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Chapter 6

Conclusion
Relativistic heavy-ion collisions have contributed immensely to our understanding of

strongly interacting matter at finite T and µB. LQCD calculations suggest strongly

interacting matter at µB = 0 and finite T undergoes a smooth crossover transition

from hadronic to a QGP phase. In this thesis, we were mainly interested in the

thermodynamic properties of the hadronic phase of the QCD phase diagram.

HRG models are a class of models that are widely used to study the hadronic

phase. In the simplest form, HRG model describes a gas of non-interacting hadrons

and resonances called the ideal HRG (IDHRG) model. However, realistically hadrons

are strongly interacting and one should take into account the interaction between

them. At the same time, IDHRG fails to describe LQCD data for observables like

second-order charge susceptibility (χ2
Q), the difference between the second and the

fourth-order baryon susceptibility (χ2
B − χ4

B) and the baryon-strange correlator (CBS)

and these observables are important for locating the QCD critical point. Previous

works tried to argue that discrepancy of observables like CBS can be removed by

allowing additional experimentally unconfirmed strange hadrons into the ideal HRG

spectrum. However, we argued that increasing the degeneracies in IDHRG model by

adding additional resonances, might explain lattice data but we can take an alter-

nate approach by including interactions. Some earlier reports e.g. [1] observed that

in certain channels like ππ interaction, the attractive and repulsive interaction can-

cel each other and hence the net effect of interaction is equivalent to considering all
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hadronic resonances as free particles, which nevertheless is the basic premise of ideal

HRG. However, we found that such cancellations in certain channels are coinciden-

tal and the resultant interaction when one considers various channels is substantial

and far from exact cancellation. In its core, the S-matrix formalism is a relativistic

generalization of the thermodynamic virial expansion which has been used to cal-

culate the thermodynamic properties of interacting (non-ideal) non-relativistic gas.

An important ingredient in such calculations is the scattering phase-shifts which are

the elements of the S-matrix and encodes the information about the strength and

the nature of interaction: attractive or repulsive. The phase-shifts can be calculated

both theoretically or by fitting to experimentally measured phase-shifts. We took

the hybrid approach, i.e. attractive interaction was calculated using K-matrix for-

malism whereas the repulsive interaction was calculated by fitting the phase-shifts to

their experimentally measured values. Theoretically, when the interaction involves

multiple resonances, care should be taken while calculating phase-shifts, since the

S-matrix is strictly unitary and using a naive Breit Wigner parametrization would

spoil this. However, it was shown that the K-matrix formalism is by construction

unitary and therefore above problems never arise. On the other hand for repulsive

interactions and for interactions where the information about mass and width of the

resonance are not available, the K-matrix formalism is not applicable, in such cases,

we resort to the extraction of phase shifts from experimental data. A comparison

of thermodynamic quantities considering only attractive interaction using K-matrix

formalism with IDHRG model calculated using the same number of hadrons, shows

that the results obtained from K-matrix formalism is larger. We found that the

bulk thermodynamic variables for gas of hadrons such as energy density, pressure,

entropy density, speed of sound and specific heat are suppressed by the inclusion of

repulsive interactions and they more sensitive for second and higher-order correlation
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6 Conclusion

and fluctuation of conserved charges. A good agreement between the observables

CBS, χ
2
B − χ4

B and χ2
Q calculated using S-matrix formalism with both attractive and

repulsive interactions and LQCD simulations was found.

We also tried to use this formalism in calculating transport quantities for the

hadronic phase. In such a framework, the hadron gas would contain multiple compo-

nent mixtures of stable hadrons which are interacting within themselves by resonance

formation. Calculation of transport coefficients of a system containing a few stable

hadrons e.g, π − K − N has been done previously using experimentally measured

cross-sections. However, experimentally measured cross-sections are only available

for a limited number of species. We tried to enlarge the basis, by adding more stable

hadrons to the mixture by calculating the cross-section directly from K-matrix. The

reason for enlarging the basis is two-fold: first, new channels of interaction (through

resonance formation) will open up, which will relax the system faster than with fewer

hadrons; second, the system’s degeneracy also increases, which affects equilibrium

quantities such as entropy density and number density, etc., which in turn will affect

the dimensionless ratio of transport coefficients. We calculated these transport co-

efficients using the Chapman-Enskog method for both zero and non-zero µB. Finite

baryon density affects the concentration of various species interacting in the mix-

ture and thus the overall weight coming from different channels, on the final value of

transport coefficients. Our results of ηv/s is an increasing function of T for T < 150

MeV and decreasing for T > 150 MeV. Similarly, we found that ηs/s decreases with

temperature consistent with previous results, but the value of ηs/s is lower than pre-

vious results for all values of temperature. Our findings on transport coefficients in

the temperature range of T = 80− 110 MeV are in fair agreement with that from the

transport models, e.g., UrQMD and SMASH.

Although at µB = 0 and finite T , LQCD calculation indicates a crossover transi-
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tion from the hadronic to a QGP phase, moreover, at high µB, various model calcu-

lations predict that nuclear matter is expected to have a first-order phase transition.

To investigate the possible imprints of such a first-order transition on experimental

observables, we used the bag model to construct an EoS with a first-order phase

transition, with a suitable choice of bag parameter. For this study, we used a newly

developed 2 + 1-dimensional event-by-event viscous hydrodynamic code ARVHD (A

Relativistic Viscous Hydro-Dynamics), at
√
sNN = 62.4 GeV with two different EoS:

first a lattice QCD EoS with a crossover transition and second is the above bag model

EoS, which has a first-order phase transition. The details of numerically solving the

hydrodynamic conservation equations using the SHASTA algorithm, including vari-

ous comparisons to the analytical solution, were presented. We found that normalized

symmetric cumulants NSC(m,n), of flow harmonics vm and vn distinguishes between

the two different EoSs. We found that for mid-central collisions NSC(m,n) is larger

for the EoS with first-order phase transition irrespective of the initial conditions used.

Thus, normalized symmetric cumulants can be utilized to probe the EoS and hence

one can possibly use this observable to locate the QCD critical point.

Part of this thesis work was devoted to seeing the effects of the magnetic field

produced in the initial stages of heavy-ion collisions on the hadronic phase notably,

on the transport coefficients. Although the initial magnetic field will decay within a

few fm and becomes 3-4 order smaller than the initial value, however since the QGP

and hadronic phase has finite conductivity, which would delay the decay of these

transient fields and it might have a sizeable magnitude till the hadronic phase. The

presence of a magnetic field breaks the isotropy of the system which gives rise to the

anisotropic transport coefficients. We evaluated the anisotropic transport coefficients

of the HRG and massless QGP by solving the Boltzmann transport equation in the re-

laxation time approximation. We have used a unique tensorial decomposition through
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the use of projection tensors. Such a method reduces a lot of computational com-

plexity associated with the evaluation of the anisotropic transport coefficients. Along

with the usual relaxation time scale, an additional time scale which equals the inverse

of the cyclotron frequency appears in the presence of a magnetic field. The measure of

anisotropy turned out to be a function of the ratio of these two time-scales. We found

thirteen transport coefficients at one-derivative order or the so-called Navier Stokes

limit. Four transport coefficients were non-dissipative (does not produce entropy):

these were the two Hall viscosities, one each for Hall conductivity and Hall diffusion.

There were also nine dissipative transport coefficients: two electrical conductivities;

one transverse and one longitudinal), three shear viscosities; two transverse and one

longitudinal, two bulk viscosities; one transverse and one longitudinal, two diffusion

coefficients; one transverse and one longitudinal. The longitudinal transport coeffi-

cients did not depend on the magnitude of the magnetic field (B) and were same

as the value that one gets for B = 0. Hall type transport coefficients were zero for

zero µB . For a given value of B and µB transport coefficients increases with in-

creasing T . On the other hand for a given value of T and µB transport coefficients

decrease with increasing B. For a given T and B, Hall type transport coefficients

increase with increasing µB. We have shown that the charged hadron contribution

in the viscosity is more than 50% than the neutral hadrons. These anisotropic trans-

port coefficients should be included in magnetohydrodynamic simulations for proper

extraction of transport coefficients from experimental data.

Finally, we also tried to see the implications of hadronic interactions and the

influence of magnetic field on experimental observables, e.g., invariant transverse

momentum spectra and v2 as a function of pT . To see the effect of interactions, we used

the temperature-dependent ηs/s calculated in the S-matrix formalism for the hadronic

phase and a constant value of ηs/s = 1/4π for the high-temperature QGP phase as an
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input to the viscous hydrodynamic simulation. We compared the invariant transverse

momentum spectra and v2 of pions for a given initial energy density and freezeout

temperature but with different values of ηs/s: (i) temperature-dependent ηs/s from

S-matrix (ii) constant values of ηs/s = 1/(4π), 2/(4π). We found from transverse

momentum spectra that the effective contribution from the temperature-dependent

ηs/s, lies between ηs/s = 1/(4π) and ηs/s = 2/(4π). However, the suppression of v2

for pT > 1 GeV using the temperature-dependent ηs/s is even larger than using ηs/s =

2/(4π) . To see the influence of anisotropic transport coefficients on experimental

observables, one needs to do a numerical magnetohydrodynamics simulation, which

modifies the invariant yield from fluid evolution as well as the δf corrections due to

the magnetic field in the Cooper-Frye freezeout formula. The complete numerical

magnetohydrodynamic simulation is an involved study and is out of the scope of

the present thesis. Moreover, for simplicity we considered a fluid with a non-zero

transverse flow along with a longitudinal Bjorken expansion, using a blast wave model

and used the δf corrections due to the presence of magnetic field to the distribution

function at freezeout. One notices sizable correction to the invariant spectra and

v2 when the magnetic field is present than without it. However, we found a non-

monotonic behaviour of δf correction to the observed invariant spectra and v2 as a

function of the magnetic field. This can be attributed to the non-monotonic behaviour

of anisotropic transport coefficients as a function of magnetic field.

Following are the future directions, some of which are currently undergoing.

� To describe the experimentally measured yields of hadrons using S-matrix for-

malism, one has to include resonances which decay to three or more stable

hadrons directly or through the intermediate resonance formation. One of the

promising way in this direction would be the B-matrix [2, 3] which is the three-
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body analogue of the two-body K-matrix formalism.

� In this thesis, we derived the anisotropic transport coefficients in the presence

of the magnetic field at one derivative order in thermodynamic variables. How-

ever, in the context of numerical magnetohydrodynamic simulation, it is also

important to derive the relaxation equations for the dissipative quantities in

the presence of a magnetic field. An attempt in this direction has been recently

been done using 14-moment approximation and RTA [4–6].
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Abstract

Quantum Chromodynamics (QCD) is the fundamental theory of strong interactions. QCD predicts that at
high temperature and density, strongly interacting matter undergoes a phase transition from a state of hadronic
constituents to a deconfined state of quarks and gluons called the quark-gluon plasma (QGP). By colliding
heavy-ions at ultra-relativistic energies, one expects to create matter under conditions that are sufficient for
deconfinement to happen. It has been known that QGP behaves like a nearly perfect fluid with a small value
of the shear viscosity [ to the entropy density B ratio [/B. However, theoretically, the value of [/B ratio is
temperature-dependent. Hence, a systematic study of transport coefficients throughout the evolution, i.e., starting
from the QGP stage and ending at the hadronic stage is important to assess the effect of transport properties
on the bulk evolution of matter. The first part of the dissertation focuses on the thermodynamic and transport
properties of an interacting hadronic matter produced in the heavy-ion collisions.

The ideal hadron resonance gas (HRG) model is successful in reproducing the zero `� LQCD data of bulk
properties of the hadronic matter like pressure, energy density etc. at temperatures below )2 ≈ 156.5 MeV. The
partition function of a hadronic gas can be decomposed into a free and interacting part. Considering that only the
resonances contribute to the interacting part, it can be shown that the net effect of the interacting part is equivalent
to considering all these hadronic resonances as free particles in a narrow resonance width approximation. This is
the basic premise of ideal HRG. However, when the temperature is close to )2 , ideal HRG model does not agree
with the lattice QCD data for observables like second-order charge susceptibility (j2

&
), the difference between the

second and the fourth-order baryon susceptibility (j2
�
− j4

�
) and the baryon-strange correlator (��() etc. These

observables are sensitive probes of the deconfinement and provide information about the thermal condition of
QCD. Interaction among the constituent hadrons is expected to affect these observables. We have implemented
interactions among hadrons in the HRG model using the S -matrix framework. The elements of S -matrix are
related to the two-body scattering phase shift s of interacting hadrons. The positive phase shifts, related to the
attractive interactions are calculated using the K-matrix formalism while the negative phase shift, related to
repulsive interactions are obtained from experimentally measured phase shifts We observe a good agreement
between results from our S -matrix formalism and the lattice QCD data for the aforementioned higher-order
susceptibilities along with the speed of sound and the interaction measure etc. Using the S -matrix formalism,
we have also calculated the temperature ()) and baryon chemical potential (`�) dependence of the transport
coefficients (shear viscosity, bulk viscosity, heat conductivity, and diffusion coefficient) for the multi-component
system of hadrons. Our calculation predicts smaller values of the shear viscosity coefficient as a function of the
temperature as compared to previous results in the literature. These calculations are performed both at zero and
non-zero baryon chemical potential (`�) using the Chapman-Enskog (CE) method.

An alternative mechanism that may be responsible for a small viscosity of QCDmatter is when the interacting
plasma is subjected to an external electromagnetic field. Ultra-intense transient electromagnetic fields are
generated in the initial stages of high energy heavy-ion collisions. The transport coefficients which are isotropic
in the absence of external fields become anisotropic in the presence of a magnetic field. The second part of
this dissertation deals with the calculation of these anisotropic transport coefficients. For parity-preserving
conducting fluids in a magnetic field, we found thirteen transport coefficients among them four coefficients
are non-dissipative, and the remaining nine are dissipative coefficients at one-derivative order or the so-called
Navier Stokes limit. The values of these transport coefficients are computed for HRG using the relaxation time
approximation.

We also investigate the sensitivity of experimental observables like harmonic flow: (i) to the input Equation
of State (EoS) (ii) to the input temperature-dependent and anisotropic transport coefficients using a numerical
relativistic hydrodynamicmodel. The numerical code that we developed to carry out these simulations is named as
ARVHD (A Relativistic Viscous Hydro-Dynamics). From the first study, we find that the Normalized Symmetric
Cumulants #(� (<, =) between different flow harmonics E< and E= (particularly the coefficient #(� (2, 3)) is
a sensitive observable which can differentiate between EoS with a first-order phase transition to that with a
crossover transition irrespective of the initial condition used. From the second study, we find that momentum
anisotropy decreases considerably with time for a temperature-dependent shear viscosity than that with a constant
value. Similarly, noticeable changes in the spectra and the elliptic flow of charged pions were found with magnetic
field dependent anisotropic transport coefficients.

1



Chapter 1

Introduction

1.1 Quantum Chromodynamics

Quantum Chromodynamics (QCD) is the theory of strong interaction. QCD is a

quantum field theory and was developed along lines similar to the quantum electro-

dynamics (QED), which is a theory of electromagnetic interaction. However, unlike

QED, which has U(1) gauge group and thus has one kind of charge, QCD has a

SU(3) gauge group with three different kinds of charge called ’colours’, [1, 2]. The

gauge boson associated with the U(1) gauge group is the well-known photon while

the SU(3) gauge group has 8 associated gauge bosons called gluons. The matter

particles that carry colour charge are called quarks, which are of 6 different flavours

- up, down, strange, charm, bottom and top- and are spin 1/2 fermions, while for

QED the matter particles are called leptons with 3 different flavours- electron, muon

and tau. A quark’s colour can take one of three values of charge: red, green, and

blue. An antiquark can take one of three values of colour charge: antired, antigreen,

and antiblue. Although quarks do have a colour charge, but in nature they are al-

ways observed in groups of two (colour + anti-colour) or three (red + green + blue)

for which the total colour charge is always zero. Thus, unlike electric charge which

can be experimentally measured, colour charge is not experimentally measurable. A

third crucial difference between QED and QCD is that unlike electrically uncharged
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photons, gluons are colour charged objects and hence can interact with themselves.

The last two observations is an important ingredient for describing properties

specific to non-Abelian theories like QCD called confinement and asymptotic freedom

[3, 4]. Confinement is the property due to which in nature we never find coloured

objects like quarks and gluons which are always confined into colourless hadrons like

protons and neutrons, while asymptotic freedom is the property by which, quarks and

gluons can be liberated from hadrons at sufficiently high energies. This is due to the

fact the QCD coupling constant αs(Q), which is a function of energy or momentum

transfer Q, decreases with increasing energy or Q. In Fig. (1.1), results of αs(Q)

are graphically displayed, as a function of the momentum transfer Q [5]. The data

(symbols) are compared with the theoretical QCD prediction (lines) for the running

αs.

The QCD Lagrangian density is given by

L = ψ̄ (iγµDµ −m)ψ − 1

4
F µν
a F a

µν + Lgauge , (1.1)

for Nc colors and Nf flavors, ψ is the 4NcNf dimensional spinor of quark fields, ψ̄

is the conjugate spinor, γµ are the Dirac matrices and m is the quark mass matrix.

The covariant derivative is defined as Dµ = ∂µ − igAa
µTa, with the strong coupling

constant g =
√
4παs, the gluon fields Aa

µ and the generators T a of the local SU(Nc)

symmetry. Here, a is the color index a = 1...8. The gluonic field strength tensor is

defined as

F µν
a = ∂µAν

a − ∂νAµ
a + gfabcA

µ
bA

ν
c , (1.2)

where fabc are the structure constants of SU(Nc). The term Lgauge in Eq. (1.1)

contains gauge fixing terms and the contribution from Faddev-Popov ghosts and will
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1 Introduction

Figure 1.1: QCD running coupling as a function of momentum transfer. (Fig. from
[5].)

not be specified further. While the QCD Lagrangian Eq. (1.1) is chirally symmetric

in the massless m = 0 limit, the ground state of QCD is not and is spontaneously

broken by a nonvanishing expectation value of
�
ψ̄iψj

�
vac.

�= 0, where i, j = 1, ..., Nf .

This is analogous to the spontaneous breaking of rotational symmetry in spin models

with ferromagnetic interaction due to the non-vanishing value of magnetization in the

ferromagnetic phase. A natural question is then to ask whether the broken symmetries

of QCD would be restored by heating the system to a sufficiently high temperature,

in the same way as the rotational invariane of a ferromagnet is restored by raising its

temperature. It was realized later that, ”by distributing high energy over a relatively

large volume” one could restore these symmetries [6]. When temperatures are low

quarks and gluons will be confined to hadrons, while at large temperatures one would

expect them to propagate freely in a state of deconfined quarks and gluons that has

been dubbed as the quark-gluon plasma (QGP) [7–10].

The most simple approach from a conceptual point of view is to determine the
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thermodynamical properties of the QGP through a perturbative computation of the

QCD partition function in terms of a power series αs [11–13]. In such analytic cal-

cualtions, one has complete control over the physical assumptions entering the cal-

culation. However, perturbative calculation break down when αs ∼ 1 which happens

for temperatures of order ∼ 150 MeV [14]. Thus, perturbative methods are inap-

plicable for describing the quark-hadron phase transitition where αS � 1. Lattice

QCD (LQCD) is in principle an exact method, till date to solve QCD at zero baryon

chemical potential (µB ≈ 0) [15]. LQCD is a Monte-Carlo numerical simulation of

QCD on a discretized lattice [16, 17]. For many years, LQCD studies at nonzero

µB were hindered by numerical problems related to the so-called sign problem of the

fermion determinant [18]. However, recently some progress has been made by devis-

ing methods [18, 19] to explicitly avoid the sign problem at small µB. Lattice QCD

simulations show that the transition from the QGP phase to the hadronic phase at,

µB = 0, is not a first or second order phase transition, but a smooth crossover [21,

22]. A crossover transition is one, when the phase changes smoothly within a narrow

range of thermodynamical parameters, in this case T ∼ 150 − 170 MeV and µB ∼ 0

MeV, but the pressure and all its derivatives remain continuous. In statistical me-

chanics, universality is the observation that there are properties for a large class of

systems that are independent of the dynamical details of the system. Based on these

universality arguments 1 [23], it has been proposed that the crossover at µB = 0

turns to first-order phase transition somewhere in the finite µB region. For a phase

transition to be first-order, the first derivatives are discontinuous while the pressure

P is continuous. The points in the (T, µ) plane where a phase transition occurs are

continuously connected and form a line of phase transitions in the phase diagram.

1This is because, QCD with three quark flavours lies in the universality class of the Ising model
in an external field, which has a first order phase transition.
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Figure 1.2: This schematic QCD phase diagram as a function of temperature (T ) and
baryon chemical potential (µB) i.e., the excess of quarks over antiquarks. The regions
of the phase diagram traversed by the expanding QGP formed in heavy ion collisions
with varying center-of-mass energy

√
sNN are also sketched. At higher baryon density

and lower temperature, cold dense quark matter is expected to behave as a color
superconductor. (Fig. from [20].)
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This line ends at a critical point where the transition becomes second order. Signifi-

cant theoretical and experimental efforts to locate the QCD critical point is currently

in progres [17, 24–28]. Further details of LQCD will be discussed in sec. 2.1.4.

In general, depending on the temperature, T , and the baryon chemical potential,

µB, QCD matter may occur in three distinct phases: the hadronic phase, the QGP,

and color-superconducting quark matter. A schematic QCD phase diagram [20],

containing possible phases of QCD matter, is depicted in Fig (1.2). In this thesis

we will mostly be interested in the study of the hadronic phase using a widely used

model called the hadron resonance gas (HRG) model [29–83]. This model assumes

an equilibrated system of known hadrons and resonances and in its simplest form is

a gas of non-interacting hadrons and resonances called the ideal HRG (IDHRG). In

the IDHRG model, one usually starts with the grand canonical partition function Z

of the hadronic matter with volume V at temperature T and chemical potential of

ith species µi, which is given as,

lnZ = V
�

i

�
d3pi

(2π)3
giri ln

�
1 + rie

β(Ei−µi)
�
, (1.3)

where, µi = BiµB with Bi as the baryon number of the ith hadronic species, µB

as baryon chemical potential. gi, Ei = (p2
i +m2

i )
1/2

are degeneracy factors and

energy of the hadrons of species i with mass mi and momentum pi respectively;

ri = ± stands for fermion or bosons respectively. The total degeneracy factor of a

particular species of hadron is obtained as gi = gsi · gIi , where gsi , g
I
i are the spin and

isospin degeneracy factors respectively. Once the partition function is defined, the

thermodynamic quantities like pressure (P ), energy density (�), net baryon density

18



1 Introduction

(n) are calculated using the standard thermodynamic relations.

P =
T

V
lnZ, (1.4)

ε =
T 2

V

�
∂ lnZ

∂T

�

µ

, (1.5)

n =
T

V

�
∂ lnZ

∂µ

�

T

. (1.6)

The entropy density s can be also obtained by using the thermodynamic relation

s =
1

T
(ε+ P − µn) (1.7)

The HRG provides a reasonable description of lattice QCD data of EoS upto tem-

peratures ∼ 150 MeV [84–87]. The model unlike LQCD can be easily be extended to

finite µB. The HRG models have quite successfully described the hadron multiplic-

ities produced in relativistic nuclear collisions over a broad range of center of mass

energies [38, 88–90]. Deviations from the IDHRG (and its other variants) from lattice

data at high temperatures has been often interpreted as signatures of deconfinement.

IDHRG assumes all hadrons including resonances are stable under strong inter-

action. However, it is known that resonances have finite lifetime (∼ 10−23 s) as they

have finite decay widths. In this thesis we will include interaction in a system consist-

ing of hadronic gas using the S-matrix framework. Considering that only resonances

contribute to the interacting part, it can be shown that in the limit of vanishing decay

width, resonances behave as stable particles [91]. Hence, in this thesis (chapter 2), we

will construct a more ”realsitic” generalization of the IDHRG model by incorporating

interactions among the hadronic constitutents.
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1.2 Units

We will be using natural units throughout this thesis work, so that � = c = kB = 1,

in all the physical quantities unless stated otherwise. As a result, the unit of energy,

mass and momentum, etc. are taken to be GeV, where 1 GeV ≈ 10−27 kg, while

length and time are characterized in fm, where 1 fm = 10−15 m. The signature of the

metric tensor is always taken to be gµν = diag(+1,−1,−1,−1). Upper greek indices

correspond to contravariant and lower greek indices covariant. The three vectors are

denoted with latin indices.

1.3 Relativistic Heavy Ion Collision

On the experimental side, investigation on the QCD phase diagram is done using

relativistic heavy-ion collision. Collider facilities, such as those of CERN (conseil eu-

ropéen pour la recherche nucléaire) in Switzerland/France [92] and BNL (Brookhaven

National Laboratory) in the U.S.A [93–96] are necessary for carrying such studies.

While the SPS (Super Proton Synchrotron) collider at CERN produced the first ex-

perimental evidence of the existence of the QGP phase, [97, 98] it has been replaced by

the LHC (Large Hadron Collider) since 2009, which allows one to reach temperatures

well above the phase transition. Since 1999, RHIC (Relativistic Heavy Ion Collider)

is the collider operational at BNL, with a wealth of data bringing the nucleus-nucleus

collisions carried out by SPS to a new energy regime.

In a typical high energy heavy-ion collision (HIC), two large nuclei such as Lead

(Pb)/ Gold (Au) are collided and due to a Lorentz contraction, each nuclei is a Lorentz

contracted disc. The schematic diagram of space-time evolution of the system formed

in relativistic heavy-ion collisions is shown in Fig. (1.3). Typically, one works in a
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Figure 1.3: Space-time evolution of a heavy-ion collision with QGP phase. (Fig. from
[102].)

hyperbolic coordinate system using the variables proper time τ and the space-time

rapidity η defined below

τ =
√
t2 − z2, η =

1

2
ln

�
t+ z

t− z

�
, (1.8)

where the t and z are the time and space coordinates respectively. In Fig. (1.3), lines

of constant τ are the hyperbolas, while lines of constant η are the lines emanating

from the origin. The advantage of using rapidity coordinates, is that it is additive

under Lorentz boosts. The various stages of collision are described below [99–101]:

� Pre-equilibrium : When the two Lorentz contracted nuclei, each a fraction

of a fm thick, collide, most of the incident partons lose some energy but are

not kicked by other partons at very large angles. Most of these interactions

are “soft”, i.e. they involve little transverse momentum transfer. Given, the

energy density of the system after the collision is sufficiently higher than the
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energy density of crossover transition, a deconfined state of quarks and gluons

is formed. This system is very far from equilibrium, and its very high energy

density is a consequence of the Lorentz contraction. The equilibration process

of resulting system is a highly nontrivial and is largely a unsolved problem [103,

104]. Nevertheless, the essential features of the initial stages can be efficiently

modelled by few quantities and are obtained by fitting to the measured yields of

particles2. In Fig. (1.3) τo indicates the end of pre-equilibrium stage, i.e. when

the thermodynamic variables are well defined and a locally equilibrated QGP

is formed.

� QGP evolution : The quarks and gluons produced in the previous step are

not independent and infact are so strongly coupled to each other that they form

a collective medium that expands and flows like a relativistic fluid within a time

that can be shorter than or of order O(1) fm/c in the rest frame of the fluid.

After production, each elemental volume of QGP expands in all directions. The

droplet of fluid flows hydrodynamically, as the initial high pressure drives fluid

motion, and consequent cooling. When the temperature/energy density of any

given location of fluid drops below a critical value (defined as Tc), the coloured

quarks and gluons transform into colourless hadrons. This process is known as

hadronization and is indicated in Fig. (1.3) by τc.

� Hadron gas and freezeout : Below the critical temperature Tc the system

consists of a dense gas of hadrons in thermal and chemical equilibrium due to

the inelastic collisions between them. To understand this clearly, consider the

inelastic binary process a1a2 → b1b2 with a �= b, which can be described by the

2The modelling of the initial stages will be discussed in chapter 4.
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following rate equation [105]

uµ∂µnb1 = (Gna1na2 − Lnb1nb2)− nb1∂µu
µ (1.9)

where G and L give the the chemical reaction rate for the gain process a1a2 →

b1b2 and the loss process b1b2 → a1a2, respectively. nk represents the number

density of particle k and uµ is the fluid four velocity. The right hand side

of the above equation consists of two terms: the collision term depending on

the chemical reaction rate and the term depending on the expansion rate i.e.,

∂µu
µ. When these two terms become equal chemical freezeout is said to be

achieved. Since this stage is dominated by resonances, this stage is often reffered

as the resonance-gas stage.The expansion rate of the fluid increases with time,

and eventually exceeds the chemical reaction rate. Hence, the system goes

out of chemical equilibrium. Simultaneously, since the fluid is cooling rapidly,

the number densities of higher mass and short-lived resonances will exhibit

a fall as well. The final satge consists primarily of lighter and stable hadrons

undergoing elastic collisions. The particles will maintain the chemical potentials

they acquired at the end of the previous stage, since they interact only by elastic

collisions. When the mean free path becomes larger than the system size, the

fluid breaks up into particles which stream freely to the detector. This is called

the kinetic freezeout and is indicated in Fig. (1.3) by τf . A significant part of

this thesis is devoted to the study of this hadronic phase. The whole evolution

of the strongly interacting matter in heavy-ion collisions is expected to last from

1 fm/c to about 10 fm/c [106].

Many observables have been proposed to understand the properties and dynamics of

the QGP and the hadron gas discussed in the previous paragraph. The most impor-
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tant of these observables can roughly be divided into soft probes and hard probes,

both of which have particular connections to the dynamics of the QGP medium.

1.3.1 Soft Probes

As discussed previously, substantial amount of interactions in a typical heavy ion

collision are soft, i.e. they involve little transverse momentum pT (� 3 GeV) transfer.

Soft probes characterise how collectivity is developed in the medium [107, 108]. This

is the major topic of discussion in this dissertation.

Fig. (1.4) illustrates the initial geometric configuration of a typical heavy-ion col-

lision system. The beam axis, along which the two nuclei collide, is in the z-direction

conventionally and the plane perpendicular to the beam axis is known as the trans-

verse plane. Naturally it is expected that, given the size of the overlap region of

the two nuclei is larger, the initial temperature and hence the final entropy of the

system, which corresponds larger measured multiplicity (number) of produced parti-

cles would be larger. The impact parameter b describes the collision geometry. In

Fig. (1.4), b is set in the x-directon and measures the displacement of the centers of

the two nuclei in the transverse plane. The differential collision cross-section is given

as dσ = 2π|b|d|b|.

However, impact parameter can not be measured experimentally. In experiments,

it is customary to classify events based on the produced charged particles (pions,

kaons and protons) multiplicities. For small b, called central or head on collision, the

number of interacting nucleons is large and are more likely to produce more particles.

On the other hand, when b is large called peripheral collision, the multiplicity is low.

d3N

pTdpTdφdy
=

d2N

2πpTdpTdy

n=∞�

n=−∞
vn(y, pT )e

in(φ−Ψn(y,pT )). (1.10)
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x
!

y

Figure 1.4: Sketch of the collision of two nuclei, in the transverse plane perpendicular
to the beam-axis (z) direction. The left panel corresponds to smooth initial geometry
and the right panel corresponds to initial geometry with fluctuating nucleon positions.
In the right panel target, projectiles and participants are shown in different colours.
(Fig. from [109])

Here, pT =
�
p2x + p2y is the transverse momentum, φ is the azimuthal angle. The

variable y called rapidity is often used instead of the longitudinal momentum pz, in

relativistic kinematics, which can be defined as

y =
1

2
ln

�
E + pz
E − pz

�
, (1.11)

where E is the energy of the produced particle. In Eq. (1.10) vn can be experimentally

measured as the expectation vn = �cos(nφ − nΨn)�, with respect to the associated

event plane angle Ψn of n-th order harmonics3 and is defined as

Ψn =
1

n
arctan

� �pT sinnφ�
�pT cosnφ�

�
. (1.12)

The angle brackets indicates the averaged value with respect to the particle spec-

trum. vn characterizes the azimuthal anisotropy of particle spectrum in the momen-

3In experiments the event plane is used as a proxy for participant plane as the orientation of
impact parameter can not be directly measured.
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Figure 1.5: A comparison of the observed harmonic flow vn of mid-central heavy-ion
collisions as a function of pT from different experiments. (Fig. from [110].)

tum space. For example, elliptic flow, v2(y, pT ) estimates the differences of parti-

cle yields between in-plane direction (φ − Ψ2(y, pT ) = 0) and out-of-plane direction

(φ−Ψ2(y, pT ) = π/2). Given the system is symmetric under reflection, the odd order

harmonics in Eq. (1.10) are zero by symmetry, and the event plane angles are aligned

trivially with Ψn(y, pT ) = 0. On the other hand, on an event-by-event basis the initial

positions of colliding nucleons keeps fluctuating, and thus all of the harmonic orders

should be expected to contribute. Fig. (1.5) exhibits the measured elliptic flow v2,

triangular flow v3 and quadrangular flow v4 from different collaborations from a set

of selected collision events at RHIC and LHC [110]. The observed flow in the low pT

region (pT < 3 GeV) in Fig. (1.5) is expected to be dominated by the collective flow

of the system.

There are various aspects of harmonic flow vn that supports the existence of QGP

phase. In the case of weakly interacting gas of particles, scatterings are very rare,

the directions of the momenta of the gas particles are random, the initial spatial
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Figure 1.6: Nuclear modification factor RAA for jets from three different centralities
as a function of jet transverse momentum pT . (Fig. from [119].)

anisotropy is washed out quickly by random motion, and the azimuthal distribution

of particles in the final state becomes isotropic. Also, the measured two-particle

correlations will turn out to be trivial, coming only from effects like momentum

conservation in late-time decays of hadrons or from jets and mini-jets produced in

the initial state of the system. On the other hand, if the quarks and gluons form

a strongly coupled liquid quickly, the energy density distribution produced in the

collision remains anisotropic, which will expand hydrodynamically, converting this to

the final momentum anisotropy of produced particles [111–118].

1.3.2 Hard Probes

Jets, high transverse momentum hadrons, heavy quarks, etc can be used to give

us invaluable information about the nature of the produced medium in heavy ion

collisions and on how these hard probes themselves are modified as they traverse the

medium produced in nucleus-nucleus collisions [120, 121].

The most basic observation is that jets loose a substantial amount of energy, as

they traverse through the QGP medium. This provides a direct, and completely in-
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dependent, confirmation that the matter produced in a heavy-ion collision is strongly

coupled [122]. For example, the energy lost by parton ΔE while traversing a medium

of length L is given as ΔE ∝ q̂L2, where q̂ is the jet quenching parameter [123].

The typical values of q̂ ranges from 5 − 15 GeV2/fm, [124] which translates to an

energy loss of 25 − 75 GeV per fm as the parton moves through the QGP medium.

Experimentally, energy loss can be measured using the nuclear modification factor

RAA defined below

RAA (pT ) =
dNAA/dpT

�Ncoll� dNpp/dpT
, (1.13)

where dNxx/dpT is the number of jets produced in AA (nucleus-nucleus) or pp (proton-

proton) collisions and Ncoll is the number of binary collisions. RAA < 1 dominantly

indicates that the jets loose energy in the QGP medium. Indeed, Fig. (1.6) shows

a large suppression of these jets, especially for central collisions in which the QGP

medium that the jets needs to traverse is the largest. An important check of this

procedure is the fact that high transverse momentum colorless probes, such as Z

bosons or γ’s are found to have RAA = 1, as expected since they interact weakly with

QGP [125].

1.4 Hydrodynamics and QGP

Hydrodynamics is ”an effective theory which describes the long wavelength and small

frequency limit of an underlying interacting dynamical theory” [126]. Hydrodynamic

has been remarkably successful in describing many soft observables for e.g. azimuthal

momentum anisotropies vn [127, 128].
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1.4.1 Hydrodynamic equations of motion

The evolution equation of hydrodynamics is governed by the conservation equation

of energy-momentum tensor and conserved charges [129],

∂µT
µν = 0, (1.14)

∂µJ
µi = 0, (1.15)

where the index i runs from 1 to N , labelling the types of conserved charge. Here ∂µ

denotes covariant derivative, which has been introduced to treat the Bjorken coordi-

nate system, consisting of proper-time τ and space-time rapidity η. Given the form

of energy momentum T µν and conserved current Jµi of type i, Eqs. (1.14,1.15) give

rise to 4 +N coupled equations of motion.

The fluid system, is characterised by a set of hydrodynamic variables which in-

cludes flow 4-velocity uµ, charge density ni, energy density ε and pressure P . The

four-velocity of any fluid element uµ in Cartesian coordinates xµ = (t, x, y, z) is de-

fined as

uµ =
dxµ

dτ
= γ(1,v⊥,vz), (1.16)

where dτ =
�
dt2 − dx2 − dy2 − dz2, and spatial components of the flow velocity are

defined as vi = ui/u0 (i = x, y, z). The time component is γ = 1/
√
1− v2. The

normalization of flow velocity uµuµ = 1 reduces the number of independent variables

from 6+N to 5+N . In the relativistic version of hydrodynamics, there is a freedom

in the definition of the flow 4-velocity uµ. For example, in the Eckart frame uµ is

associated to the flow of conserved charge current, i.e.,

Jµiuµ = ni, (1.17)
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while in the Landau-Lifshitz frame uµ denotes the energy flow, i.e.,

T µνuµ = εuµ. (1.18)

Throughout this work, we use thr Landau-Lifshitz definition in which the forms of

the stress tensor and the conserved current are constructed in terms of these hydro-

dynamic variables as,

T µν = (ε+ P )uµuν − Pgµν + Πµν , (1.19)

Jµi = niuµ + Iµi. (1.20)

Πµν and Iµi stand for dissipative corrections and depedning on the choice of Landau-

Lifshitz frame Eq. (1.18), Πµν should satisfy the relation Πµνuµ = 0 or in the case of

Eckart frame Eq. (1.17) Iµiuµ = 0. In the ideal hydrodynamics limit, the dissipative

terms Πµν and Iµi are zero.

1.4.2 Equation of state

The remaining excessive degree of freedom of the hydrodynamic system is fixed by

the equation of state (EoS), relating the thermodynamic variables, e.g. ε, ni and

P . In the following section ni = nB = n corresponds to the baryon number den-

sity. Corresponding to the matter created in heavy-ion collisions, the equation of

state provides information about the underlying microscopic properties of the QCD

medium. For instance, considering the system to be a relativistic massless gas, we

have the typical EoS, ε = 3P . And it is not difficult to generalize this result for all

the rest of thermodynamic variables. EoS also influences the fluid expansion rate and

the previously discussed observables like anisotropic flow coefficients vn etc. One of
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the goal of this thesis is to study the effect of changing EoS on observables like flow

harmonics vn.
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Figure 1.7: Equation of state P (ε, n) shown as a contour plot in the (ε, n) plane and
the contours show lines of constant P . The top and bottom panel corresponds to
crossover [130] and first order phase transition [131] respectively.

The most reliable calculation of QCD equation of state is obtained from the LQCD

simulation. The EoS of QCD at zero baryonic density has been known with high preci-

sion from LQCD [132–134]. However, as mentioned earlier, the sign problem hindered

the calculation of the equation of state at finite chemical potential. Nevertheless, the
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thermodynamic quantities can be expanded as a Taylor series in powers of µB/T for

which the coefficients χi
B can be simulated on the lattice at µB = 0, namely

P (T, µB)

T 4
=

∞�

i=0

1

i!
χi
B

�µB

T

�i

, (1.21)

with χ0
B = P (T, 0)/T 4 and the coefficients χi

B are given as

χi
B =

∂i(P/T 4)

∂(µB/T )i

����
µB=0

. (1.22)

Taylor series for all basic thermodynamic quantities has been known to converge

well for values of µB � 2T , with the assumption that the critical point in the QCD

phase diagram should not lie in this range of baryon chemical potentials [135]. From

these Taylor coefficients4 a variety of lattice QCD-based equations of state have been

reconstructed and later used within relativistic hydrodynamics [130, 136–140]. In

order to have a smooth pressure profile as a function of ε and n from which other

thermodynamical quantities can be easily derived, each Taylor coefficients χi
B are

parameterized using polynomial of ninth order, with the coefficients of these polyno-

mials given in [130]. Fig. (1.7) (top panel) shows the EoS with crossover transition

as a contour plot in the (ε, n) plane with contours showing the lines of constant P .

The Taylor coefficients from LQCD are available only between the temperature range

of 135 MeV < T < 220 MeV. Since this is not enough to cover the temperature

achieved in heavy ion collision system, each Taylor coefficient is smoothly merged

with the IDHRG model result, in the low temperature, while at high temperature

approaches Stefan-Boltzman limit. In this thesis we use the parameterized EoS of

[141] for µB = 0 and [130] for µB �= 0.

4Apart from the fact that the Taylor coefficients are used to reconstruct EoS at finite µB , they
can act sensitive probes of deconfinement. Further details will be described in sec. 2.1.4.
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Although, LQCD calculations shows that at µB = 0, the transition from quark-

gluon phase to the hadronic phase is a cross-over transition, there is no clear agreement

between present theoretical models regarding the value of the critical temperature and

the baryon chemical potential corresponding to the QCD critical point on the QCD

phase diagram. For e.g. in [142] the critical point (Tc, µc) = (150, 168) MeV using

Polyakov-quark-meson model, in [143] found (Tc, µc) = (63, 960) MeV using chiral

quark model, or yet in [144] found (Tc, µc) = (100, 600) MeV using random matrix

model. Model calculations [145] support the picture that the transition remains of

first order below the critical point as one goes to larger and larger values of baryon

chemical potential.

Such a first-order EoS can be constructed at non-zero net baryon number density

using a bag model [112, 131]. This is a very simple model to introduce phase transition

using a single parameter called the bag constant B. In this model, hadrons are

considered as bags embedded into a non-perturbative QCD vacuum. Thus the energy

density and pressure of an ideal quark-gluon gas calculated in the QCD vacuum

should be modified according to the rule, ε → ε + B and P → P − B, where B can

be considered as kind of vacuum pressure. The phase boundary is determined by

equalizing the pressure between the hadronic phase PHG and the quark gluon phase

PQGP, i.e., PHG = PQGP. In our construction, the quark gluon phase consists of a

non-interacting massless quark and gluon gas while the hadronic phase consists of

an IDHRG, with masses up to 2 GeV. In the mixed phase, ε and n are calculated

using the Maxwell construction. The bag constant B is a parameter adjusted to

B1/4 = 230 MeV, to yield a critical temperature of Tc = 164 MeV. The choice of

bag parameter used here is not unique, it may vary between B1/4 = 150− 300 MeV.

The resulting EoS is shown as a contour plot in Fig. (1.7) (bottom panel), with the

contours showing lines of constant P in the (ε, n) plane. In this thesis (chapter 4),
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we will disucuss what imprint of different EoSs, one can find in the various collective

observables of heavy-ion collisions.

1.4.3 Viscous hydrodynamics and transport properties

In the ideal hydrodynamics limit, all terms which contain the gradients of fluid ve-

locity are neglected. Upto first order in gradients of fluid velocity, the requirement

that Πµν Eq.(1.19) be transverse means that it must take the form [129]

Πµν = −ηs(T )σ
µν − ηv(T )Δ

µν∇αu
α, (1.23)

where ηs and ηv are shear and bulk viscosities. The other remaining terms Δµν and

σµν are defined as

Δµν = gµν − uµuν ,

σµν = ΔµαΔνβ (∇αuβ +∇βuα)− 2
3
Δµν∇αu

α = 2�∇µuν�.
(1.24)

The operator Δµν is the projector into the space components of the fluid four ve-

locity. Throughout this work, the tensor objects inside the angle brackets �Aαβ�, as

in Eq. (1.24), stand for symmetric i.e., �Aαβ� = �Aβα�, traceless i.e., �Aα
α� = 0 and

orthogonal to the flow 4-velocity uα, i.e., �Aαβ�uα = 0.

Although hydrodynamics is an expansion in gradients of fluid velocity, the first

order expression for Πµν , Eq. (1.23) when inserted to the set of equations Eq. (1.19)

leads to acausal propagation of group velocities. Even though this problem only arises

for modes outside of the region of validity of hydrodynamics namely the modes with

high momentum or having short wavelengths of the order of the microscopic length

scale defined by ηs or ηv, the numerical evaluation of the first order equations of motion
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is sensitive to the acausality in these high momentum modes5 [149]. The solution is

to go one higher order in the gradient expansion. This is known as the second order

hydrodynamics. Using the second law of thermodynamics, a number of second order

viscous corrections to hydrodynamics can be deduced, such as the widely used Israel-

Stewart hydrodynamics [150–152]. Particularly in a conformal theory, second order

hydrodynamics simplifies. A theory is said to be conformally symmetric if its action

is invariant under Weyl transformations of the metric, i.e., [149]

gµν → ḡµν = e−2w(x)gµν , (1.25)

where w(x) can be an arbitrary function of spacetime coordinates. Conformally

invariant theories thus have a traceless energy-momentum tensor and this additional

symmetry of conformal theories restrict the possible second order gradient terms

in the theory of hydrodynamics. Taking into account conformal symmetry, Baier,

Romatschke, Son, Starinets, and Stephanov developed the BRSSS hydrodynamics

[153], in which only terms obeying conformal symmetry are allowed in second order

i.e,

πµν = −ηsσ
µν + ηsτπ

�
�Dσµν�+ 1

d− 1
σµν∇αu

α

�

+ λ1

�
σµ
λσ

νλ
�
+ λ2

�
σµ
λΩ

νλ
�
+ λ3

�
Ωµ

λΩ
νλ
�
+O

�
∇3

�
,

(1.26)

where d the number of spacetime dimensions. In the above equation the vorticity

tensor Ωµν is defined as

Ωµν =
1

2
ΔµαΔνβ (∇αuβ −∇βuα) . (1.27)

5It should be noted that there are some new developments in constructing theories which are
stable and causal in first-order too [146–148].
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Analogous to the shear viscosity ηs, second order transport coefficients τπ, λ1,λ2 and

λ3 need to be determined from the underlying theory, as the input parameters for

hydrodynamic simulations. Considering the relation

πµν = −ηsσ
µν +O

�
∇2

�
, (1.28)

one can iteratively substitute the σ’s with π on the right hand side of Eq. (1.26). We

obtain the following equations of motion with πµν as a dynamical variable

πµν = −ηsσ
µν − τπ

�
�Dπµν�+ 4

3
πµν∇αu

α

�

+
λ1

η2s

�
πµ
λπ

λν
�
− λ2

ηs

�
πµ
λΩ

λν
�
+ λ3

�
Ωµ

λΩ
νλ
�
+O

�
∇3

�
.

(1.29)

Of these three λs, only λ1 is the relevant parameter in the absence of vorticity. Nu-

merical simulations have also shown that, for physically motivated choices of λ1, the

results are almost insensitive to its precise value, leaving τπ as the only second order

parameter that is relevant phenomenologically in the hydrodynamic description of a

conformal fluid. In the numerical simulation of hydrodynamics that is relevant to this

thesis, the bulk viscosity has been set to zero and the relaxtation equation of shear

viscosity is that of Eq. (1.29) with zero vorticity.

Transport coefficients, such as the shear viscosity as disucussed above, are essen-

tial in the description of the dynamics of a system, since they describe how small

perturbation away from equilibrium relax toward equilibrium . Shear viscosity plays

a particularly important role as it provides the link between the conclusions about

the strongly coupled nature of the quark-gluon plasma and experimental data of el-

liptic flow produced in RHIC collisions [154–159]. As seen in Fig. (1.8), shear viscous

corrections decrease momentum anisotropy, and so v2 decreases with increasing ηs/s,
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Figure 1.8: The elliptic flow v2 versus pT for charged hadrons showing the comparison
between hydrodynamic calculations with varying shear viscosity ηS and data from
RHIC. The initial profile for the energy density across the almond-shaped collision
region is obtained from the Glauber model (left panel) and the color-glass condensate
model (right panel). (Fig. from [154].)

where s is the entropy density. The data are seen to favor small values ηs/s < 0.2.

Comparisons between experimental data and hydrodynamic calculations have increas-

ingly put stringent constraints on the value of ηs/s of the dense matter produced in

heavy-ion collisions [106], such that ηs/s > 0.5 can now be ruled out. The same

Fig. (1.8) also shows that sensitivity to our lack of knowledge of the initial energy

density profile inhibits a precise determination of ηs/s at present. A comparision

of ηs/s for various fluids is shown in Fig. 1.9. The smallness of ηs/s in the case of

QGP is remarkable, because almost all other known liquids have ηs/s > 1 and most

have ηs/s � 1. Ultracold gas of strongly coupled fermionic atoms is the one liquid

that is comparably close to QGP, and has ηs/s around 1. QGP has a ηs/s compa-

rable to the value 1/4π. The value ηs/s = 1/4π has been found in the context [160]

of many strongly coupled field theories which has a gravity dual, using the anti-de

Sitter/conformal field theory (AdS/CFT) correspondence.

Since transport coefficients are input parametes in hydrodynamic models, they

are constrained by the underlying fundamental theory. Transport coefficients, such
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Figure 1.9: Transport properties of strongly correlated fluids. Ratio of ηs/s as a
function of (T − Tc)/Tc, where Tc is the superfluid transition temperature in the case
of ultracold Fermi gases, the deconfinement temperature in the case of QCD, and the
critical temperature at the endpoint of the liquid gas transition in the case of water
and helium. (Fig. from [161].)

as the shear viscosity ηs, can be calculated from the correlation functions of the gauge

theory using the Green-Kubo formula. Transport coefficients can be extracted from

the low frequency and low momentum limits of the Green’s functions of the respective

conserved current of the theory. For example: the stress tensor components T xy, and

the longitudinal component of conserved U(1) current J i(ω,k) which can be written

J(ω, k)k̂, with ω, k being the Fourier modes. The stress tensor correlator gives the

shear viscosity while the current-current correlator gives the diffusion constant for

the conserved charge pertaining to the current. The retarded correlators are defined

by

Gxyxy
R (t, x) = −iθ(t) �[T xy(t, x)T xy(0, 0)]� ,

GJJ
R (t, x) = −iθ(t)�[J(t, x)J(0, 0)]�.

(1.30)

And, according to the Green-Kubo relation [11], the imaginary part of the low mo-
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mentum and low frequency limits of these correlators yield.

ηs = − lim
ω→0

ImGxyxy
R (ω, k = 0)

ω
,

Dχ = − lim
ω→0

ImGJJ
R (ω, k = 0)

ω
,

(1.31)

where D is the diffusion constant of the conserved charge, and χ is the charge suscep-

tibility. These relations are used in LQCD to non-perturbatively calculate QGP shear

viscosity. However, in this thesis we will be interested in the hadronic phase, which

is approximatly a weakly coupled system and kinetic theory methods are applicable.

These calculation will be discussed in later in this thesis (chapter 3) .

1.4.4 Freeze-out and resonance decay

As discussed in section 1.3.1, the initial energy density of the fluid is not uniform,

but fluctuates due to the random positions of colliding nucleons. As a result, the

temperature distribution of the fluid will not be uniform during the hydrodynamic

evolution and hadronization occurs dynamically in regions where the temperature in

the local fluid rest frame is close to Tc until there are no longer any fluid cells with

temperatures exceeding this critical temperature. As we described in section 1.3,

there are two major decoupling processes that one need to consider: the chemical

and the kinetic freeze-out. Switching from the continuous relativistic hydrodynamics

to the discrete particle transport, is often referred to as ”particlization”. A simplistic

approach to freeze-out is to assume that particles stop interacting after particlization.

In this case, the hydrodynamic freeze-out surface can be identified with the kinetic

freeze-out. This is modelled via the Cooper-Frye prescription [162]:

E
dNi

d3p
=

dNi

dypTdpTdφp

= gi

�

Σ

fi (u
µpµ) p

µd3Σµ, (1.32)
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where i indicates the particle species, e.g., gi stands for the degeneracy factor of

particle i and Σ is the hyper-surface. Generally a hyper-surface in n dimensions is

parameterized by n − 1 parameters. Here, we parametrize the 4-dimensional hyper-

surface in terms of the longitudinal rapidity η and transverse coordinates (x, y). The

normal vectors on this surface are then given as

d3Σµ = −εµνλρ
∂Σv

∂x

∂Σλ

∂y

∂Σρ

∂η
dxdydη, (1.33)

where εµνλρ is the 4-dimensional completely antisymmetric tensor. In practice, we

need to geometrically determine d3Σµ, i.e. the problem in the language of computer

graphics is that of finding an isosurface of a discrete scalar field, with the value of

energy density or temperature less than critical value εc or Tc [163].

The basic function of Cooper-Frye formula Eq. (1.32) is to transform the spatial

dependence of the hydrodynamic fields into the momentum dependence of the final

particle spectrum EdN/d3p, as long as the phase space distribution function f (uµpµ)

is known. For ideal hydrodynamics, local equilibrium requires the equilibrated distri-

bution function f (uµpµ) = feq, which can be Fermi-Dirac, Bose-Einstein, or classical

Boltzmann distributions, with respect to the specified case under consideration. Cor-

rections to the distribution function δf , due to the dissipative effects can be written

as,

δf =
feqp

µpνπµν

2(ε+ P )T 2
, (1.34)

which was originally proposed based on a kinetic theory approach [164], is presently

used in various viscous hydrodynamic simulations. In this thesis, we will disscus how

magnetic field influence the form of these corrections δf (chapter 5).

Unstable particles like resonances decay, into stable hadrons before they reach
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the detectors in the experiments. Therefore, Cooper-Frye formula should be applied

by including all possible particle species listed in the PDG table [165], followed by

resonance decay processes. However, a mass cut-off MR is choosen for the list of

particles to be included, which is typically assumed to be MR ≤ 2 GeV to simplify

the calculations. Thus, the Cooper-Frye formula alongwith the resonance decay can

make predictions of various observables, such as charged particle multiplicity, elliptic

flow etc., that can be compared to experimental data [166, 167]. However, realistically

hadrons emitted from the particlization hypersurface can interact among themselves.

In such case hadrons produced from the hypersurface are passed through a hadronic

afterburner and kinetic freeze-out happens when the hadron gas becomes dilute.

1.5 Electromagnetic fields

In non-central heavy-ion collisions, the moving nuclei generate very strong electromag-

netic fields. They each carry 79 (Au) or 82 (Pb) protons, and the typical distance scale

of the moving electric charges is very small (O(1) fm). All charges, which fly outside

the almond shaped overlap region, also called the spectators, contribute strongly to

the magnetic field. In high energy experiments, the velocities of each nuclei can reach

nearly the speed of light, and given that they collide at a non-zero impact parameter,

the magnititude of electromagnetic fields in such collisions is around eB ∼ 1018 G

[168–174]. This is among the largest magnetic field yet observed in our Universe.

1.5.1 Space-time evolution of electromagnetic fields

A natural first step to calculate the magnetic field strength due to fast moving spec-

tator nucleons at the time when both nuclei pass each other. In general, the solution

of Maxwell’s equations for Nch charged particles with charge Qi = qie moving with
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Figure 1.10: The geometrical illustration of the non-central heavy-ion collision. The
magnetic field B is expected to be perpendicular to the reaction plane due to the
left-right symmetry of the collision geometry (Fig. from [175].)

velocities vi is given by the relativistic Liénard-Wiechert potentials [171, 176]:

eE(t, r) = αEM

�Nch

i qi
Ri

γ2R3
i (1−(Ri×vi)

2/R2
i )

3/2 ,

eB(t, r) = αEM

�Nch

i qi
vi×Ri

γ2R3
i (1−(Ri×vi)

2/R2
i )

3/2 ,
(1.35)

where Ri = r − ri (tR) = r − ri (t− |r− ri(t)|) is the relative distance between the

observation point r and the trajectory of the charged particle ri(t) evaluated at the

retarded time tR = t − Rn(t) with Rn(t) = |r− rn(t)|. αEM is the fine-structure

constant. A schematic illustration of the collision geometry is shown in Fig. (1.10).

Given, protons travel on straight lines along the beam axis, which is assumed to be

the z axis, the velocity vector of the protons is v = (0, 0,±vz) , where the magnitude

is given by the collision energy, v2z = 1−
�
2mp/

√
sNN

�2
and γp =

√
sNN/ (2mp), where

√
sNN is the center of mass energy and mp is the mass of proton respectively. At r = 0

and t = 0, the event averaged electromagnetic fields have only one nonzero component,

e�By� �= 0. When b < 2RA where RA is the nuclear radius, the event-averaged field

e�By� is proportional to b and it reaches its maximum value around 2RA. For the

42



1 Introduction

event-averaged magnetic field, e�By�, the following formula approximately expresses

its impact parameter b, collision energy
√
s, charge number Z and atomic number A

dependence [177]:

e �By� ∝
√
s

2mp

Z

A2/3

b

2RA

m2
π, for b < 2RA (1.36)

where mπ is the pion mass.
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Figure 1.11: Calculation of magnetic field over time and how it is modified by the
conductivity of the QGP at top RHIC energy. (Fig. from [178].)

The lifetime of the magnetic field depends strongly on the electrical conductivity

or more specifically on the magnetic Reynold’s number of the produced medium [176,

179].

Rm ≡ LUσµ, (1.37)

where L is the characteristic length or time scale of the QGP, U is the characteristic

velocity of the flow and µ is the magnetic permeability of QGP. A calcualtion of

magnetic field over time and how it is modified by the conductivity of the QGP
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at top RHIC energy is shown in Fig. (1.11) [178]. In vacuum, corresponding to

σ ≈ 0 and Rm � 1, the initial transient magnetic field decays rather rapidly. In the

opposite limit, in the presence of an ideal plasma with infinite electric conductivity,

corresponding to Rm � 1 would imply that the field survives longer. The generic

framework that couples the electromagnetic field to the dynamics of a relativistic

fluid is called as relativistic magnetohydrodynamics (MHD). But so far they have

been mostly based on the non-resistive and non-dissipative formulation of relativistic

MHD. Realistic calcualtion relevant to heavy-ion collision are still under development

[180].

1.5.2 Effect of magnetic field on the dynamics of QGP

The presence of these strong magnetic fields opens the possibility of exploring nonper-

turbative features of QCD, such as the appearance of nontrivial topological configu-

rations of the colour-field. Due to the interplay between a nonperturbative feature of

strong interactions (the chiral anomaly) and the magnetic field, such a phenomenon

was called Chiral Magnetic Effect (CME) [168] and is being currently investigated by

different experimental collaborations e.g. at RHIC and at LHC [181–183]. Analogous

effects have been recently observed also in astrophysics [184] and in solid-state physics

in the context of Dirac semi-metals [185].

Besides the CME, there are a host of other effects caused by the strong magnetic

fields which includes the magentic catalysis of chiral symmetry breaking [186], split-

ting of chiral and deconfinement phase transitions [187], the possible enhancement of

elliptic flow of charged particles [188], the energy loss due to the synchrotron radiation

of quarks [189], the emergence of anisotropic viscosities [190–192] etc. In the present

dissertation, we will be mostly be interested in the last of the above effects namely,
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the anisotropic transport coefficients in the presence of magnetic field. As we have

disscussed, transport coefficients are important physical quantities characterizing the

features of QGP and reflecting the nature of interactions between quarks and gluons

whether it may be in confined or in the deconfined phase. Moreover, the transport

coefficients which were isotropic in the absence of external fields becomes anisotropic

in the presence of a magnetic field. Given, the electrical conductivity of the medium

is large enough, the magnetic field can survive till the hadronic phase. Since, the

hadronic phase is approximately a weakly coupled gas of hadrons and resonances,

techniques from kinetic theory like the relaxation-time approximation can be readily

be applied. In chapter 3 we calculate these anisotropic transport coefficients in the

hadronic phase. However, it must be noted that these techniques can be used once

the constitutents of the fluid can be described as quasi-particles with a well-defined

mean free-path. For e.g., this assumption is valid also at very high-temperature, when

the quarks and gluons are weakly coupled.

1.6 Outline of this thesis

This thesis is organised as follows. In chapter 2, we discuss the various models for the

hadronic phase and give a brief overview of the S-matrix formalism for an interacting

hadron gas. This includes the results of various thermodynamic quantities and com-

parision to LQCD data calculated using the S-matrix formalism. In chapter 3, we

describe the calculation of transport coefficients for: a) interacting multi-component

hadronic gas b) anisotropic transport coefficients in the presence of the magnetic field.

In chapter 4 and chapter 5, we discuss the sensitivity of experimental observables like

the harmonic flow and flow correlation to the input Equation of State (EoS) and

the temperature-dependent and anisotropic transport coefficients. In chapter 4, we
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also give a brief description to numerical hydrodynamical modelling in the ARVHD

framework. Finally, in chapter 6 we give a summary and conclusion of the results

discussed in this thesis.
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Chapter 2

Interacting hadron resonance gas

model within S-matrix formalism

2.1 Modelling the hadronic phase

The properties of hadronic phase formed by hadronization of the QGP can be stud-

ied through a statistical model of a gas of hadrons called the hadron resonance gas

model (HRG) [1–12]. HRG model has successfully described the hadron multiplicities

produced in relativistic nuclear collisions over a broad range of center of mass energy

[1, 2, 4, 5, 7, 8, 11, 12]. The primary assumption of ideal HRG (IDHRG) model is

that, the partition function contains all relevant degrees of freedom of a confined,

strongly interacting medium by treating the resonances as point-like particles and

their mutual interaction are neglected. Thus, the pressure is given by

P id
HRG(T, µ) =

�

i

P id
i (T, µi) , (2.1)

where the sum goes over all hadronic species included in the model, P id
i (T, µi) is

the pressure of the ideal Fermi or Bose gas at the corresponding temperature T and

chemical potential µi for species i (see Eq. (2.16)).

The above formulation, of a multi-component system of point-particle hadrons

and resonances, is presently the most commonly used realization applied to the ther-
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mal model analysis. In more “realistic” HRG model realizations one may take into

account both the attractive and the repulsive interactions between hadrons. The phe-

nomenal success of the ideal HRG (IDHRG) model in predicting hadronic yields can

be attributed to a theorem by Dashen and Ma [13] which states that the partition

function of an interacting hadronic gas, can be decomposed into a free and an inter-

acting part. Considering that only the resonances contribute to the interacting part,

it can be seen that the net effect of the interacting part is equivalent to considering all

these hadronic resonances as free particles in a narrow resonance width approxima-

tion. Substantial change in variation of thermodynamic variables with temperature

is predicted, however, once the above assumptions are relaxed and one allows finite

widths for resonances. Specific techniques, i.e. excluded volume models, chiral per-

turbation theory relativistic viral expansion, and LQCD as discussed below, are used

to integrate interactions between the different hadrons.

2.1.1 Excluded-volume models

The repulsive interactions between hadrons can be based on the van der Waals type’s

eigenvolume correction model, where the system volume V , is reduced by the sum of

all their eigenvolumes v [14–30]. Meaning, V → Vav = V − vN , where v = 4(4πr3/3)

is the excluded volume parameter with r being the corresponding hard sphere radius

of particle i. One notices the total volume excluded is four times the volume of a given

hadron. This is because the potential energy depends only on the relative distance

and in this case, the distance between the centres of two hadrons is 2r. In the GCE

formulation of IDHRG, Eq. (1.4) the substitution of above leads to a transcendental

equation for the pressure

P (T, µ) = P id(T, µ− vP ), (2.2)

72



2 Interacting hadron resonance gas
model within S-matrix formalism

where P id is the ideal gas pressure. The pressure P (T, µ) is obtained by solving the

Eq. (2.2) numerically for given T and µ = BµB, where B is the baryon number

of the corresponding hadron and µB is the baryon chemical potential. Attractive

interaction can also introduced along with the repulsive interactions akin to the Van

der Waals type of interaction in molecular physics. These models are known to give

a reasonable agreement of thermodynamic variables with lattice QCD (LQCD) data

[31]. The van der Waals parameters are fixed either by reproducing the properties of

nuclear matter at zero temperature [32] or by fitting the LQCD data at zero chemical

potential [33]. The downside of these models is that they incorporate additional

parameters in contrast with the ideal HRG model and the assumptions involved in

setting these parameters are always debatable

2.1.2 Chiral perturbation theory

While perturbative QCD provides a good explanation of strong interacting matter at

high temperature, nevertheless it breaks down at low energies (chapter 1) and as a

consequence the low-energy physics of hadrons needs to be modelled phenomenolog-

ically. However, in 1979, Weinberg [34] came up with an effective field theory model

that described the low energy phenomenology of light mesons, for example pions.

In this framework, the pion states are described in terms of a matrix U(x) and the

partition function is described as,

Tr exp(−H/T ) =

�
[dU ] exp

�
−
�

T

d4xLeff

�
, (2.3)

where U(x) = exp (iφa(x)τ a/F ), a = 1...3 is an SU(2) matrix comprising the pion

field φ(x). The coupling constant F is the pion decay constant in the chiral limit and

τa are the isospin generators, respectively. The integration should be performed over
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all configurations which are periodic in Euclidean time, U (x, t+ β) = U (x, t), where

t is time and β is the inverse temperature respectively. The effective Lagrangian Leff

is expressed as an infinite set of terms with increasing number of derivatives or quark

masses,

Leff = L(2) + L(4) + L(6) + · · · (2.4)

The leading term corresponds to the nonlinear σ-model,

L(2) =
1

4
F 2Tr

�
∂µU

†∂µU −m2
0

�
U + U †�� . (2.5)

m0 is the pion mass in the lowest order in quark masses,

m2
0 = − 1

2F 2
(mu +md) �ūu+ d̄d�. (2.6)

The next terms L(4),L(6) etc. in the expansion gives higher order corrections. Notice

that, we have only even powers in the expansion, this is because the chiral effective

Lagrangian is dictated by symmetry which is SU(2)L × SU(2)R. Terms like U †U do

not appear in the Lagrangian since U † = U−1, hence except the mass term every

other term should contain a derivative in it. Thus, higher order terms, e.g. L(4)

contain four derivative terms while L(6) contain six derivatives and so on. In analogy

to the pion decay constant F in L(2), higher order terms L(4), L(6) etc contain coupling

constants that needs to be supplied from experiments or LQCD. In a perturbation

expansion one needs a power counting scheme to assess the importance of terms

generated by the Lagrangian when calculating matrix elements. Therefore while

constructing Feynman rules for calculating matrix elements, following scheme is used:

the derivatives generate four-momenta, whereas the quark mass terrms has the same

order as two derivatives [34]. The simultaneous expansion in powers of momenta and
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quark masses is referred to as the chiral expansion and the resulting effective field

theory is called Chiral Perturbation Theory (ChPT).

Since, the ChPT cannot be characterized by a finite number of coupling constants,

the theory is not renormalizable. The power counting scheme discussed in the previous

paragraph is crucial for ChPT to represent a coherent framework. In particular, the

leading contribution (LO) to the matrix elemnts is given by the tree graphs. At next-

to-leading order (NLO), graphs containing one loop contribute, those with two loops

enter at NNLO, etc [35].

ChPT at finite temperature and chemical potential captures many of the low

energy properties of QCD. For e.g. it explains some of the low energy hadron phe-

nomenology successfully [34–39]. However, a limitation of this approach is that reso-

nant interactions are not fully accounted which are expected to contribute significantly

for temperatures close to the pion mass. As the temperature rises, more and more

derivative terms in the perturbative expansion must be kept and these higher order

terms are not yet known from phenomenology. Similarly, such an approach breaks

unitarity at high energies, where the external momenta is no longer a good expansion

parameter. Different methods have been proposed in order to improve this behav-

ior and thus to extend the applicability of ChPT to higher energies; chief among

them: The use of Padé approximants [40], the large N limit (N being the number

of Goldstone bosons), or the inverse amplitude method (IAM) [41] and the K-matrix

formalism. In this thesis, our future discussion will be primarily be based on the last

method, i.e., K-matrix formalism.
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2.1.3 Relativistic virial expansion

A natural way of incorporating interaction between a gas of hadrons is to use the

relativistic virial expansion, as proposed in [13]. The formalism allows one to compute

the thermodynamics variables of a system in a grand canonical ensemble, once the

S-matrix (scattering matrix) is known. This is the method that we are going to use

to calculate thermodynamic quantities in this dissertation. In general, the logarithm

of the partition function can be written as the sum of non-interacting (ideal) and

interacting parts i.e.,

lnZ = lnZ0 +
�

i1,i2

zi11 z
i2
2 b(i1, i2), (2.7)

where Z0 is the ideal part of the partition function, z1 and z2 are fugacities of two

species and z = eβµ, respectively. The chemical potential of jth particle is defined

as µj = BjµB + SjµS +QjµQ where Bj, Sj, Qj are baryon number, strangeness and

electric charge and µ’s are the respective chemical potentials. The virial coefficients

b(i1, i2) are written as

b(i1, i2) =
V

4πi

�
d3p

(2π)3

�
d
√
s exp

�
−β(p2 + s)

1/2
��

A

�
S−1 ∂S

∂
√
s
− ∂S−1

∂
√
s
S

��

c

.

(2.8)

In the expression above, β denotes the inverse temperature while V ,
√
s and p rep-

resent the volume, the total center of mass energy, and momentum, respectively.

The i1and i2 labels apply to the S-matrix channel which has initial state containing

particles of i1 + i2, where as the symbol i =
√
−1. The A symbol refers to the sym-

metrization (anti-symmetrization) operator for a system of bosons (fermions) while

the subscript c refers to trace on all linked diagrams. We consider all the baryon and

meson octets to be the stable hadrons. Non-interacting stable hadrons contribute to
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the ideal part of the pressure whereas the two body elastic scattering between any

two stable hadrons gives rise to interacting part of the thermodynamic quantities.

The S-matrix elements can be expressed in terms of the phase shifts δIl as [42]

S(E) =
�

l,I

(2l + 1)(2I + 1) exp(2iδIl ), (2.9)

where I and l denote isospin and angular momentum, respectively. We concentrate

on the second virial coefficient which we define as b2 = b(i1, i2)/V . On integrating

Eq. (2.8) over the total momentum we have

b2 =
1

2π3β

� ∞

M

d
√
sK2(β

√
s)s

�

l,I

�
gI,l

∂δIl (
√
s)

∂
√
s

. (2.10)

The factor gI,l = (2I + 1)(2l + 1) is the degeneracy factor, M is the invariant mass

of the interacting pair at threshold and the factor K2(βE) is the modified Bessel

function of second kind. The prime denots the combinations of l, S and I are chosen

so that the total wave function of the particles participating in the interaction is

symmetric (anti-symmetric) for bosons (fermions).

Eq. (2.10) shows that the contribution arising from interactions to thermodynamic

variable, are in terms of phase shifts weighted by thermal factors. The derivative of

phase shifts give either a positive (attractive) or a negative (repulsive) contribution

depending on whether the phase shift derivative is positive or negative. As a matter

of fact, using the virial expansion, it is even possible to start from an S-matrix

elements obtained directly from experiment, via the messured scattering phase-shifts,

without using any quantum field theory. Inserting Eq. (2.10) into Eq. (2.7) one can

immediately compute all the thermodynamic variables [43]:
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Pint =
1

β

∂ lnZint

∂V
=

z1z2
2π3β2

� ∞

M

d
√
sK2(β

√
s)s

�

I,l

�
gI,l

∂δIl (
√
s)

∂
√
s

, (2.11)

εint = − 1

V

�
∂ lnZint

∂β

�

z

=
z1z2
8π3β

� ∞

M

d
√
s
�
K1(β

√
s) + 3K3(β

√
s)
�
s3/2

�

I,l

�
gI,l

∂δIl (
√
s)

∂
√
s

,

(2.12)

sint = −β2

V

�
∂(T lnZint)

∂β

�

V,µ

=
z1z2
2π3

� ∞

M

d
√
sK3(β

√
s)s3/2

�

I,l

�
gI,l

∂δIl (
√
s)

∂
√
s

− (µ1 + µ2)β
2Pint,

(2.13)

nint =
T

V

�
∂ lnZint

∂µ

�

V,T

=
z1z2
π3β

� ∞

M

d
√
sK2(β

√
s)s

�

I,l

�
gI,l

∂δIl (
√
s)

∂
√
s

, (2.14)

Cv,int =
βz1z2
16π3

� ∞

M

d
√
s

�√
sK0(β

√
s) + 2

�
9T − 4(µ1 + µ2)

�
K1(β

√
s) +

72T 2 + 7s− 24T (µ1 + µ2)K2(β
√
s)√

s

�
s3/2 ×

�

I,l

�
gI,l

∂δIl (
√
s)

∂
√
s

,

(2.15)

where the quantities s, Cv denote the entropy density and specific heat at constant

volume respectively. From the first term of the Eq. (2.7) the ideal gas counterpart
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can be obtained as:

Pid =
�

h

gh
2π2

m2
hT

2

∞�

j=1

(±1)j−1(zj/j2)K2(jβmh), (2.16)

εid =
�

h

gh
16π2

m4
h

∞�

j=1

(±1)j−1zj [K4(jβmh)−K0(jβmh)] , (2.17)

nid =
�

h

gh
2π2

m2
hT

∞�

j=1

(±1)j−1(zj/j)K2(jβmh), (2.18)

sid = β(Eid + Pid − µnid), (2.19)

Cv,id =
�

h

gh
16π2T 2

m4
h

∞�

j=1

(±1)j−1zj
�
µ
�
K0(jβmh)−K4(jβmh)

�
+

4T
�
K2(jβmh) +K4(jβmh)

��
, (2.20)

where h denotes the stable hadron index. The total pressure of the system is the sum

of ideal and interacting parts, i.e,

P = Pid + Pint, (2.21)

and subsequent relationships hold for other quantities.

In this thesis, we will develop a HRG model with attractive interactions between

hadrons using the K-matrix formalism (section 2.2) and the repulsive interactions by

fitting to experimental phase shifts (section 2.3) that encodes the information about

the nature of interaction. We use the phase shifts data from Scattering Analysis

Interactive Database (SAID) partial wave analysis for pion-pion (ππ), nucleon-nucleon

(NN), pion-nucleon (πN) and kaon-nucleon (KN) interaction in their respective

isospin channels [44–46].
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Figure 2.1: Normalized pressure, energy density, and entropy density as a function
of the temperature from LQCD. The dark lines show the prediction of the IDHRG
model. The horizontal line corresponds to the Stefan-Boltzmann limit which is the
ideal gas limit for the energy density and the vertical band marks the crossover region,
Tc = (154± 9) MeV. (Fig. from [50].)

2.1.4 Lattice QCD

The first principle approach to compute thermodynamic properties of strongly in-

teracting matter and, in particular, its equation of state, is LQCD calculations (see

discussion in chapter 1). An introduction to LQCD and recent results can be found

in [47–49] and here we only outline the basic framework. In the GCE, the EoS is

determined by the grand partition function, which is given as,

Z(T, V, µ) =

�
Dψ̄DψDAµ

a exp

��

X

(L+ µN )

�
, (2.22)

where µ is the quark chemical potential associated with net quark number conserva-

tion. The QCD Lagrangian is given by Eq. (1.1) whereas the number density operator

associated with the conserved net quark number (quarks contribute 1/3 to baryon

number and antiquarks −1/3) is N = ψ̄γ0ψ.
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In LQCD, one directly computes the grand partition function Eq. (2.22) on a

discretized space-time lattice, V × 1/T = (aσNσ)
3aτNτ , where aσ = L/Nσ is the

lattice spacing in spatial direction, aτ = 1/(NτT ) is the lattice spacing in Euclidean

time i.e. temperature direction, and Nσ and Nτ are the number of lattice points in

spatial and temporal direction, respectively. The smallest length scale on a lattice

is the lattice spacing a, while the largest length scale is sNσ. These scales serve

as ultraviolet cutoff ΛUV ∼ a−1 and the infrared cutoff scale ΛIR ∼ (aNσ)
−1. The

next step is to define the QCD action S =
�
X
L, with L given by Eq. (1.1), on the

discretized space-time lattice.

The current understanding of QCD thermodynamics in the context of EoS is

shown in Fig. (2.1) [50]. Fig. (2.1) shows the scaled pressure, energy density, and

entropy density, at zero baryon chemical potential, as a function of the temperature.

In order to give a meaningful reference, the Stefan-Boltzmann limit, for a free gas

of non-interacting massless quarks and gluons, is shown by a horizontal line. As

illustrated by this plot, the number of degrees of freedom increases rapidly above a

temperature Tc ∼ 170 MeV. At higher temperatures, the pressure takes an almost

constant value that deviates approximately by 20% from that of Stefan-Boltzmann

limit. The second important message that LQCD gives is that the observed rapid rise

in ε/T 4 and P/T 4 corresponds to continuous crossover rather than a phase transition

[51]. The fact that this transition is a continuous crossover implies that there is

no sharp definition of Tc. However, the analysis performed in [52] indicates that

the the Polyakov loop susceptibility and chiral susceptibility peak in the range of

T = 150− 170 MeV.

As discussed in sec. (1.4.2), the thermodynamic quantities can be extended to

non-zero µB by expanding as a Taylor series in powers of µB/T for which the Taylor

coefficients can be simulated on the lattice at µB = 0. Additionally, these derivatives
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describe moments of the distribution of the conserved charges in an ensemble of

volumes of QGP, and hence can be related to event-by-event fluctuations in heavy

ion collision experiments. These quantities are in general called susceptibilities and

can be calculated as [53]

χxyz
BSQ =

∂x+y+zP

∂µB
x∂µS

y∂µQ
z
, (2.23)

where x, y and z are the order of derivatives of the quantities B, S and Q. In

LQCD however, one usually defines susceptibility χxyz
BSQ in terms of scaled pressure

and chemical potentials i.e.,

χxyz
BSQ =

∂x+y+z(P/T 4)

∂(µB/T )
x∂(µS/T )

y∂(µQ/T )
z . (2.24)

When all three chemical potentials vanish, the lowest nonzero moments are the diag-

onal and off-diagonal susceptibilities defined as

χ2
i =

∂2(P/T 4)

∂(µi/T )
2 =

1

V T 3
�N2

i �, (2.25)

χ11
ij =

∂2(P/T 4)

∂(µi/T )(µj/T )
=

1

V T 3
�NiNj�, (2.26)

where Ni are the numbers of B,Q or S charge present in the volume V . From

the above equations, the diagonal susceptibilities quantify the fluctuations of the

conserved charges and the off-diagonal susceptibilities measure the correlations among

the conserved charges, and are more sensitive to the nature of the charge carriers [54].

One such correlator, is the baryon-strangeness correlator CBS proposed in [54] can

act as a diagnostic tool to understand the nature of the degrees of freedom i.e., baryon
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Figure 2.2: Baryon-strangeness correlator (CBS) as a function of the temperature.
The different symbols correspond to differentNτ values, the red band is the continuum
extrapolation and the black, solid curve is the IDHRG model result. The ideal gas
limit is shown by the black, dashed line. (Fig. from [55].)

or meson dominanted in the hadronic medium. It has the following expression

CBS = −3
χ11
BS

χ2
S

= −3
�NBNS�
�N2

S�
. (2.27)

For a gas of non-interacting QGP, CBS = 1 but for a gas of kaons (anti-kanons)

CBS < 1 while for a gas of baryons (anti-baryons) CBS > 1. However, significant

differences between LQCD and IDHRG can been seen in [56] as shown in Fig. (2.2).

Moreover, we will see that such discrepancies can be removed within the S-matrix

formalism for interacting hadrons. In the forthcoming sections, we will discuss the

formalism to obtain the phase-shifts, i.e., attractive from the K-matrix and repulsive

by fitting to results of experimental phase shifts.
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2.2 K-matrix formalism

A theoretical way of calculating the attractive phase shifts is the use of K-matrix

formalism. The K-matrix formalism elegantly expresses the unitarity of the S-matrix

for the processes of type ab → cd, where a, b and c, d are hadrons. We provide only

a brief summary of the formalism in this section, an in-depth review can be found in

[57–60].

In general, the amplitude that an initial state |i� to be scattered to the final state

|f� is given as,

Sfi = �f |S|i�, (2.28)

where S is called the scattering operator. Splitting the probability of non-interaction

I and interaction by defining the transition operator T , we have

S = I + iT, (2.29)

where I is the identity operator. Conservation of probability implies that scattering

matrix S should be unitary, i.e.,

SS† = S†S = I. (2.30)

From the unitarity of S, T satisfies the optical theorem [61]

T − T † = iT †T = iTT †. (2.31)

Schwinger [62] introduced the K operator as the Cayley transform of the complex
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Figure 2.3: Stereographic projection of a realK-matrix eigenvalue aK onto the Argand
circle a. (Fig. from [63].)

unitary scattering operator S, namely

S =
1 + iK/2

1− iK/2
(2.32)

where we have included a factor of 1/2 for later convenience. K is self-adjoint by def-

inition and is more closely related to the interaction Hamiltonian than the S matrix.

The corresponding transition operator T is then given as,

T =
K

1− iK/2
. (2.33)

These relations can be inverted

K = 2i
1− S

1 + S
=

T

1 + iT/2
(2.34)

If the theory allows a perturbative expansion, the later formula allows us to compute

the K-matrix perturbativly from the expansion of T .
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Given their exists a basis that diagonalises the scattering operator S, and thus T

and K, the Cayley transform has a simple geometric interpretation for the eigenvalue.

Given a complex eigenvalue t = 2a of a transition operator T , the optical theorem

implies

|a− i/2| = 1/2, (2.35)

i.e., the eigen-amplitude a is located on the Argand circle with radius 1/2 and center

at i/2. The corresponding real K-matrix eigenvalue k = 2aK is then given by

aK =
a

1 + ia
. (2.36)

This is the inverse of stereographic projection from the real axis onto the Argand circle

and is shown in Fig. 2.3. The Cayley transform or the K-matrix can be understood

as the inverse stereographic projection of the transition matrix T onto the space of

Hermitian matrices.

The standard K-matrix formalism works on a perturbative series of the T matrix.

Given a n-th order approximation T
(n)
0 to the T -matrix, represented by an eigen-

amplitude a
(n)
0 , one needs to construct the corresponding real K-matrix amplitude

a
(n)
K using Eq.(2.34),

anK =
a
(n)
0

1 + ia
(n)
0

= a
(1)
0 + Re a

(2)
0 + i(Im a

(2)
0 − (a

(1)
0 )

2
) + ... (2.37)

= a
(1)
0 + Re a

(2)
0 + ... (2.38)

where we assume that a
(1)
0 is real and use the lowest order optical theorem Im a

(2)
0 =

(a
(1)
0 )

2
. If the original perturbation series is correct, then at each order the imaginary

parts must cancel. In the next step, we insert the truncated perturbation series for

a
(n)
K into Eq.(2.33) but this time without truncating.
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a(n) =
a
(1)
0 + Re a

(2)
0 + ...

1− i(a
(1)
0 + Re a

(2)
0 + ...)

. (2.39)

Thus, the K-matrix formalism amounts to a partial re-summation of the perturbation

series, if the scattering matrix admits a perturbative expansion. The prescription

guarantees that (i) the computed S-matrix is unitary, and (ii) the perturbation theory

is reproduced order by order.

One can rewrite the components of T matrix in terms of K-matrix as

ReT = (I +K2/4)
−1
K = K(I +K2/4)

−1
,

ImT =
1

2
(I +K2/4)

−1
K2 =

1

2
K2(I +K2/4)

−1
. (2.40)

Resonances appear as sum of poles in the K-matrix as

Kab→cd =
�

R

gR→ab(
√
s)gR→cd(

√
s)

m2
R − s

, (2.41)

where the sum on R runs over the number of resonances with mass mR, and the

residue functions are given by

gR→ab(
√
s) = mRΓR→ab(

√
s), (2.42)

The energy dependent partial decay widths [58] are given by

ΓR→ab(
√
s) = Γ0

R→ab(
√
s)
mR√
s

qab
qab0

�
Bl(qab, qab0)

�2
. (2.43)
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The momentum qab is given as

qab(
√
s) =

1

2
√
s

��
s− (ma +mb)

2� �s− (ma −mb)
2�, (2.44)

where ma and mb being the mass of decaying hadrons a and b. In Eq.(2.43), qab0 =

qab(mR) is the resonance momentum at
√
s = mR and Γ0

R is the width of the pole at

half maximum. The Bl(qab, qab0) are the Blatt-Weisskopf barrier factors which can be

expressed in terms of momentum qab and resonance momentum qab0 for the orbital

angular momentum l as

Bl
R→ab(qab, qab0) =

Fl(qab)

Fl(qab0)
. (2.45)

The barrier factors Fl(q) can be obtained using the following definition:

Fl(z) =
|h(1)

l (1)|
|zh(1)

l (z)|
, (2.46)

where h
(1)
l (z) are spherical Hankel functions of the first kind and z = (q/qR)

2, with

qR = 0.1973 GeV corresponding to 1 fm.

The scattering amplitude f(θ) can be expressed as

f(
√
s, θ) =

1

qab

�

l

(2l + 1)T lPl(cos θ), (2.47)

in terms of the interaction matrix T l(s). Here Pl(cos θ) are the Legendre polynomials

for the angular momentum l and θ is the center of mass scattering angle. The cross

section for the process ab → cd can be given in terms of terms of scattering amplitude

σ(
√
s, θ) = |f(√s, θ)|2. (2.48)
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Figure 2.4: Argand diagrams of the T-matrices corresponding to the resonances de-
scribed in text. The blue line is the calculation from the KM and the red line is
the calculation from BW parameterization. The left panel is for non-overlapping
resonances while the right panel is for overlapping resonances.

If we use partial decomposition of the T -matrix,

T l = eiδl sin δl, (2.49)

one can relate the phase shift in a single resonance of mass m1 to the K-matrix using

the relations in Eq.(2.40),

K =
m1Γ1(

√
s)

m2
1 − s

= tan δl. (2.50)

Furthermore, once one computes the K-matrix by providing the relevant masses and

widths of resonances, the phase shift can be obtained by inverting the above relation.

A comparision between the K-matrix formalism (KM) and the popular Breit-

Wigner (BW) parametrization is due here. In case of BW the T -matrix for multiple
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Figure 2.5: The variation of total cross section as a function of center of mass energy.
Left panel shows total cross section of separated resonances f0(980) and f0(1500);
right panel shows total cross section of overlapping resonances f0(1370) and f0(1500).
The calculations using K-matrix formalism are shown using solid blue line (KM).
Calculations using Breit-Wigner parametrization are shown using dashed black line
(BW). (Figs. from [64].)

resonance can be parametrized in the form

T =
�

R

mRΓR→ab(
√
s)

(m2
R − s)− imRΓtot

R (
√
s)
, (2.51)

where Γtot
R =

�
i,j ΓR→ij is the total width and ΓR→ij is the partial width for a given

channel R → ij of the resonance R respectively.

Fig. (2.4) (left panel) compares the results of T -matrix in an Argand plot, obtained

from K-matrix and Breit-Wigner formalism for two separated resonances f0(980) and

f0(1500) of mass m1 = 990 MeV, Γ1 = 55 MeV and m2 = 1505 MeV, Γ2 = 109

MeV. For non-overlapping resonances KM respect unitarity of T -matrix, whereas

BW struggles to preserve it. However, Fig. (2.4) (right panel) compares the results

of KM and BW for two overlapping resonances f0(1370) and f0(1500) of mass m1 =

1370 MeV, Γ1 = 350 MeV and m2 = 1505 MeV, Γ2 = 109 MeV. In this case BW

parametrization violates unitarity whereas KM respects the unitarity of T -matrix.
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Figure 2.6: Energy dependence of NN scattering phase shifts taken from SAID partial-
wave analysis [44]. The notation to specify NN scattering channels is 2S+1lJ where l,
S, J correspond to orbital, spin and total angular momentum respectively.

Fig. (2.5) (left panel) compares the results of total cross-section in K-matrix and

Breit-Wigner formalism for two separated resonances f0(980) and f0(1500). The

results are almost identical except that the peak in Breit-Wigner formalism is slightly

larger than K-matrix formalism. Fig. (2.5) (right panel) compares the results of total

cross-section in K-matrix and Breit-Wigner formalism for two overlapping resonances

f0(1370) and f0(1500). The results shows that the Breit-Wigner parametrization

overestimates the cross-section both at the peak and in the middle of the overlapping

resonances. In such cases of two nearby resonances the Breit-Wigner form is not

strictly valid and the K-matrix formalism must be used.

2.3 Experimental Phase shifts

As mentioned earlier, for repulsive interactions and for interactions where the infor-

mation about mR and ΓR are not available, the K-matrix formalism is not applicable

and we resort to extraction of phase shifts from experimental data. We extract the
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Partial wave/PDG
resonances

σ (in mb) σel (in mb) δ
Ref.

NN All I = 0 and I =
1 for l ≤ 7 (See
Fig. (2.6))

23.5 + 24.6

1+exp (− plab−1.2

0.10 )
,

(0.8 < plab < 5 GeV)

41 + 60(plab − 0.9)e−1.2plab ,

(1.5 < plab < 5 GeV)

1250
plab+50

− 4(plab − 1.3)2,

(0.8 < plab < 2 GeV)
77

plab+1.5
, (plab > 2 GeV)

[44]

πN Δ(1620), Δ(1910),
Δ(1930) and N(1720)

326.5

1+4
�√

s−1.215
0.110

�2
q3

q3+(0.18)3
σ − 74(plab − 0.55)2p−4.04

lab ,

(0.5 GeV< plab < 1.5 GeV)

[45]

KN Σ(1660), Σ(1750) and
Σ(1915); Λ(1520),
Λ(1600) and Λ(1690)

23.91 + 17.0e−
(plab−10)2

0.12 ,

(plab < 2.5 GeV)

172.38e−2.0(plab+0.1),

(plab < 0.7 GeV)

[46]

ππ f0(500) (σ meson) - - [65]

Table 2.1: List of repulsive channels obtained after parametrizing to experimental
phase-shifts. First column shows the partial waves or the equivalent PDG resonances,
second and third column shows the total and elastic cross-sections of the respective
channels. Fourth column contains the information of the experimental data from
which δ is parametrized. Here plab refers to the lab momentum.

repulsive (πN , KN) and nucleon-nucleon (NN) interaction phase shifts, using the

data from the SM16 partial wave analysis [44]. For the repulsive isotensor channel

δ20 in the π − π scattering, we use the data from [65]. Moreover, the S-matrix for-

malism is only applicable for elastic scattering and the inelastic part that enters into

the analysis by fitting to experimental data has to be removed. To get around this

problem, we make an estimate of the contribution coming from the inelastic part by

first defining a generic l dependent scattering amplitude fl(
√
s),

fl(
√
s) =

ηle
2iδl − 1

2i
, (2.52)

where ηl is the inelastic parameter. The elastic cross-section is given

σel =
4π

q2

�

l

(2l + 1) sin2 δl, (2.53)
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whereas the inelastic cross-section can be written as

σinel =
π

q2

�

l

(2l + 1)(1− η2l ), (2.54)

The total cross section σ is the sum of Eq. (2.53) and Eq. (2.54). We can approximate

the contribution to the elastic part of the phase shift δel by the following expression

δel ≈ sin−1

��
σel

σ
sin δ

�
, (2.55)

where δ is the total phase shift that is obtained from fit to experimental data [44–46].

Table. (2.1) lists all the repulsive channels that we take into account to calculate

the thermodynamic quantities. Fig. (2.6) shows the experimental NN phase shifts

from the SAID partial-wave analysis [44] as a function of
√
s. Dominant contribution

comes from lower l values e.g. the 1S0 phase shift. It should be highlighted that, most

of these phase shifts become negative at higher
√
s signifying the hard core nature of

NN interaction. Other repulsive channels in πN , KN and ππ, viz. resonances like

Δ(1620), Σ(1660), f0(500) etc. are listed in Table. (2.1).

2.4 Results and Discussion

We have considered all the stable hadrons and resonances which have two body de-

cay channels listed in PDG (2016) [66] when we calculate the phase-shifts using K-

matrix formalism. The results will be denoted by KM. The repulsive contribution are

included using parametrized phase-shift data from experiments alongwith the attrac-

tive contribution from KM, the results will be denoted by Total. The IDHRG results

which includes resonances having two-body decay mode are denoted by IDHRG 1.

Next, results from IDHRG that considers all the confirmed hadrons and resonances
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Figure 2.7: Temperature dependence of various thermodynamic quantities ((a) P/T 4,
(b) s/T 3, (c) (ε−3P )/T 4 (d) Cv/T

3,) at zero chemical potential. Total contains both
the attractive and repulsive interaction whereas KM contains only the attractive part.
IDHRG-1 corresponds to results of ideal HRG model with same number of hadrons
and resonances as in KM. Results are compared with lattice QCD data of [67] (WB)
and [50] (HotQCD). (Figs. from [64, 68].)

listed in the PDG 2016 [66] is denoted by IDHRG (PDG 2016). This is to elucidate

the effect of change in degrees of freedom on thermodynamic quantities. Continuum

extrapolated LQCD data from two different groups are indicated by Lattice (WB)

and Lattice (HotQCD).

In Fig. (2.7), temperature dependence of various thermodynamic quantities (P/T 4,

s/T 3, (ε − 3P )/T 4, Cv/T
3) at zero chemical potential is compared among various

hadronic models, the results of other quantities can be found in [64, 68]. The results
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Figure 2.8: Temperature dependence of second order susceptibilities ((a) χ2
B, (b) χ

2
Q,

(c) CBS and (d) χ2
B − χ4

B) at zero chemical potential. Result of ideal HRG model
with additional resonances which are yet not confirmed is labelled as IDHRG (PDG
2016+), other symbols and notation are same as Fig. (2.7). (Figs. from [64, 68].)

of K-matrix formalism for all thermodynamic quantities are larger compared to the

ideal HRG values. This is sensible, because the K-matrix takes into account the

finite decay width of the decaying resonances and thus modifies the effective density

of states that contributes to the calculation of partition function from its ideal gas

counterpart. It can be seen that the K-matrix formalism better describes the LQCD

data than the IDHRG model with same number of hadrons and resonances. An

analogous comparison of thermodynamic observable with the inclusion of repulsive

contribution along with the attractive contribution, with K-matrix formalism shows
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B due to repulsive interaction across various

interaction channels. (Fig. from [63].)

a reduction in all such observables. The difference between KM and Total is more

towards the higher temperature regimes and negligible at lower temperatures. A

related comparision of IDHRG (PDG 2016) (Fig. (2.7) (a)), moreover shows a better

agreement with LQCD data. Nevertheless, the agreement of IDHRG (PDG 2016)

with the LQCD data is because of the increase in the number of degeneracies and

not due to some inherent interaction that is naturally present in the system revealed

within the S-matrix formalism.

A similar comparison of second order diagonal and off diagonal susceptibilities is

shown in Fig. (2.8). Other second order susceptibilities can be found in [64, 68]. It is

seen that the K-matrix formalism shows a better agreement with LQCD data than

IDHRG across all such observables. With the inclusion of repulsion which is almost in

the baryonic sector (πN,KN and NN), the results of susceptibilities like χ2
B and χ2

Q

show a lot of improvement than with only attraction. The contribution from various

channels to the repulsive part of the second virial coefficient can be inferred from

Fig. (2.9), which is in the order such that πN > KN > NN . It is important to note
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that, although many channels are repulsive in NN interaction than in πN interaction,

the effect is repulsion on observables like χ2
B is more from πN interaction. This is

because, the effect of repulsion in elastic πN interaction is dominant in the energy

ranges 1.07 GeV<
√
s < 1.67 GeV, while for elastic NN interaction is in between

1.88 GeV<
√
s < 2.34 GeV, this fact is reflected when we compute thermodynamic

observables in the relevant temperature ranges.

Both IDHRG 1 and IDHRG fail to describe the baryon-strangeness correlator CBS

of the LQCD data as was pointed out in sec. 2.1.4, Fig. (2.2). Additionally, it has been

argued that such discrepancy can be cured by allowing additional strange hadrons

which have not been confirmed but are predicted in various quark models [69, 70], as

shown in Fig. (2.8) (c), labelled IDHRG (PDG 2016+)). However, Fig. (2.8) shows

that the difference between LQCD and ideal HRG can be accounted by including

interaction without invoking any additional hadrons.

The quantity χ2
B − χ4

B = 0, for a hadron gas which has baryon number ±1, but

not for non-interacting QGP for which χ2
B − χ4

B > 0, since all quarks carry a baryon

number of ±1/3. However for an interacting gas, the inclusion of NN interaction

which carries a net baryon number ±2 might give us a non zero result. We compare

this with the S-matrix formalism where the ideal part is computed assuming Fermi-

Dirac (FD) statistics. This is shown in Fig. (2.8) (d), and the result shows that this

quantity changes sign as we increase the temperature. This can be understood from

the isospin weighted sum of phase-shifts of NN interaction which is positive for small

√
s and falls rapidly at large

√
s showing the hard core nature of NN interaction

at short distances. The above observation is in agreement with lattice data which

also shows a similar change in sign when moving from lower to higher temperature.

In [31, 71] the same increasing trend of χ2
B − χ4

B with temperature was also found

using repulsive mean field in a multi-component hadron gas and excluded volume
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approach. Our results using the S-matrix formalism validate the previous results.

Moreover, one should note that the effect of including only NN interaction is rather

small compared to the results obtained by [31, 71] which can be improved upon adding

other baryon-baryon interaction in the partition function. However, these information

about the experimental phase shifts of other baryon-baryon interactions are currently

not available and one has to supply these missing information from chiral effective

theory [72, 73] or other such models.

2.5 Summary

To summarize, we could ascertain thatK-matrix/S-matrix formalism better describes

the LQCD data than the IDHRG model with same number of hadrons and reso-

nances. However, increasing the degeneracies in IDHRG model by adding additional

resonances, i.e IDHRG 1 against IDHRG, can also explain lattice data but such model

lacks genuine interaction that is present in K-matrix/S-matrix formalism. The find-

ings also suggest that the isospin-weighted sum of attractive and repulsive phase-shifts

is non-zero which is reflected across all thermodynamic variables of Figs. (2.7) and

(2.8), which with regard to complete cancellation would have coincided with the

IDHRG 1 results. This should be seen in the light of, earlier reports for e.g. [43]

observed that in certain channels like ππ interaction, the attractive and repulsive

interaction cancel each other. However, we found that although some partial can-

cellation is occurring among various phase-shifts in KN , πN and NN interaction

channels, but the resultant interaction is substantial and far from exact cancellation.
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[25] Volodymyr Vovchenko and Horst Stöcker. “Surprisingly large uncertainties in

temperature extraction from thermal fits to hadron yield data at LHC”. J.

Phys. G 44.5 (2017), p. 055103. arXiv: 1512.08046 [hep-ph].

[26] J. Kapusta, M. Albright, and C. Young. “Net Baryon Fluctuations from a

Crossover Equation of State”. Eur. Phys. J. A 52.8 (2016), p. 250. arXiv:

1609.00398 [nucl-th].

[27] A. Andronic, P. Braun-Munzinger, K. Redlich, et al. “Hadron yields, the chem-

ical freeze-out and the QCD phase diagram”. J. Phys. Conf. Ser. 779.1 (2017).

Ed. by Huan Zhong Huang, Richard Seto, Jochen Thäder, et al., p. 012012.
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Chapter 3

Transport coefficients for hadronic

gas: Interactions & magnetic field
One of the interesting results from RHIC and LHC experiments in search of QGP

is that the deconfined quark-gluon matter behaves as a near-perfect fluid [1–9]. The

property quantifying a liquid’s ’fluidity’ is its transport coefficients, for e.g. shear

viscosity ηs or bulk viscosity ηv.

In non-relativistic fluid, viscosity ηs is defined as the ratio of shear stress to the

strain rate i.e., ηs = F/A
v/l

, where F is the tangential force acting between two plane

parallel layer of fluid with area A and strain rate (velocity gradient) v/l. ηs is often

called the dynamic viscosity or absoulute viscosity. However, it is natural to define

the kinematic viscosity ηs/ρ, where ρ is the density of the fluid, when we are interested

in the diffusion of momentum. Relativistic analogue of ηs/ρ is the dimensionless ratio

ηs/s where s is the entropy density because mass density is ill-defined in the relativistic

case. The dimensionless ratio ηs/s is proportional to the product of mean free path

and temperature. At weak coupling, the mean free path of the system is larger which

means a greater value of this ratio [10–12]. For example, ηs/s ∼ (α4
s log(1/αs))

−1, for

a weakly coupled gas of gluons, where αs is the QCD coupling constant. For αs = 0.1,

the value of ηs/s ∼ 4× 103. On the other hand, there is efficient momentum transfer

in strongly coupled system and the ratio ηs/s is much smaller [13]. For example, for

strongly coupled field theories give a lower bound of the ratio ηs/s = 1/4π via the
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anti-de Sitter/conformal field theory (AdS/CFT) correspondence conjectured in [14].

In this chapter, we shall find that the ratio ηs/s values varies from weak coupling

to strong coupling regime as one goes from lower to higher temperatures. There are

two other important reasons for studying the temperature dependence of transport

coefficients. First, experimentally it was found [15, 16] that ηs/s show a minimum

for different substances close to the liquid-gas phase transition, which may help to

analyze the QCD phase diagram. Such a minimum are found in using kinetic theory

as well. For example in [17] the ratio ηs/s, diverges as temperature T → 0 for

massless pions, while in the quark gluon phase [17], ηs/s is an increasing function of

T . Second, it was predicted [18–20] that the ηv/s ratio would display a maximum

near the phase transition. For example in [21] for massless pions the ratio ηv/s goes

to zero in the T → 0 limit and also to zero in the asymptotically high T [22] quark

gluon process.

This chapter is divided in two sections. In section 3.1, we describe the calculation

of transport coefficients for interacting multi-component hadronic gas and in section

3.3, we describe the anisotropic transport coefficients for hadronic gas in the presence

of the magnetic field.

3.1 Transport coefficients for multi-component gas

of interacting hadrons

We determine the transport coefficients of a hadronic gas consisting of the baryon

and meson octets, namely π, η, K,N,Λ,Σ,Ξ [23]. The related resonances arising as

interactions between these hadronic constituents are treated using the K- matrix

formalism [24, 25]. The formalism we use to calculate thermodynamic equilibrium
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quantities such as entropy density, enthalpy density, number density etc. is via the

S-matrix based Hadron Resonance Gas (HRG) model, as discussed in chapter 2.

For all hadrons except the nucleons, where we explicitly use the experimental phase

shifts [26], the cross-sections that are used in determining transport coefficients are

determined in the K-matrix formalism. Calculations are done for a system with

vanishing baryon chemical potential (µB) as well as for finite µB = 100 MeV. The

transport coefficients are obtained using Chapman-Enskog (CE) method developed

in [27–29]. Through this approach the solution of the transport equation, i.e. the

distribution function to be determined, is first written as an infinite sequence of

Laguerre polynomials. The transport equation could be turned into an infinite series

of linear, algebraic equations, with the aid of this expansion. A finite number of

equations are taken and solved from this infinite set of equations to get an approximate

solution for the distribution function. Using this solution, the transport coefficients

are determined.

Pioneering work on transport coefficients was carried out in [30] using the CE

method for quark and gluon system and in [17], for various binary combinations in a

system consisting of π −K −N using experimental cross-sections. Similarly, in [24]

the calculations of η/s for a multi-component system consisting of π−K −N − η at

vanishing µB in the K-matrix formalism, has been carried out but without including

NN interaction. In [31], CE method was used for calculating ηs/s and ηv/s using

UrQMD cross-sections and in [32] using in-medium cross-sections.We expand upon

all these previous work by adding a broader range of hadronic interacting states (7

stable hadrons + 112 resonances) and also extending to finite chemical potential. On

adding more stable hadrons to the mixture, one hopes that new channels of interac-

tion (through resonance formation) will open up, which will relax the system faster

than with fewer hadrons considered in previous works. The system’s degeneracy also
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increases, which affects equilibrium quantities such as entropy density and number

density, etc., which in turn will affect the dimensionless ratio of transport coefficients.

It is also important to quantify transport coefficients at non-zero chemical potential,

as finite baryon density influences the concentration of different species interacting in

the mixture and hence the total weight coming from different channels on the final

value of the transport coefficient. With regard to other formalism for e.g. in [19, 33,

34], which uses relaxation time approximation (RTA), the present formalism is better

in the sense that small angle scattering is taken care of naturally, while RTA uses ther-

mal average cross-sections. Similarly, in comparison with models such as ideal hadron

resonance gas, excluded volume approach [35–39] which uses constant cross-section

values, the present formalism uses energy dependence of cross-section to measure the

temperature dependence of transport coefficients. In the transport models [40, 41],

shear viscosity calculations were also performed using the Kubo formalism. Our find-

ings on transport coefficients in the temperature range of T = 80 − 110 MeV are in

fair agreement with that from the transport models, e.g., UrQMD amd SMASH.

3.1.1 Transport coefficients from the kinetic theory

Kinetic theory is governed by the Boltzmann equation, which describes a system

made up of quasiparticles with a well-defined mean free path λmfp. The applicability

of the kinetic theory involves a separation of scales, so that the length of interactions

between particles is short relative to their mean free path and thus multiparticle

distributions can be calculated by the single particle distributions. The relativistic

Boltzmann equation, describing the space-time evolution of the phase space density

f = f(x, p), where x is position and p is momentum, is given by [42],

pµ∂µf1 = C[f, f ]. (3.1)

112



3 Transport coefficients for hadronic gas: Interactions & magnetic field

The collision term C[f, f ], in the Boltzmann approximation, is given by,

C[f, f ] =
1

2

�
d3p2
p02

d3p3
p03

d3p4
p04

[f3f4(1 + θf1)(1 + θf2)

−f1f2(1 + θf3)(1 + θf4)]W (p3, p4|p1, p2), (3.2)

where p1, p2 are momenta of incomimg and p3, p4 are momenta of outgoing particles

respectively. W (p3, p4|p1, p2) is the transition rate in the collision process p1 + p2 ↔

p3 + p4. The constant θ = ±1 for bosons or fermions and 0 for classical Maxwellian

particles. We shall employ the Chapman Enskog method as discussed in Refs. [27–29]

to linearize and solve the kinetic equation Eq. (3.2). We split the derivative operator

∂µ into a time-like and space-like part

∂µ → uµD +∇µ, (3.3)

where D = uν∂ν and ∇µ = Δµν∂ν and Δµν = gµν − uµuν is the projection operator.

Here, uµ is the hydrodynamic four velocity, as discussed in subsection 1.4.1. Taking

θ = 0, i.e., assuming the particles to be classical, we expand the distribution function

f into an equilibrium part f (0) and a deviation �f (1), i.e.,

f = f (0) + �f (1). (3.4)

To order �, substituting Eq. (3.4) into the the transport equation Eq. (3.1) gives

pµuµDf
(0)
1 + pµ∇µf

(0)
1 = −f

(0)
1 L[φ], (3.5)

where L[φ] is the linearized collision operator
�
found from Eq. (3.2), using Eq. (3.4)

and invoking the principle of detailed balance given as, f
(0)
1 f

(0)
2 = f

(0)
3 f

(0)
4

�
.
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Hence,

L[φ] = 1

2

�
d3p2
p02

d3p3
p03

d3p4
p04

f
(0)
2 (φ1 + φ2 − φ3 − φ4)W (p3, p4|p1, p2). (3.6)

The φi is the ratio f
(1)
i /f

(0)
1 . The equilibrium distribution functions f

(0)
i are assumed

to be Maxwell Boltzmann type

f
(0)
i = exp

�
µi(x)− pνi uν(x)

T (x)

�
. (3.7)

To identify the functions µ(x), uµ(x) and T (x) with the usual definitions of chemical

potential, hydrodynamic velocity and temperature of the system, we demand that the

particle density n and energy density ε be determined solely by the local equilibrium

distribution function in Eq. (3.7) as,

n =

�
d3p

(2π)3p0
(pµuµ)f

(0), (3.8)

ε =

�
d3p

(2π)3p0
(pµuµ)

2f (0). (3.9)

The choice of distribution function given in Eq. (3.7) along with condition given

in Eqs. (3.8) and (3.9) determines the set of independent variables T, µ, uν . The

derivative of the distribution function f (0), then depends only on the above set of

independent variables. Then one can express Df (0) as,

Df (0) =
∂f (0)

∂ (µ/T )
D

�µ

T

�
+

∂f (0)

∂T
DT +

∂f (0)

∂uµ
Duµ

=

�
TD

�µ

T

�
+ pµuµD(log T )− pµDuµ

�
f (0)

T
,

(3.10)
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and ∇αf (0) as,

∇αf (0) =
�
T∇α

�µ

T

�
+ pµuµ∇α log T − pµ∇αuµ

� f (0)

T
, (3.11)

expressed in terms of temperature T , density n, hydrodynamic four-velocity uµ and

the chemical potential µ.

Multiplying Eq (3.5) with
�
d3ppµ/p0 and contracting with uµ, gives [42],

DT = −(γ − 1)T∇µu
µ (3.12)

where γ = cP/cV is the ratio of heat capacities at constant pressure cP and constant

volume cV . Similarly, on multiplying Eq (3.5) with
�
d3ppµ/p0 and contracting with

projection operator Δµν , gives the equation of motion

Duµ =
1

wn
∇µP, (3.13)

where, wn is the enthalpy density, w = (ε + P )/n and P is the pressure [27]. Also,

the continuity equation, for e.g. given in [42]

Dn = −n∇µu
µ. (3.14)

can be used to express the time derivative of number density in terms of gradients of

hydrodynamic velocity. Eqs. (3.12-3.14) are used in Eqs. (3.10) and (3.11), to express

time derivative of T, n and uµ in terms of gradients of uµ and P respectively.

The expressions of Df (0) and ∇µf (0) given in Eqs. (3.10) and (3.11) can be sub-

stituted in the linearized transport equation Eq. (3.5). Thus, one can express the

transport equation in terms of thermodynamics forces, whose components include
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scalar force, vectorial force and tensorial force respectively. The scalar force can be

expressed as the divergence of hydrodynamic velocity

X = −∇µu
µ, (3.15)

the vectorial force, due to temperature gradient and pressure gradient is given as

Y µ = ∇µ log T − 1

wn
∇µP, (3.16)

and tensorial forces (traceless indicated by “� �”, due to gradient of hydrodynamic

velocity is given as

�Zµν� = 1

2
∇µuν +

1

2
∇νuµ − 1

3
Δµν∇αu

α. (3.17)

In terms of these forces, the transport equation is then given as

QX − pν (p
µuµ − w)Y ν + pµpν�Zµν� = TL[φ]. (3.18)

The quantity Q is defined as

Q =

�
4

3
− γ

�
(pµu

µ)2 + ((γ − 1)w − γT ) pµuµ −
m2

3
, (3.19)

where the relativistic version of Gibbs-Duhem relation [42]: T∇µ(µ/T ) = −w(∇µT/T−

∇µP/wn) was used for the derivation of Eq. (3.18).

An equation similar to Eq. (3.18) can also be derived for a two component mixture

with components labeled by subscripts 1 and 2. Here, we indicate the few differences

pertaining to extension of derivation of Eq. (3.18) for binary mixtures.
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3 Transport coefficients for hadronic gas: Interactions & magnetic field

The analogous linearized transport equation for mixtures can be written as,

pµ1uµDf
(0)
1 + pµ1∇µf

(0)
1 = −f

(0)
1

2�

k=1

L1k[φ]. (3.20)

An equation similar to the Eq. (3.20) also holds for component 2. The right hand

side takes collisions of the form 1(2) + 1(2) → 1(2) + 1(2) and 1 + 2 → 1 + 2 into

account. The linearized operator is given by

L1k[φ] =

�
1− δ1k

2

��
d3p2
p02

d3p3
p03

d3p4
p04

f
(0)
k ×

(φ1 + φ2 − φ3 − φ4)W1k(p3, p4|p1, p2). (3.21)

The factor (1− δ1k/2) takes into account the correct weighting for same or different

species which interact in the scattering process.

However, an extra thermodynamics force called the diffusion force [28], given by

Y µ
1 = (∇µµ1)P,T − (∇µµ2)P,T − w1 − w2

wn
∇µP, (3.22)

needs to be introduced when dealing with mixtures. Here, n is the particle density

and wi is the enthalpy per particle of component i. Further derivation of the trans-

port equation in terms of thermodynamic forces proceed along lines similar to single

component system and can be found in [28]. Here we state the final result analogous

to Eq. (3.18) for component 1 as

Q1X − pν1 (p
µ
1uµ − w1)Yν− x2p

µ
1Y1µ +pµ1p

ν
1�Zµν� = T

2�

k=1

L1k[φ],

(3.23)

where, xi = ni/(n1 + n2) being the particle number density fraction. An equation
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similar to above, also holds for component 2. The linear equations given in, Eqs. (3.18)

and (3.23) are used in the later sections to derive explicit expressions for the transport

coefficients.

3.1.2 Results

Single component system

In the present section we derive the transport coefficients for a single component

system as described by the transport equation given in Eq. (3.18).

The observation that thermodynamic forces X, Y µ and �Zµν� appear as linearly

independent quantities in Eq. (3.18), enables us to write the function φ of Eq. (3.6)

as

φ = AX − BµY
µ + Cµν�Zµν�, (3.24)

where the unknown coefficients A, Bµ and Cµν are still to be determined. The sign

of Bµ is chosen in accordance with the sign of the vector force in Eq. (3.18). Insert-

ing Eq. (3.24) into Eq. (3.18), the transport equation can be separated into three

independent equations, given as

QX = TL[AX] (3.25)

− (pµuµ − w) pµY
µ = TL[−BµY

µ] (3.26)

pµpν�Zµν� = TL[CµνZ
µν ], (3.27)

where L[φ] is the linearised collision operator, as defined in Eq. (3.6).

We next define the macroscopic dissipative quantities, such as the viscous pressure
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3 Transport coefficients for hadronic gas: Interactions & magnetic field

and the heat flow which are functions of φ. The viscous pressure is defined as [27]

Π = −1

3

�
d3p

p0
Δµνp

µpνf (0)φ, (3.28)

the heat flow is defined as

Iµq =

�
d3p

p0
Δµαpα (p

µuµ − w) f (0)φ, (3.29)

and the traceless viscous pressure is defined as

�Πµν� =
�

d3p

p0

�
Δµ

αΔ
ν
β −

1

3
ΔαβΔ

µν

�
pαpβf (0)φ. (3.30)

The dissipative quantities can be written in a more transparent way using the follow-

ing dimensionless inner product bracket notation

(F,G) =
T

n

�
d3p

p0
F (p)G(p)f (0)

=
1

4π2z2K2(z)T 2

�
d3p

p0
F (p)G(p)e−τ , (3.31)

where the quantities z = m/T and τ = pµuµ/T have been used. Inserting the expres-

sion for function φ, given in Eq. (3.24) into the definitions of dissipative quantities

defined in Eqs. (3.28-3.30), expresses these dissipative quantities in terms of bracket

notation. Hence, the bulk viscous pressure is given as,

Π = −1

3
nT (πµπµ, A)X = ηvX, (3.32)
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such that πµ = Δµνpν/T . The heat flow is given as

Iµq = −nT
�
πµ

�
τ − w

T

�
, Bν

�
Y ν = Tλµ

νY
ν , (3.33)

and the shear viscous flow as

�Πµν� = nT (�πµπν�, Cαβ) �Zαβ� = 2ηs�Zµν�. (3.34)

The quantities ηv, λ = Δµνλ
µν/3 and ηs stand for the bulk (volume) viscosity, heat

conductivity and shear viscosity coefficients, respectively, that appear as a constant

of proportionality between thermodynamic forces and the dissipative fluxes.

The technical details needed to compute the still unknown quantities A, Bµ and

Cµν into a tractable form, using collision integrals is given in [27]. Here, we simply

write the expressions that can be used for computational purposes. The bulk viscosity

is given by

ηv = T
α2
2

a22
, (3.35)

the heat conductivity is given by

λ =
T

3m

β2
1

b11
, (3.36)

and the shear viscosity is given by

ηs =
T

10

γ2
0

c00
. (3.37)

The definitions of symbols α2, β1 and γ0 and the expression for the quantities a22, b11

and c00 are given in Appendix 3.5.

In Fig. 3.1 we use the relations as given in Eqs. (3.35)-(3.37) to calculate various
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Figure 3.1: Variation of bulk viscosity, shear viscosity and heat conductivity of the
single component gas with temperature. The lower triangle correspond to the results
of transport coefficient computed using current algebra/ChPT cross-sections [43].
(Figs. from [23].)

transport coefficients for single component gas of baryons or mesons. The differential

cross-sections that go into the expression of a22, b11 and c00 are calculated using

K-matrix formalism described in chapter 2 for π, K and η while for nucleons (N)

differential cross-section, we use the experimental phase-shift data from [26].

Fig. 3.2 (left panel) shows, cross-sections as a function of center of mass ener-

gies. Note that, the current algebra/ChPT (CA) cross-sections of massive pions [43]

increase with the centre of mass energy, while K-matrix cross-section shows various

peaks corresponding to various resonances that occur in ππ interaction throughout the

energy spectrum. This makes the transport coefficients as shown in Fig. (3.1a-3.1c)
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Figure 3.2: (Left panel) Center of mass energy dependence of the cross-section for
single component gas using K-matrix formalism (solid, dot and dashed lines) and
(dot dashed) line for pions using current algebra (CA) cross-sections [43]. (Right
panel)Temperature dependence of maximum scattering energy

√
smax for single com-

ponent gas of pions, kaons and nucleons. (Figs. from [23].)

to decrease with T for current algebra and increase with T for K-matrix. Similarly,

for ηη interaction which has only a few resonances, the temperature dependence of

transport coefficients show a dip at some given range of temperature, which can be

alluded to the sharp rise in the cross-sections at corresponding energies (shown in

Fig. 3.2 (left panel)). Comparing the transport coefficients among various mesons,

we find that transport coefficients for different single component gas system is such

that η > K > π. This is because the total cross-section follow the order of π > K > η.

For nucleons, the elastic cross-section decreases with the centre of mass energy, the

same is reflected in the transport coefficients of nucleons at low T , where it drops

even lower than for π’s, but with increasing T , increases faster than for πs.

Finally, we clarify that our calculations of transport coefficients is limited in scat-

tering energy within the region where resonance dominate. This constraint on scat-

tering energy can be translated to the limitation on the temperature in the following

way. Considering each collision takes place between particles in thermal equilibrium,
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3 Transport coefficients for hadronic gas: Interactions & magnetic field

the scattering energy squared s fluctuates around the average �s� with a standard

deviation σ. The average and standard deviation can be defined as [44]

�s� =
�
d3p1d

3p2s(p1, p2)f
(0)(p1)f

(0)(p2)�
d3p1d3p2f (0)(p1)f (0)(p2)

(3.38)

σ =

�
�s2� − �s�2. (3.39)

Thus, we can define the maximum of scattering energy squared as smax(T ) = �s�+σ.

The temperature dependence of
√
smax for a single component gas of pions, kaons

and nucleons is shown in Fig. 3.2 (right panel). The
√
smax for ππ, KK and NN ,

determined from their resonance mass cutoff, are 2.01 GeV, 2.29 GeV and 2.34 GeV

respectively. From Fig. 3.2 (right panel), the corresponding temperature Tmax are

found to be 318 MeV, 297 MeV and 150 MeV respectively.

Binary component system

The equation needed to obtain the transport coefficients for a mixture of two compo-

nent gas is given in Eq. (3.23). The trial function is a linear combination of thermo-

dynamic forces i.e.

φk =

�
AkX − BkµY

µ
q − 1

T
Bµ

1kY1µ + Cµν
k �Zµν�

�
. (3.40)

The only differences between the trial function for single component system Eq. (3.24)

and φk of binary-component system is the diffusion force Y µ
1 . Substituting function
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φk in Eq. (3.23) gives us

Q1 = T

2�

k=1

L1k[A1], (3.41)

−(pµ1uµ − w1)p
ν
1 = T

2�

k=1

L1k[−Bν
1 ], (3.42)

−x2p
ν
1 = T

2�

k=1

L1k

�
− 1

T
Bµ

1k

�
, (3.43)

pµ1p
ν
1 = T

2�

k=1

L1k[C
µν
1 ], (3.44)

where the factors A1, B
µ
1 , B

µ
1k and Cµν

1 are unknown functions that are determined

later. The law relating the traceless viscous pressure tensor to the hydrodynamic

velocity and the law relating the viscous pressure to the divergence of hydrodynamic

velocity as in Eqs. (3.32) and (3.37) do not change for mixtures. However, the law

relating the heat flow to the temperature and pressure gradient, as in Eq. (3.33) needs

to modified as,

Īµq = lqqX
µ
q + lq1X

µ
1 , (3.45)

where Xµ
q is the generalized driving force of heat flow and Xµ

1 is the diffusion driving

force, which accounts for the flow due to gradients of different constituents of the

system. The transport coefficients are defined as

lqq = λT = −T

3

2�

k=1

xk

�
πµ
k

�
τk −

wk

T

�
, Bkπµk

�
, (3.46)

for the thermal conductivity and

lq1 = −1

3

2�

k=1

xk

�
πµ
k

�
τk −

wk

T

�
, B1kπµk

�
, (3.47)
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3 Transport coefficients for hadronic gas: Interactions & magnetic field

for the Dufour coefficients. This coefficients accounts for the heat flow in the presence

of density gradients in a mixture. The other new coefficient for a mixture is the

diffusion flow given by

Iµq = l11X
µ
q + l1qX

µ
1 , (3.48)

where the coefficient l1q is equal to the Dufour coefficient lq1. The second coefficient

l11 is related to diffusion coefficient through the relation [28], Dd = l11T
nx1x2

. This is

given as

l11 = − 1

3T

2�

k=1

(δ1k − x1) xk (π
µ
k , B1kπµk) . (3.49)

As in a single component system, the transport coefficients can be written in

collision bracket form, the details of which can be found in [28] and in the Appendix

3.5. Here we write the expression which can be used for computational purposes. The

bulk viscosity is given as

ηv = T
α2
2

a22
, (3.50)

the shear viscosity is given as

ηs =
T

10Δc

�
(x1γ1)

2c22 − 2x1x2γ1γ2c12 + (x2γ2)
2c11

�
, (3.51)

and the diffusion coefficient is given as

Dd =
ρT

3n2m1m2c1c2

δ22
b22

. (3.52)

The symbols and their relations to collision brackets are explained in the Appendix

3.5.

One should note that the expressions given in Eqs. (3.35-3.37) for single component
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system and Eqs. (3.50-3.52) for binary component system corresponds to the first non-

vanishing approximation of the transport coefficients (by approximation, we mean

that the unknown coefficients Bµ, Cµν , etc. are expanded using a infinite series of

Laguerre polynomials truncated at some order). Except for bulk viscosity, the first

approximation corresponds to first non-vanishing value. For bulk viscosity, the non-

vanishing value happens to be the third order approximation for single component

system and second order approximation for binary component system. Thus, bulk

viscosity for binary mixtures in the second order approximation calculated in this

work depends only on the interaction among dissimilar species. The coefficient of

shear viscosity, on the other hand, depends on c12, c11 and c22 where, c12 describes

the interaction between dissimilar species and c11, c22, describe the interaction among

similar species (see Eqs. (3.88-3.90)).

The resulting transport coefficients for various binary mixtures are shown in

Fig. (3.3). We have found both shear and bulk viscosities of the mixtures of two

species lie in between the transport coefficients of the individual species. The dip

seen in the shear viscosities of πN and KN can be attributed to resonances that

appear in πN and KN interaction at the relevant energies which leads to an increase

in the cross section and thus lowering the value of shear viscosity. Similarly, we show

the diffusion coefficient of various binary components in Fig. (3.3)(c) which depends

on the density gradients in a mixture. We find that KN system has largest diffusion

coefficient at smaller temperatures and πN system the lowest, but with increasing

temperature, the coefficient for KN system, shows a sharp decrease in its value and

the πK system shows a minimum. The open symbols in Fig. (3.3) correspond to

transport coefficients at µB = 100 MeV. In the CE approximation µB enters implic-

itly in the expressions of transport coefficients via concentration or number densities

of various reacting mixtures. The number densities were calculated using virial ex-
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Figure 3.3: Temperature dependence of shear viscosity, bulk viscosity and the diffu-
sion coefficient of the binary gas mixture. Close and open symbols correspond to the
results at µB = 0 and µB = 100 MeV respectively. (Figs. from [23].)

pansion that was described in Sec. 2.1.3 and are themselves function of temperature.

We find that values of bulk viscosities are larger for large µB but gradually asymptotes

towards µB = 0 MeV value, while shear viscosities values are smaller for large µB and

gradually asymptotes towards the µB = 0 MeV values. The diffusion coefficient are

mostly unaffected by the value of µB considered in the work.

Multi component system

The derivation of transport coefficients for multi-component system follows the same

line of reasoning as in case of the single and binary component system. The transport

coefficient can be expressed transparently using the bracket notation which can be
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found in Refs. [28, 29]. Here, we only give the final expressions which can used for

computational purposes. The bulk viscosity of a N component gas can be written as

ηv = n2T

N�

k=1

N�

l=1

akalakl, (3.53)

while the coefficients ak satisfy the linear equations

N�

l=1

aklal =
αk

n
, (3.54)

and the shear viscosity can be written as

ηs =
T 3ρ2

10

N�

k=1

N�

l=1

ckclckl, (3.55)

and the coefficients cl are solutions of

N�

l=1

clckl =
γk
ρT

= γ∗
k . (3.56)

In this work the Eq. (3.56) for the multi-component system can be written as




cππ cπK cπN cπη cπΛ cπΣ cπΞ

cπK cKK cKN 0 0 cKΣ 0

cπN cKN cNN cηN 0 0 0

cπη 0 cηN cηη cηΛ cηΣ 0

cπΛ 0 0 cηΛ cΛΛ 0 0

cπΣ cKΣ 0 cηΣ 0 cΣΣ 0

cπΞ 0 0 0 0 0 cΞΞ







cπ

cK

cN

cη

cΛ

cΣ

cΞ




=




γ∗
π

γ∗
K

γ∗
N

γ∗
η

γ∗
Λ

γ∗
Σ

γ∗
Ξ




, (3.57)

and similarly for Eq. (3.54). The coefficients ckl and akl depend on the scattering
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Figure 3.4: Temperature dependence of bulk viscosity, shear viscosity at µB = 0 MeV
and µB = 100 MeV for multi component gas of hadrons. (Figs. from [23].)

cross-section of the given channel k and l and the expressions in terms of collision

integrals are given in the Appendix 3.5 (see Eqs. (3.93-3.95)). The zeros in ckl occur,

when we do not have a resonance decaying in a channel kl.

The result of transport coefficients (ηv, ηs), for various multi-channel processes is

shown in Fig. (3.4a,3.4c) at µB = 0 MeV and Fig. (3.4b,3.4d) at µB = 100 MeV. We

find that bulk viscosity turns out to be additive for a mixture of hadrons, in contrast

to the shear viscosity, which decreases with the increase in number of components.

This also explains why in RTA, for shear viscosities one should not add the relaxation

time but the inverse of relaxation time for a multi-component system. The decrease
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Figure 3.5: Variation of normalized bulk and shear viscosity for the multi component
hadronic gas. The black solid line is the value of ηv/s and ηs/s at µB = 0 MeV and
the black dotted line at µB = 100 MeV. The red dashed line is AdS/CFT bound for
ηs/s [45] and from a non-conformal model [46] for ηv/s. Other symbols are the results
of transport coefficients, at µB = 0 MeV, previously reported in the literature [24,
31, 35, 37, 47]. (Figs. from [23].)

in shear viscosities due to the increase in the components of the reacting mixture

is evident, since it opens additional channels for reactions to occur and thus the

overall cross-section of the system. Comparing the result of ηv at µB = 0 MeV

with that at µB = 100 MeV, we find that the values of ηv are larger at large µB.

Similarly, we notice that at low T the shear viscosities at finite µB is slightly lower

than at zero µB. However, with increasing temperature, the value of shear viscosity

at finite µB overshoots that at zero µB. This can be understood, since at large T

contributions from heavier baryonic states which have smaller cross-section increases

and thus increases the viscosity. At lower µB their concentration is smaller, hence

their effect is not noticeable but increasing µB increases their concentration (the

cross-section remains the same) and hence their effect on viscosity also increases.

The variation of ηv/s and ηs/s as a function of temperature is shown in Fig. (3.5a-

b). Our results of ηv/s is an increasing function of T for T < 150 MeV and decreasing
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for T > 150 MeV. At µB = 100 MeV, we find the magnitude of the peak, seen in ηv/s

is larger than at µB = 0 MeV. Similarly, we find that ηs/s decreases with temperature

consistent with previous results in this regard [24, 31, 35, 37, 47]. However, we find

that the result of ηs/s at µB = 0 violates the AdS/CFT bound around a temperature

of T = 160 MeV, while the result of µB = 100 MeV remains above the bound and

asymptotically approaches it at higher temperatures. Of course, the temperature

where the violation of the AdS/CFT bound occurs, is in the deconfinement region

which is around T ≈ 155−165 MeV [48, 49], where our model should break-down. It

is also interesting to note that peak in the ratio ηv/s happens to be around the same

temperature where the ratio ηs/s violates the AdS/CFT bound. It is also important

to note that recently the temperature dependence of bulk viscosity has also been

calculated in non-conformal field theories in the context of heavy ion collisions [46].

A comparison of ηv/s with one such model from [46] is shown in Fig. (3.5a), with

the minimum of the potential φM set at φM = 2. It is interesting to see that the

non-conformal model compares well with our results.

Let us now discuss the comparison of our result with the calculations that has

been previously reported in the literature for µB = 0 MeV [31, 35, 37, 50]. In

EVHRG (Excluded volume HRG model), ηv/s monotonically decreases as a function

of temperature T in contrast to our results which shows a peak structure and further

one can note that magnitude of ηv/s in the EVHRG model is a factor of ten more

than our results [35]. The first reason for this is that, the calculation of ηv/s is carried

out using RTA [37], in the EVHRG model using momentum independent relaxation

times which is quantitatively different from that of CE method used in the current

work. The difference in temperature variation can be attributed to use of constant

cross-section in the EVHRG model calculations compared to energy dependent cross-

sections used in our work. Moroz [31] uses cross sections from the UrQMD model,
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including elastic plus resonance processes calculated in the CE approximation. The

ηv/s result from Moroz calculation is qualitatively and quantitatively similar to our

calculations. Some discrepancies are still present because of the use of some constant

cross-sections to describe non-resonant interaction in Moroz’s calculation.

The ηs/s calculation in EVHRG model [35] is done assuming all hadrons have the

same hard-core radius r = 0.5 fm. Apart from the fact that the value of r used is

model dependent, one must note that, they also assume that the shear viscosity is

additive for a mixture of hadrons, contrary to our results. Although ηs/s decreases

with temperature, but the slope is less steeper than our calculation. This is because in

[35] both ηs and s increase, as degeneracies increase. However, in our case η decreases

and s increases as degeneracies increase. Both this feature make the slope of ηs/s

steeper than [35]. Wiranata et al. [24] used K-matrix formalism for calculating

ηs/s in a hadronic gas consisting of π −K −N − η. Their result is around six times

larger than ours at low T and about two times larger in high T . The discrepancies

between the two results are first, due to the fact that we have used a larger spectrum of

interacting hadrons and resonances. Secondly, and an important difference is that [24]

did not include the NN mutual interaction, since their cross-section were calculated

solely using K- matrix formalism, where as we parameterize NN experimental phase

shifts to calculate the differential cross-section. Owing, to the fact that NN cross-

section are larger at small
√
s as has been previously discussed, their contribution to

transport coefficients is quite different and dramatic than other resonant interaction

present in K-matrix formalism. SMASH (Simulating Many Accelerated Strongly-

interacting Hadrons) [47], which is a transport code, uses Green-Kubo formalism to

calculate ηs/s for hadronic gas mixture. One of the common feature between our

model and SMASH is the treatment of interactions through resonances, which have

a non-zero lifetime. Our result of ηs/s is in good agreement with SMASH within
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3 Transport coefficients for hadronic gas: Interactions & magnetic field

temperature range of 80 − 110 MeV. But after T ∼ 120 MeV, we find that the

SMASH result saturates and forms a plateau at higher temperature. The same trend

is also seen in other transport codes for e.g UrQMD [40]. The crucial difference

between our approach and SMASH is that, SMASH utilises a feedback loop between

the relaxation time and resonance lifetimes whereas our approach does not [41].

3.2 Summary

To summarize using the S-matrix formalism, we have calculated the temperature (T )

and baryon chemical potential (µB) dependence of the transport coefficients (shear

viscosity, bulk viscosity, heat conductivity, and diffusion coefficient) for the multi-

component system of hadrons. These calculations are performed both at zero and

non-zero baryon chemical potential (µB) using Chapman-Enskog (CE) method. Such

multi-component system is important for the study of hadronic interactions since

new channels of interaction (through resonance formation) could open up, which

would relax the system to equilibrium quicker, than with fewer hadrons. Also, the

degeneracy of the system changes, which affects equilibrium quantities like entropy

density and number density etc., and in turn affects the dimensionless transport

coefficient ratio. Our calculation predicts smaller values of the ratio ηs/s as a function

of temperature as compared to previous results in the literature. Our findings on

transport coefficients in the temperature range of T = 80 − 110 MeV are in fair

agreement with that from the transport models, e.g., UrQMD amd SMASH.
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3.3 Anisotropic transport coefficients of hadronic

gas in the presence of magnetic field

Intense transient magnetic fields eB ∼ (1 − 10)m2
π is expected to be produced [51–

55] in mid-central heavy-ion collisions. However, the initial magnetic field will decay

within a few fm and becomes 3-4 order smaller than the initial value. However,

since the strongly interacting medium has finite conductivity, this would definitely

modify the deacy of these transient fields and their evolution is goverened by the laws

of magnetohydrodynamics (MHD), a topic which is currently being investigated by

many groups [52, 56–61].

The presence of magnetic field breaks the isotropy of space and gives rise to

anisotropic pressure components in the stress-energy tensor. Out of equilibrium,

these anisotropic pressure components leads to various anisotropic transport coeffi-

cients. Similar to the usual transport coefficients, the anisotropic transport coeffi-

cients serve as an input to the relativistic MHD and needs to be determined from

an underlying theory, e.g., kinetic theory [62], AdS/CFT [63]. The calculation of

transport coefficients in quark and hadronic matter in presence of a magnetic field

were carried out recently in [64–76]. In this section, we consider a multi-component

IDHRG model and evaluate the transport coefficients in the presence of a magnetic

field. We will use the relaxation time approximation (RTA) for deriving this transport

coefficients. Here we would like to mention that recently in [66], transport coefficients

(electrical conductivity and shear viscosity) for a HRG were studied in presence of

the magnetic field using the RTA. One of the crucial difference between the present

methodology and the previous work like [66] is that we give a general framework of us-

ing projection tensors [77] consisting of magnetic and hydrodynamical tensor degrees
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3 Transport coefficients for hadronic gas: Interactions & magnetic field

of freedom along which the viscous correction to single particle distribution function

can be systematically expanded in a Chapman-Enskog (CE) series. This is unlike the

heuristic basis [78] used in previous works. Hence, the present formalsim can be used

to systematically derive second and higher order non-resistive MHD equations in the

lines of [75] but using a general CE series expansion.

3.3.1 Kinetic theory in the presence of magnetic field

Kinetic theory in the presence of magnetic field is governed by the Boltzmann equation

[79]. The effect of collisions, because of which the system relaxes towards equillibrium,

are modelled using a constant relaxation time τc. Since, we model our system using

IDHRG which consists of point-particles, we use the relaxation time as an external

parameter to model the influence of interactions between different hadron species [80].

The general form of the Boltzmann equation in the presence of external fields, in the

relaxation time approximation is given by [65, 78],

pµ∂µfi + qF µνpν
∂fi
∂pµ

= −u · p
τc

δfi , (3.58)

where f(x, p, t) is the one particle distribution function characterising the phase space

density, C[f ] is the collision kernel. The first term on the left hand side corresponds

to the free streaming of the phase space density, the second term corresponds to the

effect of forces on the movement of these phase space points, the collision kernel on

the right hand side contributes to the change in phase space density in an elemental

volume due to the change in momentum and positions of the colliding particles from

their free streaming trajectories. In the ideal MHD limit the electric field vanishes

in the local rest frame of the fluid, hence the only contribution to the force term

in the Boltzmann equation is due to the magnetic field which is, F µν = −Bµν with
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Bµν = �µνραBρUα. B is the magnetic field strength and bµ is the unit four vector

defined as bµ = Bµ

B
. So, for a small deviation of the distribution function from the

equilibrium, Eq. (3.58) can be written as,

pµ∂µfi0 =
�
− u · p

τc

��
1− qBτc

u · p b
µνpν

∂

∂pµ

�
δfi. (3.59)

The equilibrium distribution function for ith hadron species is fi0 = (eβ(u·p−µi) +

r)−1, where r = ±1 depending on the statistics. In all proceeding calculations,

hydrodynamic four-velocity uµ is defined in the Landau frame such that uνT
µν =

�
i

�
d3ppµi fi = εuµ, where T µν is energy-momentum tensor and ε is the energy

density.

Subsequently the the dissipative quantities like the stress tensor (πµν), bulk viscous

pressure (Π), particle diffusion current (nµ) and current density (Jµ
D), can be written

as1:

πµν = ηµναβVαβ

Π = ζµν∂µuν

nµ = κµν∂να

Jµ
D = σµνEν , (3.60)

where Vαβ = 1
2
(∂αuβ + ∂βuα) and α = µ/T . In the next setions, we are going to

chalk out the formalism to find the tensor coefficients ηµναβ, ζµν ,κµν and σµν from

the correction δf .

The correction to the equilibrium distribution function δf can be expanded using

a general framework of using projection tensors [77] consisting of magnetic and hy-

1In sec. 3.1, we defined the fluid velocity uµ in the Eckart frame, but here we use the Landau frame,
which means here we have vanishing heat currrent but non-vanishing particle diffusion current.
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drodynamical tensor degrees of freedom. For e.g the second rank projection tensors

are defined as,

P (0)
µν = bµbν ,

P (1)
µν =

1

2
(Δµν − bµbν + ibµν) ,

P (−1)
µν =

1

2
(Δµν − bµbν − ibµν) .

The second rank projection tensor satisfies the following properties,

P (m)
µκ P (m�),κ

ν = δmm�P (m)
µν , (3.61)

�
P (m)
µν

�†
= P (−m)

µν = P (m)
νµ , (3.62)

1�

m=−1

P (m)
µν = Δµν , P (m)

µµ = 1. (3.63)

Similarly, the fourth rank projection tensor is defined in terms of the second rank

projection tensor as [77],

P
(m)
µν,µ�ν� =

1�

m1=−1

1�

m2=−1

P
(m1)
µµ� P

(m2)
νν� δ (m,m1 +m2) . (3.64)

The fourth rank projection tensor satisfies the following properties,

P
(m)
µν,λκP

(m�),λκ
µ�ν� = P

(m)
µν,µ�v�δmm� (3.65)

�

m

P
(m)
µv,µ�v� =

�

m1

�

m2

P
(m1)
µµ� P

(m2)
vv� = δµµ�δvv� . (3.66)

Using the above projection tensor, we also define P
(m)
�µν�αβ = P

(m)
µναβ + P

(m)
νµαβ, which is

symmetric in the indices µ, ν.
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Shear viscosity

The most general form of the δfi in presence of a magnetic field in the current frame-

work where only shear stress is present can be written in terms of the above projection

tensors,

δfi =
4�

n=0

cnC
(n)
µναβp

µ
i p

ν
i V

αβ (3.67)

=
�
c0P

(0)
�µν�αβ + c1

�
P

(1)
�µν�αβ + P

(−1)
�µν�αβ

�
+ ic2

�
P

(1)
�µν�αβ − P

(−1)
�µν�αβ

�
+

+ c3
�
P

(2)
�µν�αβ + P

(−2)
�µν�αβ

�
+ ic4

�
P

(2)
�µν�αβ − P

(−2)
�µν�αβ

��
pµi p

ν
i V

αβ, (3.68)

where the symbols c0 − c4 are defined in Appendix 3.6 and the index i corresponds

to the hadronic species i. Using this expression for δfi, in Eq. (3.59) and using the

above properties of projection tensors the shear viscous coefficients turns out to be,

η� =
�

i

gi
15T

�
d3pi

(2π)3
|pi|4
p2i0

τcfi0(1− rifi0),

η⊥ =
�

i

gi
15T

�
d3pi

(2π)3
|pi|4
p2i0

τc
1 + (τc/τiB)2

fi0(1− rifi0),

η�⊥ =
�

i

gi
15T

�
d3pi

(2π)3
|pi|4
p2i0

τc
1 + (2τc/τiB)2

fi0(1− rifi0),

η× =
�

i

gi
15T

�
d3pi

(2π)3
|pi|4
p2i0

τ 2c /τiB
1 + (τc/τiB)2

fi0(1− rifi0),

η�× =
�

i

gi
15T

�
d3pi

(2π)3
|pi|4
p2i0

τ 2c /τiB
1
2
+ 2(τc/τiB)2

fi0(1− rifi0),

(3.69)

where τiB = pi0/(eB) is the inverse cyclotron frequency, pi0 =
�
p2
i +m2

i is the energy

of ith particle. The detailed derivation of these coefficients can be found in the original

article [81]. The coefficients η�, η⊥, η�⊥ are even functions of magnetic field B. The
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3 Transport coefficients for hadronic gas: Interactions & magnetic field

two coefficients η×, η�× may have either sign and they are odd functions of B. The

later two coefficients are also called transverse viscosity coefficients or the Hall like

coefficients [77]. The transverse coefficients are non-dissipative, meaning they do not

contribute to the entropy production.

Bulk viscosity

For bulk viscosity we restrict ourselves to only the gradient of the fluid four velocity

and neglect the other thermodynamic forces

δfi =
�
b0P

(0)
µν + b1(P

(1)
µν + P (−1)

µν ) + b2(P
(1)
µν − P (−1)

µν )
�
∂µuν . (3.70)

where the symbols b0 − b2 are defined in Appendix 3.6. Using the above form of δfi

the bulk viscous coefficients turns out to be,

ζ� = ζ⊥ =
�

i

giτc
T

�
d3pi

(2π)3p2i0
Q2

i fi0(1− rifi0), (3.71)

ζ× = 0. (3.72)

where Qi is defined in Appendix 3.6. One notices that the bulk viscous coefficients

remains unchanged within this framework under the influence of the magnetic field

as was also shown recently in [75] using Grad’s 14 moment approximation. Again,

for the detailed derivation of Eq. (3.71) is given in the original reference [81].
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Baryon diffusion coefficient

Similarly, in the presence of magnetic field, the baryon number diffusion coefficient

can be obtained with the following form of δfi,

δfi =
�
k0P

(0)
µν + k1(P

(1)
µν + P (−1)

µν ) + k2(P
(1)
µν − P (−1)

µν )
�
pµ∂να0; (3.73)

Using this δfi the diffusion coefficients turn out to be,

κ� =

baryons�

i

gi
3h

�
d3pi

(2π)3
|pi|2
p2i0

τc(h− Bipi0)fi0(1− rifi0),

κ⊥ =

baryons�

i

gi
3h

�
d3pi

(2π)3
|pi|2
p2i0

τc(h− Bipi0)

1 + ( τc
τiB

)2
fi0(1− rifi0),

κ× =

baryons�

i

gi
3h

�
d3pi

(2π)3
|pi|2
p2i0

τc(
τc
τiB

)(h− Bipi0)

1 + ( τc
τiB

)2
fi0(1− rifi0), (3.74)

where h = (ε+ P )/n is the enthalpy density, Bi is the baryon (anti-baryon) number

respectively and the sum runs over baryons only. The symbols k0 − k2 are defined

in Appendix 3.6. Due to the anisotropy induced by the magnetic field we have three

diffusion coefficients. For details, refer [81].

3.3.2 Results

We now calculate the transport coefficients using the IDHRG model. The partition

function of IDHRG is given as

lnZ = V
�

i

�
d3pi

(2π)3
giri ln

�
1 + rie

β(p0i−µi)
�
, (3.75)
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Figure 3.6: The anisotropic component of the shear viscosities η⊥, η� for HRG and
isotropic value for massless QGP are plotted against the axes of (a) temperature (T )
of the medium, (b) external magnetic field in units of (qB/m2

π). Figs from [81].

where, µi = BiµB with Bi being the baryon number of the hadronic species, µB is

baryon chemical potential. gi, p
0
i = {pi

2 +m2
i }1/2 are degeneracy factors and energy

of the hadrons of species i with mass mi; ri = ± stands for fermion or bosons respec-

tively. The total degeneracy factor of a particular species of hadron is obtained as

gi = gsi g
I
i , where g

s
i , g

I
i are the spin and isospin degeneracy factors respectively. Once

the partition function is defined, the thermodynamic quantities can be calculated us-

ing the standard definitions. These quantities are already enlisted in Eqs. (2.16-2.20).

In Fig. (3.6), we have shown the T and B dependence of scaled shear viscosity

(η/(τcT
4). For reference, we have also shown the values of scaled shear viscosity for a

massless QGP (black dotted line) and that of HRG with B = 0 (red solid line). The

value of magnetic field has been fixed to eB = 10m2
π and the relaxation time has been

assumed to be τc = 5 fm. The magnitude of magnetic field is an rough assumption,

reflecting the initial values of magnetic field reached at top RHIC energies, while the

value relaxation time is taken assuming the hadronic mixture is in the order of 1−10
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fm [17]. The scaled shear viscosity of charged hadrons is shown by the dash-dotted line

in Fig. (3.6) (a). Since HRG is composed of both charged and neutral hadrons, it is

interesting to study the relative contribution of the charged and uncharged hadrons to

the total shear viscosity. Neutral hadrons only contribute to isotropic shear viscosity

since for neutral hadrons η have only single component, which is essentially η = η�.

It is clear from Fig. (3.6) (a) that the anisotropic shear viscous coefficients from

the charged hadrons contribution is quite smaller than that of the isotropic shear

viscosity which also contains contributions from the neutral hadrons. However, the

above fact is only true for large magnetic fields (in Fig. (3.6) (a) B = 10m2
π). For

a smaller magnetic fields the η⊥/τcT 4 becomes comparable or even larger than the

isotropic η/τcT
4 as shown in Fig. (3.6) (b). The � (red solid line) and ⊥ (blue

dash-double-dotted line) components of shear viscosity are plotted against B-axis in

Fig. (3.6) (b). The neutral hadrons contribution, which is independent of B is shown

by dashed line, while the charged hadrons contribution is shown by dashed-dotted

line. Blue dashed-double-dotted line is basically summation of dash (neutral hadrons)

and dashed-dotted (charge hadrons) lines. In order to get some numerical estimate we

note that in the limit B → 0 the charged hadron contribution in the viscosity is more

than 50% than the neutral hadrons. As B increases, the charge hadron contribution

decreases and for eB ≥ 10m2
π, this contribution reduces to ∼ 4% − 8%. Following

are the some salient points: (i) Both η/(τcT
4), and σ/(τcT

2) has the largest value for

massless QGP. (ii) In presence of the magnetic field the transport coefficient becomes

anisotropic and among the various components the � component is the largest and

equals to the corresponding isotropic value of the transport coefficient (i.e., for B = 0).

(iii) There is a small difference in the temperature dependence of the isotropic and

the anisotropic transport coefficients.

The temperature dependence of diffusion coefficient κ in the presence of magnetic
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Figure 3.7: (Left panel) Temperature dependence of the diffusion coefficients κ�,⊥,×
in presence of the magnetic field. (Right panel) Baryon chemical potential (µB)
dependence of (normalized) Hall viscosity (η×) (black dashed line) and the diffusion
coefficients κ× (blue dashed double dotted line). Figs from [81].

field is shown in left panel of Fig. (3.7). As expected the κ� by construction is

independent of the magnetic field but κ⊥ and κ× are function of the magnetic field. In

Fig. (3.7) we show the diffusion coefficients as a function of temperature for B = 10m2
π

and µB = 300 MeV. From Fig. (3.7) we see that κ⊥ and κ× are always smaller than

κ� for the temperature range considered here. A non-zero Hall diffusion coefficient

κ× can be attributed to the non-zero µB, because for finite µB the net contribution

to baryon diffusion from particles and the anti-particles is non-zero.

Finally, one can get non-zero Hall shear viscosities η×, η�× for non-vanishing µB.

All of these Hall like transport coefficients vanishes for a net-baryon free medium

because the contribution from the particles and the anti-particles are exactly equal

and opposite. Right panel Fig. (3.7) demonstrate this µB dependent Hall viscosity

(η×) and the Hall diffusion (κ×) for T = 150 MeV, eB = 10m2
π, and τc = 5 fm. It

is clearly seen that both η× (black dashed line) and κ× (blue dashed double dotted

line) increase monotonically from zero at µB = 0. The growing tendency can be
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understood from the µB dependent of the net baryon density of HRG system, which

is roughly proportional to sinh(µ/T ) for the Maxwell-Boltzmann distribution which

at high temperature fairly well describe the Fermi-Dirac or Bose-Einstein distribution

function.

3.4 Summary

To summarise, in high energy heavy-ion collisions, large transient magnetic fields

are produced predominantly in the perpendicular direction to the reaction plane.

This magnetic field breaks the isotropy of the system and as a result of which the

transport coefficients become anisotropic. We evaluated the anisotropic transport

coefficients of the HRG and massless QGP by using the relaxation time approximation

method. We have used a unique tensorial decomposition through the use of projection

tensors. Such a method reduces a lot of computational complexity associated with the

evaluation of anisotropic transport coefficients. Along with the usual relaxation time

sacle, an additional time scale which equals to the inverse of the cyclotron frequency

appears in the presence of magnetic field. The measure of anisotropy turned out

to be a function of the ratio of these two time scales. It is not surprising that we

found the anisotropy increases with magnetic field. We have shown that the charged

hadron contribution in the viscosity is more than 50% than the neutral hadrons.

As B increases, the charge hadron contribution decreases and for eB ≥ 10m2
π this

contribution reduces to 4%-8%. The T and B dependence of diffusion coefficient

was also investigated. We also find that non-dissipative Hall like shear viscosity

increases monotonically with µB from zero at µB = 0. It turned out that there

are three diffusion coefficients in non-zero magnetic fields and among them the �

component is the largest one. These anisotropic picture of dissipations might have a
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broad implication in other different research fields, where a quasiparticle picture of

the system can be considered and thus RTA is applicabile.

3.5 Appendix A

In the following appendix, we define the various symbols and expressions that were

used in the section for interacting HRG.

For single component system the symbols α2, β1 and γ0 are defined as

α2 =
5w

T
− 3γ

�
1 +

w

T

�
, (3.76)

β1 =
3γ

γ − 1
, (3.77)

γ0 =
10w

T
, (3.78)

where γ = cp/cv. The quantities a22, b11 and c00 are defined in terms of relativistic

omega integrals, ω
(j)
i

a22 = 2ω
(2)
0 , (3.79)

b11 = 8(ω
(2)
1 + z−1ω

(2)
0 ), (3.80)

c00 = 16(ω
(2)
2 − z−1ω

(2)
1 +

1

3
z−2ω

(2)
0 ), (3.81)

where the definitions of relativistic omega integrals are given in [27] and can be written

as

ω
(s)
i (z) =

�
2πz3

K2
2(z)

� � ∞

0

dψ sinh7 ψ coshi ψKj(2z coshψ)×
� π

0

dθ sin θσ(ψ, θ)(1− coss θ) (3.82)
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j =
5

2
+

1

2
(−1)i, i = 0,±1,±2, ..., s = 2, 4, 6, ...

where σ(ψ, θ) is the differential cross-section for interaction between two identical

particles, expressed through the quantities ψ and angle θ between the initial and final

hadrons defined as

sinhψ =

�
(p1 − p2)2

2m
, coshψ =

�
(p1 + p2)2

2m
(3.83)

where p1 and p2 are the initial four-momenta of the two colliding hadrons.

For binary component system the symbols αi, δi and γi, where i = 1, 2 are defined

as

αi = xi

γ(i) − γ

γ(i) − 1
, (3.84)

δi = (−1)i3c1c2, (3.85)

γi = −10cihi, (3.86)

where hi = K3(zi)/K2(zi) is the specific enthalpy of species i, ci = ρi/ρ is the mass

fraction of species i. ρi is the mass density, which is mass times the number density

of species i and ρ is the total mass density. Similarly xi = ni/n is the number density

fractions of species i, where ni is particle number density of species i and n is the

total number density. The quantity γ(i) = cp,i/cv,i is the ratio of specific heats of

species i. The quantities aii, cii, cij, bii and Δc are defined in terms of relativistic
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omega integrals, ω
(m)
ijkl(σuv)

a22 =
16ρ1ρ2
M2n2

ω
(1)
1200(σ12), (3.87)

c12 =
32ρ2x2

1x
2
2

3M2n2x1x2

�
− 10z1z2ζ

−1Z−1ω
(1)
1211(σ12)

− 10z1z2ζ
−1Z−2ω

(1)
1311(σ12) + 3ω

(2)
2100(σ12)

− 3Z−1ω
(2)
2200(σ12) + Z−2ω

(2)
2300(σ12)

�
, (3.88)

c11 = c00(z1) +
32ρ2x2

1x
2
2

3M2n2x1x2

�
10z21ζ

−1Z−1ω
(1)
1220(σ12)

+ 10z21ζ
−1Z−2ω

(1)
1320(σ12) + 3ω

(2)
2100(σ12)

− 3Z−1ω
(2)
2200(σ12) + Z−2ω

(2)
2300(σ12)

�
, (3.89)

c22 = c00(z2) +
32ρ2x2

1x
2
2

3M2n2x1x2

�
10z22ζ

−1Z−1ω
(1)
1202(σ12)

+ 10z22ζ
−1Z−2ω

(1)
1302(σ12) + 3ω

(2)
2100(σ12)

− 3Z−1ω
(2)
2200(σ12) + Z−2ω

(2)
2300(σ12)

�
, (3.90)

Δc = c11c22 − c212, (3.91)

b22 =
8ρc1c2
Mn

�
2ω

(1)
1100(σ12)− 3Z−1ω

(2)
1200(σ12)

�
, (3.92)

where σuv is the cross-section between particles u and v. The coefficients c00(zk)

accounts for contribution from interaction between identical species of type k as

given in Eq. (3.81). The reduced mass µ is given as µ = m1m2/(m1 + m2). The

abbreviations Z and ζ are given as Z = M/T and ζ = 2µ/T , where M = m1 +m2 is

the total mass. The definitions of relativistic omega integrals are given in Refs. [28,

29] and we do not write them here.

147



For multi-component system, the coefficients akl, ckl are given as

akk = −akl =
N�

l=1

a22(kl) (l �= k) (3.93)

ckk = c00(zk) +
N�

l=1

c22(kl) (l �= k) (3.94)

ckl = c12(kl) (l �= k), (3.95)

where a22(kl), c22(kl) and c12(kl) are the expressions given in Eqs. (3.87-3.90), with

subscripts 1 and 2 replaced by k and l.

3.6 Appendix B

In the following appendix, we define the various symbols and expressions that were

used in the section for IDHRG in the presence of magneetic field.

For a small deviation of the distribution function from the equilibrium, Eq. (3.96)

can be written as,

pµ∂µf0 =
�
− u · p

τc

��
1− qBτc

u · p b
µνpν

∂

∂pµ

�
δf . (3.96)

The equilibrium distribution function is f0 = 1
eβ(u·p−µ)+r

where, temperature inverse

β and chemical potential µ have space time dependency.
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So, the left hand side of the above equation can be written as,

pµ∂µf0 = pµuµDf0 + pµ∇µf0

=
∂f0
∂T

��
u · p

�
DT + pµ∇µT

�
+

∂f0
∂(µ/T )

��
u · p

�
D
�µ
T

�
+ pµ∇µ

�µ
T

��

+
∂f0
∂uν

��
u · p

�
Duν + pµ∇µu

ν
�
.

(3.97)

Now, using the energy-momentum conservation (∂µT
µν
0 = 0), current conservation

(∂µN
µ
0 = 0) equations and the Gibbs Duhem relation we get,

pµ∂µf0 =
f0(1− rf0)

T

�
Q∇σu

σ − pµpν(∇µuν −
1

3
Δµν∇σu

σ)

+
�
1− (u · p)

h

�
pµT∇µ

�µ

T

��
, (3.98)

where Q = (u · p)2(4
3
− γ

�
) + (u · p)

�
(γ

�� − 1)h− γ
���
T
�
− 1

3
m2 and h = mS1

3/S
1
2 . The

expressions for γ
�
, γ

��
, γ

���
and Sα

n are given in [81].

3.6.1 Shear viscosity

Substituting the ansatz of δf for shear viscosity given in Eq. (3.67) into the Boltzmann

transport equation Eq. (3.59) we have,

�
− u · p

τC

��
1− qBτC

u · p bµνpν
∂

∂pµ

�
δf =

�
− u · p

τC

��
pαpβV ρσ

4�

n=0

cnC(n)αβρσ

− qBτC
u · p bµνpν

�
Δα

µp
β +Δβ

µp
α
�
V ρσ

4�

n=0

cnC(n)αβρσ

�

= T1 + T2

(3.99)
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where the term T1 and T2 are given as,

T1 =
�
− u · p

τC

��
pαpβV ρσ

4�

n=0

cnC(n)αβρσ

�
,

T2 = qBbµνpν
�
Δα

µp
β +Δβ

µp
α
�
V ρσ

4�

n=0

cnC(n)αβρσ. (3.100)

Using the property C(n)αβρσ = C(n)βαρσ and on expanding C(n)αβρσ, we have the fol-

lowing expressions for T2

T2 = 2qBbµνpνΔ
α
µp

βV ρσ
�
c0P

0
�αβ�ρσ + c1

�
P 1
�αβ�ρσ + P−1

�αβ�ρσ
�
+ ic2

�
P 1
�αβ�ρσ − P−1

�αβ�ρσ
�

+ c3
�
P 2
�αβ�ρσ + P−2

�αβ�ρσ
�
+ ic4

�
P 2
�αβ�ρσ − P−2

�αβ�ρσ
��
. (3.101)

The term T2 can be further reduced to.

T2 = 2qBV ρσpµpν

�
i(P 2�µν�αβ − P−2�µν�αβ) +

i

2
(P 1�µν�αβ − P−1�µν�αβ)

�
×

�
c0P

0
�αβ�ρσ + c1

�
P 1
�αβ�ρσ + P−1

�αβ�ρσ
�
+ ic2

�
P 1
�αβ�ρσ − P−1

�αβ�ρσ
�

+c3
�
P 2
�αβ�ρσ + P−2

�αβ�ρσ
�
+ ic4

�
P 2
�αβ�ρσ − P−2

�αβ�ρσ
��
.

= 2qBV ρσpµpν

�
c0 · 0 +

i

2
c1(P

1�µν�
ρσ − P−1�µν�

ρσ )− 1

2
c2(P

1�µν�
ρσ + P−1�µν�

ρσ )

+ c3(P
2�µν�
ρσ − P−2�µν�

ρσ )− c4(P
2�µν�
ρσ + P−2�µν�

ρσ )
�

= 2qBV ρσpµpν

�
P 1�µν�
ρσ

� i

2
c1 −

1

2
c2

�
+ P 1�µν�

ρσ

�
− i

2
c1 −

1

2
c2

�

+ P 2�µν�
ρσ

�
ic3 − c4

�
+ P−2�µν�

ρσ

�
− ic3 − c4

��
(3.102)

150



3 Transport coefficients for hadronic gas: Interactions & magnetic field

The final expression for the transport equation can be written as

T1 + T2 = −f0(1− rf0)

T
pµpνV ρσ

�
P 0
�µν�αβ + P 1

�µν�αβ + P−1
�µν�αβ + P 2

�µν�αβ + P−2
�µν�αβ

�

(3.103)

where, we have kept terms that contribute to the shear viscous tensor in the left hand

side of the transport equation. After comaparing the terms in the left hand side of

the Boltzmann equation with the right hand side with the same tensor structure,

we get a series of linear simulteneous equation. The solution of the above series of

equations, gives the coefficients c0 − c4, i.e,

c0 =
1

2

f0(1− rf0)τc
T (u · p) ,

c1 =
1

2

(u · p)f0(1− rf0)τc
T [(u · p)2 + (qBτc)2]

,

c2 =
1

2

(qB)f0(1− rf0)τ
2
c

T [(u · p)2 + (qBτc)2]
,

c3 =
1

2

(u · p)f0(1− rf0)τc
T [(u · p)2 + (2qBτc)2]

,

c4 =
(qB)f0(1− rf0)τ

2
c

T [(u · p)2 + (2qBτc)2]
. (3.104)
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3.6.2 Bulk viscosity

Substituting δf of the form giveb in Eq. (3.70) into the right hand side of the transport

equation gives,

−u · p
τc

�
1− qBτc

(u · p)b
µνpν

∂

∂pµ

�
δf = −u · p

τc

�
1− qBτc

(u · p)b
µνpν

∂

∂pµ

��
b1(b

µbν)

+ b2(Δ
µν − bµbν) + ib3b

µν
�
∂µuν

= −u · p
τc

�
b1(b

µbν) + b2(Δ
µν − bµbν) + ib3b

µν
�
∂µuν

= −u · p
τc

�
b2(∂

µuµ) + (b1 − b2)b
µbν∂µuν + ib3b

µν∂µuν

�
.

(3.105)

Equating the coefficients of ∂µuµ, b
µbν∂µuν and bµν∂µuν from eq. (3.109) and (3.97)

we get, the following expressions for b0 − b2

b0 =
τcQ

(u · p)
f0(1− rf0)

T
, (3.106)

b1 =
τcQ

(u · p)
f0(1− rf0)

T
, (3.107)

b2 = 0. (3.108)
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3.6.3 Diffusion coefficient

For diffusion coefficient, substituting δf of the form given in Eq. (3.73) in the right

hand side of the transport equation gives,

−u · p
τc

�
1− qBτc

(u · p)b
µνpν

∂

∂pµ

�
δf = −u · p

τc

�
1− qBτc

(u · p)b
µνpν

∂

∂pµ

��
b1(b

µbν)

+ b2(Δ
µν − bµbν) + ib3b

µν
�
∂µuν

= −u · p
τc

�
b2(∂

µuµ) + (b1 − b2)b
µbν∂µuν

+ ib3b
µν∂µuν

�
. (3.109)

Equating the coefficients of ∂µuµ, b
µbν∂µuν and bµν∂µuν from eq. (3.109) and (3.97)

we get,

Now, with this δf the right hand side of the Boltzmann transport equation be-

comes,

−u · p
τC

�
1− qBτC

(u · p)b
µνpν

∂

∂pµ

�
δf = −u · p

τC

�
1− qBτC

(u · p)b
µνpν

∂

∂pµ

�
×

�
k0bαbβ + k1 (Δαβ − bαbβ) + k2 (ibαβ)

�
pα∂βα0

= −u · p
τC

�
k0bαbβ + k1 (Δαβ − bαbβ) + k2 (ibαβ)

�
pα∂βα0

+ qBpν
�
bανk0bαbβ + bανk1 (Δαβ − bαbβ)

+ bανk2 (ibαβ)
�
pα∂βα0.

(3.110)

Using the properties of projection operators in eq. (3.110), the right hand side of the
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transport equation reduces to,

−u · p
τC

�
1− qBτC

(u · p)b
µνpν

∂

∂pµ

�
δf = ∂βα0

��
k0

�
−u · p

τc

�
+

�
u · p
τc

k1 + iqBk2

��
bνbβp

ν

−
�
u · p
τc

k1 + iqBk2

�
Δνβp

ν −
�u · p

τc
k2 + iqBk1

�
ibνβp

ν
�
.

(3.111)

Using the properties of projection operators in eq. (3.110), the right hand side of the

transport equation reduces to,

−u · p
τC

�
1− qBτC

(u · p)b
µνpν

∂

∂pµ

�
δf = ∂βα0

��
K�

�
−u · p

τc

�
+

�
u · p
τc

K⊥ + iqBK×

��
bνbβp

ν

−
�
u · p
τc

K⊥ + iqBK×

�
Δνβp

ν −
�u · p

τc
K× + iqBK⊥

�
ibνβp

ν
�
.

(3.112)

Equating the coefficients for different tensorial terms of Eq. (3.112) and Eq. (3.97),

the coefficients k0 − k2 have the following expressions

k0 = −τcf0(1− rf0)

u · p
�
1− (u · p)

h

�
, (3.113)

k1 = −τc(u · p)f0(1− rf0)

(u · p)2 + (qBτc)2

�
1− (u · p)

h

�
, (3.114)

k2 = − qBτ 2c f0(1− rf0)

(u · p)2 + (qBτc)2

�
1− (u · p)

h

�
. (3.115)
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Chapter 4

Flow correlation as a measure of

phase transition
LQCD simulations at small baryon chemical potential have shown that the degrees of

freedom of nuclear matter at low temperature are colour neutral hadrons whereas at

high temperature they become deconfined quarks and gluons in the form of QGP. As

discussed in chapter 1 nuclear matter at high baryon density and finite temperature

is believed to undergo a first order phase transition, from the hadronic phase to the

QGP phase and the first order phase transition line terminates at a critical point

[1–3]. Present theoretical models widely disagree with each other regarding the value

of critical temperature and baryon chemical potential corresponding to the QCD

critical point (CP) on the QCD phase diagram [4, 5]. Fluctuations and correlations

of conserved quantities, such as net-baryon (B), net-charge (Q) and net-strangeness

(S) as discussed in chapter 2, can act as a probe to the QCD phase transition and

CP signal in heavy-ion collisions [6, 7]. Experimental efforts for the search of CP are

underway [8–13]. However, complications arise due to the fact that the hot and dense

QCD matter created in such heavy-ion collisions evolves very rapidly and these critical

fluctuations may not have enough time to reach thermodynamic equilibrium [14].

This implies that reliable predictions of observable fluctuation signatures in heavy-

ion collision require complex dynamical simulations of the non-equilibrium dynamics

of the critical fluctuation [15].
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Figure 4.1: Time evolution of momentum anisotropy �p for cross-over phase transition
(EoS Lattice) and first order phase transition (1st order PT) for Au-Au collisions at√
sNN = 62.4 GeV and impact parameter b = 8 fm. Figs from [18].

Relativistic hydrodynamics, happes to be the widely used dynamical model to

study the space-time evolution of nuclear matter at various energies. Recently, the

HYDRO+ framework has been developed to study the coupled dynamics of out-of-

equilibrium critical fluctuations and the bulk hydrodynamic evolution [16]. However,

an indirect method to locate the the critical point, is via the EoS and assess the

influence of such a critical point on experimental observables. Recently it was shown

[17] that the aforesaid goal can be achieved by using relativistic hydrodynamic model,

experimental data and a state-of-the-art deep-learning technique which uses a con-

volutional neural network to train the system for different EoS. In this chapter, we

try to find an unique observable which connects QCD Equation of State (EoS) and

the experimental data of heavy-ion collisions using relativistic hydrodynamics. We

believe this effort will be complementary to the finding of [17]. It is known that, in the

fluid dynamical picture the efficiency of converting the initial spatial deformation to

the final momentum anisotropy depends on the speed of sound (cs) along with other

factors such as viscosity of the medium. In the case of EoS with crossover transition,
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the speed of sound is never zero in the T and µB range achieved in heavy-ion collision.

Moreover, for a EoS with a first order phase transition, the speed of sound becomes

zero for some finite range of T and µB. The consequence of the two different EoSs

can be seen in the temporal evolution of momentum space anisotropy �p

�p =
�T xx − T yy�
�T xx + T yy� , (4.1)

where �� denotes averaging over the transverse plane with the energy density ε as

weight. �p measures the anisotropy of the transverse momentum density due to

anisotropies in the collective flow pattern, as is shown in Fig. 4.1. A different value

of �p corresponds to different elliptic flow. Although, event averaged elliptic flow is

sensitive to the EoS used, it is also known that its value is suppressed in the presence

of finite shear viscosity. Therefore the event-averaged elliptic flow is not a good indi-

cator of the EoS. Nevertheless, it is interesting to investigate what imprint of different

EoSs one can find in the correlation between the initial fluctuating geometry and the

final flow coefficients in the event-by-event collisions [19]. Additionally, certain cor-

relation, e.g. c(v2, v3) (defined later Eq. (4.10)) are known to be insensitive to the

viscosity of the medium [19].

For the present study, we use a newly developed 2+1-dimensional event-by-event

viscous hydrodynamic code ARVHD (A Relativistic Viscous Hydro-Dynamics) with

two different EoS. The first EoS is a lattice QCD EoS with crossover transition [20]

Fig. (1.7) (top panel) and the second EoS is a bag model EoS, which has a first

order phase transition [21] Fig. (1.7) (bottom panel). The details of the above EoSs

are described in Sec. 1.4.1. There are ongoing efforts to construct EoS with a critical

point [22, 23]. However, due to the present uncertainty in the location of QCD critical

point, we refrain to use such sophisticated EoSs.
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The energy-momentum and net charge conservation equations are solved numeri-

cally by using the time-honored SHarp And Smooth Transport Algorithm (SHASTA)

[24]. In the next section, we briefly outline the details of numerical implementation

and the various test performed to find the numerical accuracy of the code are given

in the Appendix 4.3. As we will show our code passes all the test cases satisfactorily.

The current version of the code can run on any machine with Python 2.7 or higher

version and Fortran 95 compiler preinstalled.

4.1 Numerical algorithm and setup

The numerical solution of the conservation equation Eqs. (1.14,1.15) with i = B,

where B corresponds to net baryon current along with the viscous relaxation equation

given in Eq. (1.29) can be accomplished with the help of flux corrected transport

algorithm called SHASTA. Theses equations can be written in the form

∂t(A) + ∂x(vxA) + ∂y(vyA) = B(t, x, y). (4.2)

Conservative equations of the form Eq. (4.2) can be solved accurately using flux-

corrected transport (FCT) algorithms Refs. [25–27] without violating the positivity of

mass and energy, particularly near shocks and other discontinuities. This is achieved

by adding to the equations a strong numerical diffusion, which guarantees the pos-

itivity of the solution, followed by a compensating anti-diffusion, which reduces the

numerical error. Extensions of FCT to multiple dimensions is carried out using op-

erator or time splitting method, where the multi-dimensional problem reduces into a

sequence of 1 + 1-dimensional problems. However in the present work, we use an im-

proved method by Zalesak and DeVore Refs. [28–30] which circumvents problems (for
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e.g. “clipping”) associated with the naive time splitting method. The details of the

numerical implementation of this algorithm is given in [18]. For the freezeout of the

relativistic fluid to particle is done through the Cooper-Frye prescription [31], details

of which are already given in Sec. 1.4.4. However, the freezeout surface needs to be

determined geometrically and in our simulations, we use the CORNELIUS subroutine

described in [32]. The subroutine uses an improved version of the original Marching

Cube algorithm and extends the different distinct possible topological configuration

from 15 to 33 and thus creates a consistent surface with lesser holes and no double

counting.

Initial conditions

The hydrodynamics equation of motion has to be initialized at an initial time τ = τ0,

by specifying the initial energy densities ε(τ0, x, y) or the entropy densities s(τ0, x, y)

and the flow velocities uµ of a relativistic fluid. However, due to the lack of knowledge

about the initial condition of nuclear matter, we use some effective model to deduce

the initial energy or entropy densities. Two of such models that we are going to use

in this chapter are the Glauber model [33] and the TRENTo model [34].

Given a pair of projectiles labeled A and B collide along the beam axis z and let

ρA,B(x, y, z) be the density of the nuclear matter that participate in inelastic collisions.

ρ(x, y, z) is usually given by the Woods-Saxon profile, given as

ρ(x) =
ρ0

1 + exp[(r −R)/a]
, (4.3)

where ρ0, R and a are the normalization, size of the nucleus, and the stiffness of

the edge of nucleon distribution profile respectively. Each projectile may then be
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Figure 4.2: Initial energy densities from smooth Glauber (left panel) and MC-Glauber
(right panel) initial conditions for Au-Au collisions at

√
sNN = 62.4 GeV and impact

parameter b = 8 fm.

represented by its participant thickness, given by

TA,B =

�
dzρA,B(x, y, z). (4.4)

We shall assume that their exists a function f(TA, TB) which converts the projectile

thickness to entropy production, namely f ∝ ds/dy|τ=τ0 . In a two-component Glauber

model the function is the sum of f ∼ TA + TB, which is proportional to the number

of wounded nucleons NWN and a quadratic term f ∼ TATB, which is proportional to

the number of binary collisions NBC . The complete function f is given as

f ∼ (TA + TB) + αTATB. (4.5)

The proportionality constants and the other relevant details can be found in the [33].

Thus, using the above prescription the entropy density or equivalently the energy

density can be calculated, as shown in Fig. (4.2) (left panel), by varying the overall

normalization which alters the central energy density at a given a impact parameter.
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However, in general the energy density profile in the reaction zone of nucleus-

nucleus collision fluctuates from event to event due to the quantum fluctuations of

the nuclear wave function. This fluctuations are attributed to the fluctuations in

the positions of participating nucleons. In such a case, the previous decribed smooth

Glauber distribution will then be an ensemble average of a large number of fluctuating

initial distribution. This can be achieved by extending the smooth Glauber model

to their Monte Carlo (MC) versions. These fluctuating initial distributions breaks

the rotational and reflection symmetry of the smooth distributions. Fig. (4.2) (right

panel) shows one such event at
√
sNN = 62.4 GeV and impact parameter b = 6 fm

for Au-Au collisions which is relevant to this study.

The TRENTo model [34] for the initial condition assumes the a scale invariant

form of the function f , i.e.,

f(cTA, cTB) = cf(TA, TB), (4.6)

for any nonzero constant c. One can clearly see that the above is broken by the binary

collision term αTATB in the Glauber model. TRENTo assumes a reduced thickness

function given by

f = TR (p;TA, TB) ≡
�
T p
A + T p

B

2

�1/p

. (4.7)

Various limiting cases of the function f , for different choices of parameter p can be

found in [34]. In the present study we assume p = 0, in which case f =
√
TATB, which

is the geometric mean of the TA and TB. We will be using the above two models in

order to see the sensitivity of various correlations to the initial conditions used for

the simulations.

Since, we shall be interested in the study of the difference in fluid dynamical
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√
sNN

(GeV)
ε (x, y, τ0)
(GeV/fm3)

n (x, y, τ0)
(fm−3)

εf
(GeV/fm3)

EoS Lattice 62.4 12 0.32 0.28
1st

order PT
62.4 16 0.40 0.30

Table 4.1: Values of input parameters used in the numerical simulations for the two
different EoS.

response of the system to the initial geometry (anisotropy) for two different EoS. In

the literature this initial geometry/anisotropy of the overlap zone of two colliding

nucleus is quantified in terms of eccentricities coefficients �n [35, 36]:

�ne
inΨn = −

�
dxdyrneinφε (x, y, τ0)�
dxdyrnε (x, y, τ0)

. (4.8)

where r2 = x2 + y2,φ is the spatial azimuthal angle, and Ψn is the participant angle

given by,

Ψn =
1

n
arctan

�
dxdyrn sin(nφ)ε (x, y, τ0)�
dxdyrn cos(nφ)ε (x, y, τ0)

+ π/n. (4.9)

�n is basically the eccentricity of a polygon of nth order, which can be reconstructed

from a lumpy initial distribution generated from a MC Glauber or TRENTo model in

a given event. Such a nth order lumpy distributions generates a nth order harmonic

flow vn analogous to v2.

Setup

For all the calculations, the spatial extension of the numerical grid is set to 36×36 fm2.

The spatial grid spacing is set to Δx = Δy = 0.09 fm and the temporal spacing is set

toΔt = 0.04 fm, such that the Courant-Friedrichs-Lewy (CFL) criterionΔt/Δx < 0.5

is satisfied. The initial time for all collisional erergies is fixed to τ0 = 0.6 fm. The

172



4 Flow correlation as a measure of
phase transition

initial energy densities ε (x, y, τ0) and the freezeout energy density εf (or temperature

Tf ) are fixed by matching simulation results with the experimental π− yield and the

invariant pT spectra. The initial net baryon density n(x, y, τ0) on the other is fixed

by matching to experimental net proton yield. The details of which is shown in

Table. (4.1). The event-by-event hydrodynamics simulation is done for two different

centrality ranges, namely 0− 5% and 20− 30%.

4.2 Results

Event-by-event hydrodynamics is the most natural way to model azimuthal momen-

tum anisotropies vn Eq. (1.10) generated by fluctuating initial-state anisotropies �n

Eq. (4.8), which are generated by the highly fluctuating initial conditions in exper-

iments. The largest source of uncertainty in these hydrodynamic models are the

initial conditions. Since, direct measurement of bulk properties of matter like EoS

in experiments is not possible, we try to identify hydrodynamic responses which in

one hand can be calculated in experiments and in other hand are also tolearant to

uncertainities in the model parameters viz., the initial conditions, shear viscosity etc.

It has been known that the event averaged vn, and the eccentricity of the averaged

initial state, �n are approximately linearly related [37, 38] for n < 4 but the same may

not be true for higher-order flow coefficients. It is also known that the same linear

relationship holds even for event-by-event between �n and vn [19]. Here we study

how the event-by-event correlation between �n and vn is changed when the system

undergoes either a first phase transition or a cross over. In order to quantify the

linear correlation we use Pearson’s correlation coefficient which is defined as

c(x, y) =

�
(x− �x�ev) (y − �y�ev)

σxσy

�

ev

, (4.10)

173



where σx and σy are the standard deviations of the quantities x and y. The correlation

coefficient ranges from −1 to 1. A value of 1(−1) implies that a linear (anti-linear)

correlation between x and y. A value of 0 implies that there is no linear correlation

between the variables. In a previous study, it was shown that the Pearson correlator

c(�2, v2) is almost insensitive to the different initial condition and the value of shear

viscosity over entropy density of the fluid [19]. Further, assuming an approximate

linear relationship between the �2 and v2, we can write for event-by-event case

v2 = m�2 + δ, (4.11)

where m = �v2�ev / ��2�ev , and the average error �δ�ev = 0. The values of m indi-

cate how efficiently the initial deformation is transformed into the final momentum

anisotropy.

In Fig. (4.3) (a) (Top row) we show the event-by-event distribution of v2 vs �2 for

0% − 5% Au+Au collisions at
√
sNN = 62.4 GeV. The initial energy density and �2

are obtained from the MC-Glauber model with the contribution coming only from

wounded nucleons. The result is obtained for EoS-Lattice, i.e, crossover transition.

Fig. (4.3) (b) (Top row) shows the same, but with EoS having a first order phase

transition. Using two different EoS we found ∼ 10% decrease in c(�2, v2) for the case

of first order phase transition, which clearly indicates that c(�2, v2) can be treated

as a good signal of phase transition in the nuclear matter. Above results are not

surprising since the speed of sound becomes zero (hence the expansion) for a certain

temperature range in the first order phase transition. Fig. (4.3) (a,b) (Middle row

and bottom row) shows the same results but for 20% − 30% centrality using MC-

Glauber and TRENTo model initial conditions. The first order phase transition

shows a ∼ 6% and ∼ 5% decrease in the value of c(�2, v2) respectively. Thus, we infer
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Figure 4.3: (Top row) Event-by-event distribution of v2 vs �2 for 0% − 5% Au+Au
collisions at

√
sNN = 62.4 GeV. The initial energy density and �2 is obtained from

MC-Glauber model. (Middle row) Same as top row but for 20% − 30% centrality.
(Bottom row) Initial conditions from TRENTo model at 20%− 30% centrality. The
left column (a) is for crossover transition while the right column is for first order
phase transition. Figs. from [18].
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Figure 4.4: (Left panel) Normalized symmetric cummulants NSC(m,n) for EoS-
Lattice (solid orange circles), and first order phase transition (open blue circle) for
20%− 30% collision centrality. The initial energy density is obtained from wounded
nucleons (εWN) in MC-Glauber model. (Right panel) Same as left panel but for
TRENTo initial conditions. Figs. from [18].

that although, the value of c(�2, v2) for first-order phase transition is always less than

that with crossover transition independent of the model used, the difference is more

prominent in the central collisions than at higher centrality. Similarly, other higher

order correlations e.g., c(�n ,vn) (for n = 3 or n = 4) is found to be smaller for the

case of first order phase transition.

However, the initial eccentricities �n are not accessible in real experiments (and

are model dependent) and hence the c(�n, vm) are not as interesting as c(vn, vm) which

can be calculated from the available experimental data. As pointed in [39, 40] instead

of c(vn, vm), a clean experimental observable would rather be normalized symmetric

cummulants (NSC) defined as

NSC(m,n) =
�v2mv2n� − �v2m� �v2n�

�v2m� �v2n�
. (4.12)

This results of NSC(m,n) can be more clearly seen from Fig. (4.4) (left panel), where

we show NSC(2, 3), NSC(2, 4), and NSC(3, 4) for EoS-Lattice (solid orange circles)
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and EoS first order phase transition (open blue circles) with corresponding errors

for 20% − 30% collision centrality. We have used the MC-Glauber εWN initialisa-

tion. Fig.4.4 (right panel) shows the same but for TRENTo model. The errors are

calculated by using bootstrap method. As can be seen from the Figs. (4.4) that

the NSC(2, 3), NSC(2, 4), and NSC(3, 4) always distinguishes the two different EoSs.

These observations may be attributed to very different evolutionary dynamics of the

system for the two different EoS, as the speed of sound becomes zero in first-order

phase transition hence the linear/non-linear coupling of �n - vn and vn-vm is different

in the two scenario. Although the absolute values of the NSC(m,n) varies for differ-

ent initial condition (energy density scales with wounded nucleons or in the TRENTo

model), the difference in them remains almost same for two different EoSs. We found

in the mid central collisions NSC(m,n) is larger for the EoS with first order phase

transition irrespective of the initial conditions used here. This indicates that we can

utilize NSC(2, 3) and NSC(3, 4) to probe the EoS of the system which implies that

one can possibly use this observable to locate the QCD critical point. For example

we can calculate NSC(m,n) from available experimental data for various
√
sNN and

pinpoint the energies where c(vn, vm) shows a sudden change in magnitude.

It is worthwhile to discuss a few important points (i) the present study assumes

boost invariance in the longititudinal direction, which is not a good symmetry at low

center of mass energy collisions. In order to do this, one has to simulate a full 3+1d

hydrodynamic simulations which would have longititudinal dynamics. This will be

taken up in the future. (ii) We did not consider any hadronic rescattering effects,

which is usually done by passing the relativistic fluid through a hydrodynamic after

burner like SMASH [41] before freezeout. At lower energies the effect of the hadronic

phase might become important and could potentially affect these observables. These

has also been reserved for a future study.
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4.3 Appendix

In this appendix, we give a summary of various test results by comparing the results

of numerical simulations with the corresponding known analytical solutions.

1. Riemann test: This test describes the expansion of baryon-free matter into

vacuum Ref. [42, 43]. Also, we use Cartesian coordinates instead of Milne coordinates.

The following conditions at time t = 0 are employed:

�(x, 0) =





�0 x ≤ 0

0 x > 0
(4.13)

v(x, 0) =





0 x ≤ 0

c x > 0.
(4.14)

The choice of v = c for x > 0 is purely conventional, but it guarantees a continuous

hydrodynamic solution at the boundary to the vacuum, since in the massless limit, the

velocity of matter approaches to unity. In multi-dimensional application, we will give

finite velocity in any one of the directions while the other direction will be given zero

velocity. The derivation alongwith the analytic solution can be found in [43] and here

we only compare the results. The test compares the numerical solution of Riemann

problem initialized in a two-dimensional grid with the 1+1-dimensional analytical

solution. We have initialized the discontinuity in several different ways as described

in [30]: along x-axis, y-axis and along the plane y = −x. All of these cases give

similar results and a comparison with 1+1-dimensional solution is given in Fig. 4.5.

The numerical calculations in Figs. (4.5) are made with cell size of Δx = 0.04 fm and

Δt = 0.016 fm and the final solution obtained is for t = 10 fm. Comparing (4.5) (a)

and (b), we notice that, although Aad = 1.0 reproduces the analytical result better
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Figure 4.5: The analytic (green dotted line), initial profile (blue solid line), numerical
solution (red solid line) of the relativistic Riemann problem in 2+1-dimension. (a)
Scaled energy density as a function of spatial coordinate with anti-diffusion mask
coefficient Ax,y

ad = 1. (b) Same as (a) but with Ax,y
ad = 0.25. (c) Velocity as a function

of spatial coordinate with anti-diffusion mask coefficient Ax,y
ad = 0.5 in 2+1-dimension.

Figs. from [18].

than lower values of this coefficient, unphysical oscillations in the numerical solution

occur at the point of discontinuity. Lower value of this coefficient leads to a more

smoother but diffused profile. Since, all numerical calculations only approximate the

exact solution, there is always some residual numerical viscosity in the solution. In

Fig. (4.5) (c) we have compared the numerical solution of the velocity profile with

the analytical solution.

2. Gubser test: Recently, Gubser [44] has derived another analytic solution
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Figure 4.6: (a) Comparison of analytic Gubser solution (black mesh) of fluid energy
density (in arbitrary unit) with the simulated result (continuos surface) in the trans-
verse plane at time τ = 1.6 for q = 1 and τ0 = 1.0. (b) same as fig.(a) but for the
fluid velocity along x direction. (c) Time evolution of number density n (thick dotted
lines) compared with analytic Gubser solution (thin solid lines). Figs. from [18].

for a (1+1)-dimensional conformal fluid (i.e. with P = �/3). The solution assumes

azimuthal symmetry in xy (transverse) plane and longitudinal scaling flow. The

energy density and number density at (τ, x, y) is given as

ε =
ε0(2q)

8/3

τ 4/3

�
1 + 2q2

�
τ 2 + r2T

�
+ q4

�
τ 2 − r2T

�2�4/3
, (4.15)

n =
n0

τ 3
4q2τ 2

[1 + 2q2 (τ 2 + r2T ) + q4 (τ 2 − r2T )]
2 , (4.16)
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where rT =
�

x2 + y2 is the radial coordinate and the components of uµ are given as

uτ = cosh [k (τ, rT )] , uη = 0, (4.17)

ux =
x

rT
sinh [k (τ, rT )] , uy =

y

rT
sinh [k (τ, rT )] , (4.18)

k (τ, rT ) = arctanh
2q2τrT

1 + q2τ 2 + q2x2
T

. (4.19)

The parameter q has the dimension of an inverse length and we set it to 1 (arbitrary

units). To perform the test, we work in the Milne coordinates because of longitudinal

scaling form of the solution. We choose ε0 = 1, n0 = 0.5 and we set the initial profiles

from the above solutions at τ0 = 1, then we record outputs for the energy density

and the transverse velocities vx = ux/uτ and vy/uτ at an arbitrary later time τ = 1.6.

Fig. (4.6) (a,b) compares the analytical solutions (black mesh) given in Eq. (4.15-

4.18), with that from the numerical code (continuous surface) and shows an excellent

agreement. In Fig. (4.6) (c), we have also compared between numerical solution (thick

dotted lines) of number density at various time steps with the analytical solution

Eq. (4.16) (thin solid lines) for Gubser flow and found a very good agreement.
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Chapter 5

Flow response: Interactions & mag-

netic field
In chapter 3, we calculated the transport coefficients for the an interacting HRG

using the S-matrix formalism and also the influence of magnetic field on an ideal

HRG. However, in order to study the influence of the transport coefficients for e.g.,

ηs, on experimental observables one needs a dynamical models like, relativistic hydro-

dynamics or blast wave models, where ηs/s is an input to such models. It has been

known that ηs/s of the QCD matter strongly affects the final observed azimuthal

anisotropies such as, v2 as a function of final particle transverse momentum pT . In

the first part of this chapter, we will see the hydrodynamic response to a temperature

dependent shear-viscosity coefficient ηs/s(T ), calculated for an interacting HRG. This

will be done using the numerical hydrodynamic code ARVHD discussed in chapter 4.

In the second part of this chapter, we will calculate the effect of magnetic field on the

pT spectra and v2 of measured particles using a blast-wave model.

5.1 Hadronic interaction

We parameterize the ηs/s ratio for the low temperature hadronic phase obtained

in chapter 3 and for the high temperature side, we will assume a constant ratio of
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Figure 5.1: Parametrization of ηs/s as a function of temperature.

ηs/s = 1/(4π) corresponding to the KSS bound. The parameterizion is given as

ηs/s = a+ b exp
�
cT + dT 2

�
for T < 0.15 GeV,

= 1/(4π) for T > 0.15 GeV, (5.1)

where the coefficients a = 0.48, b = 526.0, c = −104.0 GeV−1 and d = 305.0 GeV−2

respectively. The corresponding parameterizion is shown in Fig. (5.1). We initialize

the hydrodynamic simulation with energy density ε(τ0, x, y) = 55 GeV/fm3 and τ0 =

0.6 fm using, smooth Glauber model for Au-Au collisions at b = 7 fm. All components

of shear viscous tensors πµν are initialized to zero. For the EoS, we use the LQCD EoS

at µB = 0 for the high temperature side which smoothly connects the low temperature

side described by the HRG. The EoS parametrization used here is s95p-PCE-v1 [1].

The relaxation time τπ is taken to be of the form τπ = 3ηs/(sT ). The kinetic freeze-

out temperature Tf is choosen to be Tf = 0.129 GeV. The choice of initial condition

of energy density, freeze-out temperature and initial time used here is arbitrary but

kept fixed when simulate for different parameterizions of ηs/s. Usually, to model the

dynamics of a hadron gas including dissipation etc., the fluid-dynamical evolution is
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Figure 5.2: Comparisons of momentum anisotropy (�p), invariant transverse mo-
mentum spectra (dN/d2pTdη) and elliptic flow (v2) for different parametrizations
of ηs/s, namely the S-matrix parametrization Eq. (5.1), ηs/s = 0, ηs/s = 1/(4π) and
ηs/s = 2/(4π).

coupled to a hadron cascade simulation at a suitably chosen space-time hypersurface.

However, in the given scenario, the nature of hadronic interaction has been already

modelled through the hadronic EoS and the transport coefficients using the S-matrix

formalism and hence a further hadronic cascade simulation would seem redundant.

Fig. (5.2) (a) shows the momentum anisotropy �p (see Eq. (4.1)) as a function of

proper time τ . The momentum anisotropy of a temperature dependent ηs/s Eq. (5.1)

turns out to be the same as a constant value of ηs = 1/(4π) throughout the evolution.

The problem is, that one cannot make a direct connection of �p to the actual value

of v2 obtained from the decoupling procedure. Fig. (5.2) (b) shows the invariant
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pT spectra of π− as a function of pT , for different parameterizions of ηs/s. The

spectra recieves correction both from the viscous evolution and during the freeze-out

stage. It is evident that the effective contribution from a temperature dependent ηs/s

Eq. (5.1), to the invariant pT spectra, lies between ηs/s = 1/(4π) and ηs/s = 2/(4π).

Finally, Fig. (5.2) (c) shows the elliptic flow v2 as a function of pT . The effect of

the temperature dependent ηs is quite prominent in v2. The suppresion of v2 using

Eq. (5.1) compared to the ideal case is even larger than using ηs/s = 2/(4π) for

pT > 1 GeV.

5.2 Magnetic field

Relativistic hydrodynamics played one of the most important roles to extract the

value of ηs/s from the available experimental data [2–8]. However, almost all of these

hydrodynamics model studies have so far ignored the effect of a large magnetic field on

the fluid evolution, hence, the extracted values of shear viscosity are probably not as

precise as is usually claimed. Only in recent years people finally started investigating

the effect of magnetic field on QGP evolution [9–19]. However, almost all of the

recent numerical hydrodynamic model studies with a non-zero magnetic field have

concentrated only on the effect of the field on the fluid evolution. The effect of the

magnetic field on the freezeout distribution function and hence on the corresponding

correction to the invariant yield has so far been neglected in all of those magneto

hydrodynamical model studies. The freezeout distribution function is used in the

Cooper-Frye prescription to convert the fluid elements to particles (hadrons) during

the kinetic freezeout in order to get the invariant yields of particle spectra. To achieve

this, we use the δf correction to the one particle equilibrium distribution function f0,

Eq. (3.67) obtained in chapter 3 in the presence of a magnetic field. Using the above
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correction, we calculate the transverse momentum spectra and the corresponding flow

harmonics. Before proceeding further, we note that the local equilibrium distribution

function in presence of the electromagnetic field is known to have the following closed

form expression [20]

f em
0 (p) =

1

(2π)3
exp (−β [(pµ + qAµ)uµ − µ]) , (5.2)

where q is the electric charge, Aµ is the four potential corresponding to an electro-

magnetic field, and µ is the chemical potential. We also note, that Aµ is not uniquely

defined for an arbitrary given magnetic field (or in other word using a different gauge

a new A�µ can also give the same magnetic field as before) and this ambiguity in

defining Aµ makes it difficult to use f em
0 (p) in the Cooper-Frye formula

E
d3N

d3p
=

�
f em
0 pµdΣµ. (5.3)

Where dΣµ is the differential freezeout hypersurface, and pµ → pµ + qAµ is the

canonical momentum.

Thus we cannot use Eq. (5.2) in the Cooper-Frye freezeout formula Eq. (5.3) in

order to study the effect of magnetic field on the freezeout distribution function.

Therefore we choose a different approach and calculate the correction δf to the local

equilibrium distribution function f0(p) in presence of an external magnetic field by

considering the δf to be small in comparison to the f0(p).

One needs to implement the δf correction in the Cooper-Frye freezeout formula

in a numerical magnetohydrodynamics code to investigate the actual effect of δf on

invariant yield and flow coefficients. This is a involved study and is out of the scope

of the present thesis. For the sake of simplicity, here we consider a fluid with non-
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zero transverse flow alongwith a longitudinal Bjorken expansion, using a blast wave

model following [21], in order to calculate the corresponding invariant yields of pion

in the presence of magnetic field. By assuming a linear rise of transverse velocity as

a function of radius of the fireball in the transverse plane and a velocity field with a

small elliptic flow component we have the following hydrodynamical fields :

T (τ0, ηs, r,φ) = T0Θ(R0 − r),

ur(τ0, ηs, r,φ) = u0
r

R0

(1 + u2 cos(2φ))Θ(R0 − r),

uφ = 0,

uη = 0,

uτ =
�
1 + (ur)2,

(5.4)

where r =
�
x2 + y2, φ = arctan(y/x), T0 = 130 MeV, R0 = 10 fm and u0 = 0.5.

For a head-on collision the elliptic flow component u2 = 0. Here we have taken,

u0 = 0.55 and u2 = 0.1. These values approximately corresponds to a mid central

heavy ion collisions at top RHIC energies. It is useful to realise that τuη and ruφ are

velocities in η and φ directions respectively. For boost invariant flow uη = 0 and for

rotationally invariant flow uφ = 0. Here we also assume longitudinal boost-invariance,

the invariant yield is calculated using the following expression:

d2N (0)

d2pTdy
+

4�

i=0

d2N (i)

d2pTdy
=

1

(2π)3

�
pµdΣµ

�
f0 +

4�

i=0

δf (i)

�
, (5.5)

for the given hydrodynamic fields Eq. (5.4). The first integral on the right hand side

is the equilibrium part, which equals to
2mT πR2

0τ0
(2π)3

K1(x) and the second integral is the

correction to the invariant yield. Calculation of corresponding δf (i) are given in [22]
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5 Flow response: Interactions & magnetic field

and after plugging in the appropriate δf (i) into Eq. (5.5), the integral is evaluated

numerically. We define the dimensionless Hall parameter χH = τc/τB, as the ratio

of relaxation time and cyclotron time. For the calculation we have also used χH =

(qBτc)/(mT cosh y), τc = 0.5 fm, and we calculate everything at midrapidity i.e.,

y = 0. The invariant yield of π− for various values of magnetic fields are shown in
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Figure 5.3: (Top row) Invariant yield and elliptic flow of π− as a function of pT . Solid
red line corresponds to without magnetic field and zero shear stress (Vkl = 0) and other
lines correspond to different values of magnetic field. (Bottom figure) Invariant yield
of π− corresponding to δf1 and δf2 as a function of pT for two different magnititude
of magnetic fields. Orange line corresponds to qB = 0.1m2

π and blue line corresponds
to qB = 10m2

π. Figs from [22].
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Fig. (5.3). For comparison we also show the zero magnetic field and zero shear stress

case in the same figure by the solid red line. One notices sizable correction to the

invariant yield when non-zero transverse expansion is taken into account (note that

qB = 0 does not imply ideal case, one also needs to set zero shear viscosity which is

achieved by setting Vkl = 0).

In order to calculate the v2 we use the following formula which is obtained by

considering the correction to be small (see [21])

v2 (pT ) = v02 (pT )

�
1−

�
dφ d2N(i)

pT dpT dφ�
dφ d2N(0)

pT dpT dφ

�
+

�
dφ cos(2φ) d2N(i)

pT dpT dφ�
dφ d2N(0)

pT dpT dφ

. (5.6)

The v2 for different values of magnetic field are shown in Fig. (5.3). One can clearly

see that v2 changes due to the δf correction in presence of magnetic field compared

to the without magnetic field case (shown by red line in Fig. (5.3)).

Finally we would like to comment on the non-monotonic behaviour of δf correc-

tion as observed in invariant yield and v2 (see Fig. 5.3 (Top row)). We note that

the contribution from δf1 and δf2 shows a non-monotonic behaviour as a function of

magnetic field. This is shown in Fig. (5.3) (Bottom panel) where we plot correspond-

ing corrections in invariant yields d2N(1)

d2pT dy
and d2N(2)

d2pT dy
respectively as function of pT for

two different values of magnetic field qB = 0.1m2
π (orange lines) and qB = 10m2

π

(blue lines). One can clearly see that the corrections due to two terms cancel each

other for smaller values of magnetic field, whereas for a larger magnetic field they act

coherently. This behaviour is reflected in the correction to invariant yield and v2.

To summarize, we tried to see the implications of hadronic interactions and the

influence of magnetic field on experimental observables. We found that the effect of

the temperature dependent ηs/s calculated using S-matrix formalism is most promi-

nently seen in the suppresion of v2 for pT > 1 GeV, which is greater than a constant
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5 Flow response: Interactions & magnetic field

value of ηs/s = 2/(4π). Similarly, we find sizeable corrections to both invariant trans-

verse momentum spectra and v2 at freezeout due to the dissipative corrections in the

presence of magnetic field.
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Quantum Chromodynamics (QCD) is the fundamental theory of strong interactions. QCD predicts that at

high temperature and density, strongly interacting matter undergoes a phase transition from a state of

hadronic constituents to a deconfined state of quarks and gluons called the quark-gluon plasma (QGP). By

colliding heavy-ions at ultra-relativistic energies, one expects to create matter under conditions that are

sufficient for deconfinement to happen. The first part of the dissertation focuses on the thermodynamic

and transport properties of an interacting hadronic matter produced in the heavy-ion collisions.

The  ideal  hadron  resonance  gas  (HRG)  model  is

successful  in  reproducing  the  zero  μB  LQCD  (Lattice

QCD) data of bulk properties of the hadronic matter like

pressure, energy density etc. at temperatures below T
c
≈

156.5 MeV. The partition function of a hadronic gas can

be  decomposed  into  a  free  and  interacting  part.

Considering that only the resonances contribute to the

interacting part, it can be shown that the net effect of

the interacting part is equivalent to considering all these

hadronic  resonances  as  free  particles  in  a  narrow

resonance  width  approximation.  This  is  the  basic

premise of ideal HRG. However, when the temperature

is close to Tc, ideal HRG model does not agree with

the lattice QCD data for observables like the baryon-

strange  correlator  (C
BS

)  etc.  These  observables  are

sensitive  probes  of  the  deconfinement  and  provide

information  about  the  thermal  condition  of  QCD.

Interaction  among  the  constituent  hadrons  is

expected to affect these observables. We have implemented interactions among hadrons in the HRG model

using the S-matrix framework. We observe a good agreement between results from our S -matrix formalism

and the lattice QCD data for the aforementioned higher-order susceptibilities along with the speed of sound

and the interaction measure etc.

Figure 1. Baryon-strangeness correlator (CBS) as a function

of the  temperature.  Result  of  ideal  HRG model and that
with additional resonances which are yet not confirmed are
labeled as (IDHRG 1) and IDHRG (PDG 2016+) respectively.
Results  of attractive interactions only (K-matrix)  and that
with  attractive+repulsive  interactions  (Total)  are  also
shown. Symbols are for LQCD data. 
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