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Synopsis

In physics, relaxation refers to the process by which a system in an excited state returns to

equilibrium. This can occur through various mechanisms, such as the emission of thermal

radiation or the dissipation of energy into other degrees of freedom. Relaxation phenom-

ena is ubiquitous in nature and is studied in different setups depending on the system of

interest. Some examples in the context are relaxation of a heated liquid to the equilibrium

condition of its environment, relaxation of a charged capacitor as it discharges, relaxation

of a magnetised material as the magnetisation decreases, relaxation of an over compressed

gas, relaxation of a strained solid as it is unstrained and numerous other phenomena. In

order to come to the context of this thesis, we consider the case of hot water relaxing

when suddenly cooled to a lower temperature. Does an initially hotter sample of water

equilibrate faster than an equal volume of cold water? The well-known Newton’s cooling

law, which assumes quasi static relaxation, states that the rate of change of temperature

of an object is proportional to the difference between the temperature of the object and

the temperature of its surroundings. The law predicts that the relaxation time increases

logarithmically with the increase in the initial temperature difference of the system with

respect to its surrounding. Thus, the hotter sample should take longer time to cool, con-

sistent with intuition.

In contrast, E. Mpemba in 1960s showed that water that is initially hotter can indeed

freeze faster than an equal volume of cold water [1]. Clearly, it violates Newton’s cool-

ing law and such anomalous cooling has been referred to as Mpemba effect. Numerous

experiments that have since been done confirm the existence of the anomalous behaviour.

While multiple reasons have been put forward, there is no concensus for the explanation

of Mpemba effect in water. Mpemba effect is not restricted to water and has been observed

experimentally in many different physical systems. Examples include magnetic alloys [2],

polylactides [3], colloidal systems [4], etc. More recently, the Mpemba effect behaviour

has been observed in idealised theoretical models such as spin systems [5, 6, 7, 8, 9, 10],
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(a) (b)

Figure 1: Schematic diagram describing the general scenario of the Mpemba effect: (a)
state A is initially farther in the phase space than state B from the final desired state,
(b) state A which is initially farther in the phase space equilibrates faster illustrating the
Mpemba effect.

discrete state Markovian system [11, 12], particles diffusing in a potential [13, 14, 15],

active systems [16], spin glasses [17], molecular gases in contact with a thermal reser-

voir [18, 19, 20, 21], granular systems [22, 23, 24, 25, 26, 27] and quantum systems [28].

The analysis in terms of these model systems are more tractable and hence provides better

understanding of the Mpemba effect.

The general protocol to study the Mpemba effect is to consider two different initial states

in the phase space of a given physical system. The initial states can be either equilibrium

state or non-equilibrium steady states. Both the initial states are then quenched to a com-

mon final state as shown in Fig. 1(a). As a result of the quench, the system is driven out of

equilibrium till it reaches the final steady or equilibrium state. The question that is asked

in this context is whether the initial state which is initially farther in the phase space from

a given final state can undergo faster relaxation compared to another initially prepared

state of the same system but placed closer to the final state in phase space [see Fig. 1(b)].

In this thesis, we investigate the anomalous behaviour in the relaxation dynamics of both

single particle systems as well as multi-particle systems. The choice of the single particle

Langevin system for the study of the Mpemba effect is directly motivated from experi-

ments on colloidal particles. Granular systems is a prototypical example of a system far

from equilibrium. Most of the studies on Mpemba effect focus on relation to equilib-

2



rium. By studying granular systems, we are able to explore Mpemba effect in nonequilib-

rium context. Also, granular systems is an area where a strong interplay between exper-

iments and analytical calculations is possible, promoting a deeper understanding on the

Mpemba effect. In the following, we summarise our results for Mpemba effect obtained

for Langevin and granular systems.

Mpemba effect in driven granular gases

The system of driven granular gas consists of a dilute collection of particles that undergo

momentum conserving inelastic collisions. The inelastic interaction among the particles

results in the dissipation of kinetic energies of the particles. However, in addition, the

particles are also driven at a constant rate which drives the system to a time invariant non-

equilibrium steady state. In this setup, the relaxation dynamics of the system is studied as

it is quenched from a non-equilibrium steady state to another. In this setup, the Mpemba

effect is identified by measuring the time evolution of the total kinetic energy of the system

as the system relaxes from an initial to a final state. The previous approaches for the study

of the Mpemba effect in both smooth (only translational degrees of freedom are consid-

ered) and rough granular gases (both translational and rotational degrees of freedom are

considered) looked at the existence of the such anomalous relaxations for non-stationary

initial states of the system. But the final state of the system is a non-equilibrium steady

state. In the analysis for both the rough and smooth granular gas, the velocity distribu-

tion at all times is approximated by a Gaussian or Gaussian and first order corrections,

respectively, making the calculations perturbative in nature.

Nature of the initial condition: We try to understand the nature of the initial conditions

required for the existence of the Mpemba effect in the system of driven granular gases

through an exact analysis. We consider the inelastic Maxwell model for granular gas

where the equations for the two point correlations close among themselves resulting in

3



a coupled set of linear equations allowing for an exact solution. This linearity happens

to be natural to the model and thus does not require any approximations that have been

employed in models where the collision rates are velocity dependent. To demonstrate

the existence of the Mpemba effect, we determine the conditions under which a hotter

system relaxes faster than a cooler system when quenched to a temperature lower than

both. We investigate the existence of the Mpemba effect for both mono-dispersed and bi-

dispersed Maxwell gases. For the case of mono-dispersed Maxwell gas, which consist of

only one type of particles, we show that the Mpemba effect is possible only if the initial

states do not correspond to steady states. On the other hand, for bi-dispersed Maxwell

gas, consisting of two types of particles, there is a range of parameters for which the

Mpemba effect exists, even when the states from which the quench is done are restricted

to valid steady states. In a similar framework, we also demonstrate the existence of the

inverse Mpemba effect where a system is heated instead of cooled, i.e., a system at a

lower initial temperature relaxes to a high temperature state faster than another system

with an intermediate initial temperature. We also demonstrate the existence of a strong

Mpemba effect in the binary Maxwell gas which refers to the phenomenon wherein the

system at higher temperature relaxes to a final steady state exponentially faster, namely

with a larger exponential rate compared to other initial conditions.

Anisotropically driven granular gas: The existence of the Mpemba effect for the case of

isotropically driven granular gases is far from experimental realisation as the initial states

from where the quench is done involves a non-stationary state. But we demonstrate the

existence of the Mpemba effect starting from steady state initial conditions by considering

anisotropically driven granular gases. We present analysis for the Mpemba effect in such

systems for two different cases. First we present a kinetic theory analysis for the Mpemba

effect in a system of two-dimensional granular gas composed of identical, smooth, inelas-

tic hard particles. The particles evolve through momentum conserving inelastic binary

collisions. The rate of collison between two particles is proportional to the relative ve-

locities of the particles. In addition, the particles are anisotropically driven at a constant

4



rate such that at long times, the system reaches a stationary state. Here, we derive the

time evolutions for mean kinetic energies of the particles based on the Enskog-Boltzmann

equation for granular gases with the simplifying assumption that the velocity distribution

of the particles is a gaussian. We linearise the time evolution equations by considering

initial states close to the final stationary state to derive the condition for the existence

of the Mpemba effect. The results for the spatially homogeneous system is also verified

with the results of molecular dynamics simulations of hard discs in two dimensions. The

good agreement between the two results show that the results continue to hold even for

spatially extended systems. Using the same analysis, we also demonstrate the existence

of the inverse Mpemba effect where the system is heated instead of being cooled and also

the existence of the strong Mpemba effect where the initially hotter system cools at an ex-

ponentially faster rate leading to smaller equilibration time. The analysis shows that the

ansiotropic driving is the key to demonstrate the Mpemba effect from steady state initial

conditions. Such a set up should allow for an experimental realisation of the Mpemba

effect in granular systems as anisotropic driving can be achieved by different amplitudes

and frequency of shaking in the two directions.

We also do an exact analysis of the system of monodispersed inelastic gas with anisotropic

driving based on the inelastic Maxwell model in two dimensions. In the Maxwell gas, the

rate of collision is independent of the relative velocities of the particles. The Maxwell

gas allows for a rigorous analysis and at the same time retaining the qualitative features

of that of a more realistic collision model. The equations for the time evolution of the

relevant two point velocity correlations for the Maxwell gas form a closed set of equations.

We analyse these equations to determine the condition and the parameter regime for the

existence of the Mpemba effect. We demonstrate the existence of the Mpemba effect and

its inverse for steady state initial conditions. In this analysis, we also demonstrate the

existence of the strong Mpemba effect where for certain specific initial steady states, the

equilibration rate is exponentially faster compared to any other initial steady states. The

exact analysis for the anisotropically driven Maxwell gas puts the kinetic theory results

5



for the Mpemba effect, which depended on many simplifying assumptions, on a more

sound footing.

Different measures to study the Mpemba effect: In driven granular gases, granular tem-

perature or the mean kinetic energy of the system is used to track the evolution of the

system [22, 24, 23, 25, 26, 27] as it relaxes from an initial state to a final state. The

system with higher granular temperature is considered further away from the final steady

state and is referred to as the hot system whereas the system with lower granular temper-

ature is referred to as the colder system. Here, the Mpemba effect occurs if the system

which is further from final steady state relaxes faster than an identical system which is ini-

tially closer to the final state when both the systems are quenched to the common steady

state, having granular temperature lower than both the initial temperatures.

However, the measure of mean kinetic energy seems ad-hoc and there is an ambiguity in

the present definition. It is because the time evolution of the system is being projected

onto only one of the variables which is the total granular temperature. In that way, the

demonstration of the time evolution of the system do not provide the complete picture

and it is not known a priori whether mean kinetic energy correctly predicts the distance

of the initial states from the final steady states. It is also not clear whether one observes

the Mpemba effect if the evolution of the system is described in the phase space of all the

relevant variables instead of projecting the evolution in one of the variables.

In order to address the issues related to the use of a certain measure, we introduce several

other measures such as Manhattan measure (L1), Euclidean measure (L2) and Kullback-

Leibler (KL) divergence which can describe the evolution of the system in the complete

phase space of all the relevant variables. We do the analysis in the setup of anisotropically

driven granular gas [26, 27] as such a model shows the Mpemba effect for initial steady

states. We derive the criteria for the existence of the Mpemba effect with the various mea-

sures and show the non-universality of the various definitions in predicting the existence

of the Mpemba effect. The non-universality in the description of the Mpemba effect using
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the various measures is in contrast to the systems obeying Markovian dynamics where all

the measures show qualitatively similar behaviour. It is because the distance functions sat-

isfy the following properties [11]: (1) as the system relaxes toward thermal equilibrium,

the distance function is monotonically non-increasing with time, (2) for three tempera-

tures Th > Tc > Tb, where Tb is the temperature of bath, the distance from Tb is larger

for Th compared to Tc, and (3) the distance function is a continuous, convex probability

distribution function. As a result, there is an one to one correspondence between the dis-

tance from the final steady state and the initial temperature difference of the systems from

that of the final steady state irrespective of the choice of the various measures. Because

of the above features, the identification of the Mpemba effect is indifferent to the choice

of the distance function. However, granular systems have certain differences compared

to the systems studied in Refs. [11, 14]. It is a system far from equilibrium. Also, it is

an athermal system with no natural definition of temperature. As a result, the distance

measures defined for the study of the Mpemba effect in the case of granular systems do

not satisfy the above features and hence there is lack of universality among the various

measures.

Mpemba effect in Langevin system

The system of a single particle Langevin system consists of a Brownian particle immersed

in a heat bath and diffusing in a potential landscape. Here, the initial state of the system is

an equilibrium state corresponding to the bath temperature. The relaxation dynamics of

such a system is studied in the overdamped limit as the bath temperature is quenched to

some lower temperature. In order to probe the existence of the Mpemba effect, we com-

pare the relaxations of two such out-of-equilibrium systems. The two systems are initially

prepared at the equilibrium of the two different temperatures, Th and Tc corresponding to

a comparatively hot and a cold temperature of a bath respectively. Both the systems are

7



Figure 2: Schematic diagram of the potential landscape

then quenched to an even colder bath temperature and their relaxation is studied. In this

study, the Mpemba effect is evaluated by defining certain measures for the distance of the

systems from their final equilibrium state in the space of probability densities. To this end,

the probability densities of the initially hot and the comparatively cooler system is known

in terms of their equilibrium (Boltzmann) densities of the hot and the cold temperature.

As both the systems are then quenched into an environment with a colder temperature,

the probability densities of the systems evolve in time toward the equilibrium of the final

temperature. By tracking the distance in the space of probability densities, the Mpemba

effect can be identified.

We analyse the various key configurations of the external potential as shown in Fig. 2

that lead to the Mpemba effect. The choice of the double well piece-wise linear poten-

tial allows for an exact analysis of the problem. We show that the presence of a larger

potential barrier between its two wells leads to the Mpemba effect. The explanation is

given in terms of the concentration of the population of the Brownian particle as a result

of modulation of the external potential. The larger barrier leads to a significant amount

of population concentration for the initially colder system in the intermediate energy well

or the metastable state as compared to the initially hotter system. The population concen-

tration of the initially hotter system is effectively flat across the domain of the potential

8



and does not experience the metastable state. As a result, the colder system takes effec-

tively more time to relax to the equilibrium configuration as compared to the hotter system

which leads to the Mpemba effect.
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4.2 The time evolution of the total energy, Etot(t) for anisotropically driven
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tot
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P

di f
(0)=-7.93 and E

Q
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P
tot
(0) >
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4.4 (a) The time evolution of the total energy, Etot(t) for anisotropically

driven systems P and Q of a two dimensional inelastic Maxwell gas driven

along a single direction with initial conditions E
P
tot
(0)=28, E

Q

tot(0)=22,

E
P

di f
(0)=26 and E

Q

di f
(0)=5 such that E

P
tot
(0)> E

Q

tot(0), which satisfies the

condition for the Mpemba effect as described in Eq. (4.36). The other

parameters decribing the systems are chosen to be r=0.5 and rwx = 0.6. P

relaxes to the steady state faster than Q, though its initial energy is larger.

The time at which the trajectories cross each other is t = 1.07 as given by

Eq. (5.11). (b) DEtot/DEdi f –A phase diagram showing regions where the

Mpemba effect is observed and A [given by Eq. (4.45)] is a function of the

parameters of the system. The region below the line given by Eq. (4.36)

shows the Mpemba effect whereas the region on the other side of the line

does not show the Mpemba effect. . . . . . . . . . . . . . . . . . . . . . 117
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5.1 The time evolution of anisotropically driven (a) inelastic Maxwell and (b)

hard disc granular gas is illustrated in terms of the mean kinetic energy,

Etot for two systems P and Q. The initial conditions for the inelastic

Maxwell gas in (a) are E
P
tot
(0) = 1.148, E

Q

tot(0) = 0.92, E
P

di f
(0) =�0.595

and E
Q

di f
(0) = 0.455, corresponding to the choice of the driving strengths

sP
x
= 0.25, sP

y
= 1.0, sQ

x = 0.6 and sQ

y = 0.45. The choice of the other

parameters defining the system are r = 0.3, rwx = 0.88, rwy = 0.39, sx =

0.1 and sy = 0.05. The initial conditions for the hard disc granular gas in

(b) are E
P
tot
(0) = 10.05, E

Q

tot(0) = 10.04, E
P

di f
(0) = 2.797 and E

Q

di f
(0) =

1.979, corresponding to the choice of the driving strengths sP
x
= 0.476

and sP
y
= 0.003 and sQ

x = 0.405, sQ

y = 0.070. The final steady state is

characterized by E
st
tot

= 10.0 and E
st

di f
= 2.82 corresponding to the driving

strengths sx = 0.476 and sy = 7.351⇥ 10�5. The choice of the other

parameters defining the system are r = 0.65, m = 1, n = 0.02. P relaxes

to the steady state faster than Q, though it is initially at a larger distance

compared to the final steady state. . . . . . . . . . . . . . . . . . . . . . 132

5.2 The time evolution of the anisotropically driven inelastic Maxwell gas

in terms of the Euclidean measure, L2(t) for two systems P and Q with

initial conditions LP

2 (0) = 6.34 and LQ

2 (0) = 6.15, shows two crossings

as illustrated in (a) and (b) for the different times. The multiple crossing

times are obtained using Eq. (5.16). The choice of the other parameters

defining the system are r = 0.1, rwx = 0.95, rwy = 0.39, sx = 1.6 and

sy = 1.1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135
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5.3 The time evolution of anisotropically driven (a) inelastic Maxwell and

(b) hard disc granular gas is illustrated in terms of Euclidean measure,

L2(t) for two systems P and Q. The initial conditions for the inelastic

Maxwell gas in (a) are LP

2 (0) = 3.13 and LQ

2 (0) = 2.79, corresponding

to the choice of the driving strengths sP
x
= 1.9, sP

y
= 1.2, sQ

x = 1.55

and sQ

y = 2.0. The driving strengths corresponding to final steady state

are sx = 1.6 and sy = 1.1 whereas the choice of the other parame-

ters defining the system are r = 0.3, rwx = 0.95, rwy = 0.39. The ini-

tial conditions for the hard disc granular gas in (b) are LP

2 (0) = 0.432

and LQ

2 (0) = 0.208, corresponding to the choice of the driving strengths

sP
x
= 0.491 and sP

y
= 7.572⇥ 10�5 and sQ

x = 0.444, sQ

y = 0.037. The

driving strengths corresponding to final steady state are sx = 0.476 and

sy = 7.351⇥ 10�5 whereas the choice of the other parameters defining

the system are r = 0.65, m = 1 and n = 0.02. P relaxes to the steady state

faster than Q, though its initial Euclidean distance from the final steady

state is larger. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135
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5.4 The time evolution of anisotropically driven (a) inelastic Maxwell and

(b) hard disc granular gas is illustrated in terms of Manhattan measure,

L1(t) for two systems P and Q. The initial conditions for the inelastic

Maxwell gas in (a) are LP

1 (0) = 7.54 and LQ

1 (0) = 7.06, corresponding

to the choice of the driving strengths sP
x
= 2.2, sP

y
= 1.2, sQ

x = 0.1 and

sQ

y = 1.2. The driving strengths corresponding to final steady state are

sx = 1.6 and sy = 1.1 whereas the choice of the other parameters defining

the system are r = 0.9, rwx = 0.88 and rwy = 0.3. The initial conditions

for the hard disc granular gas in (b) are LP

1 (0) = 0.52 and LQ

1 (0) = 0.42,

corresponding to the choice of the driving strengths sP
x
= 0.466 and sP

y
=

0.023 and sQ

x = 0.444, sQ

y = 0.037. The driving strengths corresponding

to final steady state are sx = 0.476 and sy = 7.351⇥ 10�5 whereas the

choice of the other parameters defining the system are r = 0.65, m = 1

and n = 0.02. P relaxes to the steady state faster than Q, though its initial

Manhattan distance from the final steady state is larger. . . . . . . . . . . 138
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5.5 The time evolution of anisotropically driven (a) inelastic Maxwell and (b)

hard disc granular gas is illustrated in terms of KL divergence measure,

DKL(t) for two systems P and Q. The initial conditions for the inelastic

Maxwell gas in (a) are D
P

KL
(0) = 0.82 and D

Q

KL
(0) = 0.64, correspond-

ing to the choice of the driving strengths sP
x
= 1.4, sP

y
= 4.0, sQ

x = 2.45

and sQ

y = 2.3. The driving strengths corresponding to final steady state

are sx = 1.5 and sy = 0.9 whereas the choice of the other parameters

defining the system are r = 0.3, rwx = 0.88 and rwy = 0.39. The initial

conditions for the hard disc granular gas in (b) are D
P

KL
(0) = 0.01 and

D
Q

KL
(0) = 0.0078, corresponding to the choice of the driving strengths

sP
x
= 7.148, sP

y
= 0.026, sQ

x = 1.144 and sQ

y = 5.609. The driv-

ing strengths corresponding to the final steady state are sx = 6.62 and

sy = 0.026, whereas the choice of the other parameters defining the sys-

tem are r = 0.65, m = 1, n = 0.02. P relaxes to the steady state faster than

Q, though its initial KL divergence with respect to the final steady state is

larger. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140

5.6 The time evolution of the two systems P and Q for an anisotropically

driven inelastic Maxwell gas is illustrated for the following measures:

(a) total energy, (b) Euclidean measure, (c) Manhattan measure and for

(d) KL divergence. The initial conditions for the various measures are

identical and are given in terms of the driving strengths for systems P and

Q as (sP
x
= 1.9,sP

y
= 1.2) and (sQ

x = 1.55,sQ

y = 2.0). The choice of the

other parameters defining the system are r = 0.3, rwx = 0.95, rwy = 0.39,

sx = 1.6 and sy = 1.1. The existence of the Mpemba effect and the notion

of “hot“ and “cold” system in terms of distance from the final steady

state for a given pair of initial conditions is not unique among the various

measures. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142
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5.7 The phase diagram in the (dE
Q

di f
/dE

P
tot

)-(dE
Q

tot/dE
P
tot
) plane shows the

existence of the Mpemba effect in the driven inelastic Maxwell gas for

the use of different distance measures: (a) total energy, (b) Manhattan, (c)

Euclidean, and (d) KL-divergence. The red (green) region corresponds to

absence (presence) of the Mpemba effect, while the regions outside the

triangular shape are not valid steady states. The white regions inside the

triangle in (d) is due to discrete sampling of phase space. The choice of

the parameters defining the system are r = 0.4, rwx = 0.44, rwy = 0.95,

dE
P
tot

= 1.00 and dE
P

di f
/dE

P
tot

= 0.53, which are kept constant across all

the various measures. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143

5.8 The phase diagram in the (dE
Q

di f
/dE

P
tot

)-(dE
Q

tot/dE
P
tot
) plane shows the

existence of the Mpemba effect in the driven hard disc granular gas for the

use of different distance measures: (a) total energy, (b) Manhattan, and (c)

Euclidean. The red (green) region corresponds to absence (presence) of

Mpemba effect, while the white regions are not accessible. The choice of

the parameters defining the system are n = 0.02, s = 1, m = 1, r = 0.1,

dE
P
tot

= 1.00 and dE
P

di f
/dE

P
tot

= 0.11, which are kept constant across all

the various measures. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144

6.1 Schematic diagram of the piecewise linear double well potential. The

boundaries of the potential are situated at �xmin and xmax. The two min-

ima of the double well potential are located at �axmin and bxmax, where

a,b 2 (0,1). The parameters k1, k2, k3 and k4 refer to the various slopes.

DU depicts the difference in the depths of the two wells. . . . . . . . . . 154
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6.2 Modulation of the potential and its effect on the population distribution

of the Brownian particle in the two wells. Panel (a) and (c) corresponds

to different configurations of the potential well. The parameters of the

potential in (a) are chosen to be a = 0.3, b = 0.3, xmin = p , xmax = p ,

k1 = 2, k2 = 5, k3 = 6 and k4 = 7 and in (c) a = 0.5, b = 0.3, |xmin|= p ,

xmax = p , k1 = 0.1, k2 = 0.1, k3 = 0.1 and k4 = 0.9. Panels (b) and (d)

depict the population distribution corresponding to the external potentials

in (a) and (c) respectively for the initial temperatures Th (red), Tc (blue)

and final temperature Tb (black) with Th > Tc > Tb. . . . . . . . . . . . . 164

6.3 Illustration of the absence of the Mpemba effect in an asymmetric double

well potential indicating that asymmetry is not sufficient. (a) Asymmetric

shape of the potential with different depths for the left and right wells

while keeping all the other parameters of the potential symmetric about

the origin. The potential heights at its left, center and right edges are

equal and so are the positions of the two wells about the origin. The

shape of the potential corresponds to the choice of the parameters xmax =

xmin = p , a = b = 0.5, k1 = k2 = 0.32 and k3 = k4 = 0.57. (b) Monotonic

evolution of |a2(T )| with T showing the absence of the Mpemba effect.

Inset: Initial population distribution of the confined Brownian particle for

the chosen temperatures Th = 50 (red) and Tc = 10 (blue) showing almost

similarly distributed populations across the potential landscape. The final

equilibrium distribution (black) corresponds to bath temperature Tb = 1. . 168
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6.4 Illustration of the Mpemba effect in a confined double well potential with

equal domain widths. (a) Shape of the potential with equal domain widths

(3 units) about the origin. The asymmetry in the potential configuration

is introduced through the choice of different slopes in separate domains.

The configuration of the potential is determined by the choice of the pa-

rameters: xmax = xmin = p , a = b = 0.1, k1 = 2, k2 = 5, k3 = 6 and

k4 = 7. Inset: Initial population distribution of the confined Brownian

particle for the chosen temperatures Th = 1000 (red) and Tc = 7 (blue)

such that |ah

2| < |ac

2|. This shows a significant population distribution for

Tc around the metastable state compared to that (which is almost flat) of

Th. The final equilibrium distribution (black) corresponds to bath tem-

perature Tb = 1. (b) Non-monotonic evolution of |a2(T )| with T clearly

indicates the presence of the Mpemba effect in this set-up. . . . . . . . . 170

6.5 DU-Th phase diagram illustrating the region of the Mpemba effect in the

case of double well potential with equal domain widths. The phase di-

agram is obtained by varying the depth of the right well of the potential

while keeping the depth of its left well fixed and by changing the temper-

ature ratio. The phase space is partitioned into two domains: one where

the Mpemba effect is present corresponding to the criteria |ah

2|< |ac

2|, and

other complementary region. The phase diagrams correspond to different

choices of the position of the potential wells which are symmetric about

the origin and are determined by: (a) a = b = 0.1, (b) a = b = 0.5. . . . 171
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6.6 Illustration of the Mpemba effect in a confined double well potential with

unequal domain widths while keeping every other parameters symmet-

ric about the origin. (a) Shape of the potential with unequal domain

widths (xmax 6= xmin) about the origin. The various slopes of the poten-

tial are kept equal. The configuration of the potential is determined by

the choice of the parameters: xmin = p , xmax = 1.5p , a = b = 0.1 and

k1 = k2 = k3 = k4 = 7. Inset: Initial population distribution of the con-

fined Brownian particle for the chosen temperatures Th = 50 (red) and

Tc = 10 (blue) such that |ah

2| < |ac

2|. This shows a significant population

distribution around the metastable state for Tc compared to the same for

Th. The final equilibrium distribution (black) corresponds to the bath tem-

perature Tb = 1. (b) Non-monotonic evolution of |a2(T )| with T confirms

the presence of the Mpemba effect in this set-up. . . . . . . . . . . . . . 173

6.7 DU-Th phase diagram illustrating the region of the Mpemba effect for the

case of double well potential with unequal domain widths. The phase

diagram is constructed in the similar manner as in Fig. (6.5). The phase

diagrams in the left- and right- panel correspond to different choices of

the widths for the right domain of the potential : (a) xmax = 1.2p , (b)

xmax = 1.5p keeping the width of its left domain fixed at xmin = p . The

position of the two wells are determined by the parameters a = b = 0.1

for both the cases. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174
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6.8 Illustration of the Mpemba effect in a confined single well potential with

no metastable state. (a) Shape of the single well potential is determined by

the choice of the parameters: xmax = xmin = p , a = b = 0.5, k2 = k3 = 0,

k1 = 3.18 and k4 = 5.73. (b) Non-monotonic evolution of |a2(T )| with

T showing the presence of the Mpemba effect. (c) Initial population dis-

tribution of the confined Brownian particle for the chosen temperatures

Th = 48 (red) and Tc = 6 (blue). Here, |ah

2| < |ac

2| which shows a signif-

icant difference in the population density at the minimum of the poten-

tial well. The final equilibrium distribution (black) corresponds to bath

temperature Tb = 1. The Mpemba effect disappears for the above con-

figuration of the potential if the depth of the potential well is decreased

as shown in (d). The modified potential configuration corresponds to a

change in the slopes to k1 = 0.38 and k4 = 2.93 while keeping the other

parameters same as in the earlier case. (e) Monotonic evolution of |a2(T )|

with T shows the absence of the Mpemba effect for the modified configu-

ration. (f) Initial population distribution of the confined Brownian particle

for the same pair of temperatures Th = 48 (red) and Tc = 6 (blue) show

nearly similar population distribution at the minimum of the potential well. 177

6.9 DU-Th phase diagram illustrating the region of the Mpemba effect for the

case of a single well potential. The phase diagram is obtained as before

by varying the depth of the potential minimum & the temperature ratio.

Here, there are two distinct regions and the criterion |ah

2|< |ac

2| marks the

one where the Mpemba is observed. Here, Tc = 4 as before and the other

parameters determining the configuration of the potential are: a = b = 0.5.178
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6.10 Illustration of the Mpemba effect in terms of the distance measures: the

norm measure (L1) in left panel (a) and Kullback-Leibler (KL) divergence

measure in right panel (b). The configuration of the potential is the same

as in Fig. 6.4 where it is determined by the choice of the parameters:

xmax = xmin = p , a = b = 0.1, k1 = 2, k2 = 5, k3 = 6 and k4 = 7. The

temperatures of the initially hot and the cold systems are Th = 100 and

Tc = 8 respectively. Both the plots confirm the existence of the Mpemba

effect. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179
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Chapter 1

Introduction

1.1 Mpemba effect

Does a hotter system indeed cool faster? We will be addressing this counter-intuitive

question in this thesis.

Consider the simple experiment: Let us put two equal volume of water that are initially

heated to two different temperatures and they are placed in a freezer at the same time. Now

let us ask the question whether the initially hotter sample can freeze faster. But common

sense suggests that the initially colder sample should freeze faster as it is closer to the

freezing temperature. A similar kind of phenomena is observed by plumbers reporting

the damage of hot water pipes in winter as they burst in subzero temperature whereas the

cold water pipes remain in good shape.

Such anomalous phenomena is an apparent paradox that finds its description in the science

literature from the time of Aristotle, Rene Descartes and Sir Francis Bacon. However, the

modern terminology for the anomalous behaviour in the relaxation dynamics is called the

Mpemba effect as it finds its name after Erasto Mpemba who was a Tanzanian school

student when he did the first scientific study of the anomalous relaxation phenomenon for
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the case of water, along with the physicist Denis Osborne who was at University College

in Dar es Salaam, in the 1960s. The scientific study about the Mpemba effect finds its

description in the 1969 paper [1] and it has an interesting story behind the discovery

which goes as:

“My name is Erasto B. Mpemba, and I am going to tell you about my discovery, which

was due to misusing a refrigerator.”

Mpemba and his friends used to make ice-creams in school. However, space was limited

in the school’s freezer. As a result, Mpemba prefers to skip waiting for the mixture of

boiled milk and sugar to cool down before putting it in the freezer as is usually followed

by his other friends in order to keep the freezer in order. After certain time has passed

by, Mpemba finds that his mixture of milk and sugar has turned into ice whereas others’

mixture is still in a thick liquid state. Later Mpemba and Osborne found evidence for the

anomalous behaviour in a proper scientific study with the freezing of water. However,

Osborne had concluded that the tests were crude and more sophisticated experiments

would be required to know the exact cause of the effect.

In proper terms, the Mpemba effect refers to the counter-intuitive relaxation phenomenon

wherein a system initiated at a hot temperature equilibrates faster than the one prepared

at a lower temperature when both are quenched to a cold temperature bath. Clearly, it

contradicts Newton’s law of cooling which states that the relaxation time of a system

increases logarithmically with the increase in the initial temperature with respect to its

surrounding. However, in Newton’s law of cooling, it is inherently assumed that the

cooling process is quasi-static and in that case, the initially hot system always lags behind

the initially cold system as they relax towards a common state. Here, the cooling process

involves quenching which is completely different from quasi-static cooling and is rather

a far-from-equilibrium relaxation process.

The case of water is still debated and there is no clear consensus as of today about the

cause of the effect in water. The numerous possible causes that are cited for the case
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of water involve supercooling, convection, presence of impurities, hydrogen bonding,

etc. One such study for the case of water also casts doubt about the presence of the

Mpemba effect [29]. The Mpemba effect, as described in the case of water, involves a

phase transition where the final phase is ice and the initial phase is water or steam, the

Mpemba like effect has been observed in other physical systems that does not involve a

phase transition. The measurement of freezing time in the study of the Mpemba effect

brings ambiguity in the analysis as water may exhibit supercooling where its temperature

goes below the freezing time without undergoing the freezing. Moreover, as the water

equilibrates, the temperature varies throughout the volume as it is out-of-equilibrium.

As a result, the particles at the boundary layer of the volume of the water experiences

the freezing environment while those that are present in the bulk are still warm. Hence,

variables like temperature are not well defined in this scenario and brings ambiguity in

the measurement.

The other physical systems where this effect has been demonstrated experimentally that

does not involve a phase transition and does not involve the measurement of temperature

that brings ambiguity in the out-of-equilibrium scenario includes magnetic alloys [2] and

polylactides [3]. For example, in the case of magnetic alloys, two identical systems are

prepared but with different initial magnetisations. Both the systems are quenched to a

same magnetisation state which is lower than the initial magnetisations of the two sys-

tems. As both the systems relax towards the final equilibrium state, magnetisation of the

systems is measured as a function of time. It is observed that the system with the initial

equilibrium state having magnetisation further away from that of the final state relaxes

faster compared to the system which is initially equilibrated to a state having magnetisa-

tion closer to the final state, thus exhibiting a Mpemba like behaviour.

On the theoretical front, the Mpemba effect has been studied in various model systems

that provides more rigorous understanding of the effect. Such systems includes spin sys-

tems [5, 6, 7, 8, 9, 10], discrete state Markovian system [11, 12], particle diffusing in a po-
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(a) (b)

Figure 1.1: Schematic diagram describing the general scenario of the Mpemba effect

tential [13, 14, 15, 30], active systems [16], systems with phase transitions [31, 8, 32, 33],

spin glasses [17], molecular gases in contact with a thermal reservoir [18, 19, 20, 21],

granular systems [22, 23, 24, 25, 26, 27, 34] and quantum systems [28, 35]. We will learn

about the various models and their framework in slightly more details in the later chapters.

All the studies indicate to the fact that the Mpemba effect is more general and can be

studied as a general relaxation phenomena in the physical systems for both thermal as

well as athermal systems (where temperature is not even the physical observable that can

be tracked to study the relaxation). Figure 1.1 shows the general protocol of studying the

Mpemba effect in any out-of-equilibrium system. It consists of two different initial states

of a given system. The states can be equilibrium or the non-equilibrium steady states.

Both the initial states are quenched to a common final state following some mechanism

which is system dependent. The relevant question of interest is whether the system that

starts from an initially further distance in phase space from the final desired state actually

relaxes faster compared to the state which is initially closer to the final state, thus showing

a Mpemba like behaviour in the relaxation dynamics of out-of-equilibrium systems.

In this thesis, we study the Mpemba effect in the two class of stochastic systems namely

the interacting many particle driven granular gases and the model of single particle

Langevin system. The Mpemba effect is highly counter-intuitive and it is required to

study the phenomena in terms of simple models that have experimental relevance in or-

der to underpin the cause of the effect. The motivation for the choice of the system of
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driven granular gas is that it is a prototypical far from equilibrium system which provides

a strong interplay between theoretical studies and the experiments at the same time. On

the other hand, our study of the Mpemba effect in the model of single particle Langevin

system is motivated from an experimental setup [4]. Unlike the case of driven granular

gas where the initial and final states are steady sates here, the states are in equilibrium

and described by the Boltzmann distribution. Our studies of the Mpemba effect in both

the systems consist of analytically tractable models and the results are also verified using

numerical simulations.

Now we briefly discuss the systems of many particle driven granular gas and single parti-

cle Langevin system.

1.2 Driven granular gas

The system of driven granular gas is a dilute collection of identical point particles, hard

discs or spheres in one, two and three dimensions respectively. In this thesis, we will

be constrained to one and two dimensions for the purpose of analytical tractability. The

particles undergo inelastic collisions which are momentum conserving. The change in

velocities of two particles undergoing collision and having velocities v1 and v2 in two

dimensions is given by

v0
i
= vi �

1+ r

2
[(vi �v j).ê]ê,

v0
j
= v j +

1+ r

2
[(vi �v j).ê]ê,

(1.1)

where r is the co-efficient of restitution and ê is the unit vector along the line joining

the centres of the particles at contact. Note that the case of r = 0 corresponds to com-

pletely inelastic collisions where two particles stick together after collision whereas r = 1

corresponds to elastic collisions. The collision between any pair of particles having ve-

locities v1 and v2 is proportional to the absolute of their relative velocities, |v1 � v2|.
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Figure 1.2: Schematic diagram of a driven granular setup. The discs represents the gran-
ular particles in two dimensions. The arrows of different lengths represent the different
velocities of the particles. The particles are driven at a constant rate with the driving
strength x0.

In the absence of any external supply of mechanical energy, the mean kinetic energy of

the particles decreases with time. In order to compensate for the loss of kinetic energies

during the collision, the particles are driven at a constant rate ld . The stochastic driving

is modelled as

v0 =�rwv+⌘, (1.2)

where rw is a parameter that reduces the velocity and ⌘ is a noise taken from a fixed

distribution f(⌘). The form of the driving ensures that the system reaches a steady state

in a long time. The motivations for the chosen form of driving will be discussed in the

later part of this section. The scenario of the driven granular system in two dimensions is

depicted in Fig. 1.2 where the particles are discs and are moving with different velocities

resulting in collisions and at the same time, the particles are driven with driving strength

x0.
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On the theoretical front, the evolution of the system in the presence of dissipation and

driving is studied using the Enskog-Boltzmann’s description of the kinetic theory of gases.

Enskog-Boltzmann equation describes the particle collision rules in terms of the velocity

distribution function f (x,v, t) which is defined as the probability to find a particle at

position x with velocity v at time t. The integral of the velocity distribution function

f (x,v, t) over the phase space gives the total number of particles, N present in the system

Z
f (x,v, t)dxdv = N. (1.3)

We will consider the case of homogeneous systems where the distribution function is

independent of the position x of the particles and in that case,

Z
f (v, t)dv = n, (1.4)

where n is the number density of the particles. The description of the system in terms of

Enskog-Boltzmann equation involves setting up a master equation for the single particle

velocity distribution function f (v, t) at any time t. The master equation takes into account

the gain and loss terms from the collision and driving events and is given by

∂
∂ t

f (v1, t) = c(s)s
R

dv2
R

dqQ(�v12.e)|v12.e|
h

1
r2 f (v

00
1, t) f (v

00
2, t)� f (v1, t) f (v2, t)

i

�ld f (v1, t)+ld

R R
d⌘dv0

1f(⌘) f (v0
1, t)d [�rwv0

1 +⌘�v1]. (1.5)

The details of the derivation for the Enskog-Boltzmann equation and the various terms

are explained in the Appendix A. The contribution from the driving terms in the Enskog-

Boltzmann equation is of particular interest for the system of driven granular gases as

there are certain motivations for the chosen form of driving [see Eq. (1.2)]. The motiva-

tions for the choice of driving scheme are detailed in the Appendix B.

The system of driven granular gas is of particular interest as it provides a strong inter-
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play with experiments. There exists vast literature on the experimental studies regarding

various aspects of driven granular systems. Experimental setups of the driven granular

systems in two dimensions generally consists of a collection of millimetre sized parti-

cles (such as steel balls or active disks resting on circularly aligned tilted elastic legs)

resting on a two dimensional surface. The surface is vibrated along the vertical direc-

tion of the plane by external means to provide the input of kinetic energies to the parti-

cles [36, 37, 38, 39, 40, 41, 42, 43, 44].

The characterisation of the steady state velocity distribution f (v) of driven granular sys-

tems is one such aspect and is one of the central problem in the kinetic theory of driven

granular gases. We briefly discuss about the nature of velocity distribution of driven gran-

ular gases in Appendix C.

Inelastic Maxwell gas

As discussed earlier, the system of granular gas is modelled as collection of agitated hard

discs or spheres in two and three dimensions respectively. However, the fact that the rate

of collision in the model of hard discs or spheres is proportional to the relative velocities

of the colliding particles hampers the analytical tractability of the model. In that case, the

collision moments cannot be expressed in terms of finite number of velocity moments.

Thus, in order to overcome the drawbacks of hard disc or hard sphere model of granular

gas, a simplified model is introduced where the rate of collision among the particles is

independent of their relative velocities. The collision between the particles take place

with an associated constant rate. Such a simplification in the collision dynamics captures

the major features of the granular gas while allowing for an exact analysis.
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Table 1.1: Different setups of the driven granular system.

Model Collision rate Driving
Mono-dispersed Maxwell gas (1D) Constant Isotropic drive

(one type of particle)
Bi-dispersed Maxwell gas (1D) Constant Isotropic drive

(two species of particles: A & B) (different strengths for A & B)
Mono-dispersed hard disc granular gas (2D) Velocity dependent Anisotropic drive

(different strengths along x & y)
Mono-dispersed Maxwell gas (2D) Constant Anisotropic drive

(different strengths along x & y)

The Enskog-Boltzmann equation for the inelastic Maxwell gas simplifies to

∂
∂ t

f (v1, t) = c(s)s
R

dv2
R

dq
h

1
r2 f (v

00
1, t) f (v

00
2, t)� f (v1, t) f (v2, t)

i

�ld f (v1, t)+ld

R R
d⌘dv0

1f(⌘) f (v0
1, t)d [�rwv0

1 +⌘�v1]. (1.6)

We will be studying the Mpemba effect in driven granular gases with both the models

of hard disc granular gas as well as the inelastic Maxwell model. Although the analysis

based on the model of hard disc granular gas requires certain approximations, we provide

numerical evidence about the validity of such approximations in the analysis. On the

other hand, we derive exact results for the case of inelastic Maxwell model.

Various variants of the driven granular setups

In this thesis, we will study the Mpemba effect in several setups of the granular system.

Here, we briefly outline the various setups in Table 1.1.

1.3 Single particle Langevin system

Unlike the case of driven granular gases which is an interacting many-particle system,

here we will discuss about a single particle Langevin system. The system consists of
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Figure 1.3: Schematic diagram for a double well potential. Here, DE is the difference of
energy between the two wells of the potential.

a colloidal particle undergoing diffusion while immersed in water. The water having a

temperature Tb acts as heat bath to the colloidal particle. The colloidal particle exhibits

Brownian motion due to the impact of the water molecules. The equation of motion or the

Langevin equation of the particle having mass m, position coordinate x at time t is given

by

m
d

2
x(t)

dt2 =�g dx(t)

dt
+G(t), (1.7)

where g represents the damping or the drag experienced by the colloidal particle due to

water molecules. G is uncorrelated white noise whose mean and variance satisfies

hG(t)i= 0, hG(t)G(t 0)i= 2gkBTbd (t � t
0), (1.8)

where kB is the Boltzmann’s constant.

Many interesting problems are studied when the particle diffuses in addition of an external
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potential. A schematic diagram of the potential landscape is shown in Fig. 1.3. Here, it’s a

quartic shaped potential with DE being the difference in energy between the two wells of

the potential landscape. In experiments, the external potentials are realised using optical

traps. One particular problem of interest in this setup being the famous Kramer’s escape

problem where the rate at which the Brownian particle can escape from one well to the

other is determined. In the presence of an external potential U(x), Langevin equation is

given by

m
d

2
x(t)

dt2 =�dU(x)

dx
� g dx(t)

dt
+G(t). (1.9)

For simplification, we consider the overdamped limit where we neglect the second order

time derivative and the Langevin Eq. (1.9) reduces to

dx(t)

dt
=�1

g
dU(x)

dx
+

1
g

G(t). (1.10)

The corresponding Fokker-Planck equation for the evolution of the probability density of

the particle of being at position x and time t is given by

∂ p(x, t)

∂ t
=

∂
∂x

h1
g

dU

dx
p(x, t)

i
+

kBTb

g
∂ 2

p(x, t)

∂x2 . (1.11)

The stationary solution of Eq. (1.11) is the equilibrium Boltzmann distribution given by

p(x,Tb) =
e
�U(x)/kBTb

Z (Tb)
, (1.12)

where Z (Tb) =
R

dxe
�U(x)/kBTb is the normalization constant of the Boltzmann distribu-

tion at temperature Tb. We would be analysing in details about the solution of the Fokker-

Planck equation in Chapter 6 for analytically tractable models of the external potentials.

For the analysis of the Mpemba effect in the setup of the single particle Langevin system,

we will study in details about the role of the external potential in inducing Mpemba like
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(a) (b)

Figure 1.4: Schematic diagram for the population distribution of the Brownian particle
in the potential landscape at two different temperatures. The curves shown in black solid
line denote the potential landscape whereas the population distribution of the Brownian
particle across the potential landscape is shown by red and blue solid lines corresponding
to the initially hot and cold particles respectively. Two configurations of the potential
landscape is shown corresponding to a slightly (a) deeper and (b) shallow well.

anomalous behaviour in the relaxation dynamics. In addition, we will also study the role

of population distribution or the probability density of the Brownian particle as a function

of the modulation of the shape of the external potential and the temperature in order

to understand the Mpemba effect. As an example to illustrate the effect of the external

potential in the population distribution of the Brownian particle, we consider two different

configurations of the external potential as shown in Fig. 1.4.

In the potential landscape where there is a significant height of the barrier between the two

wells of the potential [see Fig. 1.4(a)], the hotter particle has a flat population distribution

(shown by red curve) compared to the initially colder particle which has a localised pop-

ulation distribution (shown by blue curve) across the potential landscape. On the other

hand, Fig. 1.4(b) shows the potential landscape which has a relatively flat barrier between

the two wells of the potential. In this case, both the hotter and the colder particles have rel-

atively similar population distribution (shown by red and blue curves respectively). Thus,

the presence of a barrier of significant height between the two wells of the potential affect

the population distribution of the Brownian particle. We will study the role of such differ-

ence in the population distribution of the Brownian particle for different configurations of

the potential in inducing the Mpemba effect.

41



1.4 Overview of the thesis

The thesis is organised as follows:

In Chapter 2, we consider the inelastic driven Maxwell gas, a simplified model for a gran-

ular gas, where the rate of collision is assumed to be independent of the relative velocity.

Through an exact analysis, we determine the conditions under which the Mpemba effect

is present in this model. For mono-dispersed gases, we show that the Mpemba effect is

present only when the initial states are allowed to be non-stationary, while for bi-dispersed

gases, it is present for some steady state initial states. We also demonstrate the existence

of the strong Mpemba effect for bi-dispersed Maxwell gas wherein the system at higher

temperature relaxes to a final steady state at an exponentially faster rate leading to smaller

equilibration time.

In Chapter 3, we demonstrate the existence of Mpemba effect in anisotropically driven

granular gases, even when quenched from initial states that are stationary. Our theoretical

predictions, based on kinetic theory, for the regular, inverse and strong Mpemba effects

agree well with results of event-driven molecular dynamics simulations of hard discs.

In Chapter 4, we do an exact analysis for the existence of the Mpemba effect in an

anisotropically driven inelastic Maxwell gas, a simplified model for granular gases, in

two dimensions. We demonstrate the existence of the Mpemba effect in anisotropically

driven granular gases even when the initial states are non-equilibrium steady states. The

precise conditions for the Mpemba effect, its inverse, and the stronger version, where the

hotter system cools exponentially faster are derived.

In Chapter 5, we define several measures for the choice of distance function from the final

steady state for the study of the Mpemba effect. We derive the criteria for the existence

of the Mpemba effect based on the different measures. In this chapter, by studying four

different distance measures based on the mean kinetic energies as well as velocity distri-

bution, we show that the Mpemba effect depends on the definition of the measures. The
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non-universality among the various measures of the Mpemba effect in driven granular

systems in terms of the phase space initial conditions is illustrated and the possible cause

of it is discussed.

In Chapter 6, we present an exact analysis of the Mpemba effect in a single particle

Langevin system by considering an exactly solvable model for the external potential. We

consider different configurations of the external potential in order to understand its role

in inducing the Mpemba effect. We discuss the role of metastable states in the energy

landscape as well as the initial population distribution of the Brownian particle in its

confined domain as the possible cause of the Mpemba effect in the presence of external

potential with a local minima. However, we find that presence of metastable state is not

the necessary criteria as we show that the Mpemba effect exists even in the presence of

external potential without metastable states.

In Chapter 7, we summarize the findings of this thesis and give future outlook.
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Chapter 2

Mpemba effect in driven granular

Maxwell gases

2.1 Introduction

Mpemba effect has been observed experimentally in a wide range of physical systems

ranging from water [45, 46, 47, 48, 49, 29], magnetic alloys [2], and clathrate hy-

drates [50] to polylactides [3]. In addition to experiments, various numerical tools and

model systems were used to shed light on such anomalous relaxations. To better un-

derstand the effect in water, detailed molecular dynamic simulations were performed

[51, 48, 52]. In these simulations, the system is made of up to several thousand molecules,

with pairwise interactions that model the interactions between the water molecules. The

initial configuration of the system is commonly sampled from the Boltzmann distribution

of the hot or warm temperature, and the dynamic follows a standard molecular dynamic

protocol that corresponds to the cold temperature. A different numerical approach was

applied on spin systems, for both ordered [5] as well as glassy [17] models. Using a

Monte Carlo simulation, the value of some order parameters were tracked during the re-

laxation process of systems that were sampled from the equilibrium distribution of a hot
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and a warm temperature, and evolved under Markovian dynamics that corresponds to a

cold temperature. If, during the relaxation process the corresponding order parameters of

the hot and cold systems intersect, then the Mpemba effect exists in the system.

On the analytic front, two different approaches were used to address the Mpemba effect

so far. In Refs. [11, 6, 7], the Mpemba effect was defined and evaluated through the

distance between probability distributions during the relaxation process. To this end, the

probability distribution describing the system is initiated at the equilibrium (Boltzmann)

distribution of the hot or warm temperature. The system is then quenched into an environ-

ment with a cold temperature, and thus the probability distribution of the system evolves

in time towards the equilibrium of the cold temperature. By tracking the distance, in

probability space, between the time dependent probability and the final equilibrium, the

Mpemba effect can be identified, and the exact conditions for its existence were derived.

Moreover, this framework naturally suggest a rich class of related phenomena, including

the inverse Mpemba effect [11] where a cold system heats up faster than a warmer sys-

tem; the strong Mpemba effect [6] where a specific initial temperature results in a jump in

the relaxation rate; and non-monotonic optimal heating protocols [5] where the optimal

heating protocol has a pre-cooling stage.

A different theoretical framework was used in the context of driven granular gases [22,

23, 24]. A granular gas is a dilute composition of particles that move ballistically and

interact through momentum conserving binary inelastic collisions. These dissipative sys-

tems approach a steady state when externally driven to compensate for the kinetic energy

which is lost in the inter-particle collisions. For the driven granular system with smooth

mono-dispersed particles (only translational velocity is considered and rotational degrees

of freedom are ignored) which interact via binary collisions with a rate proportional to

the magnitude of the relative velocities of the colliding particles, it was shown that the

total energy of a system with a higher initial energy attains the final low energy state be-

fore a similar system with an intermediate initial energy [22]. The effect was achieved
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by independently varying the deviation of the velocity distribution from a Gaussian, char-

acterized by the coefficient of the second Sonine polynomial a2. In this approach, the

system was initiated in a non-stationary distribution, and relaxed towards the correspond-

ing steady state (which is not an equilibrium distribution) associated with the parameters

of the system. The Mpemba effect then exists in the system if a non-equilibrium sys-

tem which is further away from equilibrium, namely has more energy in its initial state,

equilibrates faster than an initial condition which is closer to the equilibrium state. The

Mpemba effect was also demonstrated for a rough granular gas (both translational and

rotational velocities are considered and they couple with each other), where a much larger

range of initial energies result in anomalous relaxations [23] red as well as for a gas of

viscoelastic particles [24]. In both the rough and smooth granular gas, the velocity distri-

bution at all times was approximated by a Gaussian or Gaussian and first order corrections

respectively, making the calculations perturbative in nature.

Do the results in the various frameworks for different systems correspond to the same

effect? This is a key question, for which the answers is yet unknown. In this chapter,

we partially address a specific difference that plays an important role in both the numer-

ical and analytical results developed so far – the initial condition of the system. In the

Markovian framework, the initial condition of the hot and warm systems is an equilib-

rium distribution corresponding to the initial temperature [11, 6, 7]. In contrast, in the

granular gas approach the initial distributions are not a steady state of the system for any

(effective) temperature, but are rather transient distributions with different amount of total

energy. These distributions relax towards the steady-state distribution by energy exchange

between the particles as well as with some bath [22, 23]. A similar difference in the initial

conditions exists between the various molecular dynamic simulations calculated for wa-

ter molecules: in [52] the system was initially sampled from a hot or warm temperature

and then quenched to a cold environment, whereas in [51] the initial condition is not the

equilibrium distribution of any temperature, but rather an altered distribution of the final

temperature.
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To address this specific difference between the two approaches, we consider the inelastic

Maxwell model for granular gas in which the collision rates are assumed to be indepen-

dent of the relative velocity [53, 54]. The model thus presents a simpler system of gran-

ular gas keeping the essential physics intact, while allowing for exact calculation. We

investigate the existence of the Mpemba effect for both mono-dispersed and bi-dispersed

systems. In Maxwell gases, the equations for the relevant two-point correlations is known

to form a closed set of equations [55, 56, 57]. By analyzing these equations in detail, we

determine the parameter regime in which the Mpemba effect can be seen in these sys-

tems. In particular, we show that while transient initial conditions are required for the

effect to be present in mono-dispersed gas, the bi-dispersed system shows the Mpemba

effect for steady state initial conditions. This allows us to use the Markovian approach

for the Mpemba effect in driven granular gas, and therefore identify the existence of the

strong effect in this system, where for a specific initial steady state the relaxation rate is

smaller than from any other initial steady state. The content of this chapter is published

in Ref. [25].

2.2 Model

In this chapter, we analyze both mono-dispersed as well as bi-dispersed driven inelastic

Maxwell gases. We first define the bi-dispersed gas, and then indicate the limits when

it reduces to a mono-dispersed gas. Consider NA particles of type A, each of mass mA,

and NB particles of type B, each of mass mB. Let NA +NB = N. Each particle has a

scalar velocity vi,k, where i = 1, . . . ,N and k 2 {A,B}. These velocities evolve in time

through binary collisions and external driving. A pair of particles of type k and l, where

k, l 2 {A,B}, collide with rate lkl/N. The factor 1/N in the collision rates ensures that

the total rate of collisions between Nk[Nk �1]/2 pairs of similar type of particles and that

between NANB pairs of different type of particles are proportional to the system size N.

During a collision, momentum is conserved, but energy is dissipated. Let vi,k and v j,l
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denote the pre-collision velocities and v
0
i,k, v

0
j,l denote the post-collision velocities. Then

v
0
i,k = vi,k � (1+ rkl)

ml

mk +ml

(vi,k � v j,l),

v
0
j,l = v j,l +(1+ rkl)

mk

mk +ml

(vi,k � v j,l), (2.1)

where k, l = A,B, rkl 2 [0,1] is the coefficient of restitution for the collision, and mk and

ml are the masses. There are three coefficients of restitution: rAA, rBB, and rAB depending

on whether the pair of colliding particles are of type AA, BB, or AB. It is convenient to

define

akl =
1+ rkl

2
, k, l = A,B, (2.2)

where 1/2  akl  1.

In addition to collisions, the system evolves through external driving. We implement

a driving scheme that drives the system to a steady state, and has been used in earlier

studies [55, 56, 58]. Each particle is driven at a rate ld . During such an event, the

velocity of the driven particle is modified according to

v
0
i,k =�rwvi,k +hk, �1 < rw  1, k = A,B, (2.3)

where rw 2 (�1,1] is a parameter and hk is noise drawn from a fixed distribution fk(hk).

There is no compelling reason for fk(hk) to be Gaussian. However, we restrict ourselves

to distributions with zero mean and finite second moment s2
k

given by

s2
k
=

Z •

�•
dh h2fk(h), k = A,B. (2.4)

The physical motivations for the form of driving may be found in Refs. [59, 60]. Without

loss of generality, in all the plots, we set the driving rate ld = 1, so that time is measured

in units of l�1
d

.

In the model, the spatial degrees of freedom have been neglected. This corresponds to the
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well-mixed limit where the spatial correlations between particles are ignored. In addition,

we have assumed that the collision rates are independent of the relative velocity of the

colliding particles. This corresponds to the so-called Maxwell limit.

Let Pk(v, t), where k = A,B, denote the probability that a randomly chosen particle of type

k has velocity v at time t. Its time evolution is given by:

d

dt
Pk(v, t) =

lkk(Nk �1)
N

Z Z
dv1dv2Pk(v1, t)Pk(v2, t)d [(1�akk)v1 +akkv2 � v]

+
l

kk̄
N

k̄

N

Z Z
dv1dv2Pk(v1, t)Pk̄

(v2, t)d [(1�X
k̄
)v1 +X

k̄
v2 � v]

� lkk(Nk �1)
N

Pk(v, t)�
l

kk̄
N

k̄

N
Pk(v, t)

+ld


�Pk(v, t)+

Z Z
dhkdv1fk(hk)Pk(v1, t)d [�rwv1 +hk � v]

�
, (2.5)

where

k̄ =

8
>><

>>:

B, if k = A,

A, if k = B,

(2.6)

and

Xk = aABµk where µk =
2mk

mA +mB

, k = A,B, (2.7)

with µk 2 (0,2) and aAB is defined in Eq. (2.2).

The mono-dispersed Maxwell gas is obtained by taking the limit NA = N with (NA �

1)/N ! 1, NB = 0, rAA = r and setting all other coefficients of restitution to zero. The

rate of inter-particle collisions is denoted by l and the rate of driving for the particles by

ld . If P(v, t) denote the probability that a randomly chosen particle has velocity v at time
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t then its time evolution, for a mono-dispersed gas is given by:

d

dt
P(v, t) =�lP(v, t)�ldP(v, t)

+l
Z Z

dv1dv2P(v1, t)P(v2, t)d [(1�a)v1 +av2 � v]

+ld

Z Z
dhdv1f(h)P(v1, t)d [�rwv1 +h � v], (2.8)

where

a =
1+ r

2
. (2.9)

2.3 Calculation of the two point correlations

In this section, we define the relevant two point correlation functions for both mono-

dispersed and bi-dispersed gases. The evolution equations for these correlation functions

were derived in Refs. [55, 57]. We summarize these derivations and then develop a so-

lution that will be useful for demonstrating the Mpemba effect. Sections 2.3.1 and 2.3.2

contain the derivation for mono-dispersed and bi-dispersed gases respectively.

2.3.1 Mono-dispersed Maxwell gas

We first discuss the case of mono-dispersed Maxwell gas. Consider the following two

point correlation functions:

E(t) =
1
N

N

Â
i=1

hv2
i
(t)i,

C(t) =
1

N(N �1)

N

Â
i=1

N

Â
j=1, j 6=i

hvi(t)v j(t)i,
(2.10)
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where E(t) is the mean kinetic energy of a particle, and C(t) is the equal time velocity-

velocity correlation between a pair of particles. In the steady state, the inter-particle

two point correlation function is known to be zero [56]. However, for the purpose of

demonstrating the Mpemba effect, we consider non-zero correlations, which correspond

to non-stationary states. The time evolution of these correlation functions can be obtained

in a straightforward manner from Eq. (2.8) and can be compactly represented in matrix

form as [55]

d⌃(t)

dt
=�R⌃(t)+D, (2.11)

where ⌃(t) = [E(t),C(t)]T , D = [lds2,0]T , and R is given by

R=

2

64
lc(1� r

2)+ld(1� r
2
w
) �lc(1� r

2)

�lc(1�r
2)

N�1
lc(1�r

2)
N�1 +ld(1+ rw)

3

75 . (2.12)

Note that while R11 and R22 are positive, R12 and R21 are negative.

Equation (2.11) for the correlation functions forms a closed set of linear equations and

does not involve higher order correlation functions. This allows for a complete solution.

Equation (2.11) can be solved exactly by linear decomposition using the eigenvalues l±

of R:

l± =
R11 +R22 ±

p
(R11 �R22)2 +4R21R12

2
. (2.13)

Here, the eigenvalues l± > 0 with l+ > l�. The solution for E(t) and C(t) can then be

obtained as:

E(t) = K+e
�l+t +K�e

�l�t +K0,

C(t) = L+e
�l+t +L�e

�l�t +L0,
(2.14)

where the coefficients K+,K�,K0,L+,L� and L0 are given by
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K+ =
1
g


(l��R11)S1(0)�R12S2(0)�

(l��R11)

l+
lds2

�
,

K� =
1
g


�(l+�R11)S1(0)+R12S2(0)+

(l+�R11)

l�
lds2

�
,

K0 =
1
g


l��R11

l+
� l+�R11

l�

�
lds2,

L0 =
1
g


(l+�R11)(l��R11)

R12l+
� (l+�R11)(l��R11)

R12l�

�
lds2,

L+ =
1
g


(l+�R11)(l��R11)

R12
S1(0)� (l+�R11)S2(0)�

(l+�R11)(l��R11)

R12l+
lds2

�
,

L� =
1
g


�(l+�R11)(l��R11)

R12
S1(0)+(l��R11)S2(0)+

(l+�R11)(l��R11)

R12l�
lds2

�
,

g = l+�l�.

(2.15)

2.3.2 Bi-dispersed Maxwell gas

For the case of bi-dispersed Maxwell gas, we can define two point correlation functions,

EA and EB for the mean kinetic energies of type A and B particles, and three two point

velocity-velocity correlation functions Ci j, where i, j 2 (A,B):

EA(t) =
1

NA

NA

Â
i=1

hv2
i,A(t)i,

EB(t) =
1

NB

NB

Â
i=1

hv2
i,B(t)i,

CAB(t) =
1

NANB

NA

Â
i=1

NB

Â
j=1

hvi,A(t)v j,B(t)i,

CAA(t) =
1

NA(NA �1)

NA

Â
i=1

NA

Â
j=1
j 6=i

hvi,A(t)v j,A(t)i,

CBB(t) =
1

NB(NB �1)

NB

Â
i=1

NB

Â
j=1
j 6=i

hvi,B(t)v j,B(t)i.

(2.16)
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The time evolution for these correlation function can be obtained from Eq. (2.5), as de-

rived in Ref. [57] when only one type of particle is driven. We generalize these calcula-

tions to the case where both types of particles are driven. The time evolution equations

are linear and form a closed set of equations as

d⌃(t)

dt
= R⌃(t)+D, (2.17)

where

⌃(t) =


EA(t), EB(t), CAB(t), CAA(t), CBB(t)

�
T

, (2.18)

D =


lds2

A
, lds2

B
, 0, 0, 0

�
T

, (2.19)

where k=A,B and the matrix R is given by

R=
2

66666666664

R2B�R1A�R3B�Rd R2B �2R2B +R3B 2R1A 0

R2A R2A�R1B�R3A �2R2A +R3A 0 �R1B

R3A

2NA

�R4
R3B

2NB
�R4

4R4+R3B�R3A

2 � R3A

2NA

+ R3A

2 � R3B

2NB
+ R3B

2

R1A

NA�1 0 R3B

R1A

1�NA

�R3B� Rd

1�rw
0

0 R1B

NB�1 R3B 0 2R1B

NB�1�R3B

3

77777777775

. (2.20)

The constants R1k,R2k,R3k,R4,Rd are given by:

R1k =
lkkakk(1�akk)(Nk �1)

N
,

R2k =
lABNkX

2
k

N
,

R3k =
2R2k

Xk

,

R4 =
lABXAXB

N
,

Rd = ld(1� r
2
w
).

(2.21)
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In the steady state, in the thermodynamic limit, the inter-particle two point correlation

functions Ci j, where i, j 2 (A,B) are zero, as shown in Ref. [57]. If in the initial state,

these correlations are zero, then it remains zero for all times. We will be only considering

such initial states. In that case, we can ignore these correlations, and write for the time

evolution of mean kinetic energies EA and EB as

dEA(t)

dt
=EA(t)

⇣
lABnBX

2
B
�lAAaAA(1�aAA)nA �2lABnBXB �ld(1� r

2
w
)
⌘

+EB(t)
⇣

lABnBX
2
B

⌘
+lds2

A
,

dEB(t)

dt
=EB(t)

⇣
lABnAX

2
A
�lBBaBB(1�aBB)nB �2lABnAXA �ld(1� r

2
w
)
⌘

EA(t)
⇣

lABnAX
2
A

⌘
+lds2

B
.

(2.22)

We can write the time evolution of mean kinetic energies of A and B type particles, i.e.,

EA and EB respectively in a compact form as

d⌃(t)

dt
= R⌃(t)+D, (2.23)

where

⌃(t) =


EA(t), EB(t)

�
T

, (2.24)

D =


lds2

A
, lds2

B

�
T

, (2.25)

and R is a 2⇥2 matrix, whose entries are given by

R11 =lABnBX
2
B
�lAAaAA(1�aAA)nA �2lABnBXB �ld(1� r

2
w
),

R12 =lABnBX
2
B
,

R21 =lABnAX
2
A
,

R22 =lABnAX
2
A
�lBBaBB(1�aBB)nB �2lABnAXA �ld(1� r

2
w
),

(2.26)

where nA and nB are the fraction of A and B type particles, respectively. In order to obtain
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the steady state values, we set the time derivative of Eq. (2.22) to zero. The steady state

values for EA and EB are given by

EA =

�lds2
A

⇣
�ld(1� r

2
w
)�2lABnAXA +lABnAX

2
A
�lBBnB(1�aBB)aBB

⌘

+lABldnBX
2
B

s2
B

F

, (2.27)

EB =

�lds2
B

⇣
�ld(1� r

2
w
)�2lABnBXB +lABnBX

2
B
�lAAnA(1�aAA)aAA

⌘

+lABldnAX
2
A

s2
A

F

, (2.28)

where

F =�l 2
AB

nAnBX
2
A

X
2
B

+
⇣
�ld(1� r

2
w
)�2lABnBXB +lABnBX

2
B
�lAAnA(1�aAA)aAA

⌘

⇣
�ld(1� r

2
w
)�2lABnAXA +lABnAX

2
A
�lBBnB(1�aBB)aBB

⌘
. (2.29)

One can do similar calculations to solve for the steady state mean kinetic energies, for the

case where only one component (say A) is driven with driving strength (s ) and at a rate

(ld). In that case, the mean kinetic energies of the components are given by

EA =
lds2

ld(1� r
2
w
)+2nAlAAaAA(1�aAA)+lABnBXB(2�XB)�X

2
A

X
2
B

nAnBl 2
AB

Q

, (2.30)

EB = EAlABnAX
2
A
Q, (2.31)

where

Q =
1

(2�XA)XAnAlAB +2aBBlBBnB(1�aBB)
. (2.32)
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We note that the linearity in the evolution equations [Eqs. (2.11) and (4.19)] for the en-

ergy arises naturally for Maxwell gases (both mono-dispersed and bi-dispersed) when

compared to the granular gas models studied earlier [22, 23], wherein the non-linear

evolution equation limits analytical treatment unless linearized using perturbative meth-

ods [22]. Similar exact linear evolution equation has been analyzed in the case of Marko-

vian Mpemba effect [11] where the vector denoting the probabilities of various states

evolves according to an equation similar to Eqs. (2.11) and (4.19).

2.4 The Mpemba effect in Mono-dispersed Maxwell gas

In this section, we derive the conditions for the Mpemba effect to be present in the mono-

dispersed driven Maxwell gas, based on an analysis of Eq. (2.14) for the solution of E(t)

and C(t). More precisely, we define the Mpemba effect as follows. Consider two systems

with two different granular temperatures, or kinetic energies [the terms “granular temper-

ature“ and “kinetic energies” are used interchangeably]. We let these systems evolve to

a steady state at the same final temperature, that is lower than the initial temperatures. If

the hotter system cools faster (the energy-time plots show a crossing), then we say that

the system shows the Mpemba effect.

We now proceed to find out the criteria for the Mpemba effect to be present in the mono-

dispersed Maxwell gas. Consider two systems labeled as P and Q. Let their initial con-

ditions be denoted by (EP(0),CP(0)) and (EQ(0),CQ(0)) with E
P(0) > E

Q(0). Both

systems are then driven to a common steady state. This is achieved when the systems P

and Q are driven with the same driving strength (s ) which is chosen such that the mean

kinetic energy of the common steady state is lower than the initial mean kinetic energies

of P and Q, while keeping all the other parameters of both the systems constant.

If this system shows a Mpemba effect, then the trajectories E
P(t) and E

Q(t) must cross
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each other, such that there is a time t = t at which

E
P(t) = E

Q(t). (2.33)

Substituting into Eq. (2.14), we obtain relation:

K
P

+e
�l+t +K

P

�e
�l�t = K

Q

+e
�l+t +K

Q

�e
�l�t , (2.34)

whose solution is

t =
1

l+�l�
ln

"
K

P
+�K

Q

+

K
P
��K

Q

�

#
, (2.35)

which in terms of the initial conditions reduce to

t =
1

l+�l�
ln


R12DC� (l��R11)DE

R12DC� (l+�R11)DE

�
, (2.36)

where

DE = E
P(0)�E

Q(0), (2.37)

DC = C
P(0)�C

Q(0). (2.38)

For the Mpemba effect to be present, we require that t > 0. Since l+ > l�, the argument

of logarithm in Eq. (2.36) should be greater than one. We immediately obtain the criterion

(l+�R11)DE < R12DC. (2.39)

Note that R12 < 0, and l+ > R11 [see Eq. (2.12)]. Since DE > 0 by definition, we con-

clude that Eq. (2.39) can be satisfied only if DC < 0, i.e., the two point velocity-velocity

correlation of the hotter initial system C
P(0) is sufficiently smaller than that of the cooler

counterpart C
Q(0). Note that if the two systems P and Q were initially in a steady state,
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Figure 2.1: The time evolution of the mean kinetic energy, E of the mono-dispersed
Maxwell gas for two systems P and Q with initial conditions E

P(0) = 4, E
Q(0) = 2,

C
P(0) = 3 and C

Q(0) = 23, which satisfy the conditions for the Mpemba effect as de-
scribed in Eq. (2.39). The choice of the other parameters defining the system are r = 0.5,
rw = 0.5 and s = 1. P relaxes to the steady state faster than Q, though its initial energy
is larger. The time at which the trajectories cross each other is t = 0.1334, as given by
Eq. (2.36).

then in the thermodynamic limit the correlations vanish, i.e., DC = O(1/N), and the in-

equality in Eq. (2.39) cannot be satisfied. Thus, for the Mpemba effect to be present in

the mono-dispersed gas, the initial condition of the cooler component cannot be a steady

state of the system.

In Fig. 2.1, we demonstrate the time evolution of the energies of two systems with initial

conditions that satisfy Eq. (2.39). Though the initial energy of P is larger, it relaxes to the

steady state faster than Q. As predicted by Eq. (2.36), the two relaxation trajectories cross

at some finite time.

Keeping all other parameters fixed, and allowing only the coefficient of restitution to vary,

we can identify the region of phase space (initial condition) where the Mpemba effect is

observable, based on Eq. (2.39). This is shown in Fig. 2.2. Clearly, as r decreases to zero,
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Figure 2.2: The DE/DC–r phase diagram showing regions where the Mpemba effect is
observed for mono-dispersed Maxwell gas (see Sec. 2.4), where r is the coefficient of
restitution. All other parameters are kept constant. The region below the critical line
show the Mpemba effect.

the correlations need to be large for the Mpemba effect to be present. On the other hand,

that in the near elastic limit r ! 1, it is much easier to observe the Mpemba effect, as the

only requirement is that DC and DE are anti-correlated. However, we note that even in

this case, non-zero correlations imply that the system is not in a steady state.

2.5 Mpemba effect in bi-dispersed Maxwell gas

In Sec. 2.4, we discussed the possibility of the Mpemba effect in mono-dispersed gas.

The Mpemba effect was only present when the initial states were different from the steady

states at that corresponding temperature. We now generalize the analysis to bi-dispersed

gases, based on an analysis of Eq. (4.19), and show the presence of the Mpemba effect

even when the initial states are restricted to steady states.

In a bi-dispersed gas, the temperatures of the two components are generally different [see
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Eqs. 2.28 and 2.29]. We denote them by EA and EB. We denote the total kinetic energy of

the system by Etot , where

Etot = EA +EB, (2.40)

and the difference in energies by Edi f f :

Edi f f = EA �EB. (2.41)

We define the Mpemba effect in bi-dispersed gases similarly to the definition in the mono-

dispersed gases. To this end, we consider two systems P and Q where Etot of P is larger.

Both P and Q are initially in their steady states. We then quench both systems to a lower

temperature. The Mpemba effect is present in this case when the Etot trajectories of the

two systems cross each other.

We next consider separately the cases of one or both components driven. The reason for

this separation is that in some experiments only one component is driven [61, 62, 63,

64, 65, 66], whereas in others both components are driven [67, 68, 69, 70, 71, 72]. The

respective analysis may be found in Secs. 2.5.1 and 2.5.2.

2.5.1 One component is driven

Consider a bi-dispersed driven Maxwell gas where only component A is driven with driv-

ing strength s . The time evolution equation [see Eq. (4.19)] for the correlation functions

can be expressed in terms of Etot and Edi f f as

dE(t)

dt
=� �E(t)+D, (2.42)
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where

E(t) =


Etot(t), Edi f f (t)

�
T

, (2.43)

D =


lds2, lds2

�
T

, (2.44)

and � is a 2⇥2 matrix with components c11, c12, c21 and c22 given by

c11 =�R11 +R12 +R21 +R22

2
,

c12 =�R11 �R12 +R21 �R22

2
,

c21 =�R11 +R12 �R21 �R22

2
,

c22 =�R11 �R12 �R21 +R22

2
.

(2.45)

Equation (4.25) can be solved exactly by linear decomposition using the eigenvalues l±

of �:

l± =
1
2

h
(c11 +c22)±

q
(c11 �c22)2 +4c12c21

i
. (2.46)

It is straightforward to show that l± > 0 with l+ > l�. The solution for Etot(t) and

Edi f f (t) is

Etot(t) = K+e
�l+t +K�e

�l�t +K0,

Edi f f (t) = L+e
�l+t +L�e

�l�t +L0,
(2.47)
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where the coefficients K+,K�,K0,L+,L� and L0 are by

K+ =
1
g

h
(�l�+c11)Etot(0)+c12Edi f f (0)�

c12 �l�+c11)

l+
lds2

i
,

K� =
1
g

h
(l+�c11)Etot(0)�c12Edi f f (0)+

c12 �l++c11)

l�
lds2

i
,

K0 =
1
g

hc12 � (l��c11)

l+
� c12 � (l+�c11)

l�

i
lds2,

L0 =
1
g

h(l+�c11)(l��c11)

c12l+
� (l+�c11)(l��c11)

c12l�

i
lds2,

L+ =
1
g

h
� (l+�c11)(l��c11)

c12
Etot(0)+(l+�c11)Edi f f (0)�

(l+�c11)(l��c11)

c12l+
lds2

i
,

L� =
1
g

h(l+�c11)(l��c11)

c12
Etot(0)� (l��c11)Edi f f (0)+

(l+�c11)(l��c11)

c12l�
lds2

i
,

g = l+�l�.

(2.48)

We now consider two systems labeled as P and Q with different initial conditions

(EP
tot
(0),EP

di f f
(0)) and (EQ

tot(0),E
Q

di f f
(0)) where E

P
tot
(0) > E

Q

tot(0). Both the systems are

quenched to a common steady state whose total energy is smaller than the initial total

energies of P and Q. This is achieved when the systems P and Q are now driven with the

same driving strength (s ) for the component A, while keeping all the other parameters

same for both the systems.

The Mpemba effect is present when the trajectories E
P
tot
(t) and E

Q

tot(t) cross each other at

some finite time t = t at which

E
P

tot
(t) = E

Q

tot(t). (2.49)

Substituting into Eq. (5.4), we obtain

K
P

+e
�l+t +K

P

�e
�l�t = K

Q

+e
�l+t +K

Q

�e
�l�t , (2.50)
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whose solution is

t =
1

l+�l�
ln
h

K
P
+�K

Q

+

K
Q

� �K
P
�

i
, (2.51)

which in terms of the initial conditions reduce to

t =
1

l+�l�
ln
hc12DEdi f f � (l��c11)DEtot

c12DEdi f f � (l+�c11)DEtot

i
, (2.52)

where

DEtot = E
P

tot
(0)�E

Q

tot(0),

DEdi f f = E
P

di f f
(0)�E

Q

di f f
(0).

(2.53)

Following the same argument as for the case of mono-dispersed Maxwell gas in Sec. 2.4,

Eq. (5.11) leads to the criterion for the crossing of the two trajectories as

c12DEdi f f > (l+�c11)DEtot . (2.54)

In Fig. 2.3, we consider such a situation where Eq. (4.36) is satisfied. The trajectories

cross at the point as predicted by Eq. (5.11). It is clear that though P has larger initial

energy, it relaxes faster.

In Fig. 4.2, we identify the region of phase space (initial condition) where the Mpemba

effect is observable, based on Eq. (4.36). In the figure, the variation with rAB is shown.

The region below the line in the phase diagram shows the Mpemba effect whereas the

other region does not show the effect.

In the above analysis, the systems P and Q have the same parameters once the quench

is done. However, in the initial states, the parameters – reaction rates, coefficients of

restitution, driving strength – could be different for P and Q. These parameters, though

not explicitly mentioned, enter through the initial values Etot and Edi f f . As a result,

one can tune the parameters appropriately to obtain initial steady states that satisfy the
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Figure 2.3: The time evolution of the total energy, Etot(t) for two systems P and Q of
the bi-dispersed Maxwell gas where only one component is driven with initial conditions:
E

P
tot
(0) = 22, E

Q

tot(0) = 14, E
P

di f f
(0) = 18 and E

Q

di f f
(0) = 4 such that E

P
tot
(0) > E

Q

tot(0),
which satisfies the condition for the Mpemba effect as described in Eq. (4.36). The choice
of the other parameters defining the system are mB = 2mA, rAA = rAB = rBB = rw = 0.5,
nA = 0.2, nB = 0.8 and s = 1. P relaxes to the steady state faster than Q, though its initial
energy is larger. The time at which the trajectories cross each other is t=0.807 as given
by Eq. (5.11).
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Figure 2.4: The DEtot/DEdi f f –rAB phase diagram showing regions where the Mpemba
effect is observed for the bi-dispersed Maxwell gas, where only one component of the
gas is driven (see Sec. 2.5.1) and rAB is the coefficient of restitution. All other parameters
are kept constant. The choice of the other parameters defining the system are mA = 2mB,
nA = nB = 0.5 and rAA = rBB = rw = 0.5. The region below the critical line shows the
Mpemba effect whereas the region on the other side of the critical line does not show the
Mpemba effect.
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condition given by Eq. (4.36) and hence show the Mpemba effect.

We now ask a more refined question. Let us suppose that the systems P and Q have

the same parameters throughout (both initially, as well as after the quench) except for

the driving strength, which is different initially and the same after the quench. Can the

Mpemba effect be present in this case, when only component A is driven? The condition

for the Mpemba effect to be present is the same as that derived for the more general

case [see Eq. (4.36)]. However, when all parameters other than driving strength are kept

identical, the ratio DEtot/DEdi f f in the initial steady states has a simple form:

DEtot

DEdi f f

=
1+lABnAX

2
A
Q

1�lABnAX
2
A
Q

> 1, (2.55)

where Q is defined in equation (2.32). Note that Q > 0 and hence the ratio in Eq. (4.46)

is always larger than one. On the other hand, the ratio DEtot/DEdi f f should always be

less than c12/(l+� c11) for one to observe the Mpemba effect and it can be shown that

the maximum value of the quantity is one. Thus, Eq. (4.46) does not satisfy the required

condition for the existence of a Mpemba effect.

So far we have discussed the possibility of having the Mpemba effect in a bi-dispersed

Maxwell gas where only one component is driven. We showed that, as compared to the

mono-dispersed gas, for initial states that correspond to steady states, the bi-dispersed gas

shows a Mpemba effect for a wide range of parameters. However, when the two systems

P and Q are identical except for the driving strength, the Mpemba effect is not possible

for steady state initial conditions. We now generalize the calculations to a bi-dispersed

gas where both components are driven, and show that even for systems that differ only by

the driving strength, the Mpemba effect can be observed.
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2.5.2 Both components are driven

Next we consider a bi-dispersed Maxwell gas where both the components of the gas are

driven. Here, type A and B particles of the bi-dispersed Maxwell gas are driven at the same

rate ld but with different driving strengths sA and sB, respectively. The time evolution

of the quantities Etot and Edi f f are given by Eq. (4.25) with the column matrix D of the

form

D =


ld(s2

A
+s2

B
), ld(s2

A
�s2

B
)

�
T

. (2.56)

The solutions for Etot(t) and Edi f f (t) are obtained in a similar way as in Eq. (5.4), but the

coefficients K+,K�,K0,L+,L� and L0 are now given by

K+ =
1
g

h
� (l��c11)Etot(0)+c12Edi f f (0)�

ld

l+

⇥�
c12 � (l��c11)

�
s2

A
�
�
c12 +(l��c11)

�
s2

B

⇤i
,

K� =
1
g

h
(l+�c11)Etot(0)�c12Edi f f (0)+

ld

l�

⇥�
c12 � (l+�c11)

�
s2

A
�
�
c12 +(l+�c11)

�
s2

B

⇤i
,

K0 =
ld

g

h�c12 � (l��c11)
�
s2

A
�
�
c12 +(l��c11)

�
s2

B

l+
�

�
c12 � (l+�c11)

�
s2

A
�
�
c12 +(l+�c11)

�
s2

B

l�

i
,

L+ =
1
g

h
� (l+�c11)(l��c11)

c12
Etot(0)+(l+�c11)Edi f f (0)�

ld

l+c12

⇥
(l+�c11)(l��c11)(s2

A
�s2

B
)
⇤i
,

L� =
1
g

h (l+�c11)(l��c11)

c12
Etot(0)� (l+�c11)Edi f f (0)+

ld

l�c12

⇥
(l+�c11)(l��c11)(s2

A
�s2

B
)
⇤i
,

L0 =
ld

c12g

h
(l+�c11)(l��c11)(s2

A
�s2

B
)
� 1

l+
� 1

l�

�i
,

g = l+�l�. (2.57)

Our main aim is to look for the existence of a Mpemba effect by considering two sys-

tems with identical parameters, except for the driving strengths. To this end, we consider

two such similar systems, P and Q, driven with different noise strengths, thus attaining

different initial steady states with different initial total energies.

Let system P have higher initial total energy compared to Q. Both systems are then

driven to a common steady state with a lower energy compared to the initial steady state
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Figure 2.5: The time evolution of the total energy, Etot(t) for two systems P and Q of
a bi-dispersed Maxwell gas where both components are driven with initial steady state
conditions: E

P
tot
(0) = 150.4, E

Q

tot(0) = 132, E
P

di f f
(0) = 75.2 and E

Q

di f f
(0) = 30.5 such

that E
P
tot
(0) > E

Q

tot(0), which satisfies the condition for the Mpemba effect as described
in Eq. (4.36). The choice of the other parameters defining the system are mB = 10mA,
rAA = rBB = rw = 0.5, rAB = 0.6, nA = 0.2, nB = 0.8, sA = 2 and sB = 1. P relaxes to
the steady state faster than Q, though its initial energy is larger. The time at which the
trajectories cross each other is t=0.39 as given by Eq. (5.11).

of systems P and Q. This is achieved when P and Q are driven with the same driving

strengths (sA and sB) for the components A and B . The cross-over time t for the crossing

of the trajectories of E
P
tot
(t) and E

Q

tot(t) is obtained using Eq. (5.11), and the criterion for

the occurrence of the Mpemba effect is given by Eq. (4.36). An example of such a crossing

is shown in Fig. 4.4.

In Fig. 2.6, based on Eq. (4.36), we identify the region of phase space (initial condition)

where the Mpemba effect is observable. In the figure, the variation with rAB is shown. If

the ratio DEtot/DEdi f f falls in the region below (above) the line in the phase diagram [see

Fig. 2.6], then the system exhibits (does not exhibit) the Mpemba effect. For steady state
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initial conditions, the ratio DEtot/DEdi f f is given by

DEtot

DEdi f f

=

lABld

h
nBX

2
B
((sP

B
)2 � (sQ

B
)2))+nAX

2
A
((sP

A
)2 � (sQ

A
)2)

i

�ld

h
�ld(1� r

2
w
)�2lABnAXA +lABnAX

2
A
�lBBnBaBB(1�aBB)

i
((sP

A
)2 � (sQ

A
)2)

�ld

h
�ld(1� r

2
w
)�2lABnBXB +lABnBX

2
B
�lAAnAaAA(1�aAA)

i
((sP

B
)2 � (sQ

B
)2)

lABld

h
nBX

2
B
((sP

B
)2 � (sQ

B
)2))�nAX

2
A
((sP

A
)2 � (sQ

A
)2)

i

�ld

h
�ld(1� r

2
w
)�2lABnAXA +lABnAX

2
A
�lBBnBaBB(1�aBB)

i
((sP

A
)2 � (sQ

A
)2)

+ld

h
�ld(1� r

2
w
)�2lABnBXB +lABnBX

2
B
�lAAnAaAA(1�aAA)

i
((sP

B
)2 � (sQ

B
)2)

. (2.58)

Note that the ratio DEtot/DEdi f f is also a function of the driving strengths, sA and sB [see

Eq. (2.58)]. It turns out that the driving strengths can be appropriately tuned to access the

entire region of phase space (initial condition) in which the Mpemba effect is observable.

2.5.3 The Inverse Mpemba Effect

The inverse Mpemba effect refers to the phenomenon that, when quenched to a high tem-

perature, an initially colder system heats faster than a system at intermediate temperature.

The analysis for showing the Mpemba effect in Sec. 2.5.2 can be generalized to show the

inverse Mpemba effect in the driven binary gas when both components are driven. We

prepare two systems P and Q in steady states such that the total energy of P is larger

than that of Q. Both systems are then quenched, using suitable driving strengths for the

individual components of the bi-dispersed gas, to a common steady state having a higher

energy compared to the initial energies of both P and Q. The cross-over time t for the

crossing of the trajectories of E
P
tot
(t) and E

Q

tot(t) is obtained using Eq. (5.11) and the crite-

rion for the occurrence of the inverse Mpemba effect is given by Eq. (4.36). An example

of such a crossing is shown in Fig. 2.7.

The accessible steady states of the system that satisfy the condition for the inverse
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Figure 2.6: The DEtot/DEdi f f –rAB phase diagram showing regions where the Mpemba
effect is observed for the bi-dispersed Maxwell gas, where both components of the gas
are driven (see Sec 2.5.2) and rAB is the coefficient of restitution. All other parameters
are kept constant. The choice of the other parameters defining the system are mB = 2mA,
nA = 0.2, nB = 0.8, rw = 0.6 and rAA = rBB = 0.5. The region below the critical line gives
the set of initial steady states that show the Mpemba effect whereas the region on the other
side of the critical line correspond to initial states that do not show the Mpemba effect.
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Figure 2.7: The time evolution of the total energy, Etot(t) for two systems P and Q of
bi-dispersed Maxwell gas where both components are driven with initial steady state con-
ditions: E

P
tot
(0) = 150.4, E

Q

tot(0) = 132, E
P

di f f
(0) = 75.2 and E

Q

di f f
(0) = 30.5 such that

E
P
tot
(0)> E

Q

tot(0), which satisfies the condition for the inverse Mpemba effect as described
in Eq. (4.36). The choice of the other parameters defining the system are mB = 10mA,
rAA = rBB = rw = 0.5, rAB = 0.6, nA = 0.2, nB = 0.8, sA = 8 and sB = 8. P relaxes to
the steady state slower than Q, though its initial energy is larger. The time at which the
trajectories cross each other is t=0.39 as given by Eq. (5.11).
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Mpemba effect turns out to be the same as that for the direct Mpemba effect and can

be obtained using Eq. (2.58). Thus Fig. 2.6 also illustrates that the valid steady states of

the system given by Eq. (2.58) belongs to the region of phase space (initial condition)

given by Eq. (4.36) where the inverse Mpemba effect is observable.

2.5.4 The Strong Mpemba Effect

We now explore the possibility of a strong Mpemba effect in the binary Maxwell gas. The

strong Mpemba effect refers to the phenomenon wherein the system at higher temperature

relaxes to a final steady state exponentially faster, namely with a larger exponential rate

compared to other initial conditions. Up to now, we had only considered the case where

the trajectories cross, which in general does not imply that the decay rate at large times is

different. The linear evolution equation in Eq (4.19) allows certain set of initial conditions

to relax to the final steady state exponentially faster compared to other initial states. The

effect may be realized when the coefficient (K�) associated with the slower relaxation

rate in the time evolution of total kinetic energy, Etot(t) [see Eq. 5.4] vanishes. In what

follows, we would like to probe the system of bi-dispersed gas with both type of particles

driven to look for the presence of the strong Mpemba effect.

Setting the coefficient K� [given by Eq. (2.57)] to zero, we obtain

Etot(0) =
c12

l+�c11
Edi f f (0)� c, (2.59)

where

c =
ld

⇥
(c12 �l++c11)s2

A
� (c12 +l+�c11)s2

B

⇤

l�(l+�c11)
. (2.60)

For a system with all other parameters kept fixed, solution of Eq. (4.40) in terms of Etot(0)

and Edi f f (0) provides the set of initial states whose relaxation is exponentially faster than
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the set of generic states. Note that the set of initial states that satisfy Eq. (4.40) lie on a

straight line.

Among these initial states one would like to determine the ones which are steady states.

Remember that the steady state ratio of Etot(0)/Edi f f (0) for a system is given by

Etot(0)
Edi f f (0)

= f (sA,sB), (2.61)

where f (sA,sB) is given by

f (sA,sB) =

lABld

h
nBX

2
B
(sP

B
)2 +nAX

2
A
(sP

A
)2
i
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h
�ld(1� r

2
w
)�2lABnAXA +lABnAX

2
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�lBBnBaBB(1�aBB)

i
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2
B
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lABld

h
nBX
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�ld(1� r
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)�2lABnBXB +lABnBX

2
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�lAAnAaAA(1�aAA)

i
(sP

B
)2

, (2.62)

and is only a function of driving strengths (sA and sB) as all other parameters are kept

constant. One observes that valid steady states with initial energies, Etot(0) and Edi f f (0)

that satisfy the condition for the strong Mpemba effect [see Eq. (4.40)] can be obtained

by appropriately tuning the driving strengths sA and sB.

Thus for a system of bi-dispersed Maxwell gas where both components are driven, there

exists steady state initial conditions which satisfy the condition given by Eq. (4.40) and

hence approach the final steady state exponentially faster compared to any other similar

system whose initial energies lie slightly below or above the line. An example of the

strong Mpemba effect is shown in Fig. 2.8. The figure shows the evolution of the total

energy Etot as a function of time t for two bi-dispersed systems P and Q that have iden-

tical parameters except for the initial driving strength after being quenched to a lower
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Figure 2.8: The time evolution of the total energy, Etot(t) for two systems P and Q of bi-
dispersed Maxwell gas, both components are initially in steady states, with E

P
tot
(0)= 47.8,

E
Q

tot(0) = 43.8, E
P

di f f
(0) = 45.6 and E

Q

di f f
(0) = 39 such that E

P
tot
(0) > E

Q

tot(0). These
initial values satisfy both the conditions for the Mpemba effect as described in Eq. (4.36)
as well as those for the strong Mpemba effect (for system P) as described in Eq. (4.40).
The choice of the other parameters defining the system are mB = 10mA, rAA = 0.5, rBB =
0.4, rw = 0.6, rAB = 0.35, nA = 0.2, nB = 0.8, sA = 2 and sB = 1. P equilibrates to the
final state at an exponentially faster rate compared to Q. Inset: The trajectories for P and
Q cross at a time t = 0.73, as given by Eq. (5.11).

temperature by changing the driving strength to a common lower value. The initial state

of the system P is chosen in such a way that [Etot(0),Edi f f (0)] satisfies the condition for

the strong Mpemba effect [Eq. (4.40)], and hence evolves to the final state with a single

faster relaxation rate. On the other hand, in system Q, the initial state does not satisfy the

strong Mpemba effect condition, thus it relaxes differently, and asymptotically evolves

with the slower rate. Further, as the initial condition of the two systems P and Q happen

to satisfy the relation for the existence of the Mpemba effect [Eq. (4.36)], the trajectory

of the system P with higher initial energy crosses that of Q with lower initial energy. The

crossing time t could be obtained using Eq. (5.11) which is captured in the inset of the

figure.
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2.6 Conclusion

In summary, through an exact analysis of the driven mono-dispersed and bi-dispersed

Maxwell gases, we derived the conditions under which the Mpemba effect, the inverse

Mpemba and the strong Mpemba effect can be observed. In Maxwell gas, the rate of

collision between particles is independent of the relative velocity. In addition, the well-

mixed limit is assumed such that spatial correlations are ignored. The equations for the

two point correlations close among themselves resulting in a coupled set of linear equa-

tions allowing for an exact solution. This linearity happens to be natural to the model and

thus does not require any approximations that have been employed in models where the

collision rates are velocity dependent. To demonstrate the existence of the Mpemba ef-

fect, we determine the conditions under which a hotter system relaxes faster than a cooler

system when quenched to a temperature lower than both. For the case of mono-dispersed

Maxwell gas, we showed that the Mpemba effect is possible only if the initial states do

not correspond to steady states. On the other hand, for bi-dispersed Maxwell gas, there

is a range of parameters for which the Mpemba effect exists, even when the states from

which the quench is done are restricted to valid steady states. In a similar framework, we

also demonstrated the existence of the inverse Mpemba effect where a system is heated

instead of cooled, i.e., a system at a lower initial temperature relaxes to a high temperature

state faster than another system with an intermediate initial temperature. We also showed

the existence of a stronger version of the Mpemba effect, where a system equilibrates to

a final steady state at an exponentially faster rate.

The exact analysis allows us to identify the reason behind the Mpemba effect in these

systems. First, we note that, though the system evolves stochastically, the evolution of

the history-averaged correlation functions is deterministic. The evolution equations are

first order differential equations, therefore two trajectories in the correlation functions-

time phase space cannot intersect. However, for the mono-dispersed gas, the state of the

system is defined by two quantities: energy and inter-particle correlation function. In
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this three dimensional space (third dimension being time), two trajectories cannot cross.

Nevertheless, when projected onto the lower dimensional energy-time plane, trajectories

may cross, leading to the Mpemba effect. If the initial states correspond to steady states,

then the inter-particle correlations are exactly zero and remain zero during time evolution,

constraining the correlation function-time plane to be two dimensional. Thus, a necessary

condition for the Mpemba effect to be observed is a non-zero inter-particle correlations,

or alternatively non-stationary initial states. On the other hand, for bi-dispersed gases,

there are two kinetic energies and three inter-particle correlation functions. Since the

energy-time dimensions are themselves three dimensional, it is possible to observe the

Mpemba effect when the correlations are set to zero, as in a true steady state. Note

that for the present study, we have chosen intersection of total energy as an indicator

of the Mpemba effect. This is a natural choice, as this is the quantity that is easiest to

track in an experiment. It is possible to characterise the state of the system by more

macroscopic quantities. For example, by temperature T and second Sonine coefficient, a2

in the expansion of velocity distribution function around Gaussian, as studied for the case

of granular systems of hard sphere particles [22].

Our results are analogous to those found in the perturbative treatment of the most real-

istic granular systems [22, 23]. In these calculations, the Mpemba effect can be seen in

mono-dispersed systems when the initial conditions do not correspond to any steady state,

but rather to some transient states that are close to the final steady state. This is achieved

by choosing appropriate initial velocity distribution functions for the two systems. For

the case of rough granular gas, calculations were carried out by considering states with

Gaussian velocity distribution at all times which may not hold good for non-equilibrium

systems. In contrast, the analysis in the present work does not make any assumption

regarding the nature of velocity distribution in the steady state of the granular system.

Therefore, extending the calculations of Refs. [22, 23] to smooth bi-dispersed gas would

be a promising area for future study. One can also search for exponentially faster re-

laxation protocols in these systems as studied in Refs. [5, 6]. In addition, the results in
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this chapter, particularly the case of bi-dispersed Maxwell gas where both components

are driven, suggest that driven binary gases are a good candidate for observation of the

Mpemba effect in granular experiments.

Further, in the aim of demonstrating the existence of the Mpemba effect in Maxwell gases,

we have assumed that energies evolve monotonically, by not explicitly accounting for the

possibility that when a hot system is quenched to a lower temperature, the temperature

could drop below the final temperature. In order to include scenarios with non-monotonic

evolution of energy into the present framework, one may have to look at the behavior

of the absolute values of the coefficients K� [11]. This extended case may be addressed

in future, to the present and other models of granular gases. One may also look at the

relation between the existence of such non monotonic relaxation and the strong Mpemba

effect, as the presence of non-monotonicity indicate a change in sign of the coefficient

K�.
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Chapter 3

Mpemba effect in an anisotropically

driven granular gas

3.1 Introduction

In the previous chapter, we investigated the role of initial conditions for the existence of

the Mpemba effect in driven granular gases. The Mpemba effect has been demonstrated

for homogeneous and isotropically driven smooth as well as rough gases, which requires

the initial states to be non-stationary [22, 23, 24, 25]. The results from an exact analysis

of the driven, inelastic Maxwell gas where the rate of collision is taken to be independent

of the relative velocity of the colliding particles, is consistent with the above results for

the mono-dispersed gas [25]. However, the lack of stationarity of the initial conditions

makes it difficult for experimental realisation because while stationary states are easy to

achieve due to them being attractive, non-stationary states require careful preparation of

the initial state.

On the other hand, we demonstrate the existence of the Mpemba effect in driven bi-

dispersed granular gas, starting from steady state initial conditions. However, we find that
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the criteria for the steady state initial conditions is fulfilled only when the two species of

particles of the bi-dispersed gas are driven differently. Such a criterion makes the model

more abstract and one does not know how to drive two species of particles differently

in experiments. Moreover, the model brings in too many system parameters making to

difficult to analyse the minimal criteria that can lead to such effect.

In this chapter, we switch to the mono-dispersed granular gas but now anisotropically

driven in two dimensions, and show the existence of the Mpemba effect starting from

initial conditions that are stationary. The benefit for the choice of such a model is two

fold: (a) it has fewer system parameters to analyse compared to the bi-dispersed gas where

both the species are driven differently and (b) such a model is experimentally realisable.

In addition, we derive the conditions for the inverse and the strong Mpemba effect in this

system. The analysis is exact for stationary states that are close to the final stationary state.

For generic initial stationary states, we verify our theoretical predictions with detailed

event-driven molecular dynamics simulations of hard discs. We propose that this set

up of anisotropically driven granular gases is ideal for studying the Mpemba effect, and

later for possibly more practical applications. The content of this chapter is published in

Ref. [26].

3.2 Model

Consider a two-dimensional granular gas composed of identical, smooth, inelastic hard

particles. The velocities of these particles change in time through momentum conserving

binary collisions. When two particles i and j with velocities vi and v j collide, the new

velocities v0
i

and v0
j

are given by

v0
i
= vi �

1+ r

2
[(vi �v j).ê]ê,

v0
j
= v j +

1+ r

2
[(vi �v j).ê]ê,

(3.1)
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where r is the coefficient of restitution and ê is the unit vector along the line joining the

centres of the particles at contact. The particles are anisotropically driven at a constant

rate. At long times, the system goes into a stationary state.

The velocity distribution function f (v, t), defined as the number density of particles hav-

ing velocity v at time t, obeys the Enskog-Boltzmann equation [73]

∂
∂ t

f (v, t) = cI( f , f )+
⇣x 2

0x

2
∂ 2

∂v2
x

+
x 2

0y

2
∂ 2

∂v2
y

⌘
f (v, t), (3.2)

where c [74] is the pair correlation function, I( f , f ) is the collision integral which ac-

counts for the rate of collision of two particles being proportional to their relative velocity

and is given by

I( f , f ) = s
Z

dv2

Z
deQ(�v12.e)|v12.e|

h 1
r2 f (v

00
1, t) f (v

00
2, t)� f (v1, t) f (v2, t)

i
. (3.3)

Here, x 2
0x

and x 2
0y

are the variances or strengths of the white noise along the x- and

y-directions respectively. Note that in Eq. (3.2), we have introduced different driving

strengths along the two directions, and we will refer to such driving as anisotropic driv-

ing. The Enskog-Boltzmann equation can be used to describe a spatial system but here

we consider a spatially homogeneous system such that the spatial degrees of freedom

are ignored. Moreover, as usually assumed in kinetic theory for dilute gases, we apply

the molecular chaos hypothesis to use product measure for the joint velocity distribution

function in the collision integral I( f , f ).

The anisotropic driving implies that, though the system remains homogeneous with hvi=
0, the mean kinetic energies per particle (granular temperature) along the two directions

are different. The granular temperatures are defined as Ti(t) = (2/n)
R

dv 1
2mv

2
i

f (v, t),

where n =
R

dv f (v, t) is the number density, m is the mass of the particles, and i = x,y.
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The time evolution equations are given by

∂Tx

∂ t
= mx 2

0x
+

4ncs(1+ r)
p

Ty

15
p

m
p

p(Tx �Ty)
⇥
h ⇣

4(2r�3)T 2
x
+(7�3r)TxTy �2(1+ r)T 2

y

⌘
E

⇣
1� Tx

Ty

⌘

+Tx

�
2Tx(3�2r)+Ty(1+ r)

�
K

⇣
1� Tx

Ty

⌘i
, (3.4)

and

∂Ty

∂ t
= mx 2

0y
+

4ncs(1+r)
p

Ty

15
p

m
p

p(Tx�Ty)
⇥
h
2(1+ r)(T 2

x
�T

2
y
)E
⇣

1� Tx

Ty

⌘
+(3r�7)

p
TxTy(Tx �2Ty)E

⇣
1� Ty

Tx

⌘

�(1+ r)Tx(Tx �Ty)K
⇣

1� Tx

Ty

⌘
+(3r�7)

p
TxT

3/2
y K

⇣
1� Ty

Tx

⌘i
, (3.5)

We introduce two quantities Ttot and Tdi f which are the total and the difference of the

temperatures in the two directions:

Ttot(t) = Tx(t)+Ty(t),

Tdi f (t) = Tx(t)�Ty(t).
(3.6)

We define the dimensionless variable for time, t
⇤ in terms of mean collision time as

t
⇤ = n0t, (3.7)

where n0 is the frequency of interparticle collisions given by

n0 = csn

s
2(T st

tot +T
st

di f
)

pm
E

⇣ 2T
st

di f

T
st

tot +T
st

di f

⌘
. (3.8)

Within kinetic theory, the velocity distribution of a driven granular gas, f (v, t⇤), is ex-

panded about the Gaussian in terms of Sonine polynomials [73, 74]. For the sake of

simplicity, we restrict ourselves to the first term in the expansion, namely a Gaussian.

Adding more terms will not change the qualitative results obtained in the chapter. Thus,
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we write

f (v, t⇤) =
mn

2p
p

Tx(t⇤)Ty(t⇤)
exp

"
� mv

2
x

2Tx(t⇤)
�

mv
2
y

2Ty(t⇤)

#
. (3.9)

Substituting Eq. (3.9) into Eq. (3.2), we find that the equations governing the tempo-

ral evolution of Ttot(t⇤) and Tdi f (t
⇤) form a closed set of coupled non-linear differential

equations, and is given by

∂
∂ t⇤

Ttot(t
⇤) = F (Ttot ,Tdi f ),

∂
∂ t⇤

Tdi f (t
⇤) = G (Ttot ,Tdi f ),

(3.10)

where

F (Ttot ,Tdi f ) =
m(x 2

0x
+x 2

0y
)
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15n0
p
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, (3.11)

and

G (Ttot ,Tdi f ) =
m(x 2

0x
�x 2

0y
)

n0
+

ncs(1+r)(3r�7)
p

Ttot�Tdi f

15n0
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We denote the parameters of the final stationary state by T
st

tot
and T

st

di f
. In the stationary

state, the time derivatives in Eq. (3.10) can be set to zero and hence F (T st
tot
,T st

di f
) = 0 and
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G (T st
tot
,T st

di f
) = 0. Let us study the variation of the stationary temperatures T

st
tot

and T
st

di f
as

a function of the system parameters. We define the following scaling functions:

T
st

tot
= m

⇣ x 2
0x

ncs

⌘2/3
T̃

st

tot
(r,µ),

T
st

di f
= m

⇣ x 2
0x

ncs

⌘2/3
T̃

st

di f
(r,µ), where µ ⌘

x 2
0y

x 2
0x

.

(3.13)

On using the scaling forms for T
st

tot
and T

st

di f
[see Eq. (3.13)] in the steady state condition

of Eqs. (3.11) and (3.12), we obtain the following coupled equations in terms of T̃
st

tot
(r,µ)

and T̃
st

di f
(r,µ):
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Figure 3.1 shows the variation of the scaled functions, T̃
st

tot
(r,µ) and T̃

st

di f
(r,µ), for two

different values of coefficient of restitutions, r = 0.01 and r = 0.65. It is evident from

Fig. 3.1 that as the ratio of the driving strengths (µ) approaches unity, i.e., in the limit of

isotropic driving, T̃
st

di f
(r,µ) goes to zero irrespective of the value of r. Also, as r increases,
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Figure 3.1: Variation of T̃
st

tot
(r,µ) and T̃

st

di f
(r,µ) with µ for two different cases of (a)

r = 0.01 and (b) r = 0.65. T̃
st

di f
(r,µ) goes to zero in the limit of isotropic driving, µ ! 1

and its value decreases with the increase in r for any given value of the ratio of driving
strengths, µ .

i.e., as collisions become more elastic, T̃
st

di f
(r,µ) decreases to zero for any given value of

µ .

3.3 Mpemba effect

We define the Mpemba effect as follows. Consider two systems with different initial Ttot .

Both systems are quenched to the same final stationary state whose temperature is lower.

If the system that is initially hotter reaches the final stationary state faster, then we say

that the system shows the Mpemba effect. Likewise, if the initial systems are heated to a

higher temperature and the cooler system equilibrates faster, we will say that the system

shows the inverse Mpemba effect. Finally, for both effects, we will say that the system

shows strong Mpemba effect, if the hotter system relaxes exponentially faster than the

cooler system for the Mpemba effect and vice versa for the inverse Mpemba effect. We

will demonstrate the existence of all these four features for the anisotropically driven

granular gas, both analytically using a linearised theory as well as through event-driven

molecular dynamics simulations.

We first analytically demonstrate the Mpemba effect by considering only those initial
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stationary states that are close to the final stationary state, allowing for linearisation of

the system thus making it tractable. This method of linearisation closely follows that of

Ref. [22]. Let dTtot(t⇤) = Ttot(t⇤)�T
st

tot
and dTdi f (t

⇤) = Tdi f (t
⇤)�T

st

di f
denote the time-

dependent deviation from the stationary state values. For small deviations, the non-linear

differential equations in Eq. (3.10) can be linearised about the stationary state values to

give

d

dt⇤

2

64
dTtot(t⇤)

dTdi f (t
⇤)

3

75=� R

2

64
dTtot(t⇤)

dTdi f (t
⇤)

3

75 , (3.16)

where R is a 2⇥2 matrix with components R11, R12, R21 and R22 given by

R11 =� ncs(1+ r)
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R12 =� ncs(1+ r)
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R21 =
ncs(1+ r)(7�3r)
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and

R22 =
ncs(1+ r)(7�3r)
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dTtot(t⇤) and dTdi f (t
⇤) then relaxes in time to zero as
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⇤) = K+e
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⇤
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(3.17)

where the coefficients K+,K�,L+ and L� are given by
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Here, l± are the eigenvalues of R and g = l+�l�.
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We now derive the condition for the Mpemba effect to be present in the linearised regime,

based on the analysis of Eq. (5.6). Consider two systems P and Q whose stationary

state parameters are denoted as [T P
tot
,T P

di f
] and [T Q

tot ,T
Q

di f
] respectively. We will assume

that P is hotter than Q, i.e., T
P

tot
> T

Q

tot . On quenching to [T st
tot
,T st

di f
], the Mpemba effect

will be present when there exists a finite time t such T
P

tot
(t⇤) < T

Q

tot(t
⇤) for t

⇤ > t . To

characterise the difference between the two system, we introduce the quantities DTtot =

T
P

tot
(0)�T

Q

tot(0) and DTdi f = T
P

di f
(0)�T

Q

di f
(0). From Eq. (5.6), written for both P and Q,

the time t at which the two relaxation curves cross, corresponding to T
P

tot
(t) = T

Q

tot(t), is

given by

t =
1
g

ln
h

R12DTdi f � (l��R11)DTtot

R12DTdi f � (l+�R11)DTtot

i
. (3.19)

For the Mpemba effect to be present, we require that t > 0, or equivalently (since g > 0),

the argument of the logarithm in Eq. (3.19) should be greater than one. We immediately

obtain the criterion for the crossing of the two trajectories as

R12DTdi f > (l+�R11)DTtot . (3.20)

In Fig. 3.2(a), we choose initial conditions P and Q such that Eq. (3.20) is satisfied. The

trajectories cross at the point as predicted by Eq. (3.19). For initial stationary states that

are close to the final state, there is little difference between the linearised (dotted lines)

and the full numerical solutions (solid lines).

In Fig. 3.3, we identify the region of phase space (initial conditions) where the Mpemba

effect is observable for varying coefficient of restitution r, based on Eq. (3.20). The initial

conditions in the region below the line in the phase diagram show the Mpemba effect

whereas the other region does not show the effect. The phase diagram is for a generic

final stationary state with parameters T
st

tot
= 1.0 and T

st

di f
= 0.15. As r approaches unity,

the gas becomes more isotropic, and the the key feature responsible for the presence of
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Figure 3.2: (a) The time evolution of Ttot(t⇤) with time t
⇤ for two systems P and

Q, with initial conditions T
P

tot
(0)/T

st
tot

=1.005, T
P

di f
(0)/T

st
tot

=0.28 (x 2
oy
/x 2

ox
= 6 ⇥ 10�3),

T
Q

tot(0)/T
st

tot
=1.004 and T

Q

di f
(0)/T

st
tot

=0.2 (x 2
oy
/x 2

ox
= 0.168), show the Mpemba effect when

quenched to the final stationary state values of T
st

tot
=1.00 and T

st

di f
/T

st
tot

=0.28 (x 2
oy
/x 2

ox
=

1.54⇥10�4). (b) The initial conditions T
P

tot
(0)/T

st
tot

=0.997, T
P

di f
(0)/T

st
tot

=0.277 (x 2
oy
/x 2

ox
=

7.34 ⇥ 10�2), T
Q

tot(0)/T
st

tot
=0.996 and T

Q

di f
(0)/T

st
tot

=0.198 (x 2
oy
/x 2

ox
=0.169) show the in-

verse Mpemba effect when heated to the final stationary state values of T
st

tot
=1.0 and

T
st

di f
/T

st
tot

=0.28 (x 2
oy
/x 2

ox
= 1.54⇥ 10�4). The solid lines represent the exact time evo-

lution of Ttot and the dashed lines represent its time evolution after linearisation. The
other parameters used for the systems are m=1, ns2=0.02 and r=0.65.
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Figure 3.3: The DTtot/DTdi f –r phase diagram showing regions where the Mpemba effect
is observed and r is the coefficient of restitution. All other parameters are kept constant.
Here, both the systems are quenched to the final stationary state given by T

st
tot

= 1.0 and
T

st

di f
/T

st
tot

= 0.15. The region below the critical line show the Mpemba effect whereas the
region on the other side of the critical line does not show the Mpemba effect.

the Mpemba effect, i.e., anisotropy of temperatures, is lost and hence the Mpemba effect

is not observed.

It can be shown that an inverse Mpemba effect also exists wherein the system is heated

instead of being cooled. The condition for the inverse Mpemba effect to be present turns

out to be the same as in Eq. (3.20). An example is illustrated in Fig. 3.2(b). Initially Q is

at a lower temperature. On being heated to a common higher temperature, it can be seen

that Q equilibrates faster. Again, the difference between the exact linearised solution and

the full numerical solution of the non-linear equation is negligible.

We also explore the possibility of the strong Mpemba effect in which the system at higher

temperature cools exponentially faster. The linear evolution equation in Eq. (5.6) allows

certain set of initial conditions to relax to the final stationary state exponentially faster

compared to other initial states. The effect may be realised when the coefficient asso-

ciated with the slower relaxation rate in the time evolution of total temperature, Ttot(t⇤)
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Figure 3.4: Time evolution of Ttot(t⇤) with t
⇤ for two identical systems P and Q with ini-

tial conditions T
P

tot
(0)/T

st
tot

=1.026, T
P

di f
(0)/T

st
tot

=0.456 (x 2
oy
/x 2

ox
=0.08), T

Q

tot(0)/T
st

tot
=1.014

and T
Q

di f
(0)/T

st
tot

=0.2 (x 2
oy
/x 2

ox
=0.438) which are chosen close to the final stationary state

values of T
st

tot
=1.0 and T

st

di f
/T

st
tot

=0.1 (x 2
oy
/x 2

ox
=0.667). P cools exponentially faster than Q

though it has higher initial temperature and thus exhibits the strong Mpemba effect. The
other parameters used for the systems are m=1, ns2=0.02 and r=0.2.

vanishes. Setting the coefficient (K�) associated with the slower relaxation rate to zero

[see Eq. (5.6)], we obtain the condition for the strong Mpemba effect to be

Ttot(0) =
R12

l+�R11
Tdi f (0)� c, (3.21)

where c = R12/(l+�R11)T st

di f
�T

st
tot

. For a system with all other parameters kept fixed,

solution of Eq. (3.21) in terms of Ttot(0) and Tdi f (0) provides the set of initial states whose

relaxation is exponentially faster than the set of generic states. Among these initial states,

we look for stationary states that can be obtained by applying suitable driving strengths

x 2
0x

and x 2
0y

. One such example is illustrated in Fig. (3.4). Here, P which is hotter cools

exponentially faster.
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3.4 Comparison with simulations

In these calculations, the spatial degrees of freedom have been ignored. To show that the

results continue to hold even when spatial correlations may be present, we compare the an-

alytical results with event-driven molecular dynamics (MD) simulations. In the MD sim-

ulations, we have analysed the systems with dimensionless number density, ns2 =0.02

and r = 0.65. During a collision, the velocities are updated according to Eq. (4.1). For

driving, after a certain time step dt, a particle is chosen at random at rate ld and the ve-

locity of the particle is updated according to: v
0
i
=�vi +

q
x 2

0i
/ldfi, where i = x,y and f

is drawn from a normal distribution. We prepare two systems P and Q in their stationary

state initial conditions having different initial temperatures and then quenched to the same

lower temperature. The driving strengths x 2
0x

and x 2
0y

corresponding to the initial and final

stationary temperatures are computed using Eqs. (3.11) and (3.12).

Figure 3.5 shows the time evolution of the total temperature, Ttot with time, t
⇤ when the

two systems, P and Q are driven from their different stationary state initial conditions to

a same final state. In order to compare between the theory and simulation results, we

plot the ratio of Ttot/T
st

tot
obtained from the respective theoretical and simulation results.

The solid lines represent the theoretical predictions as obtained by solving the full non-

linear Eq. (3.10) by assuming Gaussian distribution for the velocity distribution function

whereas the points denote the results obtained from the MD simulations. Clearly, there

is a good agreement between the theoretical predictions and the results from the MD

simulations for both the Mpemba effect [see Fig. 3.5(a)] and its inverse [see Fig. 3.5(b)].

For much larger initial temperatures (twice as large), the comparison between simulation

and the numerical solution of Eq. (3.10) is shown in Fig. (3.6). While there is a small

quantitative difference, the qualitative features of the Mpemba effect persist.
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Figure 3.5: (a) The time evolution of Ttot(t⇤) with time t
⇤ for two systems P and

Q, with initial conditions T
P

tot
(0)/T

st
tot

=1.051, T
P

di f
(0)/T

st
tot

=0.294 (x 2
oy
/x 2

ox
=3.64⇥10�3),

T
Q

tot(0)/T
st

tot
=1.046 and T

Q

di f
(0)/T

st
tot

=�0.172 (x 2
oy
/x 2

ox
=3.87), show the Mpemba effect

when quenched to the final stationary state values of T
st

tot
=1.0 and T

st

di f
/T

st
tot

=0.279
(x 2

oy
/x 2

ox
=3.89⇥10�3). (b) The initial conditions T

P
tot
(0)/T

st
tot

=0.953, T
P

di f
(0)/T

st
tot

=0.267
(x 2

oy
/x 2

ox
=3.59⇥10�3), T

Q

tot(0)/T
st

tot
=0.948 and T

Q

di f
(0)/T

st
tot

=�0.156 (x 2
oy
/x 2

ox
=3.89) show

the inverse Mpemba effect when heated to the final stationary state values of T
st

tot
=1.0 and

T
st

di f
/T

st
tot

=0.279 (x 2
oy
/x 2

ox
=3.89⇥10�3). The solid lines represent the exact time evolution

of Ttot and the points represent the results from simulation. The other parameters used for
the systems are m=1, ns2=0.02 and r=0.65.
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Figure 3.6: Time evolution of Ttot(t⇤) with t
⇤ for two identical systems P and Q with ini-

tial conditions T
P

tot
(0)/T

st
tot

=2.1, T
P

di f
(0)/T

st
tot

=1.26 (x 2
oy
/x 2

ox
=5.89⇥10�5), T

Q

tot(0)/T
st

tot
=2.0

and T
Q

di f
(0)/T

st
tot

=�1.2 (x 2
oy
/x 2

ox
=1.697⇥104) show the Mpemba effect when quenched to

the final stationary state values of T
st

tot
=1.0 and T

st

di f
/T

st
tot

=0.6 (x 2
oy
/x 2

ox
=5.893⇥10�5). The

other parameters used for the system are r = 0.05, m = 1 and ns2 = 0.02. The solid
lines represent the exact time evolution of Ttot and the points represent the results from
simulation.
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3.5 Conclusion

To summarise, we showed the existence of the Mpemba effect, the inverse Mpemba effect

and the strong Mpemba effect in an anisotropically driven granular gas. The key feature

is that the initial states are stationary states unlike earlier analysis of the Mpemba effect in

isotropically driven granular systems which required the initial states to be non-stationary.

Our analysis also shows that anisotropy in the velocity distribution of particles is a key

ingredient for the existence of such anomalous behaviour, and the Mpemba effect van-

ishes when the collisions become elastic. It also demonstrates that the Mpemba effect,

though usually studied in detailed balanced systems, is more general and is applicable to

systems far from equilibrium. The time taken to relax to the steady state could depend

anomalously on the distance of the steady state from which it is quenched. Though the

exact results were based on a linearised theory for a spatially homogeneous system, MD

simulations of hard discs in two dimensions show that the results are true for a spatially

extended system also. Achieving anisotropic driving in experiments is not difficult as

the amplitude and frequency of shaking can be chosen to be different in different direc-

tions, and should therefore allow for an experimental realisation, which has been hitherto

lacking, of the Mpemba effect in granular systems.
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Chapter 4

Mpemba effect in anisotropically driven

inelastic Maxwell gases

4.1 Introduction

To achieve the Mpemba effect in a granular system with stationary initial conditions, a

couple of systems have been put forward. Through an exact analysis of a driven binary

granular Maxwell gases [25], it was shown that the coupling between the mean kinetic

energies of the two components of the binary gas leads to the Mpemba effect, the inverse

Mpemba effect and the strong Mpemba effect starting from steady state initial conditions.

Here, a mechanism of driving the two types of particles differently is required, which

may be difficult to achieve in practice. For a monodispersed gas in two dimensions, it was

shown in the previous chapter that it is possible to achieve the Mpemba effect, its inverse

and the strong counterpart with initial stationary states provided the driving is anisotropic

(different in the two directions) [26]. This was established based on an analysis of the

Enskog-Boltzmann equation for driven granular gases with the simplifying assumption

that the velocity distribution is a gaussian. By linearising the theory about the stationary

states, it is shown that the Mpemba effect can be achieved by simply tuning the driving
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strengths, thus making it an effective system for experimental realisation of the effect.

Results from event-driven simulations are consistent with the results from the linearised

theory [26]. However, it is not very clear how much the results depend on the simplifying

assumptions which are ad-hoc and not perturbative. In addition, the Enskog-Boltzmann

equation for driven granular gases assumes that the driving is diffusive and hence limits

the form of driving. It would thus be of importance to have a more rigorous derivation of

the results.

In this chapter, we do an exact analysis of the system of monodispersed inelastic gas with

anisotropic driving based on the inelastic Maxwell model in two dimensions. Compared

to the system studied in Ref. [26] where the rate of collision is proportional to the relative

velocity, in the Maxwell gas, the rate of collision is independent of the relative velocity.

While this makes the Maxwell gas more unrealistic, it renders it more amenable to exact

analysis, at the same time retaining the qualitative features. This advantageous feature has

been exploited in obtaining more rigorous results in both freely cooling granular gas [75,

76, 77, 78] as well as in the velocity distributions of driven granular gases [79, 80, 81,

55, 56, 58, 57]. The equations for the time evolution of the relevant two point velocity

correlations for the Maxwell gas form a closed set of equations [60]. We analyse these

equations to determine the condition and the parameter regime for the existence of the

Mpemba effect. Compared to the model studied in Ref. [26], the rigorous analysis in the

Maxwell model allows us to explore the entire region of phase space of the system as well

as to analyse every aspects of the possible anisotropy that can demonstrate the Mpemba

effect. With our exact analysis of the anisotropically driven Maxwell gas, we are able to

put the results of Ref. [26], which depended on many simplifying assumptions, on a more

sound footing. We show that the Mpemba and the inverse Mpemba effects exist for steady

state initial conditions which can be prepared by tuning the physical parameters defining

the system. In this analysis, we also demonstrate the existence of the strong Mpemba

effect where for certain specific initial steady states, the equilibration rate is exponentially

faster compared to any other initial steady states. The content of this chapter is published

98



in Ref. [27].

4.2 The Model

Consider a monodispersed granular gas composed of N identical particles. We label the

particles by i = 1, . . . ,N and denote their two dimensional velocities by vi = (vix,viy).

These velocities evolve in time through momentum conserving inelastic binary collisions

and external driving. A pair of particles i and j collide at a constant rate lc/N (Maxwell

model). The factor 1/N in the collision rates ensures that the total rate of collisions

between N[N � 1]/2 pairs of particles are proportional to the system size N. The new

velocities v0i and v0j are given by

v0
i
= vi �a[(vi �v j).ê]ê,

v0
j
= v j +a[(vi �v j).ê]ê,

(4.1)

where

a =
1+ r

2
, (4.2)

r being the co-efficient of restitution, and ê is the unit vector along the line joining the

centres of the particles at contact. We assume that ê takes a value uniformly from [0,2p)

for each collision. In addition to collisions, the system evolves through external driving.

Each particle is driven at a rate ld . During a driving event, the new velocity v0i is given by

v
0
ix
=�rwxvix +hx, �1 < rwx  1,

v
0
iy
=�rwyviy +hy, �1 < rwy  1,

(4.3)

where the parameters rwx and rwy are scalars that are related to the driving along the x and

y directions respectively and ⌘ is a noise taken from a fixed distribution F(⌘). We denote
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the second moment of the noise distribution by s2
x

and s2
y

:

s2
k
=

Z •

�•
dhkh2

k
F(⌘), k = x,y. (4.4)

Note that s2
x
6= s2

y
or rwx 6= rwy corresponds to anisotropic driving and will introduce an

anisotropy in the resultant velocity distribution of the particles.

The driving scheme described above [Eq. (4.3)] takes the system to a steady state and the

isotropic case has been used extensively in earlier studies [55, 56, 58]. We note that if

rwx = �1 or rwy = �1, then the driving is equivalent to the diffusive driving, dv/dt =

⌘, in which case the total energy diverges with time and therefore there is no steady

state [59, 60]. This model of dissipative driving [Eq. (4.3)] can be thought of as particles

colliding with a vibrating wall. In that case, the velocity of a particle vx,y after the collision

with the wall is given by: v
0
x,y �V

0
wx,y =�rwx,y(vx,y �Vwx,y), where rwx,y is the coefficient

of restitution between the wall and the particle and Vwx,y being the wall velocity. Since

the velocity of the wall remains unchanged during a collision, we have V
0
wx,y = Vwx,y.

Therefore, we can write v
0
x,y = �rwx,yvx,y +(1+ rwx,y)Vwx,y. We assume that the velocity

of the wall in each collision is like an uncorrelated random noise. Hence, we can write

v
0
x,y = �rwx,yvx,y + hx,y. The physical values for rwx,y lie in [0,1], where zero denotes

completely inelastic wall collisions and one denotes elastic wall collisions. However, as

a mathematical model for driving, it is valid for the range rwx,y 2 (�1,1]. A detailed

explanation regarding the physical motivations for the form of driving in Eq. (4.3) may

be found in Refs. [59, 60].

Let P(v, t) denote the probability that a randomly chosen particle has velocity v at time t.
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Its time evolution is given by

d

dt
P(v, t) = lc

Z Z Z
dêdv1dv2P(v1, t)P(v2, t)d (v1 �a[(v1 �v2).ê]ê�v)

+ld

Z Z
d⌘dv1F(⌘)P(v1, t)d [�rwxv1x +hx � vx]d [�rwyv1y +hy � vy]

�lcP(v, t)�ldP(v, t), (4.5)

where the first and third terms on the right hand side describe the gain and loss terms due

to collisions while the second and fourth terms describe the gain and loss terms due to

driving. We now analyse the driving terms for the special case of rwx = rwy = 1 and for

small ⌘ and show that it leads to a diffusive term. We denote the driving terms as ID and

is given by

ID =�ldP(v, t)+ld

Z Z
d⌘dv1F(⌘)P(v1, t)d [�v1x+hx�vx]d [�v1y+hy�vy]. (4.6)

Integrating over v1 and using the property P(v, t) = P(�v, t), we obtain

ID =�ldP(v, t)+ld

Z
d⌘F(⌘)P(v�⌘, t). (4.7)

Upon Taylor expanding the integrand about |⌘|= 0 and then integrating over ⌘ gives

ID =
ldh|⌘|2i

2
—2

P(v)+higher order terms, rwx = rwy = 1. (4.8)

When the higher order terms are ignored, the driving terms in the time evolution equation

for P(v, t) takes the form of Fokker-Planck diffusive term, and we therefore call the case

rwx = rwy = 1 as diffusive driving.
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4.3 Two point correlations

We are interested in the time evolution of the following two-point correlation functions:

Ex(t) =
1
N

N

Â
i=1

hv2
ix
(t)i, Cx(t) =

1
N(N�1) ÂN

i=1 ÂN

j=1
j 6=i

hvix(t)v jx(t)i,

Ey(t) =
1
N

N

Â
i=1

hv2
iy
(t)i, Cy(t) =

1
N(N�1) ÂN

i=1 ÂN

j=1
j 6=i

hviy(t)v jy(t)i,

Exy(t) =
1
N

N

Â
i=1

hvix(t)viy(t)i, Cxy(t) =
1

N(N�1) ÂN

i=1 ÂN

j=1
j 6=i

hvix(t)v jy(t)i. (4.9)

Ex(t) and Ey(t) denote the mean kinetic energies of the particles along x and y direc-

tions respectively. Exy(t) denote the correlations between vx and vy of the same particle

whereas Cx(t), Cy(t) and Cxy(t) denote the velocity-velocity correlations between pairs of

particles. The time evolution for these correlation functions can be obtained starting from

Eq. (4.5) [55, 56, 58, 60, 25]. These may be written compactly in a matrix form as

d⌃̃(t)

dt
= R̃⌃̃(t)+D̃, (4.10)

where the column vectors ⌃̃(t) and D̃ are given by:

⌃̃(t) = [Ex(t),Ey(t),Exy(t),Cx(t),Cy(t),Cxy(t)]
T , (4.11)

D̃ = [lds2
x
,lds2

y
,0,0,0,0]T . (4.12)

While the matrix R̃ can be written for any N, in the thermodynamic limit N ! •, it

simplifies to
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R̃=

2

666666666666664

A1 +A
xx

4 A2 0 �A1 �A2 0

A2 A1 +A
yy

4 0 �A2 �A1 0

0 0 �A3 +A
xy

4 0 0 A3

0 0 0 2A
x

5 0 0

0 0 0 0 2A
y

5 0

0 0 0 0 0 A
x

5 +A
y

5

3

777777777777775

. (4.13)

The constants A1,A2,A3,A
i j

4 ,A
i

5 are given by:

A1 =
3
4

lca4 �lca, A2 =
lca4

4
,

A3 = lca(1� a
2
), A

i j

4 =�ld(1� rwirw j),

A
i

5 =�ld(1+ rwi), where i, j 2 (x,y).

(4.14)

In the steady state, the left-hand side of Eq. (4.10) equals zero. After taking the ther-

modynamic limit (N ! •), we obtain the steady state values of the different two point

correlation functions as

Ex =
ld

⇥�
4ld(1� r

2
wy
)+lca(4�3a)

�
s2

x
+a2lcs2

y

⇤

F
, (4.15)

Ey =
ld

⇥�
4ld(1� r

2
wx
)+lca(4�3a)

�
s2

y
+a2lcs2

x

⇤

F
, (4.16)

Exy =Cx =Cy =Cxy = 0, (4.17)

where

F = 4l 2
d
(1� r

2
wx
)(1� r

2
wy
)+alcld(4�3a)(2� r

2
wx

� r
2
wy
)+2a2l 2

c
(2�3a +a2).

(4.18)

From the structure of R̃ [see Eq. (4.13)], it is evident that the time evolution of velocity-

velocity correlations only depend (linearly) on other velocity-velocity correlations and do

not depend on the mean kinetic energies. Thus, if in the initial state, these correlations are
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zero, then they remain zero for all times. Since we will be considering only initial states

that are stationary, the velocity-velocity correlations are initially zero [see Eq. (4.17)] and

will continue to remain zero for all times.

We therefore set these velocity correlations to zero and write the time evolution for only

the non-zero quantities, Ex and Ey as:

d⌃(t)

dt
= R⌃(t)+S, (4.19)

where

⌃(t) =


Ex(t),Ey(t)

�
T

, (4.20)

S =


lds2

x
,lds2

y

�
T

, (4.21)

and R is a 2⇥2 matrix, whose entries are given by

R11 =
3
4

lca2 �lca �ld(1� r
2
wx
), R12 =

lc

4
a2,

R22 =
3
4

lca2 �lca �ld(1� r
2
wy
), R21 =

lc

4
a2.

(4.22)

It is convenient to work in a different set of variables than Ex(t) and Ey(t). We introduce

the total energy, Etot , and the difference in energies, Edi f , as:

Etot = Ex +Ey, (4.23)

Edi f = Ex �Ey. (4.24)

Note that since the driving is anisotropic, Edi f 6= 0 in general.

The time evolution equations for Etot and Edi f can be expressed, starting from Eq. (4.19),

as
dE(t)

dt
=� �E(t)+D, (4.25)
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where

E(t) =


Etot(t),Edi f (t)

�
T

, (4.26)

D =


ld(s2

x
+s2

y
),ld(s2

x
�s2

y
)

�
T

, (4.27)

and � is a 2⇥2 matrix with the components of the matrix given by

c11 =
2lca(1�a)+ld(2� r

2
wx

� r
2
wy
)

2
, c12 =

ld(r
2
wy

� r
2
wx
)

2
,

c22 =
lca(2�a)+ld(2� r

2
wx

� r
2
wy
)

2
, c21 =

ld(r
2
wy

� r
2
wx
)

2
.

(4.28)

Equation (4.25) can be solved exactly by linear decomposition using the eigenvalues l±

of �:

l± =
1
4

h
2ld(2� r

2
wx

� r
2
wy
)+alc(4�3a)±

q
4l 2

d
(r2

wy
� r2

wx
)2 +a4l 2

c

i
. (4.29)

It is straightforward to show that l± > 0 with l+ > l�. The solution for Etot(t) and

Edi f (t) is

Etot(t)�hEtoti= K+e
�l+t +K�e

�l�t ,

Edi f (t)�hEdi f i= L+e
�l+t +L�e

�l�t ,
(4.30)

where hEtoti and hEdi f i are steady state values of Etot(t) and Edi f (t) respectively. The

coefficients K+,K�,L+ and L� along with hEtoti and hEdi f i are given by
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K+ =
1
g

h
� (l��c11)Etot(0)+c12Edi f (0)

� ld

l+

⇥�
c12 � (l��c11)

�
s2

x
�
�
c12 +(l��c11)

�
s2

y

⇤i
,

K� =
1
g

h
(l+�c11)Etot(0)�c12Edi f (0)

+
ld

l�

⇥�
c12 � (l+�c11)

�
s2

x
�
�
c12 +(l+�c11)

�
s2

y

⇤i
,

hEtoti=
ld

g

h�c12 � (l��c11)
�
s2

x
�
�
c12 +(l��c11)

�
s2

y

l+

�
�
c12 � (l+�c11)

�
s2

x
�
�
c12 +(l+�c11)

�
s2

y

l�

i
,

L+ =
1
g

h
� (l+�c11)(l��c11)

c12
Etot(0)+(l+�c11)Edi f (0)

� ld

l+c12

⇥
(l+�c11)(l��c11)(s2

x
�s2

y
)
⇤i
,

L� =
1
g

h(l+�c11)(l��c11)

c12
Etot(0)� (l+�c11)Edi f (0)

+
ld

l�c12

⇥
(l+�c11)(l��c11)(s2

x
�s2

y
)
⇤i
,

hEdi f i=
ld

c12g

h
(l+�c11)(l��c11)(s2

x
�s2

y
)
� 1

l+
� 1

l�

�i
,

g =l+�l�.

These coefficients depend only on the system parameters and initial conditions. Equa-

tion (5.4) gives the full time dependent solution for the energies, and we utilise them to

demonstrate the Mpemba effect.

4.4 The Mpemba effect in an anisotropically driven gas

In this section, we show and determine the conditions for the existence of the Mpemba

effect in the anisotropically driven monodispersed Maxwell gas based on the analysis of

Etot(t) and Edi f (t) [see Eq. (5.4)]. The Mpemba effect in granular systems has been de-
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fined as follows [22, 23, 25, 24, 26]. Consider two systems P and Q which have identical

parameters except for the pair of driving strengths, s2
x

and s2
y

. We will choose Etot of

P to be higher. Note that the systems P and Q are initially in steady states. We denote

their steady state values for the energies by [EP
tot
(0),EP

di f
(0)] and [EQ

tot(0),E
Q

di f
(0)] respec-

tively. Both the systems are then quenched to a common steady state having lower energy

compared to the initial steady state energies of P and Q. This is achieved by changing

the driving strengths of P and Q to the common driving strengths, s2
x

and s2
y

of the final

steady state, keeping all the other parameters of both the systems constant.

We say that the Mpemba effect is present if the two trajectories E
P
tot
(t) and E

Q

tot(t) cross

each other at some finite time t = t at which

E
P

tot
(t) = E

Q

tot(t). (4.31)

To obtain the value of t , we equate the energies for P and Q from Eq. (5.4) to obtain

K
P

+e
�l+t +K

P

�e
�l�t = K

Q

+e
�l+t +K

Q

�e
�l�t , (4.32)

whose solution is

t =
1

l+�l�
ln
h

K
P
+�K

Q

+

K
Q

� �K
P
�

i
. (4.33)

In terms of the parameters of the initial steady states, t reduces to

t =
1

l+�l�
ln
hc12DEdi f � (l��c11)DEtot

c12DEdi f � (l+�c11)DEtot

i
, (4.34)

where

DEtot = E
P

tot
(0)�E

Q

tot(0),

DEdi f = E
P

di f
(0)�E

Q

di f
(0).

(4.35)
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For the Mpemba effect to be present, we require that t > 0. Since l+ > l�, the argument

of logarithm in Eq. (5.11) should be greater than one. Simplifying, we obtain the criterion

for the crossing of the two trajectories to be

DEtot

DEdi f

<
A

1+
p

A2 +1
, (4.36)

where,

A(lc,ld,a,rwx,rwy) =
2ld

lca2 (r
2
wy

� r
2
wx
). (4.37)

The right hand side of Eq. (4.36) depends only on the intrinsic parameters of the sys-

tem and it is always less than one (since a,ld,lc > 0). On the other hand, the ratio

DEtot/DEdi f , depends on the initial steady state energies of P and Q [see Eq. (5.12)]. In

the stationary state, the ratio DEtot/DEdi f is given by

DEtot

DEdi f

=

⇥
2ld(1� r

2
wy
)+alc(2�a)

⇤
Ds2

x
+
⇥
2ld(1� r

2
wx
)+alc(2�a)

⇤
Ds2

y

2
h⇥

ld(1� r2
wy
)+alc(1�a)

⇤
Ds2

x
�
⇥
ld(1� r2

wx
)+alc(1�a)

⇤
Ds2

y

i ,

(4.38)

where,

Ds2
i
= (sP

i
)2 � (sQ

i
)2, i 2 (x,y). (4.39)

Equation (4.38) shows that the ratio DEtot/DEdi f depends on the intrinsic parameters of

the system as well as the driving strengths, s2
x

and s2
y

. As a result, the driving strengths

can be appropriately tuned, keeping all the other intrinsic parameters identical for both P

and Q, to prepare the initial conditions that satisfy Eq. (4.36). In Fig. 4.1(a), we consider

such a situation where Eq. (4.36) is satisfied. Here, the systems P and Q have identical

intrinsic parameters but the pair of driving strengths, s2
x

and s2
y

, are different for the two

systems. The trajectories cross at the point as predicted by Eq. (5.11). It is clear that
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(a) (b)

Figure 4.1: (a) The time evolution of the total energy, Etot(t) for anisotropically driven
systems P and Q of a two dimensional inelastic Maxwell gas, driven along both the direc-
tions of the plane, with initial conditions E

P
tot
(0)=20.27, E

Q

tot(0)=17.32, E
P

di f
(0)=-7.93 and

E
Q

di f
(0)=6.26 such that E

P
tot
(0) > E

Q

tot(0), which satisfies the condition for the Mpemba
effect as described in Eq. (4.36). The other parameters decribing the systems are chosen
to be r=0.3, rwx = 0.88 and rwy = 0.39. P relaxes to the steady state faster than Q, though
its initial energy is larger. The time at which the trajectories cross each other is t = 0.73
as given by Eq. (5.11). (b) DEtot/DEdi f –A phase diagram showing regions where the
Mpemba effect is observed and A [given by Eq. (4.37)] is a function of the parameters of
the system. The region below the line given by Eq. (4.36) denotes the set of steady state
initial conditions that show the Mpemba effect whereas the region on the other side of the
line corresponds to initial states that do not show the Mpemba effect.

though P has larger initial energy than Q, it relaxes faster compared to the latter.

Note that the time evolution of Etot(t) and Edi f (t) [see Eqs. (4.28)-(5.4)] remains invariant

of the sign of rwx and rwy. Similarly, the condition for the Mpemba effect [see Eqs. (4.36)

and (4.37)] do not change irrespective of the sign of rwx and rwy. Hence, even if the

model allows for the range �1 < rwx,y  1, we consider only the physical positive range

of rwx,y 2 [0,1] as the result is invariant irrespective of its sign.

Figure 4.1(b) illustrates the phase space (initial conditions), based on Eq. (4.36), where

the Mpemba effect is observable. In the figure, the line denotes the variation of right hand

side of Eq. (4.36) with A [given by Eq. (4.37)]. If the ratio DEtot/DEdi f which depends

on the initial conditions of P and Q, falls in the region below (above) the line in the phase

diagram [see Fig. 4.1(b)], then the system exhibits (does not exhibit) the Mpemba effect.

For steady state initial conditions, the ratio DEtot/DEdi f is given by Eq. (4.38). As the
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ratio DEtot/DEdi f is a function of the driving strengths, s2
x

and s2
y

[see Eq. (4.38)], they

can be appropriately tuned, independently for the systems P and Q as well as along the

x and y directions, to access the entire region of phase space where the Mpemba effect is

observable.

Note that one can introduce anisotropy in the mean kinetic energies by simply consid-

ering the case s2
x
6= s2

y
, and keeping rwx = rwy [see Eqs. (4.15) and (4.16)]. But in that

case, the condition for the Mpemba effect reduces to DEtot < 0 [see Eq. (4.36)] which is

not possible to realise as we have assumed DEtot = E
P
tot
(0)�E

Q

tot(0) > 0. Therefore, to

demonstrate the Mpemba effect, we restrict ourselves to the case rwx 6= rwy.

4.4.1 The inverse Mpemba effect

Consider now the case where a system is heated instead of being cooled unlike the direct

Mpemba effect. Now if an initially colder system heats up faster than a system at an

intermediate one then it is called the inverse Mpemba effect. We follow the same analysis

as in the direct Mpemba effect. The condition for the inverse Mpemba effect is same as

that for the direct Mpemba effect as given in Eq. (4.36). We prepare two systems P and

Q such that P has a higher initial total energy than Q and also satisfy the condition for

the inverse Mpemba effect [Eq. (4.36)]. We then quench both the systems to a common

steady state having higher total energy compared to the initial total energies of both P and

Q. The cross-over time t at which the trajectories E
P
tot
(t) and E

Q

tot(t) cross is given by

Eq. (5.11). An example is illustrated in Fig. 4.2.

The phase space of the initial steady states that satisfy the condition for the inverse

Mpemba effect turns out to be the same as that for the direct Mpemba effect and is given

by Eq. (4.38). Thus, Fig. 4.1(b) also illustrates the valid initial steady states given by

Eq. (4.38) that satisfy the condition [Eq. (4.36)] where the inverse Mpemba effect is ob-

servable.

110



 0.6

 0.7

 1

 0  2  4  6  8

P

Q

E
to

t /
 E

fi
n

a
l

t

Figure 4.2: The time evolution of the total energy, Etot(t) for anisotropically driven sys-
tems P and Q of a two dimensional inelastic Maxwell gas, driven along both the direc-
tions of the plane, with initial conditions E

P
tot
(0)=20.27, E

Q

tot(0)=17.32, E
P

di f
(0)=-7.93

and E
Q

di f
(0)=6.26 such that E

P
tot
(0)> E

Q

tot(0), which satisfies the condition for the inverse
Mpemba effect as described in Eq. (4.36). The other parameters decribing the systems are
chosen to be r=0.3, rwx = 0.88 and rwy = 0.39. P relaxes to the steady state slower than
Q, though its initial energy is larger. The time at which the trajectories cross each other is
t = 0.73 as given by Eq. (5.11).
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4.4.2 The strong Mpemba effect

It can be shown that there exists certain initial conditions such that the system at higher

temperature relaxes to a final steady state exponentially faster compared to other initial

conditions. This phenomenon is called the strong Mpemba effect. The effect may be

realised when the coefficient (K�) associated with the slower relaxation rate in the time

evolution of total kinetic energy, Etot(t) [see Eq. (5.4)] vanishes.

Setting the coefficient K� [given by Eq. (2.57)] to zero, we obtain

Etot(0) =
A

1+
p

1+A2
Edi f (0)� c, (4.40)

where

c =
4ld

h
A

1+
p

1+A2 (s2
x
�s2

y
)+(s2

x
+s2

y
)
i

�
2ld(�2+ r2

wx
+ r2

wy
)�4lca +lca2(3+

p
1+A2)

� , (4.41)

and A is as given in Eq. (4.37). The solution of Eq. (4.40) in terms of Etot(0) and Edi f (0)

yields the set of initial states whose relaxation is exponentially faster than the set of

generic states. Among these initial states one would like to determine the ones which

are steady states. The steady state ratio of Etot(0)/Edi f (0) [see Eq. (2.57)] for a system is

given by

Etot(0)
Edi f (0)

=

⇥
2ld(1� r

2
wy
)+alc(2�a)

⇤
s2

x
+
⇥
2ld(1� r

2
wx
)+alc(2�a)

⇤
s2

y

2
h⇥

ld(1� r
2
wy
)+alc(1�a)

⇤
s2

x
�
⇥
ld(1� r

2
wx
)+alc(1�a)

⇤
s2

y

i ,

(4.42)

and is a function of the driving strengths, s2
x

and s2
y

, as all other parameters are kept con-

stant. One observes that the valid steady states with initial energies, Etot(0) and Edi f (0)

that satisfy the condition for the strong Mpemba effect [see Eq. (4.40)] can be obtained

by appropriately tuning the driving strengths.
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Thus, for a system of monodispersed Maxwell gas in two dimensions, there exists steady

state initial conditions that satisfy the condition given by Eq. (4.40) and hence approach

the final steady state exponentially faster compared to any other similar system whose

initial energies lie slightly below or above the line. An example of the strong Mpemba

effect is shown in Fig. 4.3(a).

Figure 4.3(b) illustrates the phase space (initial conditions) of system P where the

Mpemba effect as well as the strong Mpemba effect are observable. In the figure, the

region below the solid line denotes the initial conditions where the system exhibits the

Mpemba effect. In the region of the phase diagram where the Mpemba effect is observ-

able, the dashed line denotes the set of initial states that also satisfy the condition given

by Eq. (4.40) for which the system P exhibits the strong Mpemba effect.

4.5 Special case when the driving is only in one direction

In Sec. 4.4, we discussed the possibility of the Mpemba effect in the case of anisotrop-

ically driven monodispersed Maxwell gas where the particles are driven along both the

directions. We now consider a similar system but the driving is restricted to one direction.

We follow the same analysis as in Sec. 4.4. Here, for the case when particles are driven

only along x-direction (say) with driving strengths, s2
x
6= 0 and s2

y
= 0, the time evolution

of mean kinetic energies Ex and Ey is

dEx(t)

dt
= Ex

⇥
lca(

3
4

a �1)�ld(1� r
2
wx
)
⇤
+Ey

⇥lc

4
a2⇤+lds2

x
,

dEy(t)

dt
= Ex

⇥lc

4
a2⇤+Ey

⇥
lca(

3
4

a �1)
⇤
.

(4.43)
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(a) (b)

Figure 4.3: (a)The time evolution of the total energy, Etot(t) for anisotropically driven
systems P and Q of a two dimensional inelastic Maxwell gas, driven along both the
directions of the plane, with E

P
tot
(0) = 95.89, E

Q

tot(0) = 61.57, E
P

di f f
(0) = �59.82 and

E
Q

di f f
(0) = �4.26 such that E

P
tot
(0) > E

Q

tot(0). These initial values satisfy both the con-
ditions for the Mpemba effect as described in Eq. (4.36) as well as those for the strong
Mpemba effect (for system P) as described in Eq. (4.40). The other parameters defining
the system are chosen to be r = 0.2, rwx = 0.88 and rwy = 0.49. P equilibrates to the final
state at an exponentially faster rate compared to Q and the time at which the trajectories
cross each other is t = 4.14 as given by Eq. (5.11). (b) E

P
tot
(0)–E

P

di f
(0) phase diagram

showing regions of initial conditions where the system P shows the Mpemba effect as
well as the strong Mpemba effect. The initial conditions for system Q and all the other
parameters describing the two systems are similar to (a). Both the systems are quenched
to the final steady state condition Etot = 35.92 and Edi f = 23.66. The region below the
solid line given by Eq. (4.36) denotes the set of steady state initial conditions that show
the Mpemba effect and the dashed line denotes the set of initial conditions of system P

for which it shows the strong Mpemba effect.
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The time evolution for the quantities Etot and Edi f are given by Eq. (4.25) but now the

column matrix D takes the form

D =


lds2

x
,lds2

x

�
T

, (4.44)

The solutions for Etot(t) and Edi f (t) are obtained in the similar way as in Eq. (5.4) with

the coefficients K+,K�,L+ and L� along with the steady state energies hEtoti and hEdi f i

are now given by

K+ =
1
g

h
(�l�+c11)Etot(0)+c12Edi f (0)�

c12 �l�+c11)

l+
lds2

x

i
,

K� =
1
g

h
(l+�c11)Etot(0)�c12Edi f (0)+

c12 �l++c11)

l�
lds2

x

i
,

hEtoti=
1
g

hc12 � (l��c11)

l+
� c12 � (l+�c11)

l�

i
lds2

x
,

hEdi f i=
1
g

h(l+�c11)(l��c11)

c12l+
� (l+�c11)(l��c11)

c12l�

i
lds2

x
,

L+ =
1
g

h
� (l+�c11)(l��c11)

c12
Etot(0)+(l+�c11)Edi f (0)

� (l+�c11)(l��c11)

c12l+
lds2

x

i
,

L� =
1
g

h(l+�c11)(l��c11)

c12
Etot(0)� (l��c11)Edi f (0)

+
(l+�c11)(l��c11)

c12l�
lds2

x

i
,

g = l+�l�.

We now consider two systems labeled as P and Q with different initial conditions

[EP
tot
(0),EP

di f
(0)] and [EQ

tot(0),E
Q

di f
(0)] where E

P
tot
(0) > E

Q

tot(0). Both the systems are

quenched to a common steady state whose total energy is smaller than the initial total

energies of P and Q. This is achieved by changing the driving strengths of P and Q to the

common driving strengths, s2
x
6= 0 and s2

y
= 0 of the final steady state, keeping all the

other parameters constant for both the systems.

The condition for the Mpemba effect to be present is the same as that derived for the more
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general case [see Eq. (4.36)] but now the variable A is given by

A(lc,ld,a,rwx) =
�2ld

lca2 r
2
wx
. (4.45)

In Fig. 4.4(a), we consider such a situation where Eq. (4.36) is satisfied and hence the

systems P and Q show the Mpemba effect. The trajectories cross at the point as predicted

by Eq. (5.11).

In Fig. 4.4(b), we identify the region of phase space (initial condition) where the Mpemba

effect is observable, based on Eq. (4.36). In the figure, the line denotes the variation of

right hand side of Eq. (4.36) with A [given by Eq. (4.45)]. The region below the line in

the phase diagram corresponds to the initial conditions DEtot/DEdi f [see Fig. 4.4(b)] that

show the Mpemba effect [Eq. (4.36)] whereas the other region does not show the effect.

Here, we consider that the systems P and Q have identical intrinsic parameters once the

quench is done to the common steady state. However, these intrinsic parameters that char-

acterise the initial conditions of P and Q or equivalently DEtot/DEdi f , could be different.

As a result, one can tune these intrinsic parameters differently for P and Q to obtain initial

steady states that satisfy the condition given by Eq. (4.36) and hence show the Mpemba

effect.

However, when the intrinsic parameters other than driving strength is kept the same (both

before and after the quench), the ratio DEtot/DEdi f for initial steady states has a simple

form:
DEtot

DEdi f

=
(2�a)

2(1�a)
� 1.5. (4.46)

Note that a 2 [1/2,1] and hence the ratio in Eq. (4.46) is always larger than or equal to

1.5. However, we know from Eq. (4.36), with the variable A given by Eq. (4.45), that for

the Mpemba effect to be present, DEtot/DEdi f < 0. Thus, Eq. (4.46) does not satisfy the

required condition for the existence of the Mpemba effect. We conclude that for initial

states that correspond to steady states where P and Q have identical intrinsic parameters
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Mpemba effect present

Mpemba effect absent

(a) (b)

Figure 4.4: (a) The time evolution of the total energy, Etot(t) for anisotropically driven
systems P and Q of a two dimensional inelastic Maxwell gas driven along a single di-
rection with initial conditions E

P
tot
(0)=28, E

Q

tot(0)=22, E
P

di f
(0)=26 and E

Q

di f
(0)=5 such

that E
P
tot
(0) > E

Q

tot(0), which satisfies the condition for the Mpemba effect as described
in Eq. (4.36). The other parameters decribing the systems are chosen to be r=0.5 and
rwx = 0.6. P relaxes to the steady state faster than Q, though its initial energy is larger.
The time at which the trajectories cross each other is t = 1.07 as given by Eq. (5.11). (b)
DEtot/DEdi f –A phase diagram showing regions where the Mpemba effect is observed and
A [given by Eq. (4.45)] is a function of the parameters of the system. The region below
the line given by Eq. (4.36) shows the Mpemba effect whereas the region on the other side
of the line does not show the Mpemba effect.

except for the driving strength, the Mpemba effect is not possible when the driving is

restricted to one direction.

4.6 Summary and discussion

In this chapter, we have shown an exact analysis for the existence of the Mpemba effect,

the inverse Mpemba effect and the strong Mpemba effect in an anisotropically driven

inelastic Maxwell gas in two dimensions. The Maxwell model for granular gases is a

simplified model where the rate of collision between the granular particles is independent

of their relative velocities. In addition, we assumed the well-mixed limit such that the

spatial correlations were ignored. The model allows for an exact solution as the two-point

velocity correlations form a coupled set of linear equations.

We show that anisotropic driving leads to the existence of the Mpemba effect starting
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from steady state initial conditions unlike the case of isotropic driving which required the

initial conditions to be non-stationary. We considered two different cases of anisotropic

driving in two dimensions: when particles are driven along one direction only and the

other case where particles are driven along both the directions. In both the cases, we

show that the Mpemba effect can exist for initial conditions which are valid steady states

characterised by the parameters of the system. We also demonstrated the existence of

the inverse Mpemba effect where a system is heated instead of being cooled. Here, an

initially colder system equilibrates to a final high temperature state faster than an initially

warmer system. We also derived the condition for the existence of the strong Mpemba

effect where for certain initial states, a system equilibrates at an exponentially faster rate

compared to any other states.

We note that in the Maxwell gas, the anisotropy can be introduced in two ways: two

different driving strengths (s2
x
6= s2

y
) or through two different driving parameters (rwx 6=

rwy). However, the analysis reveals that the necessary condition needed to observe the

Mpemba effect is rwx 6= rwy even if the driving strengths are different (s2
x
6= s2

y
). This

is due to the lack of coupling between Etot and Edi f when rwx = rwy. This feature is an

artefact of the model, and when the rate of collision is velocity dependent as considered in

Ref. [26], then it does not matter how the anisotropy is introduced. In that case, the model

for driven granular gas shows the Mpemba effect for rwx = rwy = 1, and s2
x
6= s2

y
[26].

The exact solution obtained for the Maxwell gas in this chapter puts on a more rigorous

footing the results for the Mpemba effect that we obtained earlier for an anisotropically

driven granular gas with a more realistic velocity dependent collision rate [26]. The main

result of Ref. [26] was that it is possible to have the Mpemba effect in granular systems

with velocity dependent collision rates when the initial states are stationary provided the

driving is anisotropic. Earlier studies of the Mpemba effect in granular systems required

non-stationary initial states. Since it is easier in experiments to create initial steady states

that are stationary, anisotropic driving was proposed as a probe to study the Mpemba
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effect in granular systems. However, for analysing the case of velocity dependent col-

lision rates in Ref. [26], we had to make several simplifying assumptions like assuming

the velocity distribution to be Gaussian, linearising the equations about the steady state,

restricting driving to rwx = rwy = 1 and the small noise limit [26]. In this chapter, the

simplification is made in the definition of the model, in that collision rates are velocity in-

dependent. None of the other simplifying assumptions made in Ref. [26] have to be made

for the Maxwell model. The solution obtained in this chapter for the Maxwell gas shows

that the assumptions made for the granular gas do not affect the existence of the Mpemba

effect. In addition, for the Maxwell gas, we are able to obtain an exact solution for a more

realistic general form of driving. The driving could be both “dissipative“ (rwx,y < 1) or

“diffusive” (rwx,y = 1). On the other hand, for the driven granular gas [26], the analysis

could be carried out for only a specific form of driving (rwx = rwy = 1) and in the limit

h !0.

Combining the results of this chapter and Ref. [26], we conclude that anisotropic driving

would allow the Mpemba effect to be observable in driven granular gases with stationary

initial states, allowing for an experimental realisation, which has been hitherto lacking,

of the Mpemba effect in granular systems. Stationary states are much easier to achieve

in experiments than non-stationary states. In a two dimensional experimental set up,

anisotropic driving can be achieved by choosing the amplitude and frequency of shaking

to be different in the x- and y-directions.

Obtaining exact solution for the Maxwell model has certain other advantages. In general,

for studying the Mpemba effect, it is necessary to define a distance of a state from the

final steady state. When the trajectories of two different initial states cross (distance

from final steady state become equal), then the Mpemba effect is said to exist. However,

this choice of distance appears ad hoc. For instance, we have chosen the difference in

granular temperature as the distance, like previous studies [22, 23, 24, 25, 26]. However,

we could also have chosen a metric distance in the two dimensional space (Etot ,Edi f ).
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A third choice could be Kullback-Leibler divergence [11, 6, 5]. Is the Mpemba effect

dependent on how the distance is defined? This question is important to answer, and

is best answered within a solvable model. We believe that the model and the solution

described in the chapter will be very useful for answering the question.
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Chapter 5

Mpemba effect and role of distance

measures in driven granular gases

5.1 Introduction

The protocol that is followed to test for the existence of the Mpemba effect considers

two identical systems which are prepared in different initial states. Both the systems are

then quenched to a common final state, and the Mpemba effect is said to be present if the

system that is initially further away from the final state equilibrates faster. To quantify

which initial state is further away as well as crossing of trajectories, a distance measure

for points in the phase space has to be defined.

For systems relaxing to thermal equilibrium, the distance to the final equilibrium state is

measured in terms of the probabilities of the different states [11]. It was argued that any

distance measure satisfying the following properties should result in a unique definition

of the Mpemba effect: (1) As the system relaxes toward thermal equilibrium, the distance

function should decrease with time, (2) for three temperatures Th > Tc > Tb, the distance

from Tb is larger for Th compared to Tc, i.e., the distance measure should be a mono-
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tonically increasing function of temperature and (3) the distance function should be a

continuous, convex function of probability distribution [11]. Let p denote the equilibrium

Boltzmann distribution, and pi(t) the probability of state i at time t. Then, examples of

such distances are entropic distance De =Âi(pi(t)�pi)Ei/Tb+ pi(t) ln pi(t)�pi lnpi [11],

total variation distance L1(t) = Âi |pi(t)�pi| [4] and Kullback-Leibler (KL) divergence

defined as DKL(t) = Âi pi(t) ln(pi(t)/pi) [82].

The calculation of the above definitions of distance rely on knowing the probability dis-

tribution p(t) at all times. Analytical calculation of p(t) is possible only for exactly

solvable problems which, in the context of the Mpemba effect, are restricted to simple

single particle systems [4, 83, 84] and to systems with only a few states [11]. For inter-

acting many-particle systems and more so in the context of out of equilibrium systems,

the distance measures defined in the probability space are, however, inaccessible through

direct measurements in experiments or computationally expensive to measure in simula-

tions. The more natural choices for the distance measures that have been used in experi-

ments are moments of the distribution which are directly observable like mean energy per

spin [17, 8], magnetization [2, 8], granular temperature as used in the previous chapters

and in Refs. [22, 23, 24, 25, 26, 27, 85], etc. In addition, the generalization to far from

equilibrium systems, like driven granular systems is not clear. There are no conclusive

studies about the correspondence or similarity between the directly observable measures

and the distance measures defined in probability space. Thus, it is not evident whether

the Mpemba effect that has been established using these proxy measures for distances is

unique or its existence depends on the distance measure used.

To address the above issue, we study the dependence of the Mpemba effect on the choice

of different measures in driven granular systems, a prototypical interacting, many-particle

far from equilibrium system. The advantage of granular system is that it allows exact

analysis for two-point correlation functions, at least in the linearized regime. Being an

athermal system, granular temperature or the mean kinetic energy of the system has been
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used to track the evolution of the system with higher granular temperature being consid-

ered further away from the final steady state [22, 24, 23, 25, 26, 27]. However, it is not

known a priori whether mean kinetic energy correctly predicts the distance of the initial

states from the final steady states. In the following, we summarize the several results

that demonstrates the existence of the Mpemba effect in granular systems. For a system

of smooth monodispersed particles [22, 24, 25], the Mpemba effect is due to the cou-

pling of the translational granular temperature with the excess kurtosis of the velocity

distribution function or correlations between the velocities of the different particles. In

the case of rough granular gas [23], the Mpemba effect is due to the coupling of gran-

ular temperatures defined for translational and rotational degrees of freedom. In these

cases, for the Mpemba effect to exist, however the initial states need to be different from

steady states. Existence of the Mpemba effect for evolution of systems from initial steady

states could be realised in the context of binary inelastic gases or when inelastic gases

are driven anisotropically. For the case of binary gas, Mpemba effect was traced to the

energy-exchange between the energies of the smaller and bigger particles [25], while in

anisotropically driven gas [26, 27], the Mpemba effect is due to the coupling between the

granular temperatures along x and y directions. However, in all the above mentioned anal-

ysis, the time evolution of the system is projected onto only one of the variables which is

the total granular temperature defined by the second moment of velocity distribution of

the system.

In this chapter in addition to total energy, we introduce other measures such as Manhattan

measure (L1), Euclidean measure (L2) and KL divergence which can describe the evolu-

tion of the system in the phase space of all the relevant variables. We perform the analysis

in the setup of anisotropically driven granular gas as well as driven inelastic Maxwell

gas [26, 27]. We derive the criteria for the existence of the Mpemba effect with the vari-

ous measures and determine the region of phase space which shows the Mpemba effect.

We show that these phase diagrams are non-universal in the sense that they depend on the

measure used. The content of this chapter is published in Ref. [34].
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5.2 Model

In this chapter, we analyse two models for anisotropically driven granular gas: inelastic

Maxwell model and the hard disc granular gas model, both in two dimensions. The hard

disc granular gas model and inelastic Maxwell gas model are discussed in Chapter 3 [see

Sec. 3.2] and Chapter 4 [see Sec. 4.2] respectively.

5.3 Characterising the steady states

In this section, we define and briefly discuss the relevant two point correlation functions

for both the models. The detailed description about the two point correlations, their time

evolutions and their steady state values are already derived in Chapter 3 and Chapter 4 for

the hard disc granular gas model and inelastic Maxwell gas model respectively.
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5.3.1 Inelastic Maxwell model

We first discuss the case of inelastic Maxwell model. We are interested in the time evolu-

tion of the following two-point correlation functions:

Ex(t) =
1
N

N

Â
i=1

hv2
ix
(t)i,

Ey(t) =
1
N

N

Â
i=1

hv2
iy
(t)i,

Exy(t) =
1
N

N

Â
i=1

hvix(t)viy(t)i,

Cx(t) =
1

N(N �1)

N

Â
i=1

N

Â
j=1
j 6=i

hvix(t)v jx(t)i,

Cy(t) =
1

N(N �1)

N

Â
i=1

N

Â
j=1
j 6=i

hviy(t)v jy(t)i,

Cxy(t) =
1

N(N �1)

N

Â
i=1

N

Â
j=1
j 6=i

hvix(t)v jy(t)i,

(5.1)

where Ex(t) and Ey(t) denote the mean kinetic energies of the particles along x and y di-

rections respectively. Exy(t) denote the correlations between vx and vy of the same particle

whereas Cx(t), Cy(t) and Cxy(t) denote the velocity-velocity correlations between pairs of

particles. We have already derived the time evolution of these correlation functions in

Chapter 4 [see Sec. 4.3].

In the steady state, in the thermodynamic limit, the velocity-velocity correlations and the

correlation between vx and vy of the same particle, i.e., Exy vanish as shown in Chapter 4.

In that case, the steady state is described by the non-zero mean kinetic energies, i.e., Ex

and Ey. We will be using a different set of variables than Ex and Ey for the analysis. We

define the new set of variables, namely the total kinetic energy, Etot , and the difference of
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energies, Edi f , as:

Etot = Ex +Ey, (5.2)

Edi f = Ex �Ey. (5.3)

The time evolution equations for Etot and Edi f [see Eq. (4.25) in Chapter 4 for details of

the calculations] is expressed as

Etot(t)�E
st

tot
= K+e

�l+t +K�e
�l�t ,

Edi f (t)�E
st

di f
= L+e

�l+t +L�e
�l�t ,

(5.4)

where E
st
tot

and E
st

di f
are steady state values of Etot(t) and Edi f (t) respectively. The coeffi-
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cients K+,K�,L+ and L� along with E
st
tot

and E
st

di f
are given by

K+ =
1
g

h
� (l��c11)Etot(0)+c12Edi f (0)

� ld

l+

⇥�
c12 � (l��c11)

�
s2

x
�
�
c12 +(l��c11)

�
s2

y

⇤i
,

K� =
1
g

h
(l+�c11)Etot(0)�c12Edi f (0)

+
ld

l�

⇥�
c12 � (l+�c11)

�
s2

x
�
�
c12 +(l+�c11)

�
s2

y

⇤i
,

E
st

tot
=

ld

g

h�c12 � (l��c11)
�
s2

x
�
�
c12 +(l��c11)

�
s2

y

l+

�
�
c12 � (l+�c11)

�
s2

x
�
�
c12 +(l+�c11)

�
s2

y

l�

i
,

L+ =
1
g

h
� (l+�c11)(l��c11)

c12
Etot(0)+(l+�c11)Edi f (0)

� ld

l+c12

⇥
(l+�c11)(l��c11)(s2

x
�s2

y
)
⇤i
,

L� =
1
g

h(l+�c11)(l��c11)

c12
Etot(0)� (l+�c11)Edi f (0)

+
ld

l�c12

⇥
(l+�c11)(l��c11)(s2

x
�s2

y
)
⇤i
,

E
st

di f
=

ld

c12g

h
(l+�c11)(l��c11)(s2

x
�s2

y
)

� 1
l+

� 1
l�

�i
,

g =l+�l�.

5.3.2 Hard disc granular gas model

For the model of anisotropically driven hard disc granular gas, the mean kinetic energies

along the x and y directions are defined as

Ei(t) =
2
n

Z
dv

1
2

mv
2
i

f (v, t), i = x,y, (5.5)

where n =
R

dv f (v, t) is the number density, m is the mass of the particles. The details of

the derivation for the time evolution of the mean kinetic energies is discussed in Chapter 3.
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Please note that, for convenience, we use the notation of Ei in this chapter instead of Ti (as

used in Chapter 3) to denote the various mean kinetic energies for the hard disc granular

gas model. Otherwise, the expressions for the time evolutions of the various mean kinetic

energies remain the same. For the convenience of description, we use the variables Etot

and Edi f as defined as in Eqs. (5.2) and (5.3). However, as discussed in Chapter 3, the time

evolutions of Etot and Edi f form a non-linear set of coupled differential equations [see

Eq. (3.10)]. In order to make the analysis analytically tractable, we linearize the non-

linear equations by considering only the initial states that are close to the final steady state.

We define dEtot(t) = Etot(t)�E
st
tot

and dEdi f (t) = Edi f (t)�E
st

di f
as the time-dependent

deviation of the energies from the stationary state values. The linearized solutions for

dEtot(t) and dEdi f (t) are then given by

dEtot(t) = K+e
�l+t +K�e

�l�t ,

dEdi f (t) = L+e
�l+t +L�e

�l�t ,
(5.6)

where the coefficients K+,K�,L+ and L� are given by

K+ =
1
g

h
c12dEdi f (0)� (l��c11)dEtot(0)

i
,

K� =
1
g

h
�c12dEdi f (0)+(l+�c11)dEtot(0)

i
,

L+ =
1
g

h
(l+�c11)dEdi f (0)

� (l+�c11)(l��c11)

c12
dEtot(0)

i
,

L� =
1
g

h
� (l��c11)dEdi f (0)

+
(l+�c11)(l��c11)

c12
dEtot(0)

i
.

(5.7)

The details of the solutions are discussed in Sec. 3.2 and 3.3 of Chapter 3. Note that for

the choice of steady states which are far from the final stationary state, linearization is

not enough. In that case, one needs to use the numerical solution of the complete time

evolution equations.
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5.4 Mpemba effect and distance measures in phase space

We first define the protocol that we will follow for illustrating the Mpemba effect.

Consider two systems P and Q which have identical parameters except for the driving

strengths. Both the systems, in their respective steady states, are then quenched to a com-

mon steady state. This is achieved by instantaneously changing the driving strengths of

P and Q to the common driving strength of the final steady state, keeping all the other

parameters of both the systems fixed. The two initial steady states P and Q differ in their

initial distance (to be appropriately defined) from the final steady state. The evolution of

the systems P and Q correspond to two different trajectories in phase space. Then the

Mpemba effect is said to exist if the trajectory that was initially at a larger distance from

the final steady state approaches the final state faster than the trajectory that was initially

at a shorter distance. For granular systems, several distance measures have been used

to explore the Mpemba effect. We derive the criterion for the existence of the Mpemba

effect for the different measures and for each measure, we illustrate the Mpemba effect.

We also ask how much the Mpemba effect depends on the distance measure being used.

The steady state of the two models for driven granular systems considered in this chapter

is completely specified by the velocity distribution P(v). Distance between two probabil-

ity distributions may be defined in terms of an information theoretic quantity known as

Kullback-Leibler (KL) divergence [86, 87, 88]. However, the velocity distribution can-

not be solved exactly and therefore the KL divergence becomes unwieldy for studying

Mpemba effect, though we will study this numerically. Instead, the steady state of the

system has been parametrised by the moments of the velocity. Note that the equations for

the two point correlation functions close among themselves for both the Maxwell gas as

well as the linearized granular gas. This motivates using the second moments of veloc-

ity distribution to characterize the steady states. For the system of anisotropically driven

granular gas, the mean kinetic energies, Ex and Ey along x- and y- directions respec-

tively, are different. Thus, the total energy, Etot = Ex +Ey and the difference of energies,
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Edi f = Ex �Ey serve as the appropriate variable to describe a state of the system. Thus, a

steady state is characterized by (Etot ,Edi f ).

In this section, we introduce different measures that have been used to define the dis-

tance between two steady states of the system. When the steady state is defined through

(Etot ,Edi f ), the distance measures can be defined in terms of the difference of the to-

tal energy of the two states (Sec. 5.4.1), in terms of two dimensional Euclidean distance

(Sec. 5.4.2) or two-dimensional Manhattan distance (Sec. 5.4.3) of the phase space vari-

ables of the two states. In terms of the velocity distribution, the convergence to the steady

state can be characterized through KL divergence (Sec. 5.4.4). The different measures

track the temporal evolution of the system as it evolves from an initial state to a final

state, and we derive the conditions for the Mpemba effect to exist.

5.4.1 Total energy

The most common variable that is used in literature of driven granular gases to describe

its state is the mean kinetic energy. The existence of the Mpemba effect in driven gran-

ular systems has been shown in Chapters 2, 3, 4 and in Refs. [25, 26, 27] in terms of

these variables. In this section, we briefly discuss the condition for the existence of the

Mpemba effect in an anisotropically driven granular gas in terms of the total mean ki-

netic energy. We consider two systems P and Q whose initial steady states are denoted by

[EP
tot
(0),EP

di f
(0)] and [EQ

tot(0),E
Q

di f
(0)] respectively. Here, the distance of the initial states

compared to the final state is measured in terms of the total energy. The initial steady

states for the two systems are prepared such that E
P
tot
(0) > E

Q

tot(0). Both the systems are

then quenched to a common steady state having the total energy lower than the initial total

energies of both the systems.

The Mpemba effect is present if the two trajectories E
P
tot
(t) and E

Q

tot(t) cross each other at
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some finite time t = t at which

E
P

tot
(t) = E

Q

tot(t). (5.8)

To obtain the value of t , we equate the total energies of P and Q using either Eq. (5.4) or

Eq. (5.6) depending on the inelastic Maxwell gas or hard disc granular gas respectively to

obtain

K
P

+e
�l+t +K

P

�e
�l�t = K

Q

+e
�l+t +K

Q

�e
�l�t , (5.9)

whose solution is

t =
1

l+�l�
ln
h

K
P
+�K

Q

+

K
Q

� �K
P
�

i
. (5.10)

In terms of the parameters of the initial steady states, t reduces to

t =
1

l+�l�
ln
hc12DEdi f � (l��c11)DEtot

c12DEdi f � (l+�c11)DEtot

i
, (5.11)

where

DEtot = E
P

tot
(0)�E

Q

tot(0),

DEdi f = E
P

di f
(0)�E

Q

di f
(0).

(5.12)

For the Mpemba effect to be present, we require that t > 0. Since l+ > l�, the argument

of logarithm in Eq. (5.11) should be greater than one.

Figure 5.1 illustrates the existence of the Mpemba effect where the trajectories of the

initial states leading to final steady state are defined in terms of the total energy and their

crossing time is given by Eq. (5.11).
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(a) (b)

Figure 5.1: The time evolution of anisotropically driven (a) inelastic Maxwell and (b) hard
disc granular gas is illustrated in terms of the mean kinetic energy, Etot for two systems
P and Q. The initial conditions for the inelastic Maxwell gas in (a) are E

P
tot
(0) = 1.148,

E
Q

tot(0) = 0.92, E
P

di f
(0) = �0.595 and E

Q

di f
(0) = 0.455, corresponding to the choice of

the driving strengths sP
x
= 0.25, sP

y
= 1.0, sQ

x = 0.6 and sQ

y = 0.45. The choice of the
other parameters defining the system are r = 0.3, rwx = 0.88, rwy = 0.39, sx = 0.1 and
sy = 0.05. The initial conditions for the hard disc granular gas in (b) are E

P
tot
(0) = 10.05,

E
Q

tot(0) = 10.04, E
P

di f
(0) = 2.797 and E

Q

di f
(0) = 1.979, corresponding to the choice of the

driving strengths sP
x
= 0.476 and sP

y
= 0.003 and sQ

x = 0.405, sQ

y = 0.070. The final
steady state is characterized by E

st
tot

= 10.0 and E
st

di f
= 2.82 corresponding to the driving

strengths sx = 0.476 and sy = 7.351⇥10�5. The choice of the other parameters defining
the system are r = 0.65, m = 1, n = 0.02. P relaxes to the steady state faster than Q,
though it is initially at a larger distance compared to the final steady state.
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5.4.2 Euclidean Distance

Mean kinetic energy as a measure of distance has the possible issue that the trajecto-

ries may appear to cross in this one-dimensional projection, though in the two dimen-

sional phase they do not cross. More natural definitions are to use Euclidean or Man-

hattan distances. As the initial and the final states are defined by the pair of variables

{Etot(t),Edi f (t)}, we can define an Euclidean measure for the trajectory connecting the

two states as

L2(t) =
q

(Etot(t)�E
st
tot)2 +(Edi f (t)�E

st

di f
)2. (5.13)

Here, the initially hotter system or equivalently the system which is initially farther from

the final steady state has an initially larger L2 compared to the colder system. For this

measure, we define the Mpemba effect as follows. Let us consider two systems P and

Q such that P is initially at a larger distance from the final steady state compared to Q,

i.e., LP

2 (0) > LQ

2 (0). Here, the systems P and Q are identical in all respect except for

the pair of driving strengths (sx,sy) that is required to prepare the systems in their initial

steady states. Then both the systems are quenched to a common steady state by applying

a same pair of driving strengths. In this case, the Mpemba effect is said to exist if the two

trajectories for the systems P and Q quantified in terms of LP

2 (t) and LQ

2 (t) cross each

other at some finite time t = t at which

LP

2 (t) = LQ

2 (t). (5.14)

To obtain the value of t , we equate the Euclidean measures for the systems P and Q at
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t = t as

q
(EP

tot(t)�E
st
tot)2 +(EP

di f
(t)�E

st

di f
)2

=
q

(EQ

tot(t)�E
st
tot)2 +(EQ

di f
(t)�E

st

di f
)2. (5.15)

For the inelastic Maxwell gas, using Eq. (5.4) we obtain the crossing times as

t± =
1

(l+�l�)
ln


2a

d ±
p

d2 �4ab

�
, (5.16)

where,

a =
⇥
(KP

+)
2 +(LP

+)
2 � (KQ

+)
2 � (LQ

+)
2⇤,

b =
⇥
(KP

�)
2 +(LP

�)
2 � (KQ

�)
2 � (LQ

�)
2⇤,

d = 2
⇥
K

Q

+K
Q

� +L
Q

+L
Q

��K
P

+K
P

��L
P

+L
P

�
⇤
.

(5.17)

A similar expression for the crossing time [see Eq. (5.16)] is also obtained for the case

of hard disc granular gas for which the constants l±, a, b, and d are computed using

Eq. (5.7).

Note that there are two possibilities for the crossing time in Eq. (5.16). Figure 5.2 illus-

trates such a scenario where both the crossings are present. However, the presence of two

crossings will eventually lead to no Mpemba effect. Thus, we are interested in only those

cases or the initial conditions where there exists only one crossing of the trajectories of

the initial states leading to the final steady state. For the Mpemba effect to be present,

we require that t+ > 0 or t� > 0, but not both positive. Since l+ > l�, the argument of

logarithm in Eq. (5.16) should be greater than one for +(�) and less than one for �(+).

Figure 5.3 illustrates the existence of the Mpemba effect where the trajectories of the ini-

tial states leading to final steady state are defined in terms of the Euclidean measure and

their crossing time is given by Eq. (5.16).
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2(
t) 2(
t)

Figure 5.2: The time evolution of the anisotropically driven inelastic Maxwell gas in
terms of the Euclidean measure, L2(t) for two systems P and Q with initial conditions
LP

2 (0) = 6.34 and LQ

2 (0) = 6.15, shows two crossings as illustrated in (a) and (b) for the
different times. The multiple crossing times are obtained using Eq. (5.16). The choice of
the other parameters defining the system are r = 0.1, rwx = 0.95, rwy = 0.39, sx = 1.6 and
sy = 1.1.

(a) (b)

Figure 5.3: The time evolution of anisotropically driven (a) inelastic Maxwell and (b)
hard disc granular gas is illustrated in terms of Euclidean measure, L2(t) for two systems
P and Q. The initial conditions for the inelastic Maxwell gas in (a) are LP

2 (0) = 3.13 and
LQ

2 (0) = 2.79, corresponding to the choice of the driving strengths sP
x
= 1.9, sP

y
= 1.2,

sQ

x = 1.55 and sQ

y = 2.0. The driving strengths corresponding to final steady state are
sx = 1.6 and sy = 1.1 whereas the choice of the other parameters defining the system
are r = 0.3, rwx = 0.95, rwy = 0.39. The initial conditions for the hard disc granular
gas in (b) are LP

2 (0) = 0.432 and LQ

2 (0) = 0.208, corresponding to the choice of the
driving strengths sP

x
= 0.491 and sP

y
= 7.572⇥10�5 and sQ

x = 0.444, sQ

y = 0.037. The
driving strengths corresponding to final steady state are sx = 0.476 and sy = 7.351⇥10�5

whereas the choice of the other parameters defining the system are r = 0.65, m = 1 and
n = 0.02. P relaxes to the steady state faster than Q, though its initial Euclidean distance
from the final steady state is larger.
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5.4.3 Manhattan Distance

Similar to the Euclidean measure, we can define another measure for the time evolution

of the trajectory connecting the initial and the final states in terms of Manhattan distance.

In the plane of {Etot(t),Edi f (t)}, the Manhattan measure is defined as

L1(t) = |Etot(t)�E
st

tot
|+ |Edi f (t)�E

st

di f
|. (5.18)

Here, the system having larger L1(0) at time t = 0 is termed the “hotter“ system while

compared to the initially “colder” system having a comparatively smaller L1(0). For

this measure, we define the Mpemba effect as follows. Let us consider two systems P

and Q such that P is initially at a larger distance from the final steady state compared

to Q in terms of Manhattan measure, i.e., LP

1 (0) > LQ

1 (0). Here, the systems P and Q

are identical except for the pair of driving strengths (sx, sy). Both the systems are then

subjected to same pair of driving strengths. As a result, both the systems are driven to

a common steady state. Then the Mpemba effect is said to exist if the two trajectories

for the systems P and Q quantified in terms of LP

1 (t) and LQ

1 (t) cross each other at some

finite time t = t at which

LP

1 (t) = LQ

1 (t), (5.19)

or equivalently,

|(EP
tot
(t)�E

st
tot
)|+ |(EP

di f
(t)�E

st

di f
)|

= |(EQ

tot(t)�E
st
tot
)|+ |(EQ

di f
(t)�E

st

di f
)|. (5.20)

Now, using Eq. (5.4) for the case of inelastic Maxwell gas and solving Eq. (5.20), we
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obtain eight different solutions for the crossing time as
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(5.21)

For the Mpemba effect to be present, there should be odd number of crossings. Thus, we

look for those initial conditions in the phase space that lead to odd number of solutions

to the Eq. (5.20). Figure 5.4 illustrates the existence of the Mpemba effect where the

trajectories of the initial states leading to final steady state are defined in terms of the

Manhattan measure.

5.4.4 KL Divergence

In this section, we define the Mpemba effect in terms of an information theoretic quantity

known as Kullback-Leibler (KL) divergence. The measure is defined as

DKL(t) =
Z

dvP(v, t) ln
⇣

P(v, t)

Pst(v)

⌘
, (5.22)

where P(v, t) is the instantaneous velocity distribution of the particles at any time t and

P
st(v) is the final steady state velocity distribution function. The above quantity is not a

true measure of geometric distance as it is not symmetric between two given distribution

functions. But it is a good candidate for the study of relaxation dynamics of an arbitrary

initial state to a given reference steady state for the following reasons: (a) it is a monoton-

ically non-increasing function of time as has been shown in earlier studies [86, 87, 88],

(b) it provides information regarding the measure of deviation and its temporal evolution
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(a) (b)

Figure 5.4: The time evolution of anisotropically driven (a) inelastic Maxwell and (b) hard
disc granular gas is illustrated in terms of Manhattan measure, L1(t) for two systems P

and Q. The initial conditions for the inelastic Maxwell gas in (a) are LP

1 (0) = 7.54 and
LQ

1 (0) = 7.06, corresponding to the choice of the driving strengths sP
x
= 2.2, sP

y
= 1.2,

sQ

x = 0.1 and sQ

y = 1.2. The driving strengths corresponding to final steady state are
sx = 1.6 and sy = 1.1 whereas the choice of the other parameters defining the system
are r = 0.9, rwx = 0.88 and rwy = 0.3. The initial conditions for the hard disc granular
gas in (b) are LP

1 (0) = 0.52 and LQ

1 (0) = 0.42, corresponding to the choice of the driving
strengths sP

x
= 0.466 and sP

y
= 0.023 and sQ

x = 0.444, sQ

y = 0.037. The driving strengths
corresponding to final steady state are sx = 0.476 and sy = 7.351⇥ 10�5 whereas the
choice of the other parameters defining the system are r = 0.65, m = 1 and n = 0.02. P

relaxes to the steady state faster than Q, though its initial Manhattan distance from the
final steady state is larger.
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of any two initial states from the final reference state.

Although being a good candidate for the study of relaxation dynamics, the above measure

is not much fruitful in the context of granular gases. It is because Eq. (5.22) requires

to have information regarding the time evolution of the velocity distribution function at

any time t which is not analytically feasible in the case of granular gases. The previous

theoretical studies on velocity distribution of driven granular gases attempts to find the

velocity distribution of the steady state for different contexts [89, 90, 59, 60, 57]. But in

all the cases, it was not possible to derive the form of instantaneous velocity distribution

at an instant of time t even for the simplest model of inelastic Maxwell gas.

As a result, we use numerical methods to compute the KL divergence. We briefly discuss

the procedure for the numerical computation of KL divergence for the case of inelastic

Maxwell gas. Starting from a random configuration of velocities for N particles, the sys-

tem is evolved to an initial steady state corresponding to an initial pair of driving strengths

(sx,sy). The pair of driving strengths acting on the particles is then changed to those of

the desired final steady state. The system evolves in time as follows. At each time step,

either two particles collide or a particle is driven, based on the corresponding rates. At

each time step we measure the time evolution of the velocity distribution, P(v, t) of the N

particles. The distributions are averaged over 104 realizations. The final steady state ve-

locity distribution is measured separately and is averaged over 105 different realizations.

Thus, having information about P(v, t) and P
st(v), we can then numerically determine

the time evolution of KL divergence using Eq. (5.22).

We now discuss the notion of a “hotter“ and a “colder” system using the measure of KL

divergence when two systems are quenched to a final steady state. The system having

larger divergence at t = 0 is referred to as the “hotter“ system as it is farther off from the

final steady state whereas the system having comparatively smaller divergence is referred

to as the “colder” system. Similar to the previous definitions of the Mpemba effect for the

other measures, if the hotter system equilibrates faster than the colder system to the final
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(a) (b)

Figure 5.5: The time evolution of anisotropically driven (a) inelastic Maxwell and (b) hard
disc granular gas is illustrated in terms of KL divergence measure, DKL(t) for two systems
P and Q. The initial conditions for the inelastic Maxwell gas in (a) are D

P

KL
(0) = 0.82 and

D
Q

KL
(0) = 0.64, corresponding to the choice of the driving strengths sP

x
= 1.4, sP

y
= 4.0,

sQ

x = 2.45 and sQ

y = 2.3. The driving strengths corresponding to final steady state are
sx = 1.5 and sy = 0.9 whereas the choice of the other parameters defining the system are
r = 0.3, rwx = 0.88 and rwy = 0.39. The initial conditions for the hard disc granular gas in
(b) are D

P

KL
(0) = 0.01 and D

Q

KL
(0) = 0.0078, corresponding to the choice of the driving

strengths sP
x
= 7.148, sP

y
= 0.026, sQ

x = 1.144 and sQ

y = 5.609. The driving strengths
corresponding to the final steady state are sx = 6.62 and sy = 0.026, whereas the choice
of the other parameters defining the system are r = 0.65, m = 1, n = 0.02. P relaxes to the
steady state faster than Q, though its initial KL divergence with respect to the final steady
state is larger.

steady state, the Mpemba effect is said to exist.

Figure 5.5 illustrates the existence of the Mpemba effect where the trajectories of the

initial states leading to final steady state are defined in terms of the KL divergence.

5.5 Comparison between various measures

We now compare the effect of different distance measures on the Mpemba effect. For

a given initial condition in terms of intrinsic system parameters and the pair of driving

strengths, we look for the existence of the Mpemba effect using the different distance

measures.
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We first show that for the same initial condition, different measures can give different

results, as illustrated in Fig. 5.6 for the inelastic Maxwell gas. In the example shown, the

Mpemba effect is absent for distance measure corresponding to the total energy distance

[see Fig. 5.6(a)] which it is present for the other three measures [see Fig. 5.6(b)–(d)]. In

addition to the non-uniqueness of the Mpemba effect, even the notion of “hot“ and “cold”

system in terms of distance from the final steady state for a pair of initial conditions

is not unique among the various definitions. What is initially hotter (shown in red) in

Fig. 5.6(a)–(c) is initially colder (shown in blue) in Fig. 5.6(d)

Given that there is non-uniqueness among the definitions, we now check whether all defi-

nitions show the Mpemba effect as well as whether there is any overlap in the phase space

regions that corresponds to the Mpemba effect for the different measures. The phase

space is labeled by the free parameters: final steady states in terms of (Est
tot
, E

st

di f
), initial

steady states of P and Q, i.e., (EP
tot
, E

P

di f
) and (EQ

tot , E
Q

di f
) for a fixed value of other in-

trinsic parameters such as r, rwx and rwy. However, we notice that the equations for the

correlation functions [see Eqs. (5.4) and (3.16)] are linear equations in the differences in

energies dEtot = Etot �E
st
tot

, dEdi f = Edi f �E
st

di f
for both P and Q, giving four variables.

We also note that the equations for the correlation function, and hence the crossing times,

are invariant if all the dEs are scaled by the same factor, thus reducing the number of

factors by one. To make it a two dimensional phase diagram, we fix the initial values of

dE
P
tot

and dE
P

di f
for P, and determine the phase diagram in terms of (dE

Q

di f
/dE

P
tot

) and

(dE
Q

tot/dE
P
tot
).

The phase diagrams for the measures: total energy, Manhattan and Euclidean distance,

are obtained using the exact criteria derived for the existence of the Mpemba effect, both

for the inelastic Maxwell gas and hard disc granular gas (linearized analysis). However,

for the case of KL divergence, the phase diagram is obtained using discrete set of points

sampled from the phase space and checked individually for the existence of the Mpemba

effect through the analysis of evolution of the trajectories of systems P and Q. The KL
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2(
t)

1(
t)

Figure 5.6: The time evolution of the two systems P and Q for an anisotropically driven
inelastic Maxwell gas is illustrated for the following measures: (a) total energy, (b) Eu-
clidean measure, (c) Manhattan measure and for (d) KL divergence. The initial conditions
for the various measures are identical and are given in terms of the driving strengths for
systems P and Q as (sP

x
= 1.9,sP

y
= 1.2) and (sQ

x = 1.55,sQ

y = 2.0). The choice of the
other parameters defining the system are r = 0.3, rwx = 0.95, rwy = 0.39, sx = 1.6 and
sy = 1.1. The existence of the Mpemba effect and the notion of “hot“ and “cold” system
in terms of distance from the final steady state for a given pair of initial conditions is not
unique among the various measures.
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Figure 5.7: The phase diagram in the (dE
Q

di f
/dE

P
tot

)-(dE
Q

tot/dE
P
tot
) plane shows the exis-

tence of the Mpemba effect in the driven inelastic Maxwell gas for the use of different
distance measures: (a) total energy, (b) Manhattan, (c) Euclidean, and (d) KL-divergence.
The red (green) region corresponds to absence (presence) of the Mpemba effect, while
the regions outside the triangular shape are not valid steady states. The white regions
inside the triangle in (d) is due to discrete sampling of phase space. The choice of the
parameters defining the system are r = 0.4, rwx = 0.44, rwy = 0.95, dE

P
tot

= 1.00 and
dE

P

di f
/dE

P
tot

= 0.53, which are kept constant across all the various measures.
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Figure 5.8: The phase diagram in the (dE
Q

di f
/dE

P
tot

)-(dE
Q

tot/dE
P
tot
) plane shows the ex-

istence of the Mpemba effect in the driven hard disc granular gas for the use of different
distance measures: (a) total energy, (b) Manhattan, and (c) Euclidean. The red (green)
region corresponds to absence (presence) of Mpemba effect, while the white regions are
not accessible. The choice of the parameters defining the system are n = 0.02, s = 1,
m = 1, r = 0.1, dE

P
tot

= 1.00 and dE
P

di f
/dE

P
tot

= 0.11, which are kept constant across all
the various measures.
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divergence is used only for the Maxwell gas as in the case of granular gas, it is not possible

to make a direct comparison with the linearized theories. Figures 5.7 and 5.8 show the

phase diagram of the Mpemba effect in terms of various measures for the case of inelastic

Maxwell gas and hard disc granular gas respectively. The colored region corresponds to

the allowed parameter space, while the green (red) regions correspond to the Mpemba

effect being present (absent). It is clear that all the different distance measures show

the Mpemba effect. However, the phase boundary of the initial conditions that show the

Mpemba effect is very different for the various measures. We conclude that the usual

measures used for driven granular gases lead to a non-universal definition of the Mpemba

effect.

5.6 Conclusion

To summarize, we studied the Mpemba effect in the driven inelastic Maxwell and the

driven granular gases using different definitions of distances between points in phase

space. These definitions were motivated by the choices that have been used earlier in

the literature for establishing the presence of the Mpemba effect in granular systems. We

studied the Mpemba effect in terms of the following measures: total kinetic energy (as has

been used earlier), Euclidean measure (L2), Manhattan measure (L1) and KL divergence.

While the first three are based on average kinetic energy in different directions, KL diver-

gence is based on the probability distribution of velocity. The analysis was performed for

the anisotropically driven gases [26, 27].

We derived the criteria for the existence of the Mpemba effect with the various measures

and showed the existence of the Mpemba effect for all the different choices of distance

measures. However, the phase diagrams for the different measures are not the same with

the presence or absence of the Mpemba effect for a particular phase space point depending

on the measure, resulting in a non-unique definition of the Mpemba effect. Moreover, the
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notion of ‘hot’ and ‘cold’ initial states is different for the different choices of distance

measures from the final steady state.

In a Markov process, the relaxation to the steady state at large times is dominated by the

first excited state of the transition matrix, i.e., P(C, t) = P1(C)+a2 exp(�t/t)P2(C)+ . . .,

where P(C, t) is the probability distribution at time t, P1 is the steady state and P2 is

the first excited state. The quantities t , P1 and P2 depend only on the transition matrix,

and independent of the initial states, while the pre-factor a2 is determined by the overlap

of the initial steady state with the first excited state. Given the above expansion, it is

clear that the system with smaller value of |a2| will equilibrate faster [11]. The same

observation will be true for the time evolution of an arbitrary observable f (C, t) such as

total energy, as it also follows a similar structure as P(C, t). Also it has been shown that

the order property of a2 is captured by the KL-divergence [11]. Therefore, if system P

approaches steady state faster according to KL-divergence, then by the above argument

we should find a similar relaxation behavior when total energy is the distance measure

and the phase diagrams should be identical. But this is not what we find in this chapter.

This discrepancy is due to the fact that what is cold and what is hot may not be the same

for the two distance measures (see Fig. 5.6(a) and 5.6(d) for an example, where the higher

energy state corresponds to one with a lower distance in terms of KL divergence and

vice versa), thus giving contradictory results for the Mpemba effect. Since it is difficult to

come up with an observable f (C, t) that has the same characteristics as KL-divergence, we

generalized the total variation distance ÂC |P(C, t)�P1(C)| (which also follows a similar

structure as P(C, t)) to the distances L1 and L2 used in this chapter, based on the mean

energies.

The ambiguity of characterising the Mpemba effect in granular systems is in contrast

to the unique identification of the Mpemba effect for the case of single particle Markov

systems, irrespective of the choice of distance measure. This is due to the existence of a

common criteria across all the measures which is given in terms of the coefficient a2 [11]

146



associated with the second eigenfunction in the eigenspectrum analysis of probability

distribution function. However, it is very challenging to calculate a2 for an interacting

many particle system like the granular system considered in this chapter. The natural

choices are observables like kinetic energy, rather than probability distributions, which are

easier to track both in experiments and calculations. However, these choices for distance

measures may not necessarily decrease monotonically with time, a requirement that was

put forward in Ref. [11]. Based on the results in this chapter, the characterization of the

Mpemba effect with such ad-hoc distance measures should be done with caution.
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Chapter 6

Mpemba effect in a Langevin system:

Exact results and other properties

6.1 Introduction

The different physical systems that have been studied reveal different causes behind the

Mpemba effect. However, in the analytically tractable models with only a few states,

the description of the Mpemba effect has been in terms of the ruggedness of the energy

landscape [11, 4]. In particular, the presence of a metastable minimum in the free energy

traps a system at lower energy more effectively than one at higher temperature, resulting

in a faster relaxation of the hotter system. In this chapter, we study the role of the energy

landscape in inducing the Mpemba like behaviour in the relaxation dynamics of a single

particle Langevin system through an exact analysis.

Kumar and Bechhoefer [4] demonstrated experimentally the Mpemba effect for a single

Brownian particle diffusing in a double well quartic potential with linear slopes near the

boundaries of the domain. It was shown that the key to the observation of the Mpemba

effect is the asymmetric shape of the external potential, which was realized by introducing
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different widths for the left and the right domains of the potential. As the asymmetry in

the domain widths increases, even a stronger version of the Mpemba effect is found where

the relaxation is exponentially faster for a hotter system. This was the first experimental

proof of the strong Mpemba effect, which was theoretically predicted in Ref. [6]. More

recently, the condition for the strong Mpemba effect was derived for the Brownian parti-

cle in the overdamped limit [91]. However, other possibilities of inducing the Mpemba

effect through asymmetries in terms of different depths of the potential wells without

changing the domain widths were not explored. Thus, it is not clear about what sort of

asymmetry in the potential configuration is necessary or sufficient to induce the Mpemba

effect. Moreover, it is not well understood whether a double well potential is necessary

to realize the Mpemba effect in Langevin systems. Recently for a piecewise constant po-

tential where the minima of the potentials have neutral equilibrium, it was shown that the

Mpemba effect can be observed, questioning the need for a metastable state [13].

These issues are best addressed through an exactly solvable model. Motivated by the ex-

periment on the Mpemba effect by Kumar and Bechhoefer [4], we consider a Brownian

particle trapped in a double well potential, but in an external potential that is piece-wise

linear, making it analytically tractable. In this chapter, we solve for the time evolution

of the probability density using the method of eigenspectrum decomposition of the corre-

sponding Fokker-Planck equation [92]. The potential can be made asymmetric in several

different ways: (a) different widths for the left and right domains of the potential as dis-

cussed in the experiment by Kumar and Bechhoefer [4], (b) same domain widths but

asymmetric placement of the potential minima, (c) different depths of the potential wells,

and (d) for different heights for the left, center and right edge of the potential. We investi-

gate the presence of the Mpemba effect for the above scenarios. In addition, we show that

asymmetry of domain widths is not a necessary condition for the existence of the Mpemba

effect. Also, we show that asymmetry in the potential is not a sufficient condition for the

Mpemba effect. Finally, we show through an example that the presence of a metastable

state is not a necessary condition for the effect. The content of this chapter is published
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in Ref. [93].

6.2 Model system and general formalism

We consider a particle in an asymmetric double well potential Ũ(x) in a thermal envi-

ronment characterized by noise h and damping g . The mean and variance of the noise

are

hh(t)i= 0 and hh(t)h(t 0)i= 2gkBTbd (t � t
0), (6.1)

where Tb is the temperature of the thermal bath and kB is the Boltzmann’s constant. We

consider the overdamped case where the damping g is large compared to the mass of the

particle. The motion is then described by the following overdamped Langevin equation:

g dx

dt
=�dŨ

dx
+h(t). (6.2)

We define the following dimensionless variables: x = (2p/L)x̃, T = T̃/T̃b, U = Ũ/(kBT̃b)

and t = (4p2
kBT̃b/gL

2)t̃. Note that L is the characteristic length of the model. For a sym-

metric potential domain extending from �L/2 to L/2 about the origin, the dimensionless

variable x 2 (�p,p). The corresponding Fokker-Planck equation for the probability dis-

tribution function p(x, t) in the dimensionless variables reads [92, 94]

∂ p

∂ t
=

∂
∂x

h
dU

dx
p

i
+

∂ 2
p

∂x2 . (6.3)

In here, we will solve p(x, t) analytically for the given configuration of the potential. To

this end, it will be first useful to review the formalism of eigenspectrum decomposition for

solving the Fokker-Planck equation (6.3) in the presence of a generic confining potential.
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6.2.1 Eigenspectrum decomposition

We follow closely the formalism described in Ref. [92]. We start by rewriting Eq. (6.3) in

the form of the continuity equation

∂ p

∂ t
=

∂
∂x

h
dU

dx
p

i
+

∂ 2
p

∂x2 =�∂J

∂x
, (6.4)

from where the probability current density is given by

J(x) =�
h

dU

dx
+

∂
∂x

i
p =�e

�U(x) d

dx

h
e

U(x)
p

i
, (6.5)

corresponding to the Fokker-Planck operator

LFP =
∂
∂x

⇣
dU

dx

⌘
+

∂ 2

∂x2 . (6.6)

The stationary solution of the Fokker-Planck Eq. (6.4) for the probability density is given

by the Boltzmann distribution at temperature Tb = 1 (in the dimensionless variable)

p(x,Tb = 1) =
e
�U(x)

Z
, (6.7)

where Z =
R

e
�U(x)

dx is the partition function. Note that the Fokker-Planck operator

in Eq. (6.6) is not self-adjoint. A simple transformation leads to its self-adjoint form L

where

L = e
U(x)

2 LFPe
�U(x)

2 =
∂ 2

∂x2 �V (x), (6.8)

and

V (x) =
1
4

⇣
dU

dx

⌘2
� 1

2
d

2
U

dx2 , (6.9)
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is now the effective potential. Thus the original problem is now reduced to analyzing the

following eigenvalue problem

L yn = lnyn, (6.10)

where yn are the eigenfunctions of the self-adjoint Fokker-Planck operator L corre-

sponding to the eigenvalue ln. We denote the eigenvectors of the Fokker-Planck operator

LFP by fn(x) having the same eigenvalues ln, and are related to yn(x) as

yn(x) = e
U(x)

2 fn(x). (6.11)

The eigenvalues ln follow the order: l1 = 0 > l2 > l3 . . ., where l1 = 0 corresponds to

the stationary distribution for a bath temperature, Tb. The first eigenvector corresponding

to l1 = 0 is given by y1(x) = e
�U(x)/2/

p
Z (Tb).

Given the initial probability condition p(x0,0), the probability distribution function p(x, t)

can be obtained as

p(x, t) =
Z

W (x, t|x0,0)p(x0,0)dx
0, (6.12)

where the transition probability or the propagator W (x, t|x0,0) of the Fokker-Planck equa-

tion can be written in terms of the eigenfunctions and eigenvalues (see [92, 94])

W (x, t|x0,0) = e
LFPt d (x� x

0)

= e
�U(x)

2 +U(x0)
2 Â

n

e
lntyn(x)y⇤

n
(x0). (6.13)

Substituting the transition probability into Eq. (6.12), one finds

p(x, t) =
Z

dx
0
e
�U(x)

2 +U(x0)
2 Â

n

e
lntyn(x)y⇤

n
(x0)p(x0,0). (6.14)
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Since l1 = 0, we can write Eq. (6.14) for the probability density as

p(x, t) =
e
�U(x)

Z (Tb = 1)
+ Â

n�2
ane

�U(x)
2 yn(x)e

�|ln|t , (6.15)

where

an =
Z

dxp(x,0)e
U(x)

2 y⇤
n
(x). (6.16)

At large times, since l2 > l3, to leading order, we obtain

p(x, t)' e
�U(x)

Z (Tb)
+a2e

�U(x)
2 y2(x)e

�|l2|t , t � 1
|l3|

. (6.17)

The equation above is central to further analysis of the relaxation properties for the particle

in the potential U(x).

6.2.2 Shape of the potential

The form of the potential well is crucial to the observation of the Mpemba effect as was

demonstrated in the experiment [4]. In there, U(x) is considered to be a double well

quartic potential with linear slopes near its boundaries or domain walls. Furthermore, the

potential is confined in an asymmetric domain and it was shown that the asymmetry in

the widths of the left and right domains about the origin can lead to the Mpemba effect

[4].

Likewise, we consider a double well potential which is piece-wise linear. In contrast to

the quartic double well potential, this problem is exactly solvable as will be evident below.

The boundaries of the well are situated at (�xmin,xmax). The potential in Fig. 6.1 can be

quantified in the following way
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Figure 6.1: Schematic diagram of the piecewise linear double well potential. The bound-
aries of the potential are situated at �xmin and xmax. The two minima of the double well
potential are located at �axmin and bxmax, where a,b 2 (0,1). The parameters k1, k2,
k3 and k4 refer to the various slopes. DU depicts the difference in the depths of the two
wells.

U(x) =

8
>>>>>>>>>><

>>>>>>>>>>:

�k1x, �xmin < x <�axmin

k2x+a(k1 + k2)xmin, �axmin < x < 0

�k3x+a(k1 + k2)xmin, 0 < x < bxmax

k4x+[a(k1 + k2)�b (k3 + k4)]xmax, bxmax < x < xmax,

(6.18)

where k1, k2, k3 and k4 are slope constants that play a crucial role in designating the

potential various shapes and the two constants a,b 2 (0,1).

The asymmetry in the shape of the potential can be introduced through various parame-
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ters such as different domain widths (changing xmin and xmax) about the origin, different

positions of the two wells (changing a and b ) about the origin or due to the different

depths (DU) of the potential wells. Thus, out of the many parameters in the model of the

potential, only the five parameters xmin,xmax,a,b and DU are independent. The various

possibilities of asymmetry in terms of the five independent parameters will be explored in

Sec. 6.5. More importantly, it turns out that the different heights of the two wells is a key

factor to the observation of the Mpemba effect in contrast to the result shown in Ref. [4].

This potential set-up provides an amenable physical interpretation for underlying cause

in such systems as will be discussed and illustrated in Sec. 6.4.

6.2.3 Jump conditions

The potential in Eq. (6.18) is not differentiable at x =�axmin, 0 and bxmax, and diverges

at the boundaries x =�xmin and x = xmax. Let x� and x+ denote the points just to the left

and right of boundary of a linear segment. For the choice of potential U(x+) = U(x�)

while U
0(x+) 6= U

0(x�). Across a boundary, both the probability currents are equal, i.e.,

J(x+, t) = J(x�, t), as well as the probabilities are equal. Thus, from Eq. (6.5), we obtain

�U
0(x+)p(x+, t)�

∂ p(x+, t)

∂x
=

�U
0(x�)p(x�, t)�

∂ p(x�, t)

∂x
. (6.19)

p(x+, t) = p(x�, t). (6.20)

The jump conditions in Eqs. (6.19) and (6.20) are satisfied by each of the eigenfunctions,

and hence from Eq. (6.14), we have

y 0
n
(x+)+

U
0(x+)yn(x+)

2
= y 0

n
(x�)+

U
0(x�)yn(x�)

2
, (6.21)

yn(x+) = yn(x�). (6.22)
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At the boundaries, the potential diverges. This implies that the probability current must

vanish and it leads to the following condition in terms of the eigenfunctions

y 0
n
(x)+

U
0(x)

2
yn(x) = 0, at x =�xmin, xmax. (6.23)

The jump conditions [Eqs. (6.22), (6.21) and (6.23)] are utilized to solve the eigenspec-

trum of the Fokker-Planck operator L [see Eq. (6.10)] as discussed in the next section.

6.2.4 Eigenspectrum analysis

We need to solve the following eigenvalue problem for the Fokker-Planck operator

L yn =�|ln|yn, (6.24)

where yn are the eigenfunctions of the self-adjoint Fokker-Planck operator L [see

Eq. (6.8)] corresponding to the eigenvalue ln. We solve separately in each of the four

domains of the potential U(x), characterized by slopes k1, k2, k3 and k4. This will lead

to eight constants of integration which will be determined by the jump conditions at the

boundaries of the regions, leading to a transcendental equation for the eigenvalue.

(a) Region I: �xmin < x <�axmin – Here, U
0(x) =�k1. Then, Eq. (6.24) takes the form:

d
2y I

n

dx2 +
⇣

ln �
k

2
1

4

⌘
y I

n
= 0, (6.25)

which has the solution

y I

n
(x) = An sin(m1nx)+Bn cos(m1nx), (6.26)
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where An, Bn are constants and

m1n =

s

ln �
k

2
1

4
. (6.27)

The solutions for the eigenfunctions in the other regimes are similar, but with different

constants. We list them below.

(b) Region II: �axmin < x < 0 –

y II

n
(x) =Cn sin(m2nx)+Dn cos(m2nx), (6.28)

where

m2n =

s

ln �
k

2
2

4
. (6.29)

(c) Region III: 0 < x < bxmax –

y III

n
(x) = En sin(m3nx)+Fn cos(m3nx), (6.30)

where

m3n =

s

ln �
k

2
3

4
. (6.31)

(d) Region IV : bxmax < x < xmax –

y IV

n
(x) = Gn sin(m4nx)+Hn cos(m4nx), (6.32)

where

m4n =

s

ln �
k

2
4

4
. (6.33)
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We now determine the different constants using the matching and boundary conditions.

(e) Boundary condition at xmax: Since there is an infinite jump in potential at x = xmax,

the boundary condition in terms of eigenfunctions yn is given by

y IV 0
n

(xmax)+
U

0
4(xmax)

2
y IV

n
(xmax) = 0. (6.34)

Substituting for y IV
n

from Eq. (6.32), we obtain

Gn = �n4nHn, (6.35)

n4n =
k4
2 cos(m4nxmax)�m4n sin(m4nxmax)
k4
2 sin(m4nxmax)+m4n cos(m4nxmax)

. (6.36)

Thus,

y IV

n
(x) = Hn [cos(m4nx)�n4n sin(m4nx)] . (6.37)

(f) Boundary condition at �xmin: Since there is an infinite jump in potential at x =

�xmin, the boundary condition in terms of eigenfunctions yn is given by

y I0
n
(�xmin)+

U
0
1(�xmin)

2
y I

n
(�xmin) = 0. (6.38)

Substituting for y I
n

from Eq. (6.26), we obtain

An = n1nBn, (6.39)

n1n =
k1
2 cos(m1nxmin)�m1n sin(m1nxmin)
k1
2 sin(m1nxmin)+m1n cos(m1nxmin)

. (6.40)

Thus,

y I

n
(x) = Bn [cos(m4nx)+n1n sin(m4nx)] . (6.41)

(g) Matching condition at x =�axmin: Here, we use the jump conditions obtained from
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the continuity of the probability current[see Eqs. (6.21) and (6.22)], at x = �axmin. On

simplification, we obtain

�Cn sin(m2axmin)+Dn cos(m2axmin) = Bn[cos(m1axmin)�n1n sin(m1axmin)]. (6.42)

Cn

h
m2 cos(m2axmin)�

k2

2
sin(m2axmin)

i
+Dn

h
m2 sin(m2axmin)+

k2

2
cos(m2axmin)

i

= Bn

h
(m1n1n �

k1

2
)cos(m1axmin)+(m1 +

n1nk1

2
)sin(m1axmin)

i
. (6.43)

The coefficients Cn and Dn are solved using Eqs. (6.42) and (6.43) in terms of Bn and the

expressions are given by

Cn =
Bn

2m2

h
�
⇣
(k1 + k2 �2m1n1n)cos(m2axmin)+2m2 sin(m2axmin)

⌘
cos(m1axmin)

+
⇣�

(k1 + k2)n1n +2m1
�

cos(m2axmin)+2m2n1n sin(m2axmin)
⌘

sin(m1axmin)
i
,

(6.44)

Dn =
Bn

2m2
cos(m2axmin)

h⇣
�2m2n1n +(2m1 +(k1 + k2)n1n) tan(m2axmin)

⌘
sin(m1axmin)

+
⇣

2m2 � (k1 + k2 �2m1n1n) tan(m2axmin)
⌘

cos(m1axmin)
i
. (6.45)

(h) Matching condition at x = 0: Similar to above, using the jump conditions

Eqs. (6.21) and (6.22) at x = 0, we obtain

En =
m2

m3
Cn +

k2 + k3

2m3
Dn, (6.46)

Fn = Dn. (6.47)

(i) Matching condition at x = bxmax: Using the jump conditions Eqs. (6.21) and (6.22)
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at x = bxmax, we obtain

Cn

m2

m3
sin(m3bxmax)

+Dn

⇣
k2 + k3

2m3
sin(m3bxmax)+ cos(m3bxmax)

⌘

= Hn

h
cos(m4bxmax)�n4n sin(m4bxmax)

i
,

(6.48)

and

Cn

h
m2 cos(m3bxmax)�

k3

2
m2

m3
sin(m3bxmax)

i

+Dn

h
k2

2
cos(m3bxmax)

�
⇣

m3 +
k3(k2 + k3)

4m3

⌘
sin(m3bxmax)

i

= Hn

h⇣
k4

2
�n4nm4

⌘
cos(m4bxmax)

�
⇣n4nk4

2
+m4

⌘
sin(m4bxmax)

i
.

(6.49)

The coefficients Cn and Dn are solved in terms of Hn using Eqs. (6.48) and (6.49) and the
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expressions are given by

Cn =
�8m

2
3Hn

m2[k2
2 � k

2
3 +8m

2
3 +(k2

3 � k
2
2)cos(2m3bxmax)]

⇥
"h

k2

2
cos(m3bxmax)�

�
m3 +

k2(k2 + k3
�

4m3
)sin(m3bxmax)

i

h
cos(m4bxmax)�n4n sin(m4bxmax)

i

�
h1

2
cos(m3bxmax)+

k2 + k3

4m3
sin(m3bxmax)

i

h
(k4 �2m4n4n)cos(m4bxmax)� (2m4 +n4nk4)sin(m4bxmax)

i#
, (6.50)

Dn =
4m3Hn

k
2
2 � k

2
3 +8m

2
3 +(k2

3 � k
2
2)cos(2m3bxmax)

⇥
"

2m3 cos(m3bxmax)
h

cos(m4bxmax)�n4n sin(m4bxmax)
i

+ sin(m3bxmax)
h
(2m4 +(k3 + k4)n4n)sin(m4bxmax)� (k3 + k4 �2m4n4n)cos(m4bxmax)

#
.

(6.51)

Now, we consider the ratios of Eqs. (6.44), (6.45), (6.50) and (6.51) that form a transcen-

dental equation to solve for the eigenvalues ln. Thus, solving for the eigenvalues ln in

turn helps to find the constants An, Bn, Cn, Dn, En, Fn and Hn.

6.3 Distance function and the Mpemba effect

How to quantify the Mpemba effect as an anomalous relaxation phenomena? To see this,

let us consider two systems: first one P, initially equilibrated at temperature Th and second

one Q, initially equilibrated at temperature Tc where Th > Tc. These initial equilibrium

distributions are denoted by p(Th) and p(Tc) respectively. Now imagine that both P and

Q are quenched at once to a common bath temperature, Tb, where Th > Tc > Tb. Even-

tually, both of them will equilibrate to the common distribution p(Tb) given long enough
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time. The Mpemba effect is said to exist if P equilibrates faster than Q during the tran-

sient/relaxation process.

To quantify this relaxation process, let us now define the distance from equilibrium func-

tion, D[p(t),p(Tb)] which measures the instantaneous distance of a distribution p(x, t)

from the final equilibrium Boltzmann distribution, p(Tb). It has been argued (see [11, 4])

that the Mpemba effect is independent of D[p(t),p(Tb)] provided that the distance mea-

sure obeys the following properties: (a) If Th > Tc > Tb, then the distance from equilibrium

function should follow the order D[p(Th),p(Tb)] > D[p(Tc),p(Tb)], (b) D[p(t),p(Tb)]

should be a monotonically non-increasing function of time, and (c) D[p(t),p(Tb)] should

be a convex function of p(x, t).

Notably, there are many well-adapted measures that exist in the literature namely the

entropic distance, L1 or norm distance and the Kullback-Leibler (KL) divergence [11, 4,

14]. Thus, as a working definition, if one has D[p(Th),p(Tb)] > D[p(Tc),p(Tb)] initially

for Th > Tc followed by D[ph(t),p(Tb)]< D[pc(t),p(Tb)] at a later time, we will state that

the Mpemba effect exists.

In the rest of the chapter, we will use the L1 or norm measure for the distance from

equilibrium function. More precisely, this is defined as

D[p(t),p(Tb)]⌘ L1(t) =
Z

dx|p(x, t)�p(x,Tb)|. (6.52)

Now substituting the form of p(x, t) from Eq. (6.17) into the above equation, we find

D[p(t),p(Tb)] = Â
n�2

|ane
�U(x)

2 yn(x)|e�|ln|t . (6.53)

The condition for the Mpemba effect, as mentioned above, now boils down to

|a2(Tc)|⌘ |ac

2|> |ah

2|⌘ |a2(Th)| . (6.54)
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The condition demands that |a2(T )| should have a non-monotonic behavior with the in-

crease in temperature. Note that the coefficient a2 is calculated using Eq. (6.16) and is a

function only of the initial temperature and the bath temperature. Also, a2(T ) is zero at

the final temperature T = Tb since the eigenvectors are orthonormal.

6.4 Modulation of the potential and population – connec-

tion to the experiments

Following the colloidal experiment by Kumar and Bechhoefer, we learnt that the asym-

metry in the shape of the double well potential plays an important role to the Mpemba

effect. In particular, it was shown that there is no such effect if the asymmetry in the

width of the left and right domains of the potential vanishes [4]. In this section, we aim

to revisit these limits from our model system by suitably changing the potential barrier.

To this end, let us turn our attention to Figs. 6.2(a) and 6.2(c) which show two different

configurations for the potential barrier. The modulation of the potential barrier leads to a

rearrangement in the population of the Brownian particle between the two wells for the

two different temperatures as shown in Fig. 6.2(b) and 6.2(d).

In Fig. 6.2(a), we consider a configuration of a potential with a considerable potential bar-

rier between the two minima. The corresponding population distribution of the Brownian

particle for the temperatures Th, Tc and Tb, i.e., for the hot, cold and the bath temperatures

respectively is shown in Fig. 6.2(b). The initially colder system is more populated in the

lowest well compared to the initially hotter system. However, there is also a considerable

amount of population distributed in the metastable state for the colder system, which is

not the case for the initially hotter system whose population distribution is nearly uniform

i.e., it can not really ‘see’ the metastable state. As a result, post quenching, the popula-

tion distribution of the colder system takes a significant amount of time to rearrange and
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(a) (b)

(c) (d)

Figure 6.2: Modulation of the potential and its effect on the population distribution of the
Brownian particle in the two wells. Panel (a) and (c) corresponds to different configura-
tions of the potential well. The parameters of the potential in (a) are chosen to be a = 0.3,
b = 0.3, xmin = p , xmax = p , k1 = 2, k2 = 5, k3 = 6 and k4 = 7 and in (c) a = 0.5, b = 0.3,
|xmin|= p , xmax = p , k1 = 0.1, k2 = 0.1, k3 = 0.1 and k4 = 0.9. Panels (b) and (d) depict
the population distribution corresponding to the external potentials in (a) and (c) respec-
tively for the initial temperatures Th (red), Tc (blue) and final temperature Tb (black) with
Th > Tc > Tb.
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eventually relax to the lowest energy well from the metastable state. On the other hand,

the initially hotter system ends with a higher population in the lowest well due to its fast

relaxation. This feature grants an advantage to the initially hotter system over the colder

one, and the Mpemba effect is observed.

Next, we consider the potential shown in Fig. 6.2(c), where the potential barrier between

the two minima is almost diminishing thus creating a flat barrier between the wells. In

this case, the population distribution at the bath temperature, Tb which corresponds to the

final equilibrium state, is almost equally populated between the two wells. Moreover, not

much difference can be seen in the population distribution of the initially hot and the cold

system. In other words, the ‘hindrance’ due to the metastable state in the relaxation to the

equilibrium state is absent. Owing to this, the relaxation process is similar for the both

initially hot and the cold system. The initially colder system (having distribution closer to

the final equilibrium state) relaxes faster compared to the initially hot system and hence,

no Mpemba like effect is observed.

The above physical scenarios naturally set the stage to make the connection with the

experiment [4]. In particular, the asymmetry in the widths of the left and right domains of

the confined potential in the experiment plays an analogous role to a finite barrier height

between the wells in our model set-up. As we have shown that this configuration leads to

the Mpemba effect similar to the asymmetric domain for the left and the right well of the

potential in the experiment.

On the other hand, the symmetric double well potential configuration in the experiment

with equal widths for the left and right domains is analogous to our second case with

almost a flat barrier between the two wells of the potential [see Figs. 6.2(c) and (d)]. It

is because the symmetric potential configuration has the population of the particle al-

most similarly distributed between the two wells of the potential for any temperatures

eliminating the effect of the presence of any metastable state. As a result, the relaxation

dynamics from an initial equilibrium distribution to the final equilibrium are similar for

165



any temperature, and the initially cold system having an initial temperature closer to the

final equilibrium state relaxes faster. Hence, no Mpemba effect can be seen. These two

possible configurations thus draw physical similarities between the experiment and our

system.

6.5 Mpemba effect in double well potential

In this section, we showcase several key configurations of the double well potential that

can lead to the Mpemba effect. These results are analyzed based on the generic criterion

for the Mpemba effect as described in Sec. 6.3. The methodology we use is as follows.

Given a configuration of the potential, we solve the eigenvalue Eq. (6.24) to find the

eigenspectrum. Once this is known, we can immediately compute the time dependent

solution for the probability distribution using Eq. (6.15). This allows us to understand the

relaxation process by looking at the slowest eigenvalue. Next, we analyze the Mpemba

condition namely |ac

2| > |ah

2| (see Sec. 6.3). Specifically, this condition is scanned thor-

oughly to identify the set of initial temperatures for which |a2(T )| has a non-monotonic

behavior with temperature T so that the above-mentioned inequality is satisfied. We pro-

vide phase diagrams spanning in the parameter space of DU (will be discussed in the later

part) and temperature ratio to underpin the desired regimes for the Mpemba effect. We

make an attempt to provide physical reasoning behind all the possible cases.

It is now understood from the discussion in Sec. 6.4 that a fully symmetric potential

configuration does not lead to the Mpemba effect. In what follows, we first consider

an asymmetric potential configuration. This includes equal widths for the left and right

domains and equal heights at the left, center, and right edges of the potential. The only

asymmetry is in the form of different depths between the two potential wells. We show

in Sec. 6.5.1 that the mere presence of asymmetry in the potential configuration is not

a sufficient condition to induce the Mpemba effect. To explore further, we take other
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configurations that have restricted asymmetries.

This is done by keeping different heights at the left, center, and right edge of the poten-

tial. We carefully analyze these different configurations and explore the possibility of the

Mpemba effect. The following configurations are of our interest: (a) equal domain widths

(xmax = xmin) as discussed in Sec. 6.5.2, and (b) unequal domain widths (xmax 6= xmin)

as discussed in Sec. 6.5.3. For both cases (a) and (b), we explore the different possible

configurations by varying the depths of the potential wells (DU) and also for different

positions of the wells characterised by a and b .

6.5.1 Asymmetry is not a sufficient criterion

We start by showing that the asymmetry is not a sufficient condition for the existence of

the Mpemba effect. As an example, we consider the case where the asymmetry is only in

terms of different depths of the potential wells while keeping everything else symmetric,

as shown in Fig. 6.3(a). The heights of the left, centre and right edges of the potential

well are equal. Moreover, the potential minima are also situated symmetrically about the

origin and at the centre of their respective domains. For this case, there is no Mpemba

effect since |a2(T )| increases monotonically with T [see Fig. 6.3(b)]. As discussed in

Sec. 6.4, the absence of the Mpemba effect can be explained based on the similar nature

of the initial population distribution of the hot and the cold system for a particular choice

of Th and Tc respectively, as shown in the inset of Fig. 6.3(b), leading to similar relaxations

for both the systems.

Hence, one would anticipate that additional asymmetries might be required in the po-

tential configuration to induce the Mpemba effect. However, we find that as long as the

potential heights at the left, center, and right edges are equal, there is no Mpemba effect.

In what follows, further asymmetric configurations are explored by considering the cases

of equal and unequal domain widths and also varying the depths between the two wells

167



Figure 6.3: Illustration of the absence of the Mpemba effect in an asymmetric double
well potential indicating that asymmetry is not sufficient. (a) Asymmetric shape of the
potential with different depths for the left and right wells while keeping all the other
parameters of the potential symmetric about the origin. The potential heights at its left,
center and right edges are equal and so are the positions of the two wells about the origin.
The shape of the potential corresponds to the choice of the parameters xmax = xmin = p ,
a = b = 0.5, k1 = k2 = 0.32 and k3 = k4 = 0.57. (b) Monotonic evolution of |a2(T )| with
T showing the absence of the Mpemba effect. Inset: Initial population distribution of the
confined Brownian particle for the chosen temperatures Th = 50 (red) and Tc = 10 (blue)
showing almost similarly distributed populations across the potential landscape. The final
equilibrium distribution (black) corresponds to bath temperature Tb = 1.
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of the potential while satisfying the necessary condition that the heights at the left, center,

and right edges of the potential are different.

6.5.2 Equal domain widths

We first examine the configurations of the potential with equal widths for the left and

right domains. The boundaries of the well are situated at xmin = xmax with the position

of the two wells equidistant from the origin at x = �axmin and x = bxmax with a = b .

The various asymmetries in the configuration of the potential are introduced through the

choice of the slopes k1, k2, k3 and k4 for the different domains of the confined potential.

The shape of the potential with a specific choice of parameters is shown in Fig. 6.4(a).

The existence of the Mpemba effect for this particular configuration of the potential is

evident from the non-monotonic behavior of the coefficient |a2(T )| with T as shown in

Fig. 6.4(b). The existence of the Mpemba effect for this configuration of the potential is

also qualitatively evident in terms of the population distribution of the particle as shown

in the inset of Fig. 6.4(a) for Th = 1000 and Tc = 7 which satisfy the criteria for the

Mpemba effect. The population distribution of the initially cold system is localised at the

intermediate potential well, thus experiencing a metastable state which leads to its slower

relaxation towards the final equilibrium. On the other hand, the initially hot system has

uniform distribution across the potential landscape and undergoes faster relaxation to the

final equilibrium distribution.

We next explore the phase space that shows the Mpemba effect, for this form of potential

configuration in terms of various asymmetries. It is done by varying the depths between

the two wells of the potential landscape DU [see Fig. 6.4(a)] as a function of the tem-

perature of the initially hot system Th while keeping the temperature of the initially cold

system fixed at Tc = 4. Changing the depths of the two wells is equivalent to making

choices for different possibilities of the slopes k1, k2, k3, and k4. Figures 6.5(a) and (b)
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Figure 6.4: Illustration of the Mpemba effect in a confined double well potential with
equal domain widths. (a) Shape of the potential with equal domain widths (3 units) about
the origin. The asymmetry in the potential configuration is introduced through the choice
of different slopes in separate domains. The configuration of the potential is determined
by the choice of the parameters: xmax = xmin = p , a = b = 0.1, k1 = 2, k2 = 5, k3 = 6
and k4 = 7. Inset: Initial population distribution of the confined Brownian particle for the
chosen temperatures Th = 1000 (red) and Tc = 7 (blue) such that |ah

2| < |ac

2|. This shows
a significant population distribution for Tc around the metastable state compared to that
(which is almost flat) of Th. The final equilibrium distribution (black) corresponds to bath
temperature Tb = 1. (b) Non-monotonic evolution of |a2(T )| with T clearly indicates the
presence of the Mpemba effect in this set-up.
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Figure 6.5: DU-Th phase diagram illustrating the region of the Mpemba effect in the
case of double well potential with equal domain widths. The phase diagram is obtained
by varying the depth of the right well of the potential while keeping the depth of its
left well fixed and by changing the temperature ratio. The phase space is partitioned
into two domains: one where the Mpemba effect is present corresponding to the criteria
|ah

2|< |ac

2|, and other complementary region. The phase diagrams correspond to different
choices of the position of the potential wells which are symmetric about the origin and
are determined by: (a) a = b = 0.1, (b) a = b = 0.5.

illustrate the phase diagrams of the possible asymmetries in the potential configuration

leading to the Mpemba effect, in the DU-Th plane for two different choices of positions

for the potential minima although symmetrically placed about the origin.

6.5.3 Unequal domain widths

We now consider the potential configurations with unequal domain widths and explore

the phase space of various possible asymmetries that might demonstrate the Mpemba
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effect. This is motivated from Ref. [4] where potential with unequal domain widths was

considered in order to study the Mpemba effect.

The unequal domain widths of the potential configuration correspond to the positions of

its boundaries situated at xmin and xmax respectively with the magnitudes xmax 6= xmin.

The positions of the left and the right wells are situated at x = �axmin and x = bxmax

respectively from the origin with a = b . For the simplicity of our analysis, the magnitude

of the slopes k1, k2, k3, and k4 are kept equal for different domains. Thus, the only

asymmetry in the potential is introduced through the choice of different domain widths of

the confined potential, and one such configuration with a particular choice of parameters

is shown in Fig. 6.6(a).

The non-monotonic behavior of the coefficient |a2(T )| with T as shown in Fig. 6.6(b)

illustrates the existence of the Mpemba effect for this configuration of the potential. We

consider one such pair of temperatures Th = 50 and Tc = 10 for the hot and cold systems

respectively that satisfy the criteria |ac

2| > |ah

2| and study the nature of the population

distribution of the particle for the particular case as shown in the inset of Fig. 6.6(a). Here

too, the cold system exhibits localisation of its population distribution in the local minima

leading to slower relaxation towards the final equilibrium compared to the hot system.

We now explore the phase space of possible asymmetries that leads to the Mpemba effect,

for this form of potential configuration. Here, the asymmetries are introduced in terms

of the choices of different slopes and different widths for the left and right domains. We

explore the phase space by varying the depths between the two wells of the potential

landscape DU [see Fig 6.6(a)] as a function of the temperature of the initially hot system

Th while keeping the temperature of the initially cold system fixed at Tc = 4. Note that the

variation of the two well depths is equivalent to making different choices for the slopes

of the potential. We perform this exercise for two different choices of widths for the right

domain respectively keeping the width of the left domain fixed as illustrated in Figs. 6.7

(a) and (b) respectively. As mentioned earlier, the phase diagrams allow us to provide a
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Figure 6.6: Illustration of the Mpemba effect in a confined double well potential with
unequal domain widths while keeping every other parameters symmetric about the origin.
(a) Shape of the potential with unequal domain widths (xmax 6= xmin) about the origin.
The various slopes of the potential are kept equal. The configuration of the potential is
determined by the choice of the parameters: xmin = p , xmax = 1.5p , a = b = 0.1 and
k1 = k2 = k3 = k4 = 7. Inset: Initial population distribution of the confined Brownian
particle for the chosen temperatures Th = 50 (red) and Tc = 10 (blue) such that |ah

2| <
|ac

2|. This shows a significant population distribution around the metastable state for Tc

compared to the same for Th. The final equilibrium distribution (black) corresponds to
the bath temperature Tb = 1. (b) Non-monotonic evolution of |a2(T )| with T confirms the
presence of the Mpemba effect in this set-up.
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Figure 6.7: DU-Th phase diagram illustrating the region of the Mpemba effect for the case
of double well potential with unequal domain widths. The phase diagram is constructed
in the similar manner as in Fig. (6.5). The phase diagrams in the left- and right- panel
correspond to different choices of the widths for the right domain of the potential : (a)
xmax = 1.2p , (b) xmax = 1.5p keeping the width of its left domain fixed at xmin = p . The
position of the two wells are determined by the parameters a = b = 0.1 for both the cases.

comprehensive picture in terms of the parameters that are pertinent to the Mpemba effect.

6.6 Mpemba effect without a metastable minimum

In this section, we show that the presence of metastable states is not necessary for the

existence of the Mpemba effect. We demonstrate this by configuring the potential with

no metastable state. In a recent study, the Mpemba effect was shown for a piece-wise

constant potential where the local stability of double well potential is replaced by neutral

stability [13]. Likewise, we construct potential configurations with no metastable states
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and yet demonstrate the possibility of observing the Mpemba effect. In short, such an

analysis would rationalize the claim that neither metastability nor neutral stability are

necessary for the Mpemba effect.

Let us consider the single well potential with two linear slopes at the edges and with fixed

magnitude in between x = �axmin to x = bxmax (see Fig. 6.8), where xmin and xmax are

the boundaries where the potential goes to infinity. We find that the minimal criterion to

observe the Mpemba effect in this configuration is to introduce an asymmetry in the form

of different heights for the left and right edge of the potential landscape with a = b < 1.

One such configuration of the potential is shown in Fig. 6.8(a). The existence of the

Mpemba effect for this configuration is illustrated through the non-monotonic behavior

of the coefficient |a2(T )| with temperature T – see Fig. 6.8(b). We consider one such pair

of temperatures Th = 48 and Tc = 6 for the initially hot and cold systems respectively that

satisfy the criteria |ac

2| > |ah

2| and study the nature of the population distribution of the

Brownian particle for the particular case as shown in Fig. 6.8(c).

In the case of the double well potential configuration, the presence of a metastable state

plays an important role in the existence of the Mpemba effect. Clearly, in this case, there is

no delay in the redistribution of the populations to the final equilibrium distribution start-

ing from two different temperatures due to the absence of any metastable state. However,

the existence of the Mpemba effect for this configuration shows that there is a trade-off

between the initial population density and kinetic energy of the particle in the redistribu-

tion process to the final equilibrium as evident from the population statistics near the edge

of the potential landscape [see Fig. 6.8(c)].

Although the initially hot system has more population of the particles near the edge of

the potential to redistribute than the same of the initially cold system, the higher kinetic

energy of the hot system dominates during the relaxation process for the given configu-

ration of the potential landscape, leading to a faster relaxation of the hot system than the

cold one and hence the Mpemba effect is observed.
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However, keeping the same configuration of the potential landscape and same tempera-

tures for the initial hot and the cold system, we find that the anomalous relaxation disap-

pears as the depth of the potential minimum is decreased as is illustrated in Fig. 6.8(d)

and (e). It is evident from the monotonically increasing nature of the coefficient |a2(T )|

with temperature, T [see Fig. 6.8(e)] that there is no Mpemba effect in this case. The

population distribution of the particle for this configuration of the potential is shown in

Fig. 6.8(f). A qualitative argument can be given based on the trade-off between the initial

population density and kinetic energy of the particles present at the edges of the potential

landscape. The presence of a smaller population for the initially cold system at the edges

(which would eventually redistribute to the potential minimum) dominates in the relax-

ation process to the final equilibrium. Naturally, one would expect that the initially cold

system will approach the final equilibrium faster than the initially hot system discarding

the possibility of a Mpemba effect.

Finally, we explore the phase space of the single well potential landscape with the temper-

ature ratio. We vary the minimum or the depth of the potential landscape DU measured

with respect to the potential height at the left edge [see Figs. 6.8(a) and (d)] as a function

of the temperature of the initially hot system Th while keeping the temperature of the ini-

tially cold system fixed at Tc = 4. Figure 6.9 illustrates the phase diagram in the DU-Th

plane for a fixed choice of the heights for the left and right edge of the potential.

6.7 Illustration of the Mpemba effect in terms of distance

measures

In this section, we illustrate that the existence of the Mpemba effect is indifferent to

the choice of distance measures. We consider the case of the equal domain widths (see

Sec. 6.5.2) with the parameters of the potential as in Fig. 6.4 where the Mpemba effect

is shown to exist in terms of the criteria of |a2| for a wide range of initial temperatures.
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Figure 6.8: Illustration of the Mpemba effect in a confined single well potential with no
metastable state. (a) Shape of the single well potential is determined by the choice of
the parameters: xmax = xmin = p , a = b = 0.5, k2 = k3 = 0, k1 = 3.18 and k4 = 5.73.
(b) Non-monotonic evolution of |a2(T )| with T showing the presence of the Mpemba ef-
fect. (c) Initial population distribution of the confined Brownian particle for the chosen
temperatures Th = 48 (red) and Tc = 6 (blue). Here, |ah

2| < |ac

2| which shows a signifi-
cant difference in the population density at the minimum of the potential well. The final
equilibrium distribution (black) corresponds to bath temperature Tb = 1. The Mpemba
effect disappears for the above configuration of the potential if the depth of the potential
well is decreased as shown in (d). The modified potential configuration corresponds to a
change in the slopes to k1 = 0.38 and k4 = 2.93 while keeping the other parameters same
as in the earlier case. (e) Monotonic evolution of |a2(T )| with T shows the absence of
the Mpemba effect for the modified configuration. (f) Initial population distribution of
the confined Brownian particle for the same pair of temperatures Th = 48 (red) and Tc = 6
(blue) show nearly similar population distribution at the minimum of the potential well.
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Figure 6.9: DU-Th phase diagram illustrating the region of the Mpemba effect for the
case of a single well potential. The phase diagram is obtained as before by varying the
depth of the potential minimum & the temperature ratio. Here, there are two distinct
regions and the criterion |ah

2|< |ac

2| marks the one where the Mpemba is observed. Here,
Tc = 4 as before and the other parameters determining the configuration of the potential
are: a = b = 0.5.

Here in Fig. 6.10, we illustrate the existence of the Mpemba effect in terms of two differ-

ent measures, namely the norm, L1 =
R

dx|p(x, t)�p(x,Tb)| and Kullback-Leibler diver-

gence, KL(t) =
R

dxp(x, t) ln
�

p(x, t)/p(x,Tb)
�

for the same choice of the parameters and

show that the effect is independent of the choice of the distance measures.

6.8 Conclusion

In summary, we have theoretically studied the Mpemba effect in a system of an over-

damped particle trapped in an external potential motivated by a similar experimental set-

up [4]. The potential is generically piece-wise linear but double-welled, and moreover

we can maneuver it to give various shapes. One can exactly solve this model analytically

to obtain the eigenspectrum decomposition of the corresponding Fokker-Planck equation.

This allows us to provide a comprehensive study of the Mpemba effect spanning a wide

panorama of physical scenarios.

As noted earlier in [4] and in other works that symmetric potentials are not expected to
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Figure 6.10: Illustration of the Mpemba effect in terms of the distance measures: the
norm measure (L1) in left panel (a) and Kullback-Leibler (KL) divergence measure in
right panel (b). The configuration of the potential is the same as in Fig. 6.4 where it is
determined by the choice of the parameters: xmax = xmin = p , a = b = 0.1, k1 = 2, k2 = 5,
k3 = 6 and k4 = 7. The temperatures of the initially hot and the cold systems are Th = 100
and Tc = 8 respectively. Both the plots confirm the existence of the Mpemba effect.

exhibit the Mpemba effect. For symmetric potentials, a2 is exactly zero and higher order

coefficients become important. By explicit calculation, absence of the Mpemba effect

was noted in piece-wise constant potential as well as the pure harmonic potential [13].

We expect the same to hold for symmetric piece-wise linear potentials. For the class

of symmetric potentials that we explored, we did not find any exceptions. Asymmetry

was introduced in the experiment in Ref. [4] through different domain widths for the two

minima. We also demonstrate the existence of the Mpemba effect when the two widths are

unequal. Through counterexamples, we also show that unequal domain widths are neither

a necessary nor a sufficient condition for the Mpemba effect to be present. We also show

that the Mpemba effect can be realized for equal domain widths but for other asymmetries

in the potential. In particular, we find that the Mpemba effect is easily realizable when the

heights of the potential at the left, center and right edges are different. This is a notable

feature of our work.

Concluding, the Mpemba effect in Langevin systems is usually depicted in terms of the

ruggedness in the energy landscape where the particles diffuse. The relaxation of the

colder system to the lowest energy state is usually hindered by the presence of metastable

states while the hotter system does not experience (i.e., can overlook) the metastable states
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due to its higher energy and thus can relax to the lowest energy state faster than the colder

system. In this chapter, we revisit this physical picture for a variety of different cases.

Generically it is understood that the larger energy barrier leads to a significant amount of

population concentration at the intermediate energy well (or the metastable state) for the

initially colder system as compared to the initially hotter system. This leads to the con-

sensus that metastability might be necessary for the Mpemba effect. We benchmark this

rationale within our exactly solvable model. However and in stark contrast, we also show

that metastable states are not necessary for Mpemba effect by demonstrating the effect

in a potential with no metastable states, questioning the current qualitative understand-

ing. This result also improves on the result in Ref. [13], where for piece-wise constant

potentials, metastability was replaced by neutral stability. Taken together these new ob-

servations, we believe that our work offers a significant aid to the current understanding of

the Mpemba effect in Langevin systems. Finally, it is within our understanding that there

is a subtle interplay between the initial population (manifesting the energy landscape) and

the hopping frequency for particle rearrangement (which crucially depends on the tem-

perature), however a rigorous quantification is yet to be made. This is a key aspect that

requires further investigations. Our recent study with single well potential is an attempt

in that direction where we analyse the detailed phase diagram in terms of the asymmetries

of the potential configurations that show the Mpemba effect [95].
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Chapter 7

Conclusions

In this thesis, we have studied an anomalous relaxation phenomenon known as the

Mpemba effect wherein an initial state of a system placed at a further distance from

a reference state in phase space relaxes faster compared to another similar initial state

placed at a closer distance from the reference state. We have studied the existence of the

Mpemba effect in both single particle and many particle systems. While the system of

driven granular gases is chosen as an example for the many particle setup, a Langevin

system of single Brownian particle diffusing in a potential landscape is chosen for the

single particle setup.

In Chapter 2, we have studied the nature of the initial conditions required for the existence

of the Mpemba effect in the system of isotropically driven granular gases through an exact

analysis. We find that while non-stationary initial conditions are necessary to realise the

Mpemba like anomalous behaviour in the relaxation dynamics of mono-dispersed gran-

ular gases, it can be realised for steady state initial conditions in bi-dispersed granular

gases provided both the species of the bi-dispersed gas are driven with different driving

strengths. However, the existence of the Mpemba effect in isotropically driven granu-

lar gases are far from experimental realisation as either the initial states from where the

quench is done involves a non-stationary state or it involves a complicated way of driving
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the system (in bi-dispersed gases).

But in Chapters 3 and 4, we showed that the existence of the Mpemba effect is possible

starting from steady state initial conditions by considering anisotropically driven granular

gases. We did the analysis for both exactly solvable simple model of granular gas as well

as validated our results in a more realistic model through theoretical studies and molecular

dynamics simulations. We showed that anisotropy in the velocity distribution of mono-

dispersed granular gases is the key to the observation of the Mpemba effect starting from

initial steady states.

In the study of Mpemba effect in driven granular gases, mean kinetic energy is used as the

measure to describe the distance of an initial steady state from the final reference state.

However, the definition to define the closeness of an initial state from the final reference

state in terms of mean kinetic energy seems ad-hoc as it is not known apriori whether it

correctly predicts the distance between the states. As a result, we studied the Mpemba

effect in terms of four different measures in Chapter 5. We illustrated the existence of the

Mpemba effect using the various choices of the distance measures. However, it is found

that the phase diagrams for the different measures are not the same with the presence

or absence of the Mpemba effect for a particular phase space point depending on the

measure, resulting in a non-unique definition of the Mpemba effect. Moreover, the notion

of ‘hot’ and ‘cold’ initial states is different for the different choices of distance measures

from the final steady state.

In Chapter 6, we studied the existence of the Mpemba effect in a Langevin system con-

sisting of a single Brownian particle connected to a heat bath and diffusing in the presence

of an external potential. Here, we studied the role of external potential in inducing the

Mpemba like anomalous behaviour in the relaxation dynamics and is motivated from the

experimental study in Ref. [4] where it was shown that asymmetry in the shape of the

potential is the key to the observation of the Mpemba effect. We presented our results

for exactly solvable models of external potential. We showed that while asymmetry in
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the shape of the external potential is needed to realize the Mpemba effect, it is not the

sufficient condition. We have studied the existence of the Mpemba effect in the presence

of both double well and single well external potential. We showed that the presence of

higher barrier between the two wells of the double well potential landscape induces the

Mpemba effect due to the presence of the metastable state in the local minima of the land-

scape. However, we found that the presence of metastable state is not the minimal criteria

for inducing the Mpemba like relaxations in Langevin systems as we also showed that the

effect exists even for the case of potential without metastable state. Thus, the fact that

the Mpemba effect exists even in the case of single well potential landscape draws inter-

ests to look beyond the concept of metastable state and to look for the minimal criteria

that induces the Mpemba effect in Langevin systems for the better understanding of the

counterintuitive phenomena.
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Appendix A

Derivation of the Boltzmann equation

Let us first derive the Boltzmann equation in two dimensions by considering only the

collision part and then we will consider the contribution from the driving. We will follow

closely the derivation as described in Ref. [74] for three dimensions. Consider the number

of particles f (x1,v1, t) at position (x1,x1 + dx1) of phase space having velocity in the

interval (v1,v1 + dv1). In time interval Dt, these particles collide with another particles

leading to different velocities and hence results in the loss of particles from the considered

phase space region. Such events contributes to the loss term. To obtain the number of such

collisions, we consider the collision or the scattering of particles having velocity v1 with

particles of velocity v2. These particles move with the relative velocity v12 and obey the

momentum conserving collision rules given by Eq. (1.1). The number of such scatterers

is given by f (v2, t)dv2dx1. In the time interval Dt, these scatterers form an area in phase

space as shown in Fig. A.1. The area of the section is given by

dA = sdq |v12.e|Dt, (A.1)

where s is the radius of the disc shaped particles and q is the angle of collision measured

with respect to the normal vector e. The number of particles having velocity v1 that

undergoes scattering is given by f (v1, t)dv1dA. Hence, the total number of collisions
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Figure A.1: Schematic diagram for the collision between two hard discs.

that occur with particles of velocity v2 in the interval Dt and leads to a loss of particles

from the considered phase space region is given by

N� = f (v1, t)dv1dA f (v2, t)dv2dx1,

= sdq |v12.e| f (v1, t) f (v2, t)dv1dv2dx1Dt.
(A.2)

On the other hand, we can have other collisions where particles having velocities v00
1 and

v00
2 collide and results in the velocities v1 and v2. Such collisions lead to an increase in

the number of particles in the previously considered phase space and hence contributes to

the gain term of the Boltzmann equation. The change of velocities after the collision is

given by

v1 = v
00
1 �

1+ r

2
(v

00
12.ê)ê,

v2 = v
00
2 +

1+ r

2
(v

00
12.ê)ê.

(A.3)

It can be rewritten in the form

v
00
1 = v1 �

1+ r

2r
(v12.ê)ê,

v
00
2 = v2 +

1+ r

2r
(v12.ê)ê.

(A.4)
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From the similar argument as before, we can write for the total number of collisions in

the interval Dt that leads to a gain of particles in the considered phase space region as

N+ = f (v
00
1, t)dv

00
1dA f (v

00
2, t)dv

00
2dx1,

= sdq |v00
12.e| f (v

00
1, t) f (v

00
2, t)dv

00
1dv

00
2dx1Dt.

(A.5)

For our convenience, we write the velocities v
00
1,v

00
2 in terms of v1,v2 according to

Eq. (A.4) and the Jacobian of the transformation is given by

dv
00
1dv

00
2 =

1
r

dv1dv2, (A.6)

and the transformation of the normal components of the relative velocities can be obtained

using Eq. (A.3) as

|v00
12.ê|=

1
r
|v12.ê|. (A.7)

With these transformations, we can write N+ as

N+ =
1
r2 sdq |v12.e| f (v

00
1, t) f (v

00
2, t)dvdv2dx1Dt. (A.8)

The total number of collisions that lead to the gain or the loss of particles in the considered

phase space is obtained finally by integrating over all possible scatterer’s velocities v2 and

for all possible angle of collisions q . Note that only those events in the integrations make

an impact where v12.e< 0 and v
00
12.e< 0. Thus, the net increase in the number of particles

in time Dt in the considered phase space region dx1dv1 is given by

D f dv1dx1 =
Z

dv2

Z
dqQ(�v12.e)(N+�N�), (A.9)
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where Q(y) is the Heaviside step function and is defined as

Q(y) =

8
>><

>>:

1,y � 0

0,y < 0.
(A.10)

Substituting for N+ and N� from Eqs. (A.8) and (A.2) and taking the limit Dt ! 0, we

obtain the Boltzmann equation for the collision terms

∂
∂ t

f (v1, t) = s
R

dv2
R

dqQ(�v12.e)|v12.e|
h

1
r2 f (v

00
1, t) f (v

00
2, t)� f (v1, t) f (v2, t)

i
.

(A.11)

Similar to the collision terms, the driving also leads to a loss and a gain in the number of

particles in the considered phase space. A single particle is chosen at random and is driven

at a constant rate ld . If the chosen particle already has the velocity v1 in the considered

phase space then it contributes to the loss term in the Boltzmann equation. On the other

hand, if the velocity of the chosen particle is different than v1 (say, v0
1) then it can lead to

v1 after driving has occurred according to Eq. (1.2). The net contribution from such term

is obtained by integrating over all possible velocities v0
1 and all possible noise realisations

⌘ that can lead to velocity v1. Hence, after incorporating the loss and the gain terms due

to driving, the Boltzmann equation takes the form

∂
∂ t

f (v1, t) = s
R

dv2
R

dqQ(�v12.e)|v12.e|
h

1
r2 f (v

00
1, t) f (v

00
2, t)� f (v1, t) f (v2, t)

i

�ld f (v1, t)+ld

R R
d⌘dv0

1f(⌘) f (v0
1, t)d [�rwv0

1 +⌘�v1]. (A.12)

Here, the third and the fourth terms are the loss and the gain term due to driving as de-

scribed above. Note that while counting the number of collisions between the scatterers

and the scattered particles that lead to the gain or loss in the number of particles in the

desired phase space region, we considered the individual product of their velocity dis-

tribution functions f (v1, t) f (v2, t) or f (v
00
1, t) f (v

00
2, t). However, the rigorous way to do
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the counting is by considering a joint distribution f2(v1,v2, t) for the scatterers and the

scattered particles as there may be correlations between two particles. The assumption

that allows us to write the joint distribution function as the product of single particle dis-

tribution function is called the molecular chaos hypothesis. The assumption is fairly valid

for low densities of the particles.

Even in the spatially homogeneous case, correlations occur due to excluded volume ef-

fects when possible colliders are screened by other particles. An approximation for the

finite volume effect was suggested by Enskog in the form

f2(v1,v2) = c(s) f (v1) f (v2), (A.13)

where c(s) is the Enskog factor. For hard discs in two dimensions, c(s) is given by

c(s) =
1� ( 7

16)h
(1�h)2 , (A.14)

where h is the packing fraction of the particles given by

h(s) =
1
4

ps2
n. (A.15)

With the above correction for the Enskog factor, Eq. (A.12) becomes

∂
∂ t

f (v1, t) = c(s)s
R

dv2
R

dqQ(�v12.e)|v12.e|
h

1
r2 f (v

00
1, t) f (v

00
2, t)� f (v1, t) f (v2, t)

i

�ld f (v1, t)+ld

R R
d⌘dv0

1f(⌘) f (v0
1, t)d [�rwv0

1 +⌘�v1], (A.16)

and is called as the Enskog-Boltzmann equation.
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Appendix B

Motivations for the choice of driving

The contribution from the driving terms in the Enskog-Boltzmann equation is of particular

interest for the system of driven granular gases. There are certain motivations for the

chosen form of driving as given in Eq. (1.2). First is that the system reaches a steady

state for rw 6=�1. It is because if rw =�1, then the driving is equivalent to the diffusive

driving, dv/dt = ⌘, in which case the total energy diverges with time and therefore there

is no steady state [59, 60]. This model of dissipative driving [Eq. (1.2)] can be thought of

as particles colliding with a vibrating wall. In that case, the velocity of a particle v after

the collision with the wall is given by: v0�V 0
w
=�rw(v�Vw), where rw is the coefficient

of restitution between the wall and the particle and Vw being the wall velocity. Since the

velocity of the wall remains unchanged during a collision, we have V 0
w
= Vw. Therefore,

we can write v0 = �rwv+(1+ rw)Vw. We assume that the velocity of the wall in each

collision is like an uncorrelated random noise. Hence, we can write v0 =�rwv+⌘. The

physical values for rw lie in [0,1], where zero denotes completely inelastic wall collisions

and one denotes elastic wall collisions. However, as a mathematical model for driving, it

is valid for the range rw 2 (�1,1].

Moreover, the driving terms in the Enskog-Boltzmann equation can be related to the

Fokker-Planck diffusive terms in the limit of small noise ⌘ and rw = 1. In order to analyse
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the small noise limit, we consider the driving terms separately for rw = 1 as

ID =�ld f (v1, t)+ld

Z Z
d⌘dv0

1f(⌘) f (v0
1, t)d [�v0

1 +⌘�v1]. (B.1)

Integrating over v0
1, we obtain

ID =�ld f (v1, t)+ld

Z Z
d⌘f(⌘) f (v1 �⌘, t). (B.2)

For the small noise ⌘, we Taylor expand the integrand about |⌘|= 0, and integrating over

⌘, we obtain

ID =
ldh|⌘|i2

2
—2

f (v)+ . . . . (B.3)

For the small noise |⌘|, we can neglect its higher moments which leads to Fokker-Planck

diffusive term in the Enskog-Boltzmann equation. The previous studies based on the

kinetic theory [73] incorporates a phenomenological Fokker-Planck diffusive term in the

Enskog-Boltzmann equation which has its origin from v0 = v+⌘. However. as discussed

earlier, it does not lead to a steady state as in that case mean square velocity, hvi2 µ t.

In contrast, the present model of driving as given in Eq. (1.2) provides a microscopic

model of driving and allows us to realise the diffusive driving with the system reaching

the steady state.

190



Appendix C

Velocity distribution of driven granular

gases

Here, we briefly discuss an outline and important results on the analysis of the velocity

distribution function of driven granular gases. The knowledge about the form of the ve-

locity distribution function for the system of driven granular gas will be important for the

later chapters as well.

The equilibrium velocity distribution of an ideal gas where the particles undergo elastic

collisions is a Maxwell distribution. However, there is a change in the energy in the

system of driven granular gas due to the interplay of dissipation and gain of energy in the

system. As a result, the velocity distribution function must be a function of time. The

time dependence in the velocity distribution is accounted for by the time dependence in

the mean energy. If we assume that the inter-particle collisions are only slightly inelastic,

i.e., r ' 1 then it is fair to consider that the velocity distribution function is close to the

Maxwell distribution. Hence, the analysis is done by expanding the velocity distribution

function around the Maxwellian as,

f (v, t) = F(v, t)[1+
•

Â
p=1

apSp(v
2)], (C.1)
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where {Sp(v2)} are the Sonine polynomials, ap are their corresponding coefficients and

F(v, t) is the Maxwell distribution defined as

F(v, t) =
mn

2pT (t)
exp[� mv

2

2T (t)
]. (C.2)

Here, T (t) is called the granular temperature and is related to the second moment of

velocity distribution in two dimensions as

T (t) =
1
2

Z
dvmv

2
f (v, t). (C.3)

Note that Sonine polynomials {Sp(v2)} form a complete set and the expansion is valid

if the distribution is close to Maxwellian and the summation of higher order terms in the

Sonine polynomials must converge. The orthogonality of the Sonine polynomials is given

by

Z
dvF(v)Sp(v

2)S0
p
(v2) =

2(p+1/2)!p
p p!

dpp0 , (C.4)

where dpp0 is the Kronecker delta. In order to the obtain the solution f (v, t) for the

Enskog-Boltzmann equation, one needs to compute the Sonine coefficients ap. However,

it needs altogether a separate discussion. The recent developments in theoretical, numer-

ical and experimental studies can be found in the Refs. [60, 59] and the references there

in. Here, we briefly discuss the known results for the velocity distribution function which

might be useful for our later studies.

The classic result [73] for the form of the steady state velocity distribution function of a

driven granular gas is a stretched exponential of the form

f (v)⇠ Aexp(�bv
3/2), (C.5)

where A and b are constants. The result is based on the addition of a phenomenological
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Fokker-Planck diffusive term and the perturbative expansion of the velocity distribution

function about the Maxwellian. A more exact analysis [60, 59] without the consideration

of perturbative expansion of the velocity distribution function and based on the calcula-

tion of higher moments while incorporating a microscopic model of driving shows two

universal regimes for the tail of the distribution function

f (v)⇠ exp(�b1v
2(lnv)t), for rw < 1, (C.6)

whereas

f (v)⇠ exp(�b2v(lnv)
g�1

g ), for rw = 1. (C.7)

Here, b1 and b2 are the constant pre-factors of the distribution, t is an exponent depending

on the details of the noise distribution and g is the exponent of the noise distribution whose

asymptotic form is characterised by

F(⌘)⇠ exp(�c|⌘|g). (C.8)

There are numerous experimental setups to investigate the tail of the velocity distribution

function but with less success. If the tail of the velocity distribution function is charac-

terised by an exponent b as f (v)⇠ exp(�bv
b ) then the experimental findings predict the

exponent ranging from b = 1 to b = 2. Similar is the case with numerical simulations

as well. The result is ambiguous due to the poor sampling of tails in experiments and

simulations. However, specific numerical algorithms that can sample the tails of distribu-

tions with good accuracy can provide better information about the low probability tails.

Our findings [96] implementing sophisticated algorithms to sample the rare events corre-

sponding to the low probability tails of driven granular systems confirms the exact results

about the two universal regimes of the distribution function as predicted in Refs. [60].
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anta, Andrea Maiorano, Enzo Marinari, et al. The mpemba effect in spin glasses is a

persistent memory effect. Proc. Natl. Acad. Sci. USA, 116(31):15350–15355, 2019.

195



[18] Andrés Santos and Antonio Prados. Mpemba effect in molecular gases under non-

linear drag. Phys. Fluids, 32(7):072010, 2020.

[19] Rubén Gómez González, Nagi Khalil, and Vicente Garzó. Mpemba-like effect in
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