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Chapter 1

Introduction

This Chapter is a basic introduction to black holes as solutions to Einstein general relativity
and various problems associated with black holes. Also, we will briefly summarise aspects of
string theory and its applications as a tool to solve various black hole problems. In particular,

it describes the role of AdS/CFT.

1.1 Black holes in classical general relativity

Black holes are the endpoints of gravitational collapse of massive astronomical objects with
masses more than around 5-10 solar masses. For such massive objects, the gravitational force
dominates over all other fundamental forces and instead of attaining an equilibrium state, they
keep collapsing until they end up with something called ‘event horizon’. This is the hypotheti-
cal surface around black holes from which even light can’t escape i.e. the escape velocity of an
object (ve = \/@ ) exceeds the speed of light. Starting from the LIGO (Laser Interferometer
Gravitational-Wave Observatory) observation in 2015 [[1], the existence of black holes in the
observational universe are constantly being detected through the gravitational waves coming
from black hole merging events. Recently on April 2019, the ‘event horizon telescope (EHT)’
was able to picture the image of the horizon of a supermassive black hole having mass nearly
equal to 7 billion times the solar mass [2] [3].

From the theoretical point of view black holes are solutions to Einstein’s equations in gen-
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eral relativity,

1
G = Ry = 505 R + Agyuy = 8GN T, (1.1.1)

where Gy is the Newton’s gravitational constant. The left-hand side of the equation is the
gravity part whereas the right-hand side is the matter part. A is the cosmological constant. In
the following discussions we are goingtoset Gy =1 =h =c = kp.

The Einstein equations are highly non-linear and in general, cannot be solved exactly. How-
ever they have been solved in many special cases. The simplest spherically symmetric, non-
rotating solution to the vacuum Einstein equations ( i.e. for 7, = 0, A = 0) that carries no

charge is expressed in terms of Schwarzschild coordinates as

r T

oM oM\
ds? = — (1 _ _) dt? + (1 — —) dr? + r?(d6* + sin? 0dp?). (1.1.2)

Here, the coordinates ¢ and r are the Schwarzschild time and radial directions respectively. M is
the mass of the corresponding gravitational object. The metric outside any spherically symmet-
ric solution to the Einstein equations can be effectively described in terms of the Schwarzschild
coordinates with r > 2M . However, for most of such solutions the Schwarzschild coordinates
appear to be invalid at the radius » = 2/ as it lies inside the matter contenlﬂ of the spherical
object e.g. stars, planets etc. For some special solutions such as black holes where all the matter
content is compressed into a single point, the Schwarzschild coordinates are valid at r = 2M
as well. From now on, we will consider the metric (I.1.2)) as only a black hole solution and
exclude other spherical solutions. We can see that the Schwarzschild black hole (T.1.2)) has the
gy component vanishing and ¢,, component diverging at » = 2M. So r = 2M 1is a radius of
singularity. However, it is only a property of the Schwarzschild coordinate system and nothing
special happens at r = 2M. There are other coordinate systems like Eddington-Finkelstein
or Kruskal coordinates [4]] with which we can describe the region inside a black hole as well.
The hypothetical surface at » = 2M around a Schwarzschild black hole behaves as a one-way
membrane through which information can pass only into the interior and nothing can come out

classically. This surface is known as the event horizon. We will discuss more on it shortly.

"Hence cannot be described by the vacuum solution anymore.
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The metric (I.1.2)) has another singularity at » = 0 which is a proper singularityEl of the
geometry and cannot be removed by any choice of coordinates. Under generic conditions,
a collapsing star gives rise to black hole. According to the ‘Cosmic censorship conjecture
(CCC)’ as proposed by Penrose [3]], the singularities produced in the process of formation of
black holes are hidden by the presence of event horizon. No observer can detect the presence
of the singularity as no information can come out of the event horizon. In the absence of event
horizon the singularity would be a naked singularity which is avoided according to CCC. We
will see this event horizon plays a very important role in black hole physics.

Till now, we discused black hole as a classical geometry. Quantum mechanically black
holes radiate and have characteristic thermal temperature. By semi-classical computationsﬂ
Hawking [6]] showed that black holes just like any thermal object radiate and are characterized

by the characteristic Hawking temperature

Ty = —. 1.1.3
H=5 (1.1.3)

where « is the ‘surface gravity’ at the horizon as observed by an observer at infinity. Surface
gravity can be intuitively understood as the measure of maximum force that has to be exerted
by an observer at infinity to keep an object at the horizon in place. In addition to the original
computation of Hawking involving quantum fields in classical blackhole background, there also
have been computations of the Hawking temperature by other people using Euclideanisation
techniques e.g. see [7]. In quantum field theory, for the Euclidean formulation of the path
integral quantisation there is an identification between periodicity (P) of the Wick rotated time
T ~ T + P with the inverse temperature 3 = % of a statistical mechanical system (in the units
of h = kg = 1). Keeping this in mind, by Wick rotating the Schwarzschild time 7 = it, we
can write the metric (T.1.2)) as,

r

4
2 2 2 2 2
2M> dp? + r2(d6? + sin® 0de?) (1.1.4)

ds, = p*dw® + (

2The square of the Riemann tensor R, ,, R*** diverges at r — 0.
3By ‘Semi-classical computation’ we mean quantum field theory effects are considered in a curved geometry.
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where p = 4M /1 — % and w = ﬁ. In these new coordinates, the horizon corresponds to
p = 0, which can be thought of as the origin of the (p, w)-plane with w being the angular coordi-
nate and p being the radial direction. Just like the plane polar coordinate system, the Euclidean
manifold can be covered completely with (p, w)-coordinates, by choosing w to be periodic with
period 27 and including the additional point p = 0. This implies that the Euclidean time 7 is
periodic with period P = 8w M. So for the Schwarzschild solution, the thermal temperature

associated with the event-horizon turns out to be

1

Ty = ——.
U= srM

(1.1.5)

Schwarzschild black hole is the simplest black hole solution defined only in terms of its
mass. In addition there are charged black holes that carry electric charge () along with the mass

M. They are solutions to Einstein gravity coupled to U(1) gauge field with the following action

_ 1 4 1 |24
S=15 [ AV g(R F FW). (1.1.6)

The corresponding equations of motion are

1
G = 2 (FMFVA - ZFA”FM) : (1.1.7)

V. =0, (1.1.8)

which are non-linear equations implying the fact that the solution is non-perturbative i.e. they
can’t be obtained from Einstein equations linearised around flat spacetime. The spherically

symmetric Reissner-Nordstrom (RN) solution to these equations is given by,

oM Q2 oM Q*\ !
ds* = — (1 -+ Q—) dt* + (1 -+ Q—) dr® 4+ r*(d6” + sin® d¢®).  (1.1.9)
T

r 72 72

where A = %dt and F' = dA is the Maxwell electromagnetic field coupled to the black hole.

Thus, () is the associated electric charge. The g;; component vanishes at » = .. where

ry =M+ /M2 — Q2 (1.1.10)
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So there are two horizons of RN-black hole, outer horizon at » = r and the inner horizon at
r = r_. The value of mass and charge for which Q? > M? causes naked singularity. Hence it
is not allowed according to Cosmic Censorship conjecture. This restricts the values of M and
@ to satisfy M > (). The black holes that saturate the condition () = M are called extremal
RN black holes, they are stable (soliton-like), are at zero thermal temperature and they don’t
radiate. For M > () (non-extremal) they have finite positive temperature and can Hawking
radiate. For extremal black holes the inner horizon and the outer horizon coincides and are at
r=ry=1_=M.

Astrophysically stars and planets also have rotational degrees of freedom so must be true
for blackholes as they are formed out of collapsing stars. Thus there are rotating black hole so-
lutions of Einstein equations, which carries angular momentum in addition to mass and charge
denoted by J. They can be either uncharged (Kerr metric) [[8] or charged (Kerr-Newmann met-
ric) [9] solutions. According to black hole uniqueness theorems these are the only stationary,
asymptotically flat black hole solutions to the Einstein’s field equations. While the non-rotating
black holes are also static solutions, the rotating ones are non-static. The rotating stationary so-
lutions are axisymmetric. For more details on black hole solutions, one can refer to the basic
text books on general relativity [4.[7,{10].

Black hole dynamics and it’s correspondence to the laws of classical thermodynamics was
developed in 1970’s. Especially, the analogous of the four laws of thermodynmics for classical
black holes were developed by Bardeen, Carter and Hawking in 1973 [11]]. The Bekenstein-
Hawking entropy [12] of a black hole is directly related to the area of its event horizon and is
given by

A

Sen = 7 (1.1.11)

where A is the area of the horizon. This is also in line with the black hole ‘area law’ [[13]],
according to which ‘the area of the event horizon of a classical black hole never decreases’.
This can be compared with the second law of thermodynamics, the total entropy associated
with an isolated system never decreases.

From the statistical mechanical point of view, this amount of entropy requires ¢°5# num-

bers of microscopic states of a particular black hole. There are several no-hair theorems [4]]
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according to which for classical black holes associated with usual matter content in D = 4 the
solutions are uniquely defined in terms of their mass M, electromagnetic charge () and angular
momentum .J. Thus construction of ¢51 number of microstates to account for the Bekenstein-
Hawking entropy (I.T.TT)) is not possible in the classical treatment of a black hole. Quantum
effects has to be taken into account [14- 16]ﬂ

Due to the Hawking radiation, a black hole eventually evaporates, leaving only the thermal
radiation behind. Thus starting from a pure state the black hole can evolve into a mixed state
which is a violation of unitarity, a basic property of physical states in quantum mechanics. The
Hawking radiation from a black hole contains only the information about the mass and charge
of the black hole. Any information about the initial data in the formation of black hole is lost
completely after its evaporation. This is known as the ‘information loss paradox’. To address
this issues we need a quantum theory of gravity.

String theory is the theory which could be a correct theory of quantum gravity within which
the issues like black hole microstates and information loss have been attempted and solved to
some extent. We will not discuss much about the resolution to the information loss paradox in

this thesis. Interested readers may refer to [17].

1.2 String Theory

In this section, we are going to discuss some general aspects of string theory. In particular,
we discuss fundamental strings and branes giving special attention to D-branes. We show
how the equivalence between two different descriptions of the D-branes motivates towards the
formulation of AdS/CFT duality [18] [[19], which is an important tool for the construction of
black hole microstates. The basic and excellent books on string theory are [20,21]].

The fundamental objects of string theory are higher dimensional objects like one dimen-
sional strings and branes of two or more dimensions. To be precise, strings are the fundamen-

tal objects in a perturbative string theory where as p-branes are non-perturbative objectsﬂ A

“However another problem came into picture which is known as the “Universality” problem. It was not clear
why the semi-classical computation (It is QFT on curved spacetime where gravity is not quantized) by Bekenstein-
Hawking yields the same entropy as obtained from quantum gravity (gravity is also quantized).

>They have masses inversely proportional to the string coupling.
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p-brane has p-spatial dimensions e.g. a two dimensional object is called a 2-brane or a mem-
brane. There are also 3-branes, 4-branes and so on. There are also special kind of p-branes
called as D-branes or Dp-branes on which end-points of fundamental strings can end. We will
discuss more on D-branes in section[I.2.1] The string excitations give particles. There are both
massive and massless excitations of the fundamental string. Among the massless excitations
of the closed-string one is graviton, the quanta of gravitational field. String theory lives in
higher dimensions and lower dimensional theories can be constructed by compactifying extra
dimensions on small spacesEk more on compactification is dicussed in section [1.3.1). The fun-
damental strings can be open strings having two free endsﬂ There are also fundamental closed
strings having periodic/anti-periodic boundary conditions along their lengths depending on the
type of the theory considered.

Initially, string theory was constructed considering only the bosonic excitations of a string.
This is known as the “bosonic string theory”. For consistency it requires 26 spacetime dimen-
sions. Bosonic string theory may contain oriented or non oriented strings. The bosonic closed
strings have periodic boundary conditions along their length. For all types of bosonic string
theories, the ground state of the theory is tachyonic (-ve mass square state) which implies in-
stability of the vacuum in these theories. To resolve this issue and also to add fermions to the
theory which are fundamental objects of standard model, supersymmetry is incorporated into
string theory. This lead to supersymmetric string theory, also known as “superstring theory™.

The superstring theory requires 10-spacetime dimensions. The supersymmetric closed
strings can have periodic boundary conditions (Ramond-sector) or anti-periodic boundary con-
ditions (Neveu-Schwartz sector) along their length.

There are five consistent supersymmetric string theories namely,

1. Type-I
It has V' = 1 supersymmetry in ten-dimensions. It includes both open strings and closed
strings. Here the fundamental strings are unoriented and they can be open strings. Where

as, in type-II superstring theories fundamental strings are always closed and oriented.

6Smaller radius than the Planck length [p..
"They have to satisfy some boundary conditions which requires them to lie on some hypersurface.
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2. Type-II A
The bosonic field content of the low-energy theory is given by metric gy, dilaton ¢,
NS-NS two form field B,y attached to the fundamental string along with the Ramond-
Ramond one-form field C") and three-form field C'®). These Ramond-Ramond fields
are associated with D-branes, the C'V)-field is associated with a DO-brane where as the

C®)field is associated with a D2-brane. There are also electromagnetic duals of these

R-R fields (see[B.I).

3. Type-I B
Here the bosonic field content of the theory in the low-energy limit is given by metric
gun, dilaton ¢, NS-NS two form field B,y attached to the fundamental string along
with the Ramond-Ramond zero-form field C'?), two-form field C'?, four form field C*
and 6-form field C'©) along with their electromagnetic duals. The C'©) field is associated
to a so called D-instanton that carries charge under axion field y. Other RR-fields i.e.

C®, C® and C© are associated to D1-branes, D3-branes and D5-branes respectively.

4. Heterotic SO(32)
They are another kind of supersymmetric string theories with N' = 1 supersymmetry in
ten-dimensions as in case of type-I superstring theory. In this case there is an associated

Yang-Mills gauge symmetry with the gauge group SO(32).

5. Heterotic Fy x Eg.

Here the Yang-Mills gauge symmetry is associated to the Eg x FEjg Lie group.

Out of these type-I and heterotic string theories have N' = 1 supersymmetry where as type-I[A
and type-IIB string theories have N = 2 supersymmetry in ten-dimensions. In case of type-ITA
superstring theory left-moving and right-moving spinors have opposite chiralities where as in
type-1IB they have the same chiralities. All these theories are not completely independent of
each other rather related by various dualities such as S-duality, T-duality etc. A brief description
of these dualities is given in the appendix [B]

Based on dualities all the string theories mentioned above have been conjectured to be dif-

ferent limits of a special theory known as M-theory [22]. We don’t know the full definition
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of M-theory yet (there are various proposals like matrix theory, membrane theory etc.). How-
ever, we do know that in the low-energy limit it reduces to 11-dimensional supergravity. The
BPS solutions in this 11-dimensional supergravity are given by M2-brane and MS5-brane which
are of two and five spatial extensions respectively. Upon compactifying one extra dimension
the 11-dimensional supergravity reduces to type-IIA supergravity. Various objects in type-IIA
supergravity can be related to that of M-theory. For example, DO-branes are related to the
Kaluza-Klein (KK) excitations along the compact 11-th direction where as D2-branes of type-
ITA can be mapped to M2-branes wrapped along the compact direction. Similarly, D4-branes
can be obtained from M5-branes by wrapping one of its spatial dimension along the 11-th di-
rection. D6-branes being electromagnetic dual of DO-branes can be identified as KK-monopole
in the 11-dimensional theory. We will discuss on KK-monopoles in Chapter [5| The Es x Ejg
heterotic string theory can also be related to M-theory in eleven-dimensions.

The low-energy effective action for string theories is given by supergravity. In this thesis we
will be discussing only the supergravity limit where we have only massless fields. In particular
we will be working with the bosonic sector of type-IIA and type-1IB supergravity only.

The type-II supergravity action that contains only metric g,,,,, dilaton ¢, one NS-NS 2-form

field B,,, and a set of R-R p + 1-form fields C' (p+1) g given in the string frame by [20]] [21],

1

S, =
o 167TG10

[ dov=a{ B + 1oy - 5By - %Z ()
(1.2.12)
The last expression also contains the Chern-Simons terms. Here p is even with values p =
0, 2,4 for type-IIA and p is odd with values p = 1, 3,5 for type-IIB. This is the low energy
limit of string theory action containing only massless sector of the full theory. This limit also
corresponds to only closed string excitations in the ten-dimensional bulk spacetime.
As mentioned earlier, we can also have open strings in the theory. As compared to closed
strings which have their both ends joined to each other, open strings have their end points free
in the vacuum and any excitation of the open strings would violate the conservation of mo-

mentum. This implies open string end points should lie on some higher dimensional surface.

The end-point of an open string lying on a dynamical hyper-surface satisfies Dirichlet bound-
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ary condition in the directions perpendicular to the surface. Hence these higher dimensional
surfaces are known as D-branes (D stands for Dirichlet) or Dp-branes, p denoting the spatial
dimension of the D-brane. D-branes also appear in bosonic string theory however, only in su-
perstring theories some of the D-branes carry charges and are stable. In another way D-branes
are solitonic (massive) solutions of non-linear supergravity equations, with masses inversely
proportional to coupling, which makes them non-perturbative in nature.

Along with the fundamental branes, the D-branes behave as fundamental objects in non-
perturbative string theory.

In the following sections we are going to give a brief introduction to D-branes and fun-
damental strings as they are the essential tools in the construction of black hole microstates.
We will also discuss how D-branes are related to the correspondence between supergravity on

AdS-space and conformal field theories (CFT) on the boundary of AdS.

1.2.1 D-branes and AdS/CFT duality

D-brane solutions can be seen as a higher-dimensional generalization of the Reissner - Nord-

strom black hole. The extremal RN-black hole metric can be written as
2 2
ds? = — (1 — 9) dt? + (1 — 9) dr? + r2dO2. (1.2.13)
T T

Performing a change of coordinates r — () = R, the event horizon shiftes to R = 0 and we can

write this as

Q\” Q\’
2 _ _x 2 % 2 2 2
ds” = (1 R) dt” + (1 R) (dR* + R=dS¥). (1.2.14)

So if we consider a point sorce, then the function (1 — %) 18 a harmonic function in the trans-

verse space. The first term corresponds to the world-volume of a point particle and the last term
corresponds to metric in the transverse space. The above metric is similar to that of a 0-brane
in string theory.

A Dp-brane is a p-dimensional generalisation of the extremal 0-dimensional RN black hole
solution where p < 10. Similar to the black hole extremality condition, the D-branes saturates

the Bogomol’nyi—Prasad—Sommerfield (BPS) bound and breaks half of the 32 components of
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N = 2 supersymmetry in ten-dimensional type-II supergravity. Compared to the dynamics
of a point particle that is described on a 1-dimensional worldline, the dynamics of a string is
described on the two-dimensional worldsheet. Likewise the world-volume of a Dp-brane is

(p + 1)-dimensional. The corresponding metric can be written as

ds* = H,(r) "y, datde” + H,(r)"?d2'd?’, (1.2.15)
where in the the first term g, v = 0,1,...,p and it corresponds to p + 1-dimensional brane
worldvolume. The dz'dz’ part withi = p+1, ..., 9 corresponds to the transverse space metric.
The functions H,,(r) are harmonic functions in the transverse radial coordinate r* = Z?:p e
and for asymptotically flat spacetime takes the form

L\ "
H,(r) =1+ (—p) : (1.2.16)
T

Just like point particles couple to one-form gauge potential a Dp-brane is electrically cou-
pled to a (p + 1)-form Ramond-Ramond (R-R) gauge potential C*+1) [23]]. Thus the electric
field strength tensor associated to a Dp-brane is a (p + 2)-form F(**2). The factor L,, appear-
ing in the expression (I.2.16) is related to the corresponding charge on the Dp-brane. For N

number of Dp-branes it can be computed from the R-R flux in the transverse space to be
L7P — (47)5—P)/2T —p Na'(7—p)/2 1.2.17
T = (4m) P g, (12.17)

where g, is the string coupling, the Regge slope parameter o/ is the square of the string length

1

[s or can be written in terms of the string tension (T) as o/ = 5.

In case of magnetic coupling a Dp-brane couples to a (7 — p)-form gauge potential or
(8 — p)-form magnetic field strength tensor . This is the gravitational picture of a Dp-
brane. However, there is another description given in terms of open strings. We will see
that the AdS/CFT duality naturally emerge from these two completely different yet equivalent

descriptions of D-branes.
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Two different descriptions of D-branes

One approach is the (a) Closed string or supergravity description. Here the D-branes are soli-
tonic solutions to the low energy string theory action. Supergravity is a good approximation in
the strong coupling regime g, >> 1. This is the geometrical description of D-branes, described
as the curvature of spacetime. The geometry has a near horizon Anti-deSitter (AdS) spacetime
(this is a solution to Einstein gravity with negative cosmological constant i.e. A < 0). The
second picture is (b) brane-picture or open string description. Here D-branes are considered as
higher dimensional objects of the string theory on which open strings end. In this case there
are both open-string and closed-string excitations which are small perturbations around the D-
branes i.e. g; << 1. Open string excitations are the excitations of the brane worldvolume
where as closed string excitations are in the ten-dimensional bulk spacetime. In the low energy
limit these two different kind of excitations decouple from each other. In the low-energy limit,
when we RG-flow to the IR fixed point, the field theory on the D-branes is a conformal field
theory (CFT). In this limit there are no massive excitations in the theory.

According to the AdS/CFT duality these two descriptions of D-branes are equivalent which
is a very strong and non-trivial statement. To have a more clear understanding of the dual
picture of D-branes we consider the simplest example of D3-branes. A good reference on

gauge/gravity duality is [24].

1.2.1.1 D3-branes and AdS;/CFT),

D3-branes are BPS solitonic solutions of type-IIB supergravity with 3-spatial dimensions and
their trajectories in spacetime is given by a 3+1-dimensional worldvolume. Using harmonic

superposition rule we can write the ten-dimensional metric to be of the following form,
ds?y = H™V?(—dt? + dX?) + H'?(dr? + r2dQ?), (1.2.18)

where the (t, X ) part of the metric corresponds to the worldvolume of the D3-branes with
the isometry group SO(3,1). The remaining part of the metric (I.2.18) corresponds to six

transverse spatial directions with isometry SO(6). X, i = 1,2, 3 corresponds to the directions
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along which the D3-brane extends, df2; is the five dimensional transverse sphere with radius r.

The harmonic function H is given by

4

H=1+ (1.2.19)

7‘_47
where L is related to the U(1) charge and tension of the D3-branes. For N-coincident D3-

branes the value of L is

L = (4mg,Na*)V/4, (1.2.20)

r = 0 corresponds to the source or the location of the D3-brane. The associated Ramond-
Ramond field living on the 3+1 dimensional worldvolume of the D3-brane is given by a 4-form
potential C® which gives a five form field strength F(®) = dC®. The electromagnetic dual
[see [B.I]] of a five-form field strength in ten-dimensions is again a five form. Thus the D3-
branes are self-dual. The solution (T.2.T8)) is asymptotically flat which can be seen by taking
the limit » — oo i.e. H ~ 1.

Aswegotosmall rie. r << L, H ~ f—: the metric looks like,

7,2

2 _
dS—L2

. 12
(—dt* + dX?) + —dr® + L?dQ3. (1.2.21)
r
As we can see in the above metric as » — 0 the worldvolume term goes to zero. The radial
term ‘%2 goes as log r which goes to infinity as » — 0. So the D3-brane is infinitely far away.

This is the near-horizon limit of the solution. The metric (I.2.21)) can be reduced into two parts

as follows
ds® = dsigs + L*dQ3, (1.2.22)
where with u = L?/r
2 r? 2 32 .o, L’ 2 =9 2
dsigs = ﬁ(—dt +dX*) + ﬁdr = ﬁ(—dt +dX* + du®), (1.2.23)

is the metric for five dimensional AdS-space i.e. AdS; with radius L. So the near horizon limit

gives AdSs x S°, S° having the constant radius L. Supergravity limit is a good approximation
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when the AdS radius L is much larger than the string length [ i.e. small curvature of the

AdS-spacetime. We can see from the expression for AdS-radius ((1.2.20) that

L
o= (4mg,N )2, (1.2.24)

So L >> [, corresponds to g;/N >> 1. Thus supergravity limit is also the strong coupling limit.
In the supergravity description of D3-branes there are only closed string modes propagating in
the curved spacetime (asymptotically flat) with the F©®) flux through 55 There are no D-
branes or open-string excitations in this picture.

Now coming to the open-string picture, considering N-parallel D3-branes in ten dimen-
sional space-time, the brane worldvolume is along ¢, X!, X2 X?3. Open-strings are small per-
turbations of the D-branes and this picture is reliable for weak string coupling g, << 1. For
N-coincident branes, the effective coupling is gs/N and weak coupling limit corresponds to
gsIN << 1. At low energies, excitations of the D-branes are given by supersymmetric gauge
theories on the brane worldvolume. For open string excitations in the transverse directions,
we get scalar fields on the brane worldvolume. For D3-branes there are six scalar fields, ¢
i =1, ...,6 corresponding to six transverse directions. There is a U (1) gauge group for the open
string excitations parallel to a D-brane. For N-coincident branes the gauge group is U (V). On
the 3+1-dimensional worldvolume of D3-branes we have SU (N )ﬂ super- Yang-Mills gauge the-
ory with A/ = 4 supersymmetry corresponding to 16 unbroken supercharges. In addition there
are closed string excitations in the bulk spacetime, which gets decoupled from the open string
excitations at low energies.

AdS/CFT duality [18] implies that the supergravity theory on AdSs x S° is equivalent to
the N' = 4, SU(N) super-Yang-Mills theory on the 3+1-dimensional brane world-volume. It’s
strong statement, and it has only been proved completely in the large /V-limit, which corre-

sponds to the planar limit. The couplings on both the sides of the theory are related to each

8 Associated to the R-R field C4).
°If we remove one U (1) degrees of freedom corresponding to the collective mode of N-coincident branes.
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other as,

) L\*
Iym = 27Gs, 2\ = ) (1.2.25)

where A = g2, N is the effective coupling in large N-limit, known as the ’t Hooft coupling.

Most of the string theory black holes occurring in the construction of microstates have
a near horizon AdS;-geometry e.g. D1-D5 system has a AdSs-near horizon geometry. So
the matching between the logarithm of the number of microstates (field theory side) and the
Bekenstein-Hawking entropy (gravity side) is a manifestation of the duality between super-
symmetric gauge theory on AdS3 and the CFT on its two-dimensional boundary. We will
discuss about AdS;/CFT; in which is relevant to our future discussions.

We also encounter fundamental strings (also known as F1-strings) in the construction of
black hole microstates. So we should get a brief idea about these fundamental objects in string

theory.

1.2.2 Fundamental strings (F1)

These are the fundamental objects in perturbative string theory i.e. weakly coupled string
theory. Using the harmonic superposition rule the fundamental strings or F1-strings can be
written in terms of the following metri(f_vl
8
d52yying = Hy ' [—=dt® + dy?) + > dada, (1.2.26)
i=1
where the fundamental string is wrapped 7, times around the compact circle S* along y. The

periodicity of y is given by y ~ y + 2nR. x; are the non-compact transverse directions. In

terms of null coordinates u = t + y, v = t — y, the metric (I1.2.26)) looks like

string —

8
A5 ping = —Hy 'dudv + > dw;da;. (1.2.27)
=1

10The subscript ‘string” refers to string frame.
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H, is the harmonic function in the transverse directions given by,

H =1+ — where (@ = n. (1.2.28)
r

Here r = +/x;x' is the transverse radial direction. The metric is associated with the Kalb-

Ramond B-field and the dilaton field given by

By = = (e*® — 1), e’ = H . (1.2.29)

We will use this metric (I.2.26)) while constructing F1-P solution in section[I.4.2.1] These F1-P
solutions are in turn useful for the black hole microstate construction in string theory.
In the following section we are going to give a brief review on the construction of black

holes in the realm of string theory. Some of the good reviews are [25]] [26].

1.3 Black holes in string theory

Construction of black hole microstates in string theory helped in solving black hole entropy
problem as well as information loss paradox. Since superstring theory lives in ten-spacetime
dimensions, and classical black holes are realized in 4-spacetime dimensions, the extra dimen-
sions are preferably compactified in these constructions. These compactifications give rise to

various additional fields in the lower-dimensional theory.

1.3.1 Compactification

String theories live in higher dimensional spacetimes e.g. superstring theory lives in ten space-
time dimensions, where as physical black holes exist in 3+1- dimensional spacetime. So a
natural intuition would be to compactify extra directions into small spaces such as they can-
not be detected in physical experiments. Compactification of higher dimensional theory to
lower dimensions yields a set of scalar fields in the lower dimensional theory along with the
lower dimensional metric and other associated vector fields. This is because of the break-

ing of the higher dimensional symmetry group into lower ones. These scalar fields form the
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moduli space of the lower dimensional theory. The original ideas on compactifications were
proposed by T. Kaluza and O. Klein in 1920 [27]]. To see how this works let’s consider the
ten-dimensional metric g,,, which is given by a 10 x 10 symmetric matrix, with p, v taking
the values 1, v = 0,1,...,9. Suppose we compactify the ninth-direction into a small compact

circle, then we get the following fields in the remaining nine-dimensional theory,

(metric) g;5, 4,7 = 0,1,...,8, (scalar/dilaton) ¢ = ggg, (vector field) A; = gi9.  (1.3.30)

In addition to the metric the associated form fields also reduce to give additional scalar fields
in the lower dimensional theory.

For the case of type-IIB string theory compactified on 7 the moduli space is 25 - dimen-
sional. It is parametrized by ten components of the 4 x 4 part of the full metric, six components
of the 4 x 4 part of the antisymmetric B-field, the dilaton field ¢, one torus direction component
of the 4-form Ramond-Ramond field C¥), six components of the 4 x 4 part of the antisymmetric
2-form R-R field C'® and the 1-component O-form C(%). In the near-horizon limit this moduli
space reduce to 20-dimensional manifold. In the near horizon limit the values of moduli fields
depends only on certain charges irrespective of their asymptotic values, this is known as the

‘attractor mechanism’.

1.3.2 Counting of states

The counting of black hole microstates using system of intersecting strings and branes was
developed independently by Sen and Strominger, Vafa. The counting of microstates was done
for fundamental strings carrying vibrations (F1-P) by A. Sen in 1995 [28|]. Here, the ten-
dimenisional string theory is compactified on S' x K3 to five dimensions (This is dual to
heterotic string theory compactified on five torus 7). Strominger and Vafa did the microstates
counting for D1-D5-P states [29]]. In these analysis the microstates are counted in the weak
string coupling limit, logarithm of which is matched to the Bekenstein-Hawking entropy of the

corresponding black hole that exists in the strong coupling regime. Supersymmetry ensures
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that the number of microstates doesn’t change with the change of couplinﬂ These results
in addition to being useful for solving black hole entropy problem also give strong indications
towards a duality between the supergravity theory on the AdS space which describes the near
horizon geometry of the branes and the boundary CFT.

Then another question arises, how the different microstates appear in the gravitational pic-
ture. In 2001 attempt was made to give the gravitational picture of these microstates [30-32]
by Mathur and Lunin and is still a developing field [33-36]. Some nice reviews on fuzzball
proposal and it’s recent developments are [37-40]].

In the following section there will be a brief review on some important aspects of fuzzball

proposal and some examples of some fuzzball solutions.

1.4 Fuzzball Program

According to ‘no-hair theorems’ after formation of the black hole in 3+1-spacetime dimensions,
it is uniquely defined in terms of the conserved charges(mass M, charge (), angular momentum
J). However string theory is a higher-dimensional theory with higher degrees of freedom and
can effectively describe black hole microstates. The idea is that black holes are solutions to low
energy effective string theory action and they carry only few low energy fields such as metric,
Maxwell fields etc. However fuzzballs are solutions to the whole string theory out of which
a few low energy solutions correspond to black hole microstates. These low energy solutions
doesn’t carry only the fields associated with the black hole but other low energy fields of the
whole theory as well. This makes them different from each other microscopically even if they
describe the same macroscopic black hole. This solves the black hole entropy problem by
providing a correct statistical description.

In the fuzzball program, individual microstates are considered as smooth, horizonless so-
lutions of supergravity known as “fuzzballs”. Here the effects of gravity is considered not just
upto Planck scale but upto the horizon length scale. The blak hole geometry is considered to be
the superposition of ¢° number of smooth, horizonless microstate geometries. Horizons occur

after “coarse graining” over all the microstates of the system. These microstates are also known

"'To be precise, the object that is computed is an ‘index’ which remains invariant under the change of moduli
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as ‘hair’ modes on the black hole. Asymptotically they look like black hole geometries however
the geometries differ at the horizon scale. The gravitational description of all the microstates
for 2-charge D1-DS5 solutions has been obtained by Lunin, Mathur, see [30,41]]. It was possible
because the D1-DS5 solution is related to the F1-P solution by a set of dualities. For the 3-charge
D1-D5-P solutions as much microstates as possible are being constructed. There has been also
construction of non-supersymmetric fuzzball solutions [36].

The following section covers a brief introduction to the D1-D5 solutions and their various

properties.

1.4.1 The D1-DS System

For these two-charge solutions all the fuzzball geometries can be constructed out of F1-P so-
lutions by the use of dualities. The total entropy of the system is in terms of the D1 and D5
charges, (Q; and Q)5 respectively and is given by ~ /Q;Qs. However the entropy of these
solutions doesn’t correspond to that of a macroscopic black hole. An addition of a third charge
i.e. momentum charge (P) gives solutions with the correct value of the Bekenstein-Hawking
entropy.

In the closed string picture, the D1-D35 solutions can be thought of as solutions of type-IIB
supergravity compactified on 7% x S'. We denote the S! direction as y and the torus directions
are given by z,. The system consists of n; numbers of D1-branes, wrapped along S* and n;
numbers of D5-branes, wrapped along T* x S!. x;s with i = 1...4 are the transverse non-
compact directions. The naive geometry of the D1-D5 system can be written using harmonic

superposition rule aﬂ

ds® =

(—dt* + dy?) +\/H1H5de dz; + ,/ Zdzadza (1.4.31)
\/—H1H5

where H; and H5 are Harmonic functions in the transverse space given by,

Hy=1+=% Ql Hy =1+ %. (1.4.32)

12This is the string frame metric.
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with 7% = ZZ x? The integer number of D1, D5, and P branes n1, ns, respectively are related

to the parameters appearing in the metric as follows,

13

(0
Qu="m, Qs = galns (1.433)

where g is string coupling, volume of the torus 7% is (27)?V and in terms of string length I,
o' = [? is the parameter that defines the tension on a fundamental string which is T’ = 1/27¢/.
The metric (T.4.31) is associated with a 3-form field strength F®) and the associated dilaton

field ® is given by,
oM
H;

(1.4.34)
The naive D1-D5 metric has a zero sized horizon at » = 0 thus it gives vanishing Bekenstein-
Hawking entropy. According to fuzzball proposal this metric is a superposition of the actual
D1-D5 microstate geometries of a black hole. These microstate geometries are smooth and

horizonless and can be obtained by a set of duality maps (S and 7" dualities) from the momen-

tum carrying fundamental string (F1-P) solution [see (T.4.33))].

1.4.2 Obtaining the D1-DS metric

By applying a set of S, T dualities (see Appendix [B.2)and[B.3)) we can go from F1-P system In
Type-1IB string theory to D1-D5 system in type-IIB string theory. By this duality transforma-
tions the bound state of a fundamental string wrapped n; times around the y-circle and carrying
ny units of momentum, maps to the bound state of a D1-brane wrapped n; times around the

y-circle and a D5-brane wrapped ns times around 7% x S*. The set of S and T dualities are

given byEL

) P(y) ‘i‘ P(y) ‘%‘ P(y) ‘i P(y) ‘2’31» Fl(y) s, D1(y)
Fl(y) D1(y) D5(yza) NS5(yza) NS5(yza) D5(yza)
(1.4.35)

13The expression inside the bracket ‘()’ indicates the direction along which the respective brane or string is
extended.
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Also by performing duality maps on F1-P solution of heterotic string theory one can obtain
D1-D5 solution of type-IIB on Kéhler manifold K3 [38]. Now we are going to discuss the

geometry of F1-P solution from which the D1-D5 microstate geometries are obtained.

1.4.2.1 F1-P solution

We have already discussed fundamental string solution in section[I.2.2] Now, we are going to
add n,, units of left-moving momentum to the F1-solution along the y-direction. To do so, by

performing a boost along y the metric (1.2.26)) takes the following form,

dS2ying = Hy '[—dt* + dy® + K (dt — dy)?] Z du;da;, (1.4.36)
where the function K is given byﬂ
K = Q—é). (1.4.37)
r
Or in terms of the null-coordinates
8
ds2ying = Hi '[—dudv + Kdv*] + Z dx;dx;. (1.4.38)

=1

This metric (1.4.38) obtained by performing boost on the fundamental string solution has a
horizon at » = 0 with vanishing area. The F1-P microstate geometries are constructed by
Dabholkar and harvey [42]. These Dabholkar-Harvey solutions are singular corresponding
to the location of the string source, » = 0 but they do not have any horizon. Using higher
derivative corrections they can develop horizons. The F1-P solutions are constructed using
Garfinkle-Vachaspati transform [43]] on a fundamental string background (T.2.26). We can

write (1.2.26) in terms of the null coordinates as

8
ds? = —e2®dudy + Z dr;dz;. (1.4.39)

14Q, is related to n,,
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The components of the associated two-form NS-NS field and dilaton field are given by,

L 9 20 Q
By = §<e - 1), e " = 1+ﬁ' (1.4.40)
The metric has translation symmetries along the null directions with the Killing vectors %

and %. Addition of travelling wave deformation to such a geometry can be done by using
the Garfinkle-Vachaspati transformation [43]]. First we shall discuss the basic formalism of the
solution generating technique. More details can be found in section 2.2}

The Garfinkle-Vachaspati transformation (GV) is given by the following deformation of the
metric,

g:w = Guv + es\ljk,ukw (1.4.41)

where g,,,, is the background metric and k,, is the background null Killing vector which is also

hypersurface orthogonal satisfying the following equations
Viuky =k, V8. (1.4.42)

S is the scalar function appearing in (T.4.41). In other words, a vector k* is called a hypersur-
face orthogonal vector when the corresponding co-vector k,, is proportional to V.S for some
scalar function S. The scalar function ¥ in the GV transform (1.4.41) satisfies massless scalar
equation

O = 0, (1.4.43)

with respect to the undeformed metric g,,,,. With the above mentioned features, the GV trans-
form generate a new solution g, to the Einstein equations of motion. We will discuss more on
GV in section 2.2

Now to apply this method to the fundamental string solution (T.4.39)) we consider the null,
Killing vector 8%. Lowering the index we can find the non-vanishing component of the corre-
sponding co-vector to be

1
ky = gouk® == —ée”. (1.4.44)
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Now using the Garfinkle-Vachaspati transform (I.4.41)) we can write the deformed metric as,

Guv - Juv + 6_2¢T,(’U, xi)kukua (1445)

where S = —2®. Substituting for &, (1.4.44) this can be written as

Goo = Guo + € 2T (v, ) k2. (1.4.46)

Thus the transformed metric looks like

8
1
ds® = —e**dudv + T’ (v, xi)zem’dv? + Z dx;dx;, (1.4.47)
i=1
Or we can write
8
ds* = —e*®(dudv — T'(v, 2;)dv?) + Z dr;dz;, (1.4.48)
i=1

where T satisfies wave equation with respect to the background i.e 9*T = ( where partial
derivative is with respect to the 8-transverse directions. The additional dv? term implies we
have a left-moving traveling wave on the fundamental string background. By considering the
killing vector k¥ = 1 we can add right-moving vibrations in a similar way. Since 0°T'(v, ¥) =
0, we can expand 7' in terms of spherical harmonics in the 8-dimensional transverse space.
Keeping only relevant terms that correspond to string sources the function can be written as,

7 p(v)

6

The second term in the above expression is associated with gravitational wave and hence not
attached to the string source. For oscillating string solution, we neglect this term and consider
only the first term. Again as we can see, the first term is linear in x that means it doesn’t go
to zero as * — oo and hence doesn’t correspond to asymptotically flat geometry. However we

can make the final solution (T.4.48) asymptotically flat by performing a set of diffeomorphisms
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which are a bit complicated and are given by

v o= v, (1.4.50)
w = u’_zﬁ.g?wf.“—/ P, (1.4.51)
i = i —F, (1.4.52)

where f(v) = —2F(v). We will see that this F(v) defines the wave profile of the vibrating
string. After performing the diffeomorphism the deformed solution takes the following form in

the new coordinates (v, v, Z')
ds? = —e2du'dv’ — (2* — 1) F2du® +2(e? — V) FdPdv' + di'.d7. (1.4.53)
For convenience we replace (u/, v', ') with (u, v, Z) and write the metric as
ds® = —e*dudv — (2® — 1) F2dv? + 2(¢** — 1) F.dZdv + di.d7. (1.4.54)
The associated field components are given by

By = =(** = 1), By = Fi(e* - 1), e =14 (1.4.55)

1

2 | #— F |6
As we can wee 7 = F gives the location of the string and F(v) i.e Fy(v), Fy(v), F5(v), Fy(v)
describes the transverse oscillation profile of the string. The dilaton field e*®* = 0 on the
7 = F surface. We can make the following identifications of the functions H~!, K and the

components of the one-form A

E, F?
A; = ¢ —, K= ¢ -—, H'=1+ QH : (1.4.56)
| 7= F[° | 7= F'[° | 7= F[°
with which the metric takes the following form
8
ds® = H(—dudv + Kdv® + 2Adz;dv) + Y _ dada;, (1.4.57)

i=1
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with the associated field components given by
: By =Gy = —HA,;, e**=H"" (1.4.58)

This form of the F1-P metric is known as the chiral null model. The functions K and H
are harmonic functions and satisfies the linear wave equation on the 8-dimensional transverse
space. Thus in general we can take a superposition of the functions for different wave profiles
ﬁ(v) of different strings. For m such strings having m different vibration profiles, by taking

the superposition over different harmonics we can write the harmonic functions as

Z QFW - Z |6 — 1+Z e (1.4.59)

m m |$_

To map this solution to D1-D5 frame usually four out of the 8-transverse directions are com-

pactified on a four torus 7. In this case we can write the metric (T.4.57) as

4 4
ds® = H(—dudv + Kdv* + 2A;dx;dv) + Z dx;dx; + Z dzadz,, (1.4.60)

=1 a=1

where 2z, with « = 1,...,4 are the compact torus directions with periodicities z, ~ z, +
27 R,. Thus we can smear the harmonic functions uniformly over the 4-torus 7. Considering

vibrations only in the non-compact directions they can be written as,

2

A; = Z QF”“ > _Z |2 _1+Z — (1.4.61)

m m ‘l'—

The one-form A;, where i = 1,...,4 can be thought of as a U(1) gauge potential with the
corresponding field strength tensor given by F}; = ;4; — 9;A;. Where the functions H !, K,
F; satisfy the following equations, 0°H ' = 0, 9*K = 0, 9*F;; = 0. For a multiwound F1-
string wrapped along y with a large winding number n 5, the strands can be considered as closely

packed. In that case the summation over different strands can be replaced with an integration
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along the length of the string which gives the following form of the harmonic functions

2 L N

T R o Ry (T
]:L’— | & —F Ljy |Z—F|?
(1.4.62)

where L = 27n;R is the total length of the F1-string wound n; times along the y circle with
radius /2. The above configuration gives the level-matched FI1-P solution [31]] in type-1IB
supergravity.

Now performing a series of S and T duality transformations (1.4.33) this solution can be

mapped to the D1-D5 frame where it takes the following form

H . . 1+ K
ds® = | ——=[—(dt — Aydz")* + (dy + Bidz")*] + 1/ Z dzidr; + / H(1 + K)dz,dz,.

1+ K
(1.4.63)
with the associated fields,
B; K
20 _ (14 K c® _ _Di c®_
€ ( + )7 ti 1 +_}( ty 1+ K
= = ——————— 1.4.64
Czy T K ng Cij + 1T K (1.4.64)
where
dB = — x4 dA, dC = — x4 dH . (1.4.65)

Here x, is the duality operation in the 4d-transverse space. To get maximally rotating D1-D5

system we can choose the following vibration profile,
F) = acoswv, Fy = asinwv, F3;=0, F,=0. (1.4.66)

where, )1 = Q5 = Q, a = , w = %LR. After duality transformation this R goes to R’ (in
the D1-D5 frame). Then length of the string encircling S! in the D1-D5 frame is 27 Rns =

2mns

7. We can write the metric (T.4.63) in polar coordinates (, 6, ¢, 1) by using the following
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identification of the 4-dimensional Cartesian coordinates

z1 = Fsin 6 cos (5, Ty = fsinésingﬁ (1.4.67)

T3 = 7 cos 0 cos @/?, x4 = 7 cos 0 sin 12 (1.4.68)

For further simplification we need to apply the following coordinate transformation of (7, #) to

(r,0)

~ 0
F=\/r2 + a? Sin2 07 cosf = reos s (1469)
V12 + a?sin? 6

upon which the functions and components of the 1-form take the following form

_ Q Q a’ Q
H'=1+——% _ =—1+2% K = . 1.4.70
e + a?cos? 6 * I niR"?1r? 4+ a®cos? 0 ( )
For the gauge fields A; we get
A Q (¥ dvF Qa® . ; sin 0 1 (1471)
= —= — = sin 4.
1 L J, | & — F, |2 ns R’ (7“2—|—a2COS29)\/7“2—0—7a2
Q [ dvF, Qa? ~ sin 6 1
Ay = —— —_— = cos ¢ (1.4.72)

L J, ‘f_ﬁn‘2 s R (r2 + a?cos? 0) \/r2 + a2

and A3 = A, = 0. Thus we get the maximally rotating D1-D5 solution from the F1-P solution.

1.4.3 Geometry of the D1-DS solution

Here we consider n; numbers of D1 branes wrapped around S* with radius R,, n; numbers of
D5-branes wrapped around 74(Z%) x S* with volume of the torus given by (27)4V. The brane

numbers n; and nj; are related to the (), (5 charges appearing in the metric as follows

Ql = ny, Q5 = gO.// ns. (1473)
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To see the geometrical properties of the D1-D5 solution let’s consider the general form of

maximally-rotating D1-D5 metric is given by,

1 dr?
2 Loao g9 e 2
ds® = h(dt dy)+hf<7,2+a2 +d0>
+h (12 + Qle};f;OS ) cos? 0y + b (v Ql@;%) sin? § dgs”
2/ 2y [H
_—Q1Q5 a 51n29d¢dt— Q1G5 aCOS29d@ZJ dy + = (dzadzoz)’
h f h f Hj
(1.4.74)
where
V@1 U5 a2 2 2 20 _ 1
a = B f=r"4+a" cos™ 0, e A
Ho =1 Q1 _ Qs —
| = +77 H5_1—|-7, h=+/H; Hs. (1.4.75)

This geometry can be obtained by dualities from F1-P system [see section [[.4.2.T]]. The R-R

two-form field associated with this configuration is given by,

V@Q1Q5 cos® 0 VQ1Qs5 sin” 0

c? = _YEI P T adtAdy — ady N\d
Hy [ v o, f yAd
Q1 Qs cos® 0 2 2
———dtANdy — ——-—(r"+ a° + dp Ndo, 1.4.76
o, Y o, f ( Q1) dyp Ndo ( )

For the extremal case where Q; = ()5 = ( the dilaton vanishes with ¢?*® = 1. The metric
is axi-symmetric along the angular directions?) and ¢.

These geometries represent only a subclass of D1-D5 ground states. We can see that the
metric is asymptotically flat which can be seen by taking r — oo limit. As proposed by Lunin,
Mathur the metric is smooth and horizonless and ends with a smooth cap near » ~ a. The
cap geometries differ from each other for different microstates. The region near » — 0 limit
where the different microstate geometries differ from each other corresponds to the possible
horizon, after summing over all the microstates. The near-horizon geometry of the D1-D5
solution (T.4.74)) is locally AdS5 x S* x T* which is dual to the Ramond sector ground state

|0)r in the CFT picture. I will discuss more on D1-D5 CFT in section The asymptotically
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flat spacetime is connected to the inner cap region of the geometry by a AdS throat given by
a < r < 4/Q and a neck region near r ~ /(). To summarize the D1-D5 geometry can be
divided into two parts, inner part consisting of the “throat+ cap” and the outer part consisting
of the “throat+ neck+ asymptotically flat region”.

In the following sections we are going to discuss the D1-D5 geometry [[31]] in more detail.
Here we will consider the extremal D1-DS5 solution. The analysis is same for non-extremal

solutions as well.

1.4.3.1 OQuter region

In this region we have asymptotically flat spacetime with the neck. This can be obtained by

taking r > a limit.

1.4.3.2 Inner region

The inner region of the geometry consists of the AdS throat and the cap region of the geometry.
This is given by the r < /@ limit. To take this limit we want the asymptotically flat region to
decouple from the inner region. The decoupling limit or the long AdS-throat limit is given by
€= % < 1 or after substituting a it is R% < 1. So the long AdS limit corresponds to taking
large S* radius keeping the D1, D5 charges fixed. Thus the inner region metric is obtained from

by taking both r < /@ as well as € < 1 upon which we get

2 2 2 9 d 2
ds? = —H%(dﬂ — dy?) + Q(d6? + FTGQ) — 2a(cos? Odydy) + sin? Odtdo)
+Q(cos® Odip? + sin® 0d¢?) + dzadz,. (1.4.77)

This geometry is locally AdS3; x S® which has a dual CFT picture which will be discussed
in section The AdS-geometry is more realised in a frame obtained by the following

coordinate transformation

s =1 - L, bws =6, (1.4.78)
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after which the metric looks like

2 2 2 d2
r“+a dt2+r—dy2+Q

ds? = — !
s Q Q r2 + a?

+Q(dO* +cos*0dip g +5in*0dgag) +ds2a. (1.4.79)

As we can see the metric is AdS3; x S® x T, The AdS part is defined in terms of the coordi-
nates (¢, y, r) and the 3-sphere coordinates are given by (0, ¥'n s, ¢ns) both having the common
radius /Q. The coordinate transformation (T.4.78) is kind of a rotation in S®. In the CFT side
this coordinate transformation is known as spectral flow transformation which is discussed in
section [I.4.4] Under odd units of spectral flow transformation the Ramond sector CFT gets

transformed to the NS-sector CFT.

Different regions of the D1-DS geometry

We can summarize different regions of the D1-D5 geometry given by the metric (1.4.74)). These
terms defining different parts of the D1-D5 geometry will be frequently used in our thesis. The

decoupling parameter is defined as

— (1.4.80)

V@

[
Il

Slr

Here, R, is the radius of the y-circle and /@ is the AdS radius. This parameter when becomes
very small € < 1, the geometry develops a long AdS throat which means there can be several
units of AdS radius along the radial length of the throati.e. @ < 7 < /@Q. In the decoupling
limit the outer asymptotic flat spacetime corresponding to r ~ /() can be separated from the
inner “cap (r ~ a) + throat” part of the geometry. Thus for ¢ < 1, the inner region corresponds

@ g
<< 1, (1.4.81)
\% Q

Similarly, the outer region is defined as

e (1.4.82)
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The ‘throat’ region is that part of the geometry where the inner and outer regions overlap. In
the overlapping region

€ =

a a T
ﬁ << {;, ﬁ} <<1 (1.4.83)

The geometry of the cap region depends on the particular CFT state.

144 D1-DS CFT

The D1-D5 solution has a near horizon AdSs x S? x T* geometry [section|1.4.3.2]] which has
a 1+1-dimensional dual CFT. The AdS3/C F'T; duality here plays a very important role for the
identification of black hole microstates with corresponding brane geometries. There is a good

review of D1-D5 CFT in [26]]. The 9+1 dimensional spacetime is compactified as
MY = MM xS x T (1.4.84)

After the compactification the initial isometry group SO(1,9) of the 9+1 dimensional space-
time is broken and now the isometry group is given by the SO(4)g ~ SU(2), x SU(2)r
group corresponding to the spatial directions of M"* and SO(4); group corresponding to
T*-directions. We note that SO(4); is broken due to toroidal compactification of the corre-
sponding directions. Yet they are useful in organizing different states of the CFT. The SO(4)g
corresponds to the R-symmetry group in the dual CFT.

From the brane-picture i.e the open string picture, there can be 3-types of open string exci-
tations. The 1-1 strings which are the strings that start on D1-branes and end on D1-branes, 5-5
strings that start on D5-branes and end on D5-branes. Also there can be 1-5 (5-1) strings that
start on D1-branes (D5-branes) and end on D5-branes (D1-branes). For 1-1 strings we have a
U(n,) gauge theory in the 1+1 dimensional worldvolume. For 5-5 strings, we have a U(n;)
gauge theory on the 5+1-dimensional worldvolume. Open strings with polarizations perpen-
dicular to the brane directions have Dirichlet boundary conditions and they define transverse
excitations of the corresponding D-brane. They give scalars on the worldvolume. In the Higgs
phase the stack of D-branes are considered as coincident without any separation between them

and being BPS saturated they break half of the 32 supercharges of type-IIB. The near horizon
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limit of the supergravity theory in the dual CFT corresponds to the IR limit in which closed
string excitations of the bulk gets decoupled from the open string excitations of the D-branes
and we get 1+1 dimensional N' = (4, 4) superconformal CFT. The A" = (4, 4) superconfor-
mal algebra is generated by the stress energy tensor 7'(z), the SU(2) supersymmetry gener-
ators G%(z) and the SU(2); R-symmetry generators J'(z) along with their anti-holomorphic
counterparts (7(z), G(z), J(2)) for the right-moving sector. For the right-moving sector the
R-symmetry group is SU(2)g.

It has been shown that for the near horizon AdS; geometry of the D1-D5 solution the dual
CFT is a deformation of N = (4, 4) superconformal sigma model with target space (7)" / SV
which corresponds to N = n;ns symmetrized copies of 7% [44-147]. The base space of the
sigma model is given by a cylinder (¢, y), y being the direction along S'. Each copy of the CFT
has a central charge ¢ = 6 corresponding to 4 bosonic and 4 fermionic degrees of freedom,
resulting a total ¢ = 6nins. There is a point in the 20-dimensional near-horizon moduli space
(see section [1.3.1) where the dual CFT is just the N' = (4,4) sigma model CFT with the
orbifold target space (7*)" /S™. This is known as the ‘orbifold point’” and most of the solutions
studied are at this point. The orbifold point is kind of free field theory limit of the full moduli
space. There are 20-marginal deformations in the CFT to deform away from this orbifold point.
The symmetric permutation group S™ gives rise to twisting operations among different copies
of the ¢ = 6 CFT. Use of twist operators for the computation of correlation functions are
discussed in [48.49].

Depending on the periodicity of the fermions along y, we can have the CFT in Neveu-
Schwarz (NS) sector (anti-periodic) or in the Ramond-sector (periodic). In the AdS/CFT dic-
tionary, locally-AdS; geometry corresponds to Ramond-sector ground state |0)g of the dual
CFT. The periodicity of the boundary fermions is a result of periodic fermions in the asymptot-
ically flat bulk spacetime. However, in case of global AdS, the corresponding CFT state is in
the NS-sector with anti-periodic fermions. The NS-sector states are related to R-sector sector

states by spectral flow. Under « units of spectral flow the dimension and R-symmetry charge
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transforms as

Wo=h—aj+a?= =i 14.
047+a24, J =0 e (1.4.85)

Under odd units of spectral flow we can go from NS-sector to R-sector.
These twist operators give rise to NS-sector chiral primaries. The NS-sector vacuum |0)ng

is the simplest state which has no twisting between the copies of the effective string

O)ns : h=h=0,j=m=0,j=m=0 (1.4.86)

The dual geometry is global AdS. Here h is the conformal dimension and (j, m) are the SU(2),
quantum numbers which in the supergravity picture correspond to the rotations under SO(4)g
in the non-compact directions. Next comes the chiral primaries which are defined by quantum
numbers (h, j, h, j) satisfying

h=3j, h=j (1.4.87)

They can be obtained by operating ‘twist operator’ on the NS-sector vacuum |0)ns.

: 51 N/k
The twist operator [0 /

corresponds to N/k-component strings each wound k-times e.g
for k = 2, we have twisting of each pair of component strings which results in N/2 component
strings each wound 2-times.

For su(2)-charges s = § = 21, The chiral primary [0, | N |0)ns is defined by,

. NE-1 - - Nk-1

NS-sector chiral primaries upon odd units aw = (2m + 1) of spectral flow gives Ramond sector
states.

By performing different units of spectral flow on the left sector and right sector we get,

ap=2m+1, ar=1

N

. U (k,m))r (1.4.89)

0)Ns
spectral flow

withn, =h—h = Nm (m+ 1)
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All the CFT microstates may not have classical geometrical analog, whenever we have a
geometrical interpretation they corresponds to smooth, horizonless geometries with zero en-
tropy. The CFT states corresponding to some supersymmetric fuzzball microstate geometries
are already known [33-35]]. For non-supersymmetric fuzzball solution of JMaRT [36] the CFT
dual has been identified in [50].

1.4.5 3-charge solutions

Even though the 2-charge solutions describe black hole microstates effectively, but they do not
give a classical sized horizon for which a third momentum charge is added. The microscopic
counting of 3-charge D1-D5-P solutions has already been done by Strominger and Vafa [29]
and it exactly matches with the Bekenstein-Hawking entropy in the weak coupling limit. The
construction of 3-charge black hole microstate geometries has been carried out by Lunin and
collaborators [41,[51]]. In [41]] the gravity solution is constructed for 1/4-BPS D1-D5 solutions
carrying angular momentum.

However, unlike the 2-charge case where all the microstate geometries are already con-
structed [30, 41]] the geometrical picture of the three charge microstates are still being con-
structed. All the two-charge solutions admit regular geometry [41]. Under dualities the D1, DS
charges and momentum charge P gets interchanged between themselves and they are difficult to
study. To construct these three charge geometries we need to develop new solution generating
techniques. The generalised Garfinkle-Vachaspati transform developed recently [52]] [|53] plays
significant role in constructing new solutions from existing supersymmetric smooth D1-D5-P
solutions. The naive geometry of the D1-D5-P geometry has horizon and singularity but the
actual geometry was found to be smooth and horizonless [54].

There has been construction of three-charge type-1IB supergravity solutions in [54,55]

48



which can be written in terms of the following six-dimensional metric

_ _l 5 Qp _ d?"2 2
ds? = ——(dt® — dy®) + =2 (dt — dy)> + hf +df
h hf r? + (71 +72)%n
Q* (7 —73)n cos*
B () = 2 fe ) cos” v
2(~2 _ A2)p sin2 6\
+ h(r2 4 (1 4+ 7) n + hZ}i = ) sint” 6dg”
2,2
n Qp (1 }‘Lf‘f”ﬁ) n (6082 Odip + sin? 9d¢)2
o 2Q
Wt (71 cos® Odip + 72 sin® §dg) (dt — dy)
- 2Q (72 ; 921 (00? G + sin? 6d) dy, (1.4.90)

The associated two-form field is of the following form

C Qe (yodt + mdy) A dyp — Qsp (mdt + y2dy) A do
Q+J Q+/f
M 2 2.0 @
O+ f (dt + dy) A (cadyp + sydg) O+ 7 fdt A dy
2
- Qfo(r + 721 +72)n + Q)dyY A do. (1.4.91)

These class of D1-D5-P solutions correspond to those Ramond-sector states of the CFT
that can be obtained by 2m + 1 units of spectral flow of the NS-sector chiral primaries. The
3-charge states thus obtained carry an additional spectral flow parameter m that appears in the

metric via the following terms

1
v = —am, Yo =a (m + E) , (1.4.92)

where m takes integer values. More general family of 3-charge solutions are known with
fractionated spectral flow parameter [[36/56/57|] which we won’t discuss in this thesis. However
the analysis in our thesis can be extended to those cases as well. Here k is the winding parameter
that takes values £ = 1,2,...,nyn5. It corresponds to the winding of component strings in the
dual CFT picture (see section [[1.4.4]]). For k = 1 we have singly wound D1-D5-P solution. For

general purpose we take the range m > 0,k > 0 € Z.
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The D1-D5-P solutions carry (); and ()5 charges which are related to the respective winding
parameters by (1.4.73)). In addition there is a third parameter (), which is related to the units of

momentum n, by
920/4

Qp = TRz 2 Ny, (1.4.93)

where n,, ns, n, are integers. (), is related to the spectral flow parameter in the following way

Qp = —172- (1.4.94)

So for m = 0, we get (), = 0 and the three charge solution reduces to two-charge D1-D5

solution. Other parameters appearing in the metric are

=r? in® 0 ), h=149 g9 1.4.95
f=r"+(n+7)n (7 sin6 + 72 cos®0), T 020, ( )
The associated dilaton field @ is given by
H
e = Fl (1.4.96)
5

which vanishes for (Q); = ()5 = @) and for the moduli at infinity chosen appropriately.

1.5 Outline of the Thesis

This thesis is organized as follows. The Chapters [2l4] are based on our work in the two publica-
tions [52//53]]. In Chapter[2]I am going to discuss about the Garfinkle-Vachaspati transform and
it’s generalizations as a solution generating technique in minimal and non-minimal supergrav-
ity theories. Then in Chapter [3]the GGV will be applied to a class of smooth, supersymmetric
D1-D5-P solutions, for minimal supergravity in section [3.2] and involving dilaton field in sec-
tion [3.3] For non-minimal supergravity we will consider the GGV transform of the F1-P state
in section[3.3.2] Chapterf]is based on writing GGV in different M-theory frames. In our thesis
we are mostly considering five-dimensional black hole solutions.

In Chapter[5|we will discuss deformation of KK-monopole geometry. This is an incomplete
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work during my PhD which imply some future directions to our project. In section [5.2.1] we
have attempted to find the general form of the wave deformation on KK-monopole geometry
by solving the scalar wave equation. Also in section [5.3] and section [5.4] we have written the
KK-monopole solution and KK-P solution in the GMR form ( see Appendix [D)) and applied
GGV on such them.
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Chapter 2

Generalised Garfinkle-Vachaspati
Transform (GGV)

2.1 Solution Generating Techniques

In general, the supergravity equations are highly non-linear and solving them is a very difficult
task. Solution generating techniques are useful in the sense that from an existing solution of
the supergravity equations, new solutions can be obtained solving simpler equations for the
original background.

From another point of view, construction of black hole microstates requires the develop-
ment of such solution generating techniques. Especially for the construction of three-charge
microstate geometries [see we need the development and application of such techniques.
There also has been developments involving group theoretic formalisms for generating new
solutions [58]]. Before going to the solution generating techniques developed in this thesis first
we will discuss briefly the general prescription for generation of new solutions.

The key idea of the solution generating techniques [10] is that, for a manifold that admits

two metrics g, and giw, the respective covariant derivatives are related as follows
V;L§V = Vugu - wagm (2.1.1)

where (2 =T"° — T is symmetric in y <> v. It plays the role of a symmetric connection.
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‘We know that the Riemann tensor can be written in terms of the commutator of the covariant
derivatives as,

R, 6 = [V, V], (2.1.2)

Thus for the metric g, we can write

R, & = [V, V] &. (2.1.3)

uvp

Substituting the expressions (2.1.1) and (2.1.2)) in the above expression we can write the Rie-
mann tensor corresponding to both the metrics to be related as

R, =R, — V.00, +V,Q, +Q,00, - QF (2.1.4)

pvp [T 2 S A O

From the above expression contracting  and o we get the transformation of the Ricci tensor to

be of the following form
R, =R — V0 + V, Q% + Q000 — 1,07 (2.1.5)

Then the primed Ricci tensor 17/, along with the metric g;,, solves the corresponding Einstein
equations. For example, using the above transformation rules (2.1.1)-(2.1.5), it can be checked
that the rotating Kerr black hole solution is a solution to the vacuum Einstein equation in addi-
tion to the Minkowski spacetime 7),,,,. The Kerr black hole metric can be written in terms of flat
metric 7, as

G = M + kK. (2.1.6)

where k* is a null vector with respect to the flat spacetime 7,,. ie. n*k,k, = 0. The
expression (2.1.6) is known as the Kerr-Schild form of the metric.

One such widely used solution generating techniques is the Garfinkle-Vachaspati transform
which was developed by D. Garfinkle and T. Vachaspati [43] (GV). Before going to the gen-
eralisation of GV transform, we are going briefly review the important aspects of the original

Garfinkle-Vachaspati transform. In section [2.3]] we will introduce the generalisation proposed
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in [52]] where we have considered the GGV of metric and associated 2-form field. In section
[2.4] we will discuss the GGV of supergravity solutions when there is non-vanishing dilaton

coupling [S3].

2.2 The Garfinkle-Vachaspati Transform

In the original paper [43]] the Garfinkle-Vachaspati transformation (GV) was proposed for
Yang-Mills-Higgs system coupled to gravity in four spacetime dimensions. There, GV was
applied to “non-gravitating string” solutions given in terms of the flat metric 7),;, with associ-

ated scalar field ¢ and gauge field A,. The flat metric transforms under GV as follows
Nab = Mab + Fkakb7 (2.2.7)

where [’ is a scalar function and the vector k£ is a null covariantly constant vector with re-
spect to the background metric 7,,. Also, k% is orthogonal to V,¢ and A,. The solution
after the transformation is given by (74, ¢, A,). It preserves the null Killing symmetry of the
background hence defines a travelling wave deformation on the background. For the case of
gravitating string the flat metric 7, is replaced with g,;. For such backgrounds the null Killing
vector k%, is hypersurface orthogonal but no more covariantly constant. Although these require-
ments look very much non-trivial, still a wide range of gravity solutions are available which
satisfy all these properties e.g. plane waves, fundamental string solution, pp-waves etc.
Formulation of GV transform to generate new solutions of low-energy string theory was
developed in 1992 [59]. The background bosonic fields of the low-energy string theory are
given in terms of the ten-dimensional metric g,, with associated scalar field ¢ and 2-form
potential B,;,. Later, the technique was extended [60] to arbitrary spacetime dimensions D and
generalised to include a set of p-form potentials. To see how the method works we consider
D-dimensional gravity given in terms of the metric g,, coupled to an arbitrary set of scalar

fields ¢, and a set of p-form potentials A(p)ﬂ The theory is defined in terms of the following

'The discussion in this section closely follows as done in [60)].

55



generic action,

167TGD / dDI\/_( - ‘Zh ¢)(Va)® pr p+1)>, (2.2.8)

where G'p is the D-dimensional Newton’s constant and F{,, 1) = d A, are the p + 1-form field
strength tensors. . For the case of D = 10 the above action (2.2.8) defines the generic massless
sector of the full string theory action. Here the matter fields ¢, and F{,, 1) have non-trivial cou-
plings with the dilaton ¢ given in terms of the functions h,(¢) and f,(¢) respectively. These
functions take different values for different string theories and different types of compactifica-

tions. The Einstein equations of motion for the action (2.2.8)) are given by,
1
Rl — 555}% = (87Gp)T!. (2.2.9)
where T* is the mixed energy-momentum tensor which is of the following form,

1
Z ha(¢) (gupap¢aau¢a - §5ﬁ(gp/\ap¢aa/\¢a))

1
T Z Fo(9 ( P+ D [Fpin] P [Fpsvlvpr.pp — 555[F(p+1)}p1mpp+l[F(p+1)]p1..-pp+1)

(2.2.10)

In addition we can have equations of motion for the scalar fields and the (p + 1)-form fields,

0 :all(\/gha( ) NVaV¢a - _\/_Z 8@5 vu¢b M¢a

O fp(¢
——\/_ Z o Foenl”™ " Fpblprpper 2.2.11)
0 =9 (ffp( )[ (1)), (2.2.12)
Now to study GV, let’s consider a solution (g, ¢q, A(p)) that admits a null, hypersurface

orthogonal Killing vector k. As discussed earlier in section|1.4.2.1|the GV transform is given

56



by the following deformation of the metric (T.4.41]y
G = Guv + € Uk,ky, (2.2.13)

where k* is the background null Killing hypersurface orthogonal vector satisfying the condi-

tions
E'E, =0, V,k, +V,k, =0. (2.2.14)

The hypersurface orthogonality condition is already written in (1.4.42). W is the scalar func-
tion satisfying massless scalar equation (1.4.43). Furthermore, it can be checked that k has a
vanishing Lie-derivative on S i.e. £,S = k*0,S = 0. To ensure that the Killing symmetries
of the background solution along the null direction k" is preserved after the GV transform, the

scalar function W has to satisfy the following compatibility condition
EFO, ¥ = 0. (2.2.15)
Also the null Killing vector k* has to satisfy the following conditions

Lyps = Kk'Oup, =0, (2.2.16)

EkF(p—i-l) = (dlk + ikd)F(p_H) = dikF(p+1) =0. (2.2.17)

This is needed for the wave description of the deformed solution. To be precise, these compat-
ibility conditions ensure that after the GV transform the new solution has all the null Killing
symmetries of the background preserved and it has additional momentum corresponding to a
travelling wave on the particular background solution. The matter fields doesn’t change under
GV. So the new metric g,,, along with the background fields give a new solution that describes
a travelling wave on the undeformed background.

This solution generating method can be verified by computing the equations of motion

explicitly. From the computation of the matter-field equations it was found that matter field

2The new metric is said to be in the generalized Kerr-Schild form (2.1.6).
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do not transform under GV. In fact the form of the energy momentum tensor 7* after GV
remains the same as long as a certain transversality condition is satisfied by the p-form fields.
The transversality condition imposed on the p + 1-form field strength tensor is an algebraic

condition which is defined as follows,
ikF(p+1) =kA 6)(p_1) . (2.2.18)

iy, is the interior product and 6,1y is a p — 1-form. Also note that (i) F, (p+1) = 0 implies
ik0p-1) = 0.

In the next section, we will briefly outline the computational techniques to verify GV as
a solution generating technique. Computing the mixed Ricci tensor 2% for the new metric
9,,, We can check that it changes with an additional term proportional to V2¥. Computing
the energy-momentum tensor with the p 4+ 1-form field satisfying the transversality condition
([2:2.18) we found V*¥ = 0 for the transformed fields (g/,,, ¢a, A(p)) to satisfy the Einstein
equations (2.2.9). Solving the wave equation for ¥ we can the generate new solution. The new

solution represents a travelling wave on the initial background.

2.2.1 Verifying Einstein equations

To verify the technique we need to check the validity of the transformed Einstein’s equations

1 1
RF — —0FR = -T". (2.2.19)

2 2
Since the matter fields do not change in this transformation so the right hand side remains the
same as long as the transversality condition (2.2.18)) holds true. The only things remain to
compute are the transformed Ricci tensor and Ricci scalar. Note that the background admits

a null, hypersurface orthogonal Killing vector £* which implies, k* satisfies the following

identities,

Kk, =0, Viuky = ki, V.S, V) = 0. (2.2.20)

58



The hypersurface orthogonality condition (1.4.42) is already discussed in section Now,

for computational purposes we note that the inverse transformed metric is of the following form

g = g — SUEEY . (2.2.21)

In addition S and V satisfies the following compatibility conditions
k*0,S =0, E*0,¥ = 0. (2.2.22)

These conditions ensures that £ is again a Killing symmetry for the transformed solution g,,.
Which implies the deformed solution is a wave deformation on the background geometry.
For a transformation of metric g, — g;“, = uv + hy, the covariant derivatives in the two

frames are related by (see expression (2.1.1))
1 a
2, = 59" (Vohps +Vphug = Vohy,). (2.2.23)

Thus, for the transformation of the metric as in (2.2.13)), we have h,, = es Uk, k, from which

we can compute,

O, = = [V, (e7Uk'k,) + V,(e®VkFk,) — V*(e5 Uk, k,)] . (2.2.24)

N | —

Simplifying the above expression we get,
1
Qr,, = §[k“kjyes(vp\1’) + k'k,e® (V,0) — k ke (VAU) + Uk, k,(VHS)].  (2.2.25)

Now, to verify the Einstein equations we need to compute the transformed Ricci tensor given

in (2.1.5)). First note that in (2.2.25)) by contracting x and v we have

O, = 0. (2.2.26)
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Also, it can be readily checked that
QP 0, =0. (2.2.27)
Thus, the non-vanishing terms in the transformed Ricci tensor are
"\ = Ra + V01, (2.2.28)

To compute the only non-vanishing addition V,§*,, to background Ricci tensor, we take the

covariant derivative of (2.2.25)) which upon simplification yields

V.0, = ~[—kak,e® (V2U) + e Uk k, (V2S)). (2.2.29)

1
2
Substituting the above expression in (2.2.28)) the simplified expression for the transformed Ricci

tensor is given by
/ 1 S (o2 L s 2
v = Faw — 51@/@,,@ (V20) + 3¢ Ukk, (V=S). (2.2.30)

This expression contains both V2¥ and V2S5 terms. Computing the mixed Ricci tensor we can

remove the V2S5 term. To do so we raise one of the indices
1 1
R", = ¢" R\ = R", — SUL'E*R,, — §kﬂkyes(v2xp) + §eS\IJk“kZ,(V2S). (2.2.31)

We need to use the following identity in order to compute the contraction of Ricci tensor with

the Killing vector,
V23S
Ry, =V, V, k" =k, 5 (2.2.32)

It can be checked that the above term exactly cancels out the V2S5 term appearing in (2.2.31))

and we get the final expression for the transformed mixed Ricci tensor to be,

1
R", = RM, — §esk“k,,v2\lf. (2.2.33)
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Hence we get R'*, = R*, by imposing

V32U = [0O¥ = 0. (2.2.34)

As we have mentioned before, the energy-momentum tensor do not transform under GV for
matter fields satisfying the condition (2.2.18)). Thus in order the transform (2.2.13)) to generate
a new solution the only condition is the wave equation (2.2.34) satisfied by W with respect to
the background solution. We also observe that Ricci scalar does not transform under GV 1.e.
R =R.

To check the regularity of the deformed solution we can compute the determinant of the
metric g which is related to I'#,,,, as follows

=

re = /9. (2.2.35)
o \/g \/g

As we have seen 2/, = 0 which implies the determinant of the metric remains unchanged under
this transform. Thus starting from a regular solution, for finite values of ¥ the transformed
solution turns out to be regular.

The compatibility conditions satisfied by the matter fields to make sure that the final solution

is a travelling wave deformation on the background are

Lirpa = Ek'O,¢, =0, (2.2.36)

ﬁkF(p_H) = (d i+ ikd)F(,H_l) = dikF(p_H) =0, (2.2.37)

where L, is defined as £, = d i, + ixd on forms, and 7, denotes the interior product. Also the

p + 1-form field strength satisfies the following Bianchi identities,

dF 1) =0 (2.2.38)

Garfinkle-Vachaspati transformation had been applied successfully in varied contexts in litera-

ture [421|61-64]]. However they require the presence of a null, Killing, hypersurface orthogonal
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vector. The D1-D5 and D1-D5-P systems that are useful in studying black hole microstates do
not admit any such a Killing vectors. Thus we need new solution generating techniques that
can be applied to such solutions. We will see in the following sections how the generalised

Garfinkle-Vachaspati (GGV) turns out to be such a solution generating technique.

2.3 Generalized Garfinkle-Vachaspati transform
(no dilaton)

First we are going to verify the GGV as a solution generating technique for solutions given by
metric g, and a 2-form matter field C,Wﬂ For the simplest case we set other fields to zero [52].
In section we will include dilaton as well.

Lunin, Mathur and Turton (LMT) [33]] conjectured that the traveling wave deformation
of a class of D1-D5-P solutions takes a form which is a variant of the GV transform. They
considered the special class of smooth, supersymmetric D1-D5-P solutions constructed in [54,
55]. These solutions are of the form of minimal six-dimensional supergravity solutions of
GMR [65]] embedded in ten-dimensions. Supersymmetric solutions are easier to study because
the BPS condition ensures that the number of microstates is invariant under the change of
moduli fields one of which is the string coupling. Generally, computation of the number of
microstates is done in the weak coupling regime and matched with the corresponding black
hole entropy that occurs at strong coupling. The AdS/CFT correspondence plays the central
role in all these techniques.

Also the GMR solutions are important for the black hole microstate construction program
as the 2-charge and 3-charge solutions [51] admit this form. For the dilaton free case the six-
dimensional solutions can be trivially lifted to ten-dimensions. By trivial lifting we mean (i) a
four torus is added to the six-dimensional metric part and (ii) the field components remain the
same with vanishing components along the additional torus.

As noticed by LMT, the wave deformation on this class of supersymmetric solutions is of

31t could be any solution with gravity coupled to matter field, not necessarily a supergravity solution.

62



the form of a generalisation of the Garfinkle-Vachaspati transform which can be written as

G = G T2V k), (2.3.39)

C' = Chu— 2 kyly, (2.3.40)

pv

where k* is a null, Killing vector i.e. k satisfies the following conditions

k', = 0, Y,k + Yok, = 0. (2.3.41)

and [ is unit-normalized covariantly constant (which makes it Killing) spacelike vector i.e. it

satisfies

1“1, =1, Vul, = 0. (2.3.42)

Unlike the Garfinkle-Vachaspati transform here k£ need not be hypersurface orthogonal.
Thus GGV is applicable to more wide range of solutions compared to GV. Here [* can be
chosen along any of the torus directions. The presence of this vector in the transformation rules
is an additional requirement of GGV. As in the case of GV the scalar function W satisfies the
wave equation [JU = ( with respect to the background metric. Also, as compared to the case
of GV where only the metric transforms and the matter field remains the same, in GGV the
associated 2-form field C},, also transforms. So far we have only studied the transformation of
2-form fields. For any general p-form field there will be different transformation rule. We have

verified that the transform (2.3.39)—(2.3.40) generates a new solution of type-IIB supergravity

by explicitly computing the Einstein equation (See appendix [C]] ). For the technique to be
applied successfully the background matter fields need to satisfy the following transversality
condition,

K E = —(Vok, — V k), (2.3.43)

The above condition is a differential condition compared to the algebraic transversality con-
dition of GV (2.2.18). To apply GGV, we do not require any supersymmetric analysis of the

solutions involved. Just like the case of GV in case of GGV again the deformed solution de-
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scribes a travelling wave on the corresponding background.
As done for GV in section 2.2.1] we are going to verify GGV as a solution generating
technique. The following section gives a brief outline of the verification of the transformed

Einstein equation and matter field equations. The details can be found in Appendix [[C].

2.3.1 Veriftying The Technique

The computations are a bit lengthy but straight forward. Setting the B-field and the dilaton to
zero, and keeping only the 2-form R-R field i.e. p = 1. the equations of motion for the metric

and the matter field are given by,

1
R, = ZFMUFVA", (2.3.44)

0 = V,Fr (2.3.45)

where F' = dC and F? = FEpoF #Ao — (). These are the ten-dimensional Einstein frame
equations. Now let g,,,,, C,,,, be a solution to these equations. And let the solution admits a null,
Killing vector k* and a spacelike, unit normalised, covariantly constant vector [* orthogonal

to k*. We need to verify that the GGV transform as defined in (2.3.39)—(2.3.40) gives a new

solution to the equations of motion (2.3.44)-(2.3.45)). By explicit computations of the Einstein

equations (2.3.44) it can be shown that the left hand side transform exactly the same way as the

right hand side when W satisfies,

O =0, (2.3.46)

with respect to the background metric g,,, and is compatible with the Killing symmetries, i.e.,
ktV, U = 0 and [*V,¥ = 0. This ensures that after the deformation the Killing symmetries
along k* and [* are preserved hence the deformation is a travelling wave deformation on the
background.

By a lengthy but straight forward computation (see Appendix |C) we note that the left hand
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side i.e. 2, simply transforms as,

(= Ry — LFV, V) + U0k, — L[F(VAV, ) + OOk,

1
+§(vp\1/)(quf)my — WV ,EP)(V k") 5. (2.3.47)

Also, the right hand side of the Einstein equations (2.3.44) transforms exactly in the same way

as long as the transversality condition (2.3.43)) is satisfied which can also be written as,
ir(dC) = —dk. (2.3.48)

By explicit computation of the matter field equation for the 3-form field we can check

that it transforms covariantly i.e.,
V., F'"P =0 = VLF"“’F’ =0. (2.3.49)

For more than one covariantly constant spacelike vectors lé‘a) we can write the GGV in a more

generalised form

G = G+ Y Ve (kull + k1), (2.3.50)
Chw = Cu = Ykl —1k,), (23.51)

where V¥, are scalars on the original background spacetime g,,,, satisfying (,) = 0.

2.3.2 Comparison to Garfinkle-Vachaspati transform

In some ways our solution-generating approach is more restrictive compared to the Garfinkle-
Vachaspati (GV) transformation. As shown in [60], certain algebraic transversality conditions
must be met by the original matter fields for the GV technique to work. As long as those con-
ditions are met, the matter fields do not change. Unlike the GV technique, in our technique
the matter fields do transform. There is no uniform prescription for the transformation of all

matter fields. We need to do a case by case analysis. For the two-form gauge field considered
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in this paper, the transformation is (2.3.40), provided the untransformed 3-form field strength
satisfies the differential transversality condition (2.3.43)). The differential transversality condi-
tion (2.3.43)) is analogous to the transversality condition for the GV technique, though now it is
a differential condition rather than an algebraic condition.

In the following subsection we show that the differential transversality condition (2.3.43) is
satisfied for all supersymmetric solutions written in the GMR form. However, to the best of our
understanding, conditions for having supersymmetric solutions are more extensive than just the
above differential transversality condition. We speculate that our solution-generating technique
finds applications in non-supersymmetric settings as well, provided the differential transversal-
ity condition (2.3.43)) is satisfied, though we do not work out any non-supersymmetric example
in this thesis.

The differential transversality condition is consistent with Einstein equations. To see this,

let’s contract equations (2.3.44)) with the k*k" as:
[IAR% 1 m v Ao
R, k'K = Zk Fiaok"F,™, (2.3.52)

From the fact that £ is a Killing vector, we have the identity

Ok, = — Ry kK. (2.3.53)
From this, it follows that
Ry kM = —k*Dk,y (2.3.54)
= — (VH(EMV, k) — (VRN (V k) (2.3.55)
1
= 3 [(VFEY = VPR*) (Vs — Viak,)] (2.3.56)

where we have used the fact that £ is null and Killing. Equating this with the right hand side

of equation (2.3.52)), we have

kME o k" F) = (VAT — VN (Vaky — Voky), (2.3.57)
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which is the “square” of this differential transversality condition (2.3.43)).

We have also established GGV as a solution generating technique for supergravity solutions
involving dilaton [53|]] which we discuss in the following section. Inclusion of dilaton is a
further generalisation of our solution generating technique. This is because, (i) most of the
interesting and rich examples of D1-D5 geometries involve the dilaton, (ii) the presence of the
dilaton allows one to convolute the GGV technique with S-duality. In the following section
we discuss a generalisation of the generalised Garfinkle-Vachaspati transform with dilaton. As
detailed in appendix [C.2] it is quite non-trivial that the technique finds a generalisation with

dilaton.

2.4 Generalised Garfinkle-Vachaspati transform with dila-
ton

The GGV transform can be established as an effective solution generating technique even be-
yond the minimal supergravity approximation. We consider the case of six-dimensional solu-
tions having a non-trivial dilaton profile. For such cases there are two closely related set-ups
for which this generalisation is developed in this section: (i) ten-dimensional type IIB Ramond-
Ramond (RR) sector with dilaton ® and the two-form RR field C'®, and (ii) ten-dimensional
Neveu-Schwarz (NS-NS) sector with dilaton where we have the NS B-field or Kalb-Ramond
fields B,,,. These two set-ups are related by S-duality (see appendix [B.2). In section we

are going to discuss GGV in R-R sector and in section [2.4.2] NS-sector GGV is explored.

2.4.1 Transform for the type IIB R-R sector

The non-zero dilaton brings in several new elements. From the six-dimensional perspective,
in general, we can no longer truncate to minimal supergravity. The simplest set-up in six
dimensions that allows for the dilaton is minimal supergravity coupled to one self-dual tensor

multiplet. The six-dimensional action is, see, e.g. [66],

1

SG - 167TG6

/ d°z/—g [R — (d¢)? — 11—262¢FW,,F“”” : (2.4.58)
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where F®) = dC?). This is the 6d theory we will work with exclusively. For ten-dimensional
fields we follow Polchinski’s conventions [20,21]]. The ten-dimensional IIB string frame action

with R-R 2-form field is

1
167TG10

1
S = / d"z/—g {6-2@[3 +4(d)*] — 5 Fup | (2.4.59)

where the 10-dimensional Newton’s constant is given by Gjo = 87w%¢2a’, g, is the string
coupling and o = [2, I, being the string length. Here we have set the two-form NS B-field to
zZero.

The embedding of interest of six-dimensional fields in ten-dimensions is
dsig) = dsg + e®dsj, (2.4.60)

where dsfy) is the ten-dimensional string frame metric, dsj = S°1 | dz'd2" is the flat torus met-
ric, ¢ is the six-dimensional dilaton. The ten-dimensional dilaton is same as the six-dimensional
dilaton

D = ¢, (2.4.61)

and the ten-dimensional 2-form R-R field is also same as the six-dimensional 2-form field with
zero components in the four torus directions.

The spacelike Killing vectors provided by the torus directions,
iy = lg;)a# = 0,1, (2.4.62)

are normalised as ("], = e®. These vectors are not covariantly constant, unlike in the analysis
of embedding of minimal supergravity as in section Let £* be a null Killing vector of
the six-dimensional metric ds2, with the property that the dilaton is compatible with the null
Killing symmetryiz_f]

k*0,¢ = 0. (2.4.63)

#To avoid notational clutter we have not introduced separate indices that range over six-dimensional spacetime.
Most of the equations we write are in ten-dimensions. It should be clear from the context when the indices run
over six dimensions.
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The generalised Garfinkle-Vachaspati transform takes the following form in the ten dimen-

sional string frame

G = G + Ve (kul, + k1), (2.4.64)

C — C—Ve 2k, — k). (2.4.65)

It is a valid solution generating technique provided

k" urp — _d(6_¢k>upa (2466)

is satisfied by the background solution. We refer to this condition as the transversality condi-

tion. The scalar W should satisfy the following wave equation on the background spacetime,

0% — 2(9,¢)g" (,V) = 0. (2.4.67)

This equation can equivalently be written as

V,.(e72g"'V,¥) = 0. (2.4.68)

In addition we also require that the scalar ¥ is compatible with the Killing symmetries, i.e.,

k49,0 = 0, 119,V = 0. (2.4.69)

To establish the above statements we present a detailed calculation in appendix [C.2] There
are two main steps involved in this computation. First, we do a conformal transformation such
that the spacelike Killing vector [* becomes covariantly constant. Once this is achieved, we
adapt technology from the previous section [2.3[to find the transformations of the left and right
hand sides of the IIB equations of motion. We show that provided the transversality condition
(2.4.66) and the wave equation (2.4.68) are satisfied, all ten-dimensional equations transform

covariantly. Hence, we show the generalised Garfinkle-Vachaspati transform (2.4.64)—(2.4.65))

is a valid solution generating technique with dilaton. We have also checked these computa-
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tions independently using Cadabra [67,68|]. For the embedding (2.4.60), the ten-dimensional

Einstein frame metric takes the form,
ds(y = e~ *Pdsg + ¢?*ds]. (2.4.70)

One can write the corresponding GGV in Einstein frame. Since for applications to the D1-

D5 systems in Chapter [3] we only work with string frame metric, we relegate these details to

appendix [C.2.4]

2.4.2 Transform for the NS-NS sector

In our conventions the ten-dimensional NS-NS sector string frame action is,

B 1
N 167TG10

1
S / Vge {R +4dD)" — G Hu, 17 (2.4.71)

where H = dB. The embedding of interest of six-dimensional theory (2.4.58)) in the ten-

dimensional NS-NS sector string frame is,
ds?s) = e %dsi + ds3, (2.4.72)

with ten-dimensional dilaton

= —¢. (2.4.73)

The six-dimensional 2-form field is now the 2-form B-field with zero components in the four

torus directions. In Einstein frame this embedding reads
ds(py = e~ dsls) = ¢”Pdsly) = e*2dsg + *ds}. (2.4.74)

Note that this metric is same as (2.4.70). In fact, the two embeddings are related by S-duality.

S-duality relates the RR sector of I1IB supergravity to the NS-NS sector. The S-duality transfor-
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mation in Einstein frame is

g® s g® O —0, Cyo = B (2.4.75)

U2

The equivalence of (2.4.74) and (2.4.70) is the reflection of the fact that the Einstein frame

metric does not change under S-duality. We can adapt the GGV from the RR sector to the NS-
NS sector, for details see appendix [C.2.4] In string frame the generalised Garfinkle-Vachaspati

transform takes the form,

9w — G +Y(kul, + k1), (2.4.76)

By, — By — Y(kul, — k1), (2.4.77)

The transversality condition reads,

kK'H,,, = —(dk),,, (2.4.78)

and the scalar wave equation for the field ¥ reads,

V(e g™V, 0) = 0. (2.4.79)

Thus we have established GGV as an effective solution generating technique both for solu-
tions with vanishing dilaton and non-zero trivial.

In the following Chapter we give explicit examples of applications of this technique. We
add travelling wave deformations on multi-wound round supertubes and on a class of D1-D5-P
backgrounds, generalising examples considered in [33]]. We pick these examples as their dual
CFT interpretations are well understood. We also present CFT interpretation of the deformed

solutions.
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Chapter 3

GGYV on supersymmetric solutions

In the previous Chapter we studied the basic formalism of GGV for both the case of solution
involving dilaton and for vanishing dilaton. To summarize, the only conditions on a solution
for the succesful application of GGV are (1) the presence of a null, Killing vector (2) at least
one spacelike covariantly constant vector (3) fulfilment of the transversality condition.

In this Chapter we will study some such examples appearing in the context of black hole
microstates. Especially we observed that the six-dimensional supersymmetric solutions of the
Gutowski, Martelli and Reall (GMR) [65] when embedded in ten-dimensional supergravity,
satisfy all the above mentioned criteria and are good candidates for the implementation of
GGV. Also, in section [3.3] we will apply GGV to non-minimal six-dimensional supergravity
solutions which can be written in the form of a so called generalised GMR. For these solutions
the dilaton field is non-zero and GGV on them has been already studied in section 2.4, We will
also apply the NS-NS sector GGV discussed in section [2.4.2]to F1-P solutions.

Before applying GGV the following section involves a brief introduction to the classifica-

tion of general supersymmetric solutions in different spacetime dimensions.

3.1 Classification of Supersymmetric solutions

The advancement of general formalisms [65,/69-73] for the classification of supersymmetric
solutions is of considerable importance for the construction of black hole microstates. These

formalisms are based on the use of Killing spinor techniques that involves the construction
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of bosonic objects out of Killing spinors. A set of bosonic equations are the necessary and
sufficient conditions for the solution to be supersymmetric. These classification schemes have
been carried out in 4D [69], for minimal N=2 theory, in 5D [[70-73]]. In 6D the classification
was carried out by Gutowski, Martelli and Reall (GMR) [65]]. The GMR solution has been used
extensively in this thesis.

The six-dimensional GMR solutions are written in terms of a 2D fibre over a 4D almost
hyper-Kéhler base. For such solutions the 6D supergravity equations are reducible to 4D base
space equations which are easier to handle (for details see Appendix[[D.I]]). These six dimen-
sional solutions always admit a null Killing vector. In addition, they can always be trivially
lifted to type-IIB supergravity solutions by the addition of four torus 7 directions. The torus
directions provide covariantly constant spacelike vectors. This makes GMR solutions the per-
fect candidates for the application of GGV. It was also shown in [33]] that the class of super-
symmetric D1-D5-P solutions studied in [54}55]] are trivial lifting of six-dimensional solutions
of the form of GMR. In the following section we are going to discuss the deformation of this

class of solutions.

3.2 Minimal six dimensional supergravity

For the minimal supergravity the dilaton field is zero. The metric has an associated two-form
matter field. Thus the bosonic field content of the theory is given by graviton g,,, 2-form
Ramond-Ramond field C® with self-dual field strength F'® = dC®). The field equations
satisfied these fields were already mentioned in the previous Chapter (2.3.44)(2.3.45).

We can trivially lift the six-dimensional solutions to ten dimensions, as follows [33,/65]
2 -1 F m j,.n
ds® = —H Y(dv + f) (du +w+S(dv+ 6)) + Hhpodz™da™ + dzidz. (3.2.1)
The six-dimensional metric and hence the ten-dimensional metric admits a null, Killing vector

k= —, (3.2.2)
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The ten-dimensional dilaton is also zero. Now, to perform GGV, we can pick any one of the
torus directions to get a spacelike covariantly constant (Killing) vector. In general we can add
deformations corresponding to all the four torus directions. For simplicity of the analysis we

skip it for the time being and pick, say,

[ =—. (3.2.3)

In addition, as discussed earlier, the background matter field needs to satisfy the transversality
condition (2.3.43)) for the application of the generalized GV sucsessfully. For GMR solutions
this condition is automatically imposed by the Killing spinor equations [33] [65]. We can also

explicitly verify this. To do so let’s consider k*F),,,

K'Fupy = Fu,p (3.2.4)
= 0uCop + 0,Cu + 8,Cp, (3.2.5)
= —(8,Cup — 0,C0). (3.2.6)

We see that the differential transversality condition is equivalent to showing C,,, = k,, upto
possible gauge transformations. For GMR solutions we see that indeed it is the case (see

appendix since

v 1 v

3.2.1 Deformation of a class of D1-D5-P backgrounds

In this section we present explicit examples of our general construction. We consider two
classes of examples: first the multi-wound D1-D5 round supertubes and secondly a class of
D1-D5-P backgrounds. Throughout this section, ()1 = ()5 = ) which corresponds to setting
dilaton to zero. Some important identifications of the brane charges and the compact torus

volume are as follows,

3
Oy = %m, Qs = gans,  (20)*'V = vol(T?). (3.2.8)
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Multi-wound D1-DS5 round supertubes were constructed in [[74,[75]]. This family is parametrised

by an integer k via,

N k=1,2...,N, N = nins. (3.2.9)

The case k = 1 corresponds to singly wound D1-D5 supertube. This configuration is dual to
the Ramond vaccum |0)y of the D1-D5 CFT. The k£ # 1 members of the family are obtained
by acting with certain twist operator such that the resulting states have N/k component strings

[30]. For k # 1 the geometries have conical singularities. The metric takes the form,

dsy = —l(dtQ —dy®) + hf _dr + df?
0 h 2 4 a?~?
2.2 02 o5 f)
+ h(r2 + Cw}%—f;%) cos? Odyp?
2.2 02 gin2
+ h<r2 + a’y? — %) sin? §dg?
2
— %ﬁ(cosz 0 dy dip + sin® 0 dt do) + dzdz;, (3.2.10)
and the two-form field takes the form,
Q Qary cos?
Y == oo ==l
YQ+f w Q+f
.9 2.2 52 2
0 Qarysin” 0 0 9 Qa*v* sin” 6 cos” 0
Oyd):_Q——l—f’ O@Z) :QCOS 9+ Q+f s (3211)
where
.2 2.2 2 _ Q
f=r°+a"vy*cos*0, h—1+?. (3.2.12)

The y coordinate is periodic with periodicity 27 RR,, and the parameter a is related to the size
R, of the y-circle as,

a=-< (3.2.13)

In the large R, limit, the above geometry has a long AdS; x S® x T* throat. The throat

together with the cap region is described by the metric obtained by focusing on the region
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of the spacetime with r < /@Q. In this limit the metric becomes locally AdS; x S3 with a
Zy, orbifold at r = 0, 6 = 7 which we can see as follows. The decoupled metric takes the

following form,

f dr? .
dsi = —é(alt2 —dy?) +Q m +dh* ) + Q cos? 0dy* + Q sin® Odp?
—2ay(cos? O dy dip + sin? 0 dt dp) + dz'd=", (3.2.14)

where the periodicity of y, v, ¢ are given by,
y—=y+2rRy, Y —=>vY+2r, ¢—o+2rm (3.2.15)
We can diagonalize the above metric by performing the following coordinate transformations,
i=2, g:%y, F=—\ 0=0, d=¢—§ o=¢—1 (3.2.16)

Then the diagonal form of the metric which is locally AdSs; x S is given by,

dr? - . -
dsg = —Q(7F + 1) + QFdiy* + Q <~2 i T+ d92) + Qcos*0dip? + Qsin*0de?, (3.2.17)
T
with the following identifications,
{g—>gj+27w,zﬂ—>zﬂ—27w}, b= G+, b d+om (3.2.18)

Now at (r = 0, 0 = 7) which implies f = 0, the 3 circle and ¢ circle shrinks to zero. This
corresponds a conical defect. But these kind of singularities are allowed in string theory and
we won’t be concerned about it.

Linear deformation of the type obtained via our Garfinkle-Vachaspati transform on this
solution were studied in [35]]. We proceed by writing the linear perturbation from reference [35]

in a suggestive form. We will then see that the deformation is valid non-linearly. To begin with,

77



let us start by writing the background solution in GMR form (3.2.1):

1

dsj = - [du + A] [dv + B] + hds?,. + dzdz;, (3.2.19)
1 2 2.2
Co = oy ldv+B]Aldu+ A+ Q% 2 dp A di, (3.2.20)
with
2 . f 2 2 2 2 2 2 2 2\ .2 2
dShase = mdr +d0® + rPcydi® + (r* + a®y?)spde?, (3.2.21)
and one-forms
A = % s2de — cadi), (3.2.22)
B = # spde + cpdip}, (3.2.23)

where ¢y = cos and sg = sin 6.

The linear perturbation in reference [35]] was constructed with the gauge choice

hyz + (C = Co)pz = 0, (3.2.24)

where z is one of the four-torus coordinates. The explicit form of the solution with added linear

perturbation is
nk

2 2
2 ) 7in% r
ds® = dSO +2¢€e Ry (m) K dZ, (3225)
nk
—in- 7’2 E
C = 00 +ee Ry (m) dz N K, (3226)
where
Q 2 2 iayQ
K= m [d’l) - (I’V(C@d’@b + Sngﬁ)} + mdr (3227)

We can simplify this form of the solution by adding a pure-gauge piece. We start by observing

that K defined in (3.2.27)) can also be written as

K:—Qi[dv%—B]—l—dv%-

iayQ
dr.
Iy "

_— 3.2.28
r(r? + a?v?) ( )
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Contribution to C, cf. (3.2.26), from the last two terms of K in the form of equation ([3.2.28))

can be identified as a complete differential

nk

in r? El iayQ
Ry | ———— d — = dr| =d¥ 3.2.29
’ (7"2 + a%?) [ U a2 T] ’ (3229
where
R, _inw r? £
v S () (3.2.30)
n r2 + a’v?

As a result we can gauge away these pieces. Specifically, consider the following diffeomor-

phism and the gauge transformation,

& = -V, (3.2.31)
A = Vdz. (3.2.32)
Thus, the new metric
9" = Guw eV, (3.2.33)
takes the following form
dste, = ghvdatda” (3.2.34)

nk

2 2
2 —in-Y- r f

and the associated two-form field is now

Chew = CHedA (3.2.36)

nk

_ gy (NP
= Cy+ee (r2+a272> {Q+f[dv+B]}Adz. (3.2.37)

The configuration (3.2.35) and (3.2.37) is a generalised Garfinkle-Vachaspati transform of

background (3.2.19)—(3.2.20). It is a non-linear solution of ten-dimensional IIB supergrav-

ity. Therefore, from now onwards we set e = 1. Realising that QLH is simply % we observe that
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the above solution is compatible with the form (3.2.19), provided we shift the one-form du as

du — du+Vdz, (3.2.38)

nk

7"2 2 _in

The scalar field ¥ satisfies (Jo¥ = 0 with respect to the background metric ds3. This de-

formation is therefore of the form of GGV (2.3.39)-(2.3.40). We can generalise the above

deformation further. Instead of working with the specific solution (3.2.39), we can consider
the most general u-independent solution of the wave equation [l = 0 that remains finite

everywhere. Such a solution can be written as a superposition

~ ) Inlk

T 2 —in-
U — Z Cn (m) e "Ry (3.2.40)

n=—0oo

The requirement that ¥ be real fixes (c,)* = c_,.

After exploring GGV for the two-charge multiwound D1-DS5 solutions we can discuss more
general three-charge solutions. We have already given a brief introduction to three-charge
microstate geometries (see section[[.4.5). There we discussed the general class of multiwound
supersymmetric D1-D5-P solutions constructed in [54,)55]. These family of solutions can be

written in the GMR form (3.2.1) by identifying the quantities H, F, /3, w as [76],

H = h, (3.2.41)
_ 26y 3.2.42
o (3.2.42)
g = % Y1 4 72) 1 (cos? @ dip + sin® 6 d¢), (3.2.43)
w = % [(2% — (i +)n (1 - 2%)) cos” 0 dy
Qp :
+(222 = (n+2)m (1- 27)) sin?0.dg), (3.2.44)
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and the base metric h,,,, given as,

dr?
r?+(m+72)%n

1 .
T3 [[T“ + 72 (1 +72) 1 21 — (11— 72) c08” 0) + (1 4+ 72)* i n° sin® 6] cos® 0 dip?

dst,. = hpndz™da" = f( + d92)

Hrt % (11 +92) 1 (272 + (11— 72) sin® 0) + (11 +92)? 92 n” cos” 0] sin” 0 dg”

—2v179s (71 4+ 72)? n? sin” § cos® 6 dwdgb} . (3.2.45)

On this rather complicated configuration one can add a general deformation as,

du — du+ V;dz, (3.2.46)
; T —in =
v,o= Y d - - ¢y (3.2.47)
—— 72 (1+%m (m—l—%)) + %

As we know here the index ¢ refers to the four-torus directions. One can easily check that
LW; = 0 with respect to the background metric (1.4.90). Note that when m = 0, scalar
reduces to deformation scalar (3.2.40); when & = 1 it reduces to the deformation

considered in section 5 of [33]]. The deformed two-form field is,

C = —%[du +Widz) Adv+ —(%};”) ( Qp — 9) [du+ U; dz) A (Gdip + s2dop)
— %(’72 v )dv A (cgd@/z - 39 do)
%%(T +72(71 + )0 + Q)d A dg. (3.2.48)

The deformed solution has flat asymptotics, however it is not manifest in the above coordinates.
In the next section we find a set of coordinates that makes the asymptotic flatness of the solution
manifest and read off the charges of the solution. In the following section we identify the CFT

states dual to the deformed spacetimes.
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3.2.2 Global properties and smoothness of deformed spacetimes

In this section we present a discussion on asymptotics, ADM charges, smoothness and some
other global properties and of the deformed spacetime. The following discussion is a generali-
sation of the corresponding discussion in [33]] of D1-D5-P geometries with £ = 1 to D1-D5-P
orbifolds parametrised by integer £ # 1. We write out calculations where our analysis offers a
simplification, or a different perspective, or fixes typos/errors over the corresponding discussion

in that reference.

3.2.2.1 Asymptotics

To find the map between the deformed spacetime and the CFT states, we need to evaluate
charges of the deformed spacetime. We first evaluate the charges in the asymptotically flat
setting, and in the next section in the AdS3 x 5% x T* setting. We assume that ¢; = 0 in
(3:2.47). A constant term in ¥ can be removed by shifting the u-coordinate. However, since y
and z; are periodic coordinates, such a shift does have an effect on the global properties of the
solution. For simplicity we do not analyse the constant terms in W; here, and assume they are

set to zero. At infinity metric of the deformed spacetime takes the form

ds® = — [du + fi(v)dz] dv + dr® + r2dQ; + dzdz;, (3.2.49)
where
20> 1 -
fi(v) = lim ¥;(r,v) = Z c (1 +—m (m + —)) e "Ry, (3.2.50)
r—00 e Q k

The diffeomorphism that puts the metric (3.2.49) in a standard asymptotically flat form and has

the property that the new time-coordinate is single valued is:

2 /o
0
o = % (3.2.53)
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with the value of \ is fixed by the requirement that the new time coordinate ¢’ = (v + v') isa

single valued function under y ~ y + 2w R,,. This is achieved as follows:

™

1 t—2m Ry R
t'(y=2mR,) —t'(y=0) = A [ﬂRer g/ fi(ﬁ)f,-(é)dﬁ] -t (3254
t

17 X [

2T Ry
— 7R, {A—l] —% /0 L) (DD, (3.2.56)

where in going from the first step to the second we have used the fact that since f;(0) are
periodic functions in o ~ © — 27 R,, the limit of integration (¢, — 27 R,) can be changed
to (0, —27R,). In going from the second step to the third step, we have once again used the
periodic property of the functions f;(?) and converted the limit of integration to (0,27 R,).

This fixes the value of A to be:

_2 1 2Ry ~ o
Ao [1— = /0 £(0) fi(v)dv} (3.2.57)

This expression differs from the one written in equation (4.12) of [33]; also the value of the
function f;(v) in (3.2.50) is different from equation (6.2) of [33] when £ = 1.
In new coordinates, the asymptotic metric (3.2.49)) is

ds® = —(dt')? + (dy)?* + dr® + r?d3 + dzjdz,. (3.2.58)

The z. coordinates have the same periodicity as the z; coordinates. The periodicity of the y’

coordinate is

, , 1 t—2mRy B o 7TRy
y(y=27R,) —y(y=0) = \|7mR,+ g/ fi(0) fi(0)do| + 3 (3.2.59)

1 t A —2m Ry
1 A 027rRy

= 7R, |:>\ + X} - g/ fi(0) fi(0)do (3.2.61)

0
_ 27R,
= (3.2.62)
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This implies that the deformed solution has asymptotic radius ¢ ~ 3 + 27 R, with

R=—. (3.2.63)

The picture is as follows: deformations of a given state are constructed by introducing
functions V;, while keeping n1, ns, m, k and asymptotic radius R fixed. In order to work with

radius 2 (as opposed to [2,) we introduce

and we also note that

ANP=1—- — hi(0)hi (9")dD'. (3.2.65)

3.2.2.2 ADM Charges

Now that we know the coordinate transformations that bring the metric in the standard flat form

asymptotically, we can work out the charges. We extend the diffeomorphism (3.2.51)—(3.2.53)

to finite radial coordinates as:

1 v
2 0
1 v
W= )\{u—l—z / \Ili(ﬁ)klli(ﬁ)dﬁ}, (3.2.67)
0
’ (%
= —. 3.2.68
v 3 ( )
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This choice simplifies the extraction of charges. At large values of r we ﬁn(ﬂ

1 1
gy = —1+ = (Q +22Q, + Z—L)?thhi) +... (3.2.69)
A2 1
gry = =5 Q, + Zthhi + ... (3.2.70)
1 2 1 2
A
sy = —th T (3.2.72)
)\Q Y1+ 2 1 1
AQ Y+ 72 1 1

From these components we can extract the charges. The ADM momenta of the solution are

given by
27R
P = - dy 12 8gy, = 0 (3.2.75)
A 4GN 0 t'z; ) s
2R )\2 1 2R
P, = - dy 12 5gy, = 2R Q, + —Q/ hihidy' ) | (3.2.76)
v 4GN 0 Y 4GN b 4: 0 v ’ o
where we have used the fact that ¢ = 0 and where Gy = ”2;‘?92 is the six-dimensional
Newton’s constant. The ADM mass is [77]
T 2R
M = —— / dy r° (36gue — 8Gyry) (3.2.77)
8GN
A2 1 2R
= —(2Q)2mR)+ — | 27R — hihsdy' 3.2.78
= 2Q)(2rR) + By 3.2.79
1o 2Q)(2nR) + (3279

Not surprisingly, the BPS bound is saturated; addition of momentum shifts the mass by P, .

Using (3.2.8) can rewrite the ADM momentum P,/ as

1 1 2R
Py =0 o (et )+t [ an] (3280)

'In the following equations, we only write components of the metric that are relevant for the computation of
the gravitational charges. The are other components with %2 terms.
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To extract angular momenta, we use

27R

i 091
Jy = ——r— dy 1 3.2.81
¢ 8GN 0 r SiIl2 97 ( )
T 27R 59 ,
= —— dy r? =2 2.82
o 8GnN Jo yr cos? 6 (3.2.82)
A simple calculation then gives,
™Q [T, N+ 1 1
W)\Q nins 1
= 2rR) = — 3.2.84

where we have used expression for A= (3.2.63)) in going from the first to the second step.

Similarly, we have

TAQ
8GN

nins

Jyp =

n(2rR) = —

(3.2.85)

To summarise, the deformed state saturates the BPS bound and has charges

1 1 2R 1
Py, = —m];:g) {m (m + —) + 2_/0 dy,hihi:| . e = s (m + _) , (3.2.86)

2 k

P =0, Jy = —"12"5m. (3.2.87)

3.2.2.3 Smoothness of the deformed solution

Remarkably, the determinant of metric of the deformed solution gets no contribution from the
scalars W;:

1
det g = 1 cos® Osin? Oh? f2. (3.2.88)

Therefore, as long as W, remain finite, the potential singularities can only occur at places where
the background geometry can become singular. The vicinity of these potentially dangerous
points is analysed in [55]] for the undeformed solution. The analysis of that reference applies
almost verbatim to our case together with the fact that the scalars remain finite every-

where.
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This is perfectly in agreement with the conjecture of reference [33] which states that any
regular solution of the D1-D5 system can be deformed into a regular solution via the GGV
transform provided, (i) V; satisfies JU; = 0, (ii)) ¥, remains finite everywhere, (iii) ¥; ap-
proaches a regular function f;(v) as 7 — oo on the four-dimensional base space. Clearly all

these conditions are met for the specific class of D1-D5-P solutions studied in this thesis.

3.2.3 Decoupling Limit and Identifying CFT states

To map the deformed geometries into states in the dual CFT, we need to evaluate charges in
the AdS region rather than the asymptotically flat region. Such a computation is possible only
when the deformed geometry has a large AdS region; and a decoupling limit can be taken. The

geometry develops a large AdS region when we take

€

a?
— <L (3.2.89)
Q

To take the decoupling limit we must take ¢ — 0 while keeping the AdS radius /() fixed. The
relation (3.2.13)) implies that the size of the y-circle R, should go to infinity. We introduce

(3.2.90)

u =

<l
Il

=i
Il
|

u
R,’ R,’

and take the limit 2, — oo.

Without the deformation (i.e., with ¥; = 0) the decoupling limit gives

1 dr?
ds* = Q {—#dad@ — Z(da + dv)? + . ]

724 k2

2 2
+Q |[dO* + ¢ <d¢—%(da—d@)+md@) + 55 (dgb—%(daer@)—mdﬁ)]

+ dzdz; . (3.2.91)

To understand the decoupling limit while the scalars W, are turned on, we start by noting
that in order to maintain ADM momentum (3.2.86) finite at R, — oo, in addition to the scal-

ing (3.2.90) of the coordinates we must scale the scalars W; as well. The appropriate scaling is
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given by

v— g, V9, (3.2.92)
V@ R,
With this, terms of the form
[du + W;dz], (3.2.93)
behave as
du + V,dz; = R, du + g W, dz;, (3.2.94)

Y

which in the decoupling limit /2, — oo simply becomes
R, du. (3.2.95)

Thus it seems that in the decoupling limit all ¥; terms scale out, and we once again we get the
decoupled metric (3.2.91). However, there is one subtlety. As we saw in the previous section
to get a manifestly asymptotically flat deformed metric we should use the 2/, ¢, y’ coordinates
instead of z;, t, y so that we can connect the decoupled region to the asymptotically flat region.
We will see that through this change of coordinates the scalars reappear. In order to implement

these coordinate transformations, we first observe that in the decoupling limit A from equation

(3.2.57) simplifies to unity,

1 1 2tRy B
Yy ] Y
_ (3.2.96)

Since \ scales to unity, the transformations (3.2.66)—(3.2.68) simplify to

1 P o
4:%_§¢§/§m@, u' = u, v =w. (3.2.97)
0
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As a result, in primed coordinates the decoupled metric is

1 =2
ds* = Q {—T2dudv - (du+ dv)? + ar }

72 4 k2

+Q

1 2 1 2
do* + c; <d¢ — %(da — dv) + mdv) + 55 (d¢ — ﬁ(ola + dv) — mdv) ]
1 - 2
+ <dzg + 5\/@%@) . (3.2.98)

We can now read off the charges. We find

nins ]_ ]_ 2 == nins 1
Pl = — — —_— - T = — 2.
i I {m <m+k) +87r/0 dyfzfz} , Jo 5 (m+k), (3.2.99)
P =0, Jy = —=5m. (3.2.100)

These charges agree with (3.2.86)—(3.2.87) in the R, — oo limit.

3.2.3.1 Deformed states in the D1-D5 CFT

The expression for the momentum P/, cf. (3.2.99), can be compared with momentum of the
CEFT state,

|U) = Nexp [Z p;;Jin] ), (3.2.101)
n>0
where |¢) is the undeformed state and J* , are the modes of the four U(1) currents of the D1-D5
CFT. Assuming that the state |¢/) is unit normalised, (¢[)) = 1, we can fix the normalisation
constant NV using the commutation relations,

[T i) = m%éiwm%. (3.2.102)

m?“n

Define A" = >y, J*, . Using the fact that the commutator

n

A, AT = T8 S ™ nad)ud (3.2.103)

2
n>0
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is a c-number, a small calculation shows that the normalisation constant /V is given by
1= (U0 = N2(p|etet i) = N2elAAT (| e ) = N2elAAT (3.2.104)

where we have used e”|)) = [+)) (which follows from J |+)) = 0 for positive n). This gives

N = exp [—ntl% Zn(u;)*u;] : (3.2.105)

n>0

To find the momentum, we compute the expectation value of Ly and L. Since right moving

sector is untouched, we simply have
(W] Lo|W) = (] Lol). (3.2.106)

For the left sector, we need to do a computation. A simple way to organise this computation is

as follows. Using the commutation relations,

(L, J2] = =} i, (3.2.107)
in particular, [Lg, J*, ] = nJ* , we get
(Lo, AT = "yl [Lo, J', ) = nplJ', =: B (3.2.108)
n>0 n>0
To calculate (V|Lo|¥) we observe
(U|Lo| W) = N2(p|e? Loe™ [ip) = N2 (iplee? e A Loe o). (3.2.109)

Now we can use Baker—Campbell-Hausdorff formula to write e*ATLoeAT = Lo+ Bf. We also

use e’ = eA'eAelAA and the fact that N2e44'l = 1 as shown earlier. We get

(W|Lo| W) = N2(p|ede?’ (Lo + BY ) = (w]e? et (Lo + BY|1). (3.2.110)
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Now we use [Lg, A]|)) = BJy) = 0, as B contains only J!, with positive n, we get

(U|Lo|®) = (|Lolep) + (¥|[A, BT|v) (3.2.111)
n*nins, ..
= (WlLol®)) + > —5— () in, (3.2.112)
n>0
We conclude that,
n’ning

() . (3.2.113)

n n

(U|Lo — Lo|W) = RPy = (| Lo — Lo|t) + )

n>0

2

Upon doing the Fourier expansion of (3.2.99) in the decoupling limit, we get

RP, = (¢|Lo — Lo|y)) + Z ”1n5% ((c) ). (3.2.114)

2
n>0

Therefore, the map between the quantities ¢!, and y, is

) 1 )
oy = —1/ %cﬁl (3.2.115)
nVa

Let us remark that in the computations of this subsection the only property of the unde-
formed state |¢)) we have used is that it is annihilated by A and B operators. The above
analysis is therefore applicable to a large class of states. Although matching of the charges is
no proof that the identified states are dual to the gravity deformation considered above; it is a
strong indicator.

Having explored the application of GGV to the class of supersymmetric D1-D5-P solutions
with vanishing dilaton, the most relevant extension of is the inclusion of the dilaton. In the
following sections we are going to apply GGV on the D1-D5-P solutions with non-zero dilaton.
Most of the analysis are quite similar to those done in this section. We will also discuss its

applications to F1-P solutions.
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3.3 GGYV on Supergravity Solutions with Dilaton

In section|2.4)we postulate our generalised Garfinkle-Vachaspati transform (GGV) with dilaton.
Two set-ups related by S-duality, namely, ten-dimensional type IIB Ramond-Ramond (R-R)
sector with dilaton and the ten-dimensional Neveu-Schwarz (NS-NS) sector with dilaton, are

addressed in sections [2.4.1{and [2.4.2| respectively.

Now, we are going to use the techniques to the class of D1-D5-P solutions discussed in the
previous section without setting dilaton to zero. In section [3.3.1 we work out travelling-wave
deformation involving the torus directions on a class of supersymmetric D1-D5-P orbifold ge-
ometries. The deformed solutions are given in terms of solutions of a (non-minimally coupled)
scalar field on the background geometry. When the background contains a large AdS region,
the deformed states are identified in the D1-D5 CFT as an action of a U(1) current on the
undeformed state. In section [3.3.2] application of the GGV technique to the F1-P system is

discussed.

3.3.1 Deformation of a class of D1-DS5-P backgrounds

In this section we explore applications of the GGV transform to the class of multiwound super-
symmetric D1-D5-P geometries with non-zero dilaton profile. As described in the vanishing
dilaton case, the system consists of type IIB string theory compactified on S'x T*. Similar
to the last section, we consider traveling wave deformation along the torus directions on the
class of D1-D5-P backgrounds constructed in [54,55]. In case of non-zero dilaton ¢ # 0, for
the D1-D5-P solutions we have )1 # (J5. One main difference from the last section due to
presence of dilaton is that now the string frame and Einstein frame has to be treated diffrently.

We will mostly stick to the string frame. A standard form [55] for the string frame metric, RR
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2-form and dilaton for this background is,

1

dr?
ds? dt? — dy? %dt—d 24+ h d6?
° p V)t gg by f<7“2+(71+72)277+ )
2 _~42)n cos? 0
+h (7’2 +y(nm+72)n— s (%fﬂ ;g) i ) cos” § dy?
2 _ A2 ; 29
—|—h (7“2 4 - (’}/1 + ,72) n + Q1Q5 (’ylhz ;/22) 7] S1n ) sin2 0d¢2
2,92
@ (n lj—f72> i (cos® 0 dyp + sin? 0 dg)?
_2—”;2]01625 (’71 COSQ ) d’l?/) + V2 SiIl2 0 dgb) (dt - dy)
_2ViGs (1 +2)m (cos? O dip + sin® 0 dg) dy + 1/ i} (dz'dz")(3.3.116)
hf s
The associated two-form field is given by,
V cos? 6 V sin? 4
o _ _ Vil cosTh (yo dt + 71 dy) A dip — VEG©s i (v dt + y2dy) A do
H f Hf
(71 +72)nQp 2 .2
R LY 2 dt + Qs dy) A (cos“ 0 dip + sin“ 0 d
@1

20
dey_M

2 dy A d 3.3.117
Hlf Hlf (,r +/72(71+72>77+Q1) ¢/\ ¢7 ( )
H
2& 1
- 3.11
. (3.3.118)
where
1
Y1 = —am, yg—a(m+E> (3.3.119)
and
 V@1Qs Q, = B Q1 Qs
= ) p— —"N72 N= )
Ry Q1Q5+Q1Qp+Q5Qp
f=r*+d? (M +72)n(n sin® 6 + v, cos? 0),
lel—f—%, H5:1+%, h=+/H Hs. (3.3.120)
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This configuration carries D1, DS, and P charges. The integer number of D1, D5, and P branes

ny, ns, N, respectively are related to the parameters appearing in the metric as follows

13

g
Q1 = v ny, Q5:go/n5, Qp

92 04/4

V RZ

Np. (3.3.121)

The metric (3.3.116)) and associated two-form field can be written in a generalised
GMR form as a 2D fiber over a 4D almost hyper-Kéhler base space. Note that we call it a
generalised GMR form, as the nomenclature GMR form typically refers to supersymmetric
solutions of minimal 6D supergravity [65]]. For non-minimal 6D supergravity supersymmetric
solutions have been recently studied in [78,(79]. As a 2D fibre over a 4D base space the string

frame metric takes the form
2 -1 F m,j,.m H, i7.0
ds® = —h~Y(dv + B) (du +w+S(dv+ /3)) + hhda o + || H(d2' =), (33.122)
5
where u =t +yandv =t — y, and

F = —F (3.3.123)

g = (71 + 72) 1 (cos? @ dip + sin® O d¢), (3.3.124)

w = [(2% — (i +72)n (1 - 2%)) cos” 6 dip

+(272 —(m1+72)7n (1 - 2%)) sin’ quﬁ}, (3.3.125)

and the base metric h,,, given as,

dr?
2+ (11 +72)%n

1 .
T3 [[T“ + 77 (0 72) 1 (27— (71— 72) co5?0) + (71 +72)? i 0 sin® 0] cos” 0 dy?

Hr 7 (9 72) 1 (292 + (11— 72) sin® 0) + (31 +72)? 73 n” cos® 0] sin® 0 d”

ds?,. = hpndz™dz" = f( + d92)

—2v179s (71 4+ 72)% n? sin? 0 cos® 6 d@/}dgb} . (3.3.126)

94



The above configuration has

0
k= — 3.3.127
au ) ( )
as the appropriate null Killing vector and
' 0
10 = _— (3.3.128)
0z

as the appropriate spacelike Killing vector for the application of the generalised Garfinkle-

Vachaspati transform. The background configuration also satisfies the transversality condition,

cf. (2.4.66),
kME,,, = —(d(e"®k)),,. (3.3.129)

A general solution to the scalar equation, cf. (2.4.68)),

Oy eV =99 9,¥] =0, (3.3.130)

can be obtained using the ansatz
v=Y" fu(r)exp {—mRiy]. (3.3.131)

Upon substituting this ansatz we get ordinary differential equations for the functions f,(r),

which can be readily solved. We find

Ik
00 2
. T —in=Y
U,(r,v) = c e Py, (3.3.132)
n_z_oo r2 <1 + q2{@t@s) (m + %)) + Z—z

Q1Qs5

where the index i refers to the four-torus coordinates 2°. One can see that upon setting Q; =
Q)5 = (@ the above expression reduces to (3.2.47), which further validates our technique.

Here, we are considering all the four torus directions where the generalised Garfinkle-
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Vachaspati transform is of the form

4
G = G+ Y Wie (k) + k1), (3.3.133)
=1
4
Co = Cup— Y e (k) — k1), (3.3.134)
=1

and it simply corresponds to replacing
du — du + V;d2", (3.3.135)

in the background metric (3.3.122)). For the form field, the recipe is the same, but there are

some details. The two form field written above can also be written as

c? = —% (H{") du A do

(NQp(Q1+ Qs) — Q1 Qs5)
2Q1 Qs Hy f
+(n +72) Z%_H?;) dv A (cos? 0 dip + sin® 6 do)
V@1 Qs

+ (71 +72) du A (cos® 0 dyp + sin® 0 d¢)

+(m —72) SH, f dv A\ (cos2 6 dip — sin® 0do)
20
_% (r* 4+ v (11 +y2)n+ Q1) d Ado, (3.3.136)

where we have removed a constant term proportional to du A dv by a gauge transformation. In

this form the deformation of C'® also simply corresponds to replacing

du — du + U;dz". (3.3.137)

When ()1 = ()5 the deformation reduces to to the one considered in section[3.2] In the following
section we will discuss about the asymptotics and smoothness of the deformed solution and

compute the ADM charges as we have done for the vanishing dilaton case.
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3.3.1.1 Global properties and smoothness

Although it is not manifest in the above coordinates, the deformed solution has flat asymp-
totics [33,52]. Much of the following discussion in this section parallels the corresponding
discussions in those references, so we shall be brief. At infinity the metric of the deformed

solution looks like,

ds* = —[du + fi(v)dz"|dv + dr* + r*dQ3 + dz'dz", (3.3.138)
where
@(Q1 + @) AN
(v) = Im Uy(r0) =y & (14— (m+ —)) e "R (3.3.139
f()Tmm;( at ! (33.139)

As done in subsection [3.2.2} for simplicity, from now onwards we assume ¢ = 0. The
coordinate transformation that puts the deformed spacetime in an asymptotically flat form and

simplifies the extraction of charges is

1 v
0
1 v
0
o= 2 (3.3.142)

In the » — oo limit, this transformation simplifies to,

2 0
W= /\[u+i/vfi(6)fi(@)dﬂ}, (3.3.144)
0
o o= ; (3.3.145)
where
2= ! TV ( dv 3.3.146
A =1— 87TRy/U fi(0) fi(v)do. (3.3.146)

The value of \ is fixed by the requirement that the new time coordinate ¢’ = 1(u/ + v') is a
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single valued function under y ~ y + 27 R, at infinity. In new coordinates, the asymptotic

metric (3.3.138) is manifestly flat,
ds® = —(dt')? + (dy')? + dr® + r*d; + dz""d=". (3.3.147)

The z'* coordinates have the same periodicity as the z* coordinates. The periodicity of the
y = 3(u + ') coordinate is y' ~ y' + 2R, with R = A\"'R,. In the rest of the section
we exclusively work with 12 as opposed to ?,,. Following the analysis of the dilaton free case

in[3.2.2]and also as considered in [33]], we introduce

In terms of the parameter R we have,

1 2R

AN 2=1— —— hi(7)h (') dD. 3.3.149
o5 ), @h()do (3.3.149)

Now we would like to extract the ADM quantities. We find that it is most convenient to
do this computation in six-dimensions as the ten-dimensional string frame metric is directly
related to the six-dimensional Einstein frame metric. At large values of r we find that the

relevant terms of the ten-dimensional string frame metric admits an expansion of the form,

1 1
gov =1+ (w 420, + 1/\2Q1hihi) v (3.3.150)
2 1
Gy =~ 3 (Qp + Zthihi) +. (3.3.151)
1 1
Gy =1+ (_% +A2Q, + ZAQthihi) +o (3.3.152)
MW@1Q5 M+ 2 1 1
AWQ1Qs5 7+ 2 1 1

From these components we can extract (six-dimensional) ADM quantities. The ADM momenta

98



in the 3/-direction is

O 9 A2 1 R
Py/ = —E . dy T 6gt/y/ = E (27TR Qp + ZQl A dy hlh7,> (33.155)
nmns 1 Q1 1 / 2mht '
— Z DA dy'hih; | | 3.3.156
R [m(m+k)+4a227ﬂ% . Y (5:3.130)
where we have used the 6-dimensional Newton’s constant to be G = ”23—392 together with

(3.3.121). The ADM mass is [52]

27R
M= = dy 1% (36 gy — 6Gyr) (3.3.157)
3G J,
= %(Ql +Q5)(27R) + Py. (3.3.158)

We note that the BPS bound is saturated; addition of momentum shifts the mass by . To

extract angular momenta, we use

T [ 0gy nin 1
Jy = —— dy P2t = ZL0 - 3.3.159
¢ G), YlGne 2 \"TR) ( )
O 0gy nin
Jy = —— 22ty L8 3.3.160
¢ 8G Jo YT cos20 2 ( )

To analyse the smoothness of the spacetime, we start by looking at the determinant of the
deformed metric. The determinant of the deformed metric remains the same as the undeformed
metric. Furthermore, since the scalar (3.3.132) is finite everywhere, potential singularities
can only occur at places where the background solution becomes singular. In the background
solution, there are no such points [54}55]]. Hence the solution remains smooth even after the

deformation.

3.3.1.2 Decoupling limit

Just like the case of zero dilaton, again the undeformed geometry develops a large AdS region

when,

2
V@WGs o (3.3.161)

I’y V@1Qs

€
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To obtain the decoupled metric we introduce,

, (3.3.162)

1|
I
=3I
I

u =

Q=

u
R,’ R,’
and take the limit R, — oo keeping (), and ()5 fixed. Due to rescaling of coordinates (3.3.162)
we get a metric that describes the inner AdS; x S? x T* region of the geometry,
ds* = \/Q.Qs |—7*dudv — 1(da + dv)? + e

s 4 P2 k2

1 2
+ V@105 [dQQ +c (d@b — %(da —dv) + mdv)

1 2 o
+sp | dp — —(du + dv) — mdv } + @ dz'dz". (3.3.163)
2k Qs
To obtain the decoupled metric with the deformation turned on we proceed in exactly the
same way as for dilaton free case in section [33,52]]. In order to maintain ADM momen-
tum (3.3.156) finite as R, becomes large, we must scale the scalars appropriately with R,. In

the present set-up, scalars should scale as

With this rescaling, terms in the metric of the form du + ¥;dz* behave as

du+ V;dz' = R, du + —VRQ5 W, dz". (3.3.165)
Y

In the limit R, — oo such terms simply become R, du, i.e., scalars V; all scale out. Once
again we get the decoupled metric (3.3.163).

However again recalling from the analysis of the dilaton free case, that the deformed metric
is not manifestly asymptotically flat in coordinates z;, ¢, y; it is manifestly asymptotically flat
in 2/, t',y’. The decoupled metric in the 2/, ', 3/ coordinates is naturally glued to the asymptot-
ically flat region. Therefore, we should write the decoupled metric in these coordinates. This

change of coordinates reintroduces scalars. In the R, — oo limit transformations (3.3.140)-
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(3.3.142) simplify to

1 v
2=z — 5\ /Q5/ U, do, o =, v = 7. (3.3.166)
0

The decoupled metric takes the form,

di? ]

1
2 2 71— 73— _ —\2
ds® = /(Q:1Qs |:—7“ dudv — Z(du + dv)* + m

2 2
+ vV Q1Qs5 |d9? + ¢ (dw — %(du — dv) + mdv) + sz (dgb — i(du + dv) — mdv) ]
Ql / 1 -~ _ 2
+ 0 (dzi + 5\/Qg, \IQ-dv) . (3.3.167)
5

We can now read off the charges, say, by comparing the above metric to a standard form of

asymptotic form of the AdS3 x S* x T*. We find,

nins 1 1 2 = =
P, = )+ — 7 3.1
. - {m(m#—k)—l—gﬁ/o dyflfz}, (3.3.168)
. nins 1
B = = (m—l—k) (3.3.169)
Jy = —”12”5m. (3.3.170)

These charges agree with expressions (3.3.156), (3.3.159), (3.3.160) in the R, — oo limit.

3.3.1.3 Deformed states in the D1-D5 CFT

Let |¢)) be the normalised state in the D1-D5 CFT that describes the dual to the undeformed

gravity configuration with ADM momentum

TNy 1
7 {m (m + E)] . (3.3.171)

Then the expression for the momentum P, cf. (3.3.168)), can be compared with the momentum

of the normalised deformed CFT state as done for minimal-supergravity solution [33,52]],

|¥) = exp [—"14”5 Zn(ui)*u:;] exp [Z u;fn] ), (33.172)

n>0 n>0
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where J* , are the modes of the four U(1) currents of the D1-D5 CFT, and the parameters 1/,

are determined below. The momentum of the deformed state turns out to be,

_ _ n*nin . ,
RPy = (|Lo— Lo|¥) = (¢|Lo — Lolwo) + > 21 Syl (3.3.173)
n>0
1 n’nins , . .
= nins {m <m + E)} +) 21 2 () i, (3.3.174)

n>0

Upon doing the Fourier expansion of (3.3.168)) in the decoupling limit, we get (assuming ¥;’s

are real scalars),

RP, =nins [m ( )} Z s Q1 () eh) . (3.3.175)
>0

From the matching between the gravity and the CFT answers we arrive at the relation between

the quantities c;, and p;,,
== c,-

" n a

(3.3.176)

With this identification we have singled out a state in the D1-D5 CFT that has the same charges

as the deformed gravity solutions.

3.3.2 Application to the F1-P system

In this section, we briefly discuss application of the GGV transform to the F1-P system. Since
the most general vibrating fundamental string solution with momentum modes added on top
is already well known [42, 80] we do not expect that the GGV technique would allow us to
discover something novel. Nonetheless, the F1-P system is well suited for an application of the
GGV transform in the NS sector[]

We start with the chiral null model for the NS sector of type II supergravity in Einstein

frame [81,/82]. We take 0, as the null Killing vector. Metric and the supporting matter fields

2 Also discussed in section'l.4.2.ll
3 Application to the NS1-NS5 bound states is also a possibility, but this set-up is related to the D1-D5 set-up
by S-duality.
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take the form,

ds? = H**(—dudv + Kdv® + 2A,dz'dv) + H™V*(da'da’ + d2?d2?), (3.3.177)
H

By = PR B, = —HA;, e? = H, (3.3.178)
where z' with i = 1,...,4 are non-compact cartesian coordinates on R* and 2/ with j =
1,...,4 are the T* coordinates. The supergravity equations of motion are satisfied provided

H~!and K are harmonic functions on the transverse space R? x T* parameterised by (z*, 27).
Upon smearing these functions on T*, they become harmonic functions on R*. The coefficients
and the sources for these harmonic functions can depend on v. The functions A; can be thought
of as a gauge field. The chiral null model equations of motion require that it satisfies source-
free Maxwell equation, see e.g., appendix C of [30]. In general the gauge field can also have
components in the T* directions; in the above metric we have written only for the R* directions.
Letuw = t + y,v = t — y with the coordinate y be periodic with length L, = 27 R,. Level
matched F1-P configurations with smeared harmonic functions over the four-torus and the y

direction are described by [30],

leHg/Ly dv ': Q/Ly dvFy(v) Q/LydvF (v)
Ly Jo |z—F)* & |z — F vP’ v — F(v))?

(3.3.179)

where [ — F(0)[2 = S22 (2, — Fi(v))

We wish to apply the generalised Garfinkle-Vachaspati transform to such a smeared chiral
null model solution, with k* = (9,,)" as the null Killing vector and [{; = (0.:)" as the spacelike
Killing vector. Under the GGV transform, Einstein frame metric and the 2-form field transform

as (see appendix |C.2.4)),

G = Guw + V(e (kdD + k,10)) (3.3.180)

By — B — Ve (kuld) —k,19)) (3.3.181)

where functions W ;y satisfy [JW ;) = 0 for j = 1,...,4. Applying this transformation to
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configuration (3.3.177)—(3.3.178) we get the transformed metric and 2-form field as

ds? = H*(—dudv + Kdv® + 2A,dx’dv — Uyddv) + H V4 (do'da’ + d27d2?)

(3.3.182)
o
vz HV;, € =H. (3.3.184)

The harmonic functions V¥, in equations (3.3.182)—(3.3.184) can be interpreted as additional

components of the gauge field A; with components in the torus directions, see, e.g., [38,41].
The final solution is also a chiral null model solution. In general, it does not satisfy the level
matching condition [[80]. One can always perform an ordinary GV transform to add appropriate
momentum to get a solution that satisfies the level matching condition.

Alternatively, taking

V(v @) = —2H 'p;(v), (3.3.185)

we can arrive at a slightly different interpretation as follows. The transformed metric takes the

form,

ds* = H**(—dudv + Kdv® + 2A;da’dv) + H™ V4 (da'dz’) + H V4 (d22d2? + 2p;d22 dv).
(3.3.186)

. . s Y v y . .
Introducing new coordinates 2"/ = 27 + [ p/(v')dv’, we can write the above metric as,

ds? = H3*(—dudv + Kdv? + 2A;dz'dv — H™'p?(v)dv?) + H V4 (da'da + dz"7d2"7).
(3.3.187)

The two-form B-field and the dilaton remain unchanged under this coordinate transformation,
By =—, By = —HA;, By.s = —2p;(v), e = H. (3.3.188)

The component B,,; = —2p;(v) can be removed by a gauge transformation B/, = By, +

dul\y — Oy, with gauge function A,,; = 2 [ p;(v')dv’ (no other component changes under
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this gauge transformation). We finally have

ds? = H¥*(—dudv+ Kdv® + 2A;dzidv — H'p?(v)dv?) + H VA4 (da'dx’ + d27dz"),
(3.3.189)

By = , B, = —HA, . e = H. (3.3.190)

H
2
This metric can be readily interpreted as pp-wave added to the above F1-P chiral null model

with matter fields remaining unchangedﬂ The final metric is simply the ordinary GV trans-

form (2.2.13) on the F1-P chiral null model (3.3.177)-(3.3.179) with harmonic function ¥ =

H~'. In the terminology of [42], this choice of the harmonic function ¥ in the GV transform
corresponds to adding “momentum waves without oscillations.” Due to the constant term in the
harmonic function H !, metric (3.3:189) is not manifestly asymptotically flat. It can be made
asymptotically flat by shifting v appropriately. In general, the final metric does not satisfy the

level matching condition.

“This is similar to the interpretation given in section 7.1 of reference [33]], though for a different set-up where
matter fields do change.
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Chapter 4

Dualities and the generalized

Garfinkle-Vachaspati transform

In this Chapter we are going to explore further applications of the generalized Garfinkle-
Vachaspati transform and related solution generating techniques. By the application of a set
of dualities, we write deformed Bena-Warner solutions in various M2-M5-P duality frames.
The supersymmetric eleven-dimensional solutions of Bena-Warner (BW) are discussed in ap-
pendix These intersecting M2-M2-M2 solutions are mapped to D1-D5-P solutions. The
set of dualities is worked out in appendix First, we are going to perform GGV on the
BW form of D1-D5-P solutions which can in turn be mapped to eleven-dimensional M2-M5-P

system. We will see that in the M-theory frame the deformation also has the form of GGV.

4.1 GGY on Bena-Warner form of the D1-D5-P solution

The string frame D1-D5-P metric obtained from the BW solution can be written in the following

form, cf. (D.2.34),

ds?, = —m(dt + 1K) + Zihpnda™dz™ + %(d% + A;(f)dx”)Q + (dz} 4+ dz3 + dz; + dz3),
4.1.1)

where
AOger = M (4.12)

3
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The RR two-form field associated with this solution is given by, cf. (D.2.41)),

C=- (dt; n —wl) A (dzs + ws) + 0. (4.1.3)
1

where the two-form o satisfies equation (D.2.42]).
For the application of the generalized Garfinkle-Vachaspati transform first we note that
the null Killing vector and the spacelike Killing vector for the D1-D5-P metric (4.1.1) are as

follows,

o) o)
k=— | = — 4.1.4
8t7 8247 ( )
kydat = —Z7 N (dzs + wy), L dz" = dzy, (4.1.5)

from which it can be readily checked that the GV-transformed metric takes the following form,

(dsllo)2 = ds%o — 277 ®(dzs + ws)dzy, (4.1.6)

along with the transformed C'-field of the form,

o
C' = C+ 7<d25 + W3> AN dZ4. (417)
1

Now, by performing dualities we will write the transformed metric in various other M-theory

frames.

4.2 T-duality along z;-direction and M-theory lift

The first duality frame we discuss is obtained from the D1-D5-P system by T-duality along

z1-direction followed by an M-theory lift along zg:

Tz
DlZS N D5212223z4z5 o PZ5 D22125 - D4z2zs24z5 - Pz5
M-theory lift
M22125 - M5222324z526 - Pz5' (4.28)
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Performing these dualities, the final metric is obtained as
ds3, = dsty — 227 ®(dzs + ws)dzy + dzg,
together with the 3-form field

d
AG) = (c + o (dzs + ) A m) A day. 4.2.9)
1

In this duality frame, the transformation is intrinsically of the form of the generalised Garfinkle-
Vachaspati transform. It is normal to speculate that a solution generating technique similar to

generalised Garfinkle-Vachaspati transform exist in (an appropriate truncation of) M-theory.

4.3 T-dualities along 21, 2o, z3 and M theory lift

The next duality frame we learn about is obtained by T-dualities along z7, 2o, z3-directions

followed by an M-theory lift along z:

T2z
12273
T

D]-Z5 - D531222’3z4Z5 - PZ5 D421222’3z5 - D22’4z5 - PZ5

M-theory lift
_—

M52’1z223z5z6 - M2z425 - st' (4310)

Performing these dualities, the eleven-dimensional M2-M5-P metric is,

29
ds}, = ds3, — 7(dz5 + w3)dzy + dzf,
1

together with the six-form field A in eleven-dimensions, which is thought of as the electro-

magnetic dual of A® (B.1I):
©) ¢
AY = C+7(dz5+w3) ANdzy | Ndzy Ndzg Ndzs A dzg. (4.3.11)
1

Even in this duality frame, the transformation is fundamentally of the form of the generalised

Garfinkle-Vachaspati transform which indicates the existence of a solution generating tech-
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nique akin to generalised Garfinkle-Vachaspati transform in this set-up.

4.4 'T-duality along z;-direction and M-theory lift

Next, we discuss the duality frame obtained by T-duality along z,-directions followed by an
M-theory lift along z. This case is little bit different from the previous ones in the sense
that z, 1s the same spacelike direction used for the generalised Garfinkle-Vachaspati transform,

cf. @.1.4). Here the duality sequence is:

T2,

Dlz5 - D5212223Z4Z5 - PZ5 D224Z5 - D4z1222325 - Pz

5

e e M2.y.y — M5 syaansg — Poy. (44.12)
We can see that the final M2-M5-P solution obtained has the same construction as in (4.3.10)
even if the way of obtaining it is different. To be precise, in the process of duality transforma-
tions, after the T-duality along z4 the IIA ten-dimensional metric for D2-D4-P system in the

string frame is,

Z o2
ds?y = =277 (dt + k) (dzs + ws) + = (1 — (dzs 4 w3)? + Zihyppda™dx™ + dsi,
Z AV

(4.4.13)

with the associated form-fields are,

o ®
CH=CNda, CW=—-(dz+ws), BY=_(ds+w)Ndu.  (4414)
1 1

The dilaton remains the same, i.e., €2 = 1. After lifting to the M-theory frame the GV-

transformed solution takes the following form,

20
ds?, = ds?, + 71(dz5 + w3)dzg + dz3, (4.4.15)
®
A® = B 4 - (25 + ws) A dza A dzg. (4.4.16)
1
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In this duality frame too, the transformation is essentially of the generalised Garfinkle-Vachaspati
form.

Similarly, one can consider another duality chain to another M2-M5-P frame as follows

M-theory lift
5

Tz1 2224

D125_D5212223Z425_PZ —_— D421Z224Z5_D223Z5_PZ M5ZlZQZ4Z5ZG_M22325_PZ

5 5°

Even in this duality frame the transformation is essentially of the Garfinkle-Vachaspati form. It
is tempting to speculate that some solution generating techniques akin to generalised Garfinkle-

Vachaspati transform exist for these set-ups as well.
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Chapter 5

Adding momentum to KK-monopole

solution

The pure gravitational theory in five-dimensions admits solitonic solutions. The ‘magnetic
monopole’ is one such solitonic solution to the field equations which is also termed as ‘Kaluza-
Klein (KK) monopole’. These solutions can also be embedded in ten-dimensional string theory
by adding compact directions. In string theory, these KK-monopoles are fundamental objects
and they are related to D-branes by duality(this is already discussed in section [I.2)). The five-
dimensional KK-monopole solutions are first obtained in [83] by Gross and Perry, also in-
dependently by R. Sorkin in [[84] by adding one extra time direction to the four-dimensional
Euclidean Taub-NUT spacetime.

There has been construction of KK-P solutions where momentum has been added to the
KK-monopole solution using GV transform [85]. In the construction of black hole microstates
the KK-P solutions play significant role as they are dual to the 2-charge F1-P solutions. The
set of duality transformations is also discussed in [85]]. To apply GV transform (2.2.13) on
the KK-monopole background, the scalar wave equation [J¥ = 0 was solved for special cases
which we will discuss in section [5.2] The procedure was applied to both single monopole and
multiple KK-monopole cases.

In this Chapter we are going to do the following:

1. We try to obtain more general solution to the wave equation including the vibration along
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the fibre direction as well.

2. We will also see in section that the KK-monopole metric is of the GMR form (3.2.1)

and GGV can be readily applied to it.
3. We also wrote KK-P metric in the GMR-form in section [5.4{ and performed GGV on it.

The work presented in this Chapter are unpublished yet.
In the following section we are going to give a brief introduction to KK-monopole solution
and discuss some of its characteristic properties. The next section involves computation of

general solution to the wave equation.

5.1 KK-monopole

The five-dimensional KK-monopole solution can be obtained from four the four-dimensional

Euclidean Taub-NUT solution, by adding one time direction ¢ as follows
ds® = —dt* + dsiy, (5.1.1)
where the four-dimensional Taub-NUT spacetime is defined as
dsiy = V7 ds + x|* + V]dr® + r?(d6* + sin® 0d¢?)]. (5.1.2)
Here, V' and y are given by
Rk =

V=14 2K Vxy=-VV. (5.1.3)

r

The second equation in (5.1.3) gives the magnetic field associated with the KK-monopole solu-
tion with potential given by V' and () x corresponds to the monopole charge. The curl and grad

operations are with respect to the transverse directions. By solving the y-equation we get

Xo = QK cost. (5.1.4)

114



For the KK-monopole solution r = 0 1s the point of singularity which corresponds to the
monopole source. The periodicity of s-circle ensures the regularity of the solution as » = 0.

The KK-monopole charge () is related to the number of KK-monopoles Ny as

1
Qk = ENKRKy (5.1.5)

where Ry is the asymptotic radius of the s-circle at r — oco. For N = 1, we get the solution
corresponding to a single KK-monopole with Qx = RTK and the radius of the s-circle goes
smoothly to zero at » — 0. For N, # 1, the solution has Zy,. orbifold singularity in the » — 0
limit.

This five-dimensional solution can be embedded in ten-dimensional string theory by adding
five extra compact directions: one circle S*(y) and a four torus 7%(z;). The ten-dimensional

metric is then of the following form
9
ds’ = —dt’ + dy? + V' [ds + x> + V[dr® + 1r*(d6” + sin® 0d¢”)] + >~ dz'dz;, (5.1.6)
=6

where y-direction is compactified on a circle of radius Rj i.e. y ~ y + 2nR5. The compact
torus 7 directions are given by z;, i = 6,7,8,9. Introducing the null coordinates, v = t + y

and v =t — y we can write the metric as
9
ds® = —dudv + V'[ds + xedg]* + V]dr® + r*(d6* + sin® 0d¢?)]| + Y _ dz'dz.  (5.1.7)
i=6

The determinant of the metric is \/—¢ = Vr?sin6.
As mentioned earlier, » = 0 is a singularity corresponding to the source. However, it is a
coordinate singularity and can be removed by proper choice of coordinates upon which we get

standard flat metric in the » — O limit. This is discussed in the following section.

Removing singularity at r = (

To get the proper coordinate system in which » = 0 is not a singularity any more, first we

write the KK-monopole metric (5.1.7) in the limit » — 0. In this limit the function V' can be
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approximated as

Vi~ —. (5.1.8)

Thus, the KK-monopole metric takes the following fo

QK

4 ——[ds + Yol + “E[dr? + r2(d6? + sin? 0dg?)].  (5.1.9)

ds® = —dudv + ds?
Ty QK

Next, we perform the following coordinate transformations

dr*? = di;»r N 0=0/2, (5.1.10)

upon which the metric in terms of the (rx, 5)—coordinates can be written as

2 (dé2 + Sinz@é) d¢2>] :

(5.1.11)

*2

ds* = —dudv+ds2T4 10

ds + Qg cos(29)d¢] +Qy | dr*?

where we have substituted x, = (QQx cosf. On further simplification the expression (5.1.1T))

reduces to

*2 5 5 _
ds®> = —dudv+ds7, + ZQ [cos? B(ds + Qg dp)? +sin? 0(ds — Qdd)?| 4+ Q (dr*? +172db?).
K
(5.1.12)
Now, defining a new set of new coordinates as follows
s = Qr(d+ 1), ¢=0¢—1, F=/Qxr, (5.1.13)

we can make the following substitutions

do* = 4@K —(ds + Qrdg)?,  di* = @ (ds = Qde)*,  di* = Qidr™®.  (5.1.14)

'"We are writting the torus part 7 _, dz*dz; as ds?,.
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The final metric in terms of the (7, 0 , gzNS, zﬁ) coordinates is then a standard flat metric
9 ~ ~ ~ ~ ~
ds® = —dudv + Y dz'dz; + di* + 7 (d6” + cos” §dg” + sin® di)?). (5.1.15)
i=6

Here there is no s-coordinate in the metric any more. Instead there is the new angular coordinate

1;. We can also define Cartesian coordinates in four-dimensions as
T = 7 cos 0 cos é, Ty = fcosésiné, T3 = fsinécosqz, Ty = fsinésinz/}. (5.1.16)
In terms of the Cartesian coordinates we can write the metric (5.1.15)) as
9 4
ds® = —dudv + Y dz'dz + ) da?. (5.1.17)
i=6 i=1

Now, on this KK-monopole geometry we want to add travelling wave deformation.
For which there has been application of GV transform in [85] and the momentum was added
in one of the isometry directions. For the application of GV method the scalar wave
equation [JW = 0 is solved for W where the [J is with respect to the transverse directions. Also
the scalar function satisfy the compatibility condition (2.2.15).

In the following section we are going to briefly outline the KK-P solution constructed in [85]]

and discuss about finding more general solution to the scalar wave equation LJ¥ = 0.

5.2 KK-P solution

By performing GV transform (2.2.13)) on the KK-monopole metric (5.1.7) one can obtain KK-P

metric of the following form

3 9
ds® = —(dudv + Wdv®) + V" ds + x;dz’]* + V[Z da?] + Z dz'dz;, (5.2.18)
j=1

1=6
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where we have written the transverse directions (r, 6, ¢) in terms of Cartesian coordinates
x1 = rsinfsin ¢, Lo = rsinf cos ¢, r3 = 1rcosé. (5.2.19)

Here, ¥ solves the background wave equatimﬂ In [85] the solution is obtained without con-
sidering s-dependence. It is denoted as T'(v, ), where T satisfies three-dimensional Laplace

equation. In terms of spherical harmonics Y}, the general form of the solution is as follows [85]]

T(0,2)=> > law)r' + by(v)r" Y. (5.2.20)

>0 m=—1
For a regular and asymptotically flat KK-P solution 7'(v, 7) has the simple expression T'(v, Z) =
f(v).2.
To construct more general solution we try to solve for ¥ having dependence on the fibre

direction s as well.

5.2.1 General solution to the wave equation

Here we will be brief. More details can be found in appendix [El The wave equation can be

written as,
1

V=9

where p, v are the indices denoting components with respect to the background spacetime.

0,(v/—g9" 8,%) = 0, (5.2.21)

Recall the background spacetime which is of the form

9
ds® = —dudv + V7' [ds + x4d¢]” + V[dr® + r*(d6® + sin® 0d¢*)] + > dz'dz.  (5.2.22)

=6

The metric has a null Killing vector along «. From the compatibility condition k0, ¥V = 0 we
can see that ¥ is independent of u. We also assume that the solution is independent of the torus
directions. Thus, the wave equation (5.2.21])) is now a five-dimensional equation which solution

VU is a function of (s, v,r,0, ¢)-coordinates. To express the equation (5.2.21)) in terms of the

2No dependence on the torus directions.
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determinant and components of the inverse metric we note the following

1 1
V=g =Vr?sing, g =2, g = v ¢” = V2 (5.2.23)
1 Qx cosl Q2% cot? 6
¢6 _ sp — _ XK TPT 98 88—y 4 2K 5.2.24
g Vr2sin?6’ g Vr2sin? 6 g g + V2 ( )

Taking into account the periodicity of the v-coordinate we can write W(s, v, Z) to have the
following form,

U(s,v,%) =T(s,r,0,¢)e“", (5.2.25)

where w takes integer values. Thus, T'(s, , 6, ¢) solves four-dimensional Laplace equation.
Substituting the determinant and components of the inverse metric from equations (5.2.23))
and (5.2.24) we can write the four-dimensional wave equation for 7" as

1

r2

0.(r*0,T) + 1 <L89(sin 00,T) + %(Q%@SQT + G;T - QQK00898¢85T)>
sin

r2 \ sinf

1
+ T,—Q(VZT2 — Q%)0T =0, (5.2.26)

where we have taken out a factor of r2sin § from each of the terms. This equation is similar
to the hydrogen atom solution comparing with which we can write the angular momentum

operator L? as

1
sin? 6

—L’T = $8g(sin 00,T) + (QKO2T + 95T — 2Q cos 00,0,T). (5.2.27)

Solution to the angular part of the equation is discussed in appendix .
We can redefine the derivative operator 0, as ()x0s = 0. Then the wave equation (5.2.20))
after substituting takes the following form

2
ia,,(r?a,qT) Ly + L(v%ﬂ2 — Q%)FET = 0. (5.2.28)

r2 r2 Q%(TQ
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In another way it can also be written as

d*T 24T I? 1

— +=-——-=T V2r? — QF%)0:T = 0. 5.2.29

dr? * rdr  r? + Q%(rz( - Qo ( )
We can also define the third-component of the angular momentum operator, L3 as Lz = —i0,.
Similarly, the linear momentum operator along & can be defined as Py = —id;. It can be

checked that L? L3 and P; forms a complete set of commuting operators, thus can be si-
multaneously diagonalized. We denote the simultaneous eigenvector to be Y,! (s, 6, ¢). The
eigenvalue equations for L?, L3 and P, can be written as

LY =11+ 1)y

lm>

Lg}/ﬁn =mY,?

Ilm>

PY = qv2. (5.2.30)

Here, [ is the angular momentum quantum number taking values [ > 0. m is the L3 quantum
number which takes values from —/ to +/. In addition, we have the linear momentum quantum
number g. Now, ¢ and ¢ are Killing directions corresponding to rotational and translational

symmetries respectively. Thus, we can write the corresponding eigenfunctions as
Uy = Npe™?, U, = N, (5.2.31)

where V,,, and N, are the normalization constants. Now, since ¢ is periodic within the range
0 < ¢ < 2m, from V(¢ + 2m) = W,(¢) it can be checked that m takes integer values.
Similarly, s is periodic within the range 0 < s < 2mRg. That means & has the periodicity
0 < ¢ < 2nRk/Qk which by using the expression (5.1.5)) for monopole charge can also be
written as 0 < £ < 47/Ng. Thus, from V(£ + Jé—z) = W, (&) it can be concluded that ¢ takes

values

n
lal = N5 (5.2.32)

where n takes integer values. Thus, for single monopole where N = 1, ¢ takes the values
q=0,+1/2,+1,43/2,.... For any general Ny we have ¢ = 0, £ Nk /2, =Ny, +3Ng /2, .. ..
The solution T'(s, r, 6, ¢) to the four-dimensional Laplace equation (5.2.29)) can be reduced

into angular and radial equations which can be treated separately. To do so we write the function
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T(s,1,0,0) as
T=> fi"(r)Ye, (5.2.33)

Imgq

where f is the radial part and Y;’ are the four-dimensional spherical harmonics which is the

solution to the angular equation (5.2.27)). Substituting (5.2.33)) into the wave equation (5.2.29)

and using the eigenvalue equations (5.2.30) we can write the radial equation as follows

Ef  2df  1(1+1) 1
e A I+ G

dr?  rdr 72

2
(V2r® — Q%) (—q—Q) f=0. (5.2.34)
Qx
The solutions to the angular equation and radial equation are discussed in appendix
The solution Y}? (s,6, ¢) to the angular equation (5.2.27)) can be written in terms of Wy(6)
and W4, U, given in (5.2.31). Then the 6-dependent part of the solution is given in terms of the

hypergeometric functions o F} (a, b; ¢; x) by

3 (m+q)
1 1—2\>2
U(r) = (—1)pCmer (—‘””) (1) Fi(g = LU+ g+ 15 —m+ g+ 1;2)

O (— 1)y By (m — L1 +m + 1im — q + 1;@] (5.2.35)

NI

where 2 = sin? 2.

Similarly, solution to the radial equation (5.2.34)), worked out in appendix [E]is given in
terms of the confluent hypergeometric function of second kind U(a, b, x) and associated La-
guerre polynomial L (z) by

([ —2 a U ~im 2qr — L ~Im 7 20+1 2qr
f— (U) T[ClquU(1+l_Q72l+27_a)+€ QCQqL—q—l—l 6 :|

(5.2.36)

Thus, we have constructed more general solution to the scalar wave equation having the radial
part (5.2.36) and angular part given by (5.2.35). The asymptotic limits and finiteness of the
solutions at = 0 are discussed in appendix

Next, we will try to write the KK-P solution discussed in section @ in the GMR form.

As we have discussed earlier in section [2.4.64], for any solutions of the GMR form, GGV is a
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valid solution generating technique. Before going to KK-P solution we will see that the KK-
monopole solution without momentum is already in the GMR form and we can perform GGV

on it.

5.3 KK-monopole in GMR form

In this section we are going write the KK-monopole solution (5.1.7) in the GMR form (dis-
cussed in appendix (D). To do so let’s rewrite the KK-monopole solution embedded in ten-

dimensional string theory given as
9
ds® = —dudv + V" [ds + xod¢]” + V[dr® + r*(d6” + sin® 0d¢”)] + > dz'dz.  (53.37)
=6
The general GMR form of the ten-dimensional metric is (3.2.1))
2 —1 ‘/—: m n
ds® = —H \(dv + ) (du +wt S+ 5)) 4 Hhppda™da" + dzidzi. (5.3.38)
Comparing the above with the KK-monopole metric we can make the following identifications
, g =0, w =0, F=0. (5.3.39)
with the base metric given by the four-dimensional Euclidean Taub-NUT
dsj = V7 ds + xedo)* + V[dr® + r*(df* + sin® d¢?)]. (5.3.40)

Then the GMR equations (D.1.4)-(D.1.7) which have the following general form

*d*df—%(m)? = 0, (5.3.41)
d*dH+% = 0, (5.3.42)
df —xdf = 0, (5.3.43)

g+ = 0, (5.3.44)
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where G is given byE]

g — % (dw + %4 dw + Fd) (5.3.45)

become trivial ones. Thus, the KK-monopole solution is trivially of the GMR form. We can

add GGV on this metric (5.3.37).

5.3.1 GGYV on KK-monopole

Consider the null KIlling vector

k= v (5.3.46)

The torus directions provide the spacelike covariantly constant vectors /). The GGV is then

given as (2.3.39)-(2.3.40)

G = G +2Vkl, (5.3.47)
Cl, = Cu —2Vkyl,, (5.3.48)
where ¥ satisfies the background wave equation [J¥ = 0 and the compatibility condition

ktO, ¥ = 0.
However, note that KK-monopole solution is purely gravitational solution so for the transver-

sality condition (2.3.43) to be satisfied in these cases we have

dk = 0. (5.3.49)

i.e. the null Killing vector k* should be covariantly constant. Since V,k, can readily be
checked as zero for the KK-monopole solution, thus the transversality condition holds true.
One should also note that by performing GGV, since the matter field also transforms this
gives rise to additional matter field content to the GGV transformed KK-monopole solution
which was initially purely gravitational.
A similar analysis can be done on the KK-P solution constructed in [85] which we are going

to discuss in the next section. First, we will write the KK-P solution in GMR form and then

3Here ‘dot’ represents derivative with respect to v.
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apply GGV on it.

5.4 KK-P metricin GMR form

The KK-P metric is given by

3 9
ds* = —(dudv + T (v, Zdv*) + V" ds + x,dz;]* + V[Z da?] + Z dz'dz;,  (5.4.50)
‘ =6

Jj=1

where T'(v, T) satisfies the Laplace equation with respect to the three-dimensional transverse

space. To write it in the GMR form we need to make the following identifications

J; — (v, 7). (5.4.51)

The base metric is again the four-dimensional Taub-NUT metric.
We also need to check the equations of motion. From all the GMR-equations (D.1.4)-

(D.1.7), one can readily see that the only non-trivial equation here is
*d*dF =0, (5.4.52)

which holds true since V2T'(v, Z) = 0 for the GV-transform on KK-monopole metric. Thus,
KK-P solution is also of the GMR form with vanishing matter fields. We can perform GGV on

it.

5.4.1 GGYV on KK-P solution

Again considering the null KIlling vector

k=—, (5.4.53)
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and the spacelike covariantly constant vectors along the torus [, GGV-transformed KK-P

solution can be written as

ds* = —(dudv + T (v, T)dv* + Z U ydudz) + V" ds + xgda, > +V i s Z dz'dz;,

= - ) (5.4.54)
where each V ;) satisfies the background wave equation [JV ;) = 0 and the compatibility con-
dition £#9, W ;) = 0.

One can readily check that the transversality condition (5.3.49) is also satisfied for KK-P
solution.

Thus, we constructed more general solution to the scalar wave equation in the KK-monopole
geometry. The solutions are in terms of Hypergeometric and Laguerre functions. We also wrote
KK-monopole and KK-P solutions in the GMR form, on which GGV is applied successfully.
One just needs to solve the scalar wave equation [J¥ = 0 to deform the solutions suitably.

The analysis of the regularity and supersymmetries of the deformed solution is not done in this

thesis.
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Chapter 6

Conclusions and Future directions

In this thesis, we mainly discussed the development the generalized Garfinkle-Vachaspati trans-
form (or GGV) as a solution generating technique based on our two published papers [52,53]].
We studied both the dilaton free and non-zero dilaton cases. For the first case [52]] we estab-
lished GGV as a solution generating technique for a six-dimensional theory with dilaton that is
embedded in ten-dimensions via addition of four torus. The technique is verified in Chapter
by direct computations of the equations of motion for the transformed system. For non-zero
dilaton unlike the case of dilaton-free case there are two S-duality related set-ups namely, (1)
R-R sector and (i1) NS-NS secto We established GGV in both the set-ups where we used
S-duality explicitly. In Chapter [3] we discussed the applications of GGV to a class of super-
symmetric D1-D5-P orbifold solutions. We studied this class of D1-D5-P solution with both
zero dilaton case and solution with non-trivial dilaton profile as well. The dilaton free case
is a special case of the more general non-zero dilaton case and one can obtain all the results
of dilaton-free case by setting ® = 0 in all the results of [53]. We also briefly discussed the
application of the GGV technique to the F1-P system. We also obtained the GGV transform in
certain M-theory frames by dualising them from D1-D5-P string theory frames in Chapter
The final solutions obtained are various M2-M5-P systems. It is natural to expect that some
variant of the generalised Garfinkle-Vachaspati transform also exist for these M-theory set-ups.

On a different approach, we discussed KK-monopole solution, KK-P solution and appli-

cations of GGV on it in Chapter [5S| This work is not yet published. Previously, the KK-P

1“NS” stands for Neveu-Schwartz
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solution [85] obtained via the application of GV on KK-monopole background doesn’t involve
the dependence of the scalar wave function on the fibre direction. We worked out more gen-
eral solution to the wave equation including the fibre direction as well. We also related the
KK-monopole solution and KK-P solution to the GMR form of supersymmetric solutions. We
performed GGV on these GMR form of KK and KK-P solutions.

Our work provides us with some potential future directions which we are going to briefly
discuss below. So far we have only considered those particular D1-D5-P microstates obtained
from NS-chiral primaries via odd units of spectral flow. More general class of supersymmetric
three-charge solutions are constructed by fractionated spectral flow parameters 36,56, 57] for
which the GGV techniques can be extended. We also expect that the GGV solution generat-
ing technique may admit a further generalisation to non-supersymmetric settings as well. Few
of such non-supersymmetric geometries have been constructed in [36,57]. Studying GGV on
these solutions is difficult compared to supersymmetric solutions we have studied so farﬂ An-
other more natural direction to explore is the supersymmetry properties of the deformed solu-
tions. In [33]] it was shown that under the GGV transform, supersymmetric solutions of minimal
six-dimensional supergravity are deformed into supersymmetric solutions of ten-dimensional
IIB supergravity. It is natural to conjecture that the GGV deformations of supersymmetric solu-
tions of non-mininal six-dimensional supergravity are also supersymmetric in ten dimensions.

For GV on KK, we need to match with brane side with a supertube kind of analysis. Similar
discussions has been done before for D1-D5-KK microstate solutions of Bena and Kraus [[87]].
These solutions are smooth and contribute to microscopic degeneracy. We need to find if more
general solutions with momentum along fibre direction still stays regular. In this thesis, we
have not discussed the solution to the scalar wave equation required to perform GGV on the
KK-monopole and KK-P backgrounds which is one of the potential future directions in this
project. We have not studied the regularity and supersymmetric properties of the constructed
GGV solutions. This needs to be done. We can study microscopic interpretation of GGV on KK

and KK-P. We can try to find out if these modes contribute to microscopic index or if they are

2A different, but related, type of deformation on [36] was studied in [86]. This particular non-supersymmetric
solution is the simplest case. It is tempting to speculate, given the analysis [34,/86], that a variant of the above
analysis finds application to non-supersymmetric settings.
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like hair modes which need to be excluded from counting. Using our techniques, deformations
of further examples can be considered, including microstates of the D1-D5-KK system [87]].
These Bena and Kraus D1-D5-KK solutions are known along with their CFT interpretation.
We would also like to perform GGV on this and interpret it both on gravity and CFT side.

In a related line of investigation, reference [78]] studied a class of BPS black string solutions
with traveling waves. The horizon of these solutions turns out to be singular. It will be interest-
ing to understand if our technique allows one to add non-singular travelling wave deformations
on black string solutions lifted to ten-dimensions. Such hair will also be of interest with regard
to the 4D-5D connection in IIB compactification on T*x S, cf. [88}/89].

It will be useful to explore GGV technique in other duality frames, in particular, say for
solutions of five-dimensional STU supergravity embedded in M-theory. The structure of em-
bedding, see, e.g., [90], is very similar as in the present work, though because of the presence
of different matter fields details are likely to be different. If successfully implemented, the
technique will allow us to add hair modes associated to various U(1) currents of the MSW CFT
on the MSW microstates [91]].

Our generalized Garfinkle-Vachaspati transformation is an example of the extended Kerr-
Schild metrics considered in [92]] and [93]. Due to the assumption that the null and spacelike
vectors are Killing, our analysis is more restrictive and hence our final results are much simpler.
In addition, we have non-trivial matter present compared to the general extended Kerr-Schild
forms considered in those references. It will be interesting to see if we can further relax our
conditions on null and spacelike vectors and relate our analysis to theirs.

Since the number of Killing symmetries do not change under our generalized Garfinkle-
Vachas-pati deformation, it is natural to ask whether the deformation has a simple group theory
interpretation from the hidden symmetry point of view of type IIB theory. Hidden symmetries
under null reduction of gravity theories have not been fully explored. Some general results are
known [94]. It can be useful to explore the null reduction further and find the interpretation
of (generalised) Garfinkle-Vachaspati transform from the hidden symmetry point of view. We

hope to return to some of the above problems in our future work.
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THESIS SUMMARY

In this thesis, we mainly discussed the development of a new solution generating technique
termed as the generalized Garfinkle-Vachaspati transform (or GGV). These are based on our
two published papers [52,53]. We studied both the dilaton free [52]] and non-zero dilaton [S3]]
cases. For the first case [52] we established GGV as a solution generating technique for a
six-dimensional theory with dilaton that is embedded in ten-dimensions via addition of four
torus. Field content of the six-dimensional theory is given in terms of metric g,,, and associated
Ramond-Ramond (R-R) two form field C),,. Both the metric components and the components
of the R-R field gets transformed in well defined ways under GGV. The technique is verified
by direct computations of the equations of motion for the transformed system. In [53]] we did
similar analysis for solutions with non-zero dilaton. Unlike the dilaton-free case here there are
two S-duality related set-ups namely, (i) R-R sector and (ii) NS-NS secto We established
GGV in both the set-ups where we used S-duality explicitly. Here the R-R sector verification
method is a bit different from the earlier zero dilaton case.

The technique has been successfully applied to a class of supersymmetric D1-D5-P orb-
ifold solutions. These class of solutions belong to the form of general supersymmetric so-
lution of minimal six dimensional supergravity as proposed by Gutowski, Martelli and Reall
(GMR) [65]. We studied this class of D1-D5-P solution with non-trivial dilaton profile as well.
These class of supersymmetric solutions are obtained from NS-sector chiral primaries of the
corresponding CFT by odd units of spectral flow (discussed in section [54,55]. In the
type IIB Ramond-Ramond embedding, the technique allows us to add travelling-wave defor-
mations involving the torus directions on this class of D1-D5-P geometries. The deformed
solutions are given in terms of a scalar field on the background geometry. In the large AdS-
limit, similar to the case of the background geometry, the deformed solution also gets its inner
part of the geometry decoupled from the asymptotic flat spacetime and we can identify the de-
formed states in the D1-D5 CFT as an action of a U(1) current on the undeformed state. The
dilaton free case [33,/52]] is a special case of the more general non-zero dilaton case [53|] and

one can obtain all the results of dilaton-free case by setting ® = 0 in the later [53]]. We also

1“NS” stands for Neveu-Schwartz
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briefly discussed the application of the GGV technique to the F1-P system.

Also, we tried to explore further applications of the generalized Garfinkle-Vachaspati trans-
form in other dual frames, especially in eleven-dimensional M-theory frames. We obtained
the GGV transform in certain M-theory frames by dualising them from D1-D5-P string theory
frames. The final solutions obtained are various M2-M5-P systems.

On a different approach, we discussed KK-monopole solution, KK-P solution and appli-
cations of GGV on it. This work is not yet published. The KK-P solution is obtained in [85]
via the application of Garfinkle-Vachaspati transform [43]. There, the scalar wave equation
corresponding to Garfinkle-Vachaspati transform was solved for special cases where the scalar
field was considered to be independent of the fibre direction. We worked out more general
solution to the wave equation including the fibre direction as well. We also related the KK-
monopole solution and KK-P solution to the GMR form of supersymmetric solutions. Being
pure gravitational solutions, the matter field contents associated to the GMR form of KK and
KK-P solutions are set to zero. We performed GGV on these GMR form of KK and KK-P

solutions.

12
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Appendix A

Differential forms

A p-form denoted as A”) can be written in terms of its components as

1
AP = Ay dt A dat AN dat (A.0.1)
p:

The components A, ., of the p-form AP) are anti-symmetric in all their indices.
Exterior derivative (denoted as d) on a p-form is a (p + 1)-form F®T) = dA®) with
components

F®D = (p+1)d),, AV (A.0.2)

B1---Bpt1 B2.--ppt1]”

Exterior product or wedge product of a p-form A® with a ¢-form B is a p + ¢-form

denoted as A A B and it has components

(AA B) _erat, g

B1-Hptq plq! (11 pip

(A.0.3)

[p+1-Hptql®

Interior product of a vector v* with a p-form A®) is denoted as i, A which is a (p — 1)-form

and its components are given by
. 1 i
(ZUA)Ml---Mp—l = mv A;Lul...up,y (A04)

Lie derivative of a scalar function f with respect to vector field v is denoted as L, f and
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defined in terms of exterior derivative as

Lof = iudf = v",f. (A.0.5)

Lie derivative of a p-form A with respect to the a vector field v is given by

L,AP) =i, dA®P) 4+ d(i, AP). (A.0.6)

This is known as Cartan’s magic formula.

Hodge star of a n-form F(™ in a D-dimensional manifold is a (D — n)-form F(P=7) given

by
. 1
F=%xF = m(*F)MH,__M)dx“"*1 Ao N dxt (A.0.7)
where the components of xF' are given by,
det(g,.
(*F>Mn+1...,uD = #eul...unFulmun' (AOS)

n!

Here € is the Levi-Civita symbol with the signature ¢;_,, = 1.
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Appendix B

Dualities in string theory

There are various dualities in physics that relates two completely different theories. We are

going to give a brief outline of some important dualities appearing in string theory.

B.1 Electromagnetic duality

As we know the Dp-branes occuring in string theory are associated with U(1) charges that can
be both electrical and magnetic in nature. If we consider a point particle then it’s worldline is

electrically coupled to a 1-form gauge potential A,, which appears in the action as

Q/AM, (B.1.1)

where () is the Maxwell charge associated with the point particle. Similarly, for a p-brane the
worldvolume is coupled to a p + 1-form gauge potential A,y under p + 2-form electric field
strength tensor given by,

F(p+2) - dA(p_;’_]_) (B12)

The magnetic dual of the field strength tensor is given by the Hodge star operation as,

*Fipr2) = Fo_pr2) (B.1.3)
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where D is the spacetime dimension. For string theory DD = 10 which implies the magnetic field
strength associated to a p-brane is given by the (8 — p)-form tensor Fs ). The gauge potential
is a (7 — p)-form. In other words we can say, a p + 1-form gauge potential is electrically
coupled to a p-brane where as it’s magnetically coupled to a (6 — p)-brane. In other words we
can say that, a p-brane is electromagnetic dual of a (6 — p)-brane. In that sense DO-brane is
dual to D6-brane, D1-brane is dual to D5-brane, D2-brane is dual to D4-brane and D3-brane is

self-dual.

B.2 S-duality

This duality is a symmetry of type-1IB string theory, since under S-duality type-1IB string
theory maps into itself. Also, under S-duality type-I superstring theory can be mapped to
SO(32) heterotic string theory. Under this duality two type-1IB string theories are equivalent

if their fields are related in the following way

9% — g, d > D, By < Chu,

(B.2.4)

(E)

where g, is Einstein frame metric, ® is the dilaton and B,,,, C,,, are the associated two form

nz
fields. This is a kind of strong/weak duality as the asymptotic value @ of string coupling is

related to dilaton by the following relation,
g, = e (B.2.5)

Thus the coupling g, in one theory goes to 1/gs in the dual one. Also as the two-form NS-NS
field B, and the two-form Ramond-Ramond fields ), get interchanged under S-duality, it
can be interpreted as the S-duality interchanges fundamental strings and branes with D-branes.

For example under S-duality a fundamental string £'1 along z transforms to D1-brane along z,

F1(z) +» D1(2), (B.2.6)
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and a NS5 along 2, <+ 25 brane gets transformed to a D5 along the same directions.

B.3 T-duality

NS5(212’22324Z5) < D5(2’122232’425>.

(B.2.7)

This is a duality between type-IIA superstring theory and type-IIB superstring theory. Under T-

duality along a compact direction of radius R, closed strings in one theory mapped to the same

closed strings in a theory where the compact direction now have a radius of o/ /R. Similarly if

we consider a compact volume V' then under T-duality it maps to o/ /V .

The changing of the background fields under T-duality is governed by the Buscher rules.

These rules are for low energy effective action of string theory. According to these rules, at

lowest order the change of background fields for a T-duality along z-direction is given by,

G;Z
G
G,
B,.
B,

/
€2¢

Cv/ (n)

Q..voz

C/ (n)

w...vaf

1
Gzz’
B,.
Gzz’
G szz - B zB
Cw ="
G-
Gzz’
B,.G,.—G,B
Bu==""a
€2¢
Gzz’
¢ @
n—1 [p...v|z T o]z
Cﬁ...m’ —(n— 1>G—zz’

(n+1) (n—1) [w..v|z
Cu...l/ozﬁz + nC[HVaBﬁ]Z + n<n - 1) £ Gzz
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(n—1)
Cr.. iz BlalzGls)z

(B.3.8)
(B.3.9)
(B.3.10)
(B.3.11)

(B.3.12)

(B.3.13)

(B.3.14)

(B.3.15)
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Appendix C

Verifying GGV by explicit computation of

equations of motion

In this Chapter the details of the computations of equations of motion are presented. In section
[C.1|the minimal supergravity equations are considered for which dilaton is set to zero. Here the
computations are a bit simpler. The more general supergravity equations with non-zero dilaton

are considered in

C.1 Dilaton is zero

To establish the generalised Garfinkle-Vachaspati transform as a valid solution generating tech-
nique we computed the equations of motions via a brute force calculation. By doing so we
found that under GGV, the left and the right hand side of the Einstein equations transform in
the exactly the same way. This proves new solutions can be generated from existing solutions

by deforming with GGV. In our convention, Einstein equations are

1
Rm/ = ZF/J,)\O'FI/)\O-7 (Cll)

and matter field equations are

VP =0, (C.1.2)
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We need to show that the above equations transform covariantly under GGV. The calculations
are very straight-forward yet tedious. We can organize the computations as follows: (1) The
left hand side of the Einstein equations are analysed in section|C.I.T] (2) Then we analysed the
right hand side of the Einstein equations in section|C.1.2} (3) and finally in section|C.1.3|matter

equations are analysed.

As discussed earlier in the main text, the generalised Garfinkle-Vachaspati transform of the
metric is given by,

G = Guw + Y (kuly + Kuly). (C.1.3)

Here W is a massless scalar that satisfies the wave equation with respect to the original back-
ground spacetime ¢,,,,

O = 0. (C.1.4)

The transformation (C.1.3)) involves a null Killing vector k* with satisfying the following con-

ditions

k'k, =0, Yk, + Vyk, =0, (C.1.5)

and another spacelike, unit normalised covariantly constant vector [* that satisfies the follow-

ing:

"1, =1, k4, = 0, Vul, =0. (C.1.6)

Also note that [* is orthogonal to k*. The compatibility of ¥ with the Killing symmetries can

be written as,

KV, 0 =0, "V, 0 =0, (C.1.7)

these compatibility conditions preserve the Killing symmetries of the background.
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C.1.1 Left hand side of Einstein equations

The goal of this subsection is to obtain the expression for the transformation of the left hand
side of the Einstein equations (C.1.1). For this we need to compute the transformation of the

Ricci tensor which is given by
R\, = Ry, — Vo + V. Q8 + Q4,07 — QO 0, (C.1.8)
where the change 2} in metric compatible connection :
'y, =T% + Q4 (C.1.9)

is given by

1
Qy, = 59’“" (Vadoo + Viugor — Vad,y) - (C.1.10)

The objective is to compute various pieces in equation (C.1.8)) and then obtain the complete
expression for the transformed Ricci tensor.

By looking at the transformed metric we can observe that the inverse transformed
metric is simply

g* = g" + UPRIE — TS (C.1.1D)

Next, we introduce the notation,

S = ki, +kl,, (C.1.12)
hy = VS, (C.1.13)
Ny = Vuk, —V,k,. (C.1.14)

The change in the metric compatible connection, Qﬁy, can be organised in two terms,

1
5, =25, + 5(@21@%@ — WS ) (Vahya + Vihar — Vaha), (C.1.15)

where the first term =X is the combination that appears in the original Garfinkle-Vachaspati
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transform:

1
=X = 59" (Vahua + Vihar = Vahay). (C.1.16)

For the sake of convenience we make the following identification,

K' =V,S\ + V,\Si = V*S\, (C.1.17)
using which it follows that
= % (Vo 0)S + (VAT)S — (VA0S + WK™ (C.1.18)
and therefore,
Qf =28 — %\Ifk“(k:l,VA\If + k\V, ). (C.1.19)

The trace of 2% is easily seen to be zero

Q=0 (C.1.20)

Which implies the following simplified form of the transformation of the Ricci tensor (C.1.8))

l)\y =Ry + quMAV - Qpp)\Qupw (C121)

We compute the above by computing the individual terms V,Q#,, and 97 ,,)*,,. We can first

show that

2V,.EY, = (VuV ) SN + (VuVaW)SY — (VAU)(V,uSia) + (VW) KD, + (VLK)

(C.1.22)

where we have used V5% = 0 and the massless scalar field equation (C.1.4) for . With this

it’s easy to see that the first three terms of (C.1.22)) combine to zero,

(V, .V, 0)SE + (V, VW) SH — (VHU)(V,5,) = 0. (C.1.23)
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For further simplification of (C.1.22)) some of the identities required are analysed below

Kl = (V k' = V"E) 4+ (VaE" = VPR,

= nV“lA + n,\“ll,.

It then follows that the fourth term of (C.1.22) simplifies to

(VKD = =2k*[(V,V,0)l\+ (V\V,¥)L],

where we have used

(VU = —2k*(V,V,0).

Inserting (C.1.25) in (VK" ), the last term of (C.1.22) simplifies to

V.Kl\ = —=2(0k,)l\ — 2(0ky)l,,

where we have also used

V.t = =20k,.

When the dust settles, we get a simplified expression for equation (C.1.22)):

VB = —L[K(V,V,0) + U0k, — L, [k*(VAV,0) + UOk,].

From (C.1.19)) it then follows that

2V, QL =2V, B — Wk [k, (V,V2T) + kA (V,V, )],

(C.1.24)

(C.1.25)

(C.1.26)

(C.1.27)

(C.1.28)

(C.1.29)

(C.1.30)

(C.1.31)

Similarly we can compute straightforwardly the other piece QZAQZ/ that is required in
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(C.1.21)). We start by observing that

400,08, = [220, — Uk (k, VAU + kyV, 0)][22%, — Uk*(k,V, T + k,V,T)]
(C.1.32)

— =P = (C.1.33)

S
The combination =Z°,ZH is,

UA—pr

=R = [(V,0)S% + (V,\\I’)Sﬁ — (VPU) S + \I;Kﬁk]

SNy

X [(V,0)S8 + (V,0)S" — (VAU)S,, + UKL, (C.134)

For further simplification, we use the following non-trivial identities, which can be easily es-

tablished:

SPR", =0, SnK!, =0, (C.1.35)

S{ijLA = k,n)’, KﬁAKF’jV = 4(V, k) (V, kM)A (C.1.36)
After all these simplifications, we get

1 1
2, = — 2 (V,0) (V0 kak, — 5 UK [ka (V,,V, 0) 4k (Vi VA R) [+ (V80 (V k)

(C.1.37)
Therefore, a final simplified expression for the transformed Ricci tensor is
R\, = Ry —L[K(V, V) + Y0k, — LK (VaV,Y) + WOk
1
+§(vp\11)(vpxp)km — WA(V k) (V k") AL, (C.1.38)

In the next subsection we verify that the right hand side of the Einstein equations (C.1.1) also

transform in exactly the same way.
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C.1.2 Right hand side of Einstein equations

For the computation of the right hand side first recall that under generalised Garfinkle-Vachaspati

transform (GGV) the two-form field transforms as

C—C'=C-Yk,d" Nl,dz". (C.1.39)

Here we need to use the transversality conditions (2.3.43)) in order to match the transformed
right hand side of the Einstein equations (C.I.1) with the transformed left hand side (C.1.38).

So we write them again:

K'EP = —n?, (C.1.40)

"E,"» = 0. (C.1.41)

As mentioned in the main text, a large class of minimal six-dimensional supergravity solutions

uplifted to ten-dimensional type-IIB supergravity, satisfy these conditions. Introducing the

notation
My, = kul, — Kk, (C.142)

we have
C;,w = Cu —V(k,l, — k) (C.143)
- C,u,z/ - \Ijmp,u- (C.144)

It then simply follows that

F/iyp = 0,C,,+0,C. +0,Cpy — 0,(¥Ymy,) — 0,(¥Ymy,) — 0,(¥m,,) (C.1.45)
= 0,Cp +0,Cpp +0,Cpp — Quup — VP, (C.1.406)
Fuup - Quup - \I]P,u,l/py (C147)
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where

Quup = (0,V)my, + (0,9)my, + (0,¥)my,,

Pup = Oumu,y + Opmy + Oymyy.

Inserting (C.1.42) in (C.1.49) we get,

prp = 8u(kvlp o kpr) + 8p(k5ulv o kvlu) + au(kplu - kulp)

= (Ouky — k)1, + (Dpky — Dk, )y + (DK, — Dk,

Nyl + Npuly + 1l

(C.1.48)

(C.1.49)

(C.1.50)
(C.1.51)

(C.1.52)

For the computation of the right hand side we need to obtain the expression for the transformed

three-form field with two of the indices raised i.e.f,”°. To do this we raise the indices on the

three-form field F),, , each at a time. Raising the first index we get

Ued . Iuo o/
F vp = 9 Fulfp

= (¢" + VkFE" — US*)(Fp — Quup — Y Py,

which can be simplified to

F/O’

by the use of the following identities

Kt Qup = 0, kEtP,,, =0,
SMO—FMV;) - _lgnyp, S'uo-Plqu = kanyp7

S*Qup = k(0 V) — ki (0,V)].
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v = F7,—Q%,—VYP7,+VIln, +Vk7[(0,V)k, — (0,V)k,].

(C.1.53)

(C.1.54)

(C.1.55)

(C.1.56)
(C.1.57)

(C.1.58)



Similarly raising the second index we get,

lon
F p

Jg”E",,
= FO,— Q7 — WP, W, + Wk (9K, — (9,¥)k"]

—WI"(n?,) — WE[(8°W) — k7 (,1)). (C.1.59)

With the above expressions we can readily compute the right hand side of the Einsteins equa-

tions. However, it turns out by raising all the three indices of the three-form field we get a

much simpler expression for F’ which appears to be easier to work with in various computa-

tions. Hence, before turning to the Einstein equations first we write the expression for F” with

all three indices raised. It can be straightforwardly computed that

Flona

G (C.1.60)
Fome — Q71 — Y P71 4 W™ + WEO[(0"W)k* — (0™V)k7]

—WI(n7) = WKk (0°F) — k7(0°D)]) + Wk K F7", — WS FT,
+USPQ + WS P, (C.1.61)
Fome — Q7" — W (nM® + n®1" + n"1%) 4+ W0

+TE[(O"D)E™ — (0“W)k"] — V1" (n*) — UK [k*(07W) — k7 (0 T)])

+HWI () + VO [K1(0°F) — k7 (0"W)]

Fome — Q71 + WET[(0MW)k* — (0“W)k"] — WE"[k*(0°W) — k7 (0°W)])
+TE[K(07T) — k7 (0"T))] (C.1.62)

Fone _ Qone (C.1.63)

which is a remarkably simple equation. With this now we can compute the transformed right

hand side of (C.1.1)). By the use of the following identities

—Frap@Q°P — QrapF?P = —A[I°(V\V0) + [\ (VOV30)]k? (C.1.64)

Qrap@Q°® = 2(050)(0°V)k\K°, (C.1.65)
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Prap@Q™ = 4Kk (V\Va0), Pros %% = 41,0k, (C.1.66)

we get the following simplified expression for the right hand side of the Einstein’s equations

1 1
TFas P = PasF? = [IU(VaV50) + (VY07

+%(V5¢1)(V5\I!)kkk5 + UEkY(V2\Vo¥) — UL,OK.  (C.1.67)

From this expression it can be easily seen that F 5 F' Aol = P\, F**? = 0. Moreover,

1 1
Zg'msFﬁagF ef = 7 (05 + US,5) F) ,F" (C.1.68)
1 1
T4 rag B = [, (VAV,0) + 1 (V, V0 R + 5 (Vo) (VP0)krk,
WOk, — W, Ok + W20, (Vo) (Vak®), (C.1.69)

where we have used the identities

Frapn®® = 40k, (C.1.70)

S0k = 1,ksOK. (C.1.71)

We see that the right hand side matches with the left hand side. Next we compute the matter

field equations.

C.1.3 Matter field equations

The matter field equations are

Y, Fr =0, (C.1.72)
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Under the deformation of the metric (C.1.3)) and the form field (C.1.39) the left hand side of the

above equation transforms as

!/ ynz _ yng lov v /uo uvo
Vi, EM = NV F 4 Qi 4 QY F 4 QB
= V"

= V" V,QM.

(C.1.73)
(C.1.74)

(C.1.75)

Using the background matter field equation (C.1.72) the first term in the above expression is

readily zero. For the second term in (C.1.75)), we have via (C.1.48))

QMr = guagyngpaQona

= (VAP + (VY T)m? + (VoD )m.

Applying the covariant V, on this expression we find,

(C.1.76)

(C.1.77)

V@M = (OW)m” + (VRO (V, k") = 17(V k)] + (V0 0) (k1 — K1°)

+ (VL VP0) (KM — kI,

Using
v = 0,
"v,v) = 0,
FAV V) = (VRE)(V LK),
we get

VP = V,QM = 0.

(C.1.78)

(C.1.79)
(C.1.80)

(C.1.81)

(C.1.82)

This proves the covariance of the matter field equations (C.1.72)). Thus under GGV solutions

of type-1IB supergravity are mapped to new solutions of type-IIB supergravity.
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C.2 Non-zero dilaton

In this section we establish that generalised Garfinkle-Vachaspati (GGV) transform is a valid
solution generating technique for more general supergravity solutions involving non-zero dila-
ton. Here the computation is a bit tricky yet one can relate them to the dilaton free case in a
special frame so-called conformal frame which I shall introduce below.

The main text has GGV presented in the string frame which is useful in the sense that the
examples we studied in Chapter [3] are easier to work with in the string frame. However, for the
verification of the technique it is most convenient to work in the so-called conformal frame.
After establishing the technique in the conformal frame, it can be readily written in any frame
we like. In section |C.2.4/ we provide a brief summary of GGV in string, Einstein, and what we
call conformal frame.

As in case of vanishing dilaton studied in section|C.I] we explicitly compute and show the
matching between the transformed left hand side and the transformed right hand side of the IIB
equations.

The system of interest consists of a six-dimensional metric with associated antisymmetric
2-form field C),, and dilaton ¢ which is lifted to ten-dimensional IIB theory compactified on
T*. The minimal six-dimensional supergravity coupled to one self-dual tensor multiplet has the

following supergravity action [66]

1

SG B 167TG6

1
/ dbz\/—g [R — (d¢)? — Ee%FWpFWp] , (C.2.83)
For ten-dimensional fields we follow Polchinski’s conventions in which we can write the ten-

dimensional IIB string frame action as

B 1
N 167TG10

SRR / d"z/—g le_%[R + 4(d®)?] — %FWPF“VP} : (C.2.84)

where F' is the self-dual three-form field strength corresponding to the RR 2-form potential

C' @) The six-dimensional fields are embedded in ten-dimensions as

ds(s) = dsg + €®dsj, (C.2.85)
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where dsfg, is the ten-dimensional metric and ds} = S°1 . dz'dz" is the flat torus metric. The
subscript (S) denotes that the metric is in string frame. The six-dimensional dilaton, ¢ is defined
as the scalar function that relates the six-dimensional string frame action with the Einstein
frame action. For the particular embedding of interest, the ten-dimensional dilaton is same as
the six-dimensional dilaton

O = ¢ (C.2.86)

and the ten-dimensional 2-form R-R field is also the same as the six-dimensional 2-form field
with the torus components set to zero. In the Einstein-frame the ten-dimensional metric takes
the form,

ds%E) = e ?%ds2 + e??ds?. (C.2.87)

In a standard IIB conventions [20,21]], the Einstein frame bosonic field equations are

1 1 1
R;w = §V“(I)VVQ) + Zeq) (FMPUFVpJ - Eguqua/{Fpaﬁ> ) (C.2.88)
V. (e?F*7) =0, (C.2.89)
1
O = —e®Fp FP". (C.2.90)

12

We need to check the covariance of the above equations under the GGV transform (which we
are going to define). Then, by computing the transformed left hand side and the right hand side
of the Einstein equations (C.2.88) we will verify that GGV is an effective solution generating

technique including dilaton as well.

C.2.1 Left hand side of Einstein equations

For the implementation of Generalised Garfinkle-Vachaspati transform we need a null Killing
vector and a spacelike Killing vector. The analysis of the equations of motion in case of non-
zero dilaton can be closely related to that in section by performing the computations in
the so-called conformal frame. This is because here for non-zero dilaton we do not have any
covariantly constant vectors along the torus directions neither in the Einstein frame nor in

the string frame. By performing a conformal transformation we can get covariantly constant
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spacelike vectors lé) along torus direction which is discussed below.
The conformal transformation that provides us with spacelike covariantly constant vectors
is defined by multiplication of the Einstein frame metric with a factor of e~%/2. The new metric

thus obtained is called as the “conformal frame” metric. It takes the form,
dsiey = e ¥ 2dsTy = e 0ds? + ds? = Gpydatda”. (C.2.91)

For k* being a null Killing vector of the six-dimensional metric dsZ, it is also a null Killing
vector for the ten-dimensional string frame metric dsf, cf. (C.2.85). The compatibility property

of dilaton with the Killing symmetry is given by
k'0,¢ = 0. (C.2.92)

It can be readily seen that the conformal frame metric ds%c) also admits the same Killing vector.
The contravariant (upper index) form of the Killing vector k* always has the same components
irrespective of the metric under consideration. However, it’s not the same for the covariant form
of the Killing vector &, and we need to use proper notations for the Killing vectors in different
frames of the metric to avoid any confusion. We use the notation /;;# for the conformal frame
Killing 1-form. For the contravariant form of the vector we use l%“, but note that k* = k*. This

is a convenient notation. It follows that
0= (L;d)uw = Viky + Vo ki, (C.2.93)

where @M is the conformal frame metric compatible covariant derivative. In this transformed
frame the torus directions provide covariantly constant unit normalised spacelike (Killing) vec-

tors orthogonal to kn:

iy = Uf}y 0 = O, (C.2.94)
Furthermore, we have that
19,6 = 0. (C.2.95)
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Now in the conformal frame we are equipped with a null Killing vector k#* and covariantly

constant spacelike vectors ZNZ). Using the same methods as in [C.1| we can compute the left

and right hand sides of the transformed equations. By doing so, we obtained (i) the right
set of transformation rules for the metric and the associated matter fields, (ii) equations to be
satisfied by the background spacetime for the technique to work, and (iii) the correct scalar
field equation for W. Once we establish the technique in conformal frame, we can go to string
or Einstein frame metric by appropriate conformal transformation.

Before going into the computations of the equations of motion let us write the expressions
for the transformation of the covariant derivative and that of the Ricci tensor under a conformal
transformation of the metric. We are going to need these rules for our computations. For the
conformal transformation of the n-dimensional metric g, = 0? Juv» the covariant derivative
transforms as

Vi, = Vuw, — Chw,, (C.2.96)

where

Ch,=06V,(InQ) + 60V, (InQ) — g,,g" V,(InQ), (C.2.97)

and the Ricci tensor transforms as,

Ry = Ru—(n—2V,V,(InQ) — gg™V,V,(InQ) + (n — 2)(V, InQ)(V, InQ)

—(n—2)9,,9”" (V,InQ)(V,1InQ). (C.2.98)

In our case £ = e~ ?/4 and the conformal frame metric is related to the Einstein frame metric
by

i) =e g0 (C.2.99)

Using the expressions in [C.2.97| and [C.2.98] the Einstein equations take the following form in

the conformal frame

~ SR 1
R, =2V, V,¢+ ngag}”ﬁFMpaFmﬁ. (C.2.100)

So the generalised Garfinkle-Vachaspati (GGV) in the conformal frame should be of a form

such that the above equations [C.2.100| remain covariant under the transform. Keeping this in
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mind, we postulate the GGV in the conformal frame to be,

G = G = G + V(kuly + k1), (C.2.101)

Cow — Ol =Ch— (kul, — k1), (C.2.102)

We will see from the analysis below that the above transformation generates a new solution

when the background spacetime configuration satisfies a “transversality”” condition:

KMF,, = —(dk)y,, (C.2.103)
and the scalar V satisfies,
O + 2(8,6)5"(9,¥) = 0. (C.2.104)

We can see that by setting ¢ = 0, the scalar field equation (C.2.104) reduces to the minimally
coupled massless scalar equation (C.1.4) for the dilaton free case. And also the transversality
condition has exactly the same form as for the dilaton free case (C.1.40) which is
a remarkable feature of this conformal frame. The consistency of the transversality condition
with the Einstein equations (C.2.100) can be checked straightforwardly as in the dilaton free
case. Even for the present case it turns out to be the “square root” of a doubly contracted
Einstein equations. To see this we first contract the left hand side of the Einstein equations

twice with the null Killing vector k#, which on simplification,
Rk i = —Oky = (Vo — V7RV — Vo). (C.2.105)
Contracting the right hand side similarly, we first note that,
kMY V6 = 0. (C.2.106)
Therefore, the contracted Einstein equations simply reduce to
(VPE? — V) (V kg — Vok,) = (KPF 0 ) (K E,P7), (C.2.107)
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which is just the square of the transversality condition (C.2.103)).
Let the conformal frame Einstein equations (C.2.100) after perfoming GGV takes the fol-

lowing covariant form,

A 1~pa~0c
RI}U/ = 2vluvlzj¢ + Zg/p g/ 5F, F/ (C2108)

ppo™ vap:

The computation of the left hand side of the GGV trasnformed Einstein equation (C.2.108)
involves the computation of the transformed Ricci tensor which is straightforward and we can

simply follow the steps from [C.T} The transformed Ricci tensor in the conformal frame turns

out to be[l]

Ry, = Ry — LIE(V,V,0) + OO0k, — L[F(VaV, ) + U0k,

1 - ~ - Y e e e e s 1~ -
+§(Vpllf)(VP\If)kAkV - \Ifz(Vukp)(Vpk“)lAll, — §D\IJSM,, (C.2.109)
where we have introduced the notation
Sy = kuly + k1. (C.2.110)

By contracting two of the indices in [C.2.109|it can be readily checked that R = R i.e Ricci

scalar remains invariant under the GGV transform.

C.2.2 Right hand side of Einstein equations

The GGV transform (C.2.101)—(C.2.102)) does not alter dilaton in the theory. The two-form

field transforms as (C.2.102). Note that under conformal transformation the form fields in
their covariant form do not change. Only the metric, hence the associated covariant derivative,
metric compatible connection, and Ricci tensor changes. Thus we do not need to use different
notations for the two-form fields in different frames. However, since the raising and lowering of

indices completely depends on the metric so to avoid confusion, we put tildes on the two-form

"We have confirmed this transformation using Cadabra [[67,68]] too.
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field in the conformal frame. The GGV on the conformal frame two-form is then,
C—C' =C—Vkyda" Nl,da. (C2.111)

To compute the transformation of the right hand side of the Einstein equation (C.2.100), we

simply follow the steps from|[C.1} We introduce
My = kuly — Kl (C.2.112)

and write the transformed R-R two-form field (C.2.111)) as

Cl, = Chu — Uiy (C.2.113)
We then find that
ﬁ’;/wp = F/Jl/p - Quup - ‘ij;wp; (C21 14)
where
Qup = (0,9), + (0,970, + (8,9)1i1,, (C.2.115a)
Pup = ity + 0y, + Oy (C.2.115b)

As done before in , we need to raise the indices on FM and contract them appropriately

with another F' wp- We find
Flone —  fene _ Qone (C.2.116)
and

L 1~ = TRy L (VoY k
Lp pres ZFMBF&"B—[l‘S(VAVa‘I’)HA(V‘SVB‘I’)W

+%(%\p)(@5\p)m§ + U kY(V\VaU) — ULOE. (C.2.117)
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From this last expression it can be easily seen that
F g F*7 = Fop, FP. (C.2.118)

Similarly, the transformation of the dilaton term in (C.2.100) turns out to be:

2V V6 = 2V, NV, + 57 (Vo 0) 8, (0,6) — 20[(V,kP)L, + (V, k)] (V,). (C.2.119)

Comparing with the left hand side (C.2.109), it is confirmed that both sides transform exactly

in the same way provided,

1. = o ~ - - - ~
—éSWD‘II =" (V,¥)S,,(0,0) = 2U[(V k), + (V,EP) L, (V ,0), (C.2.120)
which looks like a non-trivial tensor equation for the scalar W. Fortunately, we can sim-
plify the above expression by making use of the background Einstein equations. The term

2(V,k?)(V ,¢) is simplified to

2V, kP)(V,0) = —2kP(V,V ,0). (C.2.121)

The right hand side of the above equation can be written as,

I . - 1 - . - 1 -
—2kp(Vqud)) = —2k° (RM) - ZFuaﬁFpa5> = —2k"R,, + QFMQ’B(—fLa/g) (C.2.122)
where

o = V,k, =V, k, (C.2.123)
and we have used background Einstein equation (C.2.100). Using the identities

k*R,, = —Ok fapF, " = 40k, (C.2.124)

s

we get,

—2k°(V,V ,6) = 0. (C.2.125)



Similarly,

2V, k*)(V,6) = 0. (C.2.126)

As a result of these simplifications, the complicated tensor equation (C.2.120) for ¥ becomes

a much simpler scalar equation,
O + 2(0,6)5" (9,¥) = 0, (C.2.127)

equivalently,

V. (€% (9,T)) = 0. (C.2.128)

Next we compute the matter field equation.

C.2.3 Matter field equations

The 2-form field equation in Einstein frame is (C.2.89). Note that under conformal transforma-

tion the metric compatible covariant derivative transforms as
@uw‘“’p = V" + ChL W™ + CF WP + Czﬁw“l’ﬂ, (C.2.129)

with C';, given in equation (C.2.97). For the transformation from Einstein frame to the confor-
mal frame In 2 = —%. With these equations it is straightforward to find that the 2-form field

equation in the conformal frame is,
V,(e* Frvey = 0. (C.2.130)

We need to check the covariance of the matter field equation (C.2.130)) in order to confirm
the validity of our generalised GV transform. The dilaton field does not transform under the
generalised GV transform. The transformation of the 3-form field strength as computed in the

previous section (C.2.116)) where all the three indices are contravariant (upper) is,
FIHve — pHve _ QU (C.2.131)
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Therefore, under the GGV transformation the left hand side of the matter field equation (C.2.130)
transforms as

V(€2 Fe) = N, (e (F™r — Q")) (C.2.132)

where

QUr = (VMUY + (VYT ) + (VP )", (C2.133)

and recall that ™ = k*[¥ — k”[* = m". The above expression (C.2.132) is obtained exactly

in the same way as for the case of vanishing dilaton Expanding the above expression and

using one can show that
V(22 FHP) =V, (2 F1*P) = 0. (C.2.134)

Obtaining the rules of generalised Garfinkle-Vachaspati transform in the conformal frame now
we can easily convert them to other frames. In the following section we shall summarize the

GGV in different frames.

C.2.4 Summary in different R-R and NS-NS frames

GGV is a valid solution generating technique which is made clear by explicitly verifying the
equations of motion in the conformal frame. For the application of GGV to solutions of interest
it is easier to work in string frame or Einstein frame for which we need to perform the inverse
conformal transformation on the expressions obtained in the conformal frame.

Also the Ramond-sector equations can be transformed to NS-sector by the use of S-duality

[B.2]).

First let us summarize the conformal frame set of equations:

Conformal frame: The generalised Garfinkle-Vachaspati transform is

glﬂ’ — g:uz = gul/ + \I/<I%MZV + EVZM>7 (C2135)

Cow — Oy =Chy— (kul, — k1), (C.2.136)
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with scalar WU satisfying

V,.(e*§"(8,T)) = 0, (C.2.137)
and the 2-form C-field satisfying the transversality condition

KMEy, = —(dk),,. (C.2.138)

In this frame the vector [ is covariantly constant and unit normalised.
By performing a conformal transformation by the factor gff;) = ¢%/23,, GGV can be re-

written in the Einstein frame which we discuss below:

Einstein frame: In this frame the spacelike vector [* is not covariantly constant rather satis-
fies

VEIE = ~[10(9,6) — 18(9,0))- (C.2.139)

v

o

It of course satisfies the Killing equation,
VELE + v = o, (C.2.140)

and is normalised as /{;; 1B = e,
After the conformal transformation from the conformal frame to Einstein frame WU satisfies
the following equation:

O® g = 0. (C.2.141)

The transversality condition (C.2.103) becomes
Kl Fuvp = —d(e™ k™), (C.2.142)

The GGV transform takes the form

g0 — gl + Te 2 (kENE + kP, (C.2.143)
C = C—Ve?(kPIP —kPIP). (C.2.144)
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String frame: Similarly the string frame GGV can be obtained by performing the conformal
transformation by the factor gy = e?/2¢'%). This is the frame which we have used exclusively
in Chapter [3] of the main text. So we present some more details in this case. The spacelike

vector lfs) is again not covariantly constant. It satisfies

1
VI = S (0u0) = 17 (0,0)), (C.2.145)
VIR + VI = o, (C.2.146)

It is now normalised as lf‘s)sz) = e?.

The scalar equation satisfied by W in the string frame looks like,

O®W - 2(9,0)g(&)(8,9) =0, (C.2.147)
equivalently
V(e *gl§0,¥) = 0. (C.2.148)

The transversality condition (C.2.103) becomes

Kl Fup = —d(e”k®)),. (C.2.149)

The GGV transform takes the form

09 = g9 4 we kOIS 4 KOS, (C.2.150)
C = C—Ve kIS — kP, (C.2.151)

For convenience we write the string frame equations of motion by omitting the superscript

(S). The IIB string frame action with RR 2-form C'® with F©®) = dC®) is

1

S~ 1
5= 167G /dwx -9 |:62®[R + 4(d®)2} - EFuupFuyp ) (C.2.152)
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and the resulting equations of motion are

6
YV, Frr = 0, (C.2.154)

1 1
R, +2V,V,® = Ze% (FWUFVP” - = pgﬁFﬂU”gW) (C.2.153)

R+4V?® —4(V®)? = 0. (C.2.155)

In case of non-zero dilaton we have two different sectors namely, the Ramond-Ramond
sector and the NS-NS sector which are related by duality. For the application of GGV to F1-
P system [3.3.2] we need the set of rules in the NS-NS sector as well. It can be obtained by

performing a S-duality which is discussed in|(B.2

NS-NS sector string frame: Embedding of interest of the six-dimensional theory (C.2.83)

in the ten-dimensional NS-NS sector string frame is as follows
ds(sy = e ?dsg + ds?, (C.2.156)

with ten-dimensional dilaton,

b =—0¢. (C.2.157)

The six-dimensional 2-form field is now the 2-form B-field with zero components in the four
torus directions.
In this embedding the torus Killing vectors are unit normalised and are covariantly constant.

In this set-up the GGV transform takes the form,

G = G + Y (kul, + kl,) (C.2.158)

B, — B, —Y(k,l, —Fk)l,) (C.2.159)
The transversality condition reads,

K Hp = —(dk)yp, (C.2.160)
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and the scalar wave equation for the field ¥ becomes
V. (e72%¢"'V,¥) = 0. (C.2.161)
NS-NS sector Einstein frame: In Einstein frame, embedding reads,
ds%E) = e‘é/zds%s) = e‘b/zds%s) = e ?2ds2 + e??ds?. (C.2.162)
We note that this metric is same as (C.2.87). The two embeddings are related by S-duality:
9% — g, b, Cy — By (C.2.163)

In this set-up the GGV transform takes the form,

g — gl + T2 (PP + k), (C.2.164)
By, — By — We?(kPIT — EPIE)). (C.2.165)
The transversality condition reads, &{y,) Hyp, = —(d(e?/?k?)),,, and the scalar wave equation

for the field U becomes OE ¥ = 0.
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Appendix D

BW and GMR formalisms

In this appendix, we are going to give a brief review of the Gutowski-Martelli-Reall (GMR)
and the Bena-Warner (BW) formalisms, then obtained the relation between the two notations.

Similar computations were also done in [95-97]].

D.1 Gutowski-Martelli-Reall formalism

In the GMR formalism [65]], we work with minimal six-dimensional supergravity. The nota-
tions we are going to use are the same as followed in the appendix A of reference [33]]. The
bosonic field content of this theory consists of metric g,, and a self-dual three-form G,,,.
GMR showed that any 6D supergravity solution preserving some amount of supersymmetries

can be written in the following general form
2 -1 F m j,.n
ds* = —H *(dv+ ) (du%—w—i—g(dv—i—ﬁ)) + Hhppdxdz", (D.1.1)

where h,,,,, is a metric on a four-dimensional almost hyper-Kéhler base manifold. These mani-
folds are Calabi- Yau manifolds and characterized in terms of three complex quaternionic struc-
tures (for more details see [22]). S and w are one-forms on this base space and independent of

the u-direction. Similarly F and H are functions on the base space. In general h,,,, 5, w F

165



and H can be v-dependent. In that case the only null Killing vector is given by

k= (D.1.2)

However, to compare with the Bena-Warner formalism [72]], we restrict ourselves only to v-

independent solutions. Then the six-dimensional field strength G takes the form

F =2G = xdH — H '(dv+ ) A (dw_T*dw)

+H! (du +w+ g(dv + 6)) A (dB+ H ' (dv+ B) AdH) .(D.1.3)

In the GMR formalism using Killing spinor techniques the 6D equations of motion reduce
to 4D equations which are easier to solve. By analysing the Killing spinor equations, the

equations of motion can be written as

*d*df—%(gﬂ? = 0, (D.1.4)
d*dHJrM = 0, (D.1.5)
df —+df = 0, (D.1.6)

gt = 0. (D.1.7)

Here the Hodge star is with respect to 4-dimensional base metric 4, and self-dual two-form
Gt is defined as

gt = %(der*der]—“dﬂ). (D.1.8)

We also note that xd x dF = —V2F and (G")? = (GT)™(G) -

D.2 Bena-Warner formalism

As shown in [[72] by Bena and Warner, solutions that preserve same supersymmetries as those
of three charge black hole and black ring admit a general form in which one forms are defined

on a four dimensional hyper-Kéhler base space. This simplest formalism developed by Bena
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and Warner have the most symmetric form in the eleven-dimensional M-theory frame. There
we have intersecting branes on the six-torus with coordinates (z1, . . ., zg), denoted as M2(12)—
M2(34)-M2(56). Further details on brane intersection can be found in the review [98]]. The

eleven-dimensional metric takes the following symmetrical form,
ds, = ds: + dsre, (D.2.9)
where ds?F6 18 metric on the six-torus,

dste = (Zo25272)5(d22 + d22) + (212575 %)3 (d22 + d22) + (217275 )3 (d22 + d22),
(D.2.10)

and ds? is the metric on five-dimensional transverse spacetime,
ds? = —(Z12:73) 3 (dt + K)? + (72122 23) 3 hypda™ da™, (D.2.11)

where h,,, is the metric on a 4-dimensional hyper-Kéhler base space. The three-form potential
A associated to the metric (D.2.9)) is written in terms of three one-form potentials A/) which
depend on the non-compact five-dimensional spacetime with metric ds2. The potential is of the

following symmetric form,
A=AYAdzy Adzy+ AP Adzg Adzg + AD A dzg A dz, (D.2.12)

The one-forms A") on the non-compact space in turn take the form,

(dt + k)

AN —
Z;

+ wr, (D.2.13)

where x and w; are one-forms on the four-dimensional base space while Z; are functions on

the base space.
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The functions Z; and the one-forms « and w; are satisfy the BW equations [72]:

de = *de, (D214)

dk +*dr = Zidwy, (D.2.15)
1

VZ; = §|61JK|*(dWJ/\dwK), (D.2.16)

where the Hodge star is with respect to the four-dimensional base metric h,,,,,.

In order to compare with the GMR formalism which is in six-spacetime dimensions, we first
need to perform a dimensional reduction on the M-theory form of the Bena-Warner solution
for its reduction to ten-dimensions. After the dimensional reduction the solution reduces to the
intersecting D-brane solution D2(12)-D2(34)-F1(5) of type-IIA theory. Upon performing a set
of dualities it can be mapped to type IIB D1-D5-P solution.

Performing a dimensional reduction on (D.2.9) along the z4-direction the resulting ITA met-

ric in the string frame is,

1
ds?, = —————(dt + K)? + \/ Z1 Zyhypdx™dz™
0= = gz T VA Dk dr
Z Z NIAYA
+ ) 22(d2P +d2R) + | SRR+ d2?) + Y2022, (D2.17)
Z1 Zy Zs
with ITA dilaton,
NIAVA
e = Y122 (D.2.18)
Z3
and with three-form RR field,
Crzzy = AP, (D.2.19)
Cuz3 z4a A.‘(‘2) ; (D220)
and two-form NS-NS B-field,
B,.. AP (D.2.21)
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This is the D2(12)-D2(34)-F1(5) solution of type IIA theory. To go to type-IIB theory we need

to perform a set of T-duality transformations on it. We perform T-dualities along z3, 24

and z5 directions upon which we get D5(12345)-D1(5)-P(5) solution. We recall the T-duality

rules (B.3) for a duality along z-direction:

G/ZZ
G
G,
B,
B,

/
e%?

O/ (n)

Q..voz

(n—1)

O(n_l) . (TL . 1) [H-'gz

B...vo

) e Y By 4 n(n—1)

w..vafz [w..vex

Byo).Gg)2

(D.2.22)
(D.2.23)
(D.2.24)
(D.2.25)

(D.2.26)

(D.2.27)

(D.2.28)

(D.2.29)

GZZ

Now, we first perform T-dualities along z3, z4 directions after which we get the following

fields:
1
ds?, = —(dt + K)? + \/Z1 Zohppdr™ dx™
S10 7 /—Z1Z2( K) 142 roar

Z.
+ 4/ ;(dzf +dz3 +dzs +dzd) + dz3, (D.2.30)

1

73/2
= 2, (D.2.31)
Z3\ 2y

O gz = ALY, CM = —A®, By, = A®. (D.2.32)

Next, with another T-duality along zs-direction, we get the required D1-D5-P configuration.
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For the final configuration the I1IB dilaton reads:

A
o2 — 22 (D.2.33)

and the metric takes the form,

ds%o = — (dt + k) + \/Zy Zohppdz™dz"

1
VASVIAVE:
Zs

4
+—=2 (dz + zéll(f’)dx“)2 + 1/ == (d2f + dz5 + d2s +dzf), (D.2.34)

\V leg Zl

together with the associated RR-field components,

o = Ag)dx“ Adxt Ade? A dad A det A dx® + AS)AS)’)dw“ Adz” Adzt Ada® A da® A da?,
C® = —ARdat A da® — AP AP dat A da. (D.2.35)

The above solution can be considered in terms of a six-dimensional part and the remaining four-
torus part. The six-form potential C® is just the electromagnetic dual of a two-form potential
C® (refer to . However, we do not need to follow the tedious steps to convert it to a two-
form as by comparing the metric (D.2.34) with the GMR form (D.I.1)), a complete dictionary
between the variables in both the set-ups can be obtained. Also by using this dictionary the
GMR form of the field strength can be written in terms of the BW variables. The same
results can be expected from electromagnetic duality.

The GMR formalism corresponds to minimal supergravity solution where the dilaton field
is set to zero. In the present set-up which we obtained from the Bena-Warner form of

the solution, the dilaton can be set to zero by taking Z, = Zs. Inserting A\ dz" from (D.2.13)
in metric (D.2.34) we get,

dsty = =227 (dt + k)(dzs + ws) + Z3Z1 ' (dzs + w3)? + Zihypnda™da™ + dsh,, (D.2.36)

where

dst, = dzi + dz3 + dz3 + dzj, (D.2.37)
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is the metric on the four-torus. Now with the following identifications

25 = U, Zy = H,
Z3: 1_§7 (ngﬁ,
K = B;“’, = “;”j (D.2.38)

we can match the Bena-Warner solution (D.2.36) with the GMR form (D.I.1)). Also according
to the dictionary (D.2.38)), the GMR field strength (D.1.3) takes the following form :

1

1 1 Z.
G = 3 *xdZy — 4—Zl(dz5 + w3) A [dk — xdk] + 37 [(dt + k) — 73(612’5 + w3)] A dws
—ga(dzs T ws) A(dE+ R) N dZy, (D.2.39)
1

which using the BW equations of motion simplifies to

dt + &
Z1

2G = *le +d |:(dZ5 + CU3)] AN < - wl)} +wi A dwg. (D240)

The RR field strength in ten dimensions is normalised as F' = 2@, with the associated 2-form

field

C=- Kdt; " —wl) A (dzs +w3)] +o, (D.2.41)
1

where an explicit expression for o cannot be obtained in general. It satisfies,
do = *le +w A dCU3. (D242)

One can easily check that the three form xdZ; + w; A dws appearing on the right hand side of

equation (D.2.42)) is exact due to BW equations of motion for Z;.

D.3 Relation between GMR and BW

Now that we have a simple dictionary (D.2.38) we can easily relate BW and GMR equations

of motion. On the GMR side, we look at v-independent solutions while on the BW side we
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consider solutions with Z; = Z5 and w; = ws.
We consider BW equations and using the dictionary transform them into GMR equations.

Consider BW equation (D.2.15)),

dk + xdk = 2Z1dw; + Zsdws. (D.3.43)

Rewriting this equation using dictionary (D.2.38)), we have

1
2dw, = A (dk + *dk — Z3dws) (D.3.44)
1
1 1
= 37 (dw + *dw + 2(1 — Z3)dp) = i (dw 4 *dw + Fdp) = G, (D.3.45)

where we have used the fact that df = dws is self dual, cf. (D.2.14). It then immediately
follows that dG* = 0, which is one of the GMR equations, cf. (D.1.7). Similarly, from the BW

scalar equations for Z; we have,

d +
V27, = V?H = — xd* dH = x(dws A dwy) = * <%> : (D.3.46)
which implies (D.1.5)). Similarly,
1 + +
V2273 = —§V2]-" = x(dwy A dws) = * (%) : (D.3.47)

which implies (D.1.4)).
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Appendix E

General solution for wave equation in KK

background

In this appendix we are going to discuss solution to the general wave equation[5.2.29| which we

rewrite here
*T 2dT L? 1
=T+ W(W 2 —Q%)0IT = 0. (E.0.1)

i rdr

where the angular momentum operator L? satisfies the following equation
1 ) 1
—l(I+1)Y] = Siﬁag(sm 00,Y,1 )+ m(@}@fifl;m@flfn—z@( c0s 00,0,Y,1 ). (E.0.2)

Similarly we rewrite the radial equation (5.2.34)

&f gd_f_l(lJrl)er 1
dr? = rdr r2 Q3 r?

(V2r2 _ Q%) (_S_z> f=0. (E.0.3)

K

E.1 Angular Equation

Coming to the angular part which is given by the equation (E.0.2), writing the s, § and ¢-eigen
vectors as U, Uy and W, respectively and using the eigenvalue equations (5.2.30) it reduces to

just the #-equation

1

—I+1)% = sin 6

(—q* —m? + 2gm cos 0)W,. (E.1.4)

1
59(Sin 969\119) + 9.
sin“ 0
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In the limit ¢ = 0, the above angular equation reduces to

1 2
— y(sin 00y Vy) — Wy, (E.1.5)

sin sin? 6

—l(l+ 1)y =

solution to which is given in terms of associated Legendre polynomial of first kind /™ and

associated Legendre polynomial of second kind ()] as
Uy = 1 P"(cos ) + Q" (cosb). (E.1.6)

The second function Q] (cos 6) diverges at § = 0 so we set co = 0. Thus the complete angular

solution for ¢ = 0 is given by
Y™(0,¢) = Wl = Ce™™® P™(cos b)), (E.1.7)

C being the normalization constant.

Now, coming to the ¢ # 0 case, making the change of variables x = sinzg in equa-

tion (E.1.4) it reduces to

d? d ¢ +m?—2qm(l —2x)
1= ) g+ (0= 2005 - (=)

Fl+ 1)] U(z) = 0. (E.18)

where now Wy is a function of x and denoted as W(x).

Taking the ansatz
U(r) =2P(1 — )" F, (E.1.9)

where F' is a function of x, the angular equation reduces

d’F dF 1—=x T

1—2)— +[2p(1 — 2) — 2k + 1 — 22] — —1 k(k—1

2(1 =)=z + [2p(1 — z) — 2ka + ]+ [pp =) —— +k(k = 1)7—
1-2 1-2 2 4 m? — 2gm(1 — 2

- 2y, 4t = 2gml x)+l(l+1)F:O.

ok _
Pl z 0T 1-g 4x(1 — x)

(E.1.10)
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This equation though looks very complicated yet can be solved using Mathematica. Solving

this we get the solution in terms of hypergeometric functions /) and is of the form

(m+q)

) [Cl(—l)qquFl(q—l,l‘i‘Q‘f’l,

(=m+q+1) 1—=z
2

F(z) = (-1) xp(l—:c)k<

—m—+q+1L;z)+ Co(=1)"z"sFy(m — 1,1+ m+1;m—q+ 1;2)|, (E.1.11)

T

where (', Cy are constant coefficients. o F} is the hypergeometric function. From this we can

write U (z) as

1—1 %(er(I)
—> [Cl(—l)qquFl(q—l,l+q+1;—m+q+1;:15)

U(z) = (—1);<—m+q+1>( :

+Co(=1)™z™yFy(m — L, l+m+1;m—q+ L;2)|. (E.1.12)

Here, z = sin® () which takes values 0 < z < 1. The hypergeometric function »F (a, b; ¢; z)
with |z| < 1 converges for ¢ # 0, —1, —2,... which implies for the first term in (E.1.12)) we
have ¢ > m — 1. For [ = 1, we have m = —1, 0, +1. Thus we have a convergent series for the
first term if ¢ > (. Similarly, for the second term we have ¢ < m + 1 which implies ¢ < 0. If
we choose only ¢ < 0 case then we can set C; = 0.

For |z| = 1, the hypergeometric function 5 F(a, b; c; x) converges for ¢ > a + b which

implies for the solution to converge we need
q < —m. (E.1.13)
Thus for the solution to be convergent we have the following values of ¢
q=—-3/2,-2,.... (E.1.14)
The complete angular solution can be written as
0

Y2 (5,0,0) = U, U0, = Ne™Pe™ U (sin2 5) , (E.1.15)
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N is the normalization constant. This gives the angular solution to the wave equation (5.2.29).

Next, we come to solving the radial part (5.2.34).

E.2 Radial Equation (r-equation)

The radial equation is given by (5.2.34)

df 2df 1(1+1) q° V2r?
— 4+ - — —=(1- =0. E.2.16
dr? * rdr r? U 72 Q? / ( )
In the limit ¢ = 0 the above equation reduces to
d2f 2df 1(1+1)
A =0 E.2.17
dr? + rdr r2 /=0 ( )
solution to which is the same as in []given by
fry =" _[Ar' + B, (E.2.18)

>0

Thus the complete s-independent solution to the Laplace equation is given in terms of angular

part (E.1.7) and radial part (E.2.18).

We are trying to construct solutions which depends on the fibre direction s as well. We have
already the form of the spherical harmonics Before considering the general radial let’s consider

the simplest case when V' = % Then, the radial equation takes the following form,

d’ f df
2 — —l(l+1Df=0. E.2.1
r dr2+3rdr (I+1)f=0 ( 9

If we choose f = r* the equation becomes
AA=1)+3X—1(l+1)]f =0 (E.2.20)

For lowest harmonics choosing [ = 0, solving A(A — 1) +3X — (I + 1) = 0 we get the radial
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function f to have the following form

f=01+Cor 2, (E.2.21)

for some constant coefficients C'; and Cs. However, for the general case when we have asymp-

totically flat spacetime

vo1+9 (E2.22)
r
the radial equation (5.2.34)) looks like
df 2df  1(1+1) ¢ q?
— At =f—-2—=f=0. E.2.23

This equation looks like radial Schrodinger equation in the 72 = 2m limit. The associated

energy and charge are given by

2 2
q 2 2q
EF=—-—— el = ——. (E.2.24)
Q? Q
Substituting the above expressions and taking the ansatz f = g, equation (E.2.23) reduces to
d’s (1
S _ Wl Ss+ES=0, (E2.25)
dr r2

Solving the above equation we get

S =M (@) raW (2\/—T> (E.2.26)

where M and W are the Whittaker functions [99] [[100]]. These functions can in turn be written

in terms of confluent hypergeometric functions by the following relations

1
My, (z) = e 212y (n—Fk+ 2 2n + 1; z), (E.2.27)

1
Win(z) = e 2" 20 -k + 52+ L), (E.2.28)

where | F is the confluent hypergeometric function of first kind and U is the confluent hyper-
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geometric function of second kind. So from the expression (E.2.26)) we can write the solution

to the radial equation as,

+1
S V2 [ 24/¢? " 24/ q%r
f — ?ze Q ( Q ) ’I“l Ciq1F1(1+l+\/q2,2l+27 Q )
2 2
FCIU(1 41+ /g2, 20+ 2, 1) | (E.2.29)

Q

Here, ¢* can have both the roots +¢ and —¢. Note that, the confluent hypergeometric function
1F1 and U become polynomials when 1 + [ + 1/¢? < 0. Here, we have [ = 1 which means we

need 1/¢?> < —2. which is only possible if we choose

V@ =q=-2,-5/2,-3,... (E.2.30)
Or in other words we take only the negative square root part of \/? = —¢ where, § =
2,5/2,3,.... Thus we can write the radial solution as
r (—27\" 2G 2
f=eb (—q) PO R (41— 520+ 2 — 2 + U (L 41— ¢, 20+ 2, — =) |
Q@ Q Q@
(E.2.31)

To avoid notational clutter henceforth we simply write ¢ instead of g. However, we need to
remember that unlike the ¢ appearing in equation (E.1.14) of the angular solution part here ¢
takes the values

q=2,5/2,3,.... (E.2.32)

Again for the choice of parameters, the confluent hypergeometric functions of the first kind

1 I can be related to the associated Laguerre functions L” () by the following relation

Ik!
(n”+ 5 Lh(), (E.2.33)

Fi(—njk+1x) =
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with which we can write

2qr L+ g—1-1)! 5. ( 2qr)
Fill+l—q20+2,——F ) = Lt —=.
( ! @) I+ 9) o\ TQ

(E.2.34)

Associated Laguerre function L (x) becomes a polynomial if v is a non-negative integer which
implies in our case

qg—1—-12>0. (E.2.35)

with [ = 1 this is consistent with (E.2.32)). Thus, f has the following form

g [ —2 b+ 2 ar 2
f=eb (—q) rl [C{?U(l+l—q, 20+2, -y p e E LM, (ﬂ) ] (E.2.36)
Q Q Q
where we have used
LY, 5y 4(z) = (=) L)(—2) (E.2.37)

Thus simplifying we can write

—2q FH qr 2qr qr 2qr
f= <?> rt [C’{Z‘eaU(l +1—q,2042, —a) + 6_5057;[/27[;;1171 <5> ]

(E.2.38)

E.2.1 Asymptotic Limits

We need our solution to admit finite values at infinity. We need to consider the asymptotic limits
of the special functions. First we will discuss the asymptotic properties of these functions in
general.

Expanding the associated Laguerre L¥ (z) at z — oo we have the following general expres-
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sion

@) R ( C D(k+n+1)sin(nm)  (n+1)(k+n+ D0k +n + 1) sin(n)

(m+1)(n+2)(k+n+1)(k+n+2)(k+n-+1)sin(nr)
(2m)a?
(n+1)(n+2)(n+3)(k+n+1)(k+n+2)(k+n+3)'(k+n+1)sin(nm)
(6m)z?

w0 (%) +-)

—i—x"( (=)™ (=) n(k+n) (=1)"(n—1)n(k+n—1)(k+n)
r

(n+1) * Fin+ 1)z 2I'(n 4 1)22

(=1)"(n=2)(n—D)nk+n—-2)(k+n—1)(k+n) 1
i i co(2)-1)

(E.2.39)

As x — oo neglecting higher order terms in % for both the bracketed expressions, we are left

with

ek LB+ n4 Dsin(or) — (=2)" ) , (E.2.40)

Lﬁ(x)—>( e’x - +F(n+1)

Similarly, the general asymptotic expansion of the confluent hypergeometric function U (n, k, z)

at x — oo is given by

x z2

_ 2
Uln, k,z) — 2" (1+M+O ( ! ) +> (E2.41)

So asymptotically U(n, k, x) goes as =~ ". Thus, asymptotically the solution takes the

form;

—q—1—1
_2ﬂ> et

Im & 2(]7’ . im_—% < Q
Cipe? | —— + Cy'e @

~Y l T 1\
f r 0 ['(-q—1)
L (—Z?qr)q‘l‘l sin[(—¢ — 1 — 13T7T]F(—q i+ 1)> (E2.42)

By putting | = 1 and using the fact that I"(n) diverges for n < 0 we can check that the first

term in the C' part vanishes where as the last term in the C5 part diverges for all allowed values
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of gi.e. ¢ =2,5/2,3, ... and no finite solution is possible at infinity. If we take Céz” = 0 then

the asymptotic radial solution becomes
s 2qr 172 -
f ~ Tcﬁlne% <_g) ~ Tq71€%7 (E.2.43)
which again diverges at » — oo for all possible values of q.

E.2.1.1 r — 0 limit

In the z — 0 limit, the Hypergeometric U (a, b; z) function expands as;

W (T(=14+0b)z (=1—a+bT(=1+10b)z>
Ula,b ~ 70
(@5,2) ( M@ (24Dl
INOR) al’'(1 —b)z
E.2.44
+<F(1+a—b)+bl“(1+a—b)+ (E-244)
Inourcasea:1+l—q,b:21+2andz:—%.

So putting [ = 1 at 7 — 0 we have for the C';-term in (E.2.38)),

qr T qr T - F<3) -% r 2 3
reQU(Z—q,Zl,—%) ~ Tee <—%) F(2<—;)) +((2]r+(21)_r$) <—%) +0(r’) + ...

" K NORNCEING (_2qv~

+reQ e R S — 5) +O(r?) + )} (E.2.45)

Now since for ¢ = 2,5/2,3,...,'(2—¢) and T'(—1 — ¢) diverges so we get all terms vanishing
in the » — 0 expansion of C;-term.

Now coming to the Cs-term which for [ = 1 is of the form

_ar 2qr _ar 2qr ar —2qr
rle QLQfﬁ,,l (6) =re QLiq_Q (6) = —re@ Lz’_Q ( 0 ) (E.2.46)

where in the last step we have used (E.2.37).

For ¢ = 2 the series expansion of L3 (—%) at r = 0 gives

1

R 1. So we can see for

q = 2 that at » — 0 the radial solution (E.2.38)) converges. Similarly, we can check for other

values of q.
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We have developed a solution generating technique, named as Generalised Garfinkle-
Vachaspati transform (GGV) which effectively generates new supergravity solutions from the existing
ones. The necessary conditions for the implementation of this technique are that the background
solution admits a null Killing vector k* and one or more covariantly constant spacelike vectors [¥ ;.
Then by suitable transformations of the metric g,, and the associated matter fields the GGV can
generate a new solution as long as the matter field satisfies some additional constraint. We have
successfully verified our technique by direct computation of the equations of motion for the case of
supergravity solutions that are given in terms of metric g,,,,, associated two-form matter field C,, and
dilaton field ¢ . Then GGV on the string frame fields as given by,

I = G + ¥ e ? (kL + k1),
Cow = Cupy — W e 22 (kyl, — kyly),

is a valid solution generating technique as long as the associated 3-form field strength F = dC satisfies
the following transversality condition

ktEn, = —d(e”%k),,.

Here, ¥ is a scalar field that satisfies the following wave equation with respect to the background
metrici.e.

Vu(e_zwguv nW¥) =0,

and it is compatible with the Killing symmetries of the background solution for which it needs to
satisfy k#9,¥ =0,1#9,¥=0.

We also studied the applications of GGV on a class of D1-D5-P solutions which are considered
to have contribution to black hole microstates and hence black hole entropies.
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