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SUMMARY

In density functional theory (DFT), there are mainly two classes of approximations of

the exchange-correlation (XC) functional that are in wide use: The first one is the semilo-

cal formalism and the other one is the hybrid functional theory. However, higher-order

accurate many-body approaches are also possible. Depending on the ingredients used,

the XC functionals are classified through Jacob’s ladder. Each rung of the ladder adds an

extra ingredient starting from the local density approximation (LDA), generalized gradi-

ent approximations (GGA) and meta-generalized gradient approximations (meta-GGA).

LDA, GGA and meta-GGA are known as semilocal functionals and those are quite ac-

curate in describing several thermochemical properties, bond lengths, equilibrium lattice

constants, bulk modulus, cohesive energy, and surface properties. From the construction

point of view, the semilocal functionals are developed either by satisfying various exact

constraints or from exchange hole or by both. A systematic evaluation of the XC approx-

imations is necessary, especially when a new functional is proposed. The motivation of

this thesis is largely inspired by the benchmarking of several recent XC functionals and

the necessity to improvise the new functionals for obtaining more accurate results.

The starting point of this thesis is involved on the benchmarking of the Tao-Mo

semilocal functional with various approximations. TM functional is designed by design-

ing the exchange hole which is constructed from the density matrix approximation tech-

nique. The TM functional is found to be very accurate both for the quantum chemistry

and solid-state physics. In this thesis, the performance of several solid-state properties are

addressed using the TM functional along with other popularly used GGA and meta-GGA

level functionals in the projector-augmented-(plane-)wave (PAW) method. Particularly,

the accuracy of TM functional with most advanced strongly constrained and appropri-

ately normed (SCAN) meta-GGA functional is noticeable. It is observed in this thesis



xxii SUMMARY

that for several solid-state properties, TM functional works comparatively better than

other meta-GGA and GGA functionals. Utilizing the semilocal exchange hole of the

TM functional in this thesis we also construct the the range-separated hybrid functional

with long-range HF and short-range HF analogous to that of the range-separated hybrid

functional Heyd-Scuseria-Ernzerhof (HSE), but in the meta-GGA level. To check the ac-

curacy and performance of the constructed functional, it is applied to determine several

properties of the molecular and solid-state test.

Besides of the construction of the 3D functionals, this thesis also focuses on the con-

struction of the functional for the 2D quantum systems. It is well known the the 3D

functionals actually breakdown when it is applied to the 2D electronic systems. Though

in practice the 2D systems are considered as quasi-2D systems (Q2D), yet the 2D func-

tional can be used to explore the systematic DFT investigations for proper explanations

of numerous properties of low-dimensional systems. Beyond the 2D-LDA, and 2D-GGA

the first ever meta-GGA functional is proposed and applied to the 2D quantum systems.

The motivation of the construction is followed from its 3D counterpart based on the

DME technique. Further, the newly constructed functional shows improvement when

applied to study a few electrons trapped inside parabolic and Gaussian quantum dots. We

also explore the behavior of the Kohn-Sham kinetic energy density by taking the two-

dimensional parabolic quantum dots as a model system. Also, an improved version of

the existing 2D-GGA functional is proposed by extrapolating between the small and large

density-gradient limit of the exchange hole.
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Chapter 1

Introduction

The basis constituents of any material that we experience every day are built up from

nuclei and electrons. Electrons which are the quantum particles repel each other due

to Coulomb interactions. However, the massive nuclei are treated as classical particle

compared to the dynamics of electrons. It is partcularlly very difficult to solve the many

body interaction exactly.Continuous thought-provoking efforts of bridging the gap be-

tween theoretical and experimental aspects of many-electron phenomena led to several

successful models during the last couple of decades. Accurate solutions of many-electron

Schrödinger equation [1, 2] have been found and successfully implemented in several

computational packages. Continuous efforts led to many accurate wavefunction based

approaches like configuration interactions (CI), couple clusters (CCSD), many-body per-

turbation theory (MBPT) and quantum Monte Carlo techniques. But those are wavefunc-

tion based methods and becomes very demanding as the system size increases. In the

search for the less demanding and accurate solutions of many-electron phenomena lead to

density functional theory (DFT) [3–31] which becomes the de facto standard for calculat-

ing the many-electron phenomena starting from atoms, molecules to clusters of thousands

of electrons. The successful implementation of DFT in physics, chemistry, and biolog-

ical studies brings the Nobel prize in chemistry for Walter Kohn in 1998 [32]. But, its

development originally started much earlier through the pioneering work of Thomas [9],

Fermi [10], Hartree [3], Dirac [4], Fock [5] and Slater [6–8]. Almost forty years after the
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work of Thomas and Fermi, a remarkable theorem and its computational aspects given by

Hohenberg, Kohn, and Sham established the firm foundation of DFT [11, 12]. DFT which

relies upon the ground state density depends only on the three coordinates no matter how

large the system. Therefore, DFT is extremely simple and straight forward compared

to the wavefunction based approaches. In Hohenberg-Kohn-Sham DFT all many-body

interactions are included in a effective one-electron like potential known as the exchange-

correlation (XC) energy functional. Since the exact many-electron behavior is not known

exactly, the main research of DFT is to construct the XC energy (or potential) [13–31].

The aim of this thesis is to development of accurate methods through different level of

approximations and its application towards atomic, molecular and material sciences.

Next chapter, we will review the different wavefunction based methods such as Hartree,

Hartree-Fock level theories and their limitations in the context of many-electron calcula-

tions. Following this, the fundamental theorems of density functional theory upon which

it is based on and further relevant developments are discussed. However, the computa-

tional aspects of DFT, which includes all many-body effects through the approximation

of XC functional. Several levels of approximations make Kohn-Sham formalism as a

widely used computational method. As this thesis focuses mainly on the assessment and

development of different levels of energy functionals, in chapter 2, a summary of the dif-

ferent level of approximate XC functionals are reviewed. Formal properties of exchange-

correlation functionals are also discussed. Next, the significance of Kohn-Sham energy

eigenvalue and its connections to the fractional occupation number, ionization potential,

and band gap problem are also explored. The computational framework and details of

various software packages used in this thesis to solve the DFT equation are also described

briefly in this chapter.

In chapter 3, the performance of different levels of density functional approximations

are assessed based on the plane-wave basis set [33]. In this chapter we study and compare

the performance of different density functional approximations for solid-state systems.

Such comparison is desirable to test the robustness and accuracy of several recently de-

veloped approximations using the plane-wave basis set. Most interesting aspects of this

work is that it compares the recent accurate meta-generalized gradient approximations
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(meta-GGA) along with others developed approximations proposed during the last cou-

ple of decades.

In chapter 4 we assess the performance of density matrix expansion (DME) [35] based

long-range corrected (Hartree-Fock in long-range) range-separated hybrid functionalto

the properties related to the fractional occupation of atoms and molecules. The perfor-

mance of the proposed functional is benchmarked against family of popular hybrid func-

tional based on BECKE88 [37] exchange. Though the range-separated parameter of the

present functional is fixed to minimize the AE6 atomization energies, still it works well

for barrier height. Its performance for barrier heights are accurate compared to the popu-

lar BECKE88 family global and range-separated functionals. This work further extended

to propose a screened range-separated hybrid functional theory [38].Performance of the

screened hybrid functional has been carried with different level of approximations.Further

extensions and performance of this scheme for the solid-state systems are also carried in

the next chapter.

Motivated by the construction of the range-separated hybrid functionals in chapter 4,

we develop a meta-GGA screened hybrid functional to be useful for the solid-state system

in chapter 5. The functional is proposed by utilizing short-range Hartree-Fock exchange

coupled with the very accurate meta-generalized gradient level semilocal functional. The

performance of the proposed functional for various material properties indicate that the

present meta-GGA level screened hybrids functional is quite productive beyond the gen-

eralized gradient approximation (GGA) level.

Our final investigation in chapter 6 is based on the development of a meta-GGA level

theory for two-dimensional quantum dots systems [39]. We first investigate the behavior

of Kohn-Sham kinetic energy (KS-KE) density for a perfectly solvable model. Based on

these studies, we further construct a meta-GGA functional in two dimensions by appro-

priately designing the exchange hole model through the density matrix expansion tech-

nique. The construction of the two-dimensional functional is analogous to that proposed

in three dimensional by Tao et. al. [35]. The performance of constructed functional

shows in accuracy for various quantum dot systems. In this chapter, we also construct a

generalized-gradient approximation level functional in two dimensions by appropriately
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extrapolating the exchange energies between the low and high-density limits of the ex-

change hole model [41]. Performance of the functional demonstrates that it improves the

performance of the previously proposed GGA functionals.

In Chapter 7, we conclude and summarize the research work carried out and reported

in this thesis. This chapter also outlines the further directions and improvements that can

be carried out based on the research work embedded in this thesis.



Chapter 2

Review of Density Based Theory

This chapter introduces the review of density-based theory. We start from the time-

independent Schrödinger equation (TDSE) for the many-electron system and rewrite its

equivalent for the density functional theory (DFT). Lastly, a scheme for solving the com-

plex many-body problem is also provided.

2.1 Solving Many Electron Schrödinger Equation

Since the time-independent Schrödinger equation [1] has been introduced, it provides

a very useful understanding of the microscopic world. But, the exact solutions of it

is limited only for few restricted systems. A complex electronic structure of multi-

electron systems are very difficult to solve. It is because of the involvement of a complex

many-electron Schrodinger equation that describes a many-electronic system. The time-

independent Schrödinger equation is a eigenvalue problem with energy eigenvalue E and

energy eigenstate ΨT for the Hamiltonian ĤT :

ĤTΨT = ETΨT , (2.1)

where the symbol T stands for the total (nuclear and electronic) Hamiltonian, energy

eigenvalue and energy eigenstates. However, this Hamiltonian which involves both the
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nuclear and electronic motion can be treated separatelybecause of the Born-Oppenheimer

approximation [2].This approximation separates the total Hamiltonian, energy eigenvalue

and energy eigenstates into independent Hamiltonian of nuclei (Ĥn) and electrons (Ĥ)

with energy eigenvalues En and E and eigenstates Ψn and Ψ. The result is:

ĤT = Ĥ + Ĥn (2.2)

ET = E + En (2.3)

ΨT = ΨΨn (2.4)

However, in many-body problem the nucleonic part not very complicated to handle. But,

the main challenge is to find the solution for the electronic part. The electronic part

of the system is described by the many-electron Schrödinger equation with N particles

interacting via the Coulomb potential and subject to an external potential vext as,

{
− 1

2
∇2
i +

N∑
i

vext(ri) +
1

2

∑
i=1

∑
j 6=i

1

|ri − rj|

}
︸ ︷︷ ︸

Ĥ=T̂+v̂ext+V̂ee

Ψ(x, ...xi, ...,xj....,xN)

= EΨ(x, ...xi, ...,xj....,xN) ,

(2.5)

where the 1st, 2nd and 3rd terms of Eq.(2.5) correspond to the kinetic energy, external

potential and complex electron-electron Coulomb interaction respectively. The electron-

electron repulsion operator contains both purely classical Coulomb repulsion and non-

classical terms which come from the fermionic nature of the electrons. The simple

Eq.(2.5) is quite difficult to solve because of the complex electron-electron interaction.

Being fermions, electrons avoid one another due to the charge and spin which are incor-

porated in the antisymmetric nature of the wavefunction. Also, repulsion forces occur due

to the same charge of the electrons. The first one is well known as the Coulomb corre-

lation. Whereas, the later is known as Pauli or Fermi correlation. So, the many-electron
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wavefunction is antisymmetric under the exchange of electrons as,

Ψ(x, ...xi, ...,xj....,xN) = −Ψ(x, ...xj, ...,xi....,xN) , (2.6)

where xi = (ri, σi) are the spin-orbital indices of the ith electron. The square of the de-

fined many-electron wavefunction i.e., |Ψ(rσ, r2σ2.....rNσN)|2 is the probability of find-

ing electron 1 at position r1 and with spin state σ1,......, electron N at position rN and spin

state σN . Also, the many-electron wavefunction satisfies the normalization condition

∑
i,σ

∫
d3r.....d3rN |Ψ(rσ, r2σ2.....rNσN)|2 = 1 . (2.7)

Now, using the above many-electron wavefunction the one-electron spin density is ob-

tained as,

ρσ(r) = N
∑

σ2,...,σN

∫
d3r2.....d

3rN |Ψ(rσ, r2σ2.....rNσN)|2 , (2.8)

where the prefactor N is coming from the permutation of electron positions. As electrons

are indistinguishable particles, there are N ! distinct possible permutations for which the

|Ψ|2 is the same. Now, upon coupling Eq.(2.7) with Eq.(2.8) one can obtain

∑
σ

∫
d3rρσ(r) = N . (2.9)

Using the many-electron wavefunction the expectation value of the electronic Hamilto-

nian He becomes,

〈Ψ(x, ...xi, ....,xN)|H|Ψ(x, ...xi, ...,xN)〉

= 〈Ψ(x, ...xi, ....,xN)|T̂ + v̂ext + Û |〈Ψ(x, ...,xi....,xN)|〉

= T + Vext + U = Ee , (2.10)
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The individual expectation values of the kinetic, external potential and Coulomb operator

are given by,

〈T̂ 〉 = −1

2

∑
σ

〈Ψ|
N∑
i=1

∇2
i |Ψ〉

〈v̂ext〉 = 〈Ψ|
N∑
i=1

v̂ext(ri)|Ψ〉 =

∫
drρ(r)vext(r)

〈V̂ee〉 =
1

2

∑
σ

∫
d3ri

∫
d3rj

ρ(ri)ρ(rj)

|ri − rj|
, (2.11)

where ρ is the total density.

2.1.1 Wavefunction Variational Principle

The quantum mechanical variational approach is considered as an alternative way to solve

the Schrödinger equation by variationally optimized the wavefunction for a given config-

uration. It is also considered as one of the most important theoretical principle upon

which many theoretical and computational approaches rely. In principle, the TDSE can

be constructed from the wavefunction variational principle by extremizing the expecta-

tion values of Hamiltonian i.e., 〈Ψ|Ĥe|Ψ〉 subject to the constraint that the variational

wavefunction always normalized to 1. This corresponds to

δ{〈Ψ|Ĥ|Ψ〉 − µ〈Ψ|Ψ〉} = 0 , (2.12)

where µ is the Lagrange multiplier. This is the minimization principle which leads to

the energy eigenvalue and eigenfunction and it is known as the Rayleigh-Ritz variational

principle.

The solution of the above variation corresponds to the time-independent Schrödinger

equation which is obtained through the infinitesimal variation of the wavefunction δΨ as,

〈δΨ|Ĥ − µ|Ψ〉+ c.c = 0 . (2.13)
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This implies

(Ĥ − µ)|Ψ〉 = 0 . (2.14)

µ is nothing but ground-state energy for the configuration which is presented by the

Hamiltonian. This wavefunction variational principle forms the basis of the wavefunc-

tional (Hartree-Fock, Configuration-Interaction (CI), Hellmann-Feynman theorems) and

density functional (the Hohenberg-Kohn density functional variational principle) formal-

ism. While the CI is very accurate methods but it is computationally very demanding.

2.1.2 Hartree-Fock Approximation

The Hartree-Fock (HF) [3–8] approximation relies on the wavefunction variational prin-

ciple of Eq.(2.12). The variational wavefunction in HF approximation is considered as

the antisymmetric product of the N single-particle orbitals or a single Slater determinant

defined as,

ΨHF =
1√
N !
det[ψ1, ...., ψN ] (2.15)

or more elaborately,

ΨHF (~x1, ~x2, .., ~xN) =

√
1

N !

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

ψ1(~x1) ψ1(~x2) .. ψ1(~xN)

ψ2(~x1) ψ2(~x2) .. ψ2(~xN)

. . . .

. . . .

ψN(~x1) ψN(~x2) .. ψN(~xN) ,

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
(2.16)

where ψis are the spin-orbitals. The HF equation is obtained by varying the occupied

spin-orbitals ψi(~xi) and extrimizing 〈ΨHF |Ĥ|ΨHF 〉 subject to the normalization condi-
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tion 〈ψi|ψi〉 = δij . The total energy in the HF approximation as,

〈ΨHF |Ĥ|ΨHF 〉 =
∑
i

∫
d3r ψ∗i (r, σ)

(
− 1

2
∇2
)
ψi(r, σ) +

∫
ρ(r)vext(r)d

3r

+
1

2

∫
d3r d3r′

ρ(r)ρ(r)′

|r− r′|
− 1

2

∑
i,j

∑
σ,σ′

∫ ∫
d3r d3r′

ψ∗i (r, σ)ψj(r, σ)ψ∗j (r
′, σ′)ψi(r

′, σ′)

|r− r′|
,

(2.17)

where i and j denotes the space and spin component of ith and jth optimized orbitals.

The 1st, 2nd, 3rd and 4th terms are kinetic energy, interaction of the electrons with the

external potential, classical Coulomb energy (J [ρ]) and the exchange energy respectively.

It is noteworthy to mention that for i = j, the 4th term exactly cancels with the 3rd

term of Eq.(2.17). Therefore, the HF energy equation is self-interaction free. The ex-

change energy functional in the HF energy equation is orbital-dependent which needs to

be calculated self-consistently during each iteration of the variational extremization. The

variational minimization of Eq.(2.17) respecting the orbitals leads to HF equation for ith

orbital which is given by,

[
− 1

2
∇2 + vext +

∑
j

∫
d3r′

ρ(r′)

|r− r′|

]
ψi(r

′σ′)−
∑
j

∫
d3r′ ψ∗j (r

′σ′)ψi(r
′σ′)

1

|r− r′|
ψj(rσ)

= εiψi(rσ) ,

(2.18)

where the Lagrange multiplier εi enters into the HF equation through the normalization

condition. The εi is recognized as the optimized single-particle orbital energy. The HF

approximation is exact for systems with no correlation. Higher-order accurate wavefunc-

tional methods like CI are considered to be the most accurate as these are including both

the exchange and correlation but highly demanding computationally for large systems.
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2.1.3 Hellmann-Feynman Theorem

In quantum many-electron systems, Hellman-Feynman theorem provides a way to cal-

culate forces. To explain elaborately the Hellmann-Feynman Theorem, let’s consider a

parameter λ as the continuous function of the Hamiltonian. Then the question is how

the eigenfunction Ψ(λ) and energy E(λ) of the Hamiltonian Ĥ depend on the parameter

λ. Lets consider any normalized eigenfunction Ψ(λ) be the solution of the Hamiltonian

Ĥ(λ).Hence, the energy is given by,

E(λ) = 〈Ψ(λ)|Ĥ(λ)|Ψ(λ)〉 . (2.19)

Taking derivative of the Eq.(2.19) with respect to λ one can obtain,

dE(λ)

dλ
=

d

dλ′
〈Ψ(λ′)|Ĥ(λ′)|Ψ(λ′)〉|λ′=λ + 〈Ψ(λ′)|∂Ĥ(λ′)

∂λ′
|Ψ(λ)|λ′=λ . (2.20)

The 1st term of Eq.(2.20) vanishes due to the normalization condition of Ψ(λ). Thus

dE(λ)

dλ
= 〈Ψ(λ)|∂Ĥ(λ)

∂λ
|Ψ(λ)|〉 (2.21)

or

E(λ2) = E(λ1) +

∫ λ2

λ1

dλ 〈Ψ(λ)|∂Ĥ(λ)

∂λ
|Ψ(λ)|〉 . (2.22)

These two identities (i.e., Eq.(2.21) and Eq.(2.22)) are the differential and integral

form of Hellmann-Feynman theorem. Note that this form is often used to construct the

coupling-constant integral, which is the path of obtaining the exact form of exchange and

correlation functional which we will elaborately discuss later in this chapter.
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2.2 Density Based Theory

In modern electronic structure theory, the density functional theory (DFT) is considered

as an efficient way to model the complex many-electron system with sizeable electron

numbers. However, before going into the details of the formal computational framework

of the DFT, the concept of the functional is important. Therefore, we start this section

with the concept of the functional.

2.2.1 Functional and functional derivative

The concept of functional and functional derivatives are very important from the construc-

tion of density functionals point of view. In this section, we will elaborately discuss these

two concepts. A function f(x) is a mapping from a variable x to a number, whereas, a

functional F [f ] is a mapping from a function to a number. For example, the expectation

value of Hamiltonian E[Ψ] = 〈Ψ(λ)|Ĥ|Ψ〉 is the functional of the wavefunction Ψ, and

gives the number (or eigenvalue) for a well-defined Ψ.

If a functional F [f(x)] is well defined and differentiable, then the functional is Taylor

series expandable about δf(x) = 0 as,

F [f(x)+δf(x)] = F [f ]+

∫
dx
( δF

δf(x)

)
δf(x)+

1

2

∫
dx dx′

( δ2F

δf(x)δf(x′)
δf(x)δf(x′)

)
+... .

(2.23)

Now, assuming that the variation δf is small and keeping the variation terms upto 1st order

in the series expansion of F [f(x)], the difference F [f(x) + δf(x)]− F [f ] is obtained as,

F [f(x) + δf(x)]− F [f ] = δF [f ] =

∫
dx
( δF

δf(x)

)
δf(x) , (2.24)

where δF
δf(x)

is the functional derivative of the functional F with respect to f at x.

To illustrate, let us consider the classical Coulomb energy of Eq.(2.17) is

J [ρ] =
1

2

∫
d3r d3r′

ρ(r)ρ(r′)

|r− r′|
. (2.25)
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So,

J [ρ+ δρ] =
1

2

∫
d3r d3r′

[ρ(r) + δρ(r)][ρ(r′) + δρ(r′)]

|r− r′|

= J [ρ] +

∫
d3r
(∫

d3r′
ρ(r′)

|r− r′|

)
δρ(r)

+
1

2

∫
d3r d3r′

( 1

|r− r′|

)
δρ(r) δρ(r′) , (2.26)

which upon identifying the functional derivative as done in Eq.(2.24) gives,

δJ [ρ]

δρ(r)
=

∫
d3r′

ρ(r′)

|r− r′|
. (2.27)

This is the classical Hartree potential. Therefore, functional derivatives play importance

role in DFT.

2.3 History of Density Based Theory

2.3.1 The first density based theory: Thomas-Fermi theory

Along the line of development of density-based theory, Thomas and Fermi [9, 10] pro-

posed the first-ever density-based theory known as “Thomas-Fermi (TF)” theory. In the

Hartree-Fock theory, we have noticed that everything is the functional of the density ex-

cept the kinetic energy and the exchange functional. If one neglects exchange functional

and expresses the kinetic energy as the functional of density then everything becomes

density-dependent. This is what “Thomas-Fermi” did during the early nineties, earlier

than the formalism of density functional theory was proposed by Hohenberg and Kohn.

They approximated that the system becomes homogeneous and replace the kinetic energy

functional by the homogeneous electron gas. The total electronic energy of the system

under TF approximation becomes,

E[ρ] = TTF [ρ]−
∫
Z

r
ρ(r)d3r +

1

2

∫
d3r d3r′

ρ(r)ρ(r′)

|r− r′|
, (2.28)
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where

TTF [ρ] =
3

10
(3π2)2/3

∫
ρ(r)5/3 d3r . (2.29)

Here, ρ(r) is assumed to be the density of the uniform electron gas and it depends at

the point r in space, no longer how the density is varying. In TF theory, the system is

assumed to be uniform and the expression of the kinetic energy density still valid for the

non-uniform or varying system. The energy is given by Eq.(2.28) always overestimates

the actual total energy because a part of energy known as the exchange-correlation energy

has not been considered. The TF theory is the simplified conventional way to introduce

the kinetic energy in term of density and it is considered as the predecessor of the modern

density functional theory. The Coulomb expression present in Eq.(2.28) does not include

any self-interaction correction. As a matter of which, the Coulomb interaction always

overestimated in Eq.(2.28). This fact is modified and improved further by Fermi and

Amaldi. They subtract energy per electron from the classical Coulomb energy as,

JFA[ρ] =
1

2

(
1− 1

N

)∫ ∫
d3r d3r′

ρ(r)ρ(r′)

|r− r′|
. (2.30)

Further, the missing part of energy i.e., exchange energy is included in the energy expres-

sion by Dirac as,

Ex = −3

4

( 3

π

)1/3
∫

ρ(r)4/3 d3r . (2.31)

So, the inclusion of Dirac exchange energy functional, the Thomas-Fermi-Dirac (TFD)

energy functional becomes,

ETFD[ρ] = TTF [ρ]−
∫
Z

r
ρ(r)d3r+

1

2

∫
d3r d3r′

ρ(r)ρ(r′)

|r− r′|
− 3

4

( 3

π

)1/3
∫

ρ(r)4/3 d3r .

(2.32)

The main noticeable and appealing feature of the energy expression in Eq.(2.32) is

that it is functional of the density and all the ground-state properties can be determined

explicitly through the ground state density. It is well known that the equation of density

or the Euler-Lagrange equation is obtained by applying the variational principle. There-

fore, the TFD “equation for density” is obtained by the minimization of the TFD energy
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expression subject to the constraint that the ground state density corresponds to the fixed

number particle, which leads to

1

2
[3π2ρ(r)]2/3 − Z

r
+

∫
d3r′

ρ(r′)

|r− r′|
−
( 3

π

)1/3

ρ(r)1/3 = µTFD , (2.33)

where µTFD is the Lagrange multiplier obtained by satisfying the constraint of a fixed

number of particles i.e., N =
∫
ρ(r) d3r, and N is the total number of electrons.

Albeit the TFD theory is one of the simplified many-electron density-based approxi-

mation, it qualitatively predicts wrong densities. Along the line of improvement of TFD

theory, it has been proposed to include the gradient of density, which is well known as

“Weizsäcker correction”. In spite of several drawbacks, the TFD theory is considered as

one of the first steps towards the formal development of density functional theory which

was introduced in 1964 through the seminal work of Hohenberg and Kohn (HK). In the

next section, we will discuss the HK formalism in details.

2.3.2 Hohenberg-Kohn theorem

The Hohenberg-Kohn (HK) theorem [11] is a phenomenal doorstep of the many-electron

quantum physics by considering that only the ground-state electron density legitimizes all

the ground state properties. The original proof of the HK theorem is based on two basic

theorems:

Theorem 1: There exists a one-to-one mapping between the ground state density and

the external potential. In another way, it can be stated as the external potential of the

many-electron systems is determined uniquely up to an additive constant by the ground

state density of the system.

Proof: The proof of the 1st HK theorem is based on the reductio ad absurdum. Let us

assume that a ground-state density ρ(r) corresponds to two different external potentials

v(r) and v′(r) such that v(r) 6= v′(r) + c, where c is a constant. The ground-state wave-

functions Ψ and Ψ′ corresponding to the two potentials can not be identical i.e., Ψ 6= Ψ′.
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Then the energy variational method suggests that

E = 〈Ψ|Ĥ[v]|Ψ〉 < 〈Ψ′|Ĥ[v]|Ψ′〉,

= 〈Ψ′|Ĥ[v′]|Ψ′〉+

∫
{v(r)− v′(r)}ρ(r)d3r

= E ′ +

∫
{v(r)− v′(r)}ρ(r)d3r , (2.34)

where Ψ is the ground-state wavefunction of the Hamiltonian H and the Hamiltonian H

is the functional of external potential v and total number of particle N . The variational

principle is also true for the ground-state E ′ of Ĥ ′ with external potential v′, i.e.,

E ′ = 〈Ψ′|Ĥ[v′]|Ψ′〉 < 〈Ψ|Ĥ[v′]|Ψ〉,

= 〈Ψ|Ĥ[v′]|Ψ〉+

∫
{v′(r)− v(r)}ρ(r)dr

= E +

∫
{v′(r)− v(r)}ρ(r)d3r . (2.35)

So, Eq.(2.34) and Eq.(2.35) lead to the inequality E+E ′ < E ′+E, which is a contradic-

tion. This implies that our starting assumption “ a ground density ρ(r) corresponds to two

different external potentials v(r) and v′(r)” is invalid. Alternatively, knowing the ground-

state density one can determine the unique external potential. In a simple mathematical

notation, this can also be expressed as,

ρ(r) = ρ[v(r)]⇐⇒ v(r) = v[ρ(r), N ] . (2.36)

Now, relating the HK theorem to the Thomas-Fermi energy expression of Eq.(2.28) one

can rewrite the total energy as,

E[ρ] = T [ρ] + Vee[ρ] +

∫
vext(r)ρ(r) d3r

= FHK [ρ] +

∫
vext(r)ρ(r) d3r , (2.37)
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where FHK [ρ] = T [ρ] + Vee[ρ] is the HK universal functional of density.

Theorem 2: The second Hohenberg-Kohn theorem redefines the variational principle

based on particle density. It states that: For a trial density ρ̃(r) 3 ρ̃(r) ≥ 0 and ρ̃(r)dr =

N ,

E0 ≤ E[ρ̃(r)] , (2.38)

where E[ρ̃(r)] is the energy functional (like it was defined in Eq.(2.37)).

Proof: Note from the 1st HK theorem establishes that the ground state density ρ(r) de-

termines its own potential v(r), Hamiltonian Ĥ and wavefunction Ψ. Now by variational

method

〈Ψ̃|Ĥ|Ψ̃〉 =

∫
ρ̃(r)v(r)dr + FHK [ρ̃(r)] = E[ρ̃] ≥ 〈Ψ|Ĥ|Ψ〉 = E[ρ] , (2.39)

where ρ̃ is the ground state density of the potential v(r) and Ψ is the ground state wave-

function. This is analogous to the quantum mechanical variation principle in density

functional theory. In principle, Eq.(2.39) states that the trail density always gives energy

higher than or equal to the true ground state energy.

Now, assuming the differentiability of the energy functional E[ρ], the variational prin-

ciple of theorem 2 satisfies the stationarity principle condition,

δ{E[ρ]− µ[

∫
ρ(r) dr−N ]} = 0 , (2.40)

which gives the Euler-Lagrange equation as,

µ =
δE[ρ]

δρ(r)
= v(r) +

δFHK [ρ]

δρ(r)
, (2.41)

where µ is the Lagrange multiplier that ensures the normalization of the density during

the density variation.
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2.3.3 v− and N− representability and constraint search formalism

HK theorem is associated with the antisymmetric ground-state wavefunction of the Hamil-

tonian with external potential v(r). This is known as v− representable [22, 42–47] den-

sity because the density is obtained from the ground-state wavefunction of the external

potential v(r). This is a serious restriction of the HK formalism. Since, a given density

may or may not be v− representable [42], an extension of the functional FHK [ρ] to a

more general domain is required, where the density becomes N− representable. The N−

representability of a density implies that,

ρ(r) ≥ 0,

∫
ρ(r)d3r = N, and

∫
|∇ρ(r)1/2|2 d3r <∞ . (2.42)

Following Levy and Lieb [42], the extension of the HK functional to the domain

of N−representability is achieved through the constraint search formalism of density

functional theory. The Levy-Lieb functional is defined as,

FLL[ρ] ≡ minΨ→ρ〈Ψ|T̂ + V̂ee|Ψ〉 , (2.43)

where the minimum condition is taken over all possible anti-symmetric wavefunction, not

necessarily the ground state solution of an external potential. The HK functional FHK is

on the subspace of the more general functional FLL[ρ], where the minimum condition is

taken over the v−representable wavefunctions.

The constraint search formula of Eq.(2.43) eliminates the v−representability problem

of the HK variational principle and represents it in a more general domain of the N−

representability densities. The energy minimization condition of the N− representabil-

ity densities can also be represented through the Rayleigh-Ritz variation minimization
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procedure as,

E0 = minΨ〈Ψ|T̂ + V̂ee +
N∑
i

vext(ri)|Ψ〉

= minρ{minΨ→ρ〈Ψ|T̂ + V̂ee +
N∑
i

vext(ri)|Ψ〉}

= minρ{minΨ→ρ[〈Ψ|T̂ + V̂ee|Ψ〉+

∫
vext(rρ(r)dr)]}

= minρ{FLL +

∫
vext(r)ρ(r)d3r} . (2.44)

In the second line, the inner minimization corresponds to the search for all the anti-

symmetric wavefunctions subject to the constraint that the wavefuncton corresponds to

the given density. This is why the Levy-Lieb minimization procedure is known as “con-

straint search” formalism [42].

In summary, it is proved through the constraint search formalism that there exists

a universal functional F [ρ] (or Levy-Lieb functional) for any N−representable density.

Hence, one can perform energy minimization procedure for a broader class ofN−representable

trial densities and the v−representability is a subclass of it.

2.4 Effective Single Particle Equation

2.4.1 The Kohn-Sham formalism

Having established the density to potential mapping via the HK theorem, it is now im-

portant to construct a computational setup to solve the many-electron problem. In the

TF model, a direct approach of construction for the approximation of T [ρ] and Vee has

been prescribed. But, unfortunately, there are seemingly insurmountable difficulties in

the approximation of kinetic energy density. To circumvent the TF problem of the many-

electron systems, Kohn-Sham (KS) invented a method in the year 1964 [12]. KS proposed

that the kinetic energy can be treated to good accuracy by introducing the orbitals into the

problem leaving only a residual part which can be handled separately. In the KS approach,
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the true interacting system is replaced by a fictitious non-interacting system with the same

particle numbers and density. This is the key assumption of KS construction. Under this

assumption, the Hamiltonian of the N− non-interaction electrons reduce to,

Ĥ = T̂ + (Vee = 0) +
N∑
i=1

v(ri) . (2.45)

Thus, the HK functional of Eq.(2.43) becomes,

Fnon−interacting[ρ] = minΨ→ρ〈Ψ|T̂ + V̂ee = 0|Ψ〉

= 〈Φmin
ρ |T̂ |Φmin

ρ 〉 = Ts[ρ] , (2.46)

where Φmin
ρ is the non-interacting wavefunction or a single Slater determinant (Φ =

1√
N !

[φ1φ2....φN ] with φi is the non-interacting single-particle states or orbitals) that min-

imizes the expectation value of kinetic energy operator subject to the constraint that the

density remains the same as the actual interacting system. This minimization is the

same as HK functional minimization but only in the non-interaction particle framework.

Eq.(2.46) corresponds to the Euler-Lagrange equation analogous to the Eq.(2.41) but in

the non-interaction framework as,

µs = vs(r) +
δFnon−interacting[ρ]

δρ(r)

= vs(r) +
δTs[ρ]

δρ(r)
, (2.47)

where vs is the KS potential which we will identify in the following section.

Let us now recall the interacting HK functional of Eq.(2.37) as,

F [ρ] = T [ρ] + Vee[ρ] . (2.48)
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Alternatively, this can also be written as,

F [ρ] = T [ρ] + Vee[ρ]− Ts[ρ] + Ts[ρ] + J [ρ]− J [ρ]

= Ts[ρ] + J [ρ] + Exc[ρ] , (2.49)

where Exc[ρ] ≡ T [ρ]− Ts[ρ] + Vee[ρ]− J [ρ] is defined as the exchange-correlation (XC)

energy functional. The Euler-Lagrange Eq.(2.47) now becomes,

µ = vKS(r) +
δTs[ρ]

δρ
, (2.50)

where the KS effective potential (vKS(r)) is defined as,

vKS(r) = vext(r) +
δJ [ρ]

δρ(r)
+
δExc[ρ]

δρ(r)

= vext(r) +

∫
d3r′

ρ(r′)

|r− r′|
+ vxc(r) . (2.51)

The last term of Eq.(2.51) is known as the exchange-correlation potential,

vxc(r) =
δExc[ρ]

δρ(r)
. (2.52)

But in practice, one does not attempt to solve the Eq.(2.50) because the Ts[ρ] is not

known in terms of the density. Rather one follow Schrödinger like equation for the prac-

tical calculations. Eq.(2.51) with the constraint that density ρ(r) integrates to the total

number of particle effectively gives a Schrödinger like equation (like Eq.(2.5)), but all the

many-electrons phenomena are now embedded into the effective potential vKS(r). This

implies following simple canonical form of effective one-electron like equation,

[−1

2
∇2 + vKS(r)]φi = εiφi . (2.53)
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Here, the KS eigenvalues εi are assumed to be ordered as,

ε1 ≤ ε2 ≤ .....εN = εF < εN+1 ≤ ...... . (2.54)

The Fermi energy εF is identified as the one with the highest energy eigenvalue at the

single-particle level. The physical meaning of the KS eigenvalues will be interpreted in

the next section.

2.5 Interpretation of Kohn-Sham Eigenvalues

Since the effective potential or KS potential is a fictitious system, the meaning of the

KS energy eigenvalues and KS orbitals are itself a very foremost question in DFT. In

the Hartree-Fock theory, the meaning of HF eigenvalues is found from the Koopman’s

theorem which states that “the HK eigenvalues are the energy necessary to add or remove

an electron from a given orbital” [48–56]. A similar theorem was suggested by Janak [57].

In this section, we will interpret the meaning of the KS eigenvalues and orbitals through

the Janak’s theorem, ionization potential and its connection to the bandgaps. These three

phenomena are important to understand physically the importance of KS eigenvalues.

Also, it will help to do practical calculations by solving KS single-particle equation.

2.5.1 Janak’s theorem and fractional particle number prospective

Janak’s theorem is analogous of the Koopman’s theorem in HF theory. It states that “the

variation of the density functional total energy with respect to the orbital occupation of a

state is equal to the eigenvalue of that orbital” [57]. i.e.,

δE

δni
= εi , (2.55)

where ni be the occupation and εi is the eigenvalue of the concerned state. If we consider

the variation of the frontier orbitals, then the Eq.(2.55) leads to a rigorous connection be-

tween the highest occupied molecular orbitals (HOMO) and lowest unoccupied molecular
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orbitals (LUMO). During the occupation number variation of the frontier orbital,

E(N)− E(N − 1) =

∫ 1

0

εHOMO∂nHOMO (2.56)

and

E(N)− E(N + 1) =

∫ 1

0

εLUMO∂nLUMO . (2.57)

Instead of the integer particle number, in the case of fractional occupation number, the

above two equation is still valid and this is known as the Janak’s theorem [57] in frac-

tional particle number perspective. The fractional particle number perspective has special

importance in DFT and it is shown by Perdew-Parr-Levy-Balduz [48] that the exact den-

sity functional formalism shows piece-wise linear behavior with a discontinuity at the

integer number. The detail of the piece-wise linear behavior of the exact and approximate

density functional theory will be discussed in chapter 4.

2.5.2 Ionization potential theorem

The ionization potential theorem in DFT connects the eigenvalue of the highest occupied

KS level of a system with exponentially decaying density to the ionization potential. It

states that “the eigenvalue of the highest occupied KS orbital is equal to the ionization

potential (IP)”. Based on the Janak’s theorem [57] Perdew et. al. [49] showed for an atom

of nuclear charge Z,

εmax =

{
-IP (Z − 1) < N < Z

-EA (Z) < N < (Z + 1) ,
(2.58)

where εmax is the highest occupied KS orbital energy. This equation has been interpreted

as follows: within the exact KS density functional theory, the highest occupied KS orbital

energy of a system with N−electrons is negative of the exact ionization potential. Later,
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in the subsequent work, Kleinman [53] showed that the HOMO energy should not be

exactly equal to the IP. But, as the reply, Perdew and Levy [54] showed that Eq.(2.58)

holds without going through the Janak’s theorem.

2.5.3 Bandgap in Kohn-Sham formalism

Having established the Janak’s theorem and ionization potentials theorem the obvious

question is that: “is there any connection between the KS orbital energies and bandgaps

?” Eg. In DFT, this has been investigated several times [49, 50, 58–66]. This is an im-

portant question for quantum chemist and solid-state physicist. The bandgaps determine

many important physical phenomena in molecular crystals and solids. The fundamental

bandgap (Eg) is defined by taking the difference of the binding energy of the most weekly

bound electron in the ground state of a system that of the ground state of the system ob-

tained by addition of one more electron i.e.,

Eg = −{[EN
0 − EN−1

0 ]− [EN+1
0 − EN

0 ]} , (2.59)

where the name bandgap originates from the removal of an electron from HOMO and

addition of an electron in the LUMO level. In the non-interacting systems or the KS

scheme, the bandgap is identified as [49],

∆KS
g = εN+1 − εN . (2.60)

This is due to the relationship between the ionization potential and electron affinity of the

KS system. Now using the variational equation the fundamental bandgap can be written

as [49],

Eg = IP − EA

= limω→0{
δE[ρ]

δρ(r)

∣∣∣
N+ω
− δE[ρ]

δρ(r)

∣∣∣
N−ω
} , (2.61)
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where ω is the fraction of electron to be added or removed from the LUMO and HOMO

respectively. Finally, the total energy in Eq.(2.61) can be recomposed into E[ρ] = T [ρ] +

EH + Eext + EXC and using the fact that the Eext and EH depend continuously on the

particle number one arrives,

Eg = limω→0{[
δTs[ρ]

δρ(r)

∣∣∣
N+ω
− δTs[ρ]

δρ(r)

∣∣∣
N−ω

] + [
δExc[ρ]

δρ(r)

∣∣∣
N+ω
− δExc[ρ]

δρ(r)

∣∣∣
N−ω

]}

= ∆KS
g + ∆xc . (2.62)

The second term of Eq.(2.62) is originating from the derivative discontinuity of the exchange-

correlation (XC) energy functional. In the exact KS theory, the ∆xc is finite but for ap-

proximate XC functionals, ∆xc is often neglected because of the approximate nature of

it. The ∆xc includes a prime amount of bandgap value. Though recent developments in

advanced Kohn-Sham kinetic energy density-dependent functionals include some amount

of ∆xc but still away from accuracy. Several resolutions are also proposed to improve the

bandgap performance such as the exact-exchange (EXX) formalism [60, 67–76], which

by construction possesses ∆xc. Other resolutions like hybrid functional approach are also

proposed to improve the bandgap performance by mixing some amount of HF exact ex-

change and keeping the accuracy of the semilocal functional. The details of this approach

will be discussed in chapter 4 and chapter 5.
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2.6 Designing Exchange and Correlation Energy Func-

tionals

2.6.1 Definitions

Due to different properties of the exchange and correlation energies, these can be decom-

posed into the exchange and correlation as,

Exc[ρ] = Ex[ρ] + Ec[ρ] . (2.63)

The exact definition of the exchange and correlation can be given from the constraint

search formalism. In constraint search, the exchange is defined as,

Ex[ρ] = 〈φminρ |V̂ee|φminρ 〉 − J [ρ] , (2.64)

where J [ρ] is the Coulomb energy defined in Eq.(2.27). Here, φminρ is the single Slater

determinant obtained by minimization of the Kinetic energy operator only, subject to the

constraint that the wavefunction gives the same density as the fully interacting system.

Note that

〈φminρ |T̂ + V̂ee|φminρ 〉 = Ts[ρ] + J [ρ] + Ex[ρ] , (2.65)

which in V̂ee = 0 limit becomes,

Ts = Ts[ρ] + J [ρ] + Ex[ρ]

Ex[ρ] = −J [ρ] . (2.66)
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Thus for one-electron, the exchange energy cancels the Hartree electrostatic self-repulsion

energy exactly. In the same line of analysis, the correlation energy is defined as,

Ec[ρ] = F [ρ]− Ts[ρ] + J [ρ] + Ex[ρ]

= 〈Ψmin
ρ |T̂ + V̂ee|Ψmin

ρ 〉 − 〈φminρ |T̂ + V̂ee|φminρ 〉

= [〈Ψmin
ρ |T̂ |Ψmin

ρ 〉 − 〈φminρ |T̂ |φminρ 〉] + [〈Ψmin
ρ |V̂ee|Ψmin

ρ 〉 − 〈φminρ |V̂ee|φminρ 〉]

= Tc + Vc . (2.67)

Tc is the correlation energy arising due to the difference between the exact kinetic en-

ergy and KS kinetic energy. The motion of the electron is modified due to the correlated

wavefunction of the real and KS system. Similarly, due to the difference between the

expectation value of the electron-electron repulsion with respect to the real and KS wave-

function give rise the correlation energy from the electron-electron repulsion integral.

2.6.2 Exchange-Correlation and coupling-constant integration

From the discussions above, it is quite evident that the calculation of exchange and corre-

lation energy requires the real and non-interacting wavefunction. But, it is impracticable

to construct the real interacting system wavefunction. Therefore, it is always necessary to

construct the exchange and correlation differently. Two ways of obtaining the expressions

for the exchange-correlation are

(a) Kohn-Sham Perturbation theory, and

(b) adiabatic connection or the coupling constraint integral approach.

In both methods, the exact form of exchange and correlation energy are obtained to be

the same. In this section, we will describe the coupling constraint integral formula for the

exchange and correlation energy. The basic assumption is that the ground state density

ρ of the interacting system is v−representable for any arbitrary interaction strength λVee,

where λ ∈ [0, 1], i.e.,

ρλ(r) = 〈Ψλ
0 |ρ̂(r)|Ψλ

0〉 ≡ ρ(r) for all 0 ≤ λ ≤ 1 . (2.68)
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The external potential is denoted by uλ has three different forms,

uλ =

{ vKS(r) for λ = 0

unknown for 0 ≤ λ ≤ 1

vext(r) for λ = 1 .

(2.69)

With this external potential, the λ dependent Hamiltonian becomes,

Ĥ(λ) = T̂ +

∫
d3r uλ(r)ρ̂(r) + λVee . (2.70)

For λ = 0, the Hamiltonian becomes KS Hamiltonian and λ = 1 leads to the fully

interacting Hamiltonian. Using this coupling constant Hamiltonian, the λ dependent

Schrödinger equation becomes,

E0(λ) = 〈Ψλ
0 |Ĥ(λ)|Ψλ

0〉 . (2.71)

Differentiation of E0(λ) with respect to λ and using the Hellman-Feynman theorem,

Eq.(2.71) becomes,

E0(λ = 1)− E0(λ = 0) =

∫ λ=1

λ=0

dλ
〈

Ψλ
0

∣∣∣ ∫ d3rρ̂(r)
duλ(r)

dλ
+ Vee

∣∣∣Ψλ
0

〉
. (2.72)

After evaluation of the integral formula and applying the definition of the response func-

tion, the compact form of the exchange-correlation energy functional in terms of the re-

sponse function (χλ) and electron-electron repulsion potential vee is obtained to be,

Exc[ρ] =
1

2

∫
d3r

∫
d3r′vee(r, r

′)

∫ λ=1

λ=0

dλ[iχλ(r0, r
′0)− ρ(r)δ3(r− r′)] . (2.73)

This is the exact formulation of exchange-correlation functional in terms of the coupling

constant integral. Upon applying the Fourier representation, this can be further divided

into the exchange and correlation parts. This results in the decomposition of the exact

formulation of the exchange and correlation energy functional. The exchange part is
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given as,

Ex =
1

2

∫
d3r

∫
d3r′

1

|r− r′|

[
i

∫ ∞
0

dω

π
χs(r, r

′, ω)− ρ(r)δ3(r− r′)
]
, (2.74)

where χs is the time-ordered response function obtained from the KS orbital and ω is

obtained from the Fourier transform of time. Subtracting the exchange energy functional

from the total exchange-correlation energy of Eq.(2.73) the correlation energy functional

becomes,

Ec = −1

2

∫
d3r

∫
d3r′

1

|r− r′|

∫
dλ

∫ ∞
0

dω

π

[
χλ(r, r

′, iω)− χs(r, r′, iω)
]
. (2.75)

The expression of the Ex and Ec as obtained from the response function is particularly

important in deriving the exchange and correlation energy functional. It is well known that

the second-order and fourth-order slowly varying gradient approximation derived from

the coupling constant integral formula of exchange and correlation is the main framework

for the construction of the modern GGA and meta-GGA functionals. We will discuss the

construction of GGA and meta-GGA later in this chapter and chapter 3.

2.6.3 Reduced density matrices

The concept of Density matrices is very important in DFT, in particular when designing

the exchange energy functional from the Taylor series expansion of the exchange-hole or

using density matrix expansion technique. We start from the N−elctron wavefunction

,ΨN(x,x2....xN) in co-ordinate space. The N th order density matrix is defined as,

γN(x′,x′2 · · ·x′N ,x1,x2 · · ·xN) ≡ ΨN(x′,x′2 · · ·x′N)Ψ∗N(x1,x2 · · ·xN) . (2.76)

Using the above definition, the pth order reduced density matrix is obtained as,

γp(x
′,x′2 · · ·x′p,x1,x2 · · ·xp)
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=

N
p

∫ · · · ∫ γN(x′,x′2 · · ·x′p,x′p+1 · · ·x′N ,x1,x2 · · ·xp,xp+1 · · ·xN)d3xp+1 · · · d3xN ,

(2.77)

where

N
p

 is the binomial coefficient arising from the permutations of the coordinates

of the identical particles (Fermions). If p = 2 we obtain the 2nd order reduced density

matrix,

γ2(x′,x′2,x,x2) =
N(N − 1)

2

∫
· · ·
∫

Ψ(x′,x′2 · · ·x′N)Ψ∗(x,x2 · · ·xN) d3x3 · · · d3xN

(2.78)

and for p = 1 the 1st order reduced density matrix is obtained as,

γ1(x′,x) = N

∫
· · ·
∫

Ψ(x′,x2 · · ·x′N)Ψ∗(x,x2 · · ·xN) d3x2 · · · d3xN . (2.79)

Here the spin-coordinate x ≡ (r, σ) involves both the space and spin coordinates. But,

the spin coordinated can be reduced by doing summation over all the spin coordinated.

Therefore, the 1st and 2nd order spinless density matrices are given by,

Γ1(r′, r) =
∑
σ

γ1(r′, σ, r, σ) (2.80)

and

Γ2(r′, r′2, r, r2) =
∑
σ,σ2

γ2(r′, σ, r′2, σ2, r, σ, r2, σ2) . (2.81)

Note that, the diagonal element of the 1st order reduced matrix is just the electron density,

ρ(r) = Γ1(r′, r)|r′=r . (2.82)
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and the shorthand notation of the diagonal element of Γ2(r′, r′2, r, r2) is

Γ2(r′, r2) = Γ2(r, r2, r, r2)|r′=r,r′2=r2 =
N(N − 1)

2

∑
σ1···σN

∫
· · ·
∫
|Ψ|2 d3r3 · · · d3rN .

(2.83)

The expectation value of kinetic energy operator and the two body operators can also be

expressed in terms of 1st order and 2nd order reduced density matrices as,

〈T̂ 〉 = −1

2

∫
dr

∂

∂r
· ∂
∂r
Γ1(r′, r)|r′=r . (2.84)

and

〈V̂ee〉 =

∫
d3r′d3r

Γ2(r′, r)

|r− r′|
. (2.85)

Note that in Eq.(2.85), we denote the Γ2(r′, r2) as Γ2(r′, r) i.e., we change the variable

r2 to r. This is done to make it conventional to the notational representation of the other

operators.

Now, noting that the 〈V̂ee〉 can be expressed in terms of the J [ρ]+non-classical terms

i.e.,

∫
d3r′d3r

Γ2(r′, r)

|r− r′|
=

1

2

∫
d3r′d3r

ρ(r′)ρ(r)

|r− r′|
+ non-classical term . (2.86)

Using this fact, lets define the non-classical term as,

1

2

∫
d3r′d3r

ρ(r′)ρ(r)h(r′, r)

|r− r′|
, (2.87)

where h(r′, r) contains all the non-classical effects. It is best known as pair correlation

function. Physically, it is defined as the probability function− for an electron located at r,

the probability of finding another electron at the point r′. From Eq.(2.85) and Eq.(2.87),

h(r′, r) is defined as,

h(r′, r) =
2Γ2(r′, r)− ρ(r′)ρ(r)

ρ(r′)ρ(r)
. (2.88)

The two-particle density matrix Γ2(r′, r) becomes uncorrelated whenever the two coordi-
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nates are very far apart implying,

Γ2(r′, r) ≈ ρ(r′)ρ(r), (2.89)

which makes

h(r′, r) = 1 . (2.90)

For small distances, h(r′, r) is smaller than 1 because of both the repulsion effects origi-

nating from the Pauli exclusion principle and electron-electron repulsion. Defining Γ2(r′, r)

from Eq.(2.88) and integrating with respect to dr′ one can obtain,

∫
Γ2(r′, r) d3r′ =

1

2
ρ(r)

∫
ρ(r′) d3r′ +

∫
ρ(r′)h(r′, r) d3r′

N − 1

2
ρ(r) =

1

2
ρ(r)[N +

∫
ρ(r′)h(r′, r) d3r′] . (2.91)

This implies that ∫
ρ(r′)h(r′, r) d3r′ = −1 . (2.92)

Here, the term ρ(r′)h(r′, r) has special importance in DFT, and it is known as the exchange-

correlation hole (ρxc(r′, r)). The constraint of presented in Eq.(2.92) is known as the nor-

malization condition of the exchange-correlation hole. The exchange-correlation hole is

one of the main constituents of constructing the exchange-correlation functional. Now,

using the exchange-correlation hole the 〈Vee〉 is defined as,

〈Vee〉 = J [ρ] +
1

2

∫
d3r′d3r

ρ(r)ρxc(r
′, r)

|r− r′|
(2.93)

2.6.4 Exchange-correlation hole

As mentioned above the concept of the density matrix is very useful in describing the

exchange-correlation hole and related models. In this thesis, the exchange hole will be

used further to construct the exchange energy functionals. But, before that the knowledge

of the physical contents of the exchange-correlation hole is very important. To do so, we
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start with the coupling constraint integral formula of the constraint search formalism. Let

us define a functional Fλ[ρ] as,

Fλ[ρ] = minΨλ→ρ〈Ψλ|T̂ + λV̂ee|Ψλ〉 = 〈Ψmin,λ
ρ |T̂ + λV̂ee|Ψmin,λ

ρ 〉 , (2.94)

where Ψmin,λ
ρ yields the same density ρ and minimize the expectation value of T̂+λV̂ee for

each values of λ, where λ varies from 0 → 1. The λ = 0 corresponds to the KS system,

whereas, λ = 1 corresponds to the true interacting many-electron systems. Using the

above coupling constant functional, the exchange-correlation energy functional becomes,

Exc[ρ] = 〈Ψλ|T̂ + λV̂ee|Ψλ〉|λ=1 − 〈Ψλ|T̂ + λV̂ee|Ψλ〉|λ=0 − J [ρ]

=

∫ λ=1

λ=0

dλ
d

dλ
〈Ψλ|T̂ + λV̂ee|Ψλ〉 − J [ρ] ,

=

∫ λ=1

λ=0

dλ 〈Ψλ|V̂ee|Ψλ〉 − J [ρ] , (2.95)

where the last line of the Eq.(2.95) is due to the Hellman-Feynman theorem. Here, the

Eq.(2.95) is obtained by rewriting Eq.(2.70), Eq.(2.71) and Eq.(2.72).

Now, using Eq.(2.85), the coupling-constant integral
∫ λ=1

λ=0
dλ 〈Ψλ|V̂ee|Ψλ〉 becomes,

∫ λ=1

λ=0

dλ 〈Ψλ|V̂ee|Ψλ〉 =

∫
dλ

∫
dr′dr

Γ λ
2 (r′, r)

|r− r′|

=

∫
d3r′d3r

〈Γ λ
2 (r′, r)〉
|r− r′|

, (2.96)

where 〈Γ λ
2 (r′, r)〉 =

∫
dλΓ λ

2 (r′, r). Using Eq.(2.96), density matrix and exchange hole,

Eq.(2.95) becomes,

Exc[ρ] =
1

2

∫
d3r′d3r

ρ(r)〈ρxc(r′, r)〉
|r− r′|

, (2.97)

where 〈ρxc(r′, r)〉 =
∫ λ=1

λ=0
dλ ρxc(r

′, r). However, due to different properties, the exchange-

correlation hole can be decomposed into exchange and correlation hole as, ρxc(r′, r) =

ρx(r
′, r) + ρc(r

′, r). Now, using the fact that for λ = 0, i.e., in the non-interacting particle
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framework, the many-electron system can be expressed as the product of single-particle

systems, which give a direct connection between the HF exchange with the exchange

hole. Therefore, the HF 1st order reduced density matrix is expressed as,

Ex = −1

2

∫
d3r′d3r

|Γ1(r′, r)|2

|r− r′|
, (2.98)

where Γ1(r′, r) =
∑

i Ψi(r
′)Ψi(r). This is obtained by rewritting the HF exchange in

term of the 1st order reduced density matrix. Now, using the exchange only notation of

Eq.(2.97) and λ = 0 formalism of the HF exchange as given in Eq.(2.98) one can obtain,

ρx(r
′, r) = −|Γ1(r′, r)|2

ρ(r)
. (2.99)

This equation is very important in the sense that knowing the density matrix one can

design the exchange hole and from the exchange hole, the exchange energy functional

can be derived. The density matrix expansion based functionals are developed in this line

by explicitly constructing the density matrix. We will discuss this construction later in

this thesis.

2.7 Formal Properties of Functionals

2.7.1 Uniform coordinate scaling

Let consider for any scaling parameter γ > 0 (with r → γr), the wavefunction in 3D

scaled as,

Ψγ(r1, · · · , rN) = γ3N/2Ψγ(γr1, · · · , γrN) , (2.100)

because it satisfies the normalization condition as,

〈Ψγ|Ψγ〉 = 〈Ψ|Ψ〉 = 1 . (2.101)
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The corresponding density of the scaled wavefunctions becomes,

ργ(r) = γ3ρ(γr) , (2.102)

which also conserve the total particle number constraint as,

∫
d3rργ(r) =

∫
d3(γr)ρ(γr) = N . (2.103)

Under the scaling relation, the Hartree electrostatic potential becomes,

J [ργ] = γ
1

2

∫
d3(γr) d3(γr′)

ρ(γr)ρ(γr′)

|γr− γr′|
= γJ [ρ] . (2.104)

Due to the second-order derivative
∑

i=1,2,3
d2

dx2i
, the scaling relation of the expectation

value of kinetic energy is straight forward,

〈Ψγ|T̂ |Ψγ〉 = γ2〈Ψ|T̂ |Ψ〉 . (2.105)

Now, for the non-interacting N -electron system, the KS orbitals also obey the same scal-

ing rule of the real interacting system which results to,

Ts[ργ] = γ2Ts[ρ] . (2.106)

The scaling relation of the exchange energy functional is derived from the constraint

search formalism by using the definition of exchange energy as given by Eq.(2.64) i.e.,

Ex[ρ] = 〈φminρ |V̂ee|φminρ 〉 − J [ρ] . (2.107)

which under the uniform density scaling can be written as,

Ex[ργ] = 〈φminργ |V̂ee|φ
min
ργ 〉 − J [ργ] . (2.108)
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Upon applying the scaling relation of J and also using the fact that the electron-electron

interaction potential is a homogeneous function of first degree we obtain the scaling rela-

tion of the exchange energy functional as,

Ex[ργ] = γEx[ρ] . (2.109)

However, for correlation energy there exist no straight forward scaling relation.

2.7.2 Non-uniform coordinate scaling

The non-uniform coordinate scaling relation is important for the dimensional crossover

from three dimensions to two dimensions or one dimensional. Under one-dimensional

coordinate scaling the density scales as,

ργ = γρ(γx, y, z) . (2.110)

The electron number conservation of the scale density gets satisfied as,

∫
dx dy dz ργ(x, y, z) =

∫
d(γx)dy dz γρ(γx, y, z) = N . (2.111)

However, the scaling relation of KS kinetic energy, exchange energy, and correlation

energy also exist only in the γ →∞ as,

Ts[ργ]→ Tw[ργ] , (2.112)

Ex[ργ]→ constant , (2.113)

Ec[ργ]→ constant (2.114)

2.7.3 Spin scaling relations

Spin scaling relation is important because, through it, any spin-unpolarized energy func-

tional can be transformed into the spin-polarized form. The density can be expressed as
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the sum of the spin-up (ρ↑) and spin-down (ρ↓) densities i.e.,

ρ(r) = ρ↑(r) + ρ↓(r) . (2.115)

Using this density scaling relation the exchange energy scaling relation becomes,

Ex[ρ↑, ρ↓] =
1

2
(Ex[2ρ↑] + Ex[2ρ↓]) . (2.116)

Analogously the spin-scaling relation of kinetic energy becomes,

Ts[ρ] =
1

2
(Ts[2ρ↑] + Ts[2ρ↓]) . (2.117)

Similarly, the spin scaling relation of the exchange hole can also be written as,

ρx[ρ](r, r + u) =
ρ↑(r)

ρ(r)
ρx[2ρ↑](r, r + u) +

ρ↓(r)

ρ(r)
ρx[2ρ↓](r, r + u) . (2.118)

However, like coordinate scaling, there is no simple spin scaling relation for correlation

energy functional.

2.7.4 Other miscellaneous properties

Exchange energy for one and two electron system: For the one-electron system, the

exchange energy must be equal to the Hartree energy as

Ex[ρ] = −J [ρ] (2.119)

and correlation should vanish i.e.,

Ec[ρ] = 0 (2.120)

For two electron system it becomes,

Ex[ρ] = −1

2
J [ρ] . (2.121)
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Exact conditions on exchange-correlation hole: As discussed earlier, the exchange-

correlation hole is an important concept for the development of functionals. The exchange-

correlation energy is nothing but the electrostatic interaction between the electron located

at ~r and the exchange-correlation hole at ~r + ~u surrounding it, where ~u is the relative

separation of the two electrons with the same spin. The exchange-correlation hole obeys

important normalization condition:
∫
ρxc(~r, ~r + ~u) d3u = −1. The exact properties of

exchange-correlation hole along with the exact small −u expansion will be discussed in

details in chapter 3.

2.8 Hierarchy of Different Levels of Exchange-Correlation

Approximations

2.8.1 Local (spin-)density approximation

The first-ever approximation which has been used vastly during the initial years of devel-

opment and applications of the density functional formalism is the local density approxi-

mation (LDA). The LDA is one of the simplest and easily implementable approximations

of the DFT. The LDA exchange functional is based on the homogeneous electron gas

(HEG). The HEG model is a model system where the electrons are uniformly distributed

over the space and the positive background charges are assumed to be distributed uni-

formly to neutralize the electron charge. To understand the construction and mathematical

formulation of the LDA, we first recall the kinetic energy approximation in the Thomas-

Fermi approximation. In this approximation, the homogeneous electron gas-based kinetic

energy density becomes,

thoms =
3

10
(3π2)2/3ρ(r)5/3 . (2.122)

This method has been formulated using the uniform electron gas in a cubical volume

V = l3 and considering the KS orbitals as plane-waves exp(ik.r)/
√
V , where k is the
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Thomas-Fermi wave vector. Similarly, the exchange energy density is obtained to be

εLDAx [ρ] = −3

4
(
3

π
)1/3ρ(r)4/3 , (2.123)

which leads to the LDA exchange energy functional,

ELDA
x [ρ] =

∫
ρ(r)εLDAx [ρ] d3r . (2.124)

However, deriving the correlation energy is quite difficult because in the correlation en-

ergy, only two extreme limits are known exactly: The high-density limit (rs → 0) and

the low density limit (rs → ∞), where rs =
(

3
4πρ(r)

)1/3

is the Wigner-Seitz radius. The

parametrized form of the correlation energy is obtained by extrapolating between these

two limits. In high density or rs → 0 limit, the correlation energy per electron becomes,

εunifc [ρ]→ c0 ln(rs)− c1 + · · · (rs → 0) (2.125)

and in the low density or rs →∞ limit it becomes,

εunifc [ρ]→ −d0

rs
+

d1

r
3/2
s

+ · · · (rs →∞) , (2.126)

where c0, c1, d0, and d1 are given in reference [77]. An extrapolation of these two lim-

its and parametrization with the accurate quantum Monte-Carlo results, the correlation

energy per electron for the LDA exchange as,

εunifc [ρ] = −2c0(1 + α1rs)ln
[
1 +

1

2c0(β1r
1/2
s + β2rs + β3r

3/2
s + β4r2

s)

]
, (2.127)

where

β1 =
1

2c0

exp(
c1

2c0

) (2.128)

and

β2 = 2c0β
2
1 (2.129)
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are two non-empirical parameters. The parameters α1, β3, and β4 are obtained from the

accurate quantum Monte-Carlo results.

The LDA exchange energy of Eq.(2.124) together with correlation energy is given by

Eq.(2.127) results the local spin density approximation (LSDA) as,

ELSDA
xc [ρ↑, ρ↓] =

∫
d3rρ(r)εunifxc [ρ↑, ρ↓] , (2.130)

where ρ(r) = ρ↑(r) + ρ↓(r) is the sum of spin densities. εunifxc [ρ↑, ρ↓] is the exchange-

correlation energy per electron in the homogeneous electron gas limit.

For the spin-polarized system, one can define a non-vanishing spin-polarization pa-

rameter,

ζ =
ρ↑ − ρ↓
ρ↑ + ρ↓

6= 0, (2.131)

and using it the exchange energy per electron is further defined as,

εunifx [ρ↑, ρ↓] = εunifx [ρ]
[(1 + ζ)4/3 + (1− ζ)4/3]

2
. (2.132)

2.8.2 Gradient approximations

The L(S)DA is a good approximation for the solid-state lattice constants for a while but

shows large errors in predicting the bulk moduli, cohesive energies and atomization en-

ergies of molecules. All these properties are greatly improved by the inclusion of the

gradient terms in the functional form. The relevance of slowly varying or non-uniform

density limit is included in the functional form through the dimensionless quantities,

s =
|∇ρ(r)|
2kFρ(r)

; p =
|∇ρ(r)|2

2(3π2)1/3ρ(r)4/3
, (2.133)

and reduced Laplacian of density

q =
∇2ρ(r)

4(3π2)2/3ρ5/3
. (2.134)
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The reduced density gradient s measures how fast and how much density varies in the

scale of local Fermi momentum 2π/kF . However, the region 0 < s < 3 is important for

atoms, molecules, and solids, whereas, 0 < s < 1 is important for solids than molecules.

The s > 3 region is unimportant.

In modern density functional exchange approximations, the higher-order terms of den-

sity gradient expansion is obtained from the linear response theory of Eq.(2.74) as,

Ex[ρ] =

∫
d3rρ(r)εx[ρ(r)][1 +

10

81
p+

146

2025
q2 − 73

146
qp+Dp2] . (2.135)

This is best known as the fourth-order gradient approximation (GE4) of exchange. The

Perdew-Burke-Ernzerhof (PBE) [78] generalized-gradient approximation (GGA) is de-

veloped by truncating the series up to 2nd terms and using the series re-summation tech-

nique. The details of the PBE functional construction is discussed in chapter 3. How-

ever, in PBE functional different coefficient of p has been used than Eq.(2.135) to better

the performance for the atomic and molecular systems. Though the PBE functional im-

proves the atomization energies compared to L(S)DA but the performance of PBE for

solid-state lattice constants is not so impressive as compared to L(S)DA. However, in the

modified version of PBE for solids (known as PBEsol) the coefficient of p i.e., 10/81 is

restored [79].

Regarding the generalized gradient approximation based correlation energy, it is con-

structed from the second-order gradient expansion approximation (GEA) as,

Ec[ρ] =

∫
d3rρ(r)[εunifc [ρ↑, ρ↓] + Cc[ρ↑, ρ↓]

|∇ρ(r)|2

ρ(r)4/3
+ ..........] , (2.136)

where the coefficient Cc is obtained from the high-density limit and found to be

Cc[ρ↑, ρ↓] =
0.066725

16φ(ζ)2
(
π

3
)1/3 , (2.137)
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The spin scaling factor φ(ζ) is defined as,

φ(ζ) =
1

2
[(1 + ζ)2/3 + (1− ζ)2/3] (2.138)

However, Langreth and Perdew [80, 81] showed that the GEA correlation with the ex-

change of Eq.(2.135) does not improve the performance of solids and an improved ver-

sion of GGA correlation has been proposed by Wang and Perdew in 1991 [82]. Later, it

is used in the PBE functional by incorporating more easily. The general form of GGA

exchange-correlation functional can be written in terms of the enhancement factor as,

EGGA
xc [ρ] =

∫
d3rρ(r)εunifxc [ρ]Fxc[ρ↑, ρ↓,∇ρ↑,∇ρ↓] (2.139)

2.8.3 Meta-generalized gradient approximations

On the next level of approximation, the meta-generalized gradient approximations (meta-

GGA) are proposed by making use of the Laplacian of density of Eq.(2.135) or the kinetic

energy density τσ,

Emeta−GGA
xc [ρ] =

∫
d3rρ(r)εunifxc [ρ]Fmeta−GGA

xc [ρ↑, ρ↓,∇ρ↑,∇ρ↓,∇2ρ↑,∇2ρ↓, τ↑, τ↓] ,

(2.140)

with τσ =
∑

σ
1
2
|∇Ψσ(r)|2 is the kinetic energy density. The Perdew-Kurth-Zupan-Blaha

(PKZB) [83] meta-GGA functional is proposed by replacing the Laplacian of Eq.(2.135)

by the gradient expansion of the kinetic energy density. The motivation behind the re-

placement of the Laplacian of density follows from the divergence nature of the Lapla-

cian of density near the nucleus. The PKZB correlation in one electron self-interaction

free and it yields the correct correlation energy in the low-density or strongly interacting

limit. While PKZB functional is quite accurate than GGA in predicting the atomiza-

tion energies, surface energies of metals and lattice constants of solids but predicts the

bond lengths of molecules less accurately than GGA. This problem has been eliminated

in the Tao-Perdew-Staroverov-Scuseria (TPSS) [84] meta-GGA functional by including
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the one-electron iso-orbital information into the meta-GGA functionals. The TPSS func-

tional improves the performance of PZKB but predicts too-long lattice constants which

have been improved in the same line as it had been done in the case of PBEsol func-

tional [79]. The ‘revised TPSS’ (revTPSS) [85] meta-GGA yields very accurate lattice

constants, surface energies, and atomization energies.

Beyond all these non-empirical meta-GGA functionals, recently major improvement

in meta-GGA level functionals come through the Strongly Constrained and Appropriately

Normed (SCAN) [86] and Tao-Mo (TM) [35] functionals. Both functionals are proposed

to better the accuracy of both the molecular, and solid-state systems. The SCAN meta-

GGA functional is proposed by satisfying seventeen known exact constraints, whereas,

the TM functional is proposed from the exchange hole based on the density matrix expan-

sion technique. The performance of SCAN and TM functionals along with other GGA

and meta-GGA functionals are extensively studied in this thesis. The novel techniques of

the construction of TM functional is very important to construct next level of meta-GGA

hybrids and extension of the functional in the two-dimensional limit. We will discuss

details construction of the TM functional in chapter 3.

Several other parametrized meta-GGA functional are also proposed. These function-

als are very popular in the molecular systems but not so efficient in the solid-state systems.

One such functional is the. Minnesota 2006 local functional (M06L) [87]. In this thesis,

we also have taken into account the performance of this functional for solid-state test

cases. It is noteworthy to mention that before the advent of SCAN meta-GGA, several

meta-GGAs functionals are also proposed by Sun et. al. [88, 89] which are commonly

known as meta-GGA Made Simple (MS) functionals. In this thesis, we also have taken

into account the performance of those functionals in several solid-state test cases.

2.8.4 Beyond semilocal approximations: hybrid functionals

So far, the functional forms we discussed are semilocal. Though the semilocal functionals

enjoy early successes, yet the role of the exact HF exchange is always desirable in several

molecular and solids cases. Especially, for the properties related to the fractional particle



44 Review of Density Based Theory

number, the exact exchange plays an important role (see chapter 4 and chapter 5 for detail

discussion). Therefore, the idea of mixing the HF exchange with the semilocal functionals

arises from the computationally cheap way to correct the problem related to the density

functional approximation (DFA). The functionals which mix the HF with the DFA are

known as the hybrid functional. The hybrid functionals are placed on the 4th rung of

the Jacob ladder. The idea of the hybrid functionals has originated by A. D. Becke in

early 1988 [90]. The concept of hybrid functional can be understood starting from the

coupling-constant integral formula of Eq.(2.95) as,

Exc[ρ] =

∫ λ=1

λ=0

dλ〈Ψλ|V̂ee|Ψλ〉 − J [ρ] =

∫ λ=1

λ=0

dλ Eλ
xc . (2.141)

Using the simple trapezoidal quadrature rule the Eq.(2.141) becomes,

Exc[ρ] ≈ 1

2
E0
xc[ρ] +

1

2
E1
xc[ρ] =

1

2
EHF
x [ρ] +

1

2
E1
xc[ρ] . (2.142)

Becke [90] argued that E0
xc[ρ] is the exact HF exchange (because of Eq.(2.95)) and E1

xc[ρ]

is the exchange-correlation of the fully interacting systems that can be approximated by

density functionals exchange-correlation. Becke’s decomposition of this kind is known

as “half-and-half theory”. The half-and-half theory followed by another three-parameter

hybrid functional scheme which popularly known as the B3LYP functional [91], proposed

using BECKE98 (B88) [37], LDA exchange, Lee-Yang-Parr [36] and LDA correlation

energy as,

Exc = a0(EHF
x −ELDA

x ) +ELDA
x + ax(E

GGA
x −ELDA

x ) + ac(E
GGA
c −ELDA

c ) , (2.143)

where a0, ax and ac are the empirical parameters fitted to obtain good atomization ener-

gies. Though the B3LYP is less connected with the Becke’s half-and-half theory but till

now it is a popular hybrid functional in the quantum chemistry community.

Following Becke’s strategies, several hybrid functionals are proposed based on several

semilocal functional forms. The hybrid functionals based on Perdew-Burke-Ernzerhof

(PBE0) [92], Tao-Perdew-Staroverov-Scuseria (TPSS0) [93, 94], Minnesota functionals
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are of these kinds and quite popular in quantum chemistry. It is noteworthy to mention that

any semilocal functional has its hybrid form by mixing HF exchange. In this thesis, the

PBE0 and TPSS0 hybrid functionals are used to access the performance of the developed

hybrid functionals. The general form of a hybrid functional can be expressed as,

Ehyd
xc = αEHF

x + (1− α)EGGA/meta−GGA
x + EGGA/meta−GGA

c . (2.144)

The hybrid functionals proposed in this way use the HF exact exchange overall. Be-

yond this, other strategies of developing the hybrid functionals are also proposed by split-

ting the Coulomb operator into the short-range and long-range part and utilizing the model

exchange hole. The hybrid functionals proposed in this way are known as the range-

separated hybrid functionals and it improves several drawbacks that are not achievable

within the global hybrid functionals. If HF exchange is used in the long-range part of

the exchange functional that is known as the long-range corrected (LC) hybrid function-

als. These functionals reduce the many-electron self-interaction error and improve the

performance of several quantum chemistry problems. Details of the construction and per-

formance of the selected range-separated hybrid functionals will be provided in chapter

4.

Though the long-range corrected functionals are popular in quantum chemistry, those

are far from accuracy in case of solid-state systems. In solids state systems, it is important

to preserve the accuracy of semilocal functionals because of the error cancellation of

exchange and correlation. Therefore, a strategy of designing a hybrid functional using

short-range HF exchange is proposed by Heyd-Scuseria-Ernzerhof (HSE) [95, 96]. The

HSE functional is proposed based on the PBE semilocal functional and instead of the

full HF exchange as used in the PBE0 functional, it uses the HF only in its short-range

part. The HSE06 is very popular in the solid-state community for its improved bandgap

performance. The detail construction of HSE functional along with a newly proposed

meta-GGA level hybrid functional will be provided elaborately in chapter 5.
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2.8.5 The generalized Kohn-Sham scheme

The implementation of the orbital-dependent functionals (meta-GGA or hybrid func-

tionals) into the molecular and solid-state codes are known as Kohn-Sham-Hartree-Fock

scheme or the generalized Kohn-Sham (gKS) Scheme [58–62, 97]. In the gKS scheme,

the most common way to rewrite the KS equation (Eq.(2.53)),

[−1

2
∇2 + vext(r) +

∫
d3r′

ρ(r′)

|r− r′|
+ vDFAxc ]φi(r)−

∫
d3r′vNLx (r, r′)φi(r

′)︸ ︷︷ ︸
vgKS=semilocal exchange-correlation + HF exchange

= εiφi(r) ,

(2.145)

where vDFAxc is the exchange-correlation potential in the LDA, GGA or meta-GGA ap-

proximations which is given by,

vDFAx (r)φi(r) =
[∂(ρ(r)εDFAx (r))

∂ρ(r)
−∇∂(ρ(r)εDFAx (r))

∂∇ρ(r)

]
︸ ︷︷ ︸

vGGAx

φi(r)

−1

2
∇
(∂(ρεDFAx (r))

∂τ(r)

)
∇φi(r)−

1

2

∂(ρ(r)εDFAx (r))

∂τ(r)
~∇2φi(r)︸ ︷︷ ︸

vτx=extra for meta-GGA

.

(2.146)

The 1st two terms come from LDA and GGA exchange and the last two-term are the

Kohn-Sham kinetic energy dependent terms originate from kinetic energy dependence of

the meta-GGA exchange functional. The non-local (NL) exchange potential vNLx is given

by,

vNLx = −
N∑
j=1

φj(r)φ
∗
j(r
′)

|r− r′|
. (2.147)

The Eq.(2.145) is the most general representation of the exchange-correlation functional

in the Kohn-Sham-Hartree-Fock scheme. In this thesis, this scheme has been used to

implement the meta-GGA level hybrid and screened hybrid functionals.
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2.9 Beyond Density Functional Approximations: RPA,

GW, BSE

Beyond the hybrid functionals, the highest rung of Jacob ladder [98] is constructed with

the methods which use unoccupied Kohn-Sham orbitals. The random-phase-approximation

(RPA), quasi-particle green function (GW) and Bethe-Salpeter Equation (BSE) are exam-

ples of this kind. Due to a large number of empty states, all these methods are compu-

tationally very expensive compared to the density functional approximations. The RPA

includes very accurate correlation effects. On the other-hand GW and BSE treats the ex-

citonic effects accurately. It is shown that using RPA long-range correlation coupled with

the hybrid density functional improves various molecular properties. Regarding the GW

method, it improves the bandgaps on the top of the LDA or GGA functionals.

2.10 Overview of the Actual Calculation

The practical computational calculations of density functional theory are done based on

the Kohn-Sham scheme implemented on several platforms with different basis sets. The

KS equation is the most simplified form of many-electron Schrödinger equation. There

are different classes of codes freely or commercially available which uses a basis set or

pseudo-potential approach to solve the Schrödinger equation. The qualitative concept

basis set and pseudo-potential are important as these are used throughout this thesis. In

this section, we will focus on the practical implementation and computational framework

of the KS equation.
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2.10.1 Kohn-Sham equation in pseudo-potential and basis set frame-

work

Lets recall the KS equation,

(−1

2
∇2 + vext(r) +

∫
d3r′

ρ(r′)

|r− r′|
+ vxc,σ[ρ])φi,σ = εi,σφi,σ , (2.148)

where ψi,σ is the single particle spin-orbital and the density ρ(r) is given by,

ρ(r) =
∑
σ

N∑
i=1

fi|ψi,σ(r)|2 (2.149)

with fi be the occupation of the state. Now, the question is how to solve numerically this

single-particle equation. Like solving the HF equation, the KS orbitals are also solved

starting from an initial basis set. The 1st and the foremost choice is the Gaussian basis

set, which is the basis of several quantum chemistry codes. In this thesis the Gaussian

basis set dependent code NWChem [99] is used to calculation purpose. It is noteworthy

to mention that the Gaussian basis consists of localized functions which are centered at the

atomic position or center of two bonded atom. Therefore, this class of basis set is usually

more suitable to describe the localized system such as atoms and molecules. In some

codes, this basis set also used to solid-state calculations. Next classes of basis set which

are widely used in the solid-state calculation are the plane-wave basis. The plane wave

basis consists of delocalize functions. Therefore, it is independent of the atomic positions.

Due to the delocalization, this type of basis set is very useful in treating the solid-state

systems. All the popularly used solid-state codes use a plane-wave basis. Another class

of basis set which are implemented in several codes are the augmented basis set. The

augmented basis set keeps all the good properties of all-electron calculations and more

flexible to treat both the molecular and solid-state systems.

The simulations and benchmarking calculation presented in this thesis are carried out

with Gaussian-type basis as implemented in NWChem code, projector-augmented-plane-

wave basis set as implemented in VASP [100–104], and real space grid-based (localized-)
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basis set code as implemented in OCTOPUS code [105].

2.10.2 Pseudo potential approach

The pseudo-potential approach is one of the efficient ways of calculating solid-state prop-

erties. The main motivation of the pseudo-potential approach comes from the nature of

the atomic orbitals which take part in the chemical reaction. There are three classes or

region of the orbitals: firstly, core electrons which are tightly bound to the nuclei, valence

electrons which take part in the chemical reaction and the semi-core states which are suf-

ficiently close to the valence states but do not actively take part in the chemical bonding.

Since the effect of the core electrons is removed, the effective nuclei contribution can be

written as Zeff = Ztot − Zcore. In this way, one removes the contribution of the core

electrons and represents the potential by an effective or pseudopotential. Since the core

electrons contribution is removed from the calculations, the basis set size also decrease

effectively. However, there are several ways one can implement the basis set within the

solid-state codes.

2.10.3 Basis overview of density functional theory applied to solid-

state physics

A crystalline solid is the ordered arrangement of the atoms or group of atoms. Therefore,

the structural knowledge of the smallest unit cell is sufficient to treat the whole solid.

There are two distinct types of unit-cell which are used in the periodic calculations: prim-

itive and non-primitive. Primitive unit cell consists of a single lattice point, whereas, the

non-primitive unit cell contains more than one lattice points. Since solids are symmetric,

they remain invariant upon translation of the unit cell. To describe a solid, knowledge

of three-unit cell lattice vectors a, b, c and the angle between these vectors α, β, γ are

necessary. The three lattice vectors are described along with three crystallographic axes

x, y, z. Based on the lattice vectors, angle between the lattice vectors and position of the

lattice points within the cell, the lattice system is classified as primitive, body-centered,



50 Review of Density Based Theory

face-centered, base-centered and rhombohedral. In total, there are seven types of crys-

talline structures: triclinic, monoclinic, orthorhombic, tetragonal, trigonal, hexagonal,

and cubic. All these crystal structures are used in this thesis to perform the benchmark

calculations of different functionals. In this thesis, we recognize the crystalline solids

according to the space group as bcc, diamond, fcc, and hcp. The atomic coordinates and

primitive transnational vectors a1, a2, a3 of different crystalline structures are given in the

Table (2.1).

Table 2.1: Atomic coordinates and lattice vectors for different space groups.

Space group Atomic coordinates Lattice vectors
0 a/2 a/2

fcc 0 0 0 a/2 0 a/2
a/2 a/2 0

0 a/2 a/2
diamond 0 0 0 a/2 0 a/2

a/4 a/4 a/4 a/2 a/2 0

-a/2 a/2 a/2
bcc 0 0 0 a/2 -a/2 a/2

a/2 a/2 -a/2

a/2 -a/
√

3/2 0
hcp 0 0 0 a/2 a/

√
3/2 0

0 -a/
√

3 c/2 0 0 c

a/2 -a/2 0
fcc anti-ferromagnetic 0 0 0 a/2 a/2 0

a/2 0 a/2 0 0 a

Every periodic vector is associated with direct and reciprocal lattice vectors. The

reciprocal lattice vectors are defined as a∗1, a∗2, and a∗3 which are connected to the real
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lattice vectors as,

a∗1 =
2π(a2 × a3)

|a1.(a2 × a3)|

a∗2 =
2π(a3 × a1)

|a1.(a2 × a3)|

a∗3 =
2π(a1 × a3)

|a1.(a2 × a3)|
. (2.150)

If position of any atom in real lattice is defined as,

R = ua1 + va2 + wa3 , (2.151)

then the corresponding position in reciprocal space is defined as,

G = ha∗1 + ka∗2 + la∗3 , (2.152)

where u, v, w and h, k, l are integers and R and G are connected by

G.R = 2πn, n = ±1,±2, .... . (2.153)

Regarding the KS equation for the periodic system, it comes from the time-independent

electronic Schrödinger equation in a periodic potential U(r) as,

[−1

2
∇2 + U(r)]ψn(r) = εnψn(r) . (2.154)

The solution of the above equation is the Bloch states or the Bloch wavefunction which is

defined as,

ψn,k(r) = exp(ik.r)fn(r) . (2.155)

The first part is the plane-wave part and the second part is related to the cell periodicity

of the wavefunction. Now, fi can be expressed in terms of the reciprocal lattice vector of
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the crystal as

fn(r) =
∑
G

cn,Gexp(iG.r) . (2.156)

Upon using this in the Bloch states of Eq.(2.155), it becomes

ψn,k(r) =
∑
G

cn,k+G exp{i(k + G).r} . (2.157)

Thus, each electron in the reciprocal space is now connected with the periodicity of the

system. Therefore, the knowledge of the first Brillouin zone is sufficient to know the

infinite periodic solid. Now, substituting Eq.(2.157) into the Kohn-Sham Eq.(2.154), it

takes into simpler form as,

∑
G′

{1

2
|k+G|δG,G′ + vext(G−G′) + vee(G−G′) + vxc(G−G′)}cn,k+G′ = εncn,k+G′ .

(2.158)

This is a simple matrix equation which can be solved by using conventional matrix diag-

onalization techniques.



Chapter 3

Performance of Semilocal Functionals

For Condensed Systems

In the previous chapter, the theoretical and computational framework of the density func-

tional theory (DFT) is discussed. It is shown that the most difficult task is to construct

the exchange-correlation energy and the corresponding potential of the Kohn-Sham equa-

tion. Relevant exchange-correlation approximations with increasing accuracy are also

discussed in the previous chapter. In this chapter, we focus on the assessment of the dif-

ferent levels of approximation for the solid-state systems. This chapter is based on the

following research outcomes

(i) Subrata Jana, Abhilash Patra and Prasanjit Samal, J. Chem. Phys. 149, 044120 (2018).

(ii) Subrata Jana, Kedar Sharma, and Prasanjit Samal, J. Chem. Phys. 149, 164703

(2018).

3.1 Introduction

The solid-state electronic structure calculations within the Density functional theory (DFT)

are mostly done within the framework of the semilocal exchange-correlation (XC) func-

tionals. In general, these type of XC functionals is constructed employing the semilocal
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quantities such as density, the gradient of density, Laplacian of density or Kohn-Sham

(KS) kinetic energy density. Semilocal approximations [4, 35–37, 65, 78, 79, 83–89,

106–170] with different level of accuracy and broad applicability for solids and surfaces

[33, 171–210] are proposed from time to time and still continuing to be an active re-

search field with promisingly new prospects. Semilocal functionals for solids are mainly

developed by satisfying the exact constraints [86]. Whereas, part of the parameters is

fitted with experimentally measurable quantities. Functionals constructed in this manner

are either semiempirical or empirical by nature. To perform satisfactorily for most of

the properties of solids, a semilocal functional should respect the slowly varying density

gradient approximation. As a matter, several (highly-)parametrized functionals plunge

precipitously when applied to the solid-state systems in spite of its accuracy for molecu-

lar systems [195]. Such types of non-empirical functionals perform well only for targeted

molecular and solid-state properties [87, 133].

Based on the slowly varying density approximations, ingredients, and constraint sat-

isfaction, semilocal functionals are arranged in different rungs of Jacob ladder [98]. The

lowest rung is recognized as local density approximation (LDA) [4, 142], whereas, rungs

higher to it are categorized as generalized gradient approximation (GGA) [65, 78, 79,

106–119, 122, 123, 126–131, 148, 150, 158], meta-generalized gradient approximation

(meta-GGA) [35, 83–89, 133–137, 139–141, 157, 160, 161, 163–167] and so on. The

research related work in this chapter is motivated by the alluring properties of the de-

veloped semilocal density functionals in recent times where the accuracy of the semilo-

cal functionals are improved by satisfying as much as quantum mechanical constraints

in its functional form. Two such functionals are Strongly Constrained and Appropriately

Normed (SCAN) [86] and Tao-Mo (TM) [35] semilocal density functionals. The first one

is proposed by satisfying seventeen exact constraints in its functional form. Whereas, the

later is proposed from semilocal exchange hole together with the slowly varying gradient

approximation of exchange. This chapter mainly focuses on the transferability, robust-

ness, and universality of semilocal functionals for different solid-state systems. Also, to

measure the accuracy of these functionals, we compare the results to that of other popular

XC functionals.
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To do so, we devide this chapter into three parts. In the first part, a brief description

of the construction and implementation of the TM [35] functional is provided within the

plane wave suite code Vienna Ab initio simulation package (VASP) [100–104]. Follow-

ing it, the application of the most popular and recent semilocal XC functionals for the

properties related to the solids are given. Lastly, the focus is given on the properties of

the simple and transition metals.

3.2 Relevance of the Slowly Varying Density in (meta-

)GGA Approximation

The simplest approximation for the XC functional is the local (spin-)density approxima-

tion (LSDA):

EL(S)DA
xc [ρ↑, ρ↓] =

∫
d3rρ(r)εunifxc [ρ↑, ρ↓] , (3.1)

where εx =
3kf
4π

is the energy density of exchange within homogeneous electron gas.

Fermi vector kf in 3D is defined as kf = (3π2ρ)
1
3 , where the total electronic density is

sum of up and down spin-densities (ρ = ρ↑ + ρ↓). In case of solids, the electron density

of the system varies slowly over the space. Therefore, the L(S)DA makes useful predic-

tions of the equilibrium geometries of solids and molecules but overestimates the other

properties of for solids (e.g. bulk moduli, cohesive energies) and atomization energies

of molecules. The noteworthy success of L(S)DA in predicting the solid-state properties

are because of the exchange hole satisfies the sum rule [211]. However, the performance

of L(S)DA in predicting solid-state properties and atomization energies of molecules is

greatly improved by the generalized gradient approximations (GGA).

3.2.1 Generalized gradient approximations: PBE and PBEsol

In general, to study a wide range of quantum systems consistently, the generalized gra-

dient approximations (GGA) has been proposed by including the gradient of density in

the functional and by satisfying other constraints in its functional form. As the name
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suggest, the GGA functionals for solids are proposed incorporating the (generalized) gra-

dient approximation of 2nd order [212–222]. The general way of expressing the GGA XC

functional is,

Exc[ρ↑, ρ↓] =

∫
d3rρ(r)εGGAxc [ρ↑, ρ↓,∇ρ↑,∇ρ↓] , (3.2)

where ∇ρ↑,∇ρ↓ are two extra ingredients included in the construction of it in addition

to density. The initial attempt of constructing the GGA follows from the generalized

expansion approximation (GEA), which is expressed as,

EGEA
xc [ρ↑, ρ↓] =

∫
d3r[ρ(r)εunifxc +

∑
σ,σ′

Cσ,σ′

xc

∇ρσ.∇ρσ′
ρ

2/3
σ ρ

2/3
σ′

] . (3.3)

The coefficients related to density gradient expansion Cσ,σ′
xc is derived to improve the

results over L(S)DA. But, the attempt remained a disappointment and later on further

studies and investigations are followed by Langreth and Perdew [80, 81]. As an attempt,

new functionals are proposed by the satisfaction of the exact or nearly exact constraints

which are the root of the development of the present-day semilocal functionals [86].

The first-ever successful attempt to construct a GGA functional by satisfying exact

constraints is done in the Perdew-Burke- Ernzerhof (PBE) GGA [78]. The PBE GGA is

derived by satisfying the constraint related to the XC hole and XC energy. PBE functional

removes several issues related to Perdew-Wang (PW91) functional [126–130, 223] and

presents in a simplified form.

Regarding the construction of the correlation part, it is expressed as,

EPBE
c [ρ↑, ρ↓] =

∫
d3r [εunifc (rs, ζ) +H(rs, ζ, t)]︸ ︷︷ ︸

εPBEc

, (3.4)

where rs = ( 3
4πρ

)1/3 is the local Seitz radius, ζ =
ρ↑−ρ↓
ρ

is the relative spin polarization

and t = |∇ρ|
[(1+ζ)2/3+(1−ζ)2/3]ksρ

is the dimensionless density gradient with ks = (
4kf
πa0

) is the

Thomas-Fermi screening vector. The parameter H in PBE correlation functional is con-

structed by satisfying the (i) second-order gradient expansion, (ii) rapidly varying limit,

and (ii) uniform scaling in the high-density limit of the correlation energy functional [77,
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80, 224–227]. This results in the non-empirical form of H ,

H = (e2/a0)γ[(1 + ζ)2/3 + (1− ζ)2/3]3 ln{1 +
β

γ
t2[

1 + At2

1 + At2 + a2t4
]} , (3.5)

where

A =
β

γ exp{−εunifc /(γ[(1 + ζ)2/3 + (1− ζ)2/3]3)/a0)} − 1
(3.6)

with the parameter β ≈ 0.066725 obtained from the high-density limit (rs → 0) of the

gradient expansion of the correlation [80, 224, 225] and γ = 0.025.

Regarding its the construction, the PBE exchange functional is constructed by satisfy-

ing the (i) uniform density scaling [228], (ii) spin-scaling relationship [229], (iii) slowly

varying density gradient expansion [230] , and (iv) Lieb-Oxford bound [231, 232]. The

PBE exchange functional is given by,

EPBE
x =

∫
d3rρ(r)εunifx Fx[s] , (3.7)

where the PBE exchange enhancement factor is given by,

Fx[s] = 1 + κ− κ

1 + µs2

κ

, (3.8)

with s = |∇ρ|
2kfρ

. The κ = 0.804 parameter is determined by satisfying the bound (Lieb-

Oxford bound) of the exchange energy functional. µ = β(π2/3) = 0.21951 is the gradient

coefficient for exchange.

Since the advent of PBE GGA functional, the acceptance of density functional for-

malism becomes more versatility and popular in physics and chemistry. PBE performs

reasonably well for solid-state properties compared to LSDA.

While the PBE functional is the most popular functional since its advent but latter

it has been observed that PBE overestimates the lattice constants by about 1%. Though

several modifications have been carried over the PBE functional to improve its perfor-

mance for solids [107–111] but simultaneously criticized for worsening its performance

for the atomization energies [192]. On the next level of major modifications over the
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PBE functional for solids came through the PBEsol functional [79] by satisfying correct

second-order gradient expansion for exchange. The PBEsol shows its accurate perfor-

mance for the lattice constants and surface energies of solids. Regarding the correlation

energy functional of the PBEsol, it takes the same form as PBE but replaces the β with

β = 0.046 which improves the surface energy of large jellium cluster [79] and remains

considerably closer to that of the local density linear response criterion. Other modifica-

tions based on the reduced density gradient dependence µ values and fitted β parameter

from the jellium surface energies are also proposed to balance the performance of the

functional for atomic, molecular and solid-state systems [112–119].

3.2.2 The Meta-generalized gradient approximations

One of the natural way to improve both the quantum chemical and material properties

together came through the meta-generalized gradient approximations (meta-GGA). The

meta-GGA functionals depend on the Laplacian of the density or Kohn-Sham (KS) kinetic

energy density. The general form of meta-GGA functionals is given as:

Emeta−GGA
xc [ρ] =

∫
d3rεunifxc Fxc[ρ↑, ρ↓,∇ρ↑,∇ρ↓,∇2ρ↑,∇2ρ↓, τ↑, τ↓] , (3.9)

where τσ =
∑occ

i
1
2
|∇ψi,σ(r)|2 is the KS kinetic energy density and ∇2ρ is Laplacian of

density. Several meta-GGA functionals are proposed during last couple of decades or so.

But, in our solid-state calculations we use Tao-Perdew-Staroverov-Scuseria (TPSS) [84],

revised TPSS (revTPSS) [85], strongly constrained and appropriately normed (SCAN)

[86] and Tao-Mo (TM) [35] functionals which are the mainstream meta-GGA functionals

in Jacob’s ladder.

Regarding the performance of TPSS meta-GGA, it predicts solid-state lattice con-

stants quite similar to PBE but improves the atomization energies for molecules than

PBE. The performance of the TPSS functional has been improved on further modifica-

tion by taking the insights from the PBEsol which is known as revised TPSS (revTPSS).
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The revTPSS not only showing improvement of the lattice constants of solids compared

to its TPSS counterpart but also retains the atomization accuracy of TPSS. The revTPSS

shows improved performance due to changing of (i) the enhancement factor such that it

recovers forth order gradient approximation (GE4) over wide range of s values (≤ 0.3)

which improves the accuracy of revTPSS for bulk solids, and (ii) the β parameter fitted

from the parametrization of the of the Hu and Langreth [233]. This modification improves

the functional performances for the surface energies keeping the atomization energy accu-

racy. Based on these modifications, several other constructions are also proposed in recent

times [116, 135, 148]. We do not discuss those modifications in details in this thesis.

On next level, the SCAN [86] and TM [35] functionals are proposed. From construc-

tion point of view, the SCAN functional is designed through constraint satisfaction while

the TM functional is proposed by using the semilocal exchange hole and the slowly vary-

ing fourth-order gradient expansion. This chapter is assessed the performance of several

semilocal approximations for the solid-state structural and energetic properties. But, be-

fore comparing the performances, a discussion on the construction of TM semilocal func-

tional is required. It is important because it will be used further in this thesis to construct

range-separated hybrid functional and two-dimensional counterpart of the functional.

In the construction of the TM functional [35] the density matrix expansion (DME)

technique is applied which makes the exchange hole localized under a general coordinate

transformation. Also, the slowly varying gradient approximation is introduced into the

DME by properly interpolating with fourth-order density gradient expansion. Let’s first

discuss the generalized coordinate transformation based DME exchange hole. The details

of the generalized coordinate transformation can be found in references [234, 235]. Under

generalized coordinate transformation, the exchange energy functional becomes,

Ex =
1

2

∫
d3rλρ(~rλ)

∫
ρtx(~rλ, u)

u
d3u , (3.10)

where the transformed exchange hole ρtx can be defined using the Kohn-Sham first-order
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reduced density matrix Γ1t(~r
λ − (1− λ)~u, ~rλ + λ~u) as,

ρtx = −|Γ1t(~r
λ − (1− λ)~u, ~rλ + λ~u)|2

2ρ(~r)
. (3.11)

The real parameter, λ varies from 1/2 → 1 (or, 0 → 1/2). Using the Kohn-Sham sin-

gle particle orbital the Taylor series expansion of the coordinate transformed first order

reduced density matrix around u = 0 becomes,

Γ1t(~r, ~u) = e~u.[−(1−λ)~∇1+λ~∇2]Γ1t(~r, ~u)|~u=0 = e~u.[−(1−λ)~∇1+λ~∇2]

occ∑
i

ψ∗i (~r
λ − (1− λ)~u)

×ψi(~rλ + λ~u)|~u=0 .

(3.12)

The exchange energy, Ex is evaluated from the spherical average of the exchange hole

as [211],

〈ρx(~r, ~r + ~u)〉spherical =

∫
ρx(~r, ~r + ~u)

dΩu

4π
. (3.13)

Therefore, spherical average of Eq.(3.12) yields,

〈ρtx〉 = −ρ(~r)

2
− 1

6

[(
λ2 − λ+

1

2

)
∇2ρ(~r)− 2τ +

1

4

(
2λ− 1

)2 |~∇ρ(~r)|2

ρ(~r)

]
u2 . (3.14)

The expression in Eq.(3.14) is originally proposed in [122, 140, 236] for the conventional

exchange hole model i.e, λ = 1. But, it failed to recover the uniform density limit and

one can’t directly use this expansion in the exchange energy expression because the large

u− limit diverges. To recover the LDA exchange hole and remove the divergence nature

of the hole in the large u limit, the whole expression needs to be multiplied by the uni-

form electron gas exchange hole [122, 236]. In TM [35] functional satisfies the uniform

exchange hole limit automatically through DME.

The TM exchange hole [35] correctly recovers (i) uniform electron gas limit, (ii)

small-u behavior i.e. Eq.(3.14), and (iii) large −u limit. To achieve this goal, TM ex-
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press excosφy in three terms using spherical Bessel and Legendre polynomial as,

excosφy =
1

x

∞∑
l=0

(−1)l(4l + 3)j2l+1(x)Q2l+1(icosθy) +
1

x

∞∑
l=0

(−1)l(4l + 3)j2l+1(x)

y
d

dy
Q2l+1(icosθy) +

1

x2

∞∑
l=0

(−1)l(4l + 3)j2l+1(x)
1

cosθ

d2

dy2
Q2l+1(icosθy) ,

(3.15)

where Q2l+1(z) = P2l+1(z)/z, x = ku and y = [−(1 − λ)~∇1 + λ~∇2]/k. The Eq.(3.15)

obtained by using series resummation technique to fulfill above three essential criterion

((i) − (iii)). This leads to the transformed first-order reduced density matrix (i.e., DME

expansion) expression

Γ1t(~r, ~u) = 3ρ
j1(ku)

ku
+

35j3(ku)

2k3u
G+

105j3(ku)

2k3u2
H , (3.16)

where G = {3cos2θ[(λ2 − λ + 1/2)∇2ρ − 2τ ] + 3k2ρ/5} , and H = cosθ (2λ −

1)∇ρ. Using this density matrix form, the coordinate transformed spherically-averaged

TM exchange hole becomes,

ρtx = −9ρ

2

j2
1(ku)

k2u2
− 105j1(ku)j3(ku)

k4u2
L− 3675j2

3(ku)

8k6u4
M , (3.17)

where L = [3(λ2 − λ + 1/2)(τ − τunif − |∇ρ|2/72ρ) − τ + 3k2ρ/10], and M = (2λ −

1)2|∇ρ|2/ρ. Here, the inhomegeneity parameter f is obtained as,

f = [1 + 10(70y/27) + βy2]1/10 . (3.18)

To make the exchange hole and exchange energy finite everywhere, the Laplacian of den-

sity is substituted by semiclassical approximation τ = τunif+|∇ρ|2/(72ρ)+∇2ρ/6.Hemce,

the DME exchange energy part becomes [35],

Ex[ρ] =

∫
d3r ρεunif

x (ρ)FDME
x (p, τ) , (3.19)
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with FDME
x = 1/f 2 + 7R/(9f 4) and R = 1 + 595(2λ − 1)2p/54 − [τ − 3(λ2 − λ +

1/2)(τ − τunif − |∇ρ|2/72ρ)]/τunif . The DME expansion is accurate for the compact

density. However, to perform in a better way for solids the slowly varying density gradient

correction (sc) is included in the functional form as [35],

F TM
x = wFDME

x + (1− w)F sc
x , (3.20)

where the fourth-order gradient correction given by F sc
x = {1+10[(10/81+50p/729)p+

146q̃2/2025−(73q̃/405)[3τW/(5τ)](1−τW/τ)]}1/10, and q̃ = (9/20)(α−1)+2p/3 with

w = [(τW/τ)2 + 3(τW/τ)3]/[1 + (τW/τ)3]2 being the weight factor.

Regarding correlation, it is constructed from the TPSS correlation by obeying more

exact constraint as [35]

Emeta−GGA
c [ρ↑, ρ↓] =

∫
d3rρεrevPKZB

c × [1 + dεrevPKZBc (τW/τ)3] , (3.21)

where

εrevPKZBc = εPBEc (ρ↑, ρ↓,∇ρ↑,∇ρ↓)[1 + CTM/TPSS(ζ, ξ)(τW/τ)2]

− [1 + C(ζ, ξ)](τW/τ)2
∑
σ

nσ
n
ε̃c .

(3.22)

Here,

CTM(ζ, ξ) =
0.1ζ2 + 0.32ζ4

{1 + ξ2[(1 + ζ)−4/3 + (1− ζ)−4/3]/2}4
, (3.23)

and

CTPSS(ζ, ξ) =
0.53 + 0.87ζ2 + 0.50ζ4 + 2.26ζ6

{1 + ξ2[(1 + ζ)−4/3 + (1− ζ)−4/3]/2}4
, (3.24)

where ζ = (ρ↑ − ρ↓)/n, and ξ = |∇ζ|/2(3π2ρ)1/3. The parameter d = 2.8 Hartree−1 is
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chosen for good reference value of the jellium surface energies [84]. This leads to the two

functionals: (i) TMTPSS (TMx+TPSSc) and (ii) TM (TMx+TMc).

3.3 Implementation of Tao-Mo Functional in PAW Envi-

ronment

We implement the TM functional in VASP [100–104] to assess its performance. It is well

known that the accuracy of the PAW method is same as the all-electron calculation with

less computational cost. Note that the meta-GGA functionals are implemented in VASP

using generalized KS (gKS) framework, where the XC potential is defined as,

vmeta−GGAxc ψi =
[∂(ρεxc)

∂ρ
− ~∇∂(ρεxc)

∂~∇ρ

]
︸ ︷︷ ︸

vGGAxc

ψi−
1

2
~∇
(∂(ρεxc)

∂τ

)
~∇ψi −

1

2

∂(ρεxc)

∂τ
~∇2ψi︸ ︷︷ ︸

vτxc

,

(3.25)

where vGGAxc is the XC potential in GGA and the additional term we encounter here is the

non-multiplicative τ− dependent part {vτxc}. In DFT the XC are treated differently and

implemented separately because of the physically differing nature of the same. Therefore,

one can separate both the derivatives of the exchange and correlation energy part sepa-

rately. Regarding the exchange potential, partial derivatives i.e., ∂(ρεx)
∂ρ

, ∂(ρεx)

∂~∇ρ
and ∂(ρεx)

∂τ

are need o be calculated. Here, we denote the potentials with respect to ρ, |∇ρ| and τ as

v1
x, v2

x, v3
x i.e, v1

x = εTMx +ρ∂ε
TM
x

∂ρ
, v2

x = ρ∂ε
TM
x

∂|∇ρ| and v3
x = ρ∂ε

TM
x

∂τ
. The term εTMx corresponds

to εunifx F TM
x . This completes the exchange functional implementation. Concerning the

correlation, it is implemented in VASP beforehand and the details of the implementation

of the TPSS correlation and its corresponding potential is given in reference [178].
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3.4 Results and Discussions

3.4.1 General definitions and computational setup

We test the TM functional implemented in PAW environment along with other popularly

used and contemporary functionals for calculating the basic properties of solids like lattice

constants, bulk-moduli, and cohesive energies. All these are fundamental ground-state

properties. The accuracy of obtaining the lattice constants is one of the fundamental test

that predicts the accuracy level of XC functional.

In VASP code, lattice constants are measured by relaxing the system geometry. The

relaxed structure is used to calculate the lattice constants of each solid. The ISIF = 3

algorithm is used to relax both the volume and atomic coordinates.

The bulk modulus (B0) is defined as,

B0 = −V0

(∂P
∂V

)
a=a0

, (3.26)

where a0 and V0 are the equilibrium lattice constant and volume of the system. Note that

in practice equations of state (EOS) [237–241] are applied to fit the energy versus volume

curve as obtained from the DFT calculation to determine the bulk moduli. Here, we want

to mention that within different EOS the most popular is the Birch-Murnaghan equation

of state [237] which is used in this thesis to obtain the bulk moduli of several solid-state

systems.

The cohesive energies of the bulk solids is defined as the,

Ecoh = Eatom −
Ebulk
N

, (3.27)

where the atomic energy (Eatom) and bulk energy (Ebulk) is required to obtain the cohesive

energies and N is the number of atoms in the bulk solids.
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3.4.2 Lattice constants

For benchmark calculations of various approximations we consider 47 crystalline struc-

tures which includes (i) semiconductors , (ii) ionic solids, and (iv) metal structures. Table

3.1 presents the benchmark calculations of TMTPSS and TM along with other popular

semilocal functionals. In Fig 3.1, we also plot the MRE (in percentage) of all the func-

tionals. From these, it is evident that LSDA underestimates the lattice constants, whereas,

PBE overestimates it. It is not surprising because, in LSDA, the gradient terms are miss-

ing. The overestimation in the lattice constants of the PBE functional improves upon

using the solid-state version of the PBE i.e., PBEsol. It is shown in Table 3.1 that the

PBEsol dramatically improves the performance of PBE for solids. The improvement of

the PBEsol functional can be understood from the satisfaction of the exact second-order

gradient approximation (GE2). Within the meta-GGAs, the TPSS functional also shows

the PBE like overestimation, which again rectified by its improved version i.e., revTPSS.

Note that revTPSS functional is designed by taking insights from the obtained outcomes

of the PBEsol functional. Regarding SCAN, TMTPSS and TM, the SCAN and TM per-

form accurately but TMTPSS overestimates the TM values. This is due to the change in

correlation in TM functional.

3.4.3 Bulk moduli

Our second test case consists of the bulk moduli of 20 solids. The results are given in

Table 3.2. As mentioned before, to obtain the bulk moduli energy (E)-volume (V ) curve

is fitted with the Murnaghan equation of state [237] by employing the post-processing

code VASPKIT [242].

Form the results presented in Table 3.2 and Fig. 3.2, it is evident that LSDA overes-

timates the bulk moduli, whereas, PBE underestimates it. It is quite predictable because

the lattice constants of LSDA are underestimated and PBE is overestimated. In all the

functionals, we obtain the same tendency as observed in the performance of lattice con-

stants. The performance of bulk moduli is improved from that of PBEsol. However, the

TPSS functional performs better compared to the revTPSS in this regard. Concerning all
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Table 3.1: Calculated lattice constant a0 (in Å) of bulk solids. The zero point anharmonic
expansion (ZPAE) uncorrected experimental values are taken from [179, 245]. Last col-
umn reports the errors. Best/worst MAE result is shown in bold/underline style.

Solids LSDA PBE PBEsol TPSS revTPSS SCAN TMTPSS TM Expt.
Li 3.368 3.441 3.444 3.458 3.452 3.474 3.400 3.402 3.477
K 5.029 5.300 5.222 5.394 5.349 5.262 5.186 5.167 5.225
Al 3.987 4.043 4.081 4.014 4.009 4.009 3.984 3.982 4.032
Cu 3.520 3.634 3.566 3.568 3.538 3.555 3.528 3.528 3.603
Pd 3.844 3.949 3.878 3.912 3.884 3.906 3.908 3.894 3.881
Ag 4.001 4.148 4.052 4.092 4.059 4.084 4.082 4.067 4.069
C 3.536 3.573 3.557 3.572 3.563 3.555 3.560 3.554 3.567
Si 5.400 5.467 5.433 5.450 5.436 5.425 5.423 5.411 5.430
Ge 5.648 5.785 5.704 5.754 5.710 5.687 5.691 5.672 5.652
SiC 4.332 4.379 4.359 4.365 4.357 4.352 4.351 4.344 4.358
BN 3.583 3.625 3.607 3.624 3.618 3.605 3.615 3.608 3.607
BP 4.490 4.546 4.521 4.545 4.531 4.521 4.522 4.510 4.538

BAs 4.742 4.817 4.778 4.810 4.787 4.779 4.775 4.763 4.777
BSb 5.198 5.280 5.234 5.270 5.242 5.257 5.227 5.212 n/a
AlP 5.433 5.504 5.470 5.489 5.480 5.478 5.463 5.450 5.460

AlAs 5.637 5.732 5.681 5.707 5.685 5.670 5.669 5.656 5.658
AlSb 6.120 6.232 6.168 6.208 6.180 6.173 6.161 6.143 6.136

β−GaN 4.503 4.588 4.547 4.581 4.569 4.524 4.559 4.549 4.531
GaP 5.425 5.533 5.474 5.523 5.499 5.457 5.482 5.464 5.448

GaAs 5.627 5.763 5.684 5.737 5.699 5.664 5.681 5.664 5.648
GaSb 6.067 6.226 6.130 6.190 6.144 6.117 6.126 6.102 6.096
InP 5.878 6.001 5.932 5.989 5.965 5.938 5.945 5.923 5.866

InAs 6.061 6.211 6.122 6.182 6.144 6.122 6.126 6.104 6.054
InSb 6.472 6.651 6.543 6.611 6.565 6.545 6.546 6.521 6.479
ZnS 5.403 5.440 5.355 5.401 5.358 5.370 5.388 5.364 5.409
ZnSe 5.570 5.734 5.634 5.681 5.625 5.652 5.658 5.633 5.668
ZnTe 5.995 6.178 6.064 6.115 6.048 6.077 6.082 6.056 6.089
CdS 5.758 5.926 5.824 5.933 5.926 5.856 5.889 5.857 5.818
CdSe 6.009 6.195 6.080 6.192 6.195 6.100 6.133 6.102 6.052
CdTe 6.405 6.610 6.291 6.604 6.610 6.521 6.532 6.497 6.480
MgS 5.580 5.684 5.642 5.681 5.673 5.634 5.643 5.629 5.202
MgTe 6.365 6.506 6.439 6.500 6.478 6.452 6.444 6.422 6.420
LiCl 4.977 5.148 5.071 5.123 5.104 5.097 5.071 5.047 5.106
LiF 3.940 4.059 4.006 4.022 4.005 3.975 3.974 3.969 4.010

NaCl 5.432 5.648 5.558 5.648 5.616 5.526 5.415 5.496 5.595
NaF 4.437 4.621 4.548 4.599 4.569 4.475 4.498 4.492 4.609
MgO 4.145 4.242 4.206 4.224 4.222 4.184 4.209 4.202 4.207
MgSe 5.382 5.501 5.445 5.491 5.476 5.454 5.456 5.435 5.400
CaS 5.570 5.710 5.632 5.698 5.694 5.683 5.681 5.657 5.689
CaSe 5.798 5.955 5.869 5.947 5.932 5.921 5.919 5.894 5.916
CaTe 6.215 6.389 6.291 6.386 6.366 6.375 6.350 6.317 6.348
SrS 5.910 6.056 5.973 6.047 6.040 6.031 6.035 6.007 5.990
SrSe 6.129 6.297 6.203 6.286 6.270 6.264 6.264 6.234 6.234
SrTe 6.531 6.714 6.609 6.708 6.685 6.693 6.677 6.641 6.640
BaS 6.289 6.433 6.362 6.448 6.440 6.441 6.423 6.390 6.389
BaSe 6.510 6.681 6.577 6.670 6.657 6.659 6.659 6.622 6.595
BaTe 6.890 7.080 6.964 7.075 7.054 7.071 7.056 7.012 7.007

ME(Å) -0.055 0.076 0.002 0.061 0.039 0.020 0.019 0.000 −
MAE(Å) 0.072 0.078 0.041 0.065 0.053 0.041 0.045 0.038 −
MRE(%) -1.045 1.361 0.027 1.059 0.657 0.310 0.274 -0.065 −

MARE(%) 1.375 1.406 0.738 1.157 0.961 0.753 0.854 0.753 −
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Figure 3.1: Percentage deviation of lattice constants as obtained from different functionals
presented in Table 3.1.

Table 3.2: Shown is the bulk moduli (B0) ( in GPa) of 20 solids.The reference experimen-
tal values are taken from [179, 246, 247].

Solids LSDA PBE PBEsol TPSS revTPSS SCAN TMTPSS TM Expt.
Ag 138.5 90.9 118.9 110.0 120.5 111.0 111.0 115.4 109.0
Al 83.7 77.3 81.9 85.6 85.7 69.8 76.8 74.7 79.4

AlAs 74.5 67.4 71.6 70.3 72.2 75.5 75.7 76.4 82.0
AlP 89.0 82.0 85.9 84.9 86.1 90.7 89.4 90.7 86.0
BP 168.0 156.2 162.5 155.7 158.3 166.5 164.4 165.8 173.0
C 465.8 433.2 450.2 430.3 439.5 458.9 446.0 452.4 443.0

Cu 181.6 138.2 161.5 155.0 168.1 156.8 166.2 169.1 142.0
GaAs 75.1 60.5 69.9 64.8 66.8 73.3 71.7 74.1 75.6
GaN 209.8 183.5 197.1 188.9 191.2 210.2 197.3 200.5 190.0
GaP 90.7 78.0 85.3 79.6 82.5 90.7 87.5 90.1 88.0
Ge 70.5 59.4 65.8 60.2 65.0 71.2 60.5 60.5 75.8
K 5.2 3.7 3.9 3.4 3.4 3.8 4.2 4.1 3.7
Li 15.1 13.8 13.7 13.3 13.4 12.9 14.2 14.2 13.0

LiCl 41.5 31.7 35.4 33.4 34.0 35.8 36.2 36.7 35.4
LiF 86.7 66.9 72.2 66.2 68.9 81.2 79.6 80.2 69.8
NaF 61.5 45.2 48.8 42.9 44.0 61.9 59.5 59.9 51.4
Pd 226.3 169.4 205.2 195.4 209.7 190.6 186.8 195.0 195.0
Rh 315.6 256.4 295.0 281.9 296.1 284.5 277.2 284.5 269.0
Si 93.7 85.5 90.5 88.9 90.8 96.6 94.3 96.6 99.2

SiC 221.5 205.1 213.7 217.7 221.3 225.7 217.8 221.1 225.0
ME (GPa) 9.3 -11.2 0.1 -5.0 -0.5 2.0 -0.6 1.7 −

MAE (GPa) 14.1 11.2 8.4 8.3 9.2 7.9 7.3 7.9 −
MRE(%) 6.7 -12.0 -3.4 -8.1 -4.9 -1.0 -1.9 -0.5 −

MARE(%) 15.1 12.0 8.9 10.4 10.4 9.1 9.5 9.8 −
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Figure 3.2: Percentage deviation of bulk moduli of different functional presented in Table
3.2.

the advanced meta-GGA, all perform quite similarly.

3.4.4 Bandgaps

The meta-GGA functional implemented in the gKS scheme shows improvement for the

band gap compared to the GGA functional due to the inclusion of the some amount of

derivative discontinuity. In Table 3.3 we calculate band gap of the 37 semiconductors.

We observe from Table 3.3 that all the semilocal density functionals underestimate

the band gap. Improvement in bandgaps from GGA to the meta-GGA functional is ob-

served. However, the SCAN functional shows impressive improvement for the band gap.

This is because the SCAN functional obeys more exact constraints than other semilocal

functionals. An interesting observation is that the bandgap values of Ge and InSb are

predicted to be non-zero with the SCAN, TMTPSS and TM functionals. These are the

most interesting features of the SCAN and TM based functional.
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Table 3.3: Bandgaps using different functionals as obtained from different approxima-
tions.

Solids LSDA PBE PBEsol TPSS revTPSS SCAN TMTPSS TM Expt. [245]
C 4.17 4.13 4.03 4.17 4.04 4.56 4.15 4.09 5.48
Si 0.46 0.64 0.48 0.67 0.57 0.85 0.65 0.56 1.17
Ge 0.00 0.00 0.00 0.00 0.00 0.06 0.23 0.29 0.74
SiC 1.38 1.47 1.34 1.42 1.30 1.82 1.47 1.38 2.42
BN 4.48 4.52 4.36 4.52 4.38 5.04 4.59 4.49 6.22
BP 1.17 1.28 1.14 1.29 1.15 1.55 1.28 1.19 2.4

BAs 1.14 1.22 1.10 1.21 1.10 1.44 1.19 1.13 1.46
BSb 0.70 0.75 0.65 0.65 0.54 0.88 0.61 0.57 n/a
AlP 1.47 1.68 1.50 1.73 1.64 1.95 1.75 1.63 2.51

AlAs 1.36 1.54 1.38 1.59 1.51 1.79 1.59 1.49 2.23
AlSb 1.11 1.24 1.13 1.32 1.23 1.39 1.25 1.16 1.68

β−GaN 1.82 1.41 1.54 1.31 1.28 2.05 1.47 1.48 3.30
GaP 1.45 1.51 1.52 1.72 1.60 1.89 1.46 1.56 2.35

GaAs 0.50 0.15 0.39 0.38 0.57 0.80 0.80 0.84 1.52
GaSb 0.11 0.00 0.00 0.00 0.17 0.12 0.39 0.46 0.73
InP 0.52 0.37 0.48 0.54 0.59 0.87 0.71 0.73 1.42

InAs 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.41
InSb 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.05 0.23
ZnS 1.89 2.02 2.09 2.29 2.33 2.71 2.32 2.31 3.66
ZnSe 1.28 1.15 1.24 1.45 1.51 1.80 1.60 1.59 2.70
ZnTe 1.31 1.07 1.24 1.42 1.58 1.62 1.63 1.64 2.38
CdS 0.97 1.04 1.01 1.23 1.18 1.47 1.23 1.21 2.55
CdSe 0.43 0.49 0.48 0.71 0.70 0.94 0.81 0.79 1.90
CdTe 0.66 0.59 0.93 0.82 0.82 0.97 1.01 1.00 1.92
MgO 5.13 4.53 4.68 4.77 4.72 5.77 4.96 4.88 7.22
MgS 3.14 3.34 3.35 3.63 3.64 4.19 3.80 3.70 5.4
MgSe 1.80 1.84 1.85 2.14 2.16 2.51 2.23 2.15 2.47
MgTe 2.41 2.32 2.35 2.66 2.72 3.03 2.89 2.74 3.6
CaS 2.00 2.40 2.18 2.47 2.46 2.84 2.54 2.43 n/a
CaSe 1.73 2.10 1.90 2.18 2.18 2.55 2.26 2.15 n/a
CaTe 1.33 1.57 1.37 1.64 1.63 2.14 1.71 1.80 n/a
SrS 2.14 2.52 2.30 2.59 2.54 2.92 2.57 2.47 n/a
SrSe 1.91 2.25 2.05 2.32 2.29 2.67 2.33 2.23 n/a
SrTe 1.43 2.09 2.12 2.31 2.38 2.74 2.51 2.44 n/a
BaS 1.14 2.17 1.98 2.26 2.19 2.52 2.16 2.08 3.88
BaSe 1.67 1.97 1.79 2.05 2.01 2.33 2.01 1.92 3.58
BaTe 1.30 1.61 1.41 1.67 1.63 1.94 1.66 1.56 3.08

MAE (eV) 1.158 1.154 1.173 1.033 1.055 0.736 0.949 0.996 −
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3.4.5 Cohesive energies

The cohesive energy performance of the functionals is assessed using a set of 14 crys-

talline solids which includes (transition) metals, semiconductors, and ionic solids. The

atomic calculations for the cohesive energies are performed using the spin-polarized cal-

culation within the 10× 10× 10 Å3 simulation box.

Table 3.4: Shown is the cohesive energies of 14 solids (in eV/atom).

Solids LSDA PBE PBEsol TPSS revTPSS SCAN TMTPSS TM Expt. [178]
Li 1.786 1.583 1.653 1.738 1.625 1.545 1.664 1.662 1.658
C 8.867 7.714 8.215 7.420 7.504 7.899 7.624 7.845 7.545

SiC 7.305 6.356 6.779 6.298 6.380 6.689 6.478 6.652 6.478
Si 5.194 4.464 4.810 4.444 4.531 4.811 4.628 4.788 4.685

LiF 4.867 4.411 4.515 4.469 4.389 4.784 4.565 4.554 4.457
LiCl 3.739 3.332 3.467 6.442 3.430 3.632 3.551 3.536 3.586
NaF 4.396 3.962 4.061 4.272 3.944 4.394 4.163 4.147 3.970
NaCl 3.438 3.085 3.197 6.389 3.199 3.438 3.349 3.326 3.337
MgO 5.982 5.152 5.441 5.271 5.295 5.654 5.439 5.496 5.203

Al 3.904 3.397 3.741 3.545 3.672 3.739 3.770 3.961 3.431
Pd 5.053 3.738 4.464 4.004 4.392 4.384 4.620 4.717 3.938
Cu 4.523 3.490 4.038 3.749 4.087 3.887 4.327 4.385 3.524
Ag 3.627 2.514 3.072 2.724 3.030 2.883 3.296 3.357 2.985

GaAs 4.024 3.126 3.518 3.126 3.273 3.422 3.422 3.518 3.337
ME(eV/atom) 0.569 -0.173 0.159 -0.056 -0.010 0.173 0.154 0.229 −

MAE(eV/atom) 0.569 0.197 0.214 0.161 0.178 0.203 0.185 0.229 −
MRE(%) 13.563 -4.778 3.519 -0.875 0.112 3.669 4.409 6.033 −

MARE(%) 13.563 5.100 4.953 4.136 4.507 5.123 5.034 6.033 −

From Table 3.4 and Fig. 3.3, we observe that TPSS functional performs better than

other functionals.Here, performance of revTPSS and TMTPSS report almost similar MAE.

We observe that the TMTPSS performs slightly better compared to the TM functional. It

is also indicative from Table 3.4 that the performance of TMTPSS is even better than the

SCAN functional. From Fig. 3.3, it is noticeable that the performance of the TMTPSS is

quite well for ionic solids and semiconductors but overestimates the cohesive energies for

the transition metals.

3.5 Extensive Study of Simple and Transition metals

This section assess the benchmark calculations of the various semilocal functionals for

the different bulk properties of simple and Transition metals. It is well known that though

describing the bulk properties of transition metals quite difficult within different levels of

approximations, still, outcomes of DFT quite accurate [194].
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Figure 3.3: Percentage error of cohesive energies from different functionals.

Regarding the earlier attempt studies has been done in several literature [171–173,

176, 186, 191, 209, 210]. within different level of XC approximations. In this sec-

tion, our considered meta-GGA functionals includes: Tao-Perdew-Staroverov-Scuseria

(TPSS) [84], revised TPSS (revTPSS) [85], Minnesota 2006 local functional (M06L) [87],

optimized TPSS (oTPSS) [137], modified TPSS (modTPSS) [136], regularized TPSS

(regTPSS) [141], meta-GGA made simple (MS0, MS1, and MS2) [88, 89], Strongly

Constrained and Appropriately Normed (SCAN) [86], and Tao-Mo [35] meta-GGA func-

tional (TMTPSS and TM). The TPSS, revTPSS, SCAN, TMTPSS and TM functionals

are already introduced in our previous study. In this section, we include more meta-GGA

functionals − M06L, oTPSS, modTPSS, regTPSS, MS0, MS1, and MS2. M06L local

functional is proposed by parametrizing for wide set of test set [87, 133], oTPSS is the

optimized TPSS functional for molecular test set [137], modTPSS is the one parametric

modification of the TPSS functional [136], regTPSS is proposed by eliminating the order

of limit problem of the TPSS and revTPSS functionals [141], and MS0, MS1, and MS2

are the different levels of meta-GGA functionals with simpler in form compared to earlier

meta-GGA functionals [88, 89]. Not only that to put our comparison in broader prospects



72 Performance of the semilocal density functionals for condensed systems

Figure 3.4: Relative error in lattice constants of various solids as presented in Table 3.5.

we also consider popular GGA based functionals PBE and PBEsol.

In ref. [209] it is shown that the canonical PBE functional performs not satisfactorily

for all properties of metals because of different types of bonding [188, 209]. Due to these

difficulties, the transition metals are often excluded in the benchmark calculations. How-

ever, in ref. [209] it is also shown that improvement is achieved by going into the higher

rungs of approximation i.e., meta-GGA level. Note that due to one-electron free correla-

tion and more conveniently separating the important regions, the meta-GGA functionals

are one of the most preferred choice for different solids having different interaction. The

motivation of this section follows those facts. Also, it is believed that SCAN and TM

functionals include intermediate dispersion interaction [86, 180, 257] which assumed to

improve the transition metals performance.

3.5.1 Benchmark calculations

3.5.1.1 Atomic pair distances

The performance of different functional is presented in Table 3.5. The error statistics

(mean relative percentage error (MRPE) (in %)) of the individual solids are plotted in

Fig. (3.4). In Table 3.5, the calculated values are compared with the zero-point vibrational

effects (ZPVE) corrected experimental values.
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Table 3.5: Shown is the calculated inter-atomic distances (δ) (in Picometer (pm)) as ob-
tained from different density functional approximations. The ZPVE corrected reference
values are collected from [171, 209, 210]. For Mn, La and Hg the ZPVE un-corrected
values are taken from [210]. The best and most deviating values values are in bold and
underline format.

GGA meta-GGA
Solids CS PBE PBEsol TPSS modTPSS oTPSS revTPSS regTPSS M06L MS0 MS1 MS2 SCAN TMTPSS TM Expt.

Sc hcp 330.1 326.3 328.4 328.9 328.0 327.7 327.5 328.0 331.2 331.5 328.9 329.6 328.7 327.8 324.4
Ti hcp 292.3 288.8 290.4 290.3 289.8 289.2 289.2 291.0 291.9 292.1 290.4 290.8 291.2 290.1 288.9
V bcc 258.0 254.4 256.1 256.1 255.8 255.2 255.1 257.3 255.5 255.8 255.2 255.6 256.8 256.1 260.6
Cr bcc 245.6 242.4 244.0 244.2 244.0 243.0 242.7 244.3 242.7 243.0 242.7 243.2 244.3 243.5 248.5
Fe bcc 245.3 241.8 243.0 243.7 243.1 242.3 241.6 248.9 246.4 246.9 245.1 246.4 243.8 242.9 245.0
Co hcp 248.8 245.2 246.4 246.8 246.4 245.6 244.5 247.1 245.4 246.0 245.4 245.8 246.4 245.7 248.8
Ni fcc 248.6 244.7 245.6 246.0 245.7 244.4 244.0 238.6 244.1 244.6 243.9 244.3 245.2 244.5 248.4
Cu fcc 257.0 251.5 253.0 253.8 253.2 250.9 250.7 248.3 250.5 251.3 250.2 249.4 252.1 251.1 254.4
Zn hcp 263.5 261.1 263.2 263.8 263.3 261.4 261.0 263.4 260.5 260.9 259.7 258.8 261.0 260.5 264.5

ME 0.6 -3.0 -1.5 -1.1 -1.6 -2.6 -3.0 -1.8 -1.7 -1.3 -2.4 -2.2 -1.6 -2.4
MAE 2.1 3.5 2.7 2.4 2.6 3.4 3.8 4.0 4.2 4.0 3.8 4.1 3.0 3.4

MRPE 0.2 -1.2 -0.6 -0.5 -0.7 -1.1 -1.2 -0.8 -0.7 -0.6 -1.0 -0.9 -0.7 -1.0
AMRPE 0.7 1.3 1.0 0.9 1.0 1.3 1.5 1.5 1.6 1.5 1.4 1.5 1.1 1.3

Y hcp 363.3 358.5 363.8 363.4 363.9 361.6 361.8 366.6 366.7 366.6 363.9 365.7 365.5 362.6 354.8
Zr hcp 323.6 318.0 321.4 320.2 321.5 319.2 319.1 324.0 321.4 321.5 320.5 321.1 323.1 320.2 317.4
Nb bcc 287.8 284.1 286.7 286.9 286.7 285.2 285.2 288.2 285.5 285.7 285.6 286.4 287.2 286.1 285.4
Mo bcc 272.9 269.9 271.9 272.0 271.9 270.3 270.2 271.9 270.2 270.4 270.4 271.1 271.7 270.6 272.1
Tc hcp 274.4 271.2 273.1 272.4 272.4 271.3 271.2 272.2 271.0 271.2 271.3 272.0 272.8 271.5 270.5
Ru hcp 271.6 268.1 270.5 269.3 269.3 268.1 267.9 269.0 266.9 267.2 267.7 267.4 270.0 268.3 264.2
Rh fcc 270.4 266.2 268.9 264.6 264.6 263.6 263.5 264.2 263.0 263.3 263.5 263.8 264.3 263.9 253.2
Pd fcc 278.6 273.2 276.1 276.3 276.1 272.9 272.8 277.2 272.8 273.2 273.0 273.8 275.9 273.6 274.5
Ag fcc 293.4 285.7 289.1 289.7 289.2 285.0 284.9 291.4 285.7 286.2 285.3 286.1 288.4 285.6 287.7
Cd hcp 302.0 306.2 301.3 302.7 301.4 298.4 298.1 311.8 313.9 298.2 297.8 296.3 299.6 298.0 295.9

ME 6.2 2.5 4.7 4.2 4.1 2.0 1.9 6.1 4.1 2.8 2.3 2.8 4.3 2.5
MAE 6.2 3.9 4.8 4.2 4.2 3.3 3.2 6.1 5.3 3.7 3.5 3.5 4.4 3.4
MPE 2.2 0.9 1.7 1.5 1.4 0.7 0.7 2.1 1.4 0.9 0.8 0.9 1.5 0.9

MAPE 2.2 1.4 1.7 1.5 1.4 1.1 1.1 2.1 1.8 1.3 1.2 1.2 1.5 1.2

Hf hcp 319.5 315.2 317.1 317.3 316.9 315.3 315.3 320.4 316.1 316.5 315.4 315.1 316.6 315.9 312.6
Ta bcc 286.6 283.3 284.8 284.7 284.5 283.1 283.0 287.2 282.9 283.2 282.9 282.9 284.4 283.7 285.6
W bcc 274.7 272.0 273.3 273.0 272.9 271.7 271.6 273.5 271.4 271.7 271.6 271.8 272.8 272.1 273.8
Re hcp 277.2 274.4 273.4 275.5 273.4 272.5 272.4 273.0 271.4 271.8 272.2 271.1 273.2 272.8 256.2
Os hcp 275.4 272.4 274.1 274.0 274.1 271.8 271.7 272.5 270.9 271.2 271.6 270.6 273.2 271.9 267.1
Ir fcc 273.8 270.5 272.6 272.6 272.6 270.1 269.9 271.4 268.5 268.9 269.6 267.6 271.7 270.2 271.0
Pt fcc 280.5 276.1 278.9 278.9 278.9 275.6 275.4 278.8 274.3 274.6 275.1 274.8 278.0 275.8 276.6
Au fcc 293.9 287.7 291.1 291.3 291.1 286.9 286.7 291.6 285.8 286.3 286.4 286.8 290.3 287.2 287.0

ME 6.5 2.7 4.4 4.7 4.3 2.1 2.0 4.8 1.4 1.8 1.9 1.4 3.8 2.5
MAE 6.5 4.0 4.8 5.1 4.8 3.8 3.9 4.9 4.2 4.1 4.0 3.9 4.3 3.8
MPE 2.4 1.0 1.6 1.7 1.6 0.8 0.8 1.8 0.6 0.7 0.7 0.5 1.4 0.9

MAPE 2.4 1.5 1.8 1.9 1.8 1.4 1.4 1.8 1.6 1.5 1.5 1.4 1.6 1.4

Li bcc 297.7 298.1 299.2 299.8 299.1 299.2 297.6 299.9 297.2 298.6 296.8 300.1 294.3 294.5 298.9
Na bcc 362.6 361.3 365.6 366.0 364.3 365.6 364.3 352.0 363.3 365.1 360.4 362.0 356.1 356.0 364.5
K bcc 457.5 452.5 463.5 465.3 448.8 459.0 461.9 427.8 463.5 464.0 459.2 459.2 446.1 446.0 451.4
Rb bcc 490.1 483.7 497.1 501.7 499.8 492.6 494.0 451.6 499.6 502.4 493.7 493.7 483.7 483.7 483.0
Cs bcc 534.8 520.3 542.0 542.7 542.5 536.5 536.9 482.2 546.9 549.3 538.6 538.6 523.5 523.5 523.0

ME 4.4 -1.0 9.3 10.9 6.7 6.4 6.8 -21.5 9.9 11.7 5.6 6.6 -3.4 -3.4
MAE 5.6 1.7 9.3 10.9 7.9 6.4 7.4 21.9 11.1 11.8 8.1 7.6 3.9 3.9
MPE 0.8 -0.3 1.9 2.3 1.3 1.3 1.4 -4.5 2.0 2.4 1.0 1.3 -1.0 -1.0

MAPE 1.2 0.4 1.9 2.3 1.6 1.3 1.6 4.7 2.3 2.4 1.8 1.6 1.1 1.0

Ca fcc 394.3 385.8 391.1 393.4 391.1 390.0 390.1 378.7 394.3 395.5 392.7 392.7 388.6 388.1 392.9
Sr fcc 426.4 418.7 426.6 425.4 424.1 425.1 424.8 414.9 431.2 433.2 427.3 427.3 424.2 423.3 427.1
Ba bcc 423.7 423.6 433.5 436.6 431.8 431.5 430.5 430.8 440.2 441.6 435.9 435.9 433.5 431.2 433.2

ME -2.9 -8.4 -0.7 0.7 -2.1 -2.2 -2.6 -9.6 4.2 5.7 0.9 0.9 -2.3 -3.5
MAE 3.9 8.4 0.9 2.0 2.0 2.2 2.6 9.6 4.2 5.7 1.0 1.0 2.5 3.5
MPE -0.7 -2.0 -0.2 0.2 -0.5 -0.5 -0.6 -2.3 1.0 1.3 0.2 0.2 -0.6 -0.9

MAPE 0.9 2.0 0.2 0.4 0.5 0.5 0.6 2.3 1.0 1.3 0.2 0.2 0.6 0.9

Mn c 230.7 227.1 228.4 228.7 228.4 227.7 227.5 228.6 227.4 227.7 227.4 227.6 228.6 230.2 224.0
La h 376.9 365.4 373.3 374.1 373.2 369.2 368.7 385.9 373.9 374.7 372.1 379.5 376.6 373.4 373.9
Hg r 323.8 300.6 308.5 311.0 308.8 299.5 298.7 308.9 297.6 298.6 297.6 300.2 305.2 299.5 301.0

ME 10.8 -1.9 3.8 5.0 3.8 -0.8 -1.3 8.2 0.0 0.7 -0.6 2.8 3.8 1.4
MAE 10.8 4.0 4.2 5.0 4.3 3.3 3.7 8.2 2.3 2.3 2.9 3.3 3.8 2.7
MPE 3.8 -0.3 1.4 1.8 1.5 0.0 -0.2 2.6 0.1 0.4 0.0 0.9 1.4 0.7

MAPE 3.8 1.3 1.5 1.8 1.6 1.1 1.2 2.6 0.9 0.9 1.0 1.1 1.4 1.1

TME 4.4 -0.4 3.3 3.7 2.6 1.0 0.8 -0.8 2.6 2.9 1.2 1.7 1.2 0.0
TMAE 5.4 3.9 4.5 4.7 4.3 3.7 4.0 7.9 5.2 5.0 4.0 4.0 3.8 3.5

TMRPE 1.5 0.0 1.0 1.1 0.8 0.2 0.2 0.2 0.6 0.7 0.3 0.4 0.5 0.1
TAMRPE 1.8 1.3 1.4 1.5 1.4 1.2 1.3 2.3 1.6 1.5 1.3 1.3 1.3 1.2
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Regarding the results presented in Table 3.5, it follows a clear trend throughout. The

GGA PBE functional yields the least error for the 3d group elements while shows over-

estimation for 4d and 5d group metals. Unlike PBE functional, the PBEsol shows un-

derestimation in predicting the lattice constants of 3d transition metals. While it shows

improved performance for for 4d and 5d transition metals compared to its 3d counterpart.

It is also observed that more than half-filled d bands of each block, the PBE functional

shows overestimation because of the self-interaction error of the d shell [171]. Regarding

the ferromagnetic Fe, Co, and Ni, the PBE functional performs quite satisfactorily.

Now turn into the meta-GGA functionals, we observe that the TPSS meta-GGA func-

tional shows PBE like performance 3d block transition metals. The underestimation in the

inter-atomic distances are observed from the revTPSS functional. Note that the revTPSS

performs closely that of the PBEsol with the d band filling [171].

Regarding the performance of modified TPSS (modTPSS) and optimized TPSS (oTPSS)

functionals [136, 137], both parametrized functionals improve the performance of TPSS

for both the 3d and 4d block metals. While for 5d block metals, we observe similar

performance from TPSS, and its different modified versions.

Beyond TPSS and revTPSS, Ruzsinszky et. al. [141] proposed a new kind of func-

tionality by eliminating the order of limit anomaly of meta-GGA functionals (regTPSS)

functional. In Table 3.5, we also enlist the performance of regTPSS. The main motivation

of the regTPSS functional is to remove the order of limit problem by keeping the accuracy

of revTPSS functional. We observe similar performance as obtained form revTPSS in the

case of the regTPSS functional.

Concerning Minnesota local functional (M06L), this functional can not be recom-

mended for the inter-atomic distances because of its error statistics. Now considering the

different variant of simple meta-GGA functionals (MS0, MS1, and MS2) [88, 89], we ob-

tain the error order as order MS0 > MS1 > MS2 for inter-atomic lattice constants. Note

that “MS” functionals performs differently based on the construction of their exchange

enhancement factor. The MS2 exchange enhancement factor is less steep than that of

MS0 and MS1 functionals in the region s < 1 which is important for solids [171, 191].

The error as obtained from “MS” functionals is in the order MS0 > MS1 > MS2.
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Most advanced density functional SCAN does not show much improvement for 3d

block metals. But showing improvement for other block metals. However, regarding the

performance of the TM functional it is quite impressive for 3d block metals.

In Table 3.5, we listed the the inter-atomic distances of Li, Na, K, Rb, and Cs. Note

that a sizable interaction nature of these solids originated from van-der-Waals bond-

ing [171, 188]. Concerning the PBE functional, we observe deviation in its performance

due to the lack of the short-range van-der-Waals interactions. However, the improvement

is observed from PBEsol functional which yields the least MAE in this case. Considering

the meta-GGA, except TMTPSS and TM, all functionals show overestimation nature in

its performance. Note that TMTPSS and TM include some amount of short-range van-

der-Waals interactions which assume to be improve the lattice constants of those solids.

Here also M06L shows underestimation in its performance due to lack of uniform density

limit in its form. However, the trends of PBE functional does not follow for alkaline-earth

metals and it performs reasonably well, while the PBEsol functional underestimates the

same. Within meta-GGAs, we observe quite a good performance from TPSS and MS2

while MS0, MS1 and SCAN show overestimation.

Here we will discuss about Mn, La, and Hg separately because of their complicated

structures. The PBE functional shows massive overestimation in this case, while, PBEsol

performs well. Regarding meta-GGAs, all (except M06L) perform reasonably well and

show a similar kind of tendency. A sizable overestimation is observed in the performance

of M06L.

3.5.1.2 Performance in Bulk moduli

Obtaining the bulk moduli from the semilocal functional is a challenging task [210]. In

Table 3.6 the performances of simple and transition metals are listed and the MRPE is

plotted in Fig. 3.5. However, the semilocal functionals do not follow the trend of the the

inter-atomic distances in case of bulk moduli.

Inspecting the performance of PBE functional from Table 3.6, we observe that for the

3d, 4d and 5d block metals it performs quite well. However, PBEsol does not perform

according to its merit for 3d block metals and deviates more compared to PBE. However,
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Table 3.6: Shown is the Bulk moduli (B0) (in GPa) using different functionals. The
finite thermal effect corrected reference values are taken from [171, 209, 210]. The finite
thermal effect uncorrected reference values of Mn, La and Hg are taken from [210]. We
also report the error statistics. The bold and underline style is used for indicating least
and most deviating values.

GGA meta-GGA
Solids CS PBE PBEsol TPSS modTPSS oTPSS revTPSS regTPSS M06L MS0 MS1 MS2 SCAN TMTPSS TM Expt.

Sc hcp 52.6 55.4 54.6 59.8 59.8 55.6 59.4 62.6 54.2 53.6 56.0 59.8 61.8 57.4 55.6
Ti hcp 116.8 125.6 123.2 121.4 122.6 125.8 126.8 128.6 124.0 122.4 127.6 125.2 125.8 127.0 108.3
V bcc 187.8 204.0 201.8 198.8 200.2 205.6 205.6 198.0 200.8 199.6 207.0 203.8 201.8 181.8 158.9
Cr bcc 263.6 288.2 283.2 281.2 282.5 291.8 292.4 276.8 284.8 281.2 292.0 280.2 283.6 286.8 174.5
Fe bcc 161.1 271.4 163.6 161.1 161.8 232.5 174.8 145.3 154.3 150.4 161.7 144.7 267.3 272.5 169.8
Co hcp 287.0 287.2 257.2 224.6 228.4 239.7 242.0 223.3 239.7 230.6 245.8 239.4 239.6 242.9 193.0
Ni fcc 208.6 231.9 228.7 208.6 218.7 244.7 225.6 262.0 240.5 235.3 243.5 241.5 199.9 238.2 185.5
Cu fcc 137.1 163.3 156.5 152.7 160.8 170.5 171.1 151.9 158.9 146.9 155.9 152.4 161.2 164.2 140.3
Zn hcp 74.0 91.8 86.0 84.0 88.0 97.8 100.4 74.2 99.4 82.8 102.0 105.2 96.8 105.6 69.7

ME 25.9 51.5 33.2 26.3 29.7 45.4 38.1 29.7 33.4 27.5 37.3 33.0 42.5 46.8
MAE 29.2 51.5 34.8 28.2 31.5 45.4 38.1 35.1 37.2 32.2 39.1 38.5 42.5 46.8
MPE 14.6 32.3 21.0 17.7 20.1 29.7 26.3 19.1 22.5 17.2 25.3 23.4 28.9 31.4

MAPE 17.5 32.4 22.2 18.8 21.2 29.7 26.3 22.3 25.0 20.5 26.3 26.7 28.9 31.4

Y hcp 39.6 42.0 40.2 39.3 37.9 40.2 37.8 44.4 37.4 37.2 36.6 36.4 38.4 41.4 41.7
Zr hcp 92.8 98.8 96.4 94.7 95.0 97.0 97.4 95.4 92.8 92.2 95.6 95.8 96.2 97.0 95.9
Nb bcc 172.0 186.8 183.4 181.7 181.7 187.6 187.6 169.0 181.6 180.4 183.4 180.8 181.2 183.2 172.0
Mo bcc 266.4 289.0 278.6 277.3 278.4 286.2 290.4 260.2 287.0 285.2 287.4 284.0 278.6 283.6 264.7
Tc hcp 301.4 330.6 317.0 315.6 317.5 329.0 331.2 292.2 334.6 331.2 331.2 324.2 319.0 325.2 303.1
Ru hcp 316.4 353.8 334.4 332.9 335.2 350.4 353.4 302.0 365.4 361.4 356.8 342.2 337.0 345.8 317.7
Rh fcc 254.8 295.8 276.7 274.1 292.4 292.4 295.5 235.0 298.4 294.7 292.9 290.3 275.9 284.0 288.7
Pd fcc 165.3 201.8 187.9 184.0 186.5 201.1 203.1 148.3 199.5 195.3 200.1 193.5 189.5 195.3 195.4
Ag fcc 86.1 112.3 102.3 98.9 102.5 113.0 113.9 89.1 103.7 100.9 110.7 105.4 109.3 113.0 103.8
Cd hcp 40.8 59.4 54.4 51.6 56.3 62.2 63.4 58.6 59.6 56.0 63.4 57.4 64.8 50.2 53.8

ME -10.1 13.4 3.5 1.3 4.7 12.2 13.7 -14.3 12.3 9.8 12.1 7.3 5.3 8.2
MAE 10.5 13.4 8.0 8.7 7.6 12.5 14.5 15.8 13.8 12.0 13.2 8.8 9.7 9.9
MPE -7.7 6.6 1.0 -0.7 1.1 6.2 6.5 -5.4 4.2 2.4 5.3 2.2 3.3 3.1

MAPE 7.8 6.6 3.6 4.6 4.3 6.9 8.4 8.5 6.9 5.9 7.8 5.0 6.3 4.9

Hf hcp 110.0 116.6 114.2 113.0 114.8 116.4 116.6 114.2 113.8 112.8 117.0 116.6 117.4 118.2 109.7
Ta bcc 199.0 199.0 207.8 206.6 207.4 213.0 214.6 196.8 210.4 208.8 213.4 212.0 210.8 212.6 193.7
W bcc 309.6 309.6 324.6 323.8 309.6 336.0 336.8 310.6 338.8 332.2 336.0 331.4 330.2 334.4 312.3
Re hcp 370.6 399.6 390.8 390.3 396.3 406.8 407.8 392.8 417.8 410.2 408.4 412.6 398.8 404.8 368.8
Os hcp 405.6 443.6 426.8 427.1 434.3 450.8 453.4 409.0 466.6 461.0 455.6 459.6 440.6 449.4 424.6
Ir fcc 350.5 391.0 369.9 369.6 376.9 394.2 396.9 343.8 416.6 409.8 402.0 415.9 382.7 392.8 365.2
Pt fcc 245.0 285.8 264.6 262.9 266.2 284.1 287.7 224.2 305.9 298.8 294.4 244.1 271.2 280.4 284.2
Au fcc 131.1 164.1 157.6 147.2 149.9 162.7 165.3 127.7 168.2 172.5 167.8 158.2 153.1 159.5 174.8

ME -14.0 9.5 2.9 0.9 2.8 16.3 18.2 -14.3 25.6 21.6 20.2 14.6 8.9 14.9
MAE 15.8 12.9 12.1 13.1 14.2 19.4 20.6 22.2 27.3 22.2 21.9 28.8 17.6 19.6
MPE -5.6 2.8 0.8 -0.3 0.4 5.1 5.8 -5.7 7.7 6.6 6.5 4.0 2.7 4.7

MAPE 6.5 4.6 5.0 5.5 5.8 6.9 7.2 8.8 8.7 6.9 7.5 9.9 6.9 7.2

Li bcc 14.1 13.8 13.6 13.0 13.0 13.6 13.0 14.1 14.1 13.9 14.2 13.3 14.8 14.7 13.1
Na bcc 8.0 7.9 7.4 7.3 7.4 7.5 7.4 7.6 7.9 7.7 8.0 7.9 8.5 8.9 7.9
K bcc 3.5 3.5 3.3 3.3 3.3 3.3 3.3 3.2 3.1 3.0 3.2 3.2 3.8 3.8 3.7
Rb bcc 2.8 2.9 3.7 3.8 3.7 3.5 3.5 4.7 3.6 2.8 3.3 3.1 3.1 3.1 2.9
Cs bcc 2.0 2.0 1.8 1.9 1.8 1.9 1.8 4.1 2.0 2.0 2.0 2.0 2.1 2.1 2.1

ME 0.1 0.1 0.0 -0.1 -0.1 0.0 -0.1 0.8 0.2 -0.1 0.2 -0.1 0.5 0.6
MAE 0.3 0.2 0.5 0.4 0.4 0.4 0.4 1.1 0.5 0.4 0.4 0.2 0.5 0.6
MPE -1.0 -0.9 0.0 0.5 -0.9 -0.2 -2.3 29.5 2.1 -4.9 0.9 -2.1 6.1 6.8

MAPE 4.4 3.2 12.7 11.9 12.0 10.0 10.6 36.4 10.7 7.2 8.2 5.4 6.1 6.8

Ca fcc 16.8 17.2 16.8 16.7 16.8 17.1 16.9 20.9 18.2 17.5 17.7 17.6 18.4 18.5 18.4
Sr fcc 11.5 12.3 11.4 11.2 11.4 11.7 11.6 17.1 11.8 11.4 11.9 11.1 12.5 12.6 12.4
Ba bcc 8.7 9.3 8.4 8.1 8.4 8.7 8.6 11.8 7.7 7.6 8.3 8.1 9.2 9.2 9.3

ME -1.0 -0.4 -1.2 -1.4 -1.2 -0.9 -1.0 3.2 -0.8 -1.2 -0.7 -1.1 0.0 0.1
MAE 1.0 0.4 1.2 1.4 1.2 0.9 1.0 3.2 0.8 1.2 0.7 1.1 0.1 0.1
MPE -7.5 -2.4 -8.8 -10.6 -8.8 -6.4 -7.4 26.1 -7.7 -10.4 -6.2 -9.2 -0.1 0.4

MAPE 7.5 2.4 8.8 10.6 8.8 6.4 7.4 26.1 7.7 10.4 6.2 9.2 0.6 1.1

Mn c 183.2 305.4 299.4 145.3 298.4 309.1 311.7 298.0 311.0 306.6 312.6 315.3 302.6 306.5 90.4
La h 24.2 26.4 25.8 25.0 24.7 25.4 25.4 28.0 22.8 22.6 23.6 24.2 25.6 24.2 26.6
Hg r 9.6 36.0 22.4 18.3 21.1 32.4 34.8 19.6 24.4 21.6 24.0 21.2 33.6 38.8 28.2

ME 23.9 74.2 67.5 14.5 66.3 73.9 75.6 66.8 71.0 68.5 71.7 71.8 72.2 74.8
MAE 37.9 74.3 71.9 22.1 72.3 74.7 76.4 72.5 76.1 75.6 76.5 78.1 72.9 76.4
MPE 9.2 88.2 69.2 6.5 65.9 84.1 87.9 68.1 72.1 66.9 73.2 71.6 83.4 89.2

MAPE 59.2 88.7 84.9 34.0 87.5 87.1 90.9 88.5 90.6 92.5 90.7 94.2 85.9 95.2

TME 2.3 23.5 14.6 7.8 14.0 23.2 22.3 5.9 22.1 18.9 21.9 18.4 19.1 22.3
TMAE 16.1 24.3 18.7 13.6 18.3 24.1 23.3 23.3 24.3 21.6 23.5 23.8 22.1 23.9
TMPE 0.3 16.7 10.2 3.7 9.5 15.9 15.2 13.2 13.4 9.9 14.2 11.6 15.6 17.2

TMAPE 13.4 18.0 16.3 11.9 16.5 19.0 19.1 23.2 18.8 17.0 18.6 18.6 17.6 18.7
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Figure 3.5: Shown is the percentage error of bulk-moduli using different functionals.

the performance of PBEsol quite similar for 4d and 5d transition metals.

Considering the meta-GGA functionals, except M06L overestimation in observed in

all functional performance in determining the bulk moduli for 3d, 4d and 5d block transi-

tion metals. As the electrons in the d block filling increases the overestimating tendency

of meta-GGA functionals become more intense. We observe modTPSS improves over

TPSS while oTPSS shows similar performance as TPSS. Regarding the most recent and

advanced meta-GGAs like TM, deviation in its performance is observed for the 3d transi-

tion metals while it shows improved performance for 4d and 5d transition metals.

Due to the smaller extend of the bulk moduli values the alkali metals are considered

as a “soft-matter”. For these solids a sizable performance is originated from the short or

intermediate range van der Waals interaction. Therefore, we observe in the performance

for both the TMTPSS and TM functional.

3.5.1.3 Cohesive energies

The “strong” correlation of transition metals creates a challenge for obtaining cohesive

energy of transition metals. We list the all the functional performance in Table 3.7 and

plotted the relative error in Fig. 3.6.

As it is observed from Table 3.7, the PBE functional as usual quite a good candidate

for the cohesive energies of all the metals. Whereas, PBEsol overestimates it. The differ-
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Table 3.7: Shown is the cohesive energies (in eV/atom) as obtained from different func-
tionals. The finite temperature corrected reference values are taken from [209, 210]. The
finite temperature un-corrected reference values of Mn, La and Hg are taken from [210].
We use the similar style as indicated for Table 3.5.

GGA meta-GGA
Solids CS PBE PBEsol TPSS modTPSS oTPSS revTPSS regTPSS M06L MS0 MS1 MS2 SCAN TMTPSS TM Expt.

Sc hcp 4.20 4.58 4.47 4.41 4.47 4.58 4.61 5.08 4.39 4.31 4.49 4.37 4.69 4.81 3.93
Ti hcp 5.40 5.87 5.56 5.55 5.62 5.77 5.72 6.22 5.29 5.23 5.48 5.30 6.01 6.04 4.88
V bcc 5.25 5.83 5.51 5.43 5.51 5.76 5.62 6.28 5.09 5.01 5.43 4.96 5.89 5.93 5.34
Cr bcc 4.05 4.71 4.24 4.14 4.24 4.47 4.31 4.50 3.49 3.44 3.96 3.26 4.62 4.66 4.15
Fe bcc 4.81 5.58 5.29 5.17 5.28 5.55 5.52 5.03 5.08 5.00 5.38 4.88 5.58 5.70 4.32
Co hcp 5.09 5.85 5.74 5.63 5.74 6.09 5.99 5.84 5.88 5.77 6.13 5.92 6.25 6.37 4.47
Ni fcc 4.67 5.34 5.07 4.96 5.06 5.44 5.41 5.81 5.20 5.09 5.46 5.25 5.61 5.69 4.48
Cu fcc 3.48 4.03 3.75 3.66 3.75 4.09 4.08 3.06 3.80 3.71 4.09 3.87 4.32 4.38 3.51
Zn hcp 1.10 1.57 1.34 1.28 1.34 1.61 1.67 1.54 1.55 1.46 1.74 1.52 1.71 1.89 1.38

ME 0.20 0.86 0.56 0.47 0.57 0.86 0.81 0.86 0.41 0.32 0.71 0.36 1.03 1.13
MAE 0.32 0.86 0.57 0.50 0.58 0.86 0.81 0.98 0.64 0.58 0.76 0.68 1.03 1.13
MPE 2.7 20.9 12.6 10.1 12.7 21.2 20.4 19.8 10.7 7.90 18.7 9.3 25.7 29.1

MAPE 9.0 20.9 13.4 12.0 13.5 21.2 20.4 23.0 15.8 13.8 19.9 16.4 25.7 29.1

Y hcp 4.21 4.60 4.43 4.22 4.28 4.57 4.32 5.06 4.36 4.30 4.49 4.42 4.70 4.81 4.42
Zr hcp 6.27 6.78 6.35 6.31 6.39 6.55 6.28 6.80 5.83 5.83 6.04 6.12 6.82 6.84 6.32
Nb bcc 6.79 7.47 7.14 7.00 7.09 7.40 7.13 8.63 6.85 6.75 7.07 6.56 7.45 7.49 7.47
Mo bcc 6.35 7.18 6.63 6.53 6.63 6.95 6.79 6.85 6.34 6.23 6.61 5.81 6.96 7.03 6.84
Tc hcp 6.90 7.85 7.17 7.03 7.14 7.59 7.50 6.53 7.28 7.16 7.57 6.72 7.61 7.78 7.17
Ru hcp 6.88 7.87 7.21 6.99 7.10 7.66 7.65 6.78 7.69 7.54 7.79 7.53 7.70 7.85 6.80
Rh fcc 5.86 6.73 6.00 6.08 6.20 6.40 6.67 5.40 5.90 5.81 6.17 5.58 6.41 6.55 5.76
Pd fcc 3.74 4.47 4.00 3.88 4.00 4.39 4.39 4.17 4.24 4.13 4.46 4.38 4.61 4.71 3.93
Ag fcc 2.52 3.08 2.73 2.63 2.73 3.03 3.00 3.24 2.79 2.70 3.10 2.88 3.29 3.35 2.96
Cd hcp 0.73 1.16 0.95 0.87 0.95 1.20 1.24 1.33 1.08 1.01 1.34 1.03 1.39 1.49 1.18

ME -0.26 0.43 -0.02 -0.13 -0.03 0.29 0.21 0.19 -0.05 -0.14 0.18 -0.18 0.41 0.51
MAE 0.30 0.44 0.18 0.23 0.21 0.30 0.32 0.40 0.34 0.34 0.36 0.42 0.41 0.51
MPE -8.1 7.5 -2.2 -4.8 -2.4 5.3 4.3 5.1 -1.4 -3.6 4.8 -3.3 9.3 11.7

MAPE 8.6 7.8 4.7 6.5 5.4 5.5 5.9 8.2 6.4 6.9 7.4 7.7 9.3 11.7

Hf hcp 6.48 7.14 6.77 6.70 6.77 7.08 7.09 7.40 6.82 6.73 7.03 6.35 7.05 7.22 6.44
Ta bcc 8.25 9.00 8.67 8.57 8.67 9.03 9.13 9.00 9.18 8.85 9.15 8.80 9.04 9.23 8.11
W bcc 8.47 9.27 8.83 8.72 8.83 9.22 9.01 9.77 9.31 9.12 9.46 9.09 9.41 9.45 8.83
Re hcp 7.79 8.77 8.22 8.09 8.20 8.65 8.67 7.74 8.89 8.68 8.95 8.51 8.71 8.91 8.06
Os hcp 8.30 9.36 8.80 8.62 8.73 9.10 9.37 8.23 9.53 9.34 9.53 9.08 9.26 9.49 8.22
Ir fcc 7.19 8.27 7.56 7.45 7.56 8.10 8.19 6.97 8.51 8.31 8.43 8.37 8.07 8.27 6.96
Pt fcc 5.42 6.27 5.74 5.65 5.76 6.18 6.17 5.81 6.31 6.15 6.42 6.17 6.31 6.46 5.87
Au fcc 3.03 3.72 3.27 3.16 3.27 3.60 3.61 3.57 3.59 3.45 3.81 3.55 3.83 3.93 3.83

ME -0.17 0.69 0.19 0.08 0.18 0.58 0.62 0.27 0.73 0.54 0.81 0.45 0.67 0.83
MAE 0.30 0.71 0.37 0.33 0.35 0.64 0.67 0.43 0.79 0.63 0.81 0.54 0.67 0.83
MPE -3.7 9.0 1.6 -0.1 1.5 7.4 7.9 3.1 9.3 6.6 10.8 5.5 9.0 11.3

MAPE 5.3 9.8 5.8 5.6 5.6 8.9 9.4 6.1 10.9 9.0 10.9 7.7 9.0 11.3

Li bcc 1.60 1.67 1.63 1.63 1.62 1.64 1.53 1.83 1.54 1.52 1.54 1.56 1.68 1.68 1.67
Na bcc 1.08 1.15 1.14 1.14 1.14 1.16 1.08 1.49 1.07 1.05 1.09 1.10 1.22 1.21 1.12
K bcc 0.86 0.92 0.92 0.95 0.91 0.94 0.88 0.66 0.86 0.84 0.88 0.84 0.99 0.99 0.94
Rb bcc 0.78 0.84 0.81 0.80 0.81 0.83 0.79 1.30 0.78 0.76 0.80 0.76 0.93 0.92 0.86
Cs bcc 0.72 0.78 0.74 0.73 0.74 0.77 0.74 1.35 0.73 0.71 0.76 0.70 0.88 0.88 0.81

ME -0.07 -0.01 -0.03 -0.03 -0.04 -0.01 -0.08 0.25 -0.08 -0.10 -0.07 -0.09 0.06 0.06
MAE 0.07 0.02 0.04 0.04 0.04 0.03 0.08 0.36 0.08 0.10 0.07 0.09 0.06 0.06
MPE -7.3 -1.1 -3.4 -3.3 -3.8 -1.3 -7.0 26.1 -8.0 -10.0 -6.0 -8.8 6.3 5.9

MAPE 7.3 2.2 4.2 4.4 4.5 2.8 7.0 38.1 8.0 10.0 6.0 8.8 6.3 5.9

Ca fcc 1.91 2.11 2.02 1.99 2.02 2.08 2.08 2.50 2.00 1.96 2.03 2.08 2.17 2.29 1.86
Sr fcc 1.61 1.81 1.76 1.72 1.76 1.83 1.85 2.27 1.79 1.74 1.84 1.82 1.96 2.06 1.73
Ba bcc 1.88 2.12 2.03 1.98 2.03 2.11 2.14 2.51 2.00 1.95 2.10 2.04 2.24 2.34 1.91

ME -0.03 0.18 0.10 0.06 0.10 0.17 0.19 0.59 0.10 0.05 0.16 0.15 0.29 0.40
MAE 0.07 0.18 0.10 0.07 0.10 0.17 0.19 0.59 0.10 0.05 0.16 0.15 0.29 0.40
MPE -1.9 9.7 5.5 3.4 5.5 9.4 10.3 32.4 5.2 2.7 8.5 8.0 15.8 21.6

MAPE 3.7 9.7 5.5 3.7 5.5 9.4 10.3 32.4 5.2 2.7 8.5 8.0 15.8 21.6

Mn c 3.80 4.55 3.95 3.82 3.96 4.06 4.03 2.81 3.04 3.01 3.54 2.90 4.13 4.28 2.92
La h 4.30 4.79 4.51 4.31 4.39 4.56 4.40 5.03 3.83 3.82 4.06 3.72 4.58 4.61 4.47
Hg r 0.15 0.54 0.22 0.14 0.22 0.43 0.47 0.55 0.43 0.32 0.64 0.39 0.67 0.75 0.62

ME 0.08 0.62 0.22 0.09 0.19 0.35 0.30 0.13 -0.24 -0.29 0.08 -0.33 0.46 0.54
MAE 0.51 0.68 0.49 0.51 0.51 0.47 0.44 0.25 0.32 0.35 0.35 0.33 0.46 0.54
MPE -16.5 16.7 -9.5 -16.7 -10.2 3.5 4.1 -0.8 -13.6 -20.0 5.1 -18.2 17.3 23.6

MAPE 36.6 25.3 33.6 37.3 34.0 23.9 21.3 9.2 16.4 22.0 11.2 18.2 17.3 23.6

TME -0.07 0.50 0.17 0.09 0.17 0.42 0.38 0.38 0.21 0.11 0.38 0.10 0.53 0.63
TMAE 0.26 0.52 0.30 0.29 0.31 0.45 0.46 0.51 0.43 0.39 0.47 0.42 0.53 0.63
TMPE -4.7 10.2 1.7 -0.6 1.5 8.3 7.3 12.1 2.1 -0.6 7.7 0.3 13.2 15.9

TMAPE 9.4 11.6 8.9 9.2 9.2 10.8 11.2 16.6 10.1 9.9 10.8 10.3 13.2 15.9
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Figure 3.6: Histograms of relative error in cohesive energies (in %) are presented. The
numbering of the figures are as the order of the solids presented in Table 3.7.

ence in the performance of PBE and PBEsol indicates that PBE is better functional than

PBEsol for the atomization energies.

Concerning the next level of approximation and overall consideration, we observe

more deviation from TM functional than the SCAN. The SCAN functional quite closely

follows the “MS” functionals. While we observe that initially developed meta-GGA like

different variant of TPSS functional works better in this case.

Figure 3.7: Overall statistics and conformal ranking of different methods for the structural
and energetic properties of the considered solids (excluding Mn, La and Hg).
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Table 3.8: Shown in the tabular form of the overall statistics and conformal ranking of
different methods for the structural and energetic properties of the considered solids (ex-
cluding Mn, La and Hg).

PBE PBEsol TPSS modTPSS oTPSS revTPSS regTPSS M06L MS0 MS1 MS2 SCAN TMTPSS TM
ME 3.5 -0.6 3.0 3.6 2.5 0.8 1.0 -1.9 2.4 2.6 0.9 1.1 0.7 -0.1

Inter-atomic MAE 5.2 4.2 4.8 4.7 4.3 4.1 4.1 8.0 5.9 5.6 4.5 4.5 4.1 3.6
distances MPE 1.2 -0.2 0.8 1.0 0.8 0.1 0.2 -0.2 0.5 0.5 0.1 0.2 0.3 0.0

MAPE 1.7 1.5 1.6 1.4 1.3 1.4 1.3 2.3 1.8 1.7 1.5 1.5 1.4 1.2
rank 6 4 5 3 2 3 2 8 7 6 4 4 3 1

ME 0.5 19.2 10.1 7.2 9.5 18.8 17.8 0.7 17.9 14.7 17.6 13.8 14.6 17.8
Bulk MAE 14.2 20.1 14.2 12.9 13.7 19.8 18.8 19.0 19.9 16.9 19.0 19.1 17.8 19.4

moduli MPE -0.5 10.5 5.1 3.4 4.7 10.0 9.0 8.5 8.4 5.0 9.1 6.5 9.8 11.0
MAPE 9.5 11.9 10.5 10.0 10.4 13.2 13.0 17.6 12.6 10.5 12.4 12.1 11.7 12.2

rank 1 6 4 2 3 12 11 13 10 4 9 7 5 8

ME -0.08 0.49 0.17 0.09 0.17 0.43 0.39 0.40 0.24 0.15 0.40 0.13 0.54 0.63
Cohesive MAE 0.24 0.50 0.28 0.27 0.29 0.45 0.46 0.54 0.44 0.39 0.49 0.42 0.54 0.63
energies MPE -3.73 9.65 2.61 0.75 2.50 8.67 7.58 13.19 3.47 1.10 7.97 1.86 12.81 15.27

MAPE 7.12 10.37 6.80 6.80 7.02 9.65 10.38 17.18 9.51 8.84 10.72 9.67 12.83 15.27
rank 3 8 1 1 2 6 9 13 5 4 10 7 11 12

ave rank 3.3 6.0 3.3 2.0 2.3 7.0 7.3 11.3 7.3 4.7 7.7 6.0 6.3 7.0

To encapsulate the overall performance of the different methods and overall statistical

we analysis our results in Table 3.8 and plotted it in Fig. 3.7. Regarding the recent popular

functionals like SCAN and TM, those improves over the GGA functional over the inter-

atomic lattice constants but remain difficult for other properties. Whereas, overall PBE is

a good functional for metals.

3.6 Conclusions

This chapter assess the performance of various proposed semilocal XC functionals for the

solid-state structural and energetic properties. Let summarize the contents of this chapter.

In the first part of this chapter, solid-state performance of the TM and TMTPSS func-

tionals are assessed by implementing those in the the VASP code. The TMTPSS and TM

functionals perform quite accurately for various solid-state properties and both are as ac-

curate as the popular functional like SCAN. However, the SCAN performs well than TM

based functional in predicting bandgaps. This improved behavior of the SCAN is due to

the satisfaction of the several quantum mechanical constants.

Next, the semilocal functional performance are assessed for the structural and ener-

getic properties of simple and transition metals. From the performance of several semilo-

cal functional one can conclude that though the recent meta-GGAs like SCAN and TM

improve the performance of the lattice constants of those solids, the PBE is quite a good
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functional for overall performance.





Chapter 4

Range-Separated Hybrid Functional

from Semilocal Exchange Hole

This chapter will focus on the construct and benchmark of screened hybrid functional for

the molecular systems using the exchange hole of the Tao-Mo exchange-correlation func-

tional. This chapter is based on the following research outcomes

(i) Subrata Jana, Bikash Patra, Hemanadhan Myneni and Prasanjit Samal, Chem. Phys.

Lett. Vol. 713, Pages 1-9, (2018).

(ii) Subrata Jana and Prasanjit Samal, Phys. Chem. Chem. Phys., 20, 8999-9005 (2018).

4.1 Introduction

As discussed in chapter 3, the semilocal functionals are quite accurate in describing sev-

eral molecular and solid-state physics. In spite of the success, the semilocal functionals

often fail to predict the excited state properties of molecules and solids. This is due to the

absence of non-locality in the construction of semilocal exchange-correction (XC) func-

tionals [48, 144, 259–271]. Later on, the non-locality information are included through

the Hartree-Fock (HF) exact exchange into the density functional approximations (i) ei-

ther globally (global hybrid functional) [90–94, 149, 154, 169, 272–298] or (ii) in the
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short or long-range scheme (SR or LR) (range-separated hybrid functional) [34, 38, 262,

268, 299–321]. Though another class of hybrid, local hybrid functionals [322–331] are

also proposed but these are not so popular in describing molecular properties. Range-

separated hybrids are particularly interesting in DFT because of lesser (many-electron)

self-interaction ((ME)SI) error which is also known as delocalization error. Functional

with less MESI works better for molecular excitation energies, reaction barrier heights,

Rydberg excitation, and solid-state bandgaps. In all these cases, the performance of range-

separated hybrid functionals is particularly very appealing. Though the global hybrid

functionals improved the performance of semilocal functionals for the atomization ener-

gies but not so appealing for other properties like: the dissociation curve, reaction barriers

height, and properties associated with the fractional occupation numbers. In particular,

the global hybrid functionals show ∼ a/r behavior.Whereas, the range-separated hybrid

functionals show correct asymptotic behavior.

Concerning the underlying construction of the range-separated (RS) hybrid function-

als, it relies on the construction of the exchange hole (details will be provided later in this

chapter). Concept of the exchange hole already discussed in the previous two chapters.

The exchange hole coupled with the error function separates the Coulomb operator into

the long- and SR parts. Therefore, it is important to know the construction of the ex-

change hole. The exchange hole can be constructed in several ways. It can be constructed

from the Taylor series expansion technique [140], or reverse engineered way [306, 314,

332, 333], or density matrix expansion (DME) technique [35]. The reverse-engineered

technique is proposed by reversing the exchange energy expression to construct the ex-

change hole. Note that the popular LR corrected LC-ωPBE [334] is proposed based on the

reverse-engineered based exchange hole, . This technique has also been used to construct

the screened hybrid functional for solids [95, 96]. Beyond all these propositions, the ad-

vanced DME technique is also proposed to construct the exchange hole and the exchange

energy functional [35]. The construction of the DME based exchange hole is described

in chapter 3. Based on this exchange hole, a meta-generalized gradient approximation

(meta-GGA) level LR corrected hybrid functional is proposed [34]. This chapter focuses

on the behavior of the proposed LR corrected functional in the context of problems re-
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lating to the many-electron self-interaction (MESI) error [48, 144, 260–271]. Not only

that, a screened hybrid functionals is also constructed using HF in the SR and semilocal

functional in the LR.

In the first part of this chapter, we assess the performance of the LR corrected func-

tional for studying the fractional occupation number, dissociation curve, its connection

to fractional occupation number as well as thermodynamic properties. A comparison of

the DME based RS functional with other popular functionals can be found in ref. [34],

which is not the main focus of this thesis. Regarding the second part of this chapter, a

screened RS hybrid functional is proposed for solids. The proposed functional is analo-

gous to that of the popular RS hybrid functional as proposed by Heyd-Scuseria-Ernzerhof

(HSE) [335].

4.2 Long-range Corrected Hybrid Functional Schemes

The electronic ground state in the density functional theory is given by,

EDFT [ρ] =
∑
i

ni〈ψi| −
1

2
∇2|ψi〉+

∫
ρ(r)vext(r)dr + J [ρ] + Exc[ρ], (4.1)

where

J [ρ] =
1

2

∫ ∫
ρ(r)ρ(r′)

|r− r′|
drdr′ (4.2)

is the Hartree, Exc[ρ] is the exchange-correlation (XC) energy functional and ni is the

occupation of the ith Kohn-Sham (KS) orbital. The main challenge of KS DFT is to

construct the XC functional because all the terms in Eq.(4.16) except XC are known

exactly. As shown in the previous chapter, the exchange energy can be formulated from

the exchange hole as,

Ex[ρ] =
1

2

∫
d3r ρ(r)

∫
d3u

ρx(r, r + u)

u
. (4.3)

This equation is the starting point to understand the construction of the RS hybrid func-

tionals in DFT. Utilizing the local density approximation (LDA) based exchange hole,
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Savin [336, 337] suggested a LR exchange correction scheme as,

1

u
=
α + βerf(µu)

u︸ ︷︷ ︸
LR

+
1− [α + βerf(µu)]

u︸ ︷︷ ︸
SR

, (4.4)

where the parameters µ, α and β control the amount of SR part of the density functional

approximations (DFA) and LR part of the HF exchange. Here, µ is the RS parameter

that controls the amount of (LR/SR) HF to be mixed with the (SR/LR) semilocal approx-

imation. Using the above decomposition, the short and LR parts of exchange functional

become,

ESR
x = −1

2

∫
d3rρ(r)

∫
1− erf(µu)

u
ρx(r, r + u) d3u, (4.5)

and

ELR
x = −1

2

∫
d3rρ(r)

∫
erf(µu)

u
ρx(r, r + u) d3u (4.6)

respectively. Note that using the spin-polarized counterpart of the exchange hole from

spin-unpolarized version can be evaluated using the spin-scaling relation,

ρx[ρ↑, ρ↓] =
ρ↑
ρ
ρx[2ρ↑] +

ρ↓
ρ
ρx[2ρ↓]. (4.7)

In the LC scheme, Eq.(4.5) is used to construct the SR part of the RS hybrid functional

and the LR HF is given by,

ELR
x = −1

2

∑
σ

occ∑
i

occ∑
j

∫ ∫
ψiσ(r1)ψ∗jσ(r2)

erf(µr12)

r12

ψjσ(r1)ψiσ(r2)d3r1 d
3r2 ,

(4.8)

where ψ’s are the spin-dependent molecular orbitals. The first and most obvious step

towards the development of the SR semilocal functional having the following form,

ESR
x = −1

2

∫
ρ(r)εunifx (r)

{
1− 8

3
a
(√

π erf(
1

2a
) + (2a−4a3)e−

1
4a2 −3a+ 4a3

)}
d3r .

(4.9)

It is based on LDA exchange hole, where a = µ
2kF

. However, this scheme does not incor-

porate the inhomogeneity of the system due to the absence of gradient-dependent terms.
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Later, Iikura-Tsuneda-Yanai-Hirao (ITYH) [338] incorporate the gradient dependent term

inside this scheme through the momentum vector kF → kGGA, where kGGA is the GGA

exchange energy functional induced modified inhomogeneous wave vector,

kGGA =
kF√

FGGA
x (s)

, (4.10)

where FGGA
x is the GGA enhancement factor. Using this form, the ITYH SR semilocal

functional becomes,

ESR
x ≈ −1

2

∫
ρ(r)εunifx (r)

{
1−8

3
a
(√

π erf(
1

2a
)+(2a−4a3)e−

1
4a2−3a+4a3

)}
FGGA
x d3r ,

(4.11)

where the new a = µ
2kGGA

. This simple modification in the ITHY model, when combined

with B88 exchange, produces very promising results. The resultant functional based on

the ITHY model is known as “coulomb attenuating method (CAM)” based functional. It

combines the quality of the global hybrid B3LYP and additionally, it improves the LR

correction by involving the HF exact exchange. The resultant functional is known as

CAM-B3LYP [302]. Several other modifications of the CAM-B3LYP are also suggested

and proposed [262, 268, 339] such as: CAM-QTP functionals [268, 339] In general, the

XC functional of “CAM” type functionals is written as,

ECAM
xc = [1− (α + β)]EDFA

x + αEHF
x + β(ESR,DFA

x (µ) + ELR,HF
x (µ)) + γELY P

c

+(1− γ)EVWN5
c + δEDFA

x ,

(4.12)

where the central task of Eq.(4.12) is to construct ESR,DFA
x (µ). In the “CAM” type func-

tionals, the ITHY scheme is used to construct ESR,DFA
x (µ) and the ELR,HF

x (µ) is the HF

LR part.

Besides the ITHY scheme, the extension of the screened Coulomb potential scheme

of Heyd, Scuseria, and Ernzerhof [95, 96] has been utilized in the LC scheme to construct

the LC functional based on the reverse-engineered system averaged exchange hole of PBE



88 Range-Separated Hybrid Functional from the Semilocal Exchange Hole

functional [306, 308]. The resultant LC functional is known as LC-ωPBE which is quite

a good functional for barrier heights.

4.2.1 Semilocal exchange hole based RS hybrids

In this section, we will describe the mathematical formulation of the meta-GGA level LC

functionals based on the spherical averaged DME based exchange hole of Tao-Mo [35].

Though the work involving the construction of the functional [34] is not part of this thesis,

yet it is necessary to understand the functional construction.Based on the DME exchange

hole the semilocal SR part of the meta-GGA RS hybrid functional becomes [34],

ESR,DME
x = −

∫
ρεunifx

[ 1

f 2

{
1− 8

3
a
(√

πerf(
1

2a
) + (2a− 4a3)e−

1
4a2 − 3a+ 4a3

)}
+

7L
9f 4

{
1 + 24a2

(
(20a2 − 64a4)e−

1
4a2 − 3− 36a2 + 64a4 + 10

√
πerf(

1

2a
)
)}

+
245M
54f 4

{
1 +

8

7
a
(

(−8a+ 256a3 − 576a5 + 3849a7 − 122880a9)e−
1

4a2

+24a3(−35 + 224a2 − 1440a4 + 5120a6) + 2
√
π(−2 + 60a2)erf(

1

2a
)
)}]

d3r,

(4.13)

where εunifx = 9πρ
4k2f

, f = [1 + 10(70y/27) + βy2]1/10, L = [3(λ2 − λ + 1/2)(τ − τunif −

|∇n|2/72n) − (τ − τunif ) + 7
18

(2λ − 1)2 |∇ρ|2
ρ

]/τunif , M = (2λ − 1)2 p, a = µ
2fkf

,

kf = (3π2ρ)
1
3 , τunif = 3

10
k2
fρ, y = (2λ− 1)2 p and p = |∇ρ|2

(2kfρ)2
. The Eq.(4.13) is derived

using the DME based exchange hole of TM [35] coupled with Eq.(4.5). For LR the HF

exchange of Eq.(4.8) is used. The functional is named as LC-TM as it is designed using

TM (only DME exchange hole) exchange hole expansion. Combining all the SR and LR

parts, exchange part of LC-TM hybrid functional becomes [34],

ELC−TM
xc = ESR,DME

x [ρ,∇ρ, τ ] + ELR,HF
x . (4.14)

The λ and β values are fixed as prescribed in the TM functional [35] i.e., λ = 0.6866

and β = 79.873. This completes the exchange part of the LC-TM functional. For the
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correlation, the LYP [36] correlation is used. However, in the original TM approach, the

Tao-Perdew-Staravarov-Scuseria (TPSS) [84] based correlation is used.

Note that use of TPSS correlation with the present proposed exchange the MAE of

AE6 molecules becomes 12.27 kcal/mol, 11.45 kcal/mol, 10.91 kcal/mol, 10.60 kcal/mol

with µ = 0.30 bohr−1, µ = 0.33 bohr−1, µ = 0.35 bohr−1 and µ = 0.40 bohr−1 respec-

tively. Therefore, with LC-TM exchange and LYP correlation, the proposed LR corrected

RS functional becomes,

ELC−TMLY P
xc = ELC−TM

xc [ρ,∇ρ, τ ] + ELR,HF
x + ELY P

c . (4.15)

Concerning the range-separation parameter, it will be fixed in the next section.

In this chapter, we focus on the MESI related problems of LC-TMLYP along with

the BLYP, B3LYP, LC-BLYP, CAM-B3LYP, rCAM-B3LYP, CAM-QTP00, CAM-QTP01

functionals.

4.2.2 Fixing the range-separation parameter (µ)

It is well known that in RS hybrid functional theory, it is customary to tune the RS pa-

rameter related to the properties of the system. In thermochemistry, one always chooses

atomization energies (AE6) and barrier heights (BH6) [340] because those represents the

whole thermochemical test set related to the atomization energies and barrier height. In

this case, also, we fix the LC-TMLYP µ value by tuning it with respect to the AE6 test

set [341]. Here, the AE6 geometries are taken from [342–344]. In Fig. 4.1, the MAE of

the LC-TMLYP functional is plotted for different µ values which results µ = 0.28 bohr−1

for the present functional.

In Table 4.1, the values of different RS parameters for the exchange and correlation

are also presented. In Table 4.2, the MAE of AE6 molecules for BLYP, B3LYP, LC-

BLYP, CAM-B3LYP, rCAM-B3LYP, CAM-QTP00, and CAM-QTP01 functionals along

with LC-TMLYP are summarized. From the results of the Table 4.2, it is evident that

LC-TMLYP is a promising candidate for AE6.
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Figure 4.1: Variation of the MAE of the AE6 set for LC-TMLYP with different values of
µ.

Table 4.1: Different parameters used in the considered functionals. The µ parameter is in
bohr−1 unit.

Exchange Correlation
Name α β µ δ γ

CAM-B3LYP 0.19 0.46 0.33 0.0 0.81
rCAM-B3LYP 0.18352 0.94979 0.33 0.13590 1.0

LC-BLYP 0.0 1.0 0.33 0.0 1.0
CAM-QTP00 0.54 0.37 0.29 0.0 0.80
CAM-QTP01 0.23 0.77 0.31 0.0 0.80
LC-TMLYP 0.0 1.0 0.28 0.0 1.0

4.2.3 Understanding one, many-electron Self-Interaction error, and

fractional occupation related problems in DFT

As the present chapter deals with the MESI related problems of the LC-TMLYP func-

tional, a clear understanding of the one-electron and many-electron self-interaction error

(SIE) is necessary. In DFT, SIE is one of the foremost problems that hinder the accuracy

level of DFT. To understand the SIE problem, the most commonly used example is the

potential energy of H+
2 for which the density functional approximations (DFA) show un-

physical results. As H+
2 molecule has one-electron, in the large separation of two atoms,

each atom should share half of the electron whose description is beyond the limit of

commonly used DFA. Lets us start with the one-electron self-interaction problem. The

one-electron SIE can be understood as the non-vanishing of the Hartree and XC energy
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Table 4.2: AE6 atomization energies (in kcal/mol) as obtained using different functionals.
The reference CCSD(T) values are taken from ref. [34]

Molecules BLYP LC- B3LYP CAM- rCAM- CAM- CAM- LC- CCSD(T)
BLYP B3LYP B3LYP QTP00 QTP01 TMLYP

SiH4 317.17 324.91 323.36 325.02 324.52 329.12 328.13 323.28 324.59
SiO 194.51 202.58 187.16 188.00 189.09 172.39 189.67 187.3 192.36
S2 35.42 106.92 102.8 99.99 97.41 91.99 100.43 97.33 103.11

C3H4 700.95 726.97 702.28 704.72 704.86 691.57 713.27 701.81 701.36
C2H2O2 641.41 672.89 631.93 635.46 637.98 604.59 644.34 632.98 632.36

C4H8 1130.45 1184.92 1141.80 1150.42 1154.76 1141.74 1169.15 1145.09 1145.23
MAE 16.92 20.03 1.92 3.26 4.61 12.78 9.45 2.23 −

functional for one electron system. Now, in the HF theory framework one can write

J [ρi] + Exc[ρi, 0] = 0 . (4.16)

In DFA, the XC only partially cancel the Hartree energy. Therefore, a spurious self-

interaction error remains. Now, splitting the Exc into exchange and correlation parts,

Eq.(4.16) reduced to,

J [ρi] + Ex[ρi, 0] = 0 ,

Ec[ρi, 0] = 0 . (4.17)

The above one-electron self-interaction free conditions for exchange and correlation are

not fully satisfied by the LSDA, GGA, and meta-GGA functionals. But the meta-GGA

functionals satisfy the self-interaction free correlation condition.

Concerning the “many-electron self-interaction (MESI) error”, it is most commonly

used in modern density functional theory [48, 144, 260–271]. In fact, the MESI error is

considered as a generalization of one-electron SIE. Generally speaking, the MESI error is

also a SIE but occurs in the many-electron systems. There is no compact definition of the

MESI in DFT community. However, the one-electron SIE which is conventionally defined

through the definition of Eq.(4.16) is very difficult to quantify in case of many electrons.

In earlier reported work [48, 144, 260–271], the MESI error is quantified as the inability

of describing the straight line behavior in case of fractional particle (occupation) number.
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Therefore, the MESI error is related to systems, where the electron number (N ) of the

system can fluctuate between integers. Perdew et. al. [48] showing that in exact DFT,

one can obtain the exact straight line with derivative discontinuity (∆xc) showing at each

integer number. The straight line in the case of the molecular system actually indicates

that the HOMO and LUMO energies of fluctuating electron system should remain con-

stant at orbital energies of highest orbital energy (−εH) and lowest orbital energy (−εL).

But this is not the case for DFA. This is due to the delocalization of the highest occupied

(or lowest unoccupied) electron. The MESI problem hinders various chemical processes

especially in describing the transition states of the reactions barriers. It has been observed

that DFA are delocalized (or convex in nature) while the HF is highly localized (concave

in nature). As a solution to the delocalization and localization problems within DFA and

HF, it has been suggested to mix the DFA with HF. This results to several global and RS

hybrids, which mix the HF exchange with density functional exchange either globally or

in the RS scheme.

The terminology fractional occupation number (q) is often encountered in DFT. In

principle, the MESI error of a functional can be understood based on the fractional oc-

cupation number of a system. The example we discussed in this section (dissociation of

H+
2 molecule) to encapsulate the SIE problem is also related to the fractional occupation

number. Thus, changing the frontier orbital occupation fractionally one can study the

MESI problem. However, before going into the formal example of a system, lets first un-

derstand the fractional occupation number from the perspective of Janak’s theorem [57].

According to this theorem,
∂E

∂ni,σ
= εi,σ , (4.18)

where εi,σ is the ith energy eigenvalue. A more general form of Janak’s theorem has been

adopted using generalized Kohn-Sham scheme (GKS) [56], where it is shown that for a

fixed configuration (potential), the energy becomes stationary with respect to the potential.

Hence, only the the fractional change (δni=f = q) of the frontier level occupation ni=f

physically important i.e.,
∂Ev
∂N

=
( ∂Ev
∂ni=f

)
v

= εi=f,σ , (4.19)



4.2 Long-range Corrected Hybrid Functional Schemes 93

where nf = nLUMO if one fill up the lowest unoccupied orbital (q = δN > 0) and

nf = nHOMO if one remove particles from the highest occupied orbital (q < 0). Upon

using the above expression, the total energy becomes,

E(N0 + q) = (1− q)E(N0) + qE(N0 + 1) 0 ≤ q ≤ 1 (4.20)

and

E(N0 + q) = (1 + q)E(N0)− qE(N0 − 1) − 1 ≤ q ≤ 0 , (4.21)

where Eq.(4.20) and Eq.(4.21) corresponds to addition and removal of the fraction of

particle ‘q’ respectively. This expression will be used in the next section to calculate the

energies of the fractionally occupied systems. It has been shown that the exact density

functional is piecewise linear in between two integer [48]. But in reality, the DFA fails to

achieve the piece-wise linearity and predict wrong energy for fractional occupation due to

lack of non-locality. Whereas, the HF exact exchange is highly localized due to the lack

of correlation.

4.2.4 Performance of LC-TMLYP in MESI related problems

Computational Setup: All the computational results are obtained using the NWChem [99]

code with Gaussian-type basis set. Regarding the details of the basis set, it is defined more

explicitly in the results and discussions section for different calculations along with the

test sets. Our test cases includes (i) fractional occupation number related problem of C

atom, (ii) dissociation curve of H+
2 , and H2 molecules, and (iii) fractional occupation

number and the dissociation limit of LiF molecule.

4.2.4.1 Functional performance for atom with fractional occupation

Firstly, we consider the performance of XC functionals on the fractional occupation num-

ber in atoms. To encapsulate the fractional occupation number problem, C atom is con-

sidered as an example. The behavior of different functionals is demonstrated in Fig. 4.2.

Here, we vary the particle number of the highest occupied level fractionally in steps of
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Figure 4.2: (a) The deviation of different functionals from exact straight line behavior in
case of C atom. In Fig. (b) −1 ≤ q ≤ 0 and (c) 0 ≤ q ≤ 1 the deviation of considered
functionals are shown from the exact behavior.

0.05 (= q=fractional particle number). The exact straight lines corresponds to the exper-

imental ionization potential (IP) energy (In between 5 ≤ N < 6) and electron affinity

(EA) (In between 6 < N ≤ 7).

In our demonstration, BLYP is the only semilocal functional. Being a semilocal func-

tional BLYP functional includes inherent delocalization error which shows the piecewise

convexity during the change in the fractional particle number. But, this piecewise con-

vexity becomes close to the exact upon mixing the fraction of HF. Therefore, we observe

an error minimization in the performance of the rCAM-B3LYP, LC-TMLYP, LC-BLYP,

CAM-QTP00 and CAM-QTP01 functionals. The LC-BLYP also shows significant im-

provement in the fractional particle number curve compared to the BLYP. It is notice-

able that the CAM-B3LYP also shows significant improvement compared to the B3LYP.

Further improvement in the fractional occupation curve is obtained with rCAM-B3LYP,

CAM-QTP00, and CAM-QTP01 functionals because all these functionals are further im-

proved to to reduce the delocalization error of CAM-BLYP. However, in this case of

the meta-GGA RS hybrid LC-TMLYPit is quite close to the exact straight in the range

6 < N ≤ 7. In this region, CAM-QTP00, and CAM-QTP01 perform better than rCAM-

B3LYP which is slightly localized. In Fig. 4.2b and Fig. 4.2c we plotted the behavior of

the different functionals for the fractional occupation number of the C atom. Here, the
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Figure 4.3: Shown is the highest occupied energy of C atom as a function of electron
number N . Exact εHO is obtained from -IP and -EA. The 6− 311 + +(3df, 3pd) basis set
is used.

∆E is calculated using the following expression,

∆Eq∃[0,1] = E(N0 + q)− [(1− q)E(N0) + qE(N0 + 1)] ,

∆Eq∃[−1,0] = E(N0 + q)− [(1 + q)E(N0)− qE(N0 − 1)] .

(4.22)

In Fig. 4.2b and Fig. 4.2c we plot only those functionals which are close to the exact

straight line behavior.

In Fig. 4.4, the nature of the highest occupied orbital energy (εHO) of C atom is shown

with the occupation number variation. Form there it is obvious that the BLYP and B3LYP

are not stable for C− because these functionals show positive εHO value.

4.2.4.2 Dissociation energy curve of H+
2 and H2

Getting exact behavior of the dissociation energy curve of H+
2 and H2 is also a challenge

of the semilocal DFT. But mixing the HF exchange with DFA improves the dissocia-

tion curve. The RS hybrid functionals show improvement for the H+
2 molecule disso-

ciation curve compared to the global hybrids. In the large distance of separation of the

H+
2 molecule (R = 10 Å), fractional occupation electron in each part exists (0.5), which

can not be described within the semilocal density functionals. As shown in Fig. 4.4a, the

semilocal BLYP deviates most from the HF dissociation curve, while from B3LYP we

observe improvement over BLYP. But, the most interesting improvement is observed for
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Figure 4.4: (a) Dissociation limit of the H+
2 molecule and (b) deviation from its of exact

behavior for H atom.

the RS hybrid functionals.

To predict the accuracy of functionals, in Fig. 4.4b we also calculate the energy de-

viation of the different functionals for the fractional occupation number of H atom using

the formula,

∆E = E(N + q)− [(1− q)E(N) + qE(N + 1)] . (4.23)

From Fig. 4.4b, it is observed that the proposed LC-TMLYP shows improvement over

other LR corrected hybrid functionals.

4.2.4.3 Fractional occupation number related problem for molecules

To quantify the functional performance for the fractional occupation number related prob-

lem for molecules we consider the dissociation energy curve of the LiF molecule. The

dissociation energies in this case is measured by using the formula ∆E = Li+q + F−q −

(Li+F ), where q is the fractional electron flows from Li to F atom during the dissociation.

In Fig. 4.5, the performance considered functional are shown. Interestingly the semilo-

cal functional show quite a good performance for the integer particle number deviate more

for fractional occupation number because of the MESI error. However, the improved per-

formance is observed in the case of RS hybrid functional.



4.2 Long-range Corrected Hybrid Functional Schemes 97

0 0.2 0.4 0.6 0.8 1
q

-20

0

20

40

60

∆
E

 (
k
ca

l/
m

o
l)

LC-TMLYP
rCAMB3LYP
CAMB3LYP
CAM-QTP00

CAMQTP01

B3LYP
BLYP
LC-BLYP
Exact
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4.2.4.4 Performance in thermochemistry

The thermochemical accuracy of the LC-TMLYP is measured with the Minnesota 2.0 data

set [195] except for the atomization energies. The atomization energies are performed us-

ing the G2/148 molecular test set [342–344] where the geometries are optimized at the

MP2 level theory. The present study is done using following thermochemical test sets:

(i) Energies of 17 atoms (H−Cl) (AE17) [195], (ii) Atomization energies of 6 molecules

(AE6) [195, 340], (iii) Atomization energy of 148 molecules (G2 − 148) (iv) 21 − ion-

ization potentials (IP21) [195, 291, 297, 350–352], (v) 13 electron affinities (EA13) [195,

291, 297, 352], (vi) 8 proton affinities (PA8) [195, 353], (vii) 12 alkyl bond dissociation

energies (ABDE12) [87, 195, 351, 354], (viii) 7 hydrocarbon chemistry (HC7) [160, 195],

(ix) 13 thermochemistry of π systems (πTC13) [87, 195], (x) isomerization energies of

7 molecules [195, 355], (xi) HTBH38 - 38 hydrogen transfers barrier heights [195, 351,

356–358], (xii) NHTBH38 - 38 non-hydrogen transfers barrier heights [195, 351, 356–

358], and (xiii) DC9 - 9 difficult cases [195]. All the calculations are performed using the

6− 311 + +(3df, 3pd) basis set except for atoms and molecules having He as an element.

In that case, aug-cc-pVQZ basis set is used because the 6 − 311 + +(3df, 3pd) basis set

is not available for He. We summarize the results of all the functionals in Table 4.3.

Table 4.3 shows that the CAM-B3LYP performs well for atomic energies (AE17).

However, we observe quite a good performance from LC-TMLYP functional also. For

the atomization energies of the AE6 set, B3LYP performs quite well, but impressive per-

formance is observed for the LC-TMLYP which shows the least MAE. It is also noticed

that the rCAM-B3LYP and QTP functionals deviate more than LC-TMLYP functional.

Considering other test set, LC-TMLYP is quite a good performer for the ionization poten-

tial of 21 systems (IP21). Whereas, rCAM-B3LYP performs well for the electron affini-

ties of 13 systems. For proton affinities of 8 systems, B3LYP and LC-TMLYP perform

equivalently with MAE 1.10 kcal/mol and 1.16 kcal/mol respectively. Next we consider

the dissociation energies of the 12 alkyl bond molecules for which the CAM-QTP01 per-

forms quite well.However, the CAM-B3LYP outperformed other functionals for the case

of 7 hydrocarbon chemistry (HC7). Considering the thermochemistry of 13 − π systems
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the rCAM-B3LYP performs in a superior way compared to other functionals. For reaction

barrier heights (hydrogen and non-hydrogen), the rCAM-B3LYP shows quite a impres-

sive performance. Note that in this case the LC-TMLYP performs better than B3LYP and

CAM-B3LYP which indicating the good features of the LC-TMLYP for both the atom-

ization energies and barrier heights. Lastly, for the DC9 test set also we observe good

performance from LC-TMLYP functional.

4.3 Screened Meta-GGA Hybrid Functional

The aim of this section is to construct a screened hybrid functional using the meta-GGA

semilocal exchange hole and employing Hartree-Fock exchange in the SR along with LR

semilocal functional. The motivation of the present construction is the same as that is

proposed in the HSE06 functional but the meta-GGA level. To construct the present func-

tional, we use the semilcal exchange hole of Tao-Mo functional [35] and its underlying

construction which is used in the LR corrected functional as described in the previous

section. The present functional form includes both the DME based localized exchange

hole [35] and fourth-order gradient approximation [35]. To do so, we employ the slowly

varying fourth order gradient approximation through the uniform electron gas exchange

hole. The physical basis of the present construction will be described in the next section.

This method is a pathway to construct a screened hybrid functional in the meta-GGA level

for the condensed-matter systems which will be discussed in chapter 5.

4.3.1 Methods

We start with the general scheme for constructing the screened hybrid XC functional.

Using the HF exact exchange (EHF
x ) the hybrid functionals are defined as,

Ehybrid
xc = aEHF

x + (1− a)ESL
x + ESL

c , (4.24)

where ESL
x and ESL

c are the exchange and correlation energy functional in the semilocal

approximation respectively. Here, a controls the HF percentage in the above functional
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form. On the other hand, the screened hybrid functional based on the HSE06 functional

has the following general form,

Exc = aEHF−SR
x + (1− a)ESL−SR

x + ESL−LR
x + ESL

c (4.25)

which can also be written as,

Exc = aEHF−SR
x − aESL−SR

x + ESL
x + ESL

c . (4.26)

The Eq.(4.26) is obtained from Eq.(4.25), where we add the last two terms of Eq.(4.26)

to construct the semilocal XC functional. The SR semilocal part of the above functional

form is given by,

ESL−SR
x = −

∫
ρ(r)εunifx

[
wFDME−SR

x +
{

1− 8

3
Ã
(√

π erf(
1

2Ã
) + (2Ã− 4Ã3)e−

1
4Ã2

−3Ã+ 4Ã3
)}

(1− w)F TM−sc
x

]
d3r ,

(4.27)

where, FDME−SR
x is the exchange enhancement factor obtained from Eq.(4.13). In this

semilocal SR, we also include the fourth-order gradient approximation through the LDA

exchange hole of Eq.(4.11). However, F TM−sc
x of Eq.(4.27) is originally given in ref. [35]

having form,

F TM−sc
x =

[
1 + 10

{(10

81
+

50p

729

)
p+

146

2025
q̃2 −

(73q̃

405

)[3τw

5τ

]
(1− τw

τ

)}] 1
10
, (4.28)

where εunifx =
3kf
4π

is the exchange energy per electron in the homogeneous electron

gas approximation and the terms associated with the exchange enhancement factor are

f = [1 + 10(70y/27) + βy2]1/10, L = [3(λ2 − λ + 1/2)(τ − τunif − |∇ρ|2/72n) −

(τ − τunif ) + 7
18

(2λ − 1)2 |∇ρ|2
ρ

]/τunif ,M = (2λ − 1)2 p, with A = µ
2fkf

, kf = (3π2ρ)
1
3

(uniform Thomas-Fermi wave vector), τunif = 3
10
k2
fρ (uniform KE density), p = |∇ρ|2

(2kfρ)2

, y = (2λ − 1)2 p, Ã = µ
2kf

, q̃ = 3τ
2(3π2)2/3ρ5/3

− 9
20
− p

12
, τw = |∇ρ|2/8ρ and w =
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[(τw/τ)2 + 3(τw/τ)3]/[1 + (τw/τ)3]2 (weight factor between the DME exchange energy

and slowly varying density correction of TM functional). This completes the construction

of the SR exchange enhancement factor.

Having discussed the semilocal SR exchange energy functional, now we focus on the

correlation compatible with the newly constructed functional. For correlation part, the

TPSS correlation is used [84] correlation is used. Note that the TM correlation with the

present screened hybrid results to large error for the AE6. Now, regarding the parameter

µ, it is fixed to 0.33 bohr−1. Also, the mixing parameter, a = 0.10 is chosen for optimal

performance of the atomization energies. The λ and β values remains the same as sug-

gested in the case of TM functional [35], i.e., 0.6866 and 79.873. The present functional

named as DME-sc-TPSSc as it is based on the DME based exchange hole coupled with

slowly varying fourth-order gradient expansion (sc) and TPSS correlation.

4.3.2 Performance for atoms and molecules

The implementation of the DME-sc-TPSSc is done in the NWChem code [99] using the

existing implementation of the LC-TMLYP exchange and TPSS correlation. All calcula-

tions of DME-sc-TPSSc are done self-consistently in NWChem code. The results of the

DME-sc-TPSSc is also compared with the B3LYP, PBE0, TPSSh, and HSE06 functionals.

Among all these functionals, the B3LYP, PBE0, and TPSSh are the global hybrids based

on the B88, PBE, and TPSS semilocal exchange and compatible correlation for these ex-

change functionals. The HSE06 is a screened hybrid functional which uses the SR HF

exchange. For the benchmark calculation we used the same test set that was considered

for our previous calculation of the LC-TMLYP functional. The results are summarized in

Table 4.4.

To start our analysis we consider the atomization energies of the AE6 and G2/148

test sets. The tabulated results present in Table 4.4 indicates, as usual, the B3LYP gives

the smallest MAE both for the AE6 and G2 test set and it is not surprising because the

B3LYP functional is accurate for the atomization energies. However, DME-sc-TPSSc

is the second best functional for atomization energies benchmark with the MAE 4.008
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Table 4.4: Shown is the errors (in kcal/mol) as obtained from different methods.

B3LYP PBE0 TPSSh HSE06 DME-sc-TPSSc
atomization energy (kcal/mol)

AE6 MAE 2.7 5.8 6.3 6.7 5.7
G2/148 MAE 3.599 5.619 5.296 5.335 4.008

ionization potential (eV)
IP13 ME -0.075 -0.107 -0.085 0.108 -0.010

MAE 0.227 0.137 0.136 0.139 0.098

electron affinity (eV)
EA13 ME -0.061 0.065 0.065 -0.068 0.145

MAE 0.095 0.120 0.122 0.123 0.138

proton affinity (eV)
PA8 ME -0.012 -0.052 -0.122 0.077 -0.137

MAE 0.047 0.053 0.122 0.077 0.137

alkyl bond dissociation energies (kcal/mol)
ABDE12 ME 9.91 7.26 10.73 9.73 7.93

MAE 9.91 7.26 10.73 9.73 7.93

hydrocarbon chemistry (kcal/mol)
HC7 ME 15.93 -5.34 5.69 0.14 2.24

MAE 15.93 10.07 6.31 5.92 3.21

isomerization energies (kcal/mol)
ISOL6 ME 2.54 0.58 3.10 -1.12 2.42

MAE 2.54 1.44 3.10 1.42 2.42

thermochemistry of π systems (kcal/mol)
πTC13 ME -5.64 -5.80 -7.64 6.44 -7.93

MAE 5.77 5.89 7.82 6.54 8.17

barrier heights (kcal/mol)
BH76 ME 2.81 2.12 4.88 1.46 3.55

MAE 5.08 4.70 6.78 4.08 5.54

kcal/mol and 5.7 kcal/mol for the G2 and AE6 test set respectively. It is also noticeable

that for the AE6 test set, the DME-sc-TPSSc performs better than the HSE06.

Next, the functional performance is measured for the IP, EA and PA of small molecules.

We observe quite a good performance of the DME-sc-TPSSc for IP with smallest MAE
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Figure 4.6: Shown are the deviation of the energy of HSE06 and DME-sc-TPSSc (a) for
the fractional occupation number of C atom and (b) from the piece-wise linear extrapola-
tion.

of 0.098 eV. Whereas, B3LYP performs well for the EA13 and PA8 test set.

For ABDE12 test set the PBE0 shows the best performance with MAE 7.268 kcal/mol.

Next considering the thermochemistry of 7 hydrocarbons, the DME-sc-TPSSc outper-

forms other functionals with MAE 3.217 kcal/mol. For IsoL6 test set, the HSE06 achieves

smallest MAE. Whereas, the DME-sc-TPSSc performs better than TPSSh meta-GGA

functional. For systems with π bonds, the B3LYP achieves the smallest MAE with 5.776

kcal/mol.

As mentioned before, the accuracy of barrier heights are related to the self-interaction

of the molecules in their transition states. Therefore, functionals with least MESI perform

better for barrier heights. The hybrids and LR corrected hybrids show improved perfor-

mance in this regard because of less MESI error. Here, we observe that the HSE06 gives

the lowest MAE for the total 76 reaction barriers. The better performance of HSE06 than

DME-sc-TPSSc is because the HSE06 includes more SR HF exchange in its SR part than

DME-sc-TPSSc does.

Lastly, we focus on the performance of the HSE06 and DME-sc-TPSSc for the frac-

tional electron occupation number of C atom. This example has been considered in our

previous study of the LR corrected functional. In Fig. 4.6a, we have shown the deviation

of the two functionals from the exact piecewise straight line behavior. The HSE06 mixes

1/4 of the SR HF which is larger compared to the DME-sc-TPSSc SR HF mixing (10%),

that is the why HSE06 performs better. This difference becomes more evident from Fig.
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4.6b, where we plot in kcal/mol scale.

4.4 Conclusions

In the first part of this chapter, we investigate the performance of meta-GGA level hy-

brids LC-TMLYP for various MESI related problems of atoms and molecules, and thar-

mochemical accuracy. It has been shown that though the RS parameter of the LC-TMLYP

is tuned with the AE6 molecular atomization energies, yet performs quite better for the

IP, barrier heights, and MESI related problems. The interesting observation is that the

LC-TMLYP performs better than CAM-B3LYP in MESI related problems by keeping the

accuracy of the atomization energies. This is an interesting feature of the LC-TMLYP

because in most of the functionals both the atomization energies and MESI related prob-

lems cannot be achieved simultaneously. It is evident from the rCAM-B3LYP and QTP

functionals performance. The rCAM-B3LYP designed to reduce the MESI problem but

it worsens the thermochemical accuracy. The QTP functionals are also not accurate for

the atomization energies though those showing improvement in the MESI related prob-

lem. Strictly, speaking the LC-TMLYP gives a balanced description for both the atomiza-

tion energies and the MESI related problems which is quite an interesting features of the

present functional.

In the second part of the thesis, a screened meta-GGA hybrid functional (DME-sc-

TPSSc) is proposed using HF exchange in the the SR and semilocal functional in the LR.

The purpose of the construction is to use this scheme for the solid-state systems which

have been proposed in the next chapter. The comprehensive assessment and benchmark of

the present functional shows that the functional perform very promisingly.Especially, sev-

eral molecular test sets. It is also shown that the HSE06 performs slightly better compared

to the DME-sc-TPSSc in fractional charge prospective which is not surprising because the

HSE06 mixes 25% SR HF. The promising and interesting achievement of this construc-

tion is that it will be used further to develop a screened hybrid functional in meta-GGA

level for solid-state systems.



Chapter 5

Screened Meta-GGA Hybrid Functional

for Solid-State Materials

This chapter will extend the method to previous chapter to construct a meta-GGA screened

hybrid functional suitable for the solid-state materials. The benchmark calculations of

basic solid-state properties employing the constructed exchange-correlation functional is

thoroughly presented in this chapter. This chapter is based on the following research out-

comes

(i) Subrata Jana, Abhilash Patra and Prasanjit Samal, J. Chem. Phys. 149, 094105 (2018).

5.1 Introduction

In chapter 3, it is discussed that the semilocal XC functionals describe most of the struc-

tural and energetic properties of solids efficiently. It is observed that different levels of

semilocal approximations (L(S)DA, GGA, and meta-GGA functionals) have achieved

a high level of sophistication and establish its accuracy for the electronic structure of

solids. In spite of the overwhelming success, semilocal functionals struggle to predict

the bandgap of solids which is one of the basic property of solids. Exemplification of

the underestimation of the bandgap from semilocal functionals is described in chapter
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3, where the semilocal functionals predict only 50% of the experimental bandgap. As

sources of error, it is established that semilocal functionals do not contain the “derivative

discontinuity” which is an essential quantity and that plays determining role in the correct

prediction of the bandgaps [48, 144, 259–271]. Several resolutions and progress are made

in order to better the performance of the bandgap of solids such as the DFT + U [362],

the self-interaction correction method [144], the optimized effective potential (OEP) [60,

363–365], model potentials [65, 366–369], dynamical mean field theory (DMFT), DFT

+ DMFT [370, 371], GW approximations [372, 373] and the (screened-) hybrid func-

tional approximations [95, 96, 245–249, 305, 335, 374–381]. But, each method has re-

markable advantages and undesirable disadvantages. Among all these methods, an all-

purpose formalism that can be applied for both the structural, energetic and bandgap of

solids with less computational cost than accurate higher-order many-body techniques like

DMFT, DFT + DMFT, GW is the screened-hybrid functional formalism. The screened-

hybrid functionals designed using the short-range Hartree-Fock (HF) with the long-range

semilocal functionals that keeps all the good properties of the semilocal functionals for

solids and simultaneously improves the performance of the bandgap. Though the global

hybrids and long-range corrected hybrids improve the bandgap performance, yet both

are computationally more expensive than screened-hybrid functionals as proposed using

the short-range Hartree-Fock (HF) because those methods need numbers of plane-waves

to converge and long-range HF often causes a problem for metallic systems [248, 376].

Therefore, the screened-hybrid functionals can be recognized as a faster hybrid functional

approach for the solids.

As discussed in chapter 4, designing (screened-)range-separated (RS) hybrid func-

tionals requires the exchange hole which can be constructed is several ways [35, 95, 96,

314, 333, 382, 383]. Beyond the GGA exchange hole a meta-GGA exchange hole is

constructed using DME technique [35] and using that hole a long-range corrected and a

screened hybrid functional is also proposed in chapter 4. Taking motivation from those

constructed screened hybrid functionals, in this chapter, we focus on the construction of

an efficient screened meta-GGA hybrid functional for solids. In designing the present

screened RS hybrid functional, we utilize the exchange hole of local density approxima-
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tion to construct the long-range semilocal part. This is the possible conventional way

to utilize the TM functional for RS scheme without designing its reverse-engineered ex-

change hole. The details of the methodology will be provided in the next section. It is

noticed that this simple assumption actually performs efficiently in describing both the

lattice constants and bandgaps of solids. In this chapter, we design a screened range sepa-

rated hybrid functional in meta-GGA level and test the functional extensively in the plane

wave pseudopotential code for the solid-state lattice constants and bandgaps using the

projector-augmented-wave method.

5.2 Meta-GGA Screened Hybrid Functional for Solids

Lets start with the construction of the hybrid functional. In general, any hybrid density

functional can be constructed from DFA and HF exact exchange according to the follow-

ing scheme,

EDFAh
xc = αEHF

x + (1− α)EDFA
x + EDFA

c . (5.1)

Here, a fraction of HF exchange is mixed with the appropriate fraction of DFA, but no

fractional mixing scheme involved in the correlation part. Thus, in the exchange only

hybrid functional scheme the above equation becomes,

EDFAh
x = αEHF

x + (1− α)EDFA
x . (5.2)

Now, separating the Coulomb operator in as short and long-range parts [336, 337],

1

r
= wSR,µ

ee + wLR,µ
ee =

erfc(µ|r− r′|)
|r− r′|︸ ︷︷ ︸

SR

+
erf(µ|r− r′|)
|r− r′|︸ ︷︷ ︸

LR

, (5.3)

where µ is the range-separation parameter. Using this decomposition, the exchange-only

RS hybrid functional can be divided into long-range and short-range scheme utilizing

the exchange hole. Now, following the proposition made by Heyd-Scuseria-Ernzerhof

(HSE) [95, 96, 333], the range-separation scheme can be designed from the above hybrid
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functional by splitting the exchange energy functional into the short-range and long-range

part as,

EDFAh
xc (µ) = αESR−HF

x (µ) + (1− α)EDFA−SR
x (µ) + EDFA−LR

x (µ) + Ec . (5.4)

Alternatively, this can also be written as,

EDFAh
xc (µ) = αEHF−SR

x (µ)− αESL−SR
x (µ) + ESL

x + ESL
c . (5.5)

In the above equation, the last two parts added to the semilocal XC functional. The HF

exchange used in the short-range (HF-SR) part of the above equation is given by,

EHF−SR
x (µ) = −1

2

∑
kn,k′m

fknfk′m

∫ ∫
dr dr′

erfc(µ|r− r′|)
|r− r′|

Ψ∗kn(r)Ψ∗k′m(r′)Ψkn(r′)Ψk′m(r) ,

(5.6)

where {Ψkn(r)} and {fkn} are the single particle state or KS orbital.

The most difficult part of this construction is the semilocal short-range part. Con-

struction of semilocal short-range requires the exchange hole. The reverse-engineered ex-

change hole is used in the construction of the popular HSE06 functional. Beyond the GGA

functionals, several accurate meta-GGA level semilocal functionals are also proposed us-

ing the Kohn-Sham kinetic energy density (meta-GGA functionals) which establish their

accuracy for solid-state structural and energetic properties over GGA (see chapter 3).

However, not much development has been initiated in this direction of screened-meta-

GGA hybrid functionals for solids. Only, recently, the TPSS [84] exchange functional is

reverse-engineered to construct a meta-GGA screened hybrid functional [314]. More ac-

curate semilocal functionals in the meta-GGA theory are developed [35] which is relevant

in our present construction. Concerning the ESL
x , it is given by TM semilocal exchange

functional having following semilocal form,

ESL
x = ETM

x = −
∫

dr ρ(r)εunifx F TM
x = −

∫
dr ρ(r)εSLx . (5.7)
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The semilocal short-range part is constructed by utilizing the LDA exchange hole. Using

the LDA exchange hole the semilocal short-range part of the exchange energy functional

becomes,

ESL−SR
x (µ) = −

∫
dr ρ(r)εunifx

{
1− 8

3
A
(√

π erf(
1

2A
) + (2A− 4A3)e−

1
4A2 − 3A+ 4A3

)}
,

(5.8)

where εunifx =
3kf
4π

is the exchange energy density in the homogeneous electron gas limit

and A = µ
2kf

is involved with the RS parameter. Through A, the screening parameter

includes the semilocal short-range part. Though the other ways of including the semilocal

exchange hole are proposed in chapter 4. But, in the present situation, it is found that the

scheme does not perform suitably for the solid-state lattice constants and bandgap per-

formance simultaneously. The range-separation parameter µ involving of this functional

will be fixed later in this chapter.

Now, regarding the XC potential, it is combinations of semilocal XC and HF exchange

potential. In DFT, the RS hybrid functionals are implemented in the generalized Kohn-

Sham (gKS) formalism which contains both density and orbital information. The general

expression for the potential of the exchange energy functional on Eq.(5.5) is given by,

vxc(r, r
′) = αvHF−SRx (r, r′;µ) + (1− α)vSL−SRx (µ) + vSL−LRx (µ) + vSLc . (5.9)

Alternatively, this can also be written as,

vxc(r, r
′) = αvHF−SRx (r, r′;µ)− αvSL−SRx (µ) + vSLx + vSLc , (5.10)

where the semilocal short-range (SL-SR) and semilocal long-range (SL-LR) parts are

added to the semilocal exchange-correlation functional which in our present case is the

TM functional. Here, the parameter, α controls the amount of HF exchange mixing with

the semilocal exchange functional and µ is the range separated parameter. The α = 0
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value corresponds to pure semilocal formalism. Unlike the pure semilocal functional, the

potential obtained from Eq.(5.10) is now non-local.Here, the RS parameter µ is included

in the HF exact exchange through the following equation,

vHF−SRx (r, r′;µ) = −
∑
k′m

fk′mΨk′m(r)
erfc(µ|r− r′|)
|r− r′|

Ψ∗k′m(r′) , (5.11)

where Ψis are single-particle electronic orbitals or Bloch states. This is obtained from

Eq.(5.6). Except screened HF exchange, other unknown potentials of Eq.(5.10) are the

screened potential (vSL−SRx (µ)) and the semilocal potential (vSLx ). In meta-GGA level

theory (implemented in the gKS formalism) the exchange potential is obtained not only

by taking the derivative with respect of density and gradient of density of the exchange

energy functional but also the partial derivative to KS kinetic energy density is also re-

quired. Therefore, in the gKS formalism, the general form of the semilocal exchange

potential is expressed as,

vSL(−SR)
x (r)Ψi(r) =

[∂(ρ(r)ε
SL(−SR)
x (r))

∂ρ(r)
−∇∂(ρ(r)ε

SL(−SR)
x (r))

∂∇ρ(r)

]
︸ ︷︷ ︸

vGGAx

Ψi(r)

−1

2
∇
(∂(ρε

SL(−SR)
x (r))

∂τ(r)

)
∇Ψi(r)−

1

2

∂(ρ(r)ε
SL(−SR)
x (r))

∂τ(r)
~∇2Ψi(r)︸ ︷︷ ︸

vτx

,

(5.12)

where εSL(−SR)
x is the semilocal SR exchange energy density.

For correlation energy, the one-electron self-interaction free TPSS [84] and its modi-

fied version for TM exchange are used for the present study. It is shown in chapter 3, that

the TPSS and TM correlation are giving different results for various properties of solids.

Therefore, utilizing the present range-separation scheme for exchange with the TPSS and

TM correlations leads to two screened RS functional which are named as: (i) SRSH-

TM-TPSSc (screened RS hybrid with the TM exchange plus TPSS correlation) and (ii)

SRSH-TM (screened RS hybrid with the TM exchange plus modified TPSS correlation).
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5.3 Performance in Bulk Solids

5.3.1 Computational details

The newly constructed functional is implemented and tested in VASP. The implementation

of the present functional is same as that is done for the TM functional as described in

chapter 3.

Now, regarding the value of the range-separation parameter (µ) and mixing parameter

(α) for the present functional we fix both the µ and α value as the same as used in the

HSE06 functional i.e. α = 0.25 and µ = 0.11 bohr−1. We found that these two val-

ues yield quite a well balanced description for both the lattice constants and bandgaps of

different solids. For comparison we consider the widely used HSE06 functional. Unless

otherwise stated, the default values µ and α is the same as that used in VASP recom-

mended HSE06 calculations.

5.3.2 Lattice constants

To start with the functional performance, we first consider the lattice constant of the solids.

This is one of the fundamental test that one should perform to check the robustness of

the XC functional. For the benchmark calculations of SRSH-TM-TPSSc and SRSH-

TM, we employ the two functionals constructed above for 47 crystalline structures. The

calculation of the present functional is performed with Γ− centered Monkhorst-Pack like

10×10×10 k grids.

The performance of HSE06, SRSH-TM-TPSSc, and SRSH-TM are summarized in

Table 5.1 and relative error is plotted in Fig. 5.1. Regarding the performance of HSE06

functional, it shows improved performance over corresponding semilocal functional PBE

by mixing the fraction of HF exchange. It is well known that the PBE functional has

an inherent tendency to overestimate the lattice constants which also streams into the

performance of the HSE06 functional performance. However, an improved version of the

HSE06 is proposed based on the PBEsol which is known as the HSEsol functional [249].
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Table 5.1: Shown is the calculated lattice parameters a0 (in Å) of different solids using
different approximations. Reference values are taken from ref. [179, 245]. In last two
rows we also show the error statistics.

Solids HSE06 % SRSH-TM-TPSSc % SRSH-TM % Expt.

C (A2) 3.548 -0.53 3.550 -0.48 3.545 -0.62 3.567
Si (A2) 5.432 0.04 5.420 -0.18 5.408 -0.40 5.430
Ge (A2) 5.676 0.42 5.653 0.02 5.636 -0.28 5.652
SiC (B3) 4.346 -0.27 4.338 -0.46 4.332 -0.59 4.358
BN (B3) 3.597 -0.28 3.603 -0.11 3.597 -0.28 3.607
BP (B3) 4.519 -0.42 4.52 -0.40 4.509 -0.64 4.538

BAs (B3) 4.770 -0.15 4.766 -0.23 4.754 -0.48 4.777
BSb (B3) 5.216 n/a 5.202 n/a 5.188 n/a n/a
AlP (B3) 5.470 0.18 5.461 0..02 5.448 -0.22 5.460

AlAs (B3) 5.676 0.32 5.659 0.02 5.646 -0.21 5.658
AlSb (B3) 6.151 0.24 6.130 -0.10 6.114 -0.36 6.136
β−GaN (B3) 4.521 -0.22 4.526 -0.11 4.516 -0.33 4.531

GaP (B3) 5.464 0.29 5.463 0.27 5.446 -0.03 5.448
GaAs (B3) 5.667 0.34 5.653 0.09 5.635 -0.23 5.648
GaSb (B3) 6.099 0.05 6.075 -0.34 6.055 -0.67 6.096
InP (B3) 5.921 0.94 5.923 0.68 5.903 0.63 5.866

InAs (B3) 6.108 0.89 6.095 0.68 6.075 0.34 6.054
InSb (B3) 6.516 0.57 6.496 0.26 6.473 -0.09 6.479
ZnS (B3) 5.419 0.18 5.436 0.50 5.412 0.05 5.409
ZnSe (B3) 5.693 0.44 5.699 0.55 5.676 0.14 5.668
ZnTe (B3) 6.135 0.75 6.129 0.65 6.099 0.16 6.089
CdS (B3) 5.880 1.06 5.924 1.82 5.893 1.29 5.818
CdSe (B3) 6.133 1.34 6.164 1.85 6.133 1.34 6.052
CdTe (B3) 6.543 0.97 6.568 1.36 6.533 0.81 6.480
MgO (B1) 4.197 -0.24 4.195 -0.28 4.187 -0.47 4.207
MgS (B3) 5.652 8.65 5.647 8.55 5.632 8.27 5.622
MgSe (B1) 5.454 1.00 5.462 1.15 5.411 0.76 5.400
MgTe (B3) 6.452 0.50 6.446 0.40 6.424 0.06 6.420
CaS (B1) 5.698 0.16 5.722 0.58 5.699 0.17 5.689
CaSe (B1) 5.938 0.37 5.966 0.84 5.939 0.38 5.916
CaTe (B1) 6.369 0.33 6.404 0.88 6.369 0.33 6.348
SrS (B1) 6.034 0.73 6.071 1.35 6.046 0.93 5.990
SrSe (B1) 6.268 0.54 6.302 1.09 6.275 0.66 6.234
SrTe (B1) 6.684 0.66 6.721 1.22 6.688 0.72 6.640
BaS (B1) 6.432 0.67 6.487 1.53 6.454 1.02 6.389
BaSe (B1) 6.656 0.92 6.707 1.70 6.673 1.18 6.595
BaTe (B1) 7.057 0.71 7.115 1.54 7.075 0.97 7.007
Ag (A1) 4.146 1.89 4.151 2.02 4.135 1.62 4.069
Al (A1) 4.020 -0.30 3.980 -1.29 3.979 -1.31 4.032
Cu (A1) 3.637 0.94 3.573 -0.83 3.573 -0.83 3.603
Pd (A1) 3.904 0.59 3.923 1.08 3.909 0.72 3.881
K (A3) 5.32 1.82 5.297 1.38 5.273 0.92 5.225
Li (A3) 3.466 -0.32 3.439 -1.09 3.440 -1.06 3.477

LiCl (B1) 5.116 0.19 5.100 -0.12 5.076 -0.59 5.106
LiF (B1) 4.015 0.12 3.973 -0.92 3.968 -1.05 4.010

NaCl (B1) 5.613 0.32 5.556 -0.70 5.540 -0.98 5.595
NaF (B1) 4.576 -0.71 4.513 -2.08 4.507 -2.21 4.609

ME (Å) 0.024 − 0.024 − 0.004 − −
MAE (Å) 0.030 − 0.042 − 0.032 − −
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Figure 5.1: Percentage error in lattice constants of all considered solids of Table 5.1.

Overall, we obtain MAE 0.030Å from the HSE06 functional.

Now, regarding the performance of newly constructed SRSH-TM-TPSSc and SRSH-

TM, the SRSH-TM-TPSSc overestimates the lattice constants of most of the solids com-

pared to that obtained with the SRSH-TM functional. This is due to the use of the TPSS

correlation. The TM correlation satisfies more exact constraints than TPSS correlation

when combined with the TM exchange. The same trend is also following in the perfor-

mance of SRSH-TM-TPSSc and SRSH-TM functionals. It is observed that HF exchange

with TM-TPSS functional overestimates the lattice constants more and gives the MAE

of 0.042 Å. However, the screened hybrid functional proposed using the TM correlation

with HF exchange improves its performance over SRSH-TM-TPSSc.

5.3.3 Bandgaps

The accurate prediction of the bandgap is achievable within the hybrid density functional

scheme due to the cancellation of the delocalization and localization errors arising from

semilocal and HF exchange. The screened hybrid functional keep all the good properties

of its base semilocal functional intact and additionally, improve the bandgap performance

corresponding to its semilocal nature. As the present scheme is on the hybrid interface.

Therefore, improvement in the performance of SRSH-TM-TPSSc and SRSH-TM is ob-
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served than its semilocal TMTPSS and TM functionals (for TMTPSS and TM functional

results see chapter 3). Note that the meta-GGA functionals implemented in framework

of gKS incorporate some amount of the derivative discontinuity. Therefore, within meta-

GGA screened hybrids the improvement in bandgap comes from both the semilocal for-

malism and mixing of HF exchange.

Table 5.2: Band gaps using different functionals calculated at the experimental lattice
constants. The experimental references are taken from ref. [369].

Solids Geometry(Å) HSE06 % SRSH-TM-TPSSc % SRSH-TM % Expt.

MgO(A1) 4.207 6.49 -17.11 6.84 -12.64 6.71 -14.30 7.83
BaS (A1) 6.389 3.06 -21.13 3.16 -18.55 3.09 -20.36 3.88
BaSe (A1) 6.595 2.76 -22.90 2.91 -18.99 2.83 -20.94 3.58
BaTe (A1) 7.007 2.27 -26.29 2.45 -20.45 2.38 -22.72 3.08
ScN (A1) 4.500 0.86 -4.44 1.07 18.88 1.02 13.33 0.9
AgCl (A1) 5.546 2.43 -25.23 2.73 -16.00 2.66 -18.15 3.25
AgBr (A1) 5.772 2.14 -21.03 2.59 -4.42 2.50 -7.74 2.71

C (A2) 3.567 5.29 -3.81 5.45 -0.90 5.36 -2.54 5.5
Si (A2) 5.430 1.17 0.00 1.41 20.51 1.30 11.11 1.17
Ge (A2) 5.430 0.82 10.81 1.04 40.54 1.01 36.48 0.74
SiC (A3) 4.358 2.35 -2.89 2.53 4.54 2.44 0.82 2.42
BN (A3) 3.616 5.90 -7.23 6.19 -2.67 6.07 -4.55 6.36
BP (A3) 4.538 2.01 -4.76 2.19 4.28 2.10 0.00 2.1

BAs (A3) 4.777 1.87 28.08 1.98 35.61 1.91 30.82 1.46
AlN (A3) 4.342 4.72 -3.67 4.95 1.02 4.84 -1.22 4.9
AlP (A3) 5.463 2.34 -6.40 2.62 4.80 2.51 0.40 2.5

AlAs (A3) 5.661 2.15 -4.03 2.40 7.62 2.29 2.69 2.23
AlSb (A3) 6.136 1.81 6.50 1.99 17.75 1.90 12.42 1.69
GaN (A3) 3.180 3.17 -3.35 3.18 -3.04 3.13 -4.57 3.28
GaP (A3) 5.451 2.29 -2.55 2.40 2.12 2.33 -0.85 2.35

GaAs (A3) 5.648 1.44 -5.26 1.88 23.68 1.83 20.39 1.52
InP (A3) 5.869 1.52 7.04 1.82 28.16 1.77 24.64 1.42

InAs (A3) 6.058 0.53 26.19 0.92 119.04 0.88 109.52 0.42
InSb (A3) 6.479 0.53 120.83 0.99 312.50 0.96 300.00 0.24
MgTe (A3) 6.420 3.38 -6.11 3.80 5.55 3.70 2.77 3.6
CuCl (A3) 5.501 2.28 -32.94 2.37 -30.29 2.31 -32.05 3.4
CuBr (A3) 5.820 2.08 -32.24 2.31 -24.75 2.24 -27.03 3.07
CuI (A3) 6.063 2.59 -16.98 2.91 -6.73 2.83 -9.29 3.12
ZnS (A3) 5.409 3.32 -13.54 3.61 -5.98 3.52 -8.33 3.84
ZnSe (A3) 5.668 2.41 -14.53 2.82 0.00 2.74 -2.83 2.82
AgI (A3) 6.499 2.57 -11.68 2.84 -2.40 2.78 -4.46 2.91
CdS (A3) 5.818 2.19 -12.40 2.45 -2.40 2.37 -5.20 2.5
CdSe (A3) 6.052 1.59 -14.05 1.96 5.94 1.89 2.16 1.85
CdTe (A3) 6.480 1.55 -3.72 2.01 24.84 1.94 20.49 1.61

ME (eV) -0.306 − -0.044 − -0.121 − −
MAE (eV) 0.371 − 0.329 − 0.331 − −

The benchmark calculations of the screened hybrid functionals for the bandgap as-

sessment are performed with the same set of semiconductors as it is done for the TM

functional in chapter 3. Our present test set consists of 34 semiconductors and the per-

formance of all the screened functionals are done self-consistently.In Table 5.2 we sum-

marized all the functionals performance along with the experimental bandgaps values.
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Figure 5.2: Experimental versus calculated bandgaps of all the solids using different func-
tionals presented in Table 5.2.

The experimemtal versus calculated band gaps are also plotted in Fig. 5.2. From Ta-

ble 5.2, we observe that all the screened hybrid functionals perform better compared to its

base semilocal functional due to the inclusion of HF exchange. It is well known that the

screened hybrids which mix HF exchange, improve the bandgap of of narrow and interme-

diate solids (up to ∼ 7eV). For large bandgap, those functionals show underestimation.

This tendency is observed in the performance of the HSE06 functional. Regarding the

performance of meta-GGA screened RS hybrids: SRSH-TM-TPSSc and SRSH-TM, it is

observed that the bandgap is more enhanced than HSE06 value for all the materials which

is not surprising because, in the semilocal level, meta-GGA improve the bandgap over

GGA. It is observed that screened meta-GGA hybrids: SRSH-TM-TPSSc and SRSH-TM

are showing improvement in many cases, particularly for which HSE06 shows underesti-

mation in the bandgaps.

Regarding the overall comparison of all the considered functionals, HSE06 and SRSH-

TM perform quite well. It is observed that for ScN, Si, Ge, SiC, GaP, InP, InAs, InSb, and

CdTe solids the HSE06 performs quite accurately. The bandgaps obtained from SRSH-

TM are also matching very closely with that of HSE06. However, we observe overestima-

tion in the performance of bandgaps of the SRSH-TM-TPSSc for these solids. Overall,
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the performance of the SRSH-TM is quite satisfactory over HSE06 for the bandgaps of

several semiconductors. Interestingly, we also observe that a few bandgaps reported using

TPSS based screened hybrid functionals in reference [314] is also comparable with the

bandgap of SRSH-TM in Table 5.2 which is very motivating because the present func-

tional form is very simple corresponding to the proposition made in [314].

5.3.4 Atomization energies of AE6 molecules

Though the SRSH-TM functional shows very qualitative performance yet question re-

mains on its performance in describing the molecular atomization energies. It is well

known that for molecular properties the HSE06 performs well. To estimate the functional

performance, we consider the atomization energies of the AE6 tests. In VASP code all

molecular calculations are performed 15 × 15 × 15 simulation box and 1 × 1 × 1 Γ−

centered k point. It is noteworthy to mention that the aspherical corrections to the elec-

trostatic energy contribution are properly taken into account through the keyword LASPH

=.TRUE.

The results of the atomization energies of the AE6 molecules for the hybrids SRSH-

TM, HSE06 together with LDA, GGA (PBE, PBEsol) and meta-GGA (TPSS, TMTPSS,

and TM) semilocal functionals are summarized in Table 5.3. From the results, it is ob-

vious that both the SRSH-TM and SRSH-TM-TPSSc functionals fail badly in this case.

The lowest MAE is obtained with HSE06. Though average performance is observed with

SRSH-TM, the SRSH-TM-TPSSc functional shows massive overestimation. The SRSH-

TM functional is is quite good in predicting the atomization energies of SiH4, S2, C3H4

and C4H4, but shows underestimation the atomization energies for SiO and C2H2O2. The

lack of quality performance from these functionals can be explained from the view point

of its construction. This is because here we utilize only the LDA exchange hole to con-

struct the functional instead of full reverse-engineered exchange hole.
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5.3.5 Conclusions

In this chapter, screened meta-GGA hybrid functionals (SRSH-TM-TPSSc and SRSH-

TM) are proposed. The performance of both the functionals are tested for solid-state

the lattice constants and bandgaps. The results are compared with the popular GGA

functional HSE06. The results obtained from SRSH-TM-TPSSc and SRSH-TM is found

to be very interesting.

From the perspective of lattice constants, the overall performance of SRSH-TM is

quite impressive. It has been observed that the HSE06 shows bit overestimation in lattice

constants which is modified by the present screened meta-GGA functional. Also, the

SRSH-TM performs better than SRSH-TM-TPSSc for all properties. This is because of

the TM correlation which satisfies more exact constraints than SRSH-TM-TPSSc.

Concerning the construction point of view, the functional form is very simple. Only

the LDA based exchange hole is employed in the short-range of the semilocal exchange

together with HF short-range exchange. The performance of SRSH-TM for lattice con-

stants and bandgaps indicates that it could be a good competitor of HSE06. Especially,

we found that the HSE06 has the tendency to underestimate the bandgaps which get im-

proved by the meta-GGA level screened functionals. Though in a few cases SRSH-TM

overestimates the bandgap more compare to experimental values, yet overall performance

of SRSH-TM is quite well.

The present screened hybrid functional based on TM semilocal functional keeps all

the good properties of the TM functional intact and additionally, it improves the perfor-

mance of TM for bandgap of solids. In between the two meta-GGA screen functionals,

the SRSH-TM performs in a more balanced way than SRSH-TM-TPSSc for both lattice

constants and bandgaps.

Lastly, we conclude, although the atomization energies are obtained from both the

functionals are not so impressive but still it can be considered as a good meta-GGA

screened hybrid functional for solids. The main advantage of the present SRSH-TM func-

tional is that it mixes HF exchange which enables the TM functional to perform in a more

satisfactory way for the solid-state bandgaps.



Chapter 6

Studies of Two-Dimensional Quantum

Systems

In this chapter, we study the two-dimensional quantum dot systems by constructing the

meta-GGA level exchange functional in low-dimension. The behavior of the different

meta-GGA ingredients is also discussed for a model two dimensional system. This chap-

ter is based on the following research outcomes

(i) Subrata Jana and Prasanjit Samal, J. Phys. Chem. A 121, 4804 (2017).

(ii) Subrata Jana, Abhilash Patra and Prasanjit Samal, Physica E 97, 268-276 (2018).

(iii) Subrata Jana and Prasanjit Samal, J. Chem. Phys. 148, 024111 (2018).

6.1 Introduction

So far, we have applied the density functional formalism for the electronic structure cal-

culations in three-dimensional bulk systems. A wide range of density functional approx-

imations with varying capabilities is developed and applied to accurately describe vari-

ous phenomena in three dimensions (3D). This is shown elaborately in previous chapters.

However, nowadays the theoretical aspects of the cutting edge research in low dimensions

materials such as quantum dots, and quantum Hall systems are also gained momentum and
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keenly attracted the attention [384, 385]. Going from 3D to 2D is a problem related to the

dimensional crossover because in all these systems the motion of electrons is restricted in

one direction. The generalized-gradient approximations (GGA) of exchange-correlation

(XC) functionals as developed for 3D diverge when applied to (quasi-)2D to strong 2D

limit [386, 387]. However, meta-GGA functionals and exact exchange show promising

nature for (quasi-)2D systems [170, 386]. It is also shown in reference [386] that the ex-

change hole based on semilocal functionals also shows divergence nature at the strict 2D

limit. While the behavior of the exact exchange remains finite. However, the problem of

dimensional crossover can also be solved by developing GGA and meta-GGA functionals

that obey (quasi-)2D limit when applied to 2D systems [388, 389].

The paradigm model system to understand the 2D phenomena is the two-dimensional

electron gas (2DEG). From the limitations and promising nature of GGA, meta-GGA, and

the exact exchange functionals for (quasi-)2D systems, it is clearly evident that one needs

to construct the 2D functionals for describing the 2DEG. However, several many-electron

theories are already developed to understand and predict the basic phenomena related to

the 2DEG. The obvious first step towards such an attempt is the Hartree-Fock theory. To

reduce the computational cost and include the correlation effect, density functional theory

with local and semilocal approximations of exchange and correlation are also developed

during the last decade or so on [39–41, 390–408].

The search for promising as well as accurate semilocal XC functionals to describe the

systems based on two-dimensional homogeneous electron gas (2D-HEG) is a challenging

task. Unlike 3D, there is not much development initiated in this direction. However, the

attempt towards the development of XC functionals for such systems is parallel to that in

3D. The lowest rung of the 2D XC functional is the 2D local density approximation (2D-

LDA) [390] which is developed based on 2D-HEG. One rung higher to the 2D-LDA, i.e.,

2D generalized gradient approximations (2D-GGA) [395] are also developed. The state

of art of this chapter is to climb higher rung of the 2D-GGA by exploring the behavior of

KS-KE density and using it to construct a non-empirical meta-GGA level functional. We

will begin this chapter discussing the behavior of the KS-KE for a model 2D system (2D

quantum harmonic oscillator). Then we will apply the constructed local and semilocal
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functionals on various quantum dots systems to assessed and validate our formalism.

Based on the knowledge of the construction of the KS-KE, in this chapter we also

propose a meta-GGA semilocal functional using the density matrix expansion technique.

Assessment of the proposed functional for model systems showing its remarkable accu-

racy over previous proposed LDA and GGA based semilocal functionals.

6.2 Formal Properties of 2D Functionals

We start by discussing the formal exact constraint as applied for the functional develop-

ment in 2D. This is necessary as it is used further to develop the semilocal functional in

2D. However, like the 3D exchange functional, all the properties related to the 2DEG have

a 3D analog.

6.2.1 Uniform coordinate scaling

Wavefunction : For a coordinate scaling parameter γ (> 0), the 2D wavefunction scaled

uniformly as,

Ψγ(r1, ...rN) = γNΨγ(γr1, ...γrN) , (6.1)

where both the scaled and unscaled Ψ satisfy the normalization condition i.e.,

〈Ψγ|Ψγ〉 = 〈Ψ|Ψ〉 = 1 . (6.2)

Density: The density corresponding to the scaled wavefunction becomes,

ργ(r) = γ2ρ(γr) , (6.3)

which satisfies the electronic number conserving criteria

∫
ργ(r) d

2r =

∫
ρ(γr) d2(γr) = N , (6.4)
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where γ > 1 resulting to higher density, whereas, γ < 1 for smaller density.

Hartree energy: In 2D, the Hartree energy is given by

EH =
1

2

∫
d2(r)

∫
d2(r′)

ρ(r)ρ(r′)

|r− r′|
. (6.5)

Upon applying scaling relation it reduces to

EH = γ
1

2

∫
d2(γr)

∫
d2(γr′)

ρ(γr)ρ(γr′)

|γr− γr′|
,

= γEH [ρ] (6.6)

Kinetic energy: Because of the involvement of
∑

i=1,2
d2

dx2i
, the scaling relation of the

expectation value of kinetic energy operator is obtained in a straightforward manner as,

〈Ψγ|T̂ |Ψγ〉 = γ2〈Ψ|T̂ |Ψ〉 . (6.7)

Following this, one can also obtain the scaling relation of the non-interaction or KS kinetic

energy. The scaling relation of the KS kinetic energy becomes,

Ts[ργ] = γ2Ts[ρ] . (6.8)

Exchange energy: The scaling relation of exchange energy functional in 2D can be

derived from the constraint search formalism. This is analogous to the 3D constraint

search counterpart. The exchange energy functional in constraint search formalism is

written as,

Ex[ρ] = 〈Φmin
ρ |V̂ee|Φmin

ρ 〉 − EH [ρ] . (6.9)

Now, under uniform density scaling the exchange energy becomes,

Ex[ργ] = 〈Φmin
ργ |V̂ee|Φ

min
ργ 〉 − EH [ργ] . (6.10)
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Again, upon applying the scaling relation of EH the scaling relation of exchange energy

is obtained as,

Ex[ργ] = γEx[ρ]. (6.11)

Correlation energy: Analogous to the 3D, the correlation energy in 2D does not

follow any simple scaling rule.

6.2.2 Spin scaling relation

The spin scaling relations enable one to convert a density functional into spin-density

functional. In principle, one has to develop only the spin-unpolarized functional. Us-

ing the spin scaling relation it can be easily generalized to spin-polarization form. It is

noteworthy to mention that the spin scaling relation in 2D and 3D are equivalent.

To express the spin scaling relation of different energy functional, we start with the

KS kinetic energy. Expressing the KS KE as the sum of the spin-up and spin-down con-

tributions, we obtain:

Ts[ρ↓, ρ↑] = Ts[ρ↑, 0] + Ts[0, ρ↓, 0]. (6.12)

For spin-unpolarized system it becomes,

Ts[ρ] = Ts[ρ/2, 0] + Ts[0, ρ/2] = 2Ts[ρ/2, 0] , (6.13)

where ρ = ρ↑ + ρ↓. The spin-polarization form of the above equation can be easily

obtained upon using the spin-scaling relation of the density i.e., ρ = 2ρ↑ and ρ = 2ρ↓.

Applying spin-scaling relation, the KS kinetic energy becomes,

Ts[2ρ↑] = 2Ts[ρ↑, 0]

Ts[2ρ↓] = 2Ts[0, ρ↓] , (6.14)

which upon using Eq.(6.12) becomes,

Ts[ρ↓, ρ↑] =
1

2
Ts[2ρ↑] +

1

2
Ts[2ρ↓] . (6.15)
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Similarly, one can obtain the spin-scaling relation for the exchange energy functional as,

Ex[ρ↓, ρ↑] =
1

2
Ex[2ρ↑] +

1

2
Ex[2ρ↓] . (6.16)

Regarding the correlation energy functional, it comes from the combination of parallel and

anti-parallel spin contributions. Therefore, no simple spin scaling relation is applicable

for correlation.

6.2.3 Other miscellaneous properties

Exchange energy for one and two electron systems: For the one-electron systems, the

exchange and correlation energies become,

Ex[ρ] = −U [ρ]

Ec[ρ] = 0 . (6.17)

For two electron systems,

Ex[ρ] = −1

2
U [ρ] . (6.18)

Exact conditions on XC hole: The XC hole becomes an important concept in the de-

velopment of functionals in 2D. The XC energy is nothing but the electrostatic interaction

between the electron located at ~r and the XC hole at ~r + ~u surrounding it. Just like 3D,

the XC hole obeys important normalization condition:
∫
ρxc(~r, ~r + ~u) d2u = −1. The

exchange and correlation hole in 2D obeys the same rule as 3D. The exact properties of

the XC hole in 2D are discussed in detail in this chapter. Another important feature of

the exchange hole in the exact small u expansion, which will be discussed later in this

chapter.
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6.3 Development of GGA Functionals in 2D

We start with the density functional ground state energy of the quantum mechanical many-

particle system in 2D

E[ρ] = Ts[ρ] + EH [ρ] + Exc[ρ] +

∫
v(r)ρ(r)d2r , (6.19)

where all the energy notations have their usual meaning. Similar to the 3D, in this case

also, The XC energy functional (Exc) can be decomposed as the exchange and correlation

parts such that Exc[ρ] = Ex[ρ]+Ec[ρ]. This is because the exchange and correlation obey

different properties and scaling rules. However, several approximations for the exchange

energy functional exists for two-dimensional system. The most promising one is the

exchange energy functional as obtained from the Taylor series expansion of the exchange

hole. In this section, we discuss the details of the gradient approximations for exchange

derived from the Taylor series expansion of the exchange hole. Further, this technique

will be used to construct the modified GGA for 2D.

Similar to the 3D, in 2D case also the spin-unpolarized exchange energy functional

in terms of the exchange hole is defined as,

Ex[ρ] =
1

2

∫
d2r

∫
d2u

ρ(r)ρx(r, r + u)

u
. (6.20)

The exchange hole appearing in Eq.(6.20) is associated with the 1st order reduced density

matrix,

ρx(r, r + u) = −|Γ (r, r + u)|2

2ρ(r)
, (6.21)

where Γ (r, r + u) = 2
∑occ

i ψ∗i (r)ψi(r + u), and ψi are the occupied KS orbitals. The

exchange hole obeys two important properties: (i) the normalization sum rule
∫
ρx(r, r+

u) d2u = −1 and (ii) the negativity constraint ρx(r, r + u) ≤ 0. In 2D, the exchange

energy Ex involves the cylindrical average of the exchange hole 〈ρx(r, r + u)〉 over the
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direction of u, i.e.

〈ρx(r, r + u)〉 =

∫
dΩu

2π
ρx(r, r + u) . (6.22)

Upon using the spin-scaling relation exchange energy becomes,

Ex[ρ↑, ρ↓] =
1

2
Ex[2ρ↑] +

1

2
Ex[2ρ↓] . (6.23)

From the discussion above it is clear that knowing the cylindrical averaged exchange

hole one can construct the exchange energy functional. Regarding the GGA for 2D, it

can be constructed in several ways: (i) using the Taylor series expansion of exchange

hole or (ii) using the asymptotic properties related to the exchange potential or exchange

energy or (iii) by imposing relevant physical constraints. The 2D GGA proposed by

Pittalis et.al. [395] and Jana et. al. [41] is obtained using the small and large-gradient

expansions of the exchange hole. However, the GGA exchange functional as developed

in the reference [41, 395] is obtained by utilizing the asymptotic properties related to the

exchange potential or exchange energy.

6.3.1 Taylor expansion of exchange hole

Pittalis et. al. [395] proposed the first ever 2D GGA functional by extending the idea

of Becke’s construction. In their construction, the spin-polarization form the exchange

energy functional (Eq.(6.20)) is written as,

Ex[ρσ] = −π
∑
σ=↑,↓

∫
d2rρσ(r)

∫
d2u〈ρx,σ(r, r + u)〉 . (6.24)

Now, the Taylor expansion of 〈ρx,σ(r, r + u)〉 up to the second order of u i.e., term upto

u2 gives

〈ρx,σ(r, r + u)〉 = ρσ(r) +
1

4

[
∇2ρσ(r)− 2τσ(r) +

1

2

|∇ρσ(r)|2

ρσ
+ 2

~j2
p,σ(r)

ρσ(r)

]
u2 + . . . ,

(6.25)
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where, τ =
∑occ

i |~∇ψi,σ|2 and ~jp,σ are the KS kinetic energy density and paramagnetic

current density respectively. However, this model failed to achieve the homogeneous

electron gas limit of the exchange hole and can not be applied directly to the exchange

energy expressing. To use this expansion to construct the exchange energy functional,

Pittalis et. al. [395] made the same argument as Becke’s in 3D. They consider that the 2D

homogeneous electron gas (2D-HEG) is a good reference system to model the exchange

hole in the small density-gradient limit (SGL). Incorporating the SGL limit, the exchange

hole becomes,

〈ρx,σ(r, r+u)〉 =

 [1 + aσ(r)u2 + bσ(r)u4 + . . .] 〈ρ2DHEG
x,σ (r, r + u)〉, if kF,σu < z

〈ρ2DHEG
x,σ (r, r + u)〉 , if kF,σu ≥ z .

(6.26)

where 〈ρ2DHEG
x,σ (r, r + u)〉 =

4J2
1 (kF,σu)

k2F,σu
2 ρσ(r) (J1 is the first order Bessel function and

kF = (4πρσ)
1
2 be the Thomas-Fermi wave-vector in 2D) is the exchange-hole functional

in 2D-HEG limit and z is the first root of the first order Bessel function J1 which needs to

be evaluated numerically. Now, keeping the terms in the polynomial of Eq.(6.26) up to u4

and comparing it with the Taylor expanded cylindrical averaged exchange hole expression

of Eq.(6.25), the coefficients aσ(r) and bσ(r) is obtained as,

aσ(r) =
1

4ρσ

[2

3
∇2ρσ +

1

2

|~∇ρσ|2

ρσ

]
. (6.27)

The coefficient b is determined upon using the normalization sum rule to the cylindrical

averaged exchange hole and it is given by,

bσ(r) = −4π
I(1)

I(3)
ρσ(r)aσ(r) , (6.28)

where I(m) is associated with the Bessel function via I(m) =
∫ z

0
dyJ2

1 (y). For slowly

varying density limit the semi-classical approximation of kinetic energy density [409] can

be considered as a good reference system and upon substituting it, the SGL of exchange
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energy functional becomes,

ESGL
x,σ = − 5

48
√
π

[
I(0)I(3)− I(1)I(2)

I(3)

] ∫
|∇ρσ(r)|2

ρ
3/2
σ (r)

d2r . (6.29)

Having established the SGL of the exchange energy, we now concentrate on the large

density-gradient limit (LGL) of it. Regarding the LGL, Pittalis et. al. [395] prescribed

that the density gradient term dominates over the rest of the terms in the exchange hole

expression. Also, to ensure the convergence criteria of cylindrical averaged exchange hole

a Gaussian function is introduced within it. Thus, according to the formalism prescribed

by Pittalis et. al. [395], the cylindrical averaged exchange hole in the LGL becomes,

〈ρx,σ(r, r + u)〉 ≈

[
1

8

|∇ρσ(r)|2

ρσ(r)
u2

]
F (ασ(r)u) , (6.30)

where the Gaussian function F (y) = e−y
2 and the parameter ασ are determined from the

normalization of the exchange hole. This leads to the LGL of exchange energy i.e.,

ELGL
x,σ = −π

1/4

23/2
G(2)G−3/4(3)

∫
d2r
|∇ρσ(r)|1/2

ρ
3/4
σ (r)

, (6.31)

where the function G(m) is determined as,

G(m) =

∫ ∞
0

dyyme−y
2

. (6.32)

Finally, incorporating the SGL and LGL of the spin-polarized exchange energy func-

tional and interpolating between these two limits, Pittalis et. al. [395] constructed the

exchange energy functional as

E2D−GGA
x [ρσ,∇ρσ] = ELDA

x [ρσ]− β
∑
σ=↑,↓

∫
d2r

|∇ρσ(r)|2

ρ
3/2
σ (r)

[
1 + γ |∇ρσ(r)|2

ρ3σ(r)

]3/4
, (6.33)

where

E2D−LDA
x [ρσ] = − 8

3
√
π

∫
d2rρ3/2

σ (r) (6.34)
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is the 2D-LDA exchange energy obtained from the homogeneous electron gas limit.

The values of the parameter β and γ are obtained by fitting the exchange energy of the

parabolic quantum dots which becomes β = 0.003317 and γ = 0.008323 respectively.

6.3.2 Modified GGA exchange energy functional

In this section we construct a modified form of 2D-GGA functional. In 3D, the inho-

mogeneity is included in the GGA approximation through the reduced density gradient.

Analogous to that, in 2D, we construct a exchange energy functional by incorporating

the reduced density gradient (s = |∇ρσ(r)|2
2kF ρ

). The forms of 3D and 2D reduced density

gradient is similar. However, the only difference is that in 3D, s ∼ ρ5/3 and in 2D, it

becomes s ∼ ρ3/2. The power of ρ in the reduced density gradient can also be derived

from dimensional analysis. Now, motivated by the construction of the enhancement factor

in 3D GGA functional, we construct a form of 2D-GGA enhancement factor by utilizing

the cylindrical average exchange hole model described in the previous section. Once the

spin-unpolarized form of the 2D-GGA is constructed, it can be easily transformed into its

spin-polarized form. This is one of the most captivating features of describing any GGA

as a functional of its reduced density gradient.

Analogous to 3D, in 2D also, one can write

EGGA
x [ρ] =

∫
d2r Axρ(r)3/2Fx[s] , (6.35)

where Ax = 4(2π)1/2

3π
and s = |~∇ρ|

2(2π)1/2ρ3/2
is the reduced density gradient. Again, using the

SGL and LGL of the 2D exchange enhancement factor. Regarding the SGL of Fx, it is

obtained to be

F SGL
x = 1 + µSGLs2 , (6.36)

where the small gradient expansion coefficient µSGL of the enhancement factor is noth-

ing but µSGL = 2π3/2

43/2
√
π

[
I(0)I(3)−I(1)I(2)

I(3)

]
. The value of µSGL is obtained using the same

procedure as described in the previous section but in the spin-unpolarized form.
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Regarding the LGL of the exchange enhancement factor, it is obtained as,

FLGL
x = 1 + µLGLs

1
2 , (6.37)

where µLGL = (π
4
)
1
4
κLGL

Ax
with the parameter κLGL = 0.35078.

Here, we observe that the SGL and LGL expansion of the enhancement factor Fx

shows its dependency on s2 and s
1
2 respectively. Combination these two limit we propose

the following form of the exchange enhancement factor,

F 2D−MODGGA
x (s) = 1 + µ

s log(g)

1 + βs
1
2 log(g) + (1− e−cs2)

, (6.38)

where g = s +
√

1 + s2. This enhancement factor correctly obeys the large and small

gradient limit of the exchange enhancement factor. But, the parameters are different from

previously obtained it’s SGL and LGL values. Regarding the parameters µ, β and c,

these are obtained by using the LGL of the enhancement factor and by considering the

physically relevant 2D systems like few-electrons parabolic quantum dots. This is done

to improve the flexibility of the newly proposed functional. In Fig. 6.1, we compare

the newly constructed 2D-MODGGA (2D modified GGA) enhancement factor with two

other GGA level functionals, 2D-GGA [395] and 2D-B88 [403]. As shown in Fig. 6.1, the

2D-MODGGA enhancement factor increases monotonically unlike 2D-GGA and 2D-B88

enhancement factors.

6.3.3 Comparison shopping for the gradient-corrected 2D function-

als

We employ the 2D-MODGGA functional for the model systems using the 2D suite code

OCTOPUS [105]. The OCTOPUS [105] code performs the solution of the KS equation

in 2D grid by solving the equation,

[−1

2
∇2 + vKS(r)]ψi(r) = εiψi(r), (6.39)
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Figure 6.1: Shown is the exchange enhancement factors for FMODGGA
x . For comparison

the exchange enhancement factor of 2D-B88 and 2D-B86 are also shown.

Table 6.1: Shown are the exchange energies (in a.u.) as obtained from different functional
for parabolic quantum dot with different confinement strengths. The error statistics (mean
absolute error (MAPE)), ∆ is also reported in the last row.

N ω −E2D−KLI
x −E2D−LDA

x −E2D−B86
x −E2D−B88

x −E2D−MODGGA
x

2 1/6 0.380 0.337 0.368 0.364 0.378
2 0.25 0.485 0.431 0.470 0.464 0.482
2 0.50 0.729 0.649 0.707 0.699 0.723
2 1.00 1.083 0.967 1.051 1.039 1.070
2 1.50 1.358 1.214 1.319 1.304 1.361
2 2.50 1.797 1.610 1.748 1.728 1.756
2 3.50 2.157 1.934 2.097 2.074 2.089
6 1/1.892 1.735 1.642 1.719 1.775 1.735
6 0.25 1.618 1.531 1.603 1.594 1.619
6 0.42168 2.229 2.110 2.206 2.241 2.228
6 0.50 2.470 2.339 2.444 2.431 2.469
6 1.00 3.732 3.537 3.690 3.742 3.727
6 1.50 4.726 4.482 4.672 4.648 4.716
6 2.50 6.331 6.008 6.258 6.226 6.305
6 3.50 7.651 7.264 7.562 7.525 7.605

12 0.50 5.431 5.257 5.406 5.387 5.434
12 1.00 8.275 8.013 8.230 8.311 8.275
12 1.50 10.535 10.206 10.476 10.444 10.518
12 2.50 14.204 13.765 14.122 14.080 14.149
12 3.50 17.237 16.709 17.136 17.086 17.129
20 0.50 9.765 9.553 9.746 9.722 9.780
20 1.00 14.957 14.638 14.919 15.029 14.970
20 1.50 19.108 18.704 19.053 19.188 19.113
20 2.50 25.875 25.334 25.796 25.973 25.853
20 3.50 31.491 30.837 31.392 31.603 31.429

∆ (MAPE) 5.70 1.70 3.90 0.48

where ψi are the KS orbitals. The KS potential vKS(r) is given by vKS(r) = vH(r) +

vxc(r) + vext(r). Here, the external potential is either vext(r) = 1
2
ω2r2 or −V0e

−ω2r2 . To

test the functional performance, we choose the parabolic quantum dot potential (vext(r) =

1
2
ω2r2) with N = 2 and confinement strength ω = 1/6, 0.25 and 0.50. In our calculation

we use the orbital and density of the exact exchange (within Krieger-Li-Iafrate (KLI)
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Table 6.2: Shown are the exchange energies (in atomic units) of Gaussian quantum dot
(vext = −V0e

−ω2r2) system with different confinement strength as obtained with different
approximations. The mean absolute error (MAPE), ∆ is also reported in the last row.

V0 N ω2 −E2D−KLI
x −E2D−LDA

x −E2D−B86
x −E2D−B88

x −E2D−MODGGA
x

10 2 0.25 1.573 1.405 1.529 1.557 1.543
10 2 1/6 1.427 1.274 1.386 1.412 1.403
10 2 0.50 1.839 1.643 1.788 1.821 1.793
40 6 0.1 6.525 6.194 6.450 6.533 6.495
40 6 0.25 8.255 7.840 8.160 8.263 8.192
40 6 1/6 7.454 7.076 7.367 7.461 7.407
40 20 0.1 25.387 24.871 25.311 25.490 25.355
40 20 1/6 28.692 28.122 28.611 28.815 28.635
40 20 0.25 31.348 30.736 31.263 31.490 31.268
40 30 0.1 39.548 38.985 39.493 39.722 39.500
40 30 1/6 44.156 43.546 44.099 44.363 44.076

∆ (MAPE) 5.09 1.18 0.50 0.80

approximation [410]) as the reference input for our functional. Upon comparing the exact

exchange results within Krieger-Li-Iafrate (KLI) approximation [410], the values of the µ,

β and c are obtained to be 0.84089 µLGL, 0.248 and 0.1 respectively. This choice of values

are quite realistic as using these parameters we observe that the mean percentage error of

the overall test set gets reduced. In Table 6.1 we summarize the results as obtained using

different level of approximations. Our comparison functional includes 2D-LDA, 2D-

B88 [403] and 2D-B86 [395]. From Table 6.1 it is evident that 2D-MODGGA reduces

the error significantly compared to the existing GGA functionals.

Next, the testing of the functional is carried out for Gaussian quantum dots and the

results are given in Table 6.2. To obtain the bound states for large particle numbers,

one needs large −V0 value. Therefore, we restrict our present study for a few electron

numbers and considerably large potential depth. From Table 6.2 it is evident that the

2D-B88 works well in the low-density profile but deviates from exact exchange values as

the electron number increases. In this perspective, the 2D-B86 and 2D-MODGGA give

overall good results for the whole test set. 2D-MODGGA reduces the error present in

2D-B86 through its improved form.
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6.4 Inclusion of the Kohn-Sham Kinetic Energy Density:

Importance and Behavior

So far all the methods we discussed are based on HEG and GGA. As, one step forward,

it is always interesting to include the KS-KE into the functional ingredient. But, before

going into the formal derivation of the first-ever KS kinetic energy density-dependent

functional [39], it is crucial to explore the role of KS kinetic energy density for 2D. Note

that the KS kinetic energy density is an importance quantity which is used to construct the

electron localization factor (ELF) [405]. In this section, we will explore the behavior of

the KS-KE using the two-dimensional isotropic quantum harmonic oscillator as a model

system. The behavior of KS-KE is studied thoroughly in 3D [411, 412] ,but the same is

not explored in 2D. In this chapter, However, KS-KE density behaves similar to the its 3D

counterpart for the asymptotic region of the finite 2D systems.

To study rigorously the nature of the KS-KE density in 2D, we begin by considering

the single-electron non-interacting eigenstates of 2D isotropic harmonic oscillator.This

system is very useful to gain better physical insight of the behavior of the KS-KE density

τKS in 2D. In this section, our focus will remains on two important domains: r→ 0 and

r → ∞. To do this, we start with the Fock-Darwin equation of 2D quantum Harmonic

oscillator [384] with eigenfunctions

Ψnl(r, φ) =
eilφ√

2π

√
n!

(n+ |l|)!
e−

r2

4

( r√
2

)|l|
L|l|n

(r2

2

)
= fnl(r)e

− r
2

4 eilφ, (6.40)

where

fnl =
1√
2π

√
n!

(n+ |l|)!

( r√
2

)|l|
L|l|n

(r2

2

)
(6.41)

is the radial function connected with the associated Laguerre polynomials,

L|l|n (x) =
n∑

m=0

(−1)m
(n+ |l|)!

(n−m)! (|l|+m)! m!
xm , (6.42)
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where n(= 0, 1, 2.....) and l(= 0,±1,±2....) are radial and orbital quantum numbers

respectively. The corresponding densities are also given by

ρnl(r) = |Ψnl(r, φ)|2 = [fnl(r)]
2e−r

2/2. (6.43)

Now, expressing the the KS-KE density in terms of the polynomial function we obtain,

τKSnl =
1

2
|∇Ψnl(r, φ)|2 =

1

2

[dfnl
dr
− 1

2
rfnl

]2

e−r
2/2 +

l2ρnl
2r2

. (6.44)

The 1st term on the right side of Eq.(6.44) is the VW-KE density which is obtained by

using Eq.(6.43) into τVW = |~∇ρ|2
8ρ

. Therefore, resultant Eq.(6.44) becomes,

τKSnl = τVW [ρnl] +
l2ρnl(r)

2r2
. (6.45)

The Eq.(6.45) is the paramount equation of this section and it will be used to explore the

behavior of KS-KE density. Using Eq.(6.45), KS-KE density becomes

τKS =
∑
nl

τKSnl . (6.46)

Note that in general τVW [ρ] 6=
∑

nl τ
VW [ρnl].

6.4.1 r→ 0 behavior of 2D KS-KE density

In this subsection, we discuss elaborately discuss the behavior of 2D KS-KE density at

r → 0. To do so we start with the different orbitals contribution as follows: (i) From the

Fock-Darwin equation the density corresponding to s (l = 0) becomes

ρn0(r) = [fn0(r)]2e−r
2/2, (6.47)
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where

fn0(r) =
1√
2π
L0
n

(r2

2

)
=

1√
2π

[
1− 1

2
nr2 +

1

16
n(n− 1)r4 − .......

]
. (6.48)

Thus, in r→ 0 limit, the ρn0(r), KS-KE and VW-KE density becomes,

ρn0(r → 0) =
1

2π

[
1− 1

2
(2n+ 1)r2 +

1

8
(3n2 + 3n+ 1)r4..

]
. (6.49)

and

τKSn0 (r → 0) = τVWn0 (r → 0) =
1

16π
[(2n+ 1)2r2 − 1

2
(4n3 + 6n2 + 4n+ 1)r4..]

(6.50)

In principle, if only s orbital is occupied then ρn0(0) = 1
2π

but we obtain vanishing

KS-KE and VW-KE densities.

(ii) Now, if the p (l = 1) shell is occupied, then

ρn1(r) = [fn1(r)]2e−r
2/2 , (6.51)

where

fn1(r) =
1√
2π

1√
n+ 1

r√
2
L1
n

(r2

2

)
=

1√
2π

1√
n+ 1

r√
2

[
(n+ 1)− 1

4
n(n+ 1)r2 +

1

48
(n+ 1)n(n− 1)r4 − .......

]
.

(6.52)

So, in the limit r→ 0 the density expression of Eq.(6.51) becomes,

ρn1(r→ 0) =
1

2π

[1

2
(n+ 1)r2 − 1

4
(n+ 1)2r4 + ....

]
. (6.53)
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Similarly, for l = 0 and r→ 0 cases also,

τKSn1 (r → 0) =
1

4π
[(n+ 1)− (n+ 1)2r2 + ...]

(6.54)

and

τVWn1 (r → 0) =
1

8π
[(n+ 1)− 3

2
(n+ 1)2r2 + ...] .

(6.55)

Therefore, no cusp condition is observed in the case of p (l = 1). But interestingly,

we observe the ratio of KS-KE to that of VW-KE density for l = 1 becomes,

τKSn1 (r→ 0)

τVWn1 (r→ 0)
= 2 . (6.56)

In 3D, the similar condition is also observed but the corresponding ratio becomes 3 [412].

In a more general way, the above conditions can also be written as, For l = 0:

τKSn0 (r→ 0) = τVW [ρn0](r→ 0) = 0, (6.57)

l = 1:

τKSn1 (r→ 0) = τVW [ρn1](r→ 0) +
1

2
An1 , (6.58)

and

l = 2:

τKSn2 (r→ 0) = τVW [ρn2](r→ 0) , (6.59)

where Anl is associated with the Laguerre polynomials.
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Note that in a compact notation form Eq.(6.57) to Eq.(6.59) can also be written as ,

τKSnl (r→ 0) =

{ 0 l = 0

1
2
An1 + 1

2
An1 = 2τVW [ρn1](r→ 0) l = 1

0 l ≥ 2,

(6.60)

where the following factor is used:

τVW [ρn1](r→ 0) =
1

8

(2An1r)
2

An1r2
=

1

2
An1 . (6.61)

So, Eq.(6.60) also confirms the validity of Eq.(6.56). Now, Eq.(6.60) together with

Eq.(6.47) results in,

τKS(r→ 0) =
∑
nl

τKSnl (r→ 0) =
∑
n

2τVW [ρn1](r→ 0) (6.62)

From the above analysis one can conclude that the l = 1 orbital is important for the VW-

KE density at r → 0. The show the validity of the resultant mathematical expression of

Eq.(6.62) we also plot the ratio τVW/τKS for the parabolic quantum dot systems with

N = 6 electrons (shown in Fig. 6.2). From this figure it is evident that the presence of

s orbital, the above mentioned ratio becomes zero near origin and it keeps increasing as

r increases, which clearly indicates the inclusion of p orbital. Whereas, both τunif and

τVW + α τunif start from finite value at r → 0. Here, we consider the slowly varying

approximation of α = τKS−τVW
τunif

≈ 1 − 2p + 8
3
q and τunif = πρ2/2. This is because s

electron density has finite value at r → 0. All these numerical evidence actually establish

the validity of our theoretical framework.

6.4.2 r→∞ behavior of 2D KS-KE density

To show the behavior of 2D KS-KE density in r→∞ we consider the contributes of the

outermost valence shells only. We characterize the quantum numbers of the outermost

valence shells as n → n′, l → l′ and density corresponding to those orbitals as ρ → ρ′.
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Figure 6.2: Shown are near origin behavior (for N = 6 electron) of (a) τσ−VW +
αστσ−unif (where, α = 1 − 2p + 8

3
q is the meta-GGA ingredient defined in the slowly

varying density limit), (b) τσ−unif and (c) τσ−VW/τσ−KS . Here we have shown near
origin behavior of τσ−VW/τσ−KS .

Form Eq.(6.45) the difference of the KS-KE density and the VW KE deinsity is given by,

τ ′ = τKS − τVW →r→∞ τKSn′l′ − τVWn′l′ =
l′2ρ

′

n′l′

2r2
. (6.63)

Note that for l′ = 0 type outer shell τKS → τVW . However, for l′ 6= 0, there are other

orbital contribution also. To make this point more evident we also plot the differences

of the KS-KE density from its VW-KE density and the same is shown in Fig. 6.3. From

Fig. 6.3 we observe that τKS → τVW (as r→∞).

6.5 Meta-GGA Functional in 2D

Based on the development so far, in this section, we now develop a meta-GGA level

functional in 2D. Regarding the functional development in 2D, so far all the development

for the 2D functionals are done upto the level of LDA [390] and GGA [39–41, 390–

408]. As discussed before, the GGA functional is proposed by Pittalis et. al. [395] is
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Figure 6.3: Shown is the deviation of the exact KS-KE density from the VW KE density
for N = 6 (ω = 0.25), N = 12 (ω = 1/1.892) and N = 20 (ω = 0.50). For comparison
ρσ(r)/r2

τσ−KS
for N = 6 (ω = 0.25) is also shown.

based on the Taylor series expansion of the exchange hole. However, in chapter 3 we

have shown that the exchange hole can be constructed in several ways like using Taylor

series expansion, real space cutoff procedure, or the density matrix expansion (DME)

technique. It is noteworthy the the most advance technique is the DME expansion. The

exchange hole based on the DME expansion technique shows its correct behavior not

only for the small separation, but also do converge for large separation. In this section

we will construct a 2D exchange hole and the corresponding functional based on the

DME expansion technique. We will benchmark our functional to the model systems like

parabolic and Gaussian quantum dots.

6.5.1 Exchange hole and energy under generalized coordinate trans-

formation

Under general coordinate transformation (see APPENDIX B for the details) i.e. (~r1, ~r2)→

(~rλ, u), where ~rλ = λ~r1+(1−λ)~r2, the exchange energy functional of Eq.(6.20) becomes,

Ex =
1

2

∫
d2rλρ(~rλ)

∫
ρtx2D(~rλ, u)

u
d2u , (6.64)
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where the generalized coordinate transformed exchange hole ρtx2D is given by

ρtx = −|Γ
t
1(~rλ − (1− λ)~u, ~rλ + λ~u)|2

2ρ(~r)
. (6.65)

Γ t
1 is 1st order reduced density matrix. The parameter, λ is the coordinate transformed

parameter and can take values 1/2 → 1 (or, 0 → 1/2). Note that λ = 1 and λ = 1
2

correspond to the conventional and on top exchange holes [234]. Now, using the Taylor

series expansion the transformed single particle KS density matrix around u = 0 becomes

Γ t
1(r, r + u) = eu.[−(1−λ)~∇1+λ~∇2]Γ t

1(r,u)|u=0

= eu.[−(1−λ)~∇1+λ~∇2]
[ occ∑

i

Ψ∗i (r
λ − (1− λ)u)Ψi(r

λ + λu)|
]
u=0

= eu.[−(1−λ)~∇1+λ~∇2]

occ∑
i

Ψ∗i (r
λ)Ψi(r

λ)

= [1 + u[−(1− λ)~∇1 + λ~∇2]cosθ + u2[−(1− λ)~∇1λ~∇2]2cos2θ]
occ∑
i

Ψ∗i (r
λ)Ψi(r

λ) , (6.66)

where ~∇1 and ~∇2 are the gradient operators which are acting on Ψ∗i and Ψi respec-

tively. The exchange energy functional for 2D can be constructed from the cylindrical

average of the exchange hole 〈ρx(~r, ~r + ~u)〉cyl over the direction of ~u i.e.

〈ρx(~r, ~r + ~u)〉cyl =

∫
ρx(~r, ~r + ~u)

dΩu

2π
. (6.67)

Applying this method the and doing the Taylor series expansion results the correct small

u expansion of the coordinate transformed exchange hole as,

〈ρtx〉 = −ρ(~r)

2
− 1

4

[(
λ2 − λ+

1

2

)
∇2ρ(~r)− 2τ +

1

4

(
2λ− 1

)2 |~∇ρ(~r)|2

ρ(~r)

]
u2 . (6.68)

Note that the above expansion recovered the correct small ‘u’ expansion in 2D [395] upon

considering λ = 1. The Eq.(6.68) is more general than the proposed one in ref. [395].
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6.5.2 A new form semilocal exchange hole and the functional

Here we employ the DME technique by satisfying three important criteria of the exchange

hole. The underlying exchange hole rightly obtain: (i) the uniform electron gas limit of the

exchange hole, (ii) correct small ‘u’ expansion upon considering terms upto u2, and (iii)

the large u-limit (i.e. 0 to∞ integral limit of u) do converge for the direct implementation

of this exchange hole in the exchange energy functional. To achieve this goal we consider

following plane wave expansion in terms of the Bessel and Hypergeometric functions

e
kucosφy

k = A+ B , (6.69)

where

A =
2

ku

∞∑
n=0

(−1)n(2n+ 1)J2n+1(ku)C1
2n

(
− iycosφ

k

)
B =

2

ku2

∞∑
n=0

(−1)n(2n+ 1)J2n+1(ku)
1

2 cosφ
× ∂

∂y

[
C1

2n

(
− iycosφ

k

)]
(6.70)

and φ be the azimuthal angle. The polynomials, Cm
2n are expressed as

Cm
2ν(x) = (−1)ν

ν +m− 1

ν

 2F1(−ν, ν +m;
1

2
;x2) , (6.71)

where 2F1 are the generalized Hypergeometric functions. J2n+1 are the Bessel functions,

and y = −(1 − λ)~∇1 + λ~∇2. Here we use the series re-summation technique along

with the Gegenbauer addition theorem [413] to arrive at the above expansion (i.e. from

Eq.(6.69) to Eq.(6.70)). In APPENDIX B, we derive the scheme of generalized Gegen-

bauer addition theorem which is used obtain Eq.(6.69). Note that using this technique

the above three mentioned criteria of the exchange hole are achieved. Finally, Eq.(6.71)

together with Eq.(6.69) result to the generalized coordinate transformed density matrix

as,

Γ t
1 = 2ρ

J1(ku)

ku
+

6J3(ku)

k3u
G +

24J3(ku)

k3u2
H , (6.72)
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where

G = 4 cos2 φ{(λ2 − λ+
1

2
)∇2ρ− 2τ}+ k2ρ

H = cosφ(2λ− 1)|∇ρ| (6.73)

with τ =
∑occ

i |~∇ψi|2, the KS kinetic energy density. Now, in order to make τ gauge-

invariant, we modify it such that

τ → τ̃ = τ − 2
j2
p

ρ
, (6.74)

where

jp =
1

2i

occ∑
i

{ψ∗i (~r)[~∇ψi(~r)]− [~∇ψ∗i (~r)]ψi(~r)} (6.75)

is the paramagnetic current density. Using the DME obtained form DME the cylindrical

averaged exchange hole becomes,

〈ρtx〉 = −2J2
1 (ku)

k2u2
ρ(~r)− 24J1(ku)J3(ku)

k4u2
L − 144J2

3 (ku)

k6u4
M , (6.76)

where

L = (λ2 − λ+
1

2
)∇2ρ− 2τ + 4

j2
p

ρ
+

1

2
k2ρ

M = (2λ− 1)2 |∇ρ|2

ρ
. (6.77)

Note that the above mentioned expression of the exchange hole is more general than that

is proposed in ref. [140]. This expression is exact for the uniform electron gas limit upon

considering k = KF . Note that to fulfill the normalization condition of the exchange hole

we scale k → fkF , where f will be determined from the normalization of the exchange

hole. Doing so we also include the inhomogeneity in the functional form which is relevant

for the inhomogeneous systems. Thus considering the normalization of the exchange hole
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we obtain
1

f 2
+

6

f 4
y = 1 , (6.78)

where y = (2λ− 1)2p and p = s2 = |~∇ρ|2
(2kF ρ)2

is the square of the reduced density gradient

(s) in 2D. Note that for slowly varying density limit, Eq.(6.78) becomes f ≈ 1 + 6y and

in the large density gradient limit it becomes f → y
1
4 [140]. To maintain the required

criteria of f , we propose the following analytic form of f

f = [1 + 90(2λ− 1)2p+ β(2λ− 1)4p2]
1
15 , (6.79)

where the parameter λ and β will be fixed from by comparing the exact exchange results

for the few-electron quantum dots systems.

Nonetheless, it is always necessary to remove the Laplacian of the density by the semi-

classical approximation of the kinetic energy density. This makes the exchange energy

simple and numerically more feasible. To do so we replace∇2ρ by,

∇2ρ ≈ 6
[
τ − τunif2D − 2

j2
p

ρ

]
, (6.80)

where τunif2D = πρ2

2
. Using this replacement the cylindrical averaged exchange hole be-

comes,

〈ρtx〉 = −2J2
1 (fkFu)

f 2k2
Fu

2
ρ(~r)− 24J1(fkFu)J3(fkFu)

f 4k4
Fu

2
L − 144J2

3 (fkFu)

f 6k6
Fu

4
M , (6.81)

where L = 6(λ2−λ+ 1
2
)
[
τ − τunif2D − 2

j2p
ρ

]
− 2τ + 4

j2p
ρ

+ 1
2
k2
Fρ andM = (2λ− 1)2 |∇ρ|2

ρ
.

Now, the semi-local exchange energy functional in 2D can be obtained by substituting

the cylindrical averaged exchange hole of Eq.(6.81) back in Eq.(6.64). This results the

exchange energy expression,

E2D−mGGA
x = −

∫
ρ(~r)ε2D−LDAx F 2D−mGGA

x [p, τ, jp] d
2r , (6.82)
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where ε2D−LDAx = 4kF
3π

and the exchange enhancement factor F 2D−mGGA
x is given by,

F 2D−mGGA
x [p, τ, jp] =

1

f
+

2R

5f 3
(6.83)

with

R = 1 +
128

21
(2λ− 1)2p+

3
(
λ2 − λ+ 1

2

)(
τ − τunif2D − 2

j2p
ρ

)
− τ + 2

j2p
ρ

τunif2D

. (6.84)

In order to visualize the behavior of the exchange enhancement factor we plot the same

in Fig 6.4 for different values of the iso-orbital indicator α = τ−τW
τunif2D

. For comparing we

also plot the 2D-B88 and 2D-GGA functional also. Unlike GGA functional the exchange

enhancement factor of 2D-mGGA remains flat in the region < 0s < 1 and after that

monotonically increases.
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Figure 6.4: Shown is the exchange enhancement factor F 2D−mGGA
x Eq.(6.83) (with jp =

0) as a functional of s for different values of α. For comparing the enhancement factor of
2D-GGA [140] and 2D-B88 [403] are also shown in the sub-figure.

6.5.3 Performance of the 2D meta-GGA functional

To study the performance of the constructed semilocal functional we employ the func-

tional to the 2D parabolic and Gaussian quantum dot systems. We fix the parameters

λ and β at 0.74 and 30.0 respectively by fitting it with the exchange energies of a few-
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Table 6.3: Exchange energies (in a.u.) for parabolic confined few electron quantum dots.
The 1st and 2nd columns contain the number of particles and confinement strengths used
for finding the parameters of the proposed functional. Results for EXX, 2D-LDA, 2D-
GGA [140], 2D-B88 [403] and 2D-BR [394] are also shown for comparison with that
obtained using the constructed 2D-mGGA functional. The last row contains the mean
percentage error, ∆.

N ω −E2D−EXX
x −E2D−LDA

x −E2D−GGA
x −E2D−B88

x −E2D−BR
x −EmGGAx

2 1/6 0.380 0.337 0.368 0.364 0.375 0.386
2 0.25 0.485 0.431 0.470 0.464 0.480 0.492
2 0.50 0.729 0.649 0.707 0.699 0.722 0.735
2 1.00 1.083 0.967 1.051 1.039 1.080 1.085
2 1.50 1.358 1.214 1.319 1.304 1.354 1.354
2 2.50 1.797 1.610 1.748 1.728 1.794 1.776
2 3.50 2.157 1.934 2.097 2.074 2.020 2.113
6 1/1.892 1.735 1.642 1.719 1.749 1.775 1.736
6 0.25 1.618 1.531 1.603 1.594 1.655 1.620
6 0.42168 2.229 2.110 2.206 2.241 2.281 2.226
6 0.50 2.470 2.339 2.444 2.431 2.529 2.466
6 1.00 3.732 3.537 3.690 3.742 3.824 3.716
6 1.50 4.726 4.482 4.672 4.648 4.845 4.699
6 2.50 6.331 6.008 6.258 6.226 6.492 6.279
6 3.50 7.651 7.264 7.562 7.525 7.846 7.573

12 0.50 5.431 5.257 5.406 5.387 5.728 5.415
12 1.00 8.275 8.013 8.230 8.311 8.572 8.231
12 1.50 10.535 10.206 10.476 10.444 10.915 10.461
12 2.50 14.204 13.765 14.122 14.080 14.716 14.063
12 3.50 17.237 16.709 17.136 17.086 17.858 17.019
20 0.50 9.765 9.553 9.746 9.722 10.167 9.805
20 1.00 14.957 14.638 14.919 15.029 15.573 14.894
20 1.50 19.108 18.704 19.053 19.188 19.892 19.007
20 2.50 25.875 25.334 25.796 25.973 26.935 25.698
20 3.50 31.491 30.837 31.392 31.603 32.777 31.230

∆(MPE) 5.7 1.7 3.9 2.8 0.7

Table 6.4: Exchange energies (in a.u.) for Gaussian quantum dots (vext = −V0e
−ω2r2)

with different levels of approximation. Mean percentage error given in the last row.

V0 N ω2 −E2D−EXX
x −E2D−LDA

x −E2D−GGA
x −E2D−mGGA

x

10 2 0.05 1.047 0.934 1.017 1.048
10 2 0.10 1.255 1.120 1.219 1.250
10 2 0.25 1.573 1.405 1.529 1.555
10 2 1/6 1.427 1.274 1.386 1.416
10 2 0.50 1.839 1.643 1.788 1.804
40 6 0.05 5.416 5.139 5.354 5.372
40 6 0.10 6.525 6.194 6.450 6.460
40 6 0.25 8.255 7.840 8.160 8.142
40 6 1/6 7.454 7.076 7.367 7.364
∆ 8.3 2.0 0.9
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Figure 6.5: Shown in the figure, the exchange energy per electron (in a.u.) plotted versus
ω2 for a series of Gaussian quantum dots with N electrons and confinement strength ω.

electron parabolic quantum dot system. Here, all calculation is performed using the OC-

TOPUS [105] code. For reference density and kinetic energy density we use the opti-

mized effective potential (OEP) based exact exchange (EXX) within the KLI approxima-

tions [410].

Finally, in Table 6.3 the performance of the newly constructed exchange functional is

summarized for the parabolic quantum dots. the obtained results of 2D-mGGA are quite

superior compared to other functionals. Lastly, we employ the functional for the Gaussian

quantum dots by simultaneously varying the number of electrons trapped (N ), depth of

the potential and confinement strength (ω). For this case, the performance is presented

in Table 6.4 and plotted in Fig. 6.5. Here, also, the results are found to be in excellent

agreement with KLI-EXX.

6.6 Conclusions

The main motive of this chapter is to construct the exchange energy functional to be

applied for the 2D quantum systems. In principle, our developed exchange functionals

can be used to describe the electronic structure of any kind of system having confined

in two dimensions. In developing all these functionals, we adopt the formalism that has

been used for 3D. In the first part of this chapter, we develop a modified GGA based

functional using the exchange hole model by analyzing the low and high-density limits of



6.6 Conclusions 147

it. The corresponding GGA functional performs quite accurately for various quantum dot

systems.

Beyond the 2D-GGA, the KS kinetic energy dependent functionals are also con-

structed by critically analyzing its behavior for the quantum dots systems with parabolic

confinement. It is explored that the behavior of the kinetic energy density plays a crucial

role in designing the KS kinetic energy dependent functionals.

The most important feature of this chapter is that we develop an exchange hole model

through the density matrix expansion technique. The exchange functional constructed

here is meta-GGA level. This is the first ever attempt to construct a meta-GGA level

semilocal functional by explicitly designing its underlying exchange hole. The proposed

exchange hole recovers correctly all the necessary importance features. The constructed

exchange energy function also showing its accuracy for various 2D quantum dot systems.

The functional is not only physically appealing but also practically useful as it opens

the path for constructing exchange correlation functionals in two dimensions analog to

Jacob’s ladder in three dimensions.





Chapter 7

Conclusions and Outlook

7.1 Summary

In this thesis, we assessed and developed meta-GGA level semilocal and hybrid function-

als for the atoms, molecules, and solid-state systems in three and two-dimensions. The

developed meta-GGA functionals are studied within the framework of the projector aug-

mented plane wave. Also, fractional occupation related problems have been assessed from

the long-range corrected meta-GGA functional. Screened meta-GGA hybrid functional

is also developed using short-range Hartree-Fock for the atoms, molecular and solid-state

systems. Finally, quantum dot systems are studied by developing accurate meta-GGA

semilocal functionals via the first-principles approach.

The most important conclusions which can be drawn from our development, and

benchmarking study of the electronic properties of the molecular, bulk and lower-dimensional

systems are summarized as follows:

• The developed and benchmarking calculations of the meta-generalized gradient ap-

proximations (meta-GGA) show that the accurate prediction of the structural and

energetic properties of the solids can be achievable beyond the generalized gra-

dient approximations (GGA). In this thesis, we emphasize on this fact by testing

and compairing the most advanced meta-GGA functionals. Our benchmark cal-

culations show that the meta-GGA functionals developed by satisfying more exact
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constraints “qualitatively” improves most of the solid-state performances. The most

interesting features of the thesis are that we have done a comparative study of the

two most advanced meta-GGAs like strongly constrained and appropriately normed

(SCAN) and Tao-Mo (TM) semilocal functionals within the plane wave basis set.

Benchmark calculations indicate that the two functionals accurately predict most

of the solid-state properties. The TM functional accurately predicts the lattice con-

stants of the solids over other contemporary functionals. This is quite an interesting

feature of the TM functionals because several other properties depend on the accu-

racy of the lattice constants. However, our assessment of the semilocal functionals

for the transition metals show different trends as we found that the Perdew-Burke-

Ernzerhof (PBE) GGA performs better than advanced meta-GGA.

• As an effort to construct meta-GGA level long-range range-separated hybrid func-

tional, we develop a hybrid by tuning the range-separation parameter and tested the

performance of the functional for thermochemical accuracy and problems related

to the fractional occupation number. We observe that using meta-GGA level long-

range corrected hybrids the properties related to the fractional occupation number

can be improved without hindering the thermochemical accuracy. On the next level

of our construction, we also propose a meta-GGA screened hybrid functional us-

ing the short-range Hartree-Fock and long-range semilocal XC functional. The fact

that the performance of the proposed screened hybrid functional for the molecular

systems further motivate us to use the functional for studying solid-state materials.

• Hence, we utilize the proposed meta-GGA screened hybrid functional in the solid-

state study by combining the TM functional with the LDA exchange hole in the

short-range semilocal part instead of constructing the full reverse engineered ex-

change hole. Implementation and benchmark calculations of the proposed func-

tional in the plane wave pseudopotential code generates both the lattice constants

and bandgap of solids quite satisfactorily. The screened hybrid functional keeps

all the good properties of the TM functional intact, besides improvement in the

bandgap of solids is observed. The present proposition can be considered as one
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step ahead of the popularly used Heyd-Scuseria-Ernzerhof (HSE) functional by

utilizing the Kohn-Sham kinetic energy density in screened meta-GGA functional

rung.

• Lastly, we construct an accurate meta-GGA exchange functional for the two-dimensional

quantum dots systems. Our developed method is in parallel to that proposed in three

dimensional for the TM functional. To do so, we first construct an exchange hole

by satisfying all the exact constraints of the hole and utilize that exchange hole for

the construction of the exchange energy functional in two dimensions. Results ob-

tained from the proposed meta-GGA functional showing its accuracy over all the

previously proposed GGA based functionals. In principle, the presently constructed

exchange functional can also be used to describe the properties related to any kind

of confined systems in two-dimensional.

7.2 Future prospects

• The assessment and benchmark performance of the recently developed and most

advanced semilocal functionals in the plane wave pseudopotential code will surely

help the user to choose a particular functional for performing the solid-state calcu-

lations. Also, our recent studies focus on the improvement of the TM functional

by developing compatible correlation energy such that the functional performance

becomes free from correlation energy anomaly. Performance of the functional in

surface energy, work function, and adsorption energies is also forming part of our

ongoing research projects.

• The hybrid functionals we proposed for the molecular and solid-state calculations

can be further extended for the time-dependent density functional calculations. The

generalized dielectric dependent meta-GGA hybrid functional for solids can also

be developed based on these present propositions. More extensive study and devel-

opment of a screened meta-GGA functionals for both the molecular and solid-state

materials will be the subject of work we will carry beyond this thesis.
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• The formalism we developed for the two-dimensional quantum system is a subject

of our future work to apply extensively on a larger set of quantum dots and practical

usefullness of the developed functional will be provided.
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Table A.1: Total energies of atoms (hatrees) computed using aug-cc-pVQZ basis set. The
accurate reference values of each atomic systems are taken from ref. [195].

Atom Accurate B3LYP PBE0 TPSSh HSE06 DME-sc-TPSSc
H -0.500 -0.502 -0.501 -0.500 -0.503 -0.499
He -2.904 -2.915 -2.895 -2.908 -2.902 -2.910
Li -7.478 -7.492 -7.466 -7.487 -7.475 -7.490
Be -14.667 -14.672 -14.636 -14.670 -14.647 -14.674
B -24.654 -24.664 -24.619 -24.666 -24.632 -24.670
C -37.845 -37.860 -37.806 -37.863 -37.821 -37.863
N -54.589 -54.605 -54.545 -54.611 -54.562 -54.605
O -75.067 -75.099 -75.021 -75.102 -75.040 -75.092
F -99.734 -99.773 -99.679 -99.769 -99.700 -99.748

Ne -128.938 -128.977 -128.868 -128.968 -128.890 -128.937
Na -162.255 -162.298 -162.182 -162.288 -162.205 -162.253
Mg -200.053 -200.098 -199.967 -200.082 -199.992 -200.042
Al -242.346 -242.393 -242.254 -242.379 -242.280 -242.327
Si -289.359 -289.399 -289.256 -289.391 -289.283 -289.327
P -341.259 -341.288 -341.143 -341.287 -341.171 -341.212
S -398.110 -398.142 -397.983 -398.139 -398.013 -398.053
Cl -460.148 -460.178 -460.009 -460.175 -460.039 -460.074

MAE 0.026 0.063 0.022 0.044 0.021
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Table A.2: Atomization energies of the G2 test set computed using aug-cc-pVQZ basis
set. All quantities are in kcal/mol.

Molecule Name CCSD(T) B3LYP PBE0 TPSSh HSE06 DME-sc-TPSSc
AlCl3 Aluminum trichloride 313.454 293.202 304.142 302.176 298.920 314.406
AlF3 Aluminum trifluoride 432.192 415.208 411.605 412.195 406.825 415.663
BCl3 Boron trichloride 323.172 312.892 328.359 318.887 321.741 328.278
BF3 Boron trifluoride 469.403 464.873 466.460 459.390 459.986 459.737
BeH Berilium monohydride 50.789 58.113 55.985 50.197 55.948 59.035
CCl4 Tetrachloromethane 313.633 294.972 317.493 305.412 307.687 322.960
CF4 Tetrafluoromethane 478.081 468.906 478.858 468.327 468.783 473.488
CH Methylidyne radical 83.869 85.561 83.008 86.609 83.623 86.746

CH2Cl2 Dichloromethane 370.105 363.661 372.625 370.492 366.442 375.302
CH2F2 Difluoromethane 436.843 435.229 436.739 437.229 430.501 437.080
CH2O2 Formic acid 500.306 498.830 500.369 493.422 493.313 491.616
CH2O Formaldehyde 373.210 373.530 372.150 371.701 368.032 370.714
CH2 Singlet carbene 180.619 181.028 176.432 180.619 175.233 180.033
CH2 Triplet carbene 189.742 192.264 193.716 198.372 192.235 195.453

CH3Cl Chloromethane 394.518 392.717 395.368 397.937 390.766 398.126
CH3 Methyl radical 306.590 310.204 308.517 313.852 306.314 310.930

CH3O Hydroxymethyl radical 408.552 411.164 410.924 410.911 405.986 406.028
CH3O Methoxy radical 398.894 403.937 403.132 405.078 398.573 400.955
CH3S Methylthio radical 381.246 382.346 384.332 386.415 379.841 381.979
CH4 Methane 418.872 421.224 417.861 424.748 414.689 421.096

CH4O Methanol 511.829 511.982 510.089 511.973 504.388 507.297
CH4S Thiomethanol 473.495 471.634 472.869 477.136 467.419 475.058
CHCl3 Trichloromethane 343.726 331.733 347.317 340.229 339.399 350.778
CHF3 Trifluromethane 458.777 453.630 459.068 454.456 450.947 456.693
CHO Formyl radical 278.282 280.381 280.297 278.037 276.853 277.268
CN Cyano radical 180.065 178.840 178.247 175.409 175.927 178.971

CNH Hydrogen cyanide 311.523 312.502 310.083 307.926 306.936 311.384
CNH3O2 Methyl nitrite 597.491 598.763 599.394 597.417 589.594 600.172
CNH3O2 Nitromethane 599.632 602.577 604.904 600.381 595.005 602.773

CNH5 Methylamine 580.082 584.793 581.720 585.121 575.592 581.165
C2Cl4 Tetrachloroethylene 469.319 451.178 479.107 462.009 466.800 479.017
C2F4 Tetrafluroethylene 587.668 584.157 596.684 583.310 584.511 588.466
C2H Ethynyl radical 263.659 262.757 266.490 262.267 263.119 261.660

C2H2 Acetylene 402.763 403.153 404.139 401.988 399.953 402.015
C2H2O2 Glyoxal 632.360 630.604 634.689 625.389 625.829 625.606
C2H2O Ketene 530.603 533.813 537.741 531.309 531.043 530.538
C2H3Cl Vinyl Chloride 541.516 539.705 546.643 544.055 539.583 545.584
C2H3 Vinyl radical 443.495 447.689 449.933 450.301 445.269 447.579

C2H3F Vinyl fluoride 571.223 572.586 575.603 574.272 568.497 573.267
C2H3O Carbonyl methane 579.876 582.681 586.206 582.575 579.056 579.508

C2H3OCl Acetyl chloride 666.141 663.119 672.060 665.272 662.502 667.383
C2H3OF Acetyl fluoride 704.174 702.790 708.625 702.189 698.904 701.127

C2H4 Ethylene 561.341 563.715 564.026 566.248 558.549 563.460
C2H4O2 Acetic acid 800.868 798.778 804.219 795.331 793.291 792.064
C2H4O2 Methyl formate 784.033 782.802 786.502 781.639 775.770 779.339
C2H4O Acetaldehyde 675.005 675.749 678.197 675.912 670.265 672.746
C2H4O Oxirane 648.827 648.389 654.618 653.490 646.021 650.030
C2H4S Thiirane 623.588 619.677 629.933 628.913 621.384 627.489
C2H5Cl Ethyl chloride 690.032 687.116 693.581 694.724 685.145 693.489
C2H5 Ethyl radical 601.427 605.718 607.585 611.654 601.652 606.016

C2H5O Ethoxy radical 695.120 695.919 698.855 699.301 690.471 693.688
C2H6 Ethane 710.204 712.113 712.371 718.143 705.519 712.034

C2H6O Dimethyl ether 796.040 796.596 797.168 800.651 787.769 795.623
C2H6O Ethanol 808.220 807.325 809.175 809.495 799.634 803.327

C2H6OS Dimethyl sulfoxide 854.413 845.880 852.485 852.760 840.628 850.025
C2H6S Dimethyl sulfide 766.299 763.395 768.400 772.005 759.221 768.416
C2H6S Thioethanol 767.393 764.115 769.258 772.090 759.960 768.727
C2N2 Cyanogen 498.280 501.221 502.594 492.144 496.098 500.305



155

Table A.3: Atomization energies of the G2 test set computed using aug-cc-pVQZ basis
set. All quantities are in kcal/mol.

Molecule Name CCSD(T) B3LYP PBE0 TPSSh HSE06 DME-sc-TPSSc
C2NF3 Trifluroacetonitril 639.494 633.221 643.356 628.465 631.486 636.709
C2NH3 Acetonitrile 613.275 615.730 617.186 613.745 610.351 614.196
C2NH5 Aziridine 717.130 720.420 726.284 725.154 717.109 722.287

C2NH5O Acetamide 864.915 868.547 872.338 865.155 861.016 862.778
C2NH7 Dimethylamine 867.075 871.340 871.603 874.967 861.670 870.369
C2NH7 Ethaylamine 875.261 878.751 879.523 881.377 869.545 876.087
C3H4 Allene 699.982 704.981 709.655 706.774 701.792 704.232
C3H4 Cyclopropene 678.007 679.304 689.130 685.124 680.583 682.053
C3H4 Propyne 701.358 702.843 707.787 704.337 699.904 701.435
C3H6 Cyclopropane 849.824 850.449 860.044 859.272 849.966 853.668

C3H6O Acetone 975.379 975.183 981.651 977.443 969.802 973.123
C3H6 Propene 857.410 859.388 863.671 864.342 854.387 859.575

C3H7Cl 1-Chloropropane 983.574 979.160 989.532 989.210 977.252 986.708
C3H7 Isopropyl radical 897.482 901.550 907.230 909.774 897.472 902.323

C3H8O Methoxyethane 1092.532 1091.878 1096.215 1098.144 1082.975 1091.623
C3H8O Isopropyl alcohol 1105.317 1102.360 1108.267 1106.745 1094.719 1100.294
C3H8 Propane 1003.629 1004.219 1008.352 1012.632 997.659 1005.243

C3NH3 Acrylontrile 758.512 761.469 766.395 758.771 757.308 760.737
C3NH9 Trimethylamine 1156.873 1159.400 1163.365 1166.420 1149.386 1162.611
C4H10 Isobutane 1298.551 1296.761 1305.079 1307.566 1290.357 1300.143
C4H10 n-Butane 1297.126 1296.254 1304.289 1307.093 1289.745 1298.453
C4H4O Furan 990.051 988.793 1006.342 992.032 991.696 990.474
C4H4S Thiophene 959.884 954.121 975.908 962.274 961.478 962.981
C4H6 1,3-Butadiene 1007.991 1010.584 1018.587 1014.761 1006.996 1011.609
C4H6 2-Butyne 999.002 1001.183 1010.107 1005.471 998.529 999.708
C4H6 Bicyclobutane 981.134 979.529 998.760 992.053 985.475 987.505
C4H6 Cyclobutene 996.655 995.318 1010.303 1004.075 997.495 999.252
C4H6 Methylenecyclopropane 988.022 990.275 1003.777 998.218 991.407 993.245
C4H8 Cyclobutane 1145.231 1142.726 1157.149 1154.374 1142.893 1147.500
C4H8 Isobutene 1154.236 1154.729 1163.187 1162.111 1149.961 1156.481
C4H9 tert-Butyl radical 1194.236 1197.132 1206.877 1207.749 1193.175 1199.450

C4NH5 Pyrrole 1067.054 1070.436 1087.746 1073.116 1072.486 1071.863
C5H8 Spiropentane 1278.794 1277.914 1300.528 1292.036 1283.538 1285.290

C5NH5 Pyridine 1232.274 1236.854 1256.774 1238.723 1239.437 1239.671
C6H6 Benzene 1361.588 1362.890 1386.658 1368.504 1368.384 1366.305
Cl2 Dichlorine 59.073 54.819 58.792 58.400 56.531 65.282
CO Carbon monoxide 258.877 254.690 254.661 249.394 251.854 251.872

CO2 Carbon dioxide 388.592 387.229 390.682 380.854 385.210 382.137
COF2 Carbonyl fluoride 419.501 415.705 422.000 412.298 414.299 414.866
COS Carbonyl sulfide 334.288 332.011 337.079 330.313 331892 334.300
CS Carbon monosulfide 170.985 165.664 167.371 165.176 164.873 169.891

CS2 Carbon disulphide 278.664 275.291 282.292 278.128 277.486 284.925
FCl Chlorine monofluoride 62.572 60.189 60.176 61.917 57.899 66.998
F2 Difluorine 38.755 36.916 34.395 39.113 32.179 44.097

F3Cl Chlorine trifluoride 128.346 126.029 127.172 132.329 120.509 140.060
HCl Hydrogen Chloride 107.199 104.859 104.744 106.276 103.607 108.920
HF Hydrogen fluoride 141.513 139.300 136.814 137.582 135.536 137.245

HOCl Hypochlorus acid 165.791 162.596 162.203 161.875 158.833 164.158
HO Hydroxyl radical 106.955 108.307 105.743 105.745 104.782 102.992
HS Mercapto radical 87.390 87.987 86.525 88.815 85.675 86.932
H2 Dihydrgen 109.400 110.280 104.301 112.659 104.645 111.769

H2O2 Hydrogen peroxide 268.655 267.134 262.887 262.457 258.456 260.590
H2O Water 232.565 231.099 227.101 226.927 224.867 224.026
H2S Hydrogen sulphide 183.298 181.640 179.444 183.955 177.571 184.373
LiF Lithium fluoride 139.369 137.167 132.051 133.653 131.248 132.606
LiH Lithium hydride 57.904 5/.587 52.837 58.930 53.159 58.544
Li2 Dilithium 24.197 20.893 19.428 22.802 19.427 21.801
Na2 Disodium 17.101 17.171 15.846 18.621 16.09 18.502
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Table A.4: Atomization energies of the G2 test set computed using aug-cc-pVQZ basis
set. All quantities are in kcal/mol.

Molecule Name CCSD(T) B3LYP PBE0 TPSSh HSE06 DME-sc-TPSSc
NaCl Sodium chloride 98.466 92.408 93.233 95.450 92.396 98.813
NF3 Trifluoroamine 206.212 208.298 209.523 209.636 202.512 218.529
NH2 Amino radical 181.955 188.202 183.288 186.482 181.972 185.089
NH3 Ammonia 297.070 301.308 295.236 298.214 292.708 296.254
NH Imidogen 82.787 88.145 85.303 89.103 84.877 89.148

NO2 Nitrogen dioxide 227.058 232.132 232.437 228.103 227.241 231.431
NOCl Nitrosyl chloride 191.468 192.707 191.666 191.834 187.567 200.729
NO Nitric oxide 152.187 155.495 153.713 150.182 151.113 153.316
N2 Dinitrogen 227.436 227.445 222.948 219.968 220.728 227.207

N2H4 Hydrazine 436.699 444.594 438.495 439.404 433.072 437.764
N2O Nitrous oxide 269.474 273.123 272.142 267.847 267.285 274.542
OCl Monochlorine monoxide 64.532 65.219 65.919 65.888 63.520 65.014
OF2 Diflourine monoxide 93.772 93.550 90.927 95.662 86.399 101.661
OS Sulpher monoxide 125.796 124.787 124.583 123.450 121.933 122.416
O2 Dioxygen 120.545 122.512 122.239 119.475 119.352 120.215

O2S Sulpher dioxide 259.766 244.873 245.509 242.371 240.056 245.441
O3 Ozone 146.819 138.562 135.859 137.995 130.688 142.984
P2 Diphosphorus 115.951 114.437 109.760 111.021 107.831 118.659

PF3 Phosphorus trifluoride 365.156 356.327 353.282 353.311 346.720 358.472
PH2 Phosphino radical 153.970 158.278 152.688 160.081 151.574 158.581
PH3 Phosphane 241.475 244.201 236.754 247.599 234.807 247.906
S2 Disulpher 103.112 102.127 105.408 104.785 102.947 103.256

SiCH6 Methylsilane 627.656 625.703 621.001 637.227 615.352 635.468
SiCl4 Silicon tetrachloride 388.483 361.134 380.051 374.291 371.568 391.150
SiF4 Silicon tetrafluoride 577.546 554.321 552.458 550.756 544.495 556.948
SiH2 Singlet silylene 153.678 153.585 147.022 156.112 146.174 158.040
SiH2 Triplet silylene 133.260 133.158 132.205 141.321 131.164 138.881
SiH3 Silyl radical 228.083 228.539 223.423 237.069 221.988 235.663
SiH4 Silane 324.589 323.671 315.092 333.551 313.157 335.321
SiO Silicon monoxide 192.359 186.596 181.364 181.082 178.994 183.946

Si2H6 Disilane 535.471 530.474 522.354 548.331 517.857 550.941
Si2 Disilicon 73.411 69.314 71.365 72.311 69.934 72.577

MAE − − 3.599 5.619 5.296 5.335 4.008

Table A.5: Atomization energies (kcal/mol) of the AE6 molecules. The experimental
values are taken from [195]. All calculations are done using aug-cc-pVQZ basis set.

Atom Expt. B3LYP PBE0 TPSSh HSE06 DME-sc-TPSSc
SiH4 322.4 323.4 315.0 333.5 313.1 335.3
SiO 192.1 187.1 182.0 181.4 179.6 184.2
S2 101.7 102.1 105.7 104.8 103.2 103.2

C3H4 704.8 703.2 708.1 704.6 700.2 701.6
C2H2O2 633.4 631.4 635.8 625.9 626.9 626.0

C4H8 1149.0 1142.8 1157.1 1154.4 1142.9 1147.4
MAE − 2.7 5.8 6.3 6.7 5.7
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Table A.6: Ionization potential for the test set IP13 for the exchange-correlation functional
shown in each column using 6-311++G(3df,3pd) basis set. The experimental values are
taken from [195]. All quantities are in kcal/mol.

Molecule Expt B3LYP PBE0 TPSSh HSE06 DME-sc-TPSSc
C 259.74 266.08 265.57 264.06 265.53 261.54
S 238.34 242.89 239.89 240.79 239.84 240.35

SH 238.36 241.18 238.82 238.57 238.63 236.65
Cl 299.31 301.22 298.86 298.67 298.79 295.86

Cl2 265.30 262.25 261.18 259.70 261.28 262.95
OH 298.90 282.93 300.57 297.69 300.63 295.58
O 313.67 326.21 319.66 321.62 320.15 322.35

O2 278.90 289.60 286.30 284.33 286.64 280.21
P 242.80 239.30 242.78 242.66 242.63 240.83

PH 234.10 234.30 237.08 236.97 237.00 234.78
PH2 226.30 228.72 230.75 230.67 230.70 226.05
S2 216.00 219.88 221.19 220.20 221.07 217.66
Si 188.05 187.07 189.55 189.71 189.51 188.31

MAE − 5.29 3.20 3.16 3.24 2.29

Table A.7: Electron affinity for the test set EA13 for the exchange-correlation functional
shown in each column using 6-311++G(3df,3pd) basis set. All quantities are in kcal/mol.
The experimental values are taken from [195]

Molecule Expt B3LYP PBE0 TPSSh HSE06 DME-sc-TPSSc
C 29.19 31.20 32.34 31.86 31.95 29.29
S 47.91 50.33 47.35 47.19 47.15 44.69

SH 53.84 53.50 51.30 51.03 51.03 51.99
Cl 84.24 84.65 82.51 82.24 82.09 83.81

Cl2 55.60 64.43 59.21 60.46 59.93 53.72
OH 42.30 40.54 35.34 35.26 35.16 34.69
O 33.77 36.84 30.48 29.85 30.46 25.97

O2 10.80 11.37 4.72 6.69 5.29 3.65
P 16.92 21.50 17.55 18.02 17.57 17.88

PH 23.20 24.96 21.83 21.51 21.69 19.77
PH2 29.40 28.48 26.31 25.86 26.04 26.26
S2 38.50 38.15 35.99 35.86 36.10 33.33
Si 32.33 30.44 33.13 32.34 32.92 31.14

MAE − 2.22 2.79 2.85 2.87 3.37

Table A.8: Proton affinities for the test set PA8 for the exchange-correlation functional
shown in each column using 6-311++G(3df,3pd) basis set. All quantities are in kcal/mol.
The experimental values are taken from [195]

Molecule Expt B3LYP PBE0 TPSSh HSE06 DME-sc-TPSSc
NH3 211.90 210.99 212.64 213.74 213.10 214.42
H2O 171.80 170.84 172.48 173.04 172.88 172.95
C2H2 156.60 158.67 161.07 162.92 161.51 161.97
SiH4 156.50 157.53 156.61 159.03 157.65 159.43
PH3 193.10 193.28 192.97 196.17 193.81 198.39
H2S 173.70 174.92 175.07 176.88 175.85 177.77
HCl 137.10 138.15 139.15 140.39 139.48 140.84
H2 105.90 104.53 106.35 108.14 106.62 106.46

MAE − 1.10 1.25 2.84 1.79 3.20
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Table A.9: FORWARD barrier heights of hydrogen transfer reactions for the HTBH38
test set for the exchange-correlation functional shown in each column using aug-cc-pVQZ
basis set. All quantities are in kcal/mol. The experimental values are taken from [195]

Molecule Expt B3LYP PBE0 TPSSh HSE06 DME-sc-TPSSc
1. H + HCl→ H2+ Cl 5.70 -1.00 2.72 -3.63 2.66 1.06
2. OH + H2→ H2O + H 4.90 0.72 0.18 0.41 1.56 0.99
3. CH3 + H2→ CH4 + H 12.10 8.78 6.94 8.00 8.23 8.93
4. OH + CH4→H2O + CH3 6.50 2.27 2.01 1.70 3.28 3.62
5. H + H2→ H2 + H 9.60 4.28 5.66 1.16 6.09 2.04
6. OH + NH3→ H2O + NH2 3.00 -2.26 -1.86 -3.63 -0.59 -2.33
7. HCl + CH3→ CH4 + Cl 1.70 -1.42 -2.26 -2.30 -1.24 3.44
8. OH + C2H6→ H2O + C2H5 3.20 -0.68 -0.80 -1.26 0.44 0.27
9. F + H2→ HF + H 1.42 -5.69 -4.54 -5.78 -3.52 -6.08
10. O + CH4→ OH + CH3 13.47 7.32 7.76 7.94 8.83 11.26
11. H + PH3→ H2 + PH2 3.10 -1.06 0.38 -4.15 0.65 -0.35
12. H + HO→ H2 + O 10.50 4.10 7.11 -0.13 7.27 0.08
13. H + H2S→ H2 + HS 3.50 -0.59 1.05 -3.76 1.33 0.52
14 O + HCl→OH + Cl 9.57 1.13 2.44 1.22 3.56 7.49
15. CH3 + NH2→ CH4 + NH 8.00 6.26 5.23 4.52 6.37 6.51
16. C2H5 + NH2→C2H6 + NH 7.50 8.83 7.14 6.45 8.28 7.80
17. NH2 + C2H6→ NH3 + C2H5 10.40 8.89 7.48 8.33 8.82 9.97
18. NH2 + CH4→ NH3 + CH3 14.50 11.41 10.05 10.86 11.36 12.91
19. s-trans cis-C5H8→ s-trans cis-C5H8 38.40 38.81 35.59 36.20 36.71 37.77

MAE − 4.20 3.39 5.52 3.07 3.43

Table A.10: BACKWARD barrier heights of hydrogen transfer reactions for the HTBH38
test set for the exchange-correlation functional shown in each column using aug-cc-pVQZ
basis set. All quantities are in kcal/mol. The experimental values are taken from [195]

Molecule Expt B3LYP PBE0 TPSSh HSE06 DME-sc-TPSSc
1. H + HCl→ H2+ Cl 7.86 3.41 2.38 2.76 3.72 3.94
2. OH + H2→ H2O + H 21.20 7.91 17.23 8.94 17.08 10.24
3. CH3 + H2→ CH4 + H 15.30 5.77 11.88 6.23 11.94 7.30
4. OH + CH4→ H2O + CH3 19.60 5.50 14.12 12.00 15.08 14.49
5. H + H2→ H2 + H 9.60 5.31 5.66 1.16 6.09 2.04
6. OH + NH3→ H2O + NH2 12.70 5.25 7.61 5.83 8.81 7.54
7. HCl + CH3→ CH4 + Cl 7.06 2.30 2.34 2.32 3.53 4.69
8. OH + C2H6→ H2O + C2H5 19.90 4.10 15.89 13.46 16.78 15.31
9. F + H2→ HF + H 33.40 10.02 28.03 19.13 27.51 19.35
10. O + CH4→ OH + CH3 7.90 3.29 4.19 2.75 5.27 4.06
11. H + PH3→ H2 + PH2 23.20 0.07 20.68 20.95 22.04 22.06
12. H + HO→ H2 + O 12.87 6.77 5.73 6.81 7.11 8.92
13. H + H2S→ H2 + HS 16.76 0.72 12.53 13.75 14.09 14.86
14 O + HCl→ OH + Cl 9.36 4.76 3.48 0.67 4.78 1.54
15. CH3 + NH2→ CH4 + NH 22.40 5.16 16.59 18.06 17.64 20.75
16. C2H5 + NH2→ C2H6 + NH 18.30 3.60 13.90 15.56 15.02 17.87
17. NH2 + C2H6→NH3 + C2H5 17.40 1.72 14.71 13.59 15.75 15.13
18. NH2 + CH4→ NH3 + CH3 17.80 4.26 12.69 11.69 13.75 13.89
19. s-trans cis-C5H8→ s-trans cis-C5H8 38.40 0.41 35.59 36.20 36.71 37.77

MAE − 4.23 4.50 6.26 3.58 4.69
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Table A.11: FORWARD barrier heights of non-hydrogen transfer reactions for the
NHTBH38/04 test set for the exchange-correlation functional shown in each column us-
ing aug-cc-pVQZ basis set. All quantities are in kcal/mol. The experimental values are
taken from [195].

Molecule Expt B3LYP PBE0 TPSSh HSE06 DME-sc-TPSSc
1. H + N2O→ OH + N2 17.13 11.39 13.93 9.41 14.42 11.06
2. H + HF→ HF + H 42.18 30.91 33.64 29.08 34.21 32.18
3. H + ClH→ HCl + H 18.00 12.75 13.69 9.06 14.25 14.84
4. H + FCH3→HF + CH3 30.38 21.58 25.48 19.72 25.57 22.35
5. H + F2→ HF + F 2.27 43.76 47.59 40.31 47.74 44.30
6. CH3 + FCl→ CH3F + Cl 6.75 -1.05 1.47 -1.61 1.82 2.80
7. F- + CH3F→FCH3 + F- -0.34 -2.21 -1.01 -4.67 -0.22 -5.09
8. F-...CH3F→ FCH3...F- 13.38 10.46 11.90 8.19 12.09 8.88
9. Cl- + CH3Cl→ ClCH3 + Cl- 3.10 -0.30 1.10 -2.77 1.48 -3.35

10. Cl-...CH3Cl→ ClCH3...Cl- 13.41 9.12 11.14 7.21 11.09 7.65
11. F- + CH3Cl→ FCH3 + Cl- -12.54 -14.73 -13.73 -17.25 -13.08 -18.46
12. F-...CH3Cl→ FCH3...Cl- 3.44 0.48 1.78 -1.23 1.81 -1.08
13. OH- + CH3F→ HOCH3 + F- -2.44 -4.00 -3.29 -6.56 -2.52 -6.53
14 OH-...CH3F→ HOCH3...F- 10.96 8.16 9.21 5.64 9.38 6.62
15. H + N2→ HN2 14.36 7.51 8.53 4.10 9.09 6.23
16. H + CO→ HCO 3.17 -0.63 0.24 -4.27 0.67 -2.56
17. H + C2H4→ CH3CH2 1.72 -0.18 0.67 -3.93 1.06 -3.58
18. CH3 + C2H4→ CH3CH2CH2 6.85 6.05 4.12 4.16 5.24 4.72
19. HCN→ CNH 48.07 47.39 46.30 47.41 46.55 47.49

MAE − 6.12 5.14 8.10 4.75 7.12

Table A.12: BACKWARD barrier heights of non-hydrogen transfer reactions for the
NHTBH38/04 test set for the exchange-correlation functional shown in each column us-
ing aug-cc-pVQZ basis set. All quantities are in kcal/mol. The experimental values are
taken from [195].

Molecule Expt B3LYP PBE0 TPSSh HSE06 DME-sc-TPSSc
1. H + N2O→ OH + N2 82.27 73.12 69.18 66.70 71.42 66.37
2. H + HF→ HF + H 42.18 30.91 33.64 29.08 34.21 32.18
3. H + ClH→ HCl + H 18.00 12.75 13.69 9.06 14.25 14.84
4. H + FCH3→ HF + CH3 57.02 48.61 49.82 45.83 51.06 47.17
5. H + F2→ HF + F 105.80 145.94 149.45 138.61 150.61 137.39
6. CH3 + FCl→ CH3F + Cl 59.16 51.06 53.51 47.81 53.81 48.25
7. F- + CH3F→ FCH3 + F- -0.34 -2.21 -1.01 -4.67 -0.22 -5.09
8. F-...CH3F→ FCH3...F- 13.38 10.46 11.90 8.19 12.09 8.88
9. Cl- + CH3Cl→ClCH3 + Cl- 3.10 -0.30 1.10 -2.77 1.48 -3.35

10. Cl-...CH3Cl→ ClCH3...Cl- 13.41 9.12 11.14 7.21 11.09 7.65
11. F- + CH3Cl→ FCH3 + Cl- 20.11 18.42 19.68 16.76 20.16 16.70
12. F-...CH3Cl→ FCH3...Cl- 29.42 26.42 28.19 25.01 28.26 25.86
13. OH- + CH3F→ HOCH3 + F- 17.66 15.91 17.63 12.70 18.35 12.33
14 OH-...CH3F→ HOCH3...F- 47.20 45.08 48.73 42.72 48.29 41.24
15. H + N2→ HN2 10.61 10.76 11.54 9.40 11.43 8.01
16. H + CO→ HCO 22.68 24.54 25.38 23.98 25.19 22.44
17. H + C2H4→ CH3CH2 41.75 41.80 44.19 41.46 44.14 38.96
18. CH3 + C2H4→ CH3CH2CH2 32.97 29.48 34.49 29.86 33.60 29.08
19. HCN→ CNH 32.82 33.52 32.68 32.73 32.81 31.83

MAE: 5.76 5.25 7.24 4.91 6.92
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Table A.13: Thermochemistry of π system for the πTC13 test set for functional shown
in each column. All quantities are in kcal/mol. The 6-311++G(3df,3pd) basis set is used.
The experimental values are taken from [195].

Molecule Expt B3LYP PBE0 TPSSh HSE06 DME-sc-TPSSc
E2-E1 -1.40 -2.23 -2.20 -2.58 -1.99 -2.99
E4-E3 -8.80 -2.40 -2.98 -1.38 -2.84 -0.57
E6-E5 -14.30 -5.54 -6.41 -3.93 -6.04 -2.68

P-2 167.81 168.54 170.77 172.06 171.29 172.13
P-4 193.45 198.54 198.25 200.96 199.21 201.24
P-6 209.68 216.32 215.73 218.84 216.79 230.76
P-8 219.67 227.62 226.90 230.31 228.01 239.01
P-10 225.95 235.68 234.83 238.44 236.04 217.41
SB-2 214.46 215.37 216.54 217.24 216.97 231.60
SB-4 226.15 229.77 230.63 231.63 231.15 241.36
SB-6 233.44 239.46 240.09 241.38 240.69 248.29
SB-8 238.16 246.22 246.69 248.23 247.38 248.29
SB-10 240.97 251.29 251.61 253.41 252.42 253.54
MAE − 5.77 5.89 7.82 6.54 8.17

Table A.14: Alkyl Bond Dissociation Energies for the ABDE12 test set for functional
shown in each column. All quantities are in kcal/mol. The aug-cc-pVQZ basis set is
used. The experimental values are taken from [195].

Molecule Expt B3LYP PBE0 TPSSh HSE06 DME-sc-TPSSc
C2H6 97.39 91.71 95.29 90.41 92.85 90.17

iPr-CH3 95.00 84.99 89.16 83.90 86.46 86.79
C2H6O 89.79 82.33 85.30 81.57 82.71 83.49

iPr-OCH3 91.51 79.68 83.07 78.90 80.16 83.65
Et-H 108.92 106.34 104.71 106.45 103.80 105.98

Et-CH3 95.89 88.27 92.13 87.08 89.61 88.22
Et-OCH3 95.26 82.09 85.23 81.27 82.55 84.38

Et-OH 100.29 93.34 95.88 92.10 93.25 94.27
tBu-H 103.86 99.59 98.08 99.76 97.10 100.71

tBu-CH3 93.67 81.64 86.19 80.68 83.24 85.75
tBu-OCH3 89.27 75.87 79.64 75.26 76.41 82.07

tBu-OH 115.02 90.95 93.92 89.60 90.92 95.13
MAE 9.91 7.26 10.73 9.73 7.93

Table A.15: Isomerization Energies for the IsoL6 test set for functional shown in each
column. All quantities are in kcal/mol. The 6-311++G(3df,3pd) basis set is used. The
experimental values are taken from [195].

Molecule Expt B3LYP PBE0 TPSSh HSE06 DME-sc-TPSSc
10- 6.82 2.72 5.85 2.50 5.31 2.64
13- 33.52 30.24 31.47 28.68 31.34 29.21
14- 5.30 3.96 5.75 3.40 5.14 3.42
20- 4.66 4.28 5.13 4.25 5.04 3.19
3- 9.77 7.39 11.40 8.22 10.27 8.39
9- 21.66 17.97 18.68 16.15 17.96 20.41

MAE 2.54 1.44 3.10 1.42 2.42
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Table A.16: Reaction Energies for the HC7 test set for functional shown in each column.
All quantities are in kcal/mol. The 6-311++G(3df,3pd) basis set is used. The experimental
values are taken from [195].

Molecule Expt B3LYP PBE0 TPSSh HSE06 DME-sc-TPSSc
E22 - E1 14.34 0.12 24.43 16.50 20.58 16.44
E31 - E1 25.02 2.67 33.42 21.35 28.22 20.98
(CH3)3CC(CH3)3→ n-C8H18 1.90 -7.86 -4.54 -5.80 -6.45 3.21
n-C6H14 + 4 CH4→ 5C2H6 9.81 4.64 5.85 4.36 5.15 9.11
n-C8H18 + 6 CH4→ 7C2H6 14.84 6.86 8.67 6.44 7.63 13.64
adamantane→ 3 C2H4 + 2 C2H2 193.99 164.78 215.80 185.27 201.95 187.98
biclo[2.2.2]octane→ 3 C2H4 + C2H2 127.22 104.36 140.87 119.13 131.04 120.04
MAE 15.93 10.07 6.31 5.92 3.21
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B.1 Generalized Coordinate Transformation in 2D

The spherically averaged exchange hole density is related to the 1st order reduced density

matrix (DM) as,

〈ρxσ(~r, ~r + ~u)〉 = −〈|Γ1σ(~r, ~r + ~u)|2〉
ρσ(~r)

. (B.1)

The 1st order reduced DM in related to the KS orbitals as,

Γ1σ(~r, ~r + ~u) =
σ occ∑
i

Ψ∗iσ(~r)Ψiσ(~r + ~u) . (B.2)

However, one can relate the reduced DM and its cylindrical averged as,

〈|Γ1σ(~r, ~r + ~u)|〉 =
1

2π

∫
Γ1σ(~r, ~r + ~u) dΩu . (B.3)

Now, we introduce the novel technique of density matrix expansion proposed by Tao

et. al. [234]. This is based on a general linear coordinate transformation from (~r, ~r+~u)→

(~r1, ~r2). Lets consider the matrix transformation,

 ~r

~r + ~u

 =

a b

c d

 ·
~r1

~r2

 . (B.4)
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This gives a coordinate-transformed ~r = r1 + (d− 1)~u which is coupled with the con-

dition that this coordinate transformation make Jacobian of transformation unity, where

Jacobian of transformation J is defined as,

J =

a b

c d

 . (B.5)

Under the general coordinate transformation, the exchange energy remains invariant i.e.,

Ex = −1

4

∫
d2r

∫
d2u
|Γ (~r, ~r + ~u)|2

u
, (B.6)

where

~r = a~r1 + b~r2

~r + ~u = c~r1 + d~r2 (B.7)

Using this fact the Eq(B.6) becomes,

Ex =
1

4

∫
d2r1

∫
d2r2
|Γ t

1(a~r1 + b~r2, c~r1 + d~r2)|2

|(d− b)~r2 − (a− c)~r1|
|J |3 . (B.8)

Now, in proper coordinate transformation, J = 1, which implies ad− bc = 1. Therefore,

u transforms as,

~u = (c− a)~r1 + (d− b)~r2 . (B.9)

All these conditions implies that

d− b = 1

a+ d = 2

c+ d = 1 . (B.10)
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Using all these the exchange energy expression of Eq.(B.8) becomes,

Ex =
1

4

∫
d2r1

∫
d2r2
|Γ t

1(a~r1 + b~r2, c~r1 + d~r2)|2

|(d− b)~r2 − (a− c)~r1|
|J |3

=
1

2

∫
d2r1

∫
d2r2

ρtx(~r1, ~r2)ρ(~r1)

|~r2 − ~r1|
(B.11)

where,

ρtx(~r1, ~r2) = − |J |3|~r2 − ~r1|
|(d− b)~r2 − (a− c)~r1|

× |Γ
t
1(a~r1 + b~r2, c~r1 + d~r2)|2

2ρ(~r1)
. (B.12)

This is the coordintate transformed exchange-hole. Upon simplifying this becomes,

ρtx(~r1, ~r2) = −|Γ
t
1(~r1 + [d− 1]~u, ~r1 + d~u)|2

2ρ(~r1)

= ρx(~r1 + [d− 1]~u, ~r1 + [d− 1]~u+ ~u)
ρ(~r1 + [d− 1]~u)

ρ(~r1)
. (B.13)

The on-top (~u = 0) exchange hole density is just ρtx(~r1, ~r1) = ρx(~r1, ~r1) = −ρ
2
. In the

above expression, d = 1 corresponds to the similarity transformation that make the ex-

change hole unaltered. Whereas, d = 1 corresponds to the exchange energy density that

decay asymptotically ( − 1
2

1
r
). But, for other values of d, the corresponding exchange en-

ergy density decays exponentially. Therefore, makes it more localized near the reference

point. To exemplify the asymptotic and expontial decay of exchange energy density, we

start with the exchange energy density under generalized coordinate transformation. The

ground state of single electron wavefunction for the 2D quantum harmonic oscillator is

given by,

ψσ(r) =
α√
π
exp
[
− α2r2

2

]
. (B.14)

and the corresponding exchanage energy density for 2D QHO as,

εxσ(r) = −|α|
2

√
πexp

[
− α2r2

2

]
I0

(α2r2

2

)
. (B.15)

Now, under generalised coordinate transformation i.e., rd → dr + (1 − d)r′, with u =
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r′ − r, the spin-polarized exchange hole density for the 2D quantum harmonic oscillator

becomes,

εxσ(rd) = −
∫ ∞

0

du

∫ 2π

0

dφ
|α|
2

√
πexp

[
− α2

2

{
r2
d + (1− d)2u2 − 2(1− d)rducosφ

}]
I0

[α2

2
(r2
d + (1− d)2u2 − 2(1− d)rducosφ)

]
. (B.16)

As, rd →∞, the corresponding exchange hole density behaves as,

lim
rd→∞

εσx(rd) ≈ −
exp−2(1−d)α2rd

rd
. (B.17)

Thus, the correct asymptotic behavior of exchange energy functional achieved only

for d = 1. For other values of d, the exchange energy shows exponential decay. On the

other hand, we observe faster decay of exchange energy density at d = 0.5 compared to

d = 1. This makes the exchange hole more localized around the reference point.

B.2 Exchange Hole Under Generalized Coordinate Trans-

formation

The property of exchange hole under generalized coordinate transformation is of great

interest as the exchange energy can be evaluated directly from the cylindrically averaged

exchange hole density. Before discussing the effect of generalized coordinate transforma-

tion, we consider the Becke’s exchange hole expansion in 3D and its generalization in 2D

by Pittalis et.al. [395] The gradient expansion of cylindrically averaged exchange hole in

2D is obtained using Taylor series expansion as

< ρx2D(~r, ~u) >cyl = < e~u.
~∇

occ∑
i

Ψ∗i (~r)Ψi(~r + ~u)|~u=0 >cyl

= −ρ(~r)

2
− 1

4

[1

2
∇2ρ(~r)− 2τ +

1

4

|~∇ρ(~r)|2

ρ(~r)

]
u2 . (B.18)
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This is the exact expansion of cylindrically averaged exchange hole considering expansion

upto u2 in Taylor series. However, this popular expansion failed to achieve the correct uni-

form density exchange hole expansion. Also, it can not be used directly to the exchange

energy expression due to divergency issue.

Now, we turn to discussing the effect of generalized coordinate transformation for

exchange hole expansion. To do this, we consider the Taylor series expansion of the

exchange hole around u = 0. Under the geralized coordinate transformation r transform

into rd → dr + (1 − d)r′, with u = r′ − r, Using this fact and doing the Taylor series

expansion and keeping the term upto u2, we obtain the expression for cylindrical averaged

exchange hole as,

〈ρtx2D〉 = −ρ(~r)

2
− 1

4

[(
d2 − d+

1

2

)
∇2ρ(~r)− 2τ +

1

4

(
2d− 1

)2 |~∇ρ(~r)|2

ρ(~r)

]
u2 . (B.19)

This is the more general form than the Taylor series expansion of cylindrical averaged

exchange hole in 2D because it restores the conventional cylindrically averaged exchange

hole at d = 1. As expected, the coordinate transformation only affects the in-homogeneous

terms but the homogeneous term remains invariant as the homogeneity of a system is

translationally (also rotationally) invariant. All these facts has been used in chapter 6 to

propose a generalised coordinate transformation based exchange hole model in 2D.

B.3 Negele and Vautherin Like Model in 2D

In chapter 6, we used the Negele and Vautherin (NV) density matrix expansion [414] to

construct its 2D counterpart using more advanced technique. This model is important

because it is the starting point of the series resummation of the density matrix expansion

as proposed in chapter 6. However, one can construct a NV model in 2D similar to the 3D.

To do so, we start with the generalized Gegenbauer addition theorem of Bessel functions

which is obtained by expressing the plane wave in terms of Bessel and Hypergeometric

functions. The expression of the plane waves expansion in accordance with the above
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theorem is as follows,

eizcosφ = 2νΓ (ν)
∞∑
m=0

(−1)m(2m+ ν)
J2m+ν(z)

zν
Cν

2m(icosφ), (B.20)

where J2m+ν(z) is the Bessel function and Cν
2m(icosφ) is associated with the generalized

Hypergeometric function through

Cν
2m(x) = (−1)m

m+ ν − 1

m

 2F1(−m,m+ ν;
1

2
;x2) . (B.21)

In the present study, the left side of Eq.(B.20) is recognized as

eiku(−icosφy)/u = 2νΓ (ν)
∞∑
m=0

(−1)m(2m+ ν)
J2m+ν(ku)

(ku)ν
Cν

2m(−icosφy/u) . (B.22)

For ν = 1, the reduced density matrix becomes,

Γt1 = 2ρ
J1(ku)

ku
+

6J3(ku)

k3u

[
4 cos2 φ{(d2 − d+

1

2
)∇2ρ ,−2τ}+ k2ρ

]
(B.23)

By taking the cylindrical average of the above reduced density matrix it becomes,

〈|Γt1(r, r + u)|2〉 = 〈|Γt1(r, r + u)|〉2 +O(u4)

= −ρ(~r)

2
− 1

4

[(
d2 − d+

1

2

)
∇2ρ(~r)− 2τ ]u2 . (B.24)

The Eq.(B.24) leads to the cylindrically averaged exchange hole as,

〈ρx(r, u)〉cyl = −2J2
1 (ku)

k2u2
ρ− 24J1(ku)J3(ku)

k4u2
{(d2 − d+

1

2
)∇2ρ− 2τ +

1

2
k2ρ} .

(B.25)
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Table B.1: Exchange energy obtain from Eq.(B.27). The NV model underestimates the
exchange energy due to violation of sum rule as shown in last column of the table.

N ω −E2D−EXX
x −E2D−LDA

x −E2D−NV
x

2 1.00 1.083 0.967 0.316
6 1.00 3.732 3.537 2.620

12 1.00 8.275 8.013 6.740
20 1.00 14.957 14.638 13.118

This becomes the Negele-Vautherin (NV) model in 2D upon substituting d = 1
2

〈ρ2D−NV
x (r, u)〉cyl = −2J2

1 (ku)

k2u2
ρ− 24J1(ku)J3(ku)

k4u2
{1

4
∇2ρ− 2τ +

1

2
k2ρ} , (B.26)

and the corresponding exchange energy is given by,

E2D−NV
x = −

∫
ρ(r)ε2Dx

[
1 +

2

5
{

1
4
∇2ρ(r)− 2τ + 2τunif

2τunif
}
]

(B.27)
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Figure B.1: Shown is the violation of the sum rule of the NV exchange hole as obtained
from Eq.(B.26).

The exchange hole of NV model violets the sum rule (as shown in Fig. B.1). There-

fore, underestimate the magnitude of energy (as shown in Table B.1). However, using the

advanced density matrix expansion techinique of chapter 6, we recovered all the desired

properties of the exchange hole.
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