G(x, ⌧)2 � 2n(⌧)G(x, ⌧)), (5.23)

with the initial condition

G(x, 0) = ax, (5.24)

where a = z1(0). Defining Y (x, ⌧) = G(x, ⌧)� n(⌧),

@Y (x, ⌧)

@⌧
+
@n(⌧)

@⌧
= �

n2

2
+

Y (x, ⌧)2

2
. (5.25)

Using Eq. (6.31),
@Y (x, ⌧)

@t
= �E +

Y 2

2
. (5.26)

The equation for the evolution Y (x, ⌧) is very similar to Eq. (6.31), with the solution

Y (x, ⌧) = �

p

2E coth
(⌧ � ⌧1)

2
, (5.27)
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where ⌧1 is fixed using the initial condition for Y :

Y (x, 0) = z1(0)x� 1. (5.28)

Eliminating ⌧1, we obtain

Y (x, ⌧) = �

p

2E

 p
2E + (1� ax) coth

p
2E⌧/2

(1� ax) +
p
2E coth

p
2E⌧/2

!
. (5.29)

The coe�cient of xm gives zm(⌧):

zm(⌧) =
am2E

sinh2
p
2E⌧/2

�
1 +

p
2E coth

p
2E⌧/2

�m+1 . (5.30)

Rewriting the above equation,

zm(⌧) =
am2E sinhm�1

p
2E⌧/2

�
sinh

p
2E⌧/2 +

p
2E cosh

p
2E⌧/2

�m+1 . (5.31)

it can be seen that because sinh
p
2E⌧/2 = 0, zm(0) = a�m,1.

5.2.2 Solution for z̃m(⌧)

We solve Eq. (5.17),
dz̃m
d⌧

= �

X

j

z̃m+jzj + z̃mn(⌧), (5.32)

with z̃m(⌧f ) determined by Eq. (5.19). Define

z̃m(⌧) = hm(⌧)e
R ⌧
0 d⌧

0
n(⌧ 0). (5.33)

Then, Eq. (5.17) is
dhm

d⌧
= �

X

j

hm+jzj. (5.34)
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Defining the genrating function of hm(⌧),

H(x, ⌧) =
1X

m=�1
hm(⌧)x

�m, (5.35)

we find that
@H

@⌧
= �HG. (5.36)

The solution to this equation is

H(x, ⌧) = H0e
�

R
Gd⌧ , (5.37)

where H0 is determined by the final condition derived from Eq. (5.19). Redefining

y = 1/x, the final form of H(y, ⌧) is

H(y, ⌧) =
�P

m
zm(⌧f )

e�
R ⌧f
0 d⌧

0
n(⌧ 0)

✓
1� yA⌧

1� yA⌧f

◆2

 
1 +

p
2E coth

p
2E⌧f/2

1 +
p
2E coth

p
2E⌧/2

!
k
⇤X

m=�1
ym, (5.38)

where

A(⌧) =
1 +

p
2E coth

p
2E⌧/2

a
, (5.39)

and
X

m

zm(⌧f ) =
2E(1� �)

� sinh
p
2E⌧f/2(1 +

p
2E coth

p
2E⌧f/2)

. (5.40)

Equating the coe�cients of powers of y on both sides of Eq. (5.38),

hk(⌧) =
�P

m
zm(⌧f )

2E

(sinh2
p
2E⌧f/2)a2A(⌧)2

h kX

m=�1
(k �m+ 1)A(⌧)f

k�m+A(⌧)2
k�1X

m=�1
(k �m� 1)A(⌧f )

k�m�2

� A(⌧)
k�1X

m=�1
(k �m)A(⌧f )

k�m�1
i
. (5.41)
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Let k0 = k �m+ 1. Simplifying, we obtain

hk(⌧) =
�P

m
zm(⌧f )

2E

(sinh2
p
2E⌧f/2)a2A2

⌧

✓
1� A⌧

1� A⌧f

◆2

, (5.42)

which is independent of index k. Using Eq. (5.33), we finally obtain

z̃m(⌧) =
�P

m
zm(⌧f )

 
sinh

p
2E⌧/2

sinh
p
2E⌧f/2

!2✓
1� A⌧

1� A⌧f

◆2

. (5.43)

In order to find a, we use the property of mass conservation:

X

m

mzm(⌧f )z̃m(⌧f ) = 1. (5.44)

Using Eq. (5.19), we find that

P
m
zm(⌧f )P

m
mzm(⌧f )

= �. (5.45)

Substituting Eq. (5.30) in the above equation, we obtain

a = (1� �)(1 +
p

2E coth
p

2E⌧f/2). (5.46)

Hence, the full mass distribution is

nm(⌧) =
�P

m
zm(⌧f )

 
sinh

p
2E⌧/2

sinh
p
2E⌧f/2

!2✓
1� A⌧

1� A⌧f

◆2

am2E sinhm�1
p
2E⌧/2

�
sinh

p
2E⌧/2 +

p
2E cosh

p
2E⌧/2

�m+1 (5.47)

We compare Eq. (5.47) with numerical simulations and find that they are in excellent

agreement, as shown in Figs. 5.1(a) and (b).
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Figure 5.1: Constant kernel: Comparison of n(m, ⌧) with simulation data for (a)
fixed � = 0.7, ⌧f = 1.19, (b) fixed � = 0.25, ⌧f = 3.53, where ⌧ = ⌧f/2.

5.3 Sum kernel

The Euler Lagrange equations for the sum kernel are given by

dzm
d⌧

=
1

4

X

j

mzjzm�j �
mn(⌧) + 1

2
zm, (5.48)

dz̃m
d⌧

= �
1

2

X

j

(m+ j)z̃m+jzj +
mn(⌧) + 1

2
z̃m, (5.49)

with the same initial and final conditions given in Eqs. (5.18) and (5.19). The

evolution of the optimal trajectory is

dn

d⌧
= E �

n

2
. (5.50)
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Solving this equation and using the final condition to determine E, we obtain

2E =
�� e�⌧f/2

1� e�⌧f/2
, (5.51)

n(⌧) = 2E � (2E � 1)e�⌧/2. (5.52)

5.3.1 Equation for zm(⌧)

Equation (5.48) is identical to the Smoluchowski equation for the mean mass distri-

bution, and hence we can use techniques which have been described in Chapter 2 to

obtain zm. However, the initial condition Eq. (5.18) holds for typical and atypical

times. We define

zm(⌧) = cme
�

R ⌧
0 d⌧

0
�

mn(⌧)+1
2

�
, (5.53)

z̃m(⌧) = hme
R ⌧
0 d⌧

0
�

mn(⌧)+1
2

�
. (5.54)

Then,

dcm(⌧)

d⌧
=

e�⌧/2

4

X

j

mcjcm�j, (5.55)

dhm(⌧)

d⌧
= �

e⌧/2

2

X

j

(m+ j)hm+jcj. (5.56)

We first obtain the solution for zm(⌧). Let ⌧1 =
1�e

�⌧/2

2 . Then,

dcm
d⌧1

=
X

j

mcjcm�j. (5.57)

Using the ansatz, cm(⌧1) = am⌧
m�1
1 , where am is independent of ⌧1, we obtain

anequation for am,

am =
m

m� 1

X

j

ajam�j. (5.58)
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The generating function for am is written as

F (x) =
X

m

amx
m. (5.59)

The equation for F (x) is

x
@F

@x
� F (x) = 2F (x)x

@F

@x
. (5.60)

Rearranging the terms and integrating,

lnF � 2F = ln(
x

x0
), (5.61)

and hence

Fe�2F =
x

x0
. (5.62)

The left hand side can be rewritten in terms of the Lambert W function, z =

W (z)eW (z) by multiplying both sides by �2,

�2Fe�2F =
�2x

x0
, (5.63)

where W (z) = �2F, z = �2x
x0

. The Lambert function can be expanded as a series in

z:

W (z) =
1X

n=1

(�n)n�1zn

n!
. (5.64)

That is,

2F =
1X

m=1

mm�1

m!

�2x
x0

�m
. (5.65)

Hence,

am =
(2m)m�1am

m!
, (5.66)
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where a = 1/x0. We have now obtained the full form of zm(⌧):

zm(⌧) =
mm�1am(1� e�⌧/2)m�1

m!
e�

R ⌧
0 d⌧

0
�

mn(⌧ 0)+1
2

�
, (5.67)

where the integral in the exponent is

Z
⌧

0

d⌧ 0
⇣mn(⌧ 0) + 1

2

⌘
= m

⇣
E⌧ � (2E � 1)(1� e�⌧/2)

⌘
+
⌧

2
. (5.68)

5.3.2 Equation for z̃m(⌧)

In order to solve Eq. (5.56), using the fact that k0 is the maximum mass that can

form, given M,N , we set

z̃m(⌧) = hm(⌧) = 0, 8m > k⇤. (5.69)

This implies that hk⇤ is a constant, since k⇤ cannot form aggregates with any other

mass, i.e.,

hk⇤ = fk⇤ . (5.70)

The next lower mass, k⇤
� 1, can form aggregates only with mass 1. Writing the

equation for hk⇤�1,
dhk⇤�1

d⌧
= �

e⌧/2

2
k⇤fk⇤a, (5.71)

where c1 = a. Integrating,

hk⇤�1 = fk⇤�1 � e�⌧/2k⇤fk⇤a. (5.72)
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Then, solving iteratively for hm, where m = k⇤
� 2, k⇤

� 3 . . . 1, we obtain that for

an arbitrary mass m,

hm(⌧) =
k
⇤�mX

j=0

mj�1(m+ j)(�a)j

j!
(1� e�

⌧
2 )jfm+j, (5.73)

where fm can be computed from the final condition z̃m(⌧) = �P
i zi(⌧f )

. Solving for

fm iteratively, we obtain:

fm =
�e�⌧f/2

P
i
zi(⌧f )

X

j=0k⇤�m

(k⇤
� j)k

⇤�j�me�(k⇤�j)⌘(⌧f )

(k⇤ �m� j)!
(a(1� e�⌧f/2))k

⇤�j�m, (5.74)

where

⌘(⌧f ) =

Z
⌧f

0

d⌧ 0
n(⌧ 0)

2
= E⌧f � (2E � 1)(1� e�⌧f/2). (5.75)

Finally, the full solution for nm(⌧) is

nm(⌧) =
�e�⌧f/2

m!
P

i
zi(⌧f )

k
⇤X

k=m

(�1)k�m

k
⇤�kX

j=0

mk�2kak
⇤�j

(k �m)!(k⇤ � k � j)!

(k⇤
� j)k

⇤�k�j(1� e�⌧/2)k�1(1� e�⌧f/2)k
⇤�k�je�(k⇤�j)⌘(⌧f ) (5.76)

It is di�cult to evaluate this result mathematically. We have evaluated nm(⌧)

numerically and find an excellent agreement with simulation results, as shown in

Fig. 5.2.

5.4 Mass distribution at the final time

From the Monte Carlo simulations, we notice that the mass distribution at any final

time ⌧ corresponds to the typical or Smoluchowski solution, irrespective of ⌧ . This

can be explicitly proved in the case of the constant kernel. It follows from Eq. (5.39)

97



10
-8

10
-7

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

10
0

10
1

10
2

10
3

a)

n
(m

,τ
)

m

M=240,	τ=4.58

M=300,	τ=4.58

M=300,	τ=1.832

M=240,	τ=1.832

Smoluchowski:	τ=1.832

Smoluchowski:	τ=4.58

Analytical

φ=0.4,	τf=9.16

10
-8

10
-7

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

10
0

10
1

10
2

10
3

b)

n
(m

,τ
)

m

M=240

Free	simulations

Analytical

φ=0.7,	τf=0.71,	τ=0.499
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that

A⌧f
=

1

1� �
. (5.77)

Hence, the final mass distribution for the constant kernel is

nm(⌧f ) = zm(⌧f )z̃m(⌧f ) =
(1� A⌧f

)2

Am+1
⌧f

(5.78)

The solution is consistent with the initial and final conditions:

n1(0) = 1, (5.79)
X

m

nm(⌧f ) = �. (5.80)

98



1e-08

1e-07

1e-06

1e-05

0.0001

0.001

0.01

0.1

1

	1 	10 	100 	1000

a)

n(
m
,τ
f)

m

Simulations:	τf=4τtyp
Simulations:	τf=τtyp/5
Analytical:	τf=4τtyp
Analytical:	τf=τtyp/5

Smoluchowski	distribution

φ=0.7

1e-08

1e-07

1e-06

1e-05

0.0001

0.001

0.01

0.1

1

	1 	10 	100 	1000

b)

n(
m
,τ
f)

m

Simulations:	τf=τtyp/5
Simulations:	τf=4τtyp

Smoluchowski	distribution
τf=τtyp/5
τf=4τtyp

φ=0.25
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The final condition Eq. (5.80) can be verified by substituting Eq. (5.77) in Eq. (5.78)

and solving. It can be seen that the final mass distribution

nm(⌧f ) = �2(1� �)m�1, (5.81)

is independent of time. The typical evolution of the fraction of particles is

n(⌧typ) = � =
2

2 + ⌧typ
. (5.82)

Substituting for � in terms of ⌧typ in Eq. (5.81), we obtain the final mass distribution

to be

nm(⌧typ) =
(⌧typ/a)m�1

(1 + ⌧typ/2)m+1
, (5.83)
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Figure 5.4: Sum kernel: Final mass distribution n(m, ⌧) at fixed � and various ⌧f
compared with the Smoluchowski distribution from simulations.

which is the typical mass distribution which can be obtained by solving the solving

the Smoluchowski equation, with collision rate K(i, j) = 1. This implies that at any

value of the final time, the mass distribution nm(⌧f ) for a given � corresponds to

the typical mass distribution, as shown in Fig. 5.3.

5.5 Mass distribution as a function of number of

collisions

The optimal trajectory for a rare event can di↵er from the optimal trajectory for

typical events (typical trajectory) in two ways: the time between collisions can be

di↵erent, and/or the sequence of collisions can be di↵erent. Figures 5.3 and 5.4

suggest that for the constant and sum kernels, the sequence of collisions remains

the same while the waiting times di↵er between the optimal trajectory and typical

trajectory.
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Figure 5.5: Colouring of monomers according to the label of the cluster it belongs
to for illustrating the argument for the product kernel provided in Sec. 5.5

This is definitely true for the constant kernel as we argue below. Initially, we have

M monomers. After C collisions, the configuration consists of M � C clusters

of di↵erent masses. In the next collision, two clusters are chosen at random and

collided, since the collision rates are independent of mass. Since the rules of collision

are independent of the current mass distribution, it can only depend on the number

of collisions, and not on the final time ⌧f . This aspect can also be demonstrated by

explicitly solving for the mass distribution as a function of collisions.

A similar argument can be constructed for the product kernel as follows. After

C collisions, let the masses be m1,m2, . . .. We visualise them as m1 monomers of

one colour, m2 monomers of di↵erent colour and so on, so that the total number of

monomers remain fixed at M . We pick two monomers of di↵erent colours at random

and change the colour of all the monomers with the two colours to a new colour (see

Fig. 5.5). With these rules, the probability of two clusters of masses m1 and m2

colliding is

P (m1,m2) =
m1

M

m2

M �m1
+

m2

M

m1

M �m2
. (5.84)

In the limit M ! 1,

P (m1,m2) ⇡
2m1m2

M2
, (5.85)

provided m1,m2 ⇠ o(M). These collision rules are same as the product kernel,

provided an aggregate is not present. The collision rules as stated above are inde-

pendent of the current mass distribution, and hence will depend only on the number

of collisions and not on the final time ⌧f .
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Figure 5.6: Mass distributions after C = 25 collisions for (a) Constant kernel and
� = 0.6, (b)Sum kernel and � = 0.6, (c) Product kernel and � = 0.7.

For other kernels, we do not have a similar argument. But, the numerical results

for sum kernel suggests that the optimal trajectory depends only on the number

of collisions. In fact, we would conjecture that this aspect is true whenever gel is

absent. To verify this, mass distributions after 25 collisions is shown to be the same

for two di↵erent times, for constant, sum and product kernels (see Fig. 5.6).

5.6 Summary

We have calculated the full mass distributions for the constant and sum kernels, and

compared the analytical answers with simulations. We have mathematically shown

in the case of constant kernel that the final mass distribution is the same as the

typical or Smoluchowski distribution, and benchmarked this result with simulations.

We have shown numerically that the same result is true in the case of sum kernel

also. We are trying to prove this result mathematically. For the product kernel, the

equation for z̃i is unsolved. We observe from simulations that the mass distributions

at any final time only collapse when ⌧f < ⌧g, where ⌧g is the gelation time.
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Chapter 6

k�nary Coalescence

6.1 Introduction

Physical phenomena in which aggregation or coalescence of constituents is a dom-

inant dynamical process are ubiquitous in nature. Examples include cloud forma-

tion [9], aerosol dynamics [11, 70, 71], blood coagulation [8], dynamics of Saturn

rings [12, 13, 72], neurodegenerative disorders such as Alzheimer’s disease [73], dy-

namics of polyelectrolytes [20, 21], ductile fracture [74], etc. A model that isolates

the e↵ect of aggregation is the cluster-cluster aggregation model (CCA) in which

the only dynamics is aggregation of clusters of particles to form larger clusters.

CCA has been studied using di↵erent approaches. Historically, it has been studied

using the Smoluchowski equation, a deterministic mean-field, integro-di↵erential

equation for the rate of change of number of clusters of a particular size or mass

(see Refs. [27, 28, 29, 30] for reviews). The information of the physical system

being modelled such as shape of clusters [75] as well as the transport properties

of the constituents are incorporated into a collision kernel that describes the rate

of collision between clusters of di↵erent sizes. The Smoluchowski equation ignores

fluctuations, both spatial and stochastic. In lower dimensions, when spatial density
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fluctuations become dominant, the mass distribution in CCA has been studied using

both analytical and numerical techniques [31, 32, 33, 34]. However, these approaches

are limited to analysing the mean or typical mass distribution and its statistical low

moments. They do not provide information about the probabilities of rare or atypical

events, nor do they explain the pathways that lead to such events.

In Chapter 4, we developed a formalism to calculate the large deviation function

(LDF), which describes the probabilities for rare events, in CCA [57]. This calcula-

tion was based on the Doi-Peliti-Zeldovich-Ochinnikov (DPZO) method [61, 62, 63,

64, 65, 66], a path integral approach that is based on writing the probabilities in

terms of an e↵ective action. An exact expression of the LDF of CCA was obtained

for three standard collision kernels, the constant (rate is independent of mass), sum

(rate is sum of masses) and product (rate is product of masses) kernels. The LDF

has a singularity for the product kernel which is indicative of the sol-gel transition,

wherein the Smoluchowski equation no longer conserves mass beyond a certain time.

We could also determine the optimal evolution trajectories for a given rare event as

solutions to the Euler-Lagrange equations that minimize the e↵ective action [57].

Other studies of the LDF in CCA include the study of the gelation transition in

the product kernel using large deviation theory in the probability literature (see [76]

and references within), and a Monte Carlo algorithm for numerically determining

the LDF for arbitrary collision kernels [51]. These results are for the case when the

collisions were binary. In this chapter we extend these results to k-nary collisions

where k particles aggregate in one event to form ` clusters, in particular the reac-

tion kA
�
�! `A. We ignore the size of clusters, thus e↵ectively studying the constant

kernel problem.

We now briefly summarize what is known for the typical properties of the reaction

kA
�
�! `A. Although the probability of more than two particles coalescing (k > 2

is significantly smaller than that of two particles coalescing (k = 2), higher order
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collisions may become important in certain cases, for example, when a structure

formed by three particles exhibits more stability. Ternary collisions as the primary

collision mechanism can be observed in experiments that were motivated by drug

delivery [77]. Moreover, the reaction kA
�
�! `A is one of the simplest examples

of interacting particle systems that are far from equilibrium, making it a useful

model for testing conceptual ideas. In the presence of di↵usion, the upper critical

dimension of the model is known to be dc = 2/(k� 1). Below dc, the decay of mean

density is dependent on the density fluctuations, and decays as Ak,`t�d/2. Above dc,

the reaction is rate-limited and the mean density decays as t�1/(k�1). At dc, mean

density decays as (t�1 ln t)1/(k�1). The prefactors for the power law decay can be

computed as an ✏-expansion for d < dc, and exactly at d = dc [78]. For k = 2, using

the empty interval method, the exact solution for the density can be found in one

dimension [79, 80] and on the Bethe lattice [81]. Unlike density, the multi-particle

correlations exhibit anomalous scaling in d < dc. For k = 2, this anomalous scaling

can be determined using renormalisation group methods in any dimension [82] and

rigorously in one dimension [83]. The scaling exponents are independent of `. This

can be explicitly shown using field-theoretic methods [84, 85, 78, 86]. When mass

is taken into account and for constant kernel, the exact result may be found in one

dimension [31] and using renormalisation group in higher dimensions [33]. We also

note that mass-dependent k-nary aggregation has been studied, starting from the

Smoluchowski equation in Refs. [87, 88, 89].

In this chapter, we are interested in rare events in k�nary coalescence, i.e., those

events that occur at the tails of a probability distribution. The study of rare events

is important because they could have significant impact despite their low likelihood

of occurrence. Some common examples of rare events are natural disasters such as

earthquakes and floods [35], financial black swan events [39], and epidemics [90]. The

mathematical framework for the systematic study of rare events is provided by the

large deviation theory [41]. The central focus of large deviation theory is the large
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deviation principle, that is, the probabilities of rare events decrease exponentially

fast. The large deviation function, or rate function, captures information about large

fluctuations (deviations) from the most probable or typical states of a system. The

rate function can also be interpreted as a non-equilibrium generalization of entropy

or free energy.

In this chapter, we compute the LDF for k�nary coalescence. We also calculate

the most probable trajectory for a given rare event. The contents of this chapter is

published in [91].

6.2 Model

Consider a system of particles which evolves in time through the generalized coales-

cence process,

kA
�
�! `A, ` < k, (6.1)

where A denotes a particle. Equation (6.1) describes the aggregation of k particles

into ` particles at constant rate �. In other words, we model the k-nary coalescence

by a continuous time Markov chain on the state space N0 consisting of non-negative

integers, defined by the transition N ! N � (k� `) with the exponential rate �
�
N

k

�
.

Each collision reduces the number of particles, N(t), by (k� `). The final absorbing

state of this process contains `, ` + 1, . . . k � 1 particles, depending on the value of

the initial number of particles, M .

In this chapter, we study P (M,N, t), the probability that exactly N particles remain

at time t, given that there are M particles initially. The number of collisions that

have occurred, C, is related to N as

C =
M �N

k � `
. (6.2)
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6.3 Exact solution

It is possible to obtain the exact expression for P (M,N, t) as a sum of exponentials

for arbitrary k, ` [51]. Such an exact answer is possible because the collision rate

after C collisions is known exactly, unlike the situation when masses are assigned to

particles and the collision rates depend on the mass distribution. For a given k, `,

after i collisions, M � (k � `)i particles remain, and the total rate of collision for

the i-th collision, Ri, is therefore given by

Ri = �

✓
M � (k � `)(i� 1)

k

◆
. (6.3)

Using the exponential time distribution for waiting times, P (�ti) = Rie�Ri�ti ,

P (M,N, t) =

Z 1

0

d�t1

Z 1

0

d�t2...

Z 1

0

d�tC+1 R1e
�R1�t1

R2e
�R2�t2 . . .RCe

�RC�tCe�RC+1�tC+1�

 
C+1X

i=1

�ti � t

!
,

(6.4)

where C is as in Eq. (6.2). The final waiting time �tC+1 denotes the waiting time

during which no collision occurs. The �-function constrains the sum of waiting times

to the total time t. The Laplace transform of eP (M,N, s), defined as

eP (M,N, s) =

Z 1

0

dte�stP (M,N, t), (6.5)

is then

eP (M,N, s) =
CY

i=1

Ri

Ri + s

1

RC+1 + s
. (6.6)

Doing the inverse Laplace transform, we obtain

P (M,N, t) =

 
CY

k=1

Rk

!
C+1X

i=1

e�Rit

C+1Y

j 6=i,j=1

1

Rj �Ri

. (6.7)
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Though the exact expression for P (M,N, t) can be obtained, it is not straightfor-

ward, either to derive the scaling for N and t with M in the large deviation limit,

nor to derive the large deviation function directly from Eq. (3.14). Also, it is not

possible to obtain the optimal trajectory for a given rare event. Instead, we will

derive the large deviation function using the action formalism in Sec. 6.4, and use

the numerical evaluation of Eq. (3.14) as a check for our results. In the process, we

will also derive the optimal paths for rare events.

6.4 Results

6.4.1 Master equation and e↵ective action

The time evolution of P (M,N, t) is described by the master equation

dP (M,N, t)

dt
= �

✓
N + k � `

k

◆
P (M,N + k � `, t)�

✓
N

k

◆
P (M,N, t)

�
. (6.8)

The first term on the right hand side of Eq. (6.8) is a gain term, which describes the

creation of a state with N particles, due to the aggregation of k particles from a state

with N + k� ` particles. The second term is a loss term, which describes the aggre-

gation of k particles from a state with N particles. We now rewrite the calculation

of P (M,N, t) in terms of an e↵ective action using the DPZO procedure [57, 92, 63].

Let

| (t)i =
MX

N 0=0

P (M,N 0, t) |N 0
i , (6.9)

where |Ni is the state with N particles which is acted upon by creation and an-

nihilation operators a and a†, and the number-of-particles operator N̂ := a†a as
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follows:

a |Ni = N |N � 1i , (6.10)

a† |Ni = |N + 1i , (6.11)

N̂ |Ni = N |Ni , (6.12)

[a, a†] = 1. (6.13)

It is also useful to notice that hN 0
|Ni = N !�N 0,N . In terms of | (t)i, the master

equation Eq. (6.8) can be rewritten as

d | (t)i

dt
= � bH(a, a†) | (t)i , (6.14)

where

bH(a, a†) = �
�

k!
(a†` � a†k)ak. (6.15)

Equation (6.14) has the solution | (tf )i = e�
bHtf | (0)i, where | (0)i = |Mi and tf

is the final time. Multiplying Eq. (6.9) on the left with hN |, it is easy to see that

P (M,N, t) =
hN | (t)i

N !
. (6.16)

Briefly, to find a path integral representation of Eq. (6.16), the evolution operator

is first represented as an infinite product using Trotter’s formula,

e�
bH(a†,a)t = lim

n!1

✓
1� bH(a†, a)

t

n

◆n

.

Next the partition of the identity operator I in terms of the complete set of eigen-

functions of the annihilation operator a is inserted between every pair of factors of
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⇣
1� bH(a†, a) t

n

⌘
entering the Trotter formula,

e�
bH(a†,a)t = lim

n!1

✓
1� bH(a†, a)

t

n

◆
I . . . I

✓
1� bH(a†, a)

t

n

◆
,

where I =

Z

C

dzdz̃

⇡
e�|z|2

|zi hz| , |zi = eza
†
|0i .

Finally, the matrix elements hz0|
⇣
1� bH(a†, a) t

n

⌘
|zi are calculated using the repre-

sentation of the operators a, a† in the basis of (|zi)z2Z (the so-called holomorphic

representation):

|zi = ezw, a† = w·, a =
@

@w
, hz|z0i = ezz

0
, w, z, z0 2 C

where the inner product is defined for a pair of holomorphic functions f, g as hf |gi =
R

C
dwdw̄

⇡
e�wwf(w)g(w). The final answer is

P (M,N, t) =

Z
Dz̃(t)Dz(t)e�S(z,z̃,t), (6.17)

where the action is given by

S(z, z̃, t) =

Z
t

0

dt [z̃ż + �H(z, z̃)�N ln z(tf )�(tf � t)�M ln z̃(0)�(t)] +M + lnN !,

(6.18)

and the e↵ective Hamiltonian H is

H(z, z̃) = �

�
z̃` � z̃k

�
zk

k!
. (6.19)

6.4.2 Existence of a large deviation principle

Defining z ! zM↵, z̃ ! z̃M� and ⌧ = �tM�, and substituting in the action, we find

that the choice ↵ = 1, � = 0 and � = k� 1 keeps the form of the action unchanged.
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The scaled action is then

S(z, z̃, ⌧) = M

Z
⌧

0

d⌧ 0
h
z̃ż + E(z, z̃)

i
� � ln z(⌧)� ln z̃(0) + z(0)z̃(0) + � ln

�

e

�
,

(6.20)

where � = N/M . In the limit M,N ! 1, keeping � = N/M and ⌧ = �Mk�1t

fixed, since the action in Eq. (6.20) is proportional to M , the functional integral

Eq. (6.17) is dominated by the minimum of the action. Thus, there exists a large

deviation principle

lim
M!1

�
lnP (M,�M, ⌧ [�Mk�1]�1)

M
= f(�, ⌧), (6.21)

where f(�, ⌧) := minz,z̃ S(z, z̃, ⌧) is the rate function. We note that the number of

particles formed after each collision, `, does not appear in the scaling of time.

The Euler-Lagrange equations corresponding to the minimum of the action,

Eq. (6.20) are given by

ż =
1

k!

⇣
`z̃`�1

� kz̃k�1
⌘
zk +

✓
1

z̃(0)
� z(0)

◆
�(⌧), (6.22)

˙̃z = �
k

k!

⇣
z̃` � z̃k

⌘
zk�1

�
��(⌧ � ⌧f )

z(⌧f )
=

kE

z
�
��(⌧ � ⌧f )

z(⌧f )
. (6.23)

By integrating Eqs. (6.22) and (6.23) about ⌧ = 0 and ⌧ = ⌧f , we obtain the

boundary conditions to be

z(0)z̃(0) = n(0) = 1, (6.24)

z(⌧f )z̃(⌧f ) = n(⌧f ) = �, (6.25)

where n(⌧) = z(⌧)z̃(⌧) is the fraction of particles at time ⌧ . Note that the Euler-

Lagrange equations conserve energy E := H(z(⌧), z̃(⌧)), i.e., dE/d⌧ = 0. Using
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Figure 6.1: Large deviation functions f(�, ⌧) respect to ⌧ are compared with the
exact answer, Eq. (6.7), for a) (k, `) = (2, 1),� = 0.4, b) (k, `) = (3, 1),� = 0.6,
c) (k, `) = (3, 2),� = 0.5, d) (k, `) = (4, 3),� = 0.6. The agreement of the exact
solution with the large deviation function is better for larger values of the total mass
M . The asymptotic answers for ⌧ ! 1 are shown (broken black lines).
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Eq. (6.19), one can rewrite the energy in terms of n(⌧) to be

E =
n(⌧)k � n(⌧)`z(⌧)k�`

k!
. (6.26)

Knowing the values of the boundary conditions n(0) and n(⌧f ), Eqs. (6.24) and

(6.25) allows us to write z(0) and z(⌧f ), and consequently z̃(0) and z̃(⌧f ) in terms of

E and �. Additionally, integrating the first term in Eq. (6.20) by parts, and using

Eq. (6.23), the rate function for general k, ` is

f(�, ⌧) = �(k � 1)E⌧ �
�

k � `
ln
�k

� k!E

�l
+

1

k � `
ln
�
1� k!E

�
+ � ln�, (6.27)

where E is a function of � and ⌧ . It is determined by the equation for the fraction of

surviving particles n which follows from the Euler-Lagrange equations (6.22), (6.23).

The corresponding initial and final conditions follow from Eqs. (6.24), (6.25). We

will refer to the this equation as the instanton equation and analyse it below.

6.4.3 The instanton equation

The instanton trajectory for n(⌧) = z(⌧)z̃(⌧) that minimizes the action is is derived

from Eqs. (6.22) and (6.23) to be

dn

d⌧
= (k � `)

h
E �

nk

k!

i
, (6.28)

which needs to be solved subject to the initial condition n(0) = 1 and the final

condition n(⌧f ) = �. As the equation is of the first order, the final condition

yields an equation for the ’instanton energy’ E. Equation (6.28) implies that if

⌧ ! (k � `)⌧ , then the instanton trajectory for fixed k and di↵erent ` should be

identical. When E = 0, Eq. (6.28) for n(⌧) reduces to the mean field equation for

the mean number of particles. This corresponds to the mean field or the ’typical’
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Figure 6.3: The instanton trajectories for k = 3,� = 0.3 and ` = 1, 2, plotted with
respect to (k � l)⌧ collapse.
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solution which is followed by the system with the probability close to 1:

n(⌧) =
h
1 +

(k � `)(k � 1)⌧

k!

i1/1�k

, (6.29)

It is seen that the typical trajectory achieves the fraction � of the surviving particles

at the time

⌧typ =
k!

(k � `)(k � 1)

�
�1�k

� 1
�
.

It follows from (6.28) that E > 0 corresponds to rare events such that the time of

reaching � is smaller than ⌧typ, E < 0 - rare events reaching � at the time larger

than ⌧typ. The atypical trajectories corresponding to E 6= 0 can be obtained by

solving Eq. (6.28). Rewriting it as

dx

d⌧
= �

(k � `)ek�1
0

k!

h
xk

� 1
i
, (6.30)

where x = n/e0 and ek0 = k!E, factorising 1/(xk
� 1) in terms of the k-th roots of

unity, (!i)ki=1, and then using the partial fraction decomposition, we obtain

1

xk(⌧)� 1
=

1
Q

k

j=1(x(⌧)� !j)
=

kX

m=1

Am

x(⌧)� !m

, (6.31)

where !j = e
2⇡ij
k and the coe�cients Am are complex. Solving for Am, we obtain

Am =

I

�m

dz

2⇡i

1

zk � 1
=
!m

k
. (6.32)

Here �m is a small contour around the !m.

Substituting Eq. (6.32) into Eq. (6.31), one obtains the following implicit solution

to Eq. (6.30):

kX

m=1

!m ln(x(⌧)� !m) = �
(k � `)(k!E)k�1⌧

(k � 1)!
+ c, (6.33)
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where the constants c and E are fixed using the initial condition, n(0) = 1 and the

final condition n(⌧f ) = �. Solving for c, we obtain

kX

i=1

⌦i ln
n(⌧)� ⌦i

1� ⌦i

= �k(k � `)E⌧, (6.34)

where

⌦i = !i(k!E)1/k. (6.35)

The instanton energy E can be found by solving the equation

kX

i=1

⌦i ln
�� ⌦i

1� ⌦i

= �k(k � `)E⌧f , (6.36)

which can be analysed either numerically or analytically in the limit of ⌧f >> ⌧typ

or ⌧f << ⌧typ (see Sec. 6.6 below).

It can be checked that for the constant kernel, k = 2, ` = 1, we obtain

n(⌧) =
p

2E coth[
p

E/2⌧ + tanh�1
p

2E],

as derived in [57]. The trajectories for various values of (k, `) are shown in Fig. 6.4.

6.5 Comparison with exact answer

In order to test the correctness of the rate function derived in Eq. (6.27), it is

compared with the exact answer, Eq. (6.7). The rate function is plotted with respect

to both ⌧ and �, as shown in Figs 6.1 and 6.2 , and shows an excellent agreement

with the exact answer. Figures 6.1(a) and 6.2(a) show the rate function for binary

coalescence.
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Figure 6.4: The instanton trajectories for a) Constant kernel, (k, `) = (2, 1),� = 0.3
and b) (k, ` = (3, 2),� = 0.7) are plotted for typical final time ⌧typ, which corresponds
to E = 0, as well as final times ⌧ > ⌧typ and ⌧ < ⌧typ, which correspond to E > 0
and E < 0 respectively.

6.6 Asymptotic analysis

It is possible to calculate exact asymptotics for the large deviation in the limits

⌧f >> ⌧typ (anomalously slow evolution) and ⌧f << ⌧typ (anomalously fast evolu-

tion). Let us first consider the case ⌧f >> ⌧typ. In this limit, let us seek the solution

to (6.36) in the form

E =
�k

k!
(1� ✏(⌧f )), (6.37)

where ✏(⌧f ) << 1. Substituting this Ansatz into (6.36) one finds

✏(⌧f ) = exp

✓
�
k(k � `)�k�1

k!
⌧f +O(1)

◆
. (6.38)

Substituting (6.37) in Eq. (6.27) and taking the limit ⌧f ! 1, we obtain

lim
⌧f!1

f(�, ⌧f )

⌧f
=
�k

k!
. (6.39)
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Figure 6.5: Large deviation functions S(�, ⌧) are plotted with respect to ⌧ for a)
(k, l) = (2, 1),� = 0.4 for ⌧ ! 1, b) (k, l) = (2, 1),� = 0.4 for ⌧ ! 0, and with
respect to ln(1/⌧) for c) (k, l) = (3, 1),� = 0.6, ⌧ ! 1 and d) (k, l) = (3, 1),� = 0.6,
⌧ ! 0.

Hence, the asymptotic LDF for k-nary coalescence is the direct generalization of the

constant kernel case [57]. In the short time limit, ⌧ << ⌧typ, the instanton energy

E is large and negative. Then |⌦i| >> 1 and the equation (6.36) takes the form

k(1� �) +O(⌦�1) = �k(k � `)E⌧f .

The solution is

E = �
1� �

(k � `)⌧f
(1 +O(⌧ 1/k

f
)). (6.40)

Substituting this solution in the LDF (6.27) and simplifying, we obtain

lim
⌧f!0

f(�, ⌧f )

ln(⌧typ/⌧f )
=

1� �

k � `
. (6.41)

Figures 6.1 and 6.5 show that the asymptotic answers for ⌧f >> ⌧typ and ⌧f << ⌧typ

respectively, are in excellent agreement with the exact answers.
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6.7 Summary

To summarize, we derived the large deviation function for the general coalescence

process, kA ! `A, for arbitrary k > ` using the path integral approach. The

solution minimizing the action allowed us to determine the optimal trajectory for

each rare event.

For the reaction kA ! `A, it is possible to write an exact expression for P (M,N, t)

as a sum of exponentials. However, it is not straightforward to derive the large

deviation function from this expression, neither are the scaling variables obvious.

Using the Doi-Peliti-Zeldovich method helps us to circumvent these issues. First

the scaling variables become obvious, second we are able to determine the exact

expression for the large deviation function and third, the optimal trajectories for

rare and typical events can be obtained.

The formalism used in this chapter is generalizable to reaction di↵usion systems

in higher dimensions, where a term related to transport of the clusters, such as a

di↵usion term would appear in the Euler Lagrange equations. Solvability remains an

issue and a promising area for future research. The formalism can also be generalized

to coalescence with input [93, 55, 68, 67], or with branching [94, 95, 60], which could

exhibit interesting features such as oscillations and steady states.
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Chapter 7

Conclusions and Outlook

In this thesis, we have considered the problem of irreversible cluster-cluster aggre-

gation, focusing on the unexplored area of obtaining the probabilities of rare or

atypical events. The study of this problem has a long history. Its importance stems

from its ubiquitousness in various physical phenomena, as well as the mathematical

challenges arising from the absence of a general formalism for out-of-equilibrium

phenomena. Previous work on aggregation has largely concentrated on using the

Smoluchowski equation to obtain the mass distributions for various collision kernels.

However, the Smoluchowski equation can be solved exactly only for the constant,

sum and product kernels, and these solutions correspond only to the typical mass

distribution and moments. Lushnikov was the first to study CCA by considering

the master equation as the starting point (instead of the Smoluchowski equation),

and develop a Hamiltonian formalism. His most remarkable contribution in this

respect was to derive an exact solution for the typical mass distribution in product

kernel aggregation, which incorporated both the pre-gelation and post-gelation be-

haviour beautifully. Although the Doi-Peliti-Zeldovich (DPZ) method was shown to

be e↵ective in studying problems such as birth-death processes, there has not been

any attempt to study large deviations in CCA analytically using this method. We
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find that by combining the Hamiltonian formalism of Lushnikov, and the DPZ path

integral method, we can get the explicit large deviation functions for atleast a few

collision kernels.

Computing the probabilities of rare events, both numerically and analytically, is

a challenging task. In our work, we have designed and implemented a numerical

algorithm which establishes a large deviation principle for arbitrary collision ker-

nels. The main success of the algorithm is that very low probabilities, of the order

of 10�40 and smaller, can be measured. The algorithm is benchmarked with the

exact answer for constant kernel aggregation. Moreover, the instanton trajectories

and mass distributions for arbitrary kernels can also be computed using this algo-

rithm. Ergodicity of the algorithm is rigorously proved. The dependence of the

temporal and configurational autocorrelation times on the di↵erent parameters of

the algorithm has also been characterized.

We have also developed an analytical formalism using the DPZ technique, which

can in principle be used to compute the rate functions for arbitrary collision kernels.

We have explicitly calculated the large deviation functions of the exactly solvable

constant, sum and product kernels. This formalism is able to obtain the probabilities

of rare events because the starting point is the exact master equation, and not the

Smoluchowski equation which only gives the typical mass distributions.

The product kernel is a gelling kernel, and exhibits gelation for ⌧ � 1. We find

that although the rate function itself is a continuous function and does not show

a discontinuity, the second derivative of the rate function with respect to � shows

a jump for final time ⌧ > 1. For fixed M , the discontinuity becomes smaller with

decreasing ⌧ , and the critical �c decreases with ⌧ . We expect that when ⌧ ! 1,

�c ! 0.5. However, to see this, we have to numerically analyse the equations for

large M . But, it becomes di�cult to accurately calculate the Mallows-Riordan

polynomials for large values of M , limiting the maximum value of M we can study.
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The exact large deviation functions for the constant, sum and product kernels have

been benchmarked and found to be in excellent agreement with numerical simula-

tions. Further, we have calculated the full mass distribution for the constant and

sum kernels and benchmarked them with simulations.

We have used the formalism to calculate the large deviation function in the case of

k�nary coalescence, where k particles collide to form l particles, at a constant rate.

The large deviation function is found to be in very good agreement with the exact

answer. The instanton trajectories for typical and atypical events have also been

obtained.

Although stochastic aggregation models have been investigated extensively since

Smoluchowski, the results have mostly been restricted to only the typical or average

properties. Here, we open up unexplored avenues in this field by developing an action

formalism to calculate probabilities of rare events, thus giving a complete description

of the kinetics of aggregation for the first time using sophisticated analytical and

numerical techniques. Our exact results for CCA and k�nary coalescence are also an

addition to the large deviation theory literature, and generalisable to other reaction-

di↵usion systems such as aggregation with input, aggregation of di↵using particles,

etc.

It is possible to generalise the formalism and algorithm which we have presented in

this thesis, and the associated papers, to standard reaction-di↵usion systems. Some

generalisations of aggregation include input of particles, and full gelation (N = 1).

The model we have considered has infinite number of degrees of freedom. It is also

possible to use this formalism to study reaction-di↵usion systems with other pro-

cesses such as fragmentation, birth etc., especially if number of degrees of freedom

are finite. Using the algorithm, it is possible to numerically compute the rate func-

tions and instanton trajectories in the phase space of kernel parameters µ and ⌫,

where K(i, j) = iµj⌫ + i⌫jµ. This will provide an insight into the existence and form
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of the rate functions, as well as the convexity properties of the instanton trajecto-

ries, in extreme regions, such as those exhibiting no gelations and those exhibiting

instantaneous gelation.
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[18] Christopher M Sorensen, Jérôme Yon, Fengshan Liu, Justin Maughan,

William R Heinson, and Matthew J Berg. Light scattering and absorption

by fractal aggregates including soot. Journal of Quantitative Spectroscopy and

Radiative Transfer, 217:459–473, 2018.

[19] Jordi Colomer, Francesc Peters, and Cèlia Marrasé. Experimental analysis of
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rényi random graphs. Physical Review E, 97(3):032128, 2018.

129



[44] Lasse Ebener, Georgios Margazoglou, Jan Friedrich, Luca Biferale, and Rainer

Grauer. Instanton based importance sampling for rare events in stochastic pdes.

Chaos: An Interdisciplinary Journal of Nonlinear Science, 29(6):063102, 2019.

[45] Carsten Hartmann, Omar Kebiri, Lara Neureither, and Lorenz Richter. Varia-

tional approach to rare event simulation using least-squares regression. Chaos:

An Interdisciplinary Journal of Nonlinear Science, 29(6):063107, 2019.

[46] Frédéric Cérou, Arnaud Guyader, and Mathias Rousset. Adaptive multilevel

splitting: Historical perspective and recent results. Chaos: An Interdisciplinary

Journal of Nonlinear Science, 29(4):043108, 2019.

[47] Freddy Bouchet, Joran Rolland, and Jeroen Wouters. Rare event sampling

methods, 2019.

[48] Tobias Grafke and Eric Vanden-Eijnden. Numerical computation of rare events

via large deviation theory. Chaos: An Interdisciplinary Journal of Nonlinear

Science, 29(6):063118, 2019.

[49] AA Lushnikov. Evolution of coagulating systems. Journal of Colloid and In-

terface Science, 45(3):549–556, 1973.

[50] Alexei A Lushnikov. Coagulation in finite systems. Journal of Colloid and

interface science, 65(2):276–285, 1978.

[51] Rahul Dandekar, R Rajesh, V Subashri, and Oleg Zaboronski. A monte carlo

algorithm to measure probabilities of rare events in cluster-cluster aggregation.

Computer Physics Communications, 288:108727, 2023.

[52] Mark Denny. Introduction to importance sampling in rare-event simulations.

European Journal of Physics, 22(4):403, 2001.

130



[53] Daniel T Gillespie. An exact method for numerically simulating the stochastic

coalescence process in a cloud. Journal of Atmospheric Sciences, 32(10):1977–

1989, 1975.

[54] PGJ Van Dongen and MH Ernst. Dynamic scaling in the kinetics of clustering.

Physical review letters, 54(13):1396, 1985.

[55] Colm Connaughton, R Rajesh, and Oleg Zaboronski. Stationary kolmogorov

solutions of the smoluchowski aggregation equation with a source term. Physical

Review E, 69(6):061114, 2004.

[56] MS Veshchunov. A new approach to the brownian coagulation theory. Journal

of aerosol science, 41(10):895–910, 2010.

[57] R Rajesh, V Subashri, and Oleg Zaboronski. Exact calculation of the proba-

bilities of rare events in cluster-cluster aggregation. Physical Review Letters,

133(9):097101, 2024.

[58] Nikolai V Brilliantov, Wendy Otieno, and PL Krapivsky. Nonextensive su-

percluster states in aggregation with fragmentation. Physical Review Letters,

127(25):250602, 2021.

[59] Aleksei Kalinov, AI Osinsky, Sergey A Matveev, W Otieno, and Nikolai V

Brilliantov. Direct simulation monte carlo for new regimes in aggregation-

fragmentation kinetics. Journal of Computational Physics, 467:111439, 2022.

[60] Robin C Ball, Colm Connaughton, Peter P Jones, R Rajesh, and Oleg Zaboron-

ski. Collective oscillations in irreversible coagulation driven by monomer inputs

and large-cluster outputs. Physical review letters, 109(16):168304, 2012.

[61] Masao Doi. Second quantization representation for classical many-particle sys-

tem. Journal of Physics A: Mathematical and General, 9(9):1465, 1976.

131



[62] Masao Doi. Stochastic theory of di↵usion-controlled reaction. Journal of

Physics A: Mathematical and General, 9(9):1479, 1976.

[63] Luca Peliti. Path integral approach to birth-death processes on a lattice. Jour-

nal de Physique, 46(9):1469–1483, 1985.

[64] AA Ovchinnikov and Ya B Zeldovich. Role of density fluctuations in bimolecular

reaction kinetics. Chemical Physics, 28(1-2):215–218, 1978.

[65] Uwe C. Täuber. Critical Dynamics: A Field Theory Approach to Equilibrium

and Non- Equilibrium Scaling Behavior. Cambridge University Press, 2014.

[66] John Cardy. Reaction-di↵usion processes. A+ A, 100:26, 2006.

[67] Colm Connaughton, R Rajesh, and Oleg Zaboronski. Cluster–cluster aggrega-

tion as an analogue of a turbulent cascade: Kolmogorov phenomenology, scaling

laws and the breakdown of self-similarity. Physica D: Nonlinear Phenomena,

222(1-2):97–115, 2006.

[68] Colm Connaughton, R Rajesh, and Oleg Zaboronski. Breakdown of kolmogorov

scaling in models of cluster aggregation. Physical review letters, 94(19):194503,

2005.

[69] Donald E Knuth. Linear probing and graphs. Algorithmica, 22:561–568, 1998.

[70] George M Hidy, James Rush Brock, et al. Dynamics of aerocolloidal systems.

Pergamon Press, 1970.

[71] RL Drake. Topics in current aerosol research, vol. 3, part 2, 1972.

[72] Colm Connaughton, Arghya Dutta, R Rajesh, and Oleg Zaboronski. Univer-

sality properties of steady driven coagulation with collisional evaporation. Eu-

rophysics Letters, 117(1):10002, 2017.

132



[73] Lynn M Bekris, Chang-En Yu, Thomas D Bird, and Debby W Tsuang. Genetics

of alzheimer disease. Journal of geriatric psychiatry and neurology, 23(4):213–

227, 2010.
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