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SYNOPSIS

Before the isolation of graphene in 2004[1], it was long believed that 2D materials

are thermodynamically unstable unless grown on a suitable substrate. The percep-

tion changed in 2004, followed by a great surge in interest in not only graphene but

also in a variety of 2D materials which emerged in quick succession, like single layer

of hexagonal boron-nitride(hBN), MoS2, WS2, g-C3N4 etc.[2] New physics in these

systems are rooted at the confinement of electron in one of the degrees of freedom,

leading to an additional layer of quantization and increased level of correlation among

electrons due to localization, which led to substantial enrichment of their electronic

structure[3]. Study of quantum phenomena in reduced dimension has thus led to a

new direction of research, which is often referred as mesoscopic physics, where the
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interplay of electron-electron interactions, events of scattering and confinement man-

ifests many exotic phenomena[3]. However, it is not only rich physics, but also great

promises of their application in devices, which have fuelled interest in these materials

for almost last two decades, and still going strong, in fact stronger, with the advent of

new promises. Historically almost, one key promise which fuelled interest in graphene

is the high mobility of electrons in it, which is rooted at the linear dispersion of its

2pz electrons at Fermi energy, and has long been perceived as an answer to the prob-

lem of increased Joule heating due to reduction in cross-section of electrical contacts

in devices of shrinking size. It was also anticipated that, not only passive contacts,

but also active elements like diodes and transistors[4, 5] could be made of tailored

graphene and graphene-hBN hybrids, as a substitute to silicon. In more recent years,

they have been shown sustain ferro-magnetism at room temperature[6] upon appro-

priate functionalization, which has opened up a new direction in pursuit of magnetic

materials, which are lighter and thinner than those made of metals, have large spin

relaxation time due to small spin-orbit coupling compared to the metals, and yet

magnetically as well as structurally stable at room temperature. Such atomically

thin magnetic layer will be ideal for use in high density integration of data storage

and reading units. In the series of 2D materials proposed and synthesized, the lightest

ones are made of the elements of the 2p-block, namely, boron(B), carbon(c) and nitro-

gen(N), constituting graphene, hexagonal boron nitride(hBN) and their hybrids[7, 8],

which show remarkable structural resilience on account of the strong covalent bonds

made by the sp2 hybridized orbitals of B, C and N. Electronic structure of valence

electrons of these bipartite systems are determined primarily by their 2pz electrons

which are exposed to competition between (A): inter-sub-lattice delocalization, which

reduces kinetic energy, (B): inter-sub-lattice spin separation, which reduces Coulomb

potential energy of occupied orbitals, and (C): localization due to inhomogeneous
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distribution of electron-negativity or applied bias, both of which determines the on-

site term (orbital energy) in a tight-binding(TB) framework. In pristine graphene

A wins over B to result into a non-magnetic semi-metallic ground state. However,

their electronic structure can be tuned from their inherent semi-metallic nature to

semiconducting as well as metallic, by cutting them into ribbons or rolling them into

tubes in different directions. Magnetism in these half-filled bipartite systems can be

attributed to such scenarios of functionalization[9] which impacts the two sub-lattices

unequally, so that the increased kinetic energy due to impeded inter-sub-lattice hop-

ping, allows lowering of total energy through inter-sub-lattice spin separation in the

vicinity of functionalization. The sub-lattices thus become ferri-magnetically(FeM)

ordered, leading to a net non-zero magnetic moment associated with the functional-

ization. hBN on the other hands is an insulator, as the difference in electronegativity

of the two sub-lattices opens up a gap about Fermi energy. Thus in a graphene-hBN

hybrids the properties of the localized 2pz electrons at the graphene-hBN interface

remain largely unaltered by the bulk hBN.

In this thesis, we have investigated inhomogeneously biased graphene ribbons

as an example of reversible physical functionalization, and graphene-hBN hybrids,

which can also be described as C doped hBN, implying chemical functionalization.

We anticipated new physics as well as their possible applications in some of the con-

temporary problems in materials science. Through calculation of electronic structure

from first principles[10, 11] and mean-field Hubbard model[12], we have revealed new

properties and proposed new materials, broadly in two classes of studies and appli-

cations, one belongs to a group of the correlation driven interplay of charge and spin

degrees of freedom for application involving switchable magnetism at nanoscale, while

the other set of problems are mainly based on chemical activation due to chemical

inhomogeneity and thus relevant of catalysis. Studies of magnetism and chemical
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activation in these there coordinated systems are synergistic, since the same set of

electrons which localize to render magnetic moment, also leads to chemical activation

due to their unpaired nature which undermines completeness of sub-shell filling of

their host carbon atom.

In my first work, we have tried to explore deep into the relation between localiza-

tion and formation of local moment. Upon chemical functionalization or at defects,

localization of the 2pz electron due to lack of scope of coordination, constitutes a

local moment. We asked whether there exists a critical level of localization, as pos-

sible due to external bias which is incorporated as an on-site term in a tight-binding

framework, at which spin separation can occur irrespective of lack of coordination.

We find that indeed localization due to inhomogeneous biasing can exclusively result

into spin separation between biased and unbiased region. Within mean-field Hubbard

model, results suggest bias driven robust evolution of pristine graphene nano-ribbons

into a ferromagnetic semiconductor, metal or a half metal, irrespective of their edge

configurations. Further analysis proposed that such evolution is a result of ferromag-

netic(FM) ordering at nearest neighboring(n-n) sites[13] in positively biased regions.

The trend on the onset of the n-n FM order[13] is more enhanced if the biased

region is narrow and located nearer to the ribbon edges. In zig-zag graphene nano-

ribbon(ZGNR) the onset of the n-n FM order contests the inherent AFM ordering[9]

between the two zigzag edges and turns it to FM leading to net nonzero magnetic

moment. These consequences of inhomogeneous biasing have been confirmed[13] from

first principles calculation. Analysis suggests that, the onset of n-n FM order can be

understood as an attempt to cooperatively minimize the on-site Coulomb repulsion

and the kinetic energy, while favoring the maximum localization of electrons at the

positively biased sites. Such cooperative mechanism has been verified through semi-

analytical model in simpler systems[13] which also establishes the n-n FM order to
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be a general property of inhomogeneously biased bipartite systems.

Magnetic moment in islands of graphene arises due to unequal coverage of the two

sub-lattices, [14]. Large moments are possible from triangular graphene chunk since

all its zigzag edges are in one sublattice. On the other hand, substitution by C in hBN

is known to from patches of graphene in hBN, and preferred shape of such patches are

known to be triangular or like ribbons[15, 16] Magnetic graphene islands embedded in

hBN is thus an experimentally accessible scenario. Motivated by recent experimental

observation of room temperature ferromagnetism in C doped hBN[17], we have un-

dertaken a systematic study of super-lattices of triangular carbon-islands embedded

in the hBN matrix[18]. It is reported[19] that magnetic carbon island embedded in

hBN in proximity favor anti-ferromagnetic(AFM) coupling, although the mechanism

was yet to be fully understood. Accordingly, we began this work with deriving an

atomically resolved understanding of the mechanism of -B-N- mediated AFM ordering

between magnetic carbon islands, and subsequently proposed possibilities to switch to

FM ordering and stabilize a non-zero magnetic moment. Spin-resolved first principles

calculation and orbital(pz) resolved Wannier analysis[20] both shows a spatial spin

separation of back transferred electrons at N and B as the source of the AFM order-

ing between islands[18]. Such spin separation also implied spin dependent hopping,

which we find to be a necessary criteria for emergence of the AFM order in the ground

state, within the mean-field approximation of Hubbard model. The AFM ordering

switch to FM order in presence of another local moment on or in the vicinity of the

-B-N- pathway connecting two magnetic islands. With such local moment, which can

be due to an isolated substitution or another magnetic islands, the system essentially

becomes an interpenetrating hexagonal-Kagome double super-lattice. The Kagome

lattice determines the strength of FM ordering in the hexagonal lattice and the con-

sequent degree of ferromagnetic semiconductor or half-metallic nature [18]. Effective
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strength of the exchange interaction suggests that the ferromagnetic semiconducting

phase may sustain at room temperature.

Since localization of electrons also plays an important role in its chemical activa-

tion, 2D materials has become a good platform in various electrocatalytic processes[21].

Among them, carbon doped hBN has been reported as an efficient catalyst towards

oxygen reduction reaction[22] which is the key process in an acid based fuel-cell. Since

substitution by C leads to patches of graphene in hBN, and the degree of activation

of C atoms in patches are different than that of an isolated C atom due to a single

substitution, we set out to draw a comprehensive map of activation of C atoms sub-

stituted in hBN, in order to be able to find the suitable sites for efficient catalysis,

which requires calibrated activation of sites. As a measure of the level of activation

of carbon atoms in patches, we calculate the average of the bond orders of the three

in-plane bonds around each atom in the three coordinated networks, and identify

the quantity as the “average bond order (ABO)” around the atom. We calculate

ABO from the bond orders obtained by projecting the effective TB electronic struc-

ture on bonding and anti-bonding states. Reduction in ABOs for C atoms in the

island from their bulk value in graphene, present a comparative picture of activation

in agreement with results from first principles. Difference of ABOs before and after

an event of adsorption, estimated within a TB set up where the on-site term reflect

electronegativity, appears to provide a more detailed picture of activation specific to

the adsorbed atom. With increasing patch size, ABOs indicate that the activation of

C at B site moderates to desired levels for optimal catalysis, whereas the activation

of C at N site reduces below the desired levels. Thus, in contrast to isolated C atoms

or smaller patches, bigger patches covering more B sites will be more suitable for op-

timum ORR catalysis, which is also convenient in terms of availability of active sites,

since, patches covering more B atoms are energetically more favorable compared to
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their counterparts covering more N site.

In summary, we have studied functionalized graphene, hBN and their hybrids

from first principles and mean-field model, to explore possible routes to spin polarized

localization of electrons which leads to magnetism as well as chemical activation

and catalysis. We have proposes the possibility of bias induced localization of spin,

amounting to n-n FM order, as a general property of inhomogeneously biased bipartite

system, accompanied by spin polarized transport. In another work we have shown

how FM order can be established between magnetic graphene islands in hBN to render

FM semiconductor at room temperature. We next show that these magnetic islands

are also chemically active and are potentially good candidate for catalysis relevant

to fuel-cells. With this we hope that the work presented in this thesis will brighten

and sharpen the focus on inhomogeneous three coordinated networks as a versatile

material for contemporary and future applications.
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Chapter 1

Introduction

The dimensionality of a system plays an important role in condensed matter physics

since the majority of properties involving the ground states and low energy excitations

can be understood from the electronic density of states about Fermi energy, which is

related to the phase space dimension as we learn from our basic course of solid state

physics[1].

Before the realization of realistic low dimensional materials, the notion of re-

duced dimension was seen to be an abstract concept where the microscopic degrees

of freedom becomes restricted along one, two or all directions in three-dimensional

configuration space, leading to two, one and zero-dimensional systems respectively.

Insight from basic quantum mechanics can largely describe the properties of such con-

fined systems often in sharp contrast with their bulk. The quantum mechanics of few

electrons in reduce dimension leads to various exotic phenomena[2] which threw often

a new field of research known as mesoscopic physics[3]. Study of electron correlation,

effects of disorders, impurities etc. and their combined effect in this low dimensional

systems thus became the main challenge in understanding properties of mesoscopic

system[4]. Historically due to the unavailability of fabrication techniques, the onset
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of research in low dimensional system was relatively slow till the end of the twentieth

century. However, with the advent of exfoliation processes, the breakthrough which

came in 2004[5] opened up a new era in the field of research in low dimensional, es-

pecially in two dimension(2D). After 2004 many experimental techniques have been

evolved for the cleaner synthesis of layered structure with improving control of shape

and size[6, 7, 8].

In the paradigm of low dimensional materials, carbon nanostructures[9, 10] such

as C60(buckyball), carbon nanotube, graphene nanoribbon[11] have been studied

mostly due to their enormous potential as replacement of silicon for passive and

active electronics[12], owing to the high and tunable mobility of electrons in these sys-

tems. Beyond carbon based materials as we go down in the periodic table many more

promising layered materials[13] from insulating, semi-conducting to metallic and even

superconducting [14, 15, 16] properties have been evolved in recent years. These 2D

materials primarily consist of transition-metal dichalcogenides(TMDs)[15] like MoS2,

WS2 etc. as well as layered structure made of 2p block elements like silicene, phos-

phorene, germanen [17], hexagonal boron nitride(hBN), BCN systems[18, 19]. Their

unique electronic structure is rooted in the spatial confinement[20]of their valence

electrons and their electronic configuration of the constituents elements leading to

their applications in nanotechnology like opto-electronics[21], thermoelectrics[22], ul-

trafast detectors and sensors[23], renewable energy resources[24, 25] etc. and more

recently in materials with topologically protected states[26].

In the series of 2D materials proposed and synthesized, the lightest ones are due

to the lightest elements of 2p-block, namely, boron(B), carbon(C) and nitrogen(N),

constituting graphene, hexagonal boron nitride and their hybrids[Fig.1.1], which show

remarkable structural resilience on account of the strong covalent bonds made by the

sp2 hybridized orbitals of B, C, and N. These systems are unique in terms of their
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C

Figure 1.1: Representation of two atom basis primitive cell(dotted line) of graphene
and hexagonal boron nitride. Few representative in-plane hybrids with graphene and
hexagonal boron nitride.

three coordinated bipartite network structure. Electronic structure of the valence

electrons in these systems is primarily determined by the 2pz electrons, which on one

hand, would like to delocalize from one to the other sub-lattice in order to reduce

kinetic energy, while on the other hand, would also tend to localize in different sub-

lattices with opposite spins in order to reduce the Coulomb potential energy. It is

the competition between such inter sub-lattice localization and delocalization which

determine the electronic structure of these group of materials.

In pristine graphene, the lowering of kinetic energy due to delocalization dominates

over the increasing Coulomb potential leading to a non-magnetic semi-metallic ground

state. In case of heteroatomic bipartite systems, the difference in electronegativities

in two sub-lattices influences the competition between inter sub-lattice delocalization

and localization. It is possible to suppress delocalization and stabilize a magnetic

ground state with anti-ferromagnetic or ferrimagnetic order between the sub-lattices

due to local or global sub-lattice asymmetry. Accordingly, electronic and magnetic

properties of three coordinated bipartite nanostructure can be tuned by cutting them
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into flakes, ribbons or rolling them into tubes in different directions[9] or through

physical and chemical functionalization[6, 7]. Magnetic ground states established in

this modified bipartite nanostructure thus opens up a new field of p-electron based

magnetic materials made of non-metals. In recent years possibilities of ferromag-

netism in modified graphene[27, 28] and graphene-hBN hybrid systems [29, 30], have

inspired search for controllable and sustainable ferromagnetism in these three coor-

dinated layered structures. Such atomically thin magnetic materials with large spin

relaxation time[31] due to small spin-orbit coupling typical of these systems will be

ideal for use in data storage and in spintronic devices[32].

Incidentally, localization of pz electrons due to the onset of magnetism in these

materials also render graphene, hBN hybrid systems chemically active opening up the

possibility for these hybrid layer structures to support catalysis[33]. Carbon atoms

substituting in hBN are known to form graphene island in hBN and different carbon

atoms within the island are expected to have different level of chemical activation. For

optimal catalysis, different reactions require different level of activation as explained

by Sabatier principle[34]. Graphene islands in hBN with different level of activations

can thus offer a catalytic platform for a range of electrochemical reactions.

1.1 Thesis outline

In this thesis, we have investigated 2D nanostructures made of 2p-block elements

mainly graphene, hBN and their hybrid structures from the perspective of their

possible applications in some of the contemporary problems in materials science.

Through the calculation of electronic structure from first principles and simple mean-

field model Hamiltonian, we have revealed new properties and proposed new materials

which promise new realms of controllable magnetism and catalysis at the nanoscale.
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The outline of the rest of the thesis is as follows:

In Chapter 2, I have discussed the methods and models that I have used through-

out my thesis work for calculation of electronic structure. I have used density func-

tional theory for calculation of electronic structure from first principles and have

constructed Wannier functions to study chemical bonding and charge transfer pro-

cesses. I have also considered mean-field Hubbard model within the tight-binding

framework to study magnetism in half-filled ground states.

In Chapter 3, a brief introduction about the electronic structure of graphene and

graphene nanoribbon within the tight-binding framework have been discussed. In

addition, it also includes a small survey on magnetism of 2p-block element based low

dimensional systems and mechanism of magnetic ordering on bipartite lattices.

In Chapter 4, I have described our studies[35] of onset of nearest neighbor fer-

romagnetism in graphene nanoribbon through inhomogeneous application of bias

as a proposal of electrically controlled ferromagnetism and half-metallicity at the

nanoscale. In this work, we have proposed the possibility of localization induced

nearest neighbor ferromagnetic order in bipartite system.

In Chapter 5, I have presented our studies[36] on various graphene-hBN hybrid

super-lattices in search of a non-metal route of ferromagnet at room temperature.

We have argued about possible modifications of tight-binding model for correct rep-

resentation of ground state in bipartite lattice with dissimilar on-sites energies. In

this chapter, I have described the mechanism of propagation of magnetic order be-

tween local moments through hBN and a general possibility to stabilize ferromagnetic

ordering of local moments at room temperature.

In Chapter 6, I have focused on the mechanistic understanding of chemical ac-

tivation of carbon substituted hBN through mean-field analysis and first principles

calculation. We have introduced a new parameter which can be computed from

5



mean-field model derived from first principles to quantify activation of sites. I have

also proposed a family of non-metal candidate for cathodes in acidic fuel-cells. This

chapter is a detailed description of the work which is under review[37].

Finally, including all the new perspective and understanding I have concluded

my thesis. However, some of the work presented in the thesis are continuing further

towards new directions as summarized in the last chapter, titled Future scope.
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Chapter 2

Calculation of Electronic structures

2.1 Introduction

Description of electronic structures enables estimation of properties of matter from

first principles. Computation of general properties involves realistic estimation of

ground as well excited states which require accurate incorporation of quasi-particle

nature of electrons and their coupling to bosonic degrees of freedom like phonons,

magnons etc., which are often prohibiting computationally. However, realistic ap-

proximations of interactions among charge, spin and vibrational degrees of freedom

have led to computationally feasible paradigms for exploration of known as well as

anticipated properties of existing and new materials designed for specific applications.

In this chapter, I present the computational aspects of electronic structure calcu-

lated in this thesis. Most of the analysis is done using density functional theory(DFT)

based first principles calculation[1]. Besides DFT, for pedagogical purposes we have

focused on simple model Hamiltonians which provide further understanding of corre-

lated behavior of the electrons contributing to the basic phenomenology. Electronic

structures of systems made of these 2p-block elements namely, Boron(B), Carbon(C)
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and Nitrogen(N), are well explained from single orbital tight-binding framework ow-

ing to the fact that the band edges in these systems are described by 2pz electrons,

one per atom on the average. For studying magnetic properties of this systems[2]

the single band mean-field Hubbard model is commonly used which matches with

DFT as well as with other more accurate theoretical approaches[3] at weak to mod-

erate coupling. To derive microscopic details of the underlying mechanism through

an orbital resolved description of electronic structure we have constructed spatially

localized Wannier functions from first principles[4, 5].

2.2 Single particle approximation

Within the Born-Oppenheimer approximation, solution of the exact electronic Hamil-

tonian[Eq.2.1] gives the complete description of electronic structure.

H = −
∑
i

~2∇2
ri

2me

+ Vext(r) +
e2

2

∑
i 6=j

1

| ri − rj |
. (2.1)

where Vext(r) is the ionic potential and last term represents the electron-electron

interaction.

However, in a many electron environment exact solution of Schrödinger equation

is a prohibitively challenging task given the complexity of the problem. The first

challenge that we face is to describe the wave functions which is essentially a function

of all the spatial and spin degrees of freedom of all the electrons. Within single

particle approximation the many electron wave function is written as a combination

of products of single particle orbitals {φi(ri)}.
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2.2.1 Hartree & Hartree Fock

The simplest ansatz is to write the many particle wave function as a product(Hartree

product) of independent single particle orbitals which is known as Hartree approxi-

mation.

ψH({ri}) = φ1(r1)φ2(r2)...φN(rN). (2.2)

where, {ri}, i = 1..N represents position of isolated N-electrons. From variational

minimization of the energy expectation value [〈ψH |H|ψH ][Eq.2.1,2.2] with respect to

single particle orbitals leads to a system of Schrödinger like equations for each orbital

[−
~2∇2

ri

2me

+ Vext(r) + V i
H(r)]φi(r) = εiφi(r). (2.3)

where an effective potential(Hartree potential) incorporates electron-electron interac-

tions

V i
H(r) = e2

∑
i 6=j

〈φj |
1

| ri − rj |
| φj〉. (2.4)

In terms of orbital density, ρi(r) =| φi(r) |2 and ρ(r) =
∑

i ρi(r), Hartree potential

can be written as

V i
H(r) = e2

∑
i 6=j

∫
ρj(r

′)

| r− r′ |
dr′ = e2

∫
ρ(r′)− ρi(r′)
| r− r′ |

dr′. (2.5)

Eq.2.3-2.5 suggests that this set of equations can be solved self-consistently starting

from a trial orthogonal set of orbitals{φ}. However in Hartree approximation the

antisymmetric nature of fermionic wave function has not been considered.

Subsequently representing the many electron wave function[Eq.2.2] by an anti-

symmetric combination of product of single particle orbitals constructed in terms of
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Slater determinant constitute the Hartree-Fock approximation.

ψHF ({ri}) =
N !∑
i

(−1)P (i)φi1(r1)φi2(r2)...φiN(rN). (2.6)

where P is a permutation operator and i runs over N! sequences of permutation.

After variational minimization of energy expectation value with respect to many

electron Hartree-Fock(HF) wave function[Eq.2.6] it leads to a set of simultaneous

equation[Eq.2.7].

[−~2∇2
r

2me

+ Vext(r) + V i
H(r) + V i

EX(r)]φi(r) = εiφi(r). (2.7)

with the exchange potential,

V i
EX(r) = −e2

∫
ρiEX(r, r′)

| r− r′ |
. (2.8)

where single particle exchange density,

ρiEX(r, r′) =
∑
i 6=j

φi(r
′)φ∗i (r)φj(r)φ∗j(r

′)

φi(r)φ∗i (r)
. (2.9)

HF potential in terms of density[Eq.2.5,2.8] can be written as ,

V i
HF (r) = V i

H(r) + V i
EX(r)

= e2
∫
ρ(r′)− ρi(r′)
| r− r′ |

dr′ − e2
∫
ρiEX(r, r′)

| r− r′ |
dr′

= e2
∫

ρ(r′)

| r− r′ |
dr′ − e2

∫
ρi(r

′) + ρiEX(r, r′)

| r− r′ |
dr′

= e2
∫
ρ(r′)− ρiHF (r, r′)

| r− r′ |
dr′.

(2.10)

We note here that unlike the Hartree equations HF equation can not be cast as eigen-
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value problem as is and hence it is more complicated to solve. Nevertheless, HF

formalism also presents a more accurate self-consistent framework for calculation of

single particle orbitals which describe the electronic structure. HF approximation

treats the fermionic exchange exactly, but consideration of single Slater determinant

as the HF basis does not incorporate the effect of primarily the dynamic correlations

which can be brought in if we expand the HF basis as a combination of Slater deter-

minants made of single particle orbitals in different levels of excitations. Although

this approach, which is known as configuration interaction(CI), provides the most

accurate description of electronic structure, it is computationally very expensive and

applicable realistically only to small molecules given the standard sizes of available

computational resources.

To our rescue alternate approaches have been evolved over the years to describe

many electron systems with reasonable approximations for electron-electron interac-

tions. The key approach so far in this direction is due to density functional the-

ory(DFT), where, instead of single particle orbitals it is the single particle density of

the ground state which is the key ingredient.

2.2.2 Overview of density functional theory

Density functional theory(DFT) is an exact theory for many electron systems based on

Hohenberg-Kohn(H-K)(1964)[6] and Kohn-Sham(K-S)(1965)[7] theorems. As schemat-

ically shown in Fig.2.1 first H-K theorem corresponds to the unique mapping of exter-

nal potential Vext to the electron density n(r) and the second H-K theorem provide the

energy variational principle similar to HF method. FHK [n] is the universal functional

of the ground state density n0(r) which incorporates all electron-electron interactions

namely the appropriately screened exchange and correlation.
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V ext 
(r)

V ext 
(r)F

HK 
[n(r)] + ∫ n(r) drE[n(r)] =

EGS
= Minima

[n(r)]
E[n(r)]

n0 (r) V KS
(r)

ψ i ({r})

V KS
(r) = V H (r) +V xc

(r)V ext
(r) +

HK 
n(r)

n(r) n  (r)0

ψ
i = 1, Ne           (r)

HK0

KS

one−to−one mapping

Figure 2.1: Schematic representation of Hohenberg-Kohn(left) and Kohn-Sham(right)
formalism. E[n] is energy functional and FHK [n(r)] is H-K universal functional, vari-
ational minimization of which gives the exact ground state energy and density n0(r).
ψi(r) are fictitious K-S states including ground state wave function ψ0(r) and ground
state density n0(r)

Based on H-K theorems, in K-S approach many body interacting Hamiltonian has

been replaced by an auxiliary system with an ansatz that the ground state density of

the actual interacting system is equal to that of some chosen non-interacting system.

Hence, utilizing the H-K theorems, the total energy functional in terms of N K-S

orbitals ψi(r) can be written as,

EKS[n] = T [n] + Exc[n] + EH [n] + Eext[n] (2.11)

=
N∑
i

∫
drψ∗i (r)(−1

2
52)ψi(r) + Exc[n] +

e2

2

∫
n(r)n(r′)

| r− r′ |
drdr′ +

∫
Vext(r)n(r)dr.

where electron density,

n(r) =
N∑
i=1

| ψi(r) |2 .

T [n] is the kinetic energy, EH [n] is Hartree term, Exc is exchange-correlation energy

and Eext is energy corresponding to external potential. From variational minimization

of K-S energy functional within their orthogonality constraint,

δEKS[n]−
N∑
i

N∑
j

εij

∫
δψ∗iψjdr = 0. (2.12)
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leads to
N∑
i

∫
δψ∗i

[(
− 1

2
52 +Veff (r)

)
ψi −

N∑
j

εijψj

]
dr = 0. (2.13)

As, ψ∗i are independent hence from above equation,

(
− 1

2
52 +Veff (r)

)
ψi =

N∑
j

εijψj. (2.14)

Since εij is hermitian so it can be diagonalized by a unitary transformation of the

K-S orbitals which leaves the density and hence the Hamiltonian invariant. Hence,

the K-S equation becomes

HKSψi(r) =
(
− 1

2
52 +Veff (r)

)
ψi = εiψi. (2.15)

where,

Veff (r) = Vext(r) + VH(r) + Vxc(r). (2.16)

where,

Vxc(r) =
δExc[n(r)]

δn(r)
. (2.17)

VH is Hartree potential, Vext is external potential experienced by the electrons due to

nuclei and Vxc is exchange-correlation potential. This equation can be cast as an eigen-

value problem like in Hartree approach but unlike Hartree or Hartree-Fock we have

a single equation instead of a set of equations which can be solved self-consistently

from a suitable initial guess wave function. The exact information about a physical

system from the solution of K-S equation[Eq.2.15] is mainly limited by the accuracy

of exchange-correlation term. Nonetheless, DFT provides a computationally efficient

approach for calculation of electronic structure from first principles(ab− initio) with

the input of atomic position and valence configurations of atoms. Throughout this
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thesis, all first principles calculations are based on DFT.

DFT also provides scope for not only computation of electronic structure of a

given configuration of atoms but also enables estimation of minimum energy config-

uration of materials. Hellmann-Feynman theorem enables computation of forces on

atoms from the electronic structure of ground state. Atoms can be moved under the

action of this forces to minimize total energy as per the BroydenFletcherGoldfarb-

Shanno(BFGS) scheme[8]. Through successive computation of electronic structure

and evolution of atomic configurations structure of materials can be optimized to-

wards the minimum energy configuration starting from a reasonable guess. Total

energy as a parameter of unit cell volume is further fit to Murnaghan[9] equation of

state to estimate the size of the unit cell which minimizes the total energy.

2.2.2.1 Exchange and Correlation

The key problem for electronic structure calculation is the correct accounting of many

body interactions. Exchange and correlation energy are the combined contribution

of an interplay of charge and spin degrees of freedom. Exchange energy is due to

Pauli’s exclusion principle which lowers the total energy by keeping the similar spin

apart which reduces their Coulomb repulsion. Correlation is a collective behavior

of electrons amounting to re-organization of charge density which leads to screening

of Coulomb and exchange interactions. In effect, these quantum mechanical interac-

tions reduce the electron density at r due to an instantaneous occurrence of the second

electron located at r′. Therefore each electron creates a depletion region around it

or a hole which is known as exchange-correlation hole. So, the exchange-correlation

energy(Exc) together can be viewed as the energy resulting from the interaction be-

tween an electron and its exchange-correlation hole[10].

In K-S theory exchange-correlation energy is included as energy functional of
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density[n(r)]. The local potential, Vxc(r) which incorporates these electron corre-

lation is then derived from functional derivative of the exchange-correlation energy

functional[Eq.2.17]. Since, the exact form of exchange-Correlation energy functional

is not known the key approximation within DFT is of Exc[n] in the total energy

functional[Eq.2.12]. The simplest approximation is based on density of homogeneous

electron gas and the corresponding functional can be expressed as,

Exc[n
σ] =

∫
dr n(r) εxc([n

σ], r). (2.18)

where εxc([n
σ], r) is an energy per electron at a position r based on density nσ(r)

at neighborhood of r and σ represents the spin assuming the quantization of spin

to be same at all points in space. This is known as local(spin) density approxima-

tion (L(S)DA)[11]. Beyond this, in the next level of improved functional along with

L(S)DA, the inclusion of the gradient of density for first | ∇nσ | or higher orders

is known as generalised gradient approximation(GGA)[11]. This approximate func-

tionals (LDA, GGAs) are remarkably accurate for wide band gap (group IV & II-V)

semiconductors, molecules with covalent, ionic bonding and even for transition met-

als. However, in the case of strongly correlated materials, this functional has some

discrepancies[12].

Since the above mentioned functional has an approximate exchange as well as

correlation and the next level of improvement is possible through incorporation of

exact exchange[12]. These new functionals are known as hybrid functional which

adds corrections due to H-F exchange to LDA, GGAs functionals as Eq.2.19. The

coefficients are empirically adjusted for atoms and molecules to capture the features
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of local and non-local effects. The most general form of hybrid functionals[12] are :

Ehybrid
xc = ELDA/GGA

xc + a0(E
HF
X − ELDA,GGA

xc ) + ... (2.19)

till now these are known to be the best accurate functionals for a description of

excitation energy and realistic band gap with feasible computational resources.

2.2.2.2 Pseudopotential Method

In many electron systems, the core electrons and valence electrons have different con-

tributions to its electronic structure. The core electrons are more bound to the nuclei

while the valence electrons are relatively free due to the screening of the nuclei poten-

tial by the core electrons. The core electron wave functions have less contribution in

low energy properties such as chemical bonding, conductivity, optical excitation etc.

and also they remain effectively unchanged irrespective of chemical environment. The

valence wave functions, in general, have complex nature in the core region(r< Rc) due

to the presence of nodes which demands a large set of plane wave basis and hence a

large kinetic energy cut-off(Ecutoff )[Eq.2.20].

1

2
G2 ≤ Ecutoff . (2.20)

where G is reciprocal lattice vector.

In standard DFT calculation like ours, we considered the valence electrons in

an effective smooth pseudopotential. This way the valence wave functions becomes

smooth enough within the core region to be described by a reasonably small set of

plane waves. These pseudopotentials are generated from all electron calculations of

atoms such that the pseudo wave functions satisfy the properties of valence electrons
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outside the cut-off radius Rc[Fig. 2.2]. Depending on the choice of certain constraints

and division of core/semi-core and valence shell of electronic configurations there are

different types of pseudopotentials[11]. The accuracy of the pseudopotentials depends

on their ‘transferability’ such that the same pseudopotential for a given element can be

used in various chemical environment and maximally reproduce scattering properties

of the true potential. Therefore, the pseudopotentials should be accurate as well as

smooth which requires less no of basis sets in order to reduce the computational cost.

Rc
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z
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Figure 2.2: Wave function(blue) in real Coulomb potential(blue) and representation
of pseudopotential(red) and pseudo wave function(red)

Norm-conserving ones[13] are the most commonly used pseudopotential which,

as the name suggests conserve the normalization of the pseudo wave function inside

Rc so that the total charge within the core region remain preserved. Ultrasoft[14]

ones constitute the other set of commonly used variant of pseudopotentials, which

maximally smoothen(delocalizes) the pseudo wave functions inside the core region

at the cost of nonconservation of total charge, leading to requirement of additional

correction term, namely, the augmented charges.
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2.2.3 Computation based on DFT

Plane waves are the most popular choice as a basis for the electronic structure calcu-

lation within the periodic boundary condition. In the DFT based electronic structure

calculation schemes, the primary solution of K-S equation follows the iterative loop

as shown in Fig.2.3. Its primary outcomes are total energy and some related quanti-

ties such as forces, stresses, density in the given configuration. As the K-S equation

  

Initial guess

Calculate  effective potential 

Energy, forces, stresses, density, ... 

V eff
σ

(r )=V ext (r )+V H [n ]+V XC
σ

[n↑n↓]

n↑(r) n↓(r )

YES

NO

,

[−
1
2

∇
2
+V eff

σ
(r )]ψi

σ
(r )=εi

σ
ψi

σ
(r )

Solve Kohn-Sham equation 

nσ (r )=∑
i

f i
σ|ψi

σ (r )|2

Calculate electron density

Self-consistent 

Output quantities

Figure 2.3: Self consistent scheme for Kohn-Sham equations

need to be solved in a self-consistent approach on some suitable basis sets and grids,

this turns the DFT into a problem of multi-variable minimization and single particle

K-S equation into a non-linear eigenvalue equation for its dependencies. I have used

Quantum open-Source Package for Research in Electronic Structure, Simulation, and

Optimization which is commonly known as “Quantum ESPRESSO(QE)”[15]. This
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is an integrated software package for atomistic simulations based on electronic struc-

ture, using DFT in a plane wave basis set using both normconserving and ultrasoft

pseudopotentials with several exchange-correlation functionals. QE is a suite of For-

tran codes which can be easily modified as per post processing(pp) requirements.

QE offers a wide range of pp module which enables calculation of phonon spectra,

self-energy correction, ballistic conductance etc. Although not used in this thesis

there exists a suit of DFT codes(SIESTA, LMTO etc.) which uses localized orbitals

as a basis which can be more effective for isolated systems like molecules or clusters

compare to plane waves.

2.2.3.1 Phonon calculation

Many important properties of crystalline materials such as thermal properties, me-

chanical properties, optical properties, and superconductivity etc. depend on lattice

dynamics and its coupling with electronic degrees of freedom. In general lattice vi-

brations are the displacement fluctuations around the equilibrium position of an atom

within the lattice due to thermal energy and it becomes more pronounced at higher

temperature. In quantum mechanical description, these collective atomic vibrations

are quantized in energy as ~ω = hν with ν = ω/2π being the frequency of vibration

and this quanta of lattice vibrations are known as phonon. The nature of phonon

modes and distribution of frequencies depends on dynamical properties[16] of the

crystal which can be obtained from electronic structure.

Within first principles framework, the calculations of phonon modes are possible

either due to frozen phonon method[17] or with the linear response approximation of

density functional perturbation theory(DFPT)[17]. Forces are estimated from finite

displacement method in the former and direct calculation of second-order derivatives

of the energy obtained from DFT in the later. A schematic theoretical background of
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DFPT along with DFT in a plane wave basis has been described here, which we have

used for calculation of phonon modes using Quantum espresso[15]. Due to the adia-

batic approximation of Born and Oppenheimer, ionic degrees({R}) of freedom can be

decoupled from electronic degrees of freedom and let E(R) is the ground state energy

within an effective field distribution {R}, then Born-Oppenheimer Hamiltonian can

be written as,

H(R) = − ~2

2m

∑
i

∂2

∂ri2
+
e2

2

∑
i 6=j

1

| ri − rj |

−
∑
Ii

ZIe
2

| ri −RI |
+
e2

2

∑
I 6=J

ZIZJ
| RI −RJ |

,

(2.21)

where, ZI , ZJ are charges of nuclei at RI,RJ respectively, -e is electronic charge.

First two terms represents electronic kinetic and potential energy contribution, third

term is electron-nucleus interaction(VR) and last term is electrostatic interaction(EN)

between the nuclei. Forces(FI) acting on each nuclei can be calculated from Hellmann-

Feynman[10] forces. Within the harmonic approximation vibrational frequencies(ω)

are determined from eigenvalues as,

det | 1√
MIMJ

∂FI

∂RJ

− ω2 |= 0 (2.22)

From Hellmann-Feynman theorem,

FI = −
∫
nR(r)

∂VR(r)

∂RI

dr− ∂EN(R)

∂RI

. (2.23)
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Where,

∂2E(R)

∂RI∂RJ

= −
∫
∂nR(r)

∂RJ

∂VR(r)

∂RI

dr +

∫
nR(r)

∂2VR(r)

∂RI∂RJ

dr

+
∂2EN(R)

∂RI∂RJ

.

(2.24)

Ground state charge density nR(r) for a fixed nuclei position R and its linear distri-

bution ∂nR(r)
∂RJ

is obtained from DFPT, where the ‘perturbing potential’ is the defor-

mation of nuclear potential due to displacement. Below a schematic description of

DFPT approach[Fig. 2.4].

  

Δ n(r )=4 ℜ∑
n=1

N /2

ψn
∗(r )Δ ψn(r )

Δ F (λ)=∑
i

∂Fλ

∂λi
Δ λ i

(H SCF−ϵn)∣Δ ψn 〉=−(ΔV SCF−Δϵn)∣ψn 〉

H SCF=−
ℏ2

2m
∂

2

∂ r2 +V SCF (r )

ΔV SCF (r )=ΔV (r)+e2∫
Δ n(r ˊ)
|r−r |́

+
d υxc(n)

dn
∣n=n (r )Δn(r )

n(r )=2∑
n=1

N /2

|ψn(r )|
2

Ground state  charge 
            density

K-S orbitals  ψn(r )

Linearization 

Finite difference operator ∆ 

Variation of K-S orbital 
Δ ψn(r )

From first-order perturbation 

Unperturbed K-S Hamiltonian

First-order correction 

Δ ϵn=〈ψn(r )|V SCF|ψn(r )〉

First-order variation of K-S eigenvalues  ϵn

S
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 -
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o
p

S
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 -
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o
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Figure 2.4: self-consistent loop of DFPT for phonon mode calculation

2.2.3.2 Van der Waals correction

Van der Waals interactions are short-ranged and it contains attractive as well as re-

pulsive part, where the attractive part represents the actual short range properties
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acting between atoms, molecules, and interfaces while the repulsive part is basically

the quantum mechanical prevention of closest approach obeying Pauli exclusion prin-

ciples and electrostatic repulsion between the interacting species. The attractive part

of Van der Waals interaction primarily occurs due to an interaction between fluctuat-

ing charge densities around atoms[18]. These fluctuations can be sourced at variation

of electronegativity of atoms whose oscillations causes an oscillatory electronic charge

density known as induced moment and an attractive interaction happen between these

two. Similar attractive interaction happens between two permanent dipoles that exist

in case of polar systems and also between induce dipoles in neutral systems due to in-

stantaneous fluctuation in charge densities. The latter is known as London dispersion

interaction[19] which is understood as the generic source on dispersion interaction.

Although in some scenario the amplitude of van der Waals interaction is weak this is

not the case always partially if the interacting species contain localized or unpaired

electrons and it is often difficult to quantify.

From the aforementioned interactions, London dispersion term has a significant

impact on physical observables. In general, the first principles calculations does

not include this dispersion correction within local or semi-local exchange-correlation

functionals[12, 20]. Several methods have been evolved to treat van der Waals inter-

actions ranging from derivation of new non-local functionals within first principles to

empirical fitting to the energy functionals[18]. The most popular approach to account

for dispersion correction in DFT is by addition of extra energy proposed by Grimme

and co-workers[21, 22, 23] as,

Edis = −S6

N−1∑
I=1

N∑
J=I+1

CIJ
6

R6
IJ

fdmp(RIJ), (2.25)

where S6 is a scaling parameter that depends on the exchange-correlation functional
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and CIJ
6 is dispersion coefficient for the atom pair IJ, N is the number of atoms, and

RIJ being the distance between atomic site I and J. The repulsive interaction between

the nuclei for very small RIJ is taken into account by the damping function fdmp[24] .

This approach is known as DFT-D correction with which, depending on Eq.2.25 three

different parametric corrections have been proposed as DFT −Dn for (n=1,2,3). In

case of n=1,2 attractive part of the form R−6[21, 22] is considered with predefined

scaling factor. In case of n=3 an additional R−8 term also considered recursively. It is

important to calculate the coefficients by taking into account the environment effect

[23]. DFT-D correction contains some error due to overestimation of correlation

which may have been already accounted for exchange-correlation potential in the

functional, nevertheless it shows high accuracy in estimation of atomization energies,

electron affinities, self-interaction error-related problems, barrier heights, reaction

energy pathway, various inter and intra-molecular non-covalent interactions etc.[24].

2.3 Simple models for electronic structure

Weakly correlated electrons in a periodic potential are realistically described by band

theory[sec.2.3.1]. However, model Hamiltonians have been evolved to probe primarily

the dominant many particle interactions. Depending on the complexity of materials

and physics involved model Hamiltonians are used to study the key driving interac-

tions in place of the more complicated total Hamiltonian with all possible interactions.

Band structure calculations from model Hamiltonians provides us a scope to study

the interplay of delocalization due to hopping and localization due to applied poten-

tial and electron-electron Coulomb interactions. This we will discuss in detail in the

following.
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2.3.1 Electrons in periodic potential

In treating periodic solids the wave function from Born-von Karman periodic bound-

ary condition can be written as :

ψ(r) = ψ(r +N1a1 +N2a2 +N3a3), (2.26)

where N1×N2×N3 is the no of unit cells constituting the crystal and ai(i=1,2,3) are

three lattice vectors. For a cell periodic Hamiltonian :

H(r) = H(r + R), (2.27)

where R = n1a1 + n2a2 + n3a3 is real space lattice vector and {ni} �Z. Bloch’s

theorem results into :

ψnk(r) = unk(r)eik.r, (2.28)

where unk(r) has the cell periodicity of the Hamiltonian, n is the band index and

within Born-von Karman boundary condition the allowed values of k, also known as

crystal momentum are given by :

k =
3∑
i=1

mi

Ni

bi, (2.29)

where mi is integer and bi(i=1,2,3) are reciprocal lattice vectors. The cell periodic

wave functions unk(r) can be obtained as eigen function of the Bloch Hamiltonian

H(k) = −(p+ ~k)2

2me

+ v(r), (2.30)
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where v(r + R)=v(r). The eigenvalues and eigenstates of H(k) provides the descrip-

tion of energy levels and charge density of an electron in a periodic potential which

is leading to electronic structure of periodic system in terms of band structure.

The Bloch function ψnk(r) can be expanded in the basis of Wannier functions

φn(r−R) as

ψnk(r) =
∑
R

eik.Rφn(r−R). (2.31)

Hence,

φn(r−R) =
∑
k

e−ik.Rψnk(r). (2.32)

With proper gauge transformation, Wannier functions can be constructed to be max-

imally localized primarily within a unit cell thus constituting an ideal set of localized

orthogonal basis. We will discuss the construction of Wannier function in more detail

in sec.2.4.

2.3.2 Tight-Binding model

Tight-binding model is the simplest single particle approach for calculation of elec-

tronic structure primarily of periodic solids. Tight-Binding(TB) model considers an

approximate set of wave functions constructed from the superposition of wave func-

tions for isolated atoms located at each atomic sites. This model is particularly very

instructive since a fairly accurate description of electronic structure near the Fermi

energy can be obtained with minimal input parameters which can be tuned to match

experimental results. Within the TB Hamiltonian wave function of a system of atoms

is considered to be a linear combination of atomic orbitals {φ(r)}(R=0),

Hatφj(r) = Ejφj(r). (2.33)
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Hat being the atomic Hamiltonian and Ej being the energy levels of a single atom.

Recalling Eq.2.27 and Eq.2.31 the Schrödinger equation for the crystal can be written

as,

Hψmk(r) = (Hat + ∆V )ψmk(r) = εm(k)ψmk(r), (2.34)

where, H is the crystal Hamiltonian and ∆V contains the corrections to reproduce

the full periodic potential of the crystal. Now multiplying Eq.2.34 by φ∗m(r) and using

Eq.2.33 (
εm(k)− Em

) ∫
φ∗m(r)ψmk(r)d3r =

∫
φ∗m(r)∆V ψmk(r)d3r. (2.35)

Simplifying Eq.2.35 and imposing the orthonormality for atomic wave function the

Bloch energy of a state,

(εm(k)− Em)
∑
n

∑
R

∫
d3rφ∗m(r)φn(r−R)eik.R =

∑
n

∫
d3rφ∗m(r)∆V φn(r)

+
∑
n

∑
R

∫
d3rφ∗m(r)∆V φn(r−R)eik.R

(εm(k)− Em)(1 +
∑
n

∑
R

∫
d3rφ∗m(r)φn(r−R)eik.R) =

∫
d3rφ∗m(r)∆V φm(r)

+
∑
n

∑
R

∫
d3rφ∗m(r)∆V φn(r−R)eik.R.

Therefore, the energy in terms of TB-matrix elements βm, αm,n and γm,n

εm(k) = Em −
βm +

∑
R

∑
n γm,n(R)eik.R

1 +
∑

R

∑
n αm,n(R)eik.R

. (2.36)
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where Em is onsite energy of the m-th atomic orbital.

βm = −
∫
d3r ∆V |φm(r)|2 (2.37)

αm,n(R) =

∫
d3r φ∗m(r)φn(r−R) (2.38)

γm,n(R) = −
∫
d3r φ∗m(r)∆V φn(r−R). (2.39)

βm[Eq.2.37] represents the change in atomic energy due to the presence of periodic

potential and this gives a small correction within TB-formalism. αm,n[Eq.2.38]is the

overlap of atomic orbitals located at different sites which is negligible within TB ap-

proximation. The most important parameter is γm,n[Eq.2.39], the inter-atomic overlap

integral between two atomic sites which is also known as ‘hopping’ parameter. The

hopping parameter will be different for nearest or next-nearest neighbor overlap and

its sign will be positive or negative depending on the degree of overlap and orien-

tation of the orbitals in neighboring sites as described in detail by Slater-Koster[25]

approach.

2.3.3 Description of interacting electrons : second quantiza-

tion

In second quantization formalism considering the vacuum state | Ω〉 and field opera-

tors aλ, a†λ the N particle many-body state can be written as,

1√∏
λ nλ!

a†λN ...a
†
λ1
| Ω〉 =| λ1, λ2, ..., λN〉, (2.40)

where the field operators satisfies the following anticommutation relations

{aλ, a†µ} = δλµ, {aλ, aµ} = {a†λ, a
†
µ} = 0. (2.41)
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Single particle or one-body operators Ô1 acting on a N particle Hilbert space [Eq.2.40]

in general can be written as

Ô1 =
N∑
m=1

ôm, (2.42)

where ôm is a single particle operator acting on m-th particle. The same in terms of

field operators in any general basis can be written as

Ô1 =
∑
µν

〈µ | ô1 | ν〉a†µaν . (2.43)

Two body operator (Ô2) in which represent the pairwise interaction between two

particles are considered can be written as

Ô2 =
∑
µµ′νν′

〈µµ′ | ô2 | νν ′〉a†µ′a
†
µaνaν′ . (2.44)

Starting with a generic interacting Hamiltonian for N particle systems,

H = H0 + Ve−e =
N∑
i=1

(
p2i

2me

+ Vext(ri)) +
1

2

N∑
i 6=j

Vee(ri − rj), (2.45)

we can express this in terms of field operators ciσ and c†iσ which can be defined on the

basis of localized orbitals φi(r) as

| φi〉 =

∫ V

0

dr | rσ〉〈rσ | φiσ〉 (2.46)

where | φi〉 = c†iσ | Ω〉 and | rσ = c†σ(r) | Ω〉 leads to

c†iσ =

∫ V

0

drc†σ(r)φ∗i (r), (2.47)

where c†iσ can be interpreted as a creation operator which create an electron with spin
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σ at site i and they obey fermionic commutation relations.

Therefore, with respect to this operators, the one body operator takes the fol-

lowing form

ĥ1 =
∑
ii,σ

εic
†
iσciσ +

∑
i 6=j

∑
σ

tijc
†
iσcjσ, (2.48)

where, εi = 〈i | H0 | i〉 and tij = 〈i | H0 | j〉 represents onsite and hopping term

respectively. tij < 0 for bound states. This ĥ1 describes non-interacting Hamiltonian

in second quantized notation.

2.3.3.1 Second quantized description of electrons in periodic potential

Here we make a small digression to derive a second quantized description of an electron

in a periodic potential. Therefore recalling the TB Hamiltonian in presence of a

periodic potential V (r) =
∑

K VKe
iK.r and using

ci =
1√
N

∑
k

cke
ik.Ri , (2.49)

which annihilate an electron at lattice site Ri. Hence, H = H0 + V (r) in Fourier

space leads to

H =
∑
k

ε(k)c†kck +
∑
k,K

VKc
†
k+Kck. (2.50)

where c†k(ck) is creation(annihilation) operator.

As a further example the Hamiltonian for two sites (c,d) per unit cell using

Eq.2.48 can be written as,

H = t
∑
i

(c†idi + d†ici+1 + h.c.) +
∑
i

εcc
†
ici +

∑
i

εdd
†
idi. (2.51)
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Position of the two sites in j-th unit cell can be define as, r = a ∗ j + rc for c-site

and for d-site r = a ∗ j + rd where a is unit cell parameter. Now, considering discrete

Fourier transform of this operators and simplifying we can write,

∑
i

c†idi =
∑
k

c†kdke
ik(rd−rc),

∑
i

d†ici+1 =
∑
k

d†kcke
ik(rc−rd) (2.52)

Hence the final Hamiltonian,

H = t
∑
k

(c†kdke
ik(rd−rc) + d†kcke

ik(rc−rd) + h.c.) +
∑
k

εcc
†
kck +

∑
k

εdd
†
kdk. (2.53)

which implies,

H =
∑
k

(
c†k d†k

) εc 2tcos(krcd)

2tcos(krcd) εd


ck
dk



H =
∑
k

(
c†k d†k

)
Hk

ck
dk

 . (2.54)

Therefore for N-sites per unit cell, this Hk will be N ×N matrix and diagonalization

of which gives eigenvalues and eigenfunctions.

2.3.3.2 Two body interaction

We now return to our discussion of interacting electrons in second quantized notation.

Two body interaction term can be written as,

ĥ2 =
∑
ijkl

∑
σ,σ′

Vijklc
†
iσc
†
jσ′ckσ′clσ, (2.55)
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where the interaction parameter,

Vijkl =
1

2

∫ ∫
drdr′φ†i (r)φ†j(r

′)
e2

| r− r′ |
φk(r

′)φl(r). (2.56)

Thus the generalized Hamiltonian combining Eq.2.48 and Eq.2.55 in second quanti-

zation,

H =
∑
i,σ

εic
†
iσciσ −

∑
i,j

∑
σ

tijc
†
iσcjσ +

∑
ijkl

∑
σσ′

Vijklc
†
iσc
†
jσ′ckσ′clσ. (2.57)

Interaction term Vijkl has two important contributions which can be written in terms

of its indices i, j, k and l as :

1. For i=l and j=k, Vijkl = Vijji ≡ Vij

is known as direct term which couples with the density operator n̂i =
∑

σ c
†
iσciσ at

different site as, ∑
i,j

Vijn̂in̂j. (2.58)

2. For i=k and j=l, Vijkl = Vijij ≡ Jij is known as exchange term. Using the

completeness relation σαβ.σγδ = 2δαδδβγ − δαβδγδ,

∑
i,j

∑
σ,σ′

Vijijc
†
iσc
†
jσ′ciσ′cjσ = −2

∑
i,j

Jij(ŜiŜj +
1

4
n̂in̂j), (2.59)

where Ŝ is spin operator.

2.3.4 Hubbard Model

In the atomic limit, the most important interaction considered is the Coulomb in-

teraction term which is maximum between the two electrons residing on the same

site(atom). The electrostatic energy of two intra-site electrons which is also known
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as onsite Coulomb interaction from Eq.2.55 can be written as

∑
i

∑
σ,σ′

Viiiic
†
iσc
†
iσ′ciσ′ciσ = U

∑
i

n̂i↑n̂i↓ (2.60)

Hence from Eq.2.57

H = Ht +Hint =
∑
i,σ

εic
†
iσciσ −

∑
i,j

∑
σ

tijc
†
iσcjσ + U

∑
i

ni↑ni↓. (2.61)

This simple interacting Hamiltonian with the inclusion of onsite Coulomb interaction

obeying Pauli’s exclusion principle was first introduced by John Hubbard[26] in 1963

is known as Hubbard model where U≡ Viiii is known as Hubbard U. The first term

is scaling the local single particle energy which can be put to zero.

Although the simplest, it can substantially capture correlated behavior of elec-

trons in materials leading to multiple facets of magnetism and superconductivity[27,

28, 29]. In general, the inter-site Coulomb interaction is considered to be screened and

have a negligible impact however since Coulomb interaction is long range so a proper

estimation of U for different system is an important aspect of this model. Depending

on the degree of localization of the orbitals in some scenarios it is necessary to include

nearest, next nearest Coulomb interactions leading to extended Hubbard model[30].

An exact analytical solution of the Hubbard model in any arbitrary dimension(>1)

is yet unsolved. Single band Hubbard model[Eq.2.61] can be solved exactly only in

limiting cases where either U = 0, which is the non-interacting limit and kinetic en-

ergy operator is diagonal in momentum space, or t = 0 which implies the atomic limit

where all sites are isolated and the interaction term is diagonal on position space like

in Wannier basis[30]. Besides this there is another exception based on lattice coordi-

nation number(z) where it can be solved exactly for z=2[31] (one dimensional chain)
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and z→ ∞[32]. Thus in any intermediate scenario, various numerical techniques

have been evolved in the last few decades such as Lanczos algorithm, auxiliary-field

Monte Carlo, density-matrix renormalization group etc[33, 34, 35] to study strongly

correlated systems. Also various generalization of Hubbard model such as perturba-

tion theory[36, 37] or Hartree-Fock mean-field [38] are there which converts the many

body Hubbard Hamiltonian to effective single particle problem. In this thesis, we will

mainly focus on mean-field Hubbard model.

Beyond this extreme conditions(t=0 or U=0) Hubbard model is studied in strong

coupling(U �| t |) as well as weak coupling(U �| t |), where the former represents

a more correlated behavior than the latter. Physics of low energy states (< U) at

strong coupling limit can be represented by an effective Hamiltonian obtained from

Hubbard model. At strong coupling limit the kinetic energy part can be treated

perturbatively leading to the t-J model[30] which at half-filling is same as spin-1/2

Heisenberg model[30, 39]. So, the simplest interaction term of Hubbard model can

cover various regimes of model Hamiltonian approach.

2.3.4.1 Mean Field approximation

This is one of the simplest approximation to reduce the complexity of many body

Hamiltonian in which all many body interactions are replaced by an effective or mean-

field of interactions acting on a single body. According to mean-field approximation[38]

all the particle operator(second quantization) can be represented in terms of number

fluctuations(δni) around the mean value(〈ni〉). Hence,

niσ = 〈niσ〉+ δniσ, σ =↑, ↓ . (2.62)
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and the two body interaction term becomes,

Uni↑ni↓ = U(〈ni↑〉+ δni↑)(〈ni↓〉+ δni↓) (2.63)

= U(〈ni↑〉〈ni↓〉+ 〈ni↑〉δni↓ + 〈ni↓〉δni↑ + δni↑δni↓).

Within mean-field approximation neglecting the correlation of fluctuations(δni↑δni↓)

and using δniσ = niσ − 〈niσ〉

U
∑
i

ni↑ni↓ = U
∑
i

(ni↑〈ni↓〉+ ni↓〈ni↑〉 − 〈ni↑〉〈ni↓〉). (2.64)

Therefore after a direct Hartree-Fock decoupling of the interaction term the mean-

field Hubbard Hamiltonian(MFH) can be written as a sum of Hamiltonian for two

spins(up & down) and a constant term as :

HMF = H↑ +H↓ + C

H↑ = −t
∑
<i,j>

c†i↑cj↑ + U
∑
i

ni↑〈ni↓〉

H↓ = −t
∑
<i,j>

c†i↓cj↓ + U
∑
i

〈ni↑〉ni↓

C = −U
∑
i

〈ni↑〉〈ni↓〉.

(2.65)

Thus the Hubbard Hamiltonian [Eq.2.61] reduces to two matrices of size N×N (N

is no of lattice sites per unit cell) with 2N mean-field parameters for up and down

densities and Eq.2.65 suggests a self-consistent solution, characteristic of a mean-field

approach. An effective decoupling treatment of two spins in mean field approach

allows the computation of spin polarized charge densities explicitly in terms of a

spatially localized basis. Due to its simplicity, it is easy to add some interaction

terms to the MFH model or to study various realistic deformation of the lattices[40].
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2.3.4.2 Self-consistent approach

Within mean-field approximation, the Hubbard model Hamiltonian transform into

two Hamiltonian for two opposite(up-↑,down-↓)spin where mean-field term for one

of the spin(↑) depends on the average occupation of the opposite spin(↓, 〈ni↓〉). So

to calculate the ground state energy and density, this Hamiltonian need to be solved

in a self-consistent way. Starting from an initial guess density of electrons of spin σ

(〈niσ〉) the following steps are repeated until the convergence criterion set in terms of

total energy or density is satisfied [Fig.2.5].

  

Initial guess

From Ewald
 

v total=vq
+v g

H↑ H↓

Calculate new

nI+1↑↓(r)−nI↑↓(r)<nthreshold

New 

Total energy, Band structure, Charge density, Spin density 

v q

n↑(r) n↓(r )

Construct 

Diagonalise 

n↑(r) n↓(r )

n↑(r) n↓(r )

YES

NO

H↑ H↓

(applied bias)

Figure 2.5: Self consistent scheme for mean-field Hubbard model

Fermi energy(εF σ) [Eq.2.66] is obtained as

∫ ∞
−∞

D(εσ)f(εσ − εF σ)dεσ = Neσ, (2.66)
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here D(ε) is density of states and f(ε − εF ) is Fermi function with Fermi energy εF

at T=0. Average number of particle at each site i(=j) for spin σ is

〈niσ〉 =
1

N

∑
k,j

|cji,σ(k)|2fkjσ(εkjσ − εF σ), (2.67)

where cji,σ(k) is weight of the j-th eigen state on i-th site for wave vector k. For non-

magnetic ground state we set 〈nσ〉 = 〈n′σ〉, whereas for anti-ferromagnetic ground

state we set εF σ = εF
′
σ. For ferromagnetic ground state we calculate εF σ and εF

′
σ

such that Neσ −Neσ′ is equivalent to net magnetic moment.

A usual problem of convergence is the oscillation of total energy between two

successive steps due to sloshing of charge between two regions of the unit cell. The

simplest solution is to introduce mixing of charge density or potential of an iteration

with one or more previous iterations[41, 42]. Mixing with the previous iteration was

sufficient in all our calculations.

2.4 Wannier Function

In the study of various electronic and magnetic properties, localized orbital descrip-

tion similar to ‘localized molecular orbitals’ plays an important role. Analysis of

charge density based on various localized descriptors like ‘Mulliken’[43] analysis,

‘Löwdin’[44, 45] analysis, ‘Bader’[46] analysis and most recently electron localization

function(ELF)[47] have been evolved. First two approaches are based on projec-

tion of extended wave-functions on some localized basis and therefore have marked

dependence on the choice of basis whereas the latter one based on separation of

charge density into atomic basis through critical point analysis and have been widely

used for analysis of bonding, oxidation state, reaction mechanisms and in response
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calculation[48].

Like molecular orbital, a set of localized orthogonal functions (Wannier func-

tions(WFs))[Fig.2.6] were introduced by Gregory Wannier in 1937[4], which are con-

nected to extended Bloch orbitals by a set of unitary transformations. Wannier

functions are one of the powerful representation[49] of localized picture which can be

derived from electronic structure. The Wannier centers(WCs), their spatial distri-

bution provide unambiguous partitioning of total charge in atoms and bonds. Even

though WFs are non-unique several numerical implementations have been taken up

over the years to make spatially localized WFs computationally accessible to the

fraternity[49, 50, 51].

Recalling the definition of Wannier function in terms of Bloch function[sec.2.3.1],

wnR(r) =
V

(2π)3

∫
BZ

ψnk(r)e−ik.Rdk, (2.68)

where V is real space primitive cell volume.

The definition of WF is simple, however, due to “gauge freedom,” the construction

of WF is not unique[5]. This arises due to arbitrary phases associated with Bloch

functions ψnk at each k and hence any unitary transformation can be associated with

ψnk.

|ψ̃nk〉 =
N∑
m=1

U (k)
mn|ψmk〉, (2.69)

and a set of WFs can be constructed with the transformed Bloch function

|wnR〉 =
V

(2π)3

∫
BZ

N∑
m=1

U (k)
mn|ψmk〉e−ik.Rdk, (2.70)

where U
(k)
mn is a unitary matrix.

The non-uniqueness in the choice of unitary transformation U
(k)
mn provide WFs
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sentation of three of the Bloch functions eikxuk(x) associated with a single band in
one dimension, for three different values of the wave vector k. Filled circles indicate
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WFs associated with the same band, forming periodic images of one another.The two
sets of Bloch functions at every k in the Brillouin zone(BZ) and WFs at every lattice
vector span the same Hilbert space. Image©Ref.[48]]

with various degrees of localization. In principle, smoother the variation of wave

functions over the BZ which also implies flatter the corresponding band the more

localize would be the WFs and vice versa. In fact, dis-entanglement of bands is the

crucial part for the construction of WFs in periodic systems. Indeed in one dimension,

a unique choice of U(k) exists which ensures smooth variations of transformed wave

functions and their unambiguous band identity throughout the BZ. These transformed

wave functions lead to a set of orthogonal WFs having maximum localization in a

given direction. Similarly, in higher dimensions a non-unique set of U(k) matrices

can be derived to render maximally localized WFs in all directions. In the following,

we briefly describe the respective methods.
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system and (b)periodic system.

2.4.1 Wannier function from Kohn-Sham basis

For computation of WFs in this thesis we have used the “Abinit”[52] code which also

uses plane wave basis similar to QE. Our post-processing codes for construction of

WFs are interfaced with Abinit. Efficient schemes for construction of WFs in higher

dimension is nontrivial due to their non-uniqueness rooted at the non-commutative

nature of the three position operators projected in the occupied subspace. In my thesis

work, I have calculated WFs using two different schemes for isolated and periodic

systems as detailed below.
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2.4.1.1 Isolated system

We recall from [sec.2.4] that WFs can be understood as linear combinations of Bloch

functions which are obtained from first principles as K-S states using DFT. In one

dimension the set of WFs which have maximum localization in a given direction, also

exclusively diagonalizes the first moment (position operator) along the given direction

in the basis of occupied states. Therefore, for the isolated system, such WFs can be

readily constructed by diagonalization of position operator for the given direction

(e.g. x̂) in the occupied K-S basis {φKSm } obtained as,

Xmn = 〈φKSm |x̂|φKSn 〉

However, since the position operators along three linearly independent directions

(X, Y, Z), may not commute within a finite basis set, they can be approximately joint

diagonalized to obtain a set of WFs[Fig. 2.7(a)] which maximally diagonalizes their

first moments simultaneously and are highly localized in all three dimensions. These
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WFs, unlike the maximally localized Wannier function[49], does not depend on any

reference template of orbitals to define their symmetries. In this method, the Wannier

centers(WCs), which are basically the center of mass of WFs, can be obtained directly

from the approximate eigenvalues of the three first moment matrices(FMMs), without

explicitly constructing the WFs. Distribution of WCs :

~γi = 〈WFi|~r|WFi〉, (2.71)

each of which represents one electron thus facilitates precise estimation of number of

electrons associated with bonds and atoms. The position of WCs provides a unique

dot structure map for the valence electrons over the entire system cell. Accordingly,

for partially occupied bands, we plot Wannier center distribution function (WCDF),

WCDF (~r) =
∞∑
N=1

N∑
i=1

δ(~γi − ~r)(fN − fN+1), (2.72)

where fN is the occupancy of the Nth K-S state, such that

∫ ∞
−∞

WCDF (~r) d~r = Ne.

Ne is total no of valence electrons.

Based on the location of WCs with respect to atoms, per spin, WCs can be

segregated in two categories:(1) atomic WCs(AWC) associated with atoms and (2)

bonding WCs (BWC) along the bonds connecting two atoms respectively, at the cen-

ter of masses of atomic and bonding orbitals. Single and double bonds are represented

by one and two WCs between two nearest neighboring atoms, and for ease of repre-

sentation WCs in close proximity are added up and considered as one big sphere with

a radius equivalent to the number of electrons. Mostly in our analysis, it has been
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presented either by a sphere or a circle in case of planar projections. From WCs to

estimate the net charge(valence electrons) we consider one electron from each AWCs

and half of an electron per BWCs. Notably, this counting process is markedly dif-

ferent from any other localized descriptions like Mulliken, Bader or Löwdin analysis.

To estimate the level of sub-shell filling we consider one electron per AWC and also

one electron per BWC. Thus in this method, the estimation of valence charge and

shell filling crucially depends on the identifications of AWCs and BWCs. In cova-

lent and ionic systems this identification is easy and can be automated but in mixed

scenarios of covalent and ionic bonding, this identification requires inspection of the

WFs. Since this procedure can not be extended for periodic systems, WCs analysis

in this method has been done considering an isolated hydrogen passivated patch of

the reference system. For graphene island[Fig.2.8(a)] the big circle corresponds to

C=C double bonds, one per atom. In hBN islands[Fig.2.8(b)] the distribution of

WCs towards N-site represents the electronegativity difference between B and N.

2.4.1.2 Periodic system

In periodic systems, the smooth variations of wave functions and preservation of their

band identity are ensured by maximally aligning the occupied subspace of K-S States

at each k with an auxiliary set of Bloch like states constructed from a template of

localized orbitals as {φn(r−R)}:

ψ′nk(r) =
∑
R

eik.Rφn(r−R). (2.73)

Maximum alignment is ensured by demanding hermiticity of the overlap between

ψKS and ψ′, which is achieved through singular value decomposition(SVD) of the

overlap matrices at each k. WFs are constructed using these aligned Bloch functions
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which are spatially localized in all directions[Fig.2.7(b)]. Although these WFs are

spatially localized they do not guarantee the maximal localization, nevertheless, they

reveal the orbital nature of electronic structure leading to unambiguous partitioning

of atomic and bonding orbitals[Fig.2.8(c,d)].
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Chapter 3

Electronic and magnetic properties

of 2p-block elements in low

dimension

3.1 Introduction

With the advent of advance synthesis techniques isolation of single layer of graphene

from their bulk structure have reinforced the foundation of research on two dimen-

sional(2D) materials in general. The family of 2D materials have a wide range of

selectivity of elements from periodic table[1, 2] and depending on their composition

and structure drives a wide variety of electronic and magnetic properties, although

here we will mainly focus on 2p-block elements.

The goal of this chapter is to present a brief outline of electronic and magnetic

properties of some of the most well known monolayers made of the 2p-block elements,

primarily graphene and quasi one dimensional(1D) structure derived from it, namely

graphene nanoribbons, followed by brief discussion on similar 2D and 1D structures
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made of boron(B), carbon(c) and nitrogen(N). In this chapter we have also discussed

briefly about the mechanism of magnetic ordering observed in these systems exclu-

sively due to p-electrons, which is a key aspect dealt with extensively in this thesis.

3.1.1 Graphene

Graphene is a monolayer of sp2 hybridized carbon(C) atoms in honeycomb lattice.

The strong covalent bonds made by the sp2 orbitals of carbon makes graphene me-

chanically robust and resilient. The unhybridized 2pz orbitals delocalize in the lattice

in order to reduce kinetic energy, leading to π conjugation which adds to the mechan-

ical resilient and renders graphene chemically inert despite having unpaired electrons.

However, the delocalization of pz electron in honeycomb lattice leads to semi-metallic

band structure and extra ordinarily high mobility of electrons which has rendered

graphene as one of the most promising material for fabrication of electronic devices

at nanoscale. With the valence and conduction band edges described by a single pz

electron per site the electronic structure of graphene and related graphenic systems

are well represented within a single orbital TB framework[3].

The honeycomb lattice of graphene consists of a primitive cell with two atom ba-

sis, where n-n sites belong to opposite triangular sub-lattices(A,B) implying bipartite

symmetry, as shown in Fig.3.1(a). For two atom unit cell, recalling [Eq.2.54], we can

write

H ij
k = t(1 + eik.δ1 + eik.δ2) ≡ tγk, (3.1)

where t is n-n hopping amplitude and δ1, δ2 are lattice vectors as shown in Fig.3.1(a).
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Hence, from secular equation

det

 0− Ek tγ∗k

tγk 0− Ek

 = 0. (3.2)

The dispersion relation,

Ek = ±t | γk |, (3.3)

putting, δ1 = a
2

(√
3, 1
)
, δ2 = a

2

(
−
√

3, 1
)

[Fig.3.1(a)] and after simplification,

E(kx, ky) = ±t
[
1 + 4cos

(√
3kx

a

2

)
cos
(
ky
a

2

)
+ 4cos2

(
ky
a

2

)] 1
2
. (3.4)

Here, ± sign represents two energy band, (+) corresponds to conduction band [π∗]

and (-) corresponds to valence band [π][Fig.3.1 (c)]. Since each C atom contribute

one π electron and spin-up or spin-down state each can occupy an electron, the lower

band is completely filled and the upper band is completely empty, so the Fermi level

is at the energy where both the band (π, π∗) touches. Thus pristine graphene shows a

semi-metallic density of states with zero gap. The set of k-points for which Ek=0 can
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be calculated using Eq.3.1. There are six such points around the Γ point constituting

a hexagon. Among these only two are inequivalent points (K and K’)[Fig.3.1(b,c)],

where the rest all are connected through reciprocal lattice vectors to the inequivalent

points. These special points are known as Dirac point because at continuum limit

the linearization of energy dispersion[Eq.3.4] around this sets of k-points gives linear

dispersion relation and the Hamiltonian resembles[4] Dirac Hamiltonian. However, it

is known that the quasi particle nature of electrons and spin-orbit coupling leads to

a negligibly yet non zero small gap around Fermi energy.

3.1.2 Graphene Nanoribbon

Graphene nanoribbon(GNR), a quasi 2D periodic structure of graphene which is

periodic in one dimension and confined on the other. Depending on edge configu-

rations there are two types of GNRs, armchair graphene nanoribbon(AGNR) and

zigzag graphene nanoribbon(ZGNR). The width of AGNR(ZGNR) has been defined

by NA(NZ) counted along the zigzag(dimer) lines[Fig.3.2(a)]. Effect of width and edge

configurations in electronic structure can be understood from single orbital(π) TB

model. Depending on width, AGNRs shows metallic band structure [Fig.3.2(b):NA=5]

if NA=3m+2, where m is a positive integer, otherwise it is semiconducting [Fig.3.2(b)

:NA=10] and gap decreases with increasing NA[5, 6]. In GNRs, the confinement along

one direction restricts the allowed k-values of the graphene band structure and hence

if the lines passes through the special k-points(K, K’) will be metallic[7]. The degree

of band gap opening is largely influenced by widths and the edge geometry[6].

Within TB framework ZGNRs shows metallic band structure[Fig.3.2(d)] irrespec-

tive of their ribbon widths. The valence and conduction bands are degenerate near

k=π(X-here) and this flat region of bands extends within a region of 2π/3 ≤ |k| ≤ π.

These partial flat bands are due to the presence of localized states at the two edges
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that belongs to opposite sub-lattices A and B as shown in Fig.3.2(e). However note

that two zigzag edges are made of two different sub lattices. This sub-lattice asymme-

try hinders π conjugation and leads to spin separation between the two sub-lattices

with introduction of on-site Coulomb repulsion term U as per Hubbard model[8]. The

gap appears due to an effective difference in on-site term for two n-n sites for each of

the spins. This spin separation intensifies near the edges leading to n-n FEM order

at the edges and AFM order between the two edges. Such appearance of gap and

spin separation is also observed from first principles calculations within LSDA. Bi-

partite lattices are known to have particle-hole symmetry within Hubbard model, e.g.

in pristine graphene. However, with the introduction of inequivalence between the

sub-lattices, e.g. at the edges of zigzag graphene nanoribbon, the inhomogeneities of

the effective onsite term across the ribbon for each spin leads to broken particle-hole

symmetry. Such opening of band gap due to localised magnetic ordering [Fig.3.2(f)]

rooted at sub-lattice asymmetry is the unique feature of zigzag edges which are absent

in armchair edges[Fig.3.2(c)] due to symmetry of the two sub-lattices.

3.2 p-electron driven magnetism in graphenic sys-

tems

Electronic structure three coordinated bipartite systems at half-filling with one 2pz

electron per atom, is determined primarily by the competition between inter-sub-

lattice delocalization in order to reduce kinetic energy, and inter-sub-lattice spin sep-

aration, which reduces Coulomb potential energy of occupied orbitals. Both these

two factors can be undermined by localization of electron in one of the sub-lattices

in case the two sub-lattices have different onsite terms, e.g. in hBN sheet. In pris-

tine graphene the lowering in kinetic energy due to delocalization is more than the
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increase of Coulomb potential in the process leading to a non-magnetic semi-metallic

ground state as discussed in previous section. In pristine hBN the localization due

to the large difference of electronegativities of B and N leads to non-magnetic in-

sulating ground state. However, with modest levels of inequality between the two

sub-lattices, e.g. physical or chemical modifications which dissimilarly effects the two

sub-lattices, the inter sub-lattice delocalization is hampered, which opens scopes for

the inter sub-lattice spin separation to consolidate, leading to nearest-neighbor fer-

rimagnetic ordering in the ground state in the vicinity of modifications and a net

magnetic moment. This is a key mechanism responsible for magnetism in graphenic

systems reported in a large body of work accumulating in literature over the last two

decades or so. For example, existence of robust and tunable magnetic ordering[9, 10]
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have been explored through chemical functionalization at edges[11, 12, 13], applica-

tion of electric field[14] across ribbons, substitution with different elements or with

adatom, defects [15, 16, 17, 18, 19, 20, 21, 22, 23] etc.

The onset of magnetism in these weakly correlated systems is traditionally un-

derstood in terms of Hubbard model, where the on-site Coulomb interaction between

the electrons of different spins is exclusively the source of correlation. Mott transi-

tion has been shown to be possible in honeycomb lattices for U/|t| > 4[24], where

as in pristine graphene U/t ' 1 leads to a non-magnetic ground state as discussed

above. However, due to sub-lattice asymmetry a Mott like spin separation between

sub-lattices emerges with U > 0[25] as seen in zigzag edged graphene nanoribbons

and tubes.

3.2.1 Ferromagnetism in bipartite system

Nearest neighbor FM ordering in bipartite systems is rare in general. Within the

framework of Hubbard model[26], which provides a comprehensive description of

magnetism sourced at Coulomb correlation among itinerant electrons, primarily two

classes of mechanisms have been proposed to rationalize n-n FM ordering in bipar-

tite systems[27]. It was shown by Nagaoka [28] that with U → ∞, upon doping by

a single hole the ground state will have FM ordering in an attempt to reduce the

kinetic energy of the hole while avoiding the double occupancy of a site. However,

Nagaoka-FM is not relevant in honeycomb lattices [25], as they do not satisfy the

criteria of loop connectivity[28]for Nagaoka-FM to sustain. Although, to comment

on whether the Nagaoka mechanism will be effective in ribbons particularly with en-

hanced correlation due to bias induced confinement, is beyond the scope of my work

since it will involve a more careful consideration of correlation effect possible beyond

the scope of first principles and mean-field Hubbard model used in this thesis.
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The other class of mechanism is proposed to be exchange interaction driven, but

possible only in presence of a flat or nearly flat band [29, 30] at Fermi energy so that

such a band can accommodate electrons emptied from the doubly occupied states

below. The contribution of itinerant electrons have also been argued[31] to mediate

exchange interaction nucleating at the flat bands.

However, on one hand the Nagaoka mechanism has been generalized to fractional

doping[29], while on the other hand the flat band based mechanisms has also been

generalized to nearly flat and partially occupied bands[30]. Thus a simpler general re-

quirement for existence of nn FM order appears to converge from the two mechanisms

to high U and nonzero density of states at Fermi energy, as also given by the Stoner

Criteria. An important approach for description of FM ordering understood within

mean-field approximation is the Stoner criteria [32] which can thus be understood as

meeting ground between Nagaoka and flat band mechanisms. Stoner criteria suggests

a high U and a finite density of states at Fermi energy as a necessary criterion for the

unequal number of two spins to be energetically favorable.
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Chapter 4

Partial Bias Induced Magnetism

4.1 Introduction

The different network structures of sp2 hybridized carbon atoms such as graphene

sheet, graphene nanoribbon(GNR), and carbon nanotube shows different electronic

properties depending on their shape, size and symmetry in their pristine configuration[1].

The addition of spin selectivity in these systems opens up a new scopes of magnetism

beyond the traditional d-electron based magnetism in transition metals.

In pristine bipartite systems the existence of magnetism has been discussed ei-

ther at strong coupling limit where the strength of on-site Coulomb correlation(U)

is dominant over the kinetic energy or at moderate coupling(U ∼t)[sec.2.3.4] due

to inequivalence of sub-lattices [2] leading respectively to nearest neighbor(n-n) anti-

ferromagnetic(AFM)[3, 4, 5] and ferrimagntic(FEM) ordering. As a source of inequiv-

alence a large variety of possibilities have been proposed through structural[6, 7, 8]

and physical[9, 10, 11] or chemical[12, 13, 14, 15, 16] functionalization, leading to

scopes for band gap tuning, half-metallicity and magnetism exclusively due to pz

electron.
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In this chapter, we will focus on evolution of electronic and magnetic proper-

ties due to inhomogeneous application of bias in sheets and islands of graphene and

graphene nanoribbons. First I describe electronic structure of inhomogeneously bi-

ased armchair graphene nanoribbons and zigzag graphene nanoribbon demonstrating

the emergence on n-n FM order at moderate coupling followed by explanation of

observed results through simple model.

4.2 Inhomogeneous bias on graphene nanoribbon

In my thesis spin-polarized electronic structure for AGNRs and ZGNRs have been

primarily calculated from mean-field Hubbard model which we recall from [sec.2.3.4.1]

as

H = t(
∑
〈i,j〉,σ

c†i,σcj,σ + h.c) +
∑
i,σ

c†i,σci,σ(U〈ni,σ′〉 − V i
g + V i

q ), (4.1)

where, 〈ni,σ′〉 is the population of electron with spin-σ at the i-th site, U is the

strength on-site Coulomb repulsion, V i
g is the gate bias and nearest neighbor(n-n)

hopping amplitude t = −2.7eV [17]. Coulomb repulsion V i
q at nearest neighboring

sites and beyond is calculated using the Ewald summation scheme[18, 19] A self-

consistent computation[sec.2.3.4.2] of Eq.4.1 describes the electronic structure of the

system. To probe the nature of magnetic ordering as a function of applied bias Vg

and the parameter U , we define the average n-n spin correlation as:

S =
1

Ns

Ns∑
i

1

nni

nni∑
j

SiSj, (4.2)

where Ns is the number of sites per unit cell, nni is the number of n-n sites around the

i-th site, and Si = 〈ni,σ〉−〈ni,σ′〉 as obtained from converged self-consistent calculation

for each set of Vg and U . The positive and negative values of spin correlation function
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S thus represents the existence of either n-n FM or n-n AFM or FEM ordering

respectively.

4.2.1 Inhomogeneously biased armchair graphene

nanoribbon

As a function of bias(Vg) and the strength of on-site Coulomb repulsion, the positive

and negative part of the spin correlation function(S) for AGNRs, as shown in Fig.4.1,

implies the existence of n-n FM order at moderate coupling and separation of regions

with FM and FEM ordering primarily in regions with and without positive bias

respectively. Fig.4.1(a-f) imply rapid consolidation of AFM(FM) ordering above U ∼

2|t| with zero(positive) Vg. For Vg = 0 this resembles a Mott like transition [20] at half-

filling. With increasing Vg the transition from non-magnetic to the FM ordered ground

state happens with increasing U . This trend is similar to the observed non-magnetic

to AFM transition in bipartite lattices with deviation from half-filling. The latter

is understood in terms of the additional correlation required to dominate over the

kinetic energy of the excess charges upon deviation from half-filling. The similarity

in trend is expected since with non-zero Vg the biased and unbiased regions both

deviate locally from half-filling. This systematic variation of S is impacted by the

width of the biased region. Narrow bias towards the AGNR edge[Fig.4.1 (a,d)]is more

preferable for n-n FM order at moderate coupling since it further enhances localization

of charge which is inherently more at the edges than the bulk. FM ordering quenches

rapidly in AGNRs [Fig.4.1(b,c,e,f)] as the biased region moves away from the edges

or are widened and it requires either high U or Vg for emergence of FM ordering.
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Figure 4.1: spin-correlation(positive & negative) plot as a function of U & Vg for
different bias coverages: AGNR(NA=6)(a,b,c); AGNR(NA=8)(d,e,f). Here gray shade
represents the bias coverage

4.2.1.1 Indirect band gap

For AGNRs, the n-n FM ordering is prefaced by band gap tuning and direct to indi-

rect transition as shown in Fig.4.2(a-c). With increasing Vg the bands(bonding and

anti-bonding orbitals both) which corresponds to the biased region will become lower

in energy, while their counterparts which are far from the biased region will have

least change in energies. This leads to a net reduction in band gap since the energy

of conduction band edge of the biased region lowers with respect to the valence band

edge of the unbiased region. In such a scenario an indirect band gap is natural to

expect since the valence and conduction band edges have similar energies but are

contributed by electrons at regions of different potential energies which is compen-

sated by difference in their kinetic energies as reflected by different k at valence band
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Figure 4.2: Band structure and spin density(inset) from mean-field Hubbard model
at U=4.0 eV for different gate voltages Vg with different bias coverage of AGNR:
(a,b)NA=6 and (c)NA=9. Here gray shade represents the biased region

maxima and conduction band minima.

4.2.1.2 Metallic phases

With increasing Vg, further lowering of the conduction band edge in the biased region

finally leads to a closure of indirect gap. Consolidation of one spin over the other due

to appearance of n-n FM order within the biased region, inherently implies the lifting

of spin degeneracy[Fig.4.2(a,c)] of the band structure in conjunction with narrowing

indirect band gap as discussed above. Therefore it is natural to expect emergence

of FM-semiconducting or FM-metallic or half-metallic phases accompanying n-n FM
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order. We find AGNRs with n-n FM order to be metallic in general[Fig.4.2(a,c)]

although in some cases half-metallic windows can also be present.

As the biased region moves from the edge towards the middle(bulk) the local-

ization at the biased region weakens which suppresses the n-n FM order to emerge,

nevertheless the direct to indirect transition still occur and band gap remain largely

preserved[Fig.4.2(b)].

4.2.2 Inhomogeneously biased zigzag graphene nanoribbon

In ZGNRs, due to the contest between inherent inter-edge AFM ordering and bias

induced n-n FM ordering, the influence of n-n FM ordering is rich in comparison

to AGNRs. As we explain below, the contest leads to consolidation of one spin and

suppression of the other spin from the edges, leading systematic emergence of window

of half-metallic transport. For ZGNRs, with finite U at Vg=0 the spin correlation

function S[Eq.4.2] shows FEM order[Fig.4.3(a-f)] between the two sub-lattices near

each of the edges[Fig.4.4(a-d)]. However, with application of Vg (>0)[Fig.4.3(a-f)]

quenching of magnetic ordering is observed in ZGNRs below a threshold value of U ,

which increases with increasing Vg. This can be understood by noting that, since

occupation of biased sites(Vg >0) is favored by electrons with both the spins, they

would require a higher U to separate between the sub-lattices. The onset of positive

spin correlation, implying n-n FM ordering, enhances if bias region located near

any of the edges[Fig.4.3(b,c)] as seen in AGNRs also. The emergence of n-n FM

order is much prominent if the biased region cover zigzag C-C chains parallel to the

edges[Fig.4.3(a-c)]. Notably, the spin of the n-n FM ordering at those biased sites

would prefer the same spin at the edge sites as well due to n-n FEM ordering in

the intervening region. Therefore for the zigzag biased sites[Fig.4.4(c)] mixing of
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Figure 4.3: spin correlation(positive & negative) plot as a function of U and Vg with
gate coverage of zigzag C-C bond for(a,b)Nz = 9 , (c)Nz = 8. and with gate coverage
of transverse C-C bond for(d,e)Nz = 8, (f)Nz = 9. unit-cell and bias coverage is
shown here with solid line and gray shade respectively.

FM ordered states at those sites with that at the nearest localized edge states can

mutually stabilize both of them and also induce FM ordering between the two edge

states. The degree of stabilization would thus enhance due to proximity of the biased

region to any of the edges. Whereas, if the biased sites covers the transverse C-C

bonds the spin of FM ordered state at those sites would prefer an opposite spin at

both the edges[Fig.4.4(a)]. However such a biasing results effectively into isolated

biased dimers which would prefer a non magnetic ground state. As a result the

appearance of n-n FM order is much suppressed in this case[Fig.4.3(d-f)]. Similar

effective reduction of Coulomb correlation will happen for both the spins as the bias

region shifts from the edge towards the bulk and it drives to a non-magnetic ground
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Figure 4.4: Band structure and spin density(inset) from mean-field Hubbard model
for U=4.0 eV at different gate voltages Vg of ZGNR:(a,b)Nz = 8 with gate coverage of
transverse C-C bond, and (c,d)Nz = 9 with gate coverage of zigzag C-C bond. unit-
cell and bias coverage is shown here with a solid line and gray shade respectively.

state akin to AGNRs with a bias tunable spin-degenerate band structure[Fig.4.4(b)].

Therefore it is important that the biased sites should cover more zigzag chains than

transverse dimers for onset of n-n FM order at moderate coupling. However, the

systematic reduction of gap for one of the spins occurs for biased region near the

edges irrespective of whether the biased region covers C-C transverse [Fig.4.4(a)] or

zigzag[Fig.4.4(c)] bonds paving the way of bias controlled FM semiconducting and

half-metallic window. For zigzag bias coverage the inter-edge AFM ordering clearly

evolves into inter-edge FM ordering[Fig.4.4(c,d)] on the onset of n-n FM ordering

as discussed above. To understand the evolution of the band edges we plot the

bands projected on the edges[Fig.4.5]. Here, owing to inter-edge FM ordering after a

certain threshold value of Vg the band edge corresponding to the minority spin(spin-

2) for both the edges evolves and finally at the gate voltage at which the n-n FM

emerges the valence band edge for spin-2 emerges into a partially occupied dispersive

band[Fig.4.5], which offers a robust window of half-metallic transport. Therefore due

to suppression and facilitation of edge states of a particular spin depending on the
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Figure 4.5: For gated configuration of Fig.4.4(c), projected band structure corre-
sponding to the edge sites with majority and minority spin both. This shows a clear
evolution of band edges with the emergence of n-n and inter-edge FM ordering (spin
density :inset).

spin of the FM order, the evolution of band structure opens up a new mechanism to

systematically open a window of half-metallic transport, compared to other previous

known processes[9, 21, 22, 23].

CBE

VBE

CBE

VBE

CBE

VBE

CBE

21212121

No bias Moderate +ve bias Moderate +ve bias High +ve bias

Biased region

Figure 4.6: Schematic band diagram(above) and spin density(below). The migration
of electrons with spin-2(↓)from edge-2 towards edge-1, owing to n-n FM order with
spin-1(↑) at biased region, C(V)BE : conduction(valence)band edge.

This evolution of band structure can be understood from the schematic band

diagram as shown in Fig.4.6. The competing interactions(n-n FM and inherent AFM)
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leads to the stabilization of one of the edge states, say at edge-1 with spin-1 while

suppression of the localized state at the other edge with spin-2. Therefore electrons

with spin-2 would delocalize leading to reduction in band gap for the same spin.

Eventually the spin at the edge-2 flips from spin-2 to spin-1 as favored by the n-n

FM order leading to complete disappearance of the valence band edge of spin-2. This

dispersive valence band of spin-2 offers a window for half-metallic transport. With

further increase of Vg occupancy of biased sites with both the spins become favorable

leading to delocalization of edge state at edge-1 which results into dispersive nature

of the valence band with spin-1 as well. Therefore for both the spins the valence band

becomes dispersive leading to a metallic phase.

4.2.3 First principles calculation for zigzag graphene

nanoribbon

Figure 4.7: ZGNR in presence of sawtooth potential: (a) potential profile ; (b) band
structure (above) & spin density(below). DFT results are qualitatively similar to
their counterparts [Fig.4.4] based on mean-field Hubbard model.

71



To understand the impact of inhomogeneous biasing from first principles, we apply

sawtooth potential along the transverse direction[Fig.4.7(a)] of ZGNR to resemble a

bias coverage similar to Fig.4.3. We find a similar trend in terms of evolution of charge

density as evident in Fig.4.4(c) which also shows the lifting of spin degeneracy and

half-metallic window[Fig.4.7(b,c)] within a range of applied potential. This qualitative

agreement between DFT and mean-field result is a verification of MFH results within

the level of correlation considered in DFT. Furthermore, the reported agreement of

DFT with more advanced methods like DMRG, QMC[24, 25] in rationalizing FM

ground state for doped AGNRs at moderate coupling limit implies the likelihood of

our mean-field results to be consistent with improved consideration of correlation.

Structural relaxation from first principles indicates that the ribbons maintain their

structure in that range of potential in which the n-n FM order exists.

However, in addition to the n-n FM ordering, DFT calculations of gated GNRs

reveal an interesting new property. We find parabolic bands like those of free elec-

trons[Fig.4.7(b)] about Fermi energy and above. Origin of these bands are traced to

accumulation of space charge above and below the ribbon plane. Coinciding with

emergence of n-n FM order space charge also acquires a spin polarization thus imply-

ing in effect a perfect one dimensional channel to transport electrons with a preferred

spin. However, work in this direction is not expected to matured by the time of sub-

mission of this thesis. Further details about this has been presented in the section on

future scope.

4.2.4 Mechanism & analysis with minimal model

The trend of emergence of n-n FM order in our results is present without doping and

irrespective of existence of flat band at Fermi energy, which is indeed different from

previous discussion[sec.3.2.1]. This n-n FM ordering is more prominent in presence
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of narrow bias coverage near the edges of the ribbon. This clearly suggests that

localization and the resultant enhancement of Coulomb correlation of the electrons

are likely the responsible key factors for the emergence of the n-n FM order, which

we will discuss in more detail in the following.

4.2.4.1 Nearest neighbor FM order in simple model

To further generalise our results we resort to a simple unit cell with four sites(4-

site), of which two neighboring sites are biased[Fig.4.8(a)]. Remarkably, the spin-

correlation between the two biased sites [Fig.4.8(b)] as a function of Vg and U has

similar generic features as in case of AGNRs and ZGNRs, namely, existence of positive

spin correlation implying n-n FM correlation among biased sites with similar variation

of Vg and U , which thus establishes the generality of our results implying a general

property of non-uniformly biased bipartite systems. This also allows us to focus on

the 4-site model to probe the source of the n-n FM order in more detail. Notably,

if we do not consider non-zero crystal momentum then the positive spin-correlation

does not exist, implying the role of itinerant electrons in manifesting the n-n FM

ordering. Nevertheless, in this case, the trend of spin-correlation as a function of Vg

and U agrees qualitatively with that obtained using exact diagonalization(ED). So

the itinerant electrons which are described by dispersive bands at Fermi energy, thus

likely to play an important role in demonstration of n-n FM order, as suggested by

Fig.4.2,4.4.

4.2.4.1.1 Phenomenological argument for n-n FM order : For 4-site sys-

tem, the evolution of spin-polarized charge densities [Fig.4.9(a,c,e)] suggest a spin

separation between biased and unbiased region similar to that observed in GNRs.

The appearance of such spin separation can possibly be rationalized by regarding
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Figure 4.8: (a)4-site model with n-n gate coverage. Bias site spin-correlation plot
with (b)mean-field Hubbard model and (c)model Wannier function.

that the increased occupancy of the biased sites by electrons with both the spins,

upon increase of Vg, would in turn increase potential energy due to on-site Coulomb

repulsion. Thus to lower the potential energy at each of the biased sites they will pre-

fer to be dominated by electrons with one of the spins. However, for such neighboring

sites having opposite spins would correspond to the rapid oscillation of wave functions

for both the spins between two neighboring sites, leading to enhance kinetic energy.

Alternatively, if wave functions for one type of spin dominate both the biased sites

over that of the other spin, as evident from the charge densities[Fig.4.9(a,c,e)], the

wave functions can be smoother, implying lesser kinetic energy while allowing lower

on-site Coulomb repulsion as well. The evolution of charge densities[Fig.4.9(a,c,e)]

clearly implies electrons to be more itinerant for one spin than for the other upon

emergence of n-n FM, leading to lifting of spin degeneracy[Fig.4.9(c,d)] akin to that

in Fig.4.2(a,c). Upon further increase of Vg[Fig.4.10(b,c,d)] the lowering of potential

energy dominates over the increase of on-site Coulomb repulsion and it leads to an

occupation of bias sites by both the spins. So, eventually it returns a non-magnetic

ground state and spin degenerate band structure[Fig.4.9(e,f)]. Thus for a higher U a
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Figure 4.9: Density(up,down) and band structure of 4-site system[Fig.4.8(a)] from
mean-field Hubbard model for U=15.0 eV with: (a,b)Vg=10.0 eV; (c,d)Vg=15.0 eV
and (e,f)Vg=20.0 eV.

higher Vg is required for the n-n FM order to quench, which is also consistent with

the trend observed in Fig.4.1,4.3. Notably, the band structure[Fig.4.9(d)] also shows

closing of gap for the minority spin upon emergence of n-n FM order, as observed for

zigzag ribbons.

4.2.4.1.2 Quantitative analysis of mechanism : For a quantitative confirma-

tion of the above mechanism, we partition the total energy[Fig.4.10(a,b)] of the ground

state into kinetic energy and potential energies contributed by on-site Coulomb re-

pulsion and applied bias. The energetics of unconstrained(UC) ground state is then

compared with their counterparts obtained by considering non-magnetic(NM) and

FEM constraints on the ground states. NM condition is imposed by assigning the

same charge density for both the spins during self-consistent calculation whereas, for

FEM the charge density for one of the spins is specified to be the mirror image of that
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Fig.4.8(b,c).

for the other spin about the center of the unit cell. Then considering NM ground state

as the reference the energetics are plotted in Fig.4.10(a-h). From Fig.4.10(e,g) it is

evident that the UC ground state with n-n FM order has lower energy in comparison

to NM and FEM ground states. This lowering is initially facilitated by lowering of

potential energy due to gate bias, but subsequently due to lowering of onsite Coulomb

repulsion aided by spin separation of between biased and unbiased sites. Notably, al-

though in comparison to UC ground state the FEM ground state has a lower kinetic

energy, the degree of localization at the positively biased region offered by the latter

appears to be much lower. Thus for a FEM ordered state having the same degree of

localization like the UC ground state it must have higher kinetic energy as anticipated

in the phenomenological argument. Therefore, minimization of on-site Coulomb re-

pulsion with the least increase in kinetic energy thus indicating maximal retention of

the itinerant nature of electrons, is the essential factor of having n-n FM order in the

ground state.
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4.2.4.1.3 Beyond mean field approximation : For further illustration of this

observed n-n FM order beyond the mean-field approximation, we resort to a simple

analytical model of Wannier functions(WFs) to express the ground state of the 4-

site unit cell at half-filling. The model WFs are based on WFs computed from the

Bloch functions obtained within mean field approximation and it can be chosen to

be real and highly localized within a unit cell in one dimension. Thus in place of

2Nk, wave functions for each spin, where Nk is the number of allowed wave vectors

in the first BZ, two WFs for each spin is adequate to represent four electrons. Here

we approximate the WFs to be non-zero only within a unit cell. Such approximate

WFs for the NM ground state can be written in the general form as:

φNM1,↑/↓ = (a, b, c, d) ,

φNM2,↑/↓ =

(
e+

c.f

a
, g +

d.f

b
,−f − a.e

c
,−f − g.b

d

)
,

which are orthogonal to each other by construction. Similarly, two orthogonal WFs

for the FEM ground state can be approximated as:

φFeM1,↑ = (a, b, c, d) ,

φFeM2,↑ =

(
e+

c.f

a
, g +

d.f

b
,−f − a.e

c
,−f − g.b

d

)
,

φFeM1,↓ = (d, c, b, a) ,

φFeM2,↓ =

(
f +

g.b

d
, f +

a.e

c
,−g − d.f

b
,−e− c.f

a

)
,
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where the |φi,↑|2 is mirror image of |φi,↓|2 with respect to the middle of the unit cell.

Finally, orthogonal WFs with nn FM can be approximated as:

φFM1,↑ = (a, b, b, a) ,

φFM2↑ = (c, d,−d,−c) ,

φFM1↓ = (e, f, f, e) ,

φFM2↓ = (g, h,−h,−g) .

To represents the WFs the number of independent variables are determined from the

symmetry of the spin densities[Fig.4.9(a,c,e)] and orthogonality of the states. The

total energies of the ground states are calculated on the basis of this WFs within the

Hubbard model without mean-field approximation. For all sets of WFs the ground

state is obtained by minimizing the total energy in terms of a, b, c, d, e, f, g, h variables

and t, U , Vg as parameters using the cylindrical algebraic decomposition scheme as

implemented in Mathematica[26]. From this model calculation the spin-correlation

function of the biased sites shows a similar type of n-n FM ordering[Fig.4.8(c)] as

obtained using MFH calculation. Using this model WFs of ground states the kinetic

energy and the potential energies due to on-site Coulomb repulsion and external

bias are estimated from the expectation value. Notably, Fig.4.10(b,d,f,h) implies

exactly the same trend of emergence of n-n FM order as suggested within the mean-

field Hubbard model[Fig.4.10(a,c,e,g)]. These agreements along with agreements with

DFT results, are the basis of our claim of generality of n-n FM order beyond mean-

field approximation, as a property of inhomogeneously biased bipartite system.
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4.3 Possible experimental realization

  

(A)

(B)

(C)

(D)

Figure 4.11: (A)6.5 nm HfO2 local back gate[Ref.[31]], (B)a, Schematic view of a
top-gated graphene r.f. transistor on DLC substrate. b, SEM image of a typical
top-gated dual-channel r.f. device. Scale bar, 3m. c, Cross-section TEM image of a
graphene transistor with a gate length of 40nm. Scale bar, 40nm. d, SEM image of
the 40-nm device. Scale bar, 400nm.[Ref.[30]], (C) c. Electrostatic doping in graphene
with P(VDF-TrFE) at the +Pr state. The green particles in graphene represent the
initial p-type charged impurities doping, d.(c) Electrostatic doping in graphene with
P(VDF-TrFE) at the +Pr state. The green particles in graphene represent the initial
p-type charged impurities doping [Ref.[32]], (D)a. Polar molecules at graphene edges
in micrometer-scaled gated devices, Inset shows the two collectively aligned molecular
configurations existing at graphene edges: above and below the graphene plane, b.
SEM of one of our devices. Scale bar is 5 m.[Ref.[33]]

In view of recent experimental advancement [Fig.4.11(A-D)], implementation of gate

in nanoelectronic devices has been reached upto sub-micron length or even less than

that[27, 28, 29, 30, 31]. Beyond these there is another functionalization as well,

which would lead to similar properties, such as deposition of ferroelectric polymer

gate[32] or via adsorption at precise sites[33]. Therefore our results might encourage

the implementation of this direction in the future.

79



Bibliography

[1] A. H. Castro Neto, F. Guinea, N. M. R. Peres, K. S. Novoselov, and A. K. Geim,

Reviews of Modern Physics, (81)109, (2009).

[2] D. Soriano & J. Fernández-Rossier, Phys. Rev. B, (85)195433, (2012).

[3] N. F. Mott, Proc. Phys. Soc. London, Ser. A, (62)416, (1949).

[4] L. M. Martelo, M. Dzierzawa, L. Siffert, D. Baeriswy, Z. Phys. B, (103), 335-338,

(1997).

[5] Patrick Fazekas, Series in Modern Condensed Matter Physics - Vol.5 {5 Toh

Tuck Link, Singapore 596224, World Scientific Publishing Co. Pte. Ltd.(1999).

[6] Young-Woo Son, Marvin L. Cohen, and Steven G. Louie, Phys. Rev. Lett.,

(97)216803, (2006).

[7] Kyle A. Ritter & Joseph W. Lyding, Nature Materials, 8, (2009).
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Chapter 5

Magnetism in graphene-hexagonal

boron nitride hybrids

5.1 Introduction

Atomically thin layered magnetic materials with sustain magnetism are desirable for

miniaturization of data storage and processing devices. Layered magnetic materials

with lighter elements will thus be ideal since lighter elements have weak spin-orbit

coupling and therefore large spin relaxation time. Low dimensional materials made of

2p block elements, namely, carbon(C), boron(B), nitrogen(N) with p electron based

magnetism has thus opened up a new vista owing not only due to their sustain

magnetism but also due to their structural stability and resilience.

Pristine graphene and hBN both are non-magnetic, nevertheless, in graphene-

hBN hybrid systems, the possibility of manipulating local magnetic moments, which

naturally arises at the interface, boundaries[1, 2, 3] and defects [4] is promising. In

these hybrid systems, local moments corresponds to non-degenerate density of states

at Fermi energy, which can lead to a ferromagnetic semiconductor, metal or a half-
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metal[5, 6, 7]. Substitution by C in hBN is known to form patches of graphene. As

per Lieb’s theorem[8] graphene islands(Gr-island), covering dissimilar number of sites

from the two sub-lattices will have nonzero magnetic moment. Triangular Gr-islands

with zigzag edges are known to have largest sub-lattice asymmetry and therefore

the largest magnetic moment which is evident from the fact that all its zigzag edges

belong to the same sub-lattice[9]. Such Gr-islands have been observed to distribute

themselves in arrays in hBN matrix[10, 11, 12, 13], which motivates exploration of

scopes for new kind of magnetic materials made of non-metals. In case of free standing

networks of triangular Gr-islands, FM ordering has been proposed[14, 15, 16] through

magnetic ordering propagated by interlinking C chains. Magnetic ordering for such

neighboring magnetic Gr-islands embedded in hBN has come under [17, 18] focus in

recent years, although a detailed understanding of mediation of magnetic order by

hBN is yet to be established, which motivates the work presented in this chapter.

Here we first focus on interaction between magnetic Gr-islands starting with two

of them and then further extending to larger hybrid structures. Specifically, we focus

on deriving the microscopic mechanism of propagation of magnetic order through hBN

and learn how to establish FM ordering between two magnetic Gr-islands embedded

in hBN. We then apply our understanding to propose graphene-hBN hybrid systems

which may be half-metal or FM semiconductor possibly at room temperature. All the

analysis presented here are based on spin-polarized electronic structure and spatially

localized Wannier function computed from first principles. Proposed mechanism has

been described within mean-field model through spin dependent hopping.
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5.2 Calculation details

All the equilibrium configurations and their energetics are calculated within LSDA us-

ing ultrasoft pseudopotential and gradient corrected PBE functional as implemented

in Quantum espresso[sec.2.2.3]. All the configurations through total energy mini-

mization using BFGS are converged with plane wave cut-off over 800 eV considering

a k-mesh which is equivalent to 30×30 for a hBN primitive cell and forces per atom

less than 10−4 Rydberg/Bohr. For atomically resolved analysis of electronic struc-

ture, WFs are constructed as described in sec.2.4.1.2. The microscopic mechanism

implied by results from first principles, is verified with the TB framework using the

mean-field approximation of Hubbard model. Phase diagrams have been calculated

using mean-field Hubbard model described in sec.5.2.1.

5.2.1 Estimation of mean-field parameters

Within model Hamiltonian approach, for heteroatomic(graphene-hBN hybrid) system

using Eq.2.48 mean-field Hubbard[sec.2.3.4.1](MFH) Hamiltonian can be written as,

HMF =
∑
i,σ

εic
†
iσciσ +

∑
<i,j>,σ

tijc
†
iσcjσ +

∑
i,σ

Uiniσ〈niσ′〉 (5.1)

where εi : εB, εN , εC being the on-site energy at B, N and C-site respectively. tij :

tCC , tBN , tCN , tCB are nearest neighbor hopping parameters and Ui : UB, UN , UC are

the strength of onsite Coulomb repulsion.

Since the valence shell of B, C, and N are of same principal quantum number(n=2),

we have considered same {U} and hopping parameters({t}) for all sites. We have fit-

ted the bulk boron nitride DFT band gap to MFH gap to tune the onsite parameters of

B and N. We set the onsite term of C to zero. The comparison of projected density of
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Figure 5.1: Density of states for pristine hexagonal boron nitride from(a) DFT and
(b)MFH model. Projected density of states of the C-site for different C-substituted
hBN from DFT and MFH calculation (c,d)1C@1N, (e,f)1B@1C, (g,h)C@N site for
3N1B island and (i,j)C@B site for 3B1N island respectively. Valence band edge has
been adjusted to E=0 for better comparison in both cases.

states(PDOS) in Fig.5.1 imply that with further marginal variation of the onsite term

of C and CB or CN hopping parameters(tCB, tCN) the fit of PDOS can be improved,

although not exhaustively. Incremental improvements of fitting can be further envis-

aged by tuning the Hubbard U for B and N and tCB, tCN . Partitioning of sites as per

their proximity to the interfaces can bring in additional scopes of variation in fitting

parameters. However, our goal here is to demonstrate the validity of the mechanism

suggested by DFT results, within the framework of Hubbard model, and to that end,

an exact evaluation of parameters is not an essential requirement. We thus only vary
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the onsite terms of B and N and keep all the other parameters same as graphene[19].

Various literature[20, 21, 22] indeed suggests variations of those parameters within

20% on average.

Using first principles data we estimate the exchange coupling parameter J and

the corresponding transition temperature(TC) by using the Ising model of honeycomb

lattice considering nearest neighbor coupling only[23] as,

TC =
2J

ln(2 +
√

3)
, (5.2)

where −6J = (EFM −EAFM), and EFM , EAFM are the energies corresponding to FM

and AFM configurations obtained from DFT.

5.3 Interaction between magnetic graphene islands

in hBN

First, we have considered interaction between an isolated pair of magnetic Gr-islands

embedded in a large segment of hBN, followed by honeycomb lattice made by the

same Gr-islands implying a graphene-hBN hybrid super-lattice.

We have considered two configurations of C4 islands: 3B1N(C4a) and 3N1B(C4b).

At their closest approach C4a(C4b) islands are separated by single N(B)[Fig.5.2(a:inset)]

site denoted as d=0, where d denotes an intermediate B-N pathway made of 2d+1

sites connecting two nearest graphene islands. Due to asymmetric sub-lattice cov-

erage, both the islands host a magnetic moment of (3-1)=2 µB according to Lieb’s

theorem for bipartite system.
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Figure 5.2: For C4 island within a hydrogen passivated hBN chunk: (a)energy
difference(EFM - EAFM) for different island separation d(Inset: C4a island in hBN
chunk for d=0 and the separation d) and spin density with single site separation(d=0)
for (b)C4a-N-C4a, (c)C4b-B-C4b. EFM - EAFM > (<) 0 favors AFM(FM) ordering.

5.3.1 Isolated pair of graphene islands

Magnetic islands in proximity in hBN have been argued from first principles calcula-

tion to favor AFM ordering as a means to allow delocalization of spin densities[17, 18],

although the exact mechanism is yet to be derived. Similar AFM ordering also ex-

ists for our systems irrespective of C4a or C4b islands[Fig.5.2(b,c)] within a isolated

hBN patch of increasing size. The strength of AFM ordering reduces with increase

of island separation d. With d >4 the islands in effect become isolated[Fig.5.2(a)].

The strength of AFM coupling is more if it mediates through N (C4a-island) than
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Figure 5.3: LSDA Spin density of a pair of (a)C4a(3B1N) and (d) C4b(3N1B) as
a part of a honeycomb super-lattices in hBN sheet are shown Planar projection of
Wannier functions representing 2pz orbital of C along (b) C-N and (e) C-B bonds for
honeycomb super-lattices made of C4a and C4b islands respectively. Spin-resolved
Wannier function of 2pz orbital of (c)the bridging N atoms between C4b islands and
(f) of the outer C atoms of the C4a islands connected through a B atom.

B(C4b-island) as shown by energy difference plot in Fig.5.2(a). Careful observation

of spin density at intermediate N and B atom shows a spatial separation for electrons

with opposite spins towards the two AFM ordered islands on two sides hinting at

a microscopic mechanism akin to super-exchange to be responsible for mediation of

magnetic order.

5.3.2 Honeycomb super-lattice of C4 islands

The smallest honeycomb super-lattice consisting of two C4a or C4b islands with sep-

aration of a single site(N or B) also shows AFM ordering between the Gr-island like

in pair of Gr-islands in hBN[Fig.5.2(a)]. Also like the latter, spatial separation of

opposite spins occur at N or B -site[Fig.5.3(a,d)]. To trace the origin of such spin

separation we looked at orbital resolved Wannier functions, which represents the ex-

tent of spatial localization of the 2pz orbitals of C and N. As evident from Fig.5.3(c),

at N-site, two unpaired 2pz orbitals with opposite spins(spin1 and spin2) extend spa-
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tially in opposite directions resulting in back transfers of electrons with opposite spins

from N to the two C atoms on its two sides. Similar back transfer of opposite spins

also happens from 2pz orbitals of the two C atoms to the N atom. Similarly for inter-

mediate B atom between the C4b islands[Fig.5.3(f)], the back transferred electrons

due to the 2pz orbitals of C atoms from nearest neighbor sites are of opposite spins

implying a spin separation about B as observed in the spin densities[Fig.5.3(d,e)].

Furthermore, the planar projection of the orbitals in Fig.5.3(b,e) implies that the

amount of back transfer electrons from C to B atom is relatively more than that from

C to N, which is consistent with the result that B mediated AFM ordering is stronger

than that mediated by N, implying a possible connectivity between spin separation

of lone pairs and back transferred electrons on sites along the -B-N- pathway, to the

observed AFM order of the Gr-islands it connects. In addition, the estimation of ef-

fective J using hybrid functional(HSE) for exchange-correlation confirms that -B-N-

zigzag connectivity between nearby Gr-islands favors AFM ordering more than -B-N-

armchair connectivity[17].

5.3.3 Mechanism of mediation of magnetic ordering

The spatial separation of orbitals of opposite spins implies a super-exchange like

mechanism for propagation of magnetic order through -B-N- pathway. We consider

spin dependent hopping parameter within the TB model and test its relevance in

determining the magnetic ordering of the ground state. Spatial separation of WFs

representing the N lone pair suggests a symmetric displacement for the orbitals with

opposite spin from the atomic site as considered schematically in Fig.5.4(a), which

naturally implies spin asymmetry of hopping. This also implies an equal enhance-

ment of orbital energy i.e. the onsite energy value for both the spins since they

move away from the local minima of the potential. We consider a pair of C4(C4a
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& C4b) islands in close proximity (d=0) within a large hBN segment so that the

edges are sufficiently away from the islands to mutually impact magnetism of each

other. Imposing the appropriate constraints we then calculate AFM, FM and non-

magnetic(NM) ground states as a function of spin-asymmetric of hopping defined as,

∆t = t− t′ applied to all the B-C and N-C bonds around the islands, and increase in

onsite term of the associated B and N sites denoted by Eon−site. The true magnetic

ordering of the ground state is obtained by comparing total energies calculated from

AFM, FM and NM conditions. We chose Gr-islands within an isolated hBN segment

in order to avoid the dependence of the magnetic ordering on the periodicity of unit

cell. From MFH based phase diagram[Fig.5.4(b,c)] it is evident that without spin

dependent hopping(∆t = 0) the ground state is FM ordered with total magnetiza-

tion 4µB obtained from two FM ordered C4 island, which is in disagreement with

DFT result. Within MFH model the emergence of AFM ordered ground state is only

possible beyond a threshold value of ∆t. As evident from Fig.5.4(b,c) the threshold

value of ∆t decreases with decreasing U and with increasing onsite term. Therefore,

with all the standard onsite energy values and U for B, C and N site, spin depen-

dent hopping parameter is indispensable in order to have the AFM ordered ground

state for Gr-islands, as observed with DFT. These results thus point out the role of

onsite Coulomb correlation at the intermediate B and N sites in mediating the AFM

ordering between Gr-islands. Also, the result that the onset of AFM ordered ground

state occurs at a lesser threshold value of ∆t [Fig.5.4(c)] in case of B mediated C4b

islands agrees with the DFT result that B mediated AFM order is stronger than N

mediated AFM order. We recall here that in sec.5.3.2 this trend was rationalized

based on higher rate of back transfer of electrons from C to B than that to N. This

analysis thus establishes onsite Coulomb repulsion driven spin dependent hopping as

a generic refinement of TB model for bipartite lattices with different onsite energies at
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Figure 5.4: (a)Schematic representation of spin dependent hopping mechanism. Con-
tour plot of total magnetization of the ground state calculated as a function of (t-t’)
and onsite energy Eon−site for a pair of (b)C4a(3B1N) and (c)C4b(3N1B) islands with
d = 0 in a finite hBN segment at three different U values(2.0, 3.0 and 4.0) eV. For
U=4.0 eV and U=2.0 eV the FM-AFM boundary is shown by black dotted line.

two sub-lattices, where the sites in rich sub-lattice offer super-exchange like pathway

for magnetic ordering.

5.3.3.1 Microscopic model

Schematic diagram of Fig.5.5(a) summarizes the mechanism of propagation of AFM

order through -B-N- zigzag pathway between Gr-islands. In fact, this mechanism

point out a general property of magnetic ordering mediated via zigzag bipartite lat-

tices between two local magnetic moments [Fig.5.5(b)] and inherently it would be

AFM irrespective of whether the local moments belongs to the same or opposite sub-

lattices as represented in Fig.5.5(b). Notably, this is different from graphene because

there the nature of magnetic interaction depends on whether the moments are on

same or different sub-lattices. The interaction between local moments in hBN be-

comes weak if the intermediate -B-N- pathway consists of an equal number of B and

N sites, as this implies an integer number of B-N bonds and the back transfer of elec-

trons along the bonds can occur on equal footing for both the spins in order to reduce

the kinetic energy. This is also the possible reason why -B-N- armchair connectivity
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function representing the 2pz orbitals of (e) the two N atoms back transferring to the
C in the middle.

is less effective in the propagation of AFM order.

5.3.3.2 Switching of anti-ferromagnetic to ferromagnetic order

This mechanism[Fig.5.5(a)] also suggests that the AFM order can be switched to

FM order if in the connecting pathway another unpaired electron is added as shown

schematically in Fig.5.5(c). An unpaired electron can be due to a single substitution

of C at B or N site or more generally due to formation of another magnetic Gr-island

within the -B-N- pathway between the two Gr-islands of the honeycomb lattice. Spin

densities in Fig.5.5(d) and Fig.5.5(e) without and with the intermediate C between

the C4 islands respectively, indeed confirms the anticipated switching of magnetic

order from AFM to FM between Gr-islands(C4a) connected through -N-C-N- zigzag
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pathway. The role of the unpaired electron in emergence of FM order of the mag-

netic Gr-islands is evident from spin density [Fig.5.5(e)] and Wannier function plot[

Fig.5.6(a,c). The two neighboring N atoms on two sides of isolated C is seen to back

transfer electrons to that C atom of similar spin (spin1)[Fig.5.6(a,c)] due to the pres-

ence of an electron with opposite spin(spin2) at C[Fig.5.6(b)], hence it appears to

open up a half-metallic bridge along the connecting pathway of the two Gr-islands.

5.4 Ferromagnetic ordering in honeycomb-Kagome

double-lattice

Incorporation of additional local moments between the two nearest moments, which

constituted the honeycomb(H) lattice, essentially implies an interpenetrating honeycomb(H)-

Kagome(K) double-lattice of local moments, wherein, different choices of location of

the additional moment would lead to different twisted Kagome lattices. Here on-
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wards we will focus on electronic structure and magnetism of a systematic variety of

H-K double-lattices of Gr-islands in hBN, which we will refer as the Gr-hBN hybrid

super-lattice.

We now describe a systematic understanding of variation of strength of FM or-

dering in the honeycomb lattice as a function of variation of the Kagome lattice as

apparent in Fig.5.7(a). We consider C4 islands to constitute the honeycomb lat-

tice and isolated substitution by C(X) to constitute the Kagome lattice. Note that

different locations of X lead to a variety of twisted Kagome lattices. The energy differ-

ence EFM − EAFM for C4a-X honeycomb-Kagome (H-K) super-lattices[Fig.5.7(b-e)]

suggests a systematic emergence of FM ordering between Gr-islands and a ferrimag-

netic ordering between the two super-lattices. As evident in Fig.5.7(b-e), the strong

FM ordering is possible only if X is at B(N)-site for the honeycomb lattice made of

C4a(C4b)-island. This observation actually reiterates the reason as discussed previ-

ously that the even membered -B-N- connectivity suppress the propagation of mag-

netic order and only odd membered -B-N- pathway enhances the strength. These

results suggests[Fig.5.7] that for d ≤4 which allows a separation up to about 12Å be-

tween magnetic Gr-islands in the honeycomb lattice and up to about 10Å separation

between nearest Kagome and honeycomb sites, strong FM ordering[Fig.5.7(d,e)] in

honeycomb lattice can occur. In fact, these results are valid for any general Cm-Cn H-

K super-lattices, where Cm and Cn represent two types of magnetic graphene islands

constituting the two lattices. The islands can be chosen to be similar or dissimilar,

even if the islands in two sub-lattices are similar we note that there will be different

numbers of islands for the two sub-lattices per supercell. Both examples have been

demonstrated in sec.5.5. As the strength of the FM order depends on d[Fig.5.7(b-

e)] this can also be understood as a competition between the inherent AFM order

between the Gr-islands in the honeycomb lattice and the induced FM order by the
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Kagome lattice of X sites. Since, the strength of AFM order reduces with increasing

d it leads to a peak for the FM order which reduces further with the increase of d >4,

implying a length scale up to nanometers.

5.4.1 Different phases due to ferromagnetic ordering

The switching of magnetic order in these Gr-hBN hybrid super-lattices has an impor-

tant impact in their electronic structure in comparison to pristine graphene and hBN.
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In this honeycomb super-lattices, the FM ordering leads to FM-semiconducting(FM-

Sc) to half-metallic phases depending on the position of X, whether it is at B or

at N site as implied in DOS plot of Fig.5.7(a). To understand this emergence of

FM-Sc or half-metallic phases we resort to the orbital resolved projected density of

states(PDOS). As evident from PDOS plot[Fig.5.8(a,b)], the relative shifts of ener-

gies of (A)the 2pz orbitals of edge C atom of the Gr-islands and (B)those of the C

atoms at X site leads to these two regimes. For a general understanding, projected

density of states corresponding to the sets of orbitals A, B is presented schematically

in Fig.5.9(a-d) by solid and dashed lines respectively. The relative energy shift of

orbitals A and B, which are contributed from opposite spins, can be understood by

noting whether they are hosted by C-atoms at B or N-site and the degree of their local-

ization. Notably, the pz orbitals at X-sites due to isolated substitution becomes more

localized than those of the Gr-islands at honeycomb site and the amplitude of spin

separation of energy due to onsite Coulomb repulsion depends on the degree of local-

ization. Fig.5.9(a,b) and Fig.5.9(c,d) suggests similar properties of the C4a-X:(N,B)

and C4b-X:(B,N) H-K super-lattices. Also the half-metallic and FM-Sc phases due
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to X:N(B) and X:B(N) for Gr-islands C4a(C4b) are in agreement with DFT results

shown in Fig.5.7(a). This schematic representation thus suggests a more delocalized

spin at X site as the key parameter for a more robust half- metallic window, which is

possible if either the X sites are close to each other as seen in Fig.5.7(a,4B,5N), or X

sites are replaced by Gr-islands as discussed in sec.5.5.

For all the systems the effective strength of exchange interaction J and the

corresponding transition temperature are estimated within the Ising model of spin

Hamiltonian[23] for honeycomb lattice. For FM ordered ground state the estimated

temperature TC [Eq.5.2] indicates the possibility of existence of the proposed FM

order at room temperature. In fact, all representative configurations having energy

difference (EFM - EAFM) ≥ 0.3 eV, in principle present possibilities of ferromagnetism

at room temperature.
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zigzag path due -N-C-N- connectivity between C4a islands calculated using PBE,
HSE and from MFH at U=3.0 eV and 6.0 eV.

5.4.2 Confirmation with improved exchange-correlation func-

tional

By using hybrid exchange-correlation functional(HSE) the enhancement of the effec-

tive J beyond its PBE value confirms the robustness of the FM ordered honeycomb

lattice in the ground state. Fig.5.10(a-c) clearly suggests that for FM ordering of

the honeycomb lattice within MFH spin dependent hopping around the B-C and

N-C bonds is indeed an important parameter. Densities (pz only) obtained from

Löwdin analysis using PBE/HSE for both the spins along the C-C-N-C-N-C-C path-

way[Fig.5.6(c)] matches well[Fig.5.10(b,c)] for a finite ∆t value. Since at high U limit

Hubbard Hamiltonian evolves into a spin exchange Hamiltonian, it was possible to

match PBE and HSE densities(both spin) along the zigzag pathway with MFH den-

sities at U=3.0 eV [Fig.5.10(b)] and U=6.0 eV [Fig.5.10(c)] respectively, with a finite

∆t. These agreements thus confirm the central role of Coulomb correlation driven

spin dependent hopping in rationalizing the FM ordering between the Gr-islands of
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the honeycomb lattice in the H-K double-lattice of Gr-islands in hBN.

5.5 Hybrid super-lattices with bigger graphene is-

land

For generalization of the observed phenomena with C4-X H-K super-lattices, a similar

systematic analysis has been done with bigger Gr-islands such as C9(6B3N) for the

honeycomb lattice and up to C4 for the Kagome lattice. The energy difference EFM

- EAFM plotted in Fig.5.11(a-c) for C9-X(B/N) shows a systematic emergence of

FM ordering in honeycomb super-lattices and its evolution w.r.t island separation,

d is similar to that observed for C4-islands in honeycomb lattice. The strong FM

order only occurs with X:B[Fig.5.11(a,b)] and due to its zigzag connectivity via odd

number -B-N- sites with neighboring Gr-islands[Fig.5.12(a)]. This observed similarity

with C4 Gr-islands, therefore, generalizes the intermediate pathway for strong FM

ordering as -(2d+1 B, N)-C-(2d+1 B, N)-. These results also suggest that in general

if an odd number of magnetic Gr-islands (single C atom(C1) or a patch(Cm, m >

1)), located within a length-scale of nanometer of each other within hBN, can be

ferrimagnetically ordered with a finite magnetic moment, which is probably easier

to observe. The strong FM order leads to FM-Sc phase for C9 H-K super-lattice,

which is evident from Fig.5.12(a). Here the orbitals near Fermi energy is from edge

C-atoms of the C9 island and the Kagome X site[Fig.5.12(b)], which is consistent

with the schematic plot of DOS of Fig. 5.9(b). Similarly for Kagome site with

X: N leads to half-metallic phase, although it is very weak beyond d >1 as the

energy difference is very less[Fig.5.11(b,c)]. In Fig.5.13 we have presented a few

different combinations of Gr-islands in both honeycomb as well as Kagome lattices

to exhaustively establish our observation of FM-order and mechanism of switching of
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magnetic ordering as explained in previous sections. According to energy difference

and total magnetization[Fig.5.13(f)] all configurations correspond to the FM ground

state, which is also evident from FM ordering between honeycomb sites as shown

in spin density profile[Fig.5.13(a-e)]. With enhanced substitution at N-site for the

islands which constitute the Kagome lattice, the half-metallic window becomes more

robust compared to single substitution[Fig.5.7(a)] and this systematic is indeed true

irrespective of island configurations at honeycomb site[Fig.5.13(a,b,d)]. Whereas, for

B-rich island at Kagome site always lead to FM-Sc phase with smaller as well as

larger islands at honeycomb site[Fig.5.13(c,e)].
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EAFM > (<)0 corresponds to AFM(FM) ground state.
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5.6 Effect of additional hBN layer

Here we probe the retention of the observed magnetic order in GR-hBN hybrid super-

lattice due to presence of an additional hBN layer beneath. Since A-B stacking is

known to be energetically favorable[24] for hBN bilayer systems, we have considered

A-B stacking between hBN monolayer and Gr-hBN hybrid layer. From the energet-

ics[Fig.5.14] it is clearly evident that the switching or enhancement of FM ordering

in Gr-hBN hybrid layers[Fig.5.14(1-4)] remain intact in the presence of an additional

hBN layer beneath. From the energetics and the spin densities[Fig.5.15(b,e)] it is

clearly evident that the FM order and generic mechanism of mediation of magnetic

order through -B-N- pathway remain preserved.
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5.7 Possible experimental realization

Hexagonal boron nitride with a patterned distribution of graphene islands are fast

become experimentally realizable[Fig.5.16]. The novel synthesis technique of forma-

tion of these Gr-hBN in-plane heterostructures imposes a high impact in the field of

theoretical as well as experimental research. In recent years fabrication of graphene

domain with controllable shape and size[13, 25, 11, 26, 27, 28] within hBN matrix

makes them attractive for various applications. These precise fabrication processes

and several modern measurement techniques in this nanoscale regime encourages our

theoretical observation.
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Figure 5.16: (A)(a) Schematic diagram of the patching growth. (b) SEM morphology
of hybridized domains. (c) XPS spectra of B, N, C 1s core levels. (d,e)(VT = -0.002 V,
IT = 23.00 nA; -0.011 V, 6.30 nA) Atomically resolved STM images of pure h-BN and
graphene on Rh(111), respectively. (f)(-0.200 V, 33.30 nA) Zoomed-in STM image at
the boundary linking h-BN and graphene. (g) Cross-sectional profiles along L1 and L2
in (f)showing the apparent corrugations spanning over two analogues.[Ref.[25], (B)(a)
DFT calculations of the binding energies (Eb) of graphene, h-BN, and BNC hybrids.
(b) Two typical BNC hybrids of BN@G and G@BN. (c) (VT = 0.800 V, IT = 0.02
nA) Large-scale STM images showing the preferred linking of graphene to preexisting
h-BN domains. (d) (0.700 V, 0.02 nA) and (e) (0.400 V, 0.02 nA) Sequential zoomed-
in of (c)[Ref.[25], (C)(a) Schematic illustration of the temperature-triggered switching
growth between in-plane h-BN-G and stacked G/h-BN heterostructures, defined as
Route 1 and Route 2, respectively.(b)SEM image of a sample synthesized by Route
1, showing discrete hexagonal graphene islands embedded in h-BN. (d)AFM height
images of h-BN-G after being transferred onto 300-nm-thick SiO2 substrates, with
corresponding height histograms and line sections shown in (f)The scale bars in d is
1[Ref.[28], (D)d-f, SEM image, optical image and Raman mapping of a graphene/h-
BN array of circles, with graphene circles embedded in an h-BN matrix. Scale bars,
50 m (d), 50 m (e) and 10 m (f). g,h, SEM images of graphene/h-BN stripes. Scale
bars, 50 m (g) and 10 m (h).i, SEM image of graphene/h-BN strip structure with
graded strip dimensions, fabricated by FIB etching of h-BN and subsequent graphene
growth. The widths of each strip, from top to bottom, are 1 m, 500 nm, 200 nm and
100 nm, respectively. Scale bar, 1 m. [Ref.[11]]
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Chapter 6

Electrocatalysis with hybrid layers

made of 2p-block elements

6.1 Introduction

Two dimensional materials have received much attention as a promising host for

physics and chemistry at nanoscale. In these systems, the strong co-planarity of

atoms on account of their sp2 hybridized orbitals makes them chemically inactive

on their own, but controlled chemistry with appropriate functionalization of these

materials has been long envisaged to be advantageous [1, 2, 3, 4] owing to the large

surface to volume ratio that they offer. The most popular means of functionalization

has been through substitutional doping[5, 6, 2, 7] by neighboring elements in the 2p

block, such that, the intra-layer coordination remains intact while the extra electron

or hole acquired in the process facilitates the emergence of new physical and chemi-

cal properties like magnetism and electrocatalysis[8, 9]. In fact, from understanding

of previous work, as well as in course of this work, we show that these two proper-

ties are intertwined and sourced inherently at Coulomb correlation, unrevealing the
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underlined mechanism is the main motivation of this chapter.

In past few years, primarily boron(B) and/or nitrogen(N) doped graphene[10,

11, 12, 13], carbon nanotubes[14, 15] have been extensively explored as platform for

electrocatalysis[16, 8]. Conversely, carbon(C) doped hBN is also expected to offer

similar platform since the neighborhood of a C dopant in hBN is similar to that of an

activated C in graphene due to co-doping[17, 11] by B and N around it. One important

demerit of hBN as cathode is its insulating nature, which would impede the flow of

electron to active sites. However we envisage solution of this problem by introducing

islands of graphene in hBN. Indeed formation of graphene islands(Gr-islands) due

to successive substitution of C in hBN has been experimentally observed[18, 19, 20,

21, 22]. First principle studies reported so far are based on isolated substitution,

[23, 24] which therefore do not represent the true nature of electrocatalysis offered by

C-doped hBN.

Accordingly, in this work we focus on chemical activation of islands of graphene

in hBN. We study a representative variety of configurations with substitution by C in

hBN starting from isolated to big C-islands to rationalize different scenarios of chem-

ical activation down to atomistic details. In this chapter, we present a comprehensive

survey of possible active sites from analysis of bond order calculated from mean-field

Hubbard model within the tight-binding framework. Detail mechanism of chemical

activation and catalytic support to oxygen reduction(ORR) and evolution reactions

have been understood from calculation of free energies and construction of spatially

localized Wannier function from first principles. The primary goal of this work has

been to propose a metal-free alternate to the precious metal used in cathodes of fuel

cells, where ORR plays the central role. In the process we also propose a quantitative

framework to estimate the degree of chemical activation.
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6.2 Calculation details

All equilibrium configurations and energetics are obtained from DFT based first

principles calculation[sec.2.2.3], wherein, wave functions of valence electrons are ex-

panded in plane wave basis and the effect of core electrons can be approximated by

a class of maximally smooth ultrasoft[sec.2.2.2.2] pseudopotentials which substan-

tially reduce the range of plane wave basis required for their adequate representation.

Exchange-correlation contribution to total energy is approximately estimated using

gradient corrected Perdew-Burke-Ernzerhof[25] functional. Configurations of substi-

tution by C is considered in 8×8 hBN supercell. Total energies are minimized using

the BFGS[sec.2.2.2] scheme and converged with plane wave cutoff more than 800

eV, k-mesh in effect up to 40×40 per pristine unit cell and forces less than 10−4

Rydberg/Bohr per atom. Physisorbed configurations have been further relaxed by

incorporating dispersion interaction[sec.2.2.3.2].

The nature and degree of chemical activation due to substitution by C is estimated

by studying the evolution of sub-shell filling and charge neutrality of atoms, estimated

through partitioning of charge density in spatially localized Wannier functions(WFs)

as detailed in sec.2.4.1.1.

Formation energies of the substitution configurations are estimated per C atom

as:

[(Edoped − Eundopped) + nNµN + nBµB − (nN + nB)µC ] /(nN + nB), (6.1)

where Edoped and Eundoped are total energies of the hBN system with and without

substitution by C. µC and µN are chemical potentials estimated realistically as energy

per atom in graphene and N2 respectively. µB is calculated as µhBN − µN where
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µhBN is approximated as total energy per B-N pair in hBN considering N-site rich

environment[26]. Total energies are obtained from DFT calculation.

Adsorption energies for adsorbate estimated from total energies(E) as calculated

from DFT as,

Eads = Esubstrate+X − Esubstrate − EX , (6.2)

where X is adsorbed species and substrate corresponds to different C substituted hBN

configurations.

Gibb’s free energy of reaction coordinates are evaluated as[27]:

G = E + ZPE − TS, (6.3)

where E is total energy, ZPE(=
∑

i ~ωi) being the zero point energy with ωi being

the frequency of the i−th phonon mode calculated using first principles[sec.2.2.3.1], T

is fixed at room temperature, and entropy S taken to be non-zero only for molecules

in gas phase for which standard literature[28] has been followed.

6.2.1 Bond order calculation

We propose that the reactivity of active sites can be understood by estimating bond

order(BO)[29] involving the active site. BO is a measure of charge distribution along

the bond. A bond with higher BO value is more stable and thus less active towards

reactants. In past few decades, several approaches[30, 31, 32, 33, 34] have been devel-

oped for calculation of BO although, most of them have evolved around the concept of

orbital overlap population[30, 35] originally defined within the realm of molecular or-

bital(MO) theory[31, 32] and later formulated in terms of density matrices[36]. Much

elegantly, BO was connected to the exchange component of two particle density,[33]

which was also subsequently extended to describe unpaired electrons[37]. Recently, an
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effective interpretation of BO has been proposed based on the partitioning of charge

and spin densities[34].

However, we have resorted to conventional definition of BO based on MO theory[29]

as,

BO =
Nb −Nab

2
, (6.4)

where Nb and Nab are occupation of bonding and anti-bonding orbitals. To esti-

mate Nb and Nab we resort to single orbital mean-field Hubbard(MFH) Hamiltonian

[sec.2.3.4.1], which is known to be a good approximation for unhybridized pz orbital

of 2p-block elements[19]. In the basis of single pz orbital per site for each spin we

rewrite the |ψb〉 and |ψab〉 as,

|ψb〉 =
1√
2

(
1 1 0 0...

)T
, |ψab〉 =

1√
2

(
1 −1 0 0...

)T
. (6.5)

The occupation of electrons in bonding(Nb) and anti-bonding(Nab) orbitals for a single

bond is calculated from projection as,

Nb =
∑
m

fm〈ψMFH
m |ψb〉, Nab =

∑
m

fm〈ψMFH
m |ψab〉, (6.6)

where m is the number of atomic sites, fm is the occupation factor and |ψb〉, |ψab〉 are

bonding and anti-bonding basis respectively. Average BO (ABO) of each atomic site

is then estimated by averaging over BOs of all the nearest neighbor(n-n) bonds made

by the atom as

ABO =
1

Nnn

Nnn∑
i=1

BOi. (6.7)

A systematic analysis based on ABO has been discussed in the following for some

small systems.

The estimated ABO, starting from a C-C trimer to a big C-island, shows a sys-
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C=13

C=22 C=33

1.7 1.5 

C=3 C=4 C=6 C=7

Graphene 

Figure 6.1: Average bond order(ABO) for isolated C-island starting from C=3 to
C=33 atoms and graphene sheet. Color scheme represents a different order of sharing
of electrons between the neighboring sites. The arrow shows the ABO variation from
edge towards the middle(bulk) region.

tematic evolution with respect to system size[Fig.6.1]. Agreement of the ABO value

of the single hexagonal ring(C=6) i.e. ABO = 0.67(π-only) with that of benzene[38]

and for graphene(0.525, π-only)[38] with MO calculation confirms the usefulness of

our simple approach.

As evident from the trend of ABO values implied in Fig.6.1 with increasing island

size the C-atoms in the bulk of the islands should behave increasingly like in pristine

graphene, whereas the C-atoms at the vertices behave increasingly like those in C=3

trimer.

However the ABO values of these C-atoms modify substantially as we considered

them embedded in hBN as discussed in sec.6.3.2.1.
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6.3 Carbon doped hexagonal boron nitride

2B

3B

1N

2N

1B 2B1N

1B2N

1B3N

3B1N

1B1N
2B2N

2B3N3N
3B4N

4B3N 10B12N

3B3N−B

3B2N

12B10N

6B7N

7B6N

3B3N−A

18B15N

15B18N

8B8N

Figure 6.2: Representative variety of configurations with substitution by carbon in
hexagonal boron nitride.

For our systems of interest, we consider a representative variety of configurations

of substitution by C in hBN, with an increasing number of C atoms as described in

Fig.6.2. A general nomenclature of (nB+nN)C=nBBnNN has been used to denote the

number of B(nB) and N(nN) sites substituted by C in the immediate neighborhood

of each other. Thus, nB = 0 or nN = 0 would mean substitution only from next

nearest sites constituting the N or B sub-lattices, whereas, nB = nN would imply

substitution from nearest neighboring sites such that all the C atoms can in principle

have a double bond in pairs. By the same argument, nB 6= nN would imply |nB−nN |

number of C atoms to have all three single bonds and would thereby have incomplete

sub-shell filling unless negatively charged. It is the ratio of number of C-C single

and double bonds(C=C) and the distribution of C atoms with all single bonds, which

determine the energetics of substitution.
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Figure 6.3: Formation energy (per C atoms) of C substituted hBN configurations
shown in Fig.6.2. The dashes and solid arrows show the variation in average formation
energy with increasing number of N and B atoms respectively for the fixed number
of B and N atoms.

6.3.1 Energetics of substitution

Substitution energy of representative configurations have been calculated using Eq.6.1.

As evident from Fig.6.3 substitution by C in hBN is endothermic. Substitution by C

is more favorable at B site than at N site, primarily because the dissociation energy

of C-N σ-bonds are higher than those of C-B σ-bond owing to the ascending order

of electronegativity from B to N, which is also reflected in the fact that C-B single

bond is about 10% longer than a B-N bond, while the C-N bond is 5% smaller than

B-N bond. It is thus obvious that replacement of B-N bonds by C-B bonds to be

energetically costlier than replacement of B-N bonds by C-N bonds, which explains
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why the substitution of B by C is energetically more favorable than the substitution

of N by C. Thus, in general, the average (per C atom) formation energy of C doped

regions should increase at a higher rate with increasing nN than with increasing nB,

which is consistent with the trends highlighted in Fig.6.3. Notably, nB = nN in-

deed leads to C=C bonds of order 2 as evident from the distribution of Wannier

centers(WCs) shown in Fig.6.9(f). Since a C=C bond is about 10% shorter than B-N

bonds, compressive strain due to C=C bonds will compensate the expansive strains

due to the C-B and C-C single bonds, thus resulting into low formation energy of C

doped regions with nB = nN . Furthermore, with equal no.of substitution by C i.e.

nB = nN = 3, in closed loops is more preferable over chains owing to the uncom-

pensated strain which is present around the terminal C atoms of a chain. This is

clearly evident in Fig.6.3 and explains the preference for substitution by C from near-

est neighboring sites, leading to the formation of Gr-islands in hBN[39, 40]. Fig.6.3

also suggests that with increasing size of the even membered patch(nB = nN), the

difference in energy required for substitution of an N or B by C at the edge of the

even membered patch decreases. Therefore it is realistic to consider bigger C-islands

i.e. Gr-islands in hBN with nB 6= nN .

In this chapter, we will focus on different Gr-islands starting from C=3 to C=33,

considering both B-site rich(nB > nN) and N-site rich(nN > nB) configurations of C

substitution. Along with that, single site(1B & 1N) substitution has been calculated

as a reference for discussion in context with published literature.

6.3.2 Chemical activation

To study the scenarios of chemical activation due to the substitution of nB and nN

number of B and N atoms by C in hBN, it is reasonable to expect that for nB 6= nN

there can be at least |nB − nN | number of active C atoms since each of the rest of
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the 2*Min(nB, nN) number of C atoms can in principle make one C=C bond each.

Their activation is primarily rooted at their unpaired pz electron since these C-atoms

will be constrained to have only C-C σ-bonds with their neighbors. However, the net

activation due to the |nB − nN | active sites will be distributed across the C-atoms

primarily over the zigzag edges of the islands. The active C atoms are thus likely to

be located at the graphene hBN interface[21, 41].

In Table.6.1 we have listed adsorption energies[Eq.6.2] of H atom and few common

radicals on an isolated C due to a single substitution(1C) as well as on the most

active C in a bigger island made of twenty two C-atoms(22C). At this point, the

most active site is defined as the site which offers the strongest adsorption, which we

substantiate formally in the following[sec.6.3.2.1]. Since the adsorbing site is a C-atom

it is expected to observe different trends in adsorption of species which have higher or

lower electronegativity compare to C. Accordingly, we find that for species which are

more electronegative than C such as N and O adsorbed more strongly on C@B site

than on C@N site, whereas species with lower electronegativity like H adsorb strongly

on C@N site than on C@B site. Reduction in adsorption energy on 22C compared to

that on 1C also suggests moderation of activation in bigger Gr-islands in general.

Species 1B(C@B) 1N(C@N) 12B10N(C@B) 10B12N(C@N)

H -4.63 -5.06 -3.38 -3.67

OH -4.52 -3.78 -3.10 -2.81

OOH -3.06 -2.35 -1.67 -1.34

CH3 -3.69 -3.79 -2.38 -2.54

NO2 -2.27 -2.09 -1.07 -0.79

NO -1.65 -1.64 -0.53 -0.60

Table 6.1: Adsorption energy in eV.
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6.3.2.1 Average bond order(ABO) as a measure of activation

In Fig.6.4 we have plotted the adsorption energy of atomic H on all the inequivalent

C-atoms in a magnetic and non-magnetic Gr-island embedded in hBN. As discussed

in the previous chapter[sec.5.3] Gr- island with nB 6= nN will have a net magnetic

moment of |nB − nN | µB. Fig.6.4 clearly implies a higher level of activation for the

magnetic Gr-islands thus implying an intimate connection between chemical func-

tionality and magnetism of C doped hBN, which we explore in detail in sec.6.3.2.3.

We, therefore, focus henceforth exclusively on magnetic Gr-islands in hBN.
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Figure 6.4: Adsorption energy of H-atom at inequivalent sites(gray filled circle) of
(a)1C and 13C, (b)22C, (c)6C and 16C Gr-island embedded within hBN.

118



-0.1

0

-0.1

0

1 2 3 4 5 6 7 8 9 10 1112 1314

-0.1

0

-0.1

0

-0.1

0

1 2 3 4 5 6 7 8 9 10 1112 1314

-0.1

0

4

32
1

5

6

9

10

11

12

13

14

8
7

1

9

10

11

12

13

14

1

11

10

13

12

14

9

2

1 2

9
10

11

13

12

14

1 2

3

4

9
10

11

12

13 14

1

2

5

7

6

3

4

9

10

11

12

13

14

1B

1N

2B1N

1B2N

3B1N

1B3N

6B7N

7B6N

10B12N

12B10N

(a)

(b)

(c)

(d)

(e)

(f)

A
v
e
ra

g
e
 B

O
 

A
v
e
ra

g
e
 B

O
 

A
v
e
ra

g
e
 B

O
 

A
v
e
ra

g
e
 B

O
 

A
v
e
ra

g
e
 B

O
 

A
v
e
ra

g
e
 B

O
 

Sites Sites 

18B15N

15B18N

Figure 6.5: Average bond order(ABO) values at different sites in reference of pristine
graphene(for C-site) and hBN(B,N-sites). ABO values at different sites for differ-
ent C-substitution(gray circle) configurations: (a)single C(1C), (b)3C, (c)4C, (d)13C,
(e)22C and (f)33C, where red(black)circles represents the N-site rich(B-site rich) sub-
stitution and blue dotted line define the sites as written in x-axis of all plots.

We now demonstrate that the active sites can be easily identified by calculating

their ABOs. In Fig.6.5 we have plotted the ABO values for the inequivalent C-

atoms. Notably, Fig.6.5(d,e) are plots the ABOs of the chemically active sites evident

in Fig.6.4(a,b) respectively. The agreement in trends of chemical activation of the

inequivalent C-atoms and those of their ABOs suggest that the latter is an efficient

marker of the level of chemical activation of each site.

Since a lower value of ABO of a site implies increased availability of electron

at that site, Fig.6.5 indeed suggests that the sites with lowest ABOs are the most

active, as evident from comparison of Fig.6.4(a,b) and Fig.6.5(d,e). Fig.6.5 unam-

biguously implies lowering of activation with increasing size of magnetic Gr-islands

as also evident in terms of H-adsorption on 13C and 22C depicted in Fig.6.4(a,b)

respectively. Also as we see from Fig.6.5(a) to (f), the relative difference of ABOs

between equivalent C at N(C@N) and C at B(C@B) sites reduce with increasing size
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of Gr-islands in general. Therefore active sites with a modest level of activation can

be available at the zigzag interface of magnetic Gr-islands. Fig.6.5 suggests that the

most active C atoms are likely to be found near the middle of zigzag edges as also

implied in Fig.6.4. As per Fig.6.5 the degree of activation of such sites converges for

islands of size beyond few nm2.

6.3.2.2 Activation as a function of electronegativity

In principle, the degree of activation would also depend on change in magnitude of

ABOs upon adsorption, since enhancement of ABOs would essentially imply increased

in-plane delocalization of pz electrons leading to lowering of kinetic energy. In Fig.6.6

we therefore plot the change in ABO(∆ABO) which is (ABOfinal - ABOinitial), where

“initial” and “final” denotes in-plane ABO before and after adsorption. In Fig.6.6

we have plotted ∆ABO as a function of onsite energy of the adsorbed atom with the

aim of studying the variation of activation as a function of adsorbed species as listed

in Table.6.1. We note that the trend of switching of favorable adsorption site(C@N

or C@B) for species with higher and lower electronegativities compare to that of C,

as evident in Table.6.1, is also present in the plot of ∆ABO about the onsite energy

of C which is set to zero. The switching is evident by noting that for onsite energy

> 0, which implies electronegativities lesser than that of C, adsorption on C@N site is

more favorable as also seen in Table.6.1, whereas for onsite energy < 0, which implies

electronegativities higher than that of C, adsorption is more favorable on C@B site.

6.3.2.3 Correlation between chemical activation and magnetism

In this section, we explore the magnetic origin of the variation in activation of different

inequivalent C-atoms in Gr-islands in hBN. In Fig.6.7 we have plotted the density of

states(PDOS) projected on pz orbitals for both the spins. We see in Fig.6.7 that the
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splitting in energy of the spin-polarized 2pz orbitals are the highest in 1B and 1N

followed by that of most active sites in 13C and 22C, implying an undeniable role of

Coulomb correlation in rendering those C-sites chemically active.

In Fig.6.8, we have compared the difference of ABO of the C-sites from that of

graphene as a contour, with spin densities calculated from MFH and DFT. The sites

with higher contour values of ABO difference are the most active sites and also has

the highest spin densities. This agreement between first principles results and MFH

based analysis gives us confidence about the robustness and generality of the proposed

BO based approach in discussing chemical activation.
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Figure 6.7: (a)Representation of inequivalent sites for PDOS plot, (b)PDOS for
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embedded within hBN.

The variation in spin density of the inequivalent sites is in agreement with the

variation of their activation as calculated from adsorption energies of H-atom,[Fig.6.4]

as well as from ABOs[Fig.6.5] Therefore, the ABO analysis and spin density in agree-

ment suggest two most active sites in each of the three zigzag edges of triangular

island 33C[Fig.6.8(c)].

6.3.2.4 Orbital view of chemical activation

The underlying mechanism of chemical activation can be understood from spatially lo-

calized Wannier functions(WFs) and distribution of Wannier centers(WCs) [sec.2.4.1.1].

WCs plotted in Fig.6.9(b-e) suggests single C-N or C-B bonds in case of isolated sub-

stitution at B or N site, leading to an incomplete sub-shell filling of those C atoms and

localization of their 2pz electrons, which is consistent with our discussion in sec.6.3.2.
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Those C atoms will thus be chemically active in an attempt to achieve complete

sub-shell filling and reduce the kinetic energy of the 2pz electrons by engaging them

in a covalent bond. Activation of these C atoms is thus a result of the tendency to

maximally retain the charge neutrality and sub-shell filling of the surrounding atoms

in hBN, thus constraining C-N or C-B bonds of order one. Interestingly, spin resolved

WCs[Fig.6.9(b-e)] suggests charge redistribution for the spin which is absent(present)

on C@N(C@B), amounting to depletion(accumulation) of the same spin in the sub-

lattice made of N(B) atoms. as evident in Fig.6.9(b,c) and Fig.6.9(d,e). This can be

understood by noting that the increase in B-N bond order for spin-2 in effect imply

partial withdrawal of electron from N and transfer to B, leading to net non-zero spin-

1(spin-2) on N(B) sites respectively, thus leading to separation of spin between two

sub-lattices locally around the C-atom. Note that before substitution both spin-1 and

spin-2 are localized at N-site, but after substitution, the localization of only spin-1

in N-sites remain preserved while the spin-2 redistribute in an attempt to localize at

B-site in the vicinity of substitution.
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Figure 6.9: Planar projection of Wannier centers in hydrogen passivated patch of
hBN with: (a)no doping, with substitution by C of (b-c)single N, (d-e)single B,
(f)neighboring BN-pair. The smaller(bigger) translucent circle represents one(two)
WC(s) each representing one electron.

Such spin separation is known to be driven by correlation due to onsite Coulomb

repulsion between electrons of opposite spins, although, in pristine hBN, this is com-
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pletely suppressed [Fig.6.9(a)] by the large difference in electronegativity of B and

N. Notably, increase in B-N bond orders also causes deviation from charge neutrality

and sub-shell filling of B and N atoms of the hBN matrix around activated C-site.

The Motivation of activation of C-site also emerges from the fact that engaging the

unpaired electron of C in covalent bond through chemisorption on C[Fig.6.12](a,d)]

would quench the spin separation and thereby restores charge neutrality and sub-shell

filling of the host atoms around C-site.

Fig.6.9(b-e) suggests that chemisorption at C can be exothermic due to lowering

of the kinetic energy of the unpaired electron as it forms bond, and lowering of

potential energy due to quenching of localization of the unpaired electron, and also

due to restoration of charge neutrality and sub-shell filling in the rest of hBN sheet.

Coulomb correlation thus play a non-trivial role in activating C atoms at B or N site,

and the degree of activation will in part be governed by the level of correlation in

the two cases. Evidently, correlation is more in case of C@B [Fig.6.9(e)] than that in

case of C@N [Fig.6.9(c)], since the occupied sites (C and N) are nearest neighbors,

in the former and they are next nearest neighbors in the latter. This microscopic

description based on WFs enriches the description of activation proposed in terms

of ABOs. In fact, the evolution of BOs as apparent from the redistribution of WCs

upon substitution are consistently captured in the estimation of ABOs from MFH

model.

In principle, the WFs calculated from first principles can be used to compute

the parameters like hopping, the Hubbard term and onsite energy used in the MFH

Hamiltonian. Estimation of BOs and ABOs from such a Hamiltonian would truly rep-

resent the exact picture of activation specific to the system as schematically described

in Fig.6.10.
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Figure 6.10: Scheme of BO calculation.

6.3.2.4.1 Activation of B in the neighborhood of C@B : As per our scheme

of estimation of sub-shell filling and atomic charge based on WCs adopted in our work

[sec.2.4.1.1] the shell of neighboring B atoms around C@N[Fig.6.9(c)] has complete

sub-shell filling, whereas, at C@B [Fig.6.9(e)], the next nearest B atoms fall short by

one electron from completing their sub-shell filling. These B-atoms can also complete

sub-shell filling upon adsorption if assisted by charge transfer from the neighborhood.

Such possibilities of charge transfer have indeed been suggested recently[24] although

have not been conclusively linked to the activation of B-sites. However, we find the

exact microscopic pathway of charge transfer to be from C@B to N and N to B. In

the process, C@B and N both completed their sub-shell filling, although N loses its

charge neutrality. This is a rare occurrence of N to B charge transfer in an attempt

to complete sub-shell filling of B. Therefore it is either C@B or the B at next nearest

neighborhood can be chemically active. In principle, such activation B in the neigh-

borhood of C@B should be strongest in the immediate shell of B atoms around C@B

but should also be possible for further shell of B atoms with decreasing propensity.
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With nB = nN , formation of C=C π-bond [Fig.6.9(f)] completely quenches activa-

tion of C and thereby of B atoms in the vicinity as well, due to complete suppression of

correlation in the absence of an unpaired electron, which also results into retention of

charge neutrality and shell-filling in the rest of hBN. These conclusions are consistent

with the energetics[sec.6.3.1] and description of activation based on ABOs[sec.6.3.2.1].

Thus the WFs based picture of activation also suggests active sites exist only at the

zigzag edges of Gr-island in hBN made of nB 6= nN .

6.3.3 Catalytic activity

The active sites(C@N, C@B or B) are expected to chemisorb radicals in general.

In this part, we focus on their ability to adsorb O2 and facilitate their complete

reduction which is ORR. Following similar principles, this active sites can also evolve

O2 form H2O which is known as OER. We study the effectiveness of this active sites

in playing the role of catalytic host for ORR and OER in the environment of atomic

H as available in acidic medium.

6.3.3.1 Adsorption of O2

As evident from Fig.6.11 molecular O2 adsorbs in two configurations, either on a sin-

gle active C or B or as a bridge on two active C or B atoms, or as a bridge on two

active C and/or B atom. Owing to the triplet ground state of O2 in the gas phase,

calculation of its adsorption energy is nontrivial, since the ground states before and

after adsorption can have different magnetic moments. Energetics of adsorption of

molecular oxygen(O2) is calculated using Eq.6.2, where the total energetics are esti-

mated within LSDA. The energetics of adsorption of O2 on a variety of configurations

of substitution by C, as summarized in Fig.6.11, is consistent with our expectation of

stronger binding on C@B site than on C@N site as per the ABO analysis in sec.6.3.2.1.
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WCs plotted in Fig.6.12 implies that O2 adsorbs on active C through a single bond

and restores charge neutrality and sub-shell filling of the C doped hBN motif to that

of pristine hBN. WC based estimate of charge per atom (0.5e per bonding WC, 1e

per atomic WC) suggest chemisorption [Fig.6.12(a,d)] of O2 as a dipole with +0.5e

charge on the O bonded to the active site and -0.5e on the outer O, in an attempt to

achieve complete sub-shell filling. Notably, O2 has a triplet ground state with O-O

single bond and an unpaired electron per atom, implying incomplete sub-shell filling

of both O atoms. In adsorbed O2, the O-O bond is of order 1.5, consistent with its

length of 1.33Å[Fig.6.11], which is approximately the average length of O-O double

and single bonds. O2 adsorbs in the same configuration on active B[Fig.6.12(d)], with

the corresponding O-O bond being 1.35Å. On the other hand, O2 adsorbs as neutral

bridge with O-O single bond on two active C and/or B or one each of them.

As evident in [Fig.6.11]the adsorption of O2 on active B site is stronger than that

on C@B implying that upon substitution by C on a single B-site six B-sites around it
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will become active for adsorption of O2, which actually increases the entropy of the

process thus opening scopes for lowering of free energy. As also evident in [Fig.6.11],

the strength of adsorption of O2 systematically reduces with increasing size of Gr-

island in hBN. Particularly, beyond islands with size of few nm2 the strength of

adsorption of O2 on C@B and C@N are almost similar as apparent for 22C(12B10N

and 10B12N) in Fig.6.11. We will rationalize latter[sec.6.3.3.2] that for workable

operating voltages adsorption of O2 on the cathode should indeed be weak.
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6.3.3.2 Oxygen Reduction Reaction(ORR)

With uptake of four H+ from electrolyte, and four electrons from the lead, which

is connected to the anode through external load, complete reduction of O2 to 2H2O

at cathode occurs proceeds in two different pathways depending on the strength of

binding of atomic O on active site vis-a-vis the strength of O-O Bond in the adsorbed

configuration.
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Figure 6.13: Free energy diagram of ORR in acidic condition on different configu-
rations of substitution by C(inset): C@N for (a)1N, (b)1B2N, (c)10B12N and C@B
for (d)1B, (e)2B1N, (f)12B10N. Blue boxes pointing out the rate limiting steps and
red circle represents the catalytic site. Free energy pathway for maximum operating
voltage(UORR) is shown here in red.

For O2 adsorbed on active C, whether on a single C atom or on a bridge reduces
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through formation of -O-O-H as shown in the following pathway [Eq.6.8a-6.8e].

∗+O2 = O∗2, (6.8a)

O∗2 +H+ + e− = OOH∗, (6.8b)

OOH∗ +H+ + e− = O∗ +H2O, (6.8c)

O∗ +H+ + e− = OH∗, (6.8d)

OH∗ +H+ + e− = H2O, (6.8e)

where ‘*’ denotes the substrate and X∗ denotes chemisorbed X : O2, OOH,O,OH.

However, if adsorption of O2 involve an active B site the strong binding of O on

B leads to dissociation of O-O bond upon availability of atomic H resulting in two

adsorbed OH, which can be simultaneously reduced and released as H2O following

the steps:

∗+O2 = O∗2, (6.9a)

O∗2 +H+ + e− = OH∗ +O∗, (6.9b)

OH∗ +O∗ +H+ + e− = O∗ +H2O, (6.9c)

O∗ +H+ + e− = OH∗, (6.9d)

OH∗ +H+ + e− = H2O. (6.9e)

Such H assisted complete dissociation of O2 can be spontaneous if there is no uphill

step in free energy along the entire pathway. However, free energy G, calculated as

per Eq.6.3 needs to incorporate the contribution from potential energy(U) of electrons

at cathode as

G(U) = G− neU. (6.10)

131



Notably, U is the potential energy available to drive current through the external load

and thus the operating voltage of the fuel cell.

Theoretically, the maximum possible voltage output of any single fuel cell unit

is 1.23 V [42], sourced at the free energy available to each of the four electrons

upon complete reduction of one O2 molecule. Thus in the ideal scenario, the cathode

potential should be 1.23 V higher than the anode maintained at the standard hydrogen

electrode potential by the acidic electrolyte. But inevitably part of the available free

energy is required to overcome uphill steps in course of complete reduction of O2,

implying lower operating voltage than 1.23 V.

With sequential uptake of H+ and e−, the number of electrons n decreases from

4 to 0 in course of complete reduction of O2. The maximum value of operating

voltage(UORR) for which there will be no uphill step in the entire ORR pathway is

thus given by the minima of free energy steps[Fig.6.13(a-f)] :

UORR = Min {∆Gi} , (6.11)

where ∆Gi = Gi(0)−Gi−1(0), i being the reaction coordinate index 2 to 5 as shown

in Fig.6.13(a) and defined above from 6.8b to 6.8e. The potential which thus remains

unavailable to the external load, is the overpotential:

ηORR = 1.23− UORR. (6.12)

Therefore overpotential more than 1.23 V would mean a loss of functionality of the

fuel cell since an external voltage would be required to complete the reduction process

of O2.

As apparent from Fig.6.13(a-f), the height of free energy steps are sensitive to

the difference in strength of binding of -OX(-OOH/-O/-OH) in the successive steps.
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For example, stronger binding of −OXi in the i-th step than that of −OXi−1 in the

(i−1)-th step, would increase magnitude of the free energy step(Gi(0)−Gi−1(0)). This

increases the maximum U allowed for that particular ORR step to remain downhill.

Thus the reaction coordinates 2 to 5 in Fig.6.13(a), or steps Eq.6.8b to 6.8d and

6.9b to 6.9d, suggests that ∆Gi is determined by the relative strength of binding

of the product with respect to that of the reactant, which has been suggested as a

marker of efficiency of catalysis as per Sabatier[43] principle.

As evident from Fig.6.13(a-c) and Fig.6.13(d-f) with increasing size of Gr-islands,

the rate limiting steps, which determines the overpotential, shifts from the last re-

action step, which is desorption of O-H, to the first reaction step which is reduction

of O2 to OOH or (OH + O). However, for from nN=1 to larger N-site rich islands

the general moderation of activation as discussed in sec.6.3.2.1 leads to reduction in

the operating voltage from positive to negative value implying overpotential more

than 1.23 V. Whereas from nB=1 to larger B-site rich islands the moderation of

activation of C@B sites implies evolution of the operating voltage from negative to

positive. Therefore as per Sabatier principle, there will be different descriptors for

ORR catalysis on isolated substitution (nB=nN) and for larger Gr-islands.

6.3.3.3 Oxygen Evolution Reaction(OER)

Oxygen evolution reaction is the reverse mechanism of ORR that take place at anode.

In OER, evolution of O2 through oxidation of water in presence of acidic electrolyte
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proceeds as,

∗+H2O = OH∗ +H+ + e−, (6.13a)

OH∗ = O∗ +H+ + e−, (6.13b)

O∗ +H2O = OOH∗ +H+ + e−, (6.13c)

OOH∗ = O2 +H+ + e− (6.13d)

As evident from Eq.6.13a–6.13d[Fig.6.14(a)] for OER, conversely we have [45]:

UOER = Max {∆Gi} (6.14)

and therefore, overpotential for OER

ηOER = UOER − 1.23 (6.15)
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implying that to drive OER an overpotential is essential. As evident from volcano

plot[Fig.6.14(b)] for OER, where the second step[Eq.6.13c] is consistently the rate

limiting for Gr-islands of different sizes, there is a clear trend that active C@B sites are

strongly preferred up to an optimal size of Gr-islands. Therefore for OER catalysis,

smaller Gr-islands are preferred over bigger islands. This is expected as the stronger

binding of -OX intermediates, will make it easier to cleave the O-H bond of water

and thus lesser will be the required overpotential. Fig.6.14(b) also imply that the

relative binding of -OH over that of -O is preferred to be of about 1.5 eV, in order to

minimize the overpotential value.

6.3.3.4 Non-magnetic graphene island

In previous sections[sec.6.3.3.2, 6.3.3.3] all discussions are based on magnetic Gr-

islands of various sizes. Alongside, the non-magnetic Gr-islands, covering an equal

number of B and N-sites are also energetically favorable[Fig.6.3]. We have analyzed

the catalytic activity of two such Gr-islands (6C and 16C) embedded within hBN.

As evident from Fig.6.4(c), all the sites irrespective of C@B or C@N for both 6C and

16C have comparable activation.
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The study of ORR reaction pathway in these Gr-islands shows an uphill step at

the first reaction step[Eq.6.8b][Fig.6.15(a,b)]. Therefore the corresponding operating

voltage becomes negative, which implies high overpotential and its non-effectiveness

as a cathode material. Similarly for OER[sec.6.3.3.3] overpotential is also high for

these non-magnetic Gr-islands.

This systematic analysis of all representative configurations considering mag-

netic as well as non-magnetic Gr-islands, thus suggests magnetic Gr-islands embed-

ded within hBN as a suitable candidate for ORR and OER, particularly the B-site

rich large Gr-islands for ORR and smaller B-site rich Gr-islands for OER, which is

clearly evident from Fig.6.16.
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Figure 6.16: Overpotential of all C-substituted hBN configurations (a)for ORR and
(b) for OER. For magnetic Gr-islands, � and � represents the N-site rich and B-
site rich configurations with catalytic site as mentioned within the parenthesis. For
non-magnetic islands, � and � respectively represents C@N and C@B catalytic site.
Bigger magnetic islands are highlighted in bold.

6.3.4 Transferability of electrons

The other important aspect, which is vital for effective electrocatalysis is transferabil-

ity of electrons from the leads to the active sites. This is anticipated to be hindered

in hBN based systems due to its insulating nature. A possibility to overcome this

problem emerges, as we find that if the active magnetic Gr-islands form H-K hy-

brid super-lattices, then they can be a half-metal or a metal[sec.5.5]. For example

in Fig.6.17(a) we have shown H-K super-lattice, where honeycomb lattice is formed

by 13C island and kagome lattice is formed by single C substitution nB=1. With-

out intermediate C, 13C islands show anti-ferromagnetic order with weak exchange

interaction between the islands. Substitution by C-atom between two neighboring

13C islands open a scope for pz electron of the magnetic island in the honeycomb

lattice to become itinerant and allow transport of electrons as evident from DOS of
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Fig.6.17(b) in room temperature. These mechanisms have been described in detail in

Chapter 5[46].
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Figure 6.17: (a)Graphene-hBN hexagonal-Kagome hybrid system with 13C Gr-island
at hexagonal site and single C@B at Kagome sites. Dotted line represents the
hexagonal-Kagome supercell, (b)spin-polarized DOS for the same.
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Conclusions

The central theme of this thesis has been to systematically study the interplay of

spin and charge degrees of freedom of itinerant 2pz electrons. These studies have

led to a synergistic understanding of magnetism as well as chemical activation and

catalysis of three coordinated systems made of 2p-block elements. The key ingredient

has been the tuning of competing interactions in these systems through reversible

and irreversible inhomogeneity.

In the first part, computational studies of inhomogeneously biased graphene

nanoribbons have been presented. There the main observation was the emergence of

localization driven nearest neighbor(n-n) ferromagnetic(FM) order at weak coupling

limit in graphene nanoribbons irrespective of edge configurations. A comprehensive

analysis from mean-field Hubbard model and first-principles using density functional

theory(DFT) explain this bias controlled n-n FM ordering as a generic property of

inhomogeneously biased bipartite systems. The key mechanism is to allow local-

ization of electrons in positively biased region while allowing minimal increase in

Coulomb potential and kinetic energy leading to different degrees of localization of

electrons with opposite spins primarily at positively biased sites. The consequent n-n

FM order lift spin degeneracy which leads to ferromagnetic metal or half-metallic

phases. In zig-zag nanoribbons(ZGNRs), the contest of inherent inter edge anti-

ferromagnetic(AFM) ordering and n-n FM ordering due to inhomogeneous biasing,
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leads to systematic emergence of half-metallic window across Fermi energy. This work

thus demonstrates the possibility of bias controlled emergence of n-n ferromagnetism

and spin polarized transport of electrons in layered bipartite systems.

In the next chapter, the influence of chemical inhomogeneity in hybrid struc-

tures of graphene and hBN in tuning physical properties primarily magnetism has

been investigated. The spatial separation of back transferred electrons of opposite

spins at B and N sites in the vicinity of local moments due to magnetic graphene

islands is found to be the primary mechanism of propagation of anti-ferromagnetic

order between local magnetic moments embedded in hBN. Such a mechanism pro-

poses spin dependent hopping as a key parameter in exploring the correct magnetic

ground states within a tight-binding framework. Magnetic ordering between two local

moments can be switched from anti-ferromagnetic to ferromagnetic if the pathway of

anti-ferromagnetic ordering is interjected by a third moment of arbitrary strength.

Accordingly, inter-penetrating hybrid kagome super-lattices of magnetic graphene is-

lands in hBN have been proposed as a metal free route of ferromagnetic semiconductor

and half-metal at room temperature.

In the sixth chapter we have investigated chemical activation and catalytic effi-

ciency of graphene islands in hBN in correlation with their magnetic properties. We

have introduced average bond order(ABO) of an atom as a measure of their chemi-

cal activation which can be computed based on localized orbitals obtained from first

principles. The catalytic efficiency of active sites in these hybrid systems has been

demonstrated in the light of oxygen reduction and oxygen evolution reactions which

are central to acid based fuel cells. Our results reveal the effectiveness of graphene

and hBN hybrid systems with practicably large graphene islands to be a suitable

candidate for cathodes free of precious metals.

In conclusion, we hope our work will sharpen the focus on graphene and hBN
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hybrid systems in particular and heterostructure made of 2p block elements in general

for application in active as well as spintronic devices in one hand and filtration and

catalysis on the other hand both of which are suitable for futuristic applications

from the point of view of managing electronic waste and securing non-fossil energy

resources.
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Future Scope

In this chapter, I describe future scope of my thesis work, which are essentially exten-

sion of works reported in the different chapters of the thesis. Some of these extension

works are already in progress which I present below.

Extension of work presented in Chapter 4 :

1. Space charge in presence of inhomogeneous bias

We recall that in Fig.4.7(b)[sec.4.2.3] the bands near the Fermi energy, which

are marked by the green dots, as also shown in Fig1(a) are parabolic in na-

ture implying presence of nearly free electrons in one dimension. Spin density

profile[Fig1(b,c)] at a particular sawtooth potential [sec.4.2.3] shows accumula-

tion of space charge above and below the biased region. As evident in Fig1(c),
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Fig1 : (a)band structure, (b)applied sawtooth potential profile and spin density,
(c)space charge distribution across the zigzag ribbon in out of plane view.
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the space charge is spin polarized within a range of sawtooth potential ampli-

tude. Spin polarization of space charge coincide with the emergence of nearest

neighbor(n-n) ferromagnetic(FM) order, which lead to similar spin polarization

of zigzag ribbon edges[Fig1(b)] as discussed in Chapter 4. In Chapter 4, we

have only described the evolution of in-plane spin polarization as a function of

bias voltage. In the immediate future, we plan to explore in details the possi-

bility of manipulation of space charge in facilitating spin-polarized conduction

of electrons. We envisage that the bias induced space charge will allow free

electron like transport with confinement in one or two directions.

2. Localization induced tunable magnetism in flakes and sheets of graphene

The emergence of n-n FM order and its impact on transport properties of

graphene nanoribbon motivates us to explore the effect of inhomogeneous bias

on finite graphene segments, known as graphene nanoflakes and 2D graphene

sheet. Notably, in Chapter 4 the emergence of n-n FM order in graphene

nanoribbon has been explored. Finite magnetic moment in this nanoflakes is

hosted by sub-lattice asymmetry. Some results for hexagonal and triangular

graphene nanoflakes have been discussed here. We have considered two types

of bias coverage, one in which the biased site covers equal number of sites from

two sub-lattices, defined as non-magnetic gate, and another, in which the biased

site covers unequal number of sites from two sub-lattices, defined as magnetic

gate. We have plotted total and absolute magnetization as a function of U and

gate voltage Vg.

2.1. Hexagonal graphene nanoflake

First, we consider magnetic[Fig2(a)] and non-magnetic[Fig2(c)] bias within

a hexagonal graphene nanoflake. Magnetic moment of hexagonal graphene
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Fig2 : Representation of bias coverage on graphene nanoflake and variation of total
magnetization and absolute magnetization w.r.t onsite Coulomb repulsion U and
applied gate voltage Vg in hexagonal graphene nanoflake for (a,b)6-site and (c,d)9-
site bias coverage. Bias coverage has been shown in blue color within the hexagonal
flake.

nanoflake is zero since it is constituted with equal number of sites from two

sub-lattices. As evident from variation of total magnetization[Fig.2(b,d)]

the non-magnetic bias coverage does not lead to n-n FM order[Fig3(a)]

within weak to moderate coupling limit, whereas with magnetic gate cov-

erage n-n FM order does emerge at a high Vg, before complete quenching

of magnetism as also implied in Fig3(b).
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Corresponding spin density has been shown in the inset.
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2.2. Triangular graphene nanoflake
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Fig4 :Representation of bias coverage on graphene nanoflake and variation of total
magnetization and absolute magnetization w.r.t onsite Coulomb repulsion U and
applied gate voltage Vg in triangular graphene nanoflake for (a,b)13-site up-triangle,
(c,d)13-site down triangle and (e,f)16-site non-magnetic bias coverage. Bias coverage
has been highlighted in blue color within the triangular flake.

Next, we consider magnetic and non-magnetic gate in triangular graphene

nanoflake. Magnetic moment of this triangular nanoflake is 11µB due

to difference in number of sites from two sub-lattices. As Fig4(a-f) sug-

gests, tunability of magnetization for this triangular graphene nanoflake

is indeed possible through both, non-magnetic and magnetic bias cover-

age and is sensitive to the orientation of the biased site vis-a-vis that

of the flakes. With increasing Vg, the interplay between inherent anti-

ferromagnetic(AFM) ordering in magnetic triangular nanoflake and n-n

148



0 2 4 6 8 10 12 14
0

2

4

6

8

10

12

14

16

18
µ

B

Gate voltage (eV)

Vg = 0.0

Vg = 10.0

Vg = 6.0

M
a

g
n

e
ti

z
a

ti
o

n
( 

  
  

) 
 

0 2 4 6 8 10 12 14
0

2

4

6

8

10

12

14

16

18

µ
B Vg = 6.0

M
a
g

n
e
ti

z
a
ti

o
n

( 
  
  
) 

 

Vg = 0.0

Vg = 10.0

Gate voltage (eV)

0 2 4 6 8 10 12 14
0

2

4

6

8

10

12

14

16

18

µ
B

Gate voltage (eV)

Vg = 10.0

M
a

g
n

e
ti

z
a

ti
o

n
( 

  
  

) 
 

Vg = 0.0 Vg = 6.0

(a) (b)

(c)
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FM ordering in the biased region leading to systematic manipulation of

magnetization[Fig5(a-c)].

2.3. Graphene sheet

We consider application of bias over a finite region in a graphene sheet

in order to study the evolution of magnetism in presence of bias without

the interference of edges. We next explore the possibility to induce in-

teracting magnetic islands through application of bias in two regions in

proximity within graphene sheet. As depicted in Fig.6(a) and Fig.7(a)
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n-n FM order is induced within a single biased region even at weak cou-

pling [Fig7(a,b)] above a threshold value of Vg. With two biased region

Fig6(c-f) and Fig7(b,c) the magnetic ordering between two biased regions

is function of their mutual orientation. If the two regions cover more site

from different sub-lattices, then their interaction will be always of anti-

ferromagnetic or ferrimagnetic ordering [Fig7(c) and Fig6(e,f)] depending

on their relative sizes. However, if both the islands covers more of the

same sub-lattice, then it is possible to have FM ordering between the

two islands[Fig7(b), Fig6(c,d)] This systematic manipulation of magne-
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Fig6 : Representation of bias coverage on graphene supercell and variation of total
magnetization and absolute magnetization w.r.t onsite Coulomb repulsion U and
applied gate voltage Vg for (a,b)4-site, (c,d)two 4-site symmetric triangle and (e,f)two
4-site asymmetric triangle coverage for bias sites. Bias coverage has been shown in
blue color within the graphene supercell.

tization also holds within periodic geometry of gate coverage, as evident
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(a) (b) (c)

Fig7 : Spin density for (a) single 4-site bias coverage, and two 4-site bias coverage
with (b)symmetric ,(c) asymmetric configurations. Bias coverage has been pointed
out with dotted triangle at Vg=6.0 eV and U=6.0 eV
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Fig8 : Representation of bias coverage on graphene sheet and variation of total mag-
netization and absolute magnetization w.r.t onsite Coulomb repulsion U and applied
gate voltage Vg for (a,b)4×4, (c,d)6×6 graphene supercell. Dotted triangle corre-
sponds to the bias sites.

in[Fig8(a,b), Fig8(c,d)], which suggests hexagonal lattice of ferromagneti-

cally ordered gated islands at weak coupling[Fig9]. Therefore, by designing

arrays of triangular or similar gated regions each with unequal coverage of

the two sub-lattices, it is indeed possible to induce controlled magnetism

in graphene through application of bias. More detail calculations of trans-

port properties and magnetism in super-lattices of gated graphene are in

progress.
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graphene sheet in presence of bias.

Extension of work presented in Chapter 6 :

3. Electrocatalysis in boron doped graphene

In the series of low dimensional materials based metal free electrodes, func-

tionalized graphene have an important impact like graphene-hexagonal boron

nitride hybrids as discussed in this thesis. Recently the synthesis stability[1, 2] of

boron(B) substituted graphene makes it more important towards understanding

its chemical activity. First principles analysis predicts that multi boron sub-

stitution within close proximity is energetically favorable in comparison with

isolated substitution. The local electronic distribution due to hole doping and

the mechanical strain induced from inequivalent C-C and C-B bond lengths

facilitates its activation. On the realm of electrocatalytic activity, primarily for

oxygen reduction and evolution reaction(ORR, OER) we have done some pre-

liminary analysis. Different degree of hydrogen adsorption[3] in B substituted

graphene also motivate us to investigate the mechanism of hydrogen evolution

reaction(HER) in different B doped configurations.
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4. Reduction of NOX through hydrogenation

As a follow up of our work on ORR catalysis of C-doped hBN we envisage the

effectiveness of the same platform for filtration of NOX . We have also looked

for boron/nitrogen doped graphene as NOX filter. As evident from reaction

pathway simulated from first principles [Fig10)] experimentally accessible tri-

boron doped graphene[Fig10(a)] can possibly adsorb and reduce NO to NH3

in an acidic environment. Similar functionality has been shown [Fig10(b)] for

carbon doped hBN. Detail calculation and analysis are envisaged in near future.
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Fig10 : Production of NH3 through hydrogenation of NO at two different catalytic
surface (a)nitrogen doped graphene and (b) carbon doped hexagonal boron nitride
following the pathway : sub(∗)+NO → NO∗ → (NOH)∗ → N∗+H2O → (NH)∗ →
(NHH)∗ → ∗+NH3 .
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