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Abstract

Quantum Hall (QH) edge modes appear in a 2-dimensional electron gas at high magnetic

fields and at low temperatures. These edge modes are topologically protected (immune

to backscattering) and are chiral (unidirectional). Quantum spin Hall (QSH) edge modes

appear in topological insulators due to large spinorbit coupling and at low temperatures.

These edge modes are spin polarized, helical and are topologically protected too. Another

cousin brother quantum anomalous Hall (QAH) edge modes appear in magnetically doped

topological insulators due to high spinorbit coupling and again in absence of magnetic

field. Edge modes are quite promising candidates for low power information processing

due to their dissipation-less transport. They could also be useful for converting waste

heat into useful work due to their high degree of coherence when used in quantum heat

engines. Thus it is quite important to probe these topological states by disorder and inelastic

scattering to check their susceptibility to these. It is also important to distinguish these edge

modes from one another, which can be probed via nonlocal resistance as well as nonlocal

HBT noise cross correlation measurements. In some recent experiments it has been shown

that QAH edge modes always come with the additional baggage of quasi helical QSH

edge modes. Quasi helical QSH edge modes are prone to backscattering. If QAH edge

modes are also prone to back scattering then they are trivial otherwise topological. The

topological nature of QAH edge modes can be checked via conductance measurements

in presence of disorder and inelastic scattering. Further, we will discuss the performance
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of 2-terminal chiral (QH) and 3-terminal helical (QSH) edge mode based quantum heat

engines and refrigerators. Along with charge thermoelectric properties we will discuss

the spin thermoelectric properties in a QSH heat engine. For better understanding of

these edge mode based heat engines, we will compare their performance against ballistic

mode based heat engines, e.g., in 2-terminal monolayer graphene. A magnetic impurity

introduced along with strain can generate spin thermoelectric effects in graphene. As time

reversal symmetry is not broken in 2-terminal and 3-terminal QSH systems, these heat

engines can also efficiently work as quantum refrigerators too in different parameter space.

Graphene and QSH based spin heat engines and refrigerators exceed in their performance

over other quantum heat engines and quantum refrigerators in generating huge power and

efficiency.
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Synopsis

Studies on edge mode transport in quantum Hall, quantum spin Hall

and quantum anomalous Hall samples

Abstract

Quantum Hall (QH) edge modes appear in a 2-dimensional electron gas at high magnetic

fields and low temperature, these edge modes are chiral (unidirectional). Quantum spin

Hall (QSH) edge modes appear in topological insulators at low temperature and these edge

modes are helical (topological) and protected by time reversal (TR) symmetry. QSH edge

modes can also appear in a trivial insulator too but as is to be expected these are not

protected by TR symmetry. These latter edge modes are identified as trivial or quasi-helical

QSH edge modes. In a magnetic topological insulator at low temperature and in presence

of no net magnetic field another cousin brother of QH edge modes appears, these are quan-

tum anomalous Hall (QAH) edge modes. We study these edge modes, QH (topological),

QSH(topological), QSH (trival) and QAH (topological) edge modes, in presence of disorder

and inelastic scattering with spin-flip scattering via the conductance and noise. Further, we

have checked the potential applicability of helical (topological) edge modes to convert heat

energy to electrical energy to work as a heat engine or as a refrigerator and compared the
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result with that of heat engines and refrigerators based on ballistic modes in monolayer

graphene system.

Research questions we address

Our purpose is four fold: 1. To identify first how resilient these edge modes are to disorder

and inelastic scattering, 2. How to distinguish between trivial and topological helical edge

modes, 3. How to be sure of the topological nature of quantum anomalous Hall edge modes

and finally 4. How do these chiral and helical edge modes stack up against each other as

well as against ballistic modes as regards their application in quantum heat engines and

refrigerators.

Part A (comprising chapters 2, 3, 4): Edge mode transport

in QH, QSH and QAH samples

On the surface of 2D Topological insulators occur 1D quantum spin Hall edge modes with

Dirac like dispersion. Unlike quantum Hall(QH) edge modes which occur at high magnetic

fields in 2DEGs, the occurrence of quantum spin Hall(QSH) edge modes is because of spin-

orbit scattering in the bulk of the material. These QSH edge modes are spin dependent and

chiral- opposite spins move in opposing directions. Electronic spin has larger decoherence

and relaxation time than charge- in view of this its expected that QSH edge modes will be

more robust to disorder and inelastic scattering than QH edge modes which are charge

dependent and spin unpolarized. However, we notice no such advantage accrues to QSH

edge modes when subjected to same degree of contact disorder and/or inelastic scattering
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in similar setups as QH edge modes. In fact we observe QSH edge modes are more

susceptible to inelastic scattering and contact disorder than QH edge modes[1]. Further,

while a single disordered contact has no effect on QH edge modes it leads to a finite charge

Hall current in case of QSH edge modes and thus vanishing of pure QSH effect. For more

than a single disordered contact while QH states continue to remain immune to disorder,

QSH edge modes become more susceptible- the Hall resistance for QSH effect changes

sign with increasing disorder. In case of many disordered contacts with inelastic scattering

included while quantization of Hall edge modes holds, for QSH edge modes- a finite charge

Hall current still flows. For QSH edge modes in the inelastic scattering regime we distinguish

between two cases: with spin-flip and without spin-flip scattering. Finally, while asymmetry

in sample geometry can have a deleterious effect on QSH case it has no impact in QH

case. Another interesting effect of this dichotomy between chiral QH and helical QSH edge

modes becomes apparent when one deals with non-local transport. Now it is well known

that non-local currents and voltages are better able at withstanding the deleterious effects of

dephasing than local currents and voltages in nanoscale systems. This hypothesis is known

to be true in QH set-ups. We test this hypothesis in a four terminal QSH set up wherein we

compare the local resistance measurement with the non-local one. In addition to inelastic

scattering induced dephasing we also test resilience of the resistance measurements in

the aforesaid set-ups to disorder and spin-flip scattering. We find the axiom that non-local

resistance is less affected by the detrimental effects of disorder and dephasing to be in

general untrue for QSH case[2]. This has important consequences since it has been widely

communicated that non-local transport through edge channels in topological insulators will

have potential applications in low power information processing. Unlike QH chiral edge

modes which always occur in topological systems, helical edge modes may arise in a

trivial insulator too. These trivial helical or quasi-helical edge modes are not topologically

protected and therefore need to be distinguished from helical edge modes arising due
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to topological reasons. Earlier conductance measurements were used to identify these

helical states, in this chapter we report on the advantage of using the non local shot noise

as a probe for the helical nature of these states as well as to reveal their topological or

otherwise origin and compare them with the chiral quantum Hall states. We see that in

similar set-ups affected by same degree of disorder and inelastic scattering, non local shot

noise ”HBT“ correlations can be positive for helical edge modes but are always negative

for the chiral quantum Hall edge modes. Further, while trivial helical edge modes exhibit

negative non-local ”HBT” charge correlations, topological helical edge modes can show

positive non-local ”HBT“ charge correlation[3]. We also study the non-local spin correlations

and Fano factor for clues as regards both the distinction between chirality/helicity as well

as the topological/trivial dichotomy for helical edge modes. The trivial versus topological

conundrum is not restricted to QSH samples alone. Quantum anomalous Hall(QAH) edge

modes, which arise from QSH edge modes via the introduction of ferromagnetism into

topological insulators, also are subject to the trivial/topological conundrum. A fair way

to be sure of the topological character of QAH edge modes is by testing them against

disorder and inelastic scattering. The test reveals uniquely transport via topological QAH

edge modes does not result in quantized Hall resistances while transport via the trivial

counterparts does[4]. In a recent work[5], this deviation of longitudinal and Hall conduc-

tance from the topological quantization is explained as a finite temperature effect. In our

work[6], we have shown that finite temperature is not the sole reason to have this devi-

ation, a finite disorder and presence of inelastic scattering also can give rise to this deviation.
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Part B (comprising chapters 5, 6 and Appendix): Edge

modes vs ballistic modes in designing quantum heat en-

gines and refrigerators

Finally, we explore the distinction between quantum heat engines designed via chiral and

helical edge modes. We further probe how quantum heat engines delineated via edge

modes stack up against those conceived using ballistic modes. Using a strained graphene

monolayer as a template for highly ballistic mode of transport we show its operation as

a highly efficient quantum heat engine delivering maximum power[7]. The efficiency and

power of the proposed device exceeds that of recent proposals. The reason for these

excellent characteristics is that strain enables complete valley separation in transmittance

through the device, implying that increasing strain leads to very high Seebeck coefficient as

well as lower conductance. This proposed device works as a charge heat engine which

converts heat energy to charge currents efficiently. Next we introduce a magnetic impurity,

a Delta like potential, to our strained monolayer graphene device to generate spin currents

along with a charge currents on applying a temperature bias at one of its terminals [8].

We have shown that a huge charge as well as spin thermoelectric figure of merit can be

generated in our proposed device, which shows the potential of our device to work as not

only a charge heat engine but as a spin heat engine too. We have also shown that our

proposed device can also generate a pure spin current on application of a temperature bias.

In addition, since time-reversal symmetry is unbroken in our system, the proposed strained

graphene quantum heat engines can also act as a high performance refrigerator[7, 8]. To

compare the output power and efficiency generated in these ballistic mode devices to that

of edge modes devices, we have proposed a three terminal QSH heat engine[9]. This

QSH heat engine in presence of quantum point contacts generates a energy dependent

transmission which is the prerequisite to generate thermoelectric effects. We have shown
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that this three terminal QSH heat engine outperforms our two terminal strained graphene

heat engines based on ballistic modes. The advantage of a three terminal heat engine

over a two terminal one is that in a three terminal heat engine the separate flow of electric

and heat currents can be modulated through different terminals to give more accessibility

to control these thermoelectric properties and generate a large power and efficiency for

both charge and spin currents. A multi-terminal QSH heat engine does not break time

reversal (TR) symmetry unlike multi-terminal QH heat engine and thus it can work both as

a charge/spin heat engine as well as a charge/spin refrigerator.

Theoretical Methods used

The Landauer-Buttiker formalism[10, 11] has been the workhorse for mesoscopic transport

problems and we adopt it here to calculate the conductance and Hall resistances used

in this thesis. To include inelastic scattering we use the energy equilibration approach as

has been applied in Ref. [12] as also inelastic scattering via a voltage probe as has been

pioneered by Buttiker[13]. Nonlocal shot noise calculations follow the template set up by the

works of Buttiker and Texier [14, 15]. Thermoelectric Seebeck and Peltier coefficients for

both charge as well as spin are calculated using approaches due to some works by Bauer

and Seifert[16, 17]. Thermoelectric properties for QSH systems are calculated by following

the approach of Sanchez and Sothmann [18].
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Relevance for Science

Edge modes hold great promise for low power information processing as well as in topologi-

cal quantum computation[56]. Understanding the nature of these edge modes is crucial in

applications in thermoelectrics. This thesis helps to shed a light on the promise held out

by these edge modes and on how far these are capable of delivering on these hoped for

applications. Our studies on quantum spin Hall edge modes especially reveals that they are

not as immune to disorder and/or inelastic scattering compared to their quantum Hall coun-

terparts. However, quantum spin Hall edge modes since they do not break time reversal

symmetry are more geared towards potential applications in quantum thermoelectrics than

quantum Hall edge modes.
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middle portion is strained region while the two side portions are normal graphene regions.

Voltages V1 and V2 are applied to the two sides which are at temperatures T1 and T2

respectively. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 207

6.2 2D graphene monolayer with (a) a delta potential magnetic impurity, (b) rectangular barrier

magnetic impurity, (c) a rectangular potential barrier and (d) a delta potential barrier. A

rectangular barrier magnetic impurity(b) models a magnetic quantum dot (see Ref. [127]) the

transmission through which approximates that of a delta potential magnetic impurity(a) to a

great extent. Similarly, a rectangular potential barrier(c) approximates a delta potential(d) in

modelling the Klein paradox (see Refs. [129, 130]). . . . . . . . . . . . . . . . . . 209

6.3 (a) Charge Conductance (Gch) vs. EF (Fermi energy) for various values of magnetic moment

m, length of strained graphene layer L = 40nm and width W = 20 nm, strain t = 50meV ,

temperature θ = 30K with spin of magnetic impurity S = 5/2 and J =−600meV , (b) Spin

Conductance (Gsp) vs. EF (Fermi energy) for various values of magnetic moment m, length

of strained graphene layer L = 40nm, strain t = 50meV , temperature θ = 30K with spin of

magnetic impurity S = 5/2 and J =−600meV , (c) Charge conductance (Gch) vs J (impurity

coupling strength) for various strains at Fermi energy EF = 50meV , length of strained

graphene layer L = 60nm, temperature θ = 30K with spin of magnetic impurity S = 5/2

and spin magnetic moment m =−5/2. (d)Spin conductance (Gsp) vs. J (impurity coupling

strength) for various strains at Fermi energy EF = 50meV , length of strained graphene layer

L = 60nm, temperature θ = 30K with spin of magnetic impurity S = 5/2 and spin magnetic

moment m =−5/2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 213

Page 28 of 269



6.4 (a) Charge Seebeck coefficient (Sch) vs. Fermi energy for various m of magnetic impurity

at T = 30K,J =−600 meV-nm, strain (t)=50 meV and spin S = 5/2 and length of strained

graphene region L = 40nm and width w = 20 nm and (b) Spin Seebeck coefficient Ssp vs.

Fermi energy EF in meV for various m of magnetic impurity, length of strained graphene layer

L = 40 nm, strain = 50meV , temperature θ = 30K with spin of magnetic impurity S = 5/2

and J =−600meV . (c) Charge Seebeck coefficient (Sch) vs Fermi energy for various strains

at J = 600meV −nm, length of strained graphene layer L = 60nm, temperature θ = 30K

with spin of magnetic impurity S = 5/2 and spin magnetic moment m = −5/2, (d) Spin

Seebeck coefficient (Ssp) vs Fermi energy for various strains with parameters same as (c). 215

6.5 (a) Charge Seebeck coefficient Sch vs. Fermi energy (EF ) for various exchange coupling

strength J with parameters at L= 40 nm, strain t = 0 meV, θ= 30 K, S = 5/2, m=−5/2, (b)

spin Seebeck coefficient Ssp vs. Fermi energy (EF ) for various exchange coupling strength J

with parameters at L = 40 nm, strain t = 0 meV, θ = 30K, S = 5/2, m =−5/2, (c) charge

Seebeck coefficient Sch vs. Fermi energy (EF ) for various exchange coupling strength J

with parameters at L = 40 nm, strain t = 100 meV, θ = 30K, S = 5/2, m =−5/2, (d) spin

Seebeck coefficient Ssp vs. Fermi energy (EF ) for various exchange coupling strength J with

parameters at L = 40 nm, strain t = 100 meV, θ = 30K, S = 5/2, m =−5/2. . . . . . . 216

6.6 (a) Charge conductance Gch vs. Fermi energy (EF ) for various spin S and magnetic moment

m of the magnetic impurity with parameters at L = 40 nm, W = 20 nm, strain t = 50 meV,

θ = 30K, and exchange coupling J = 600 meV, (b) spin conductance Gsp vs. Fermi energy

(EF ) for various spin S with fixed magnetic moment m = 1/2 of the magnetic impurity with

parameters same as (a), (c) charge Seebeck coefficient Sch vs. Fermi energy (EF ) for

various spin S and magnetic moment m = 1/2 of the magnetic impurity with parameters

same as (a), (d) spin Seebeck coefficient Ssp vs. Fermi energy (EF ) for various spin S and

magnetic moment m = 1/2 of the magnetic impurity with parameters same as (a). . . . . 217

Page 29 of 269
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1. Introduction

“Beyond the edge of the world there’s a space where emptiness and substance

neatly overlap, where past and future form a continuous, endless loop. And,

hovering about, there are signs no one has ever read, chords no one has ever

heard.”

– Haruki Murakami, Kafka on the Shore

Ever since the discovery of electromagnetism by H.C. Orsted in 1820, the scientific com-

munity has put great interest in studying current carrying samples in presence of magnetic

fields. There have been many important discoveries due to the dynamics of electrons in

presence of a magnetic field. One of those discoveries is the observation of transverse

charge voltage generated in a conductor with a magnetic field applied perpendicular to

the sample by Edwin Hall in 1879[19]. This is called classical Hall effect. After more than

a century, in 1980 the quantization of this transverse Hall voltage was observed in a two

dimensional electron gas(2DEG) but at very low temperatures. This is the quantum version

of classical Hall effect and is called quantum Hall (QH) effect. Another brother of the Hall

family was discovered by Russian physicists M.I. Dyakonov and V.I. Perel in 1971, when they

discovered that a transverse spin voltage is generated in a two dimensional conductor but

in absence of magnetic field. This discovery is known as the classical spin Hall effect [20].

The quantum version of this effect was proposed by the two groups Kane, Mele[21] and

Bernevig, Zhang[22] independently in 2006 and experimentally observed by the Molenkamp
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group in 2007[23]. This is the quantum spin Hall (QSH) effect. Unlike quantum Hall effect,

quantum spin Hall effect arises in absence of magnetic field due to spin-orbit interaction.

There is still one more member of the the Hall family left which is the quantum anomalous

Hall (QAH) effect. In quantum anomalous Hall effect too the quantized charge Hall voltage

is observed similar to quantum Hall effect but in absence of magnetic field. Quantum Hall,

quantum spin Hall and quantum anomalous Hall effects all seen in 2 dimensional samples

have one thing in common- the existence of 1D edge modes [24]. Although, the origin of

these 1D edge modes are different in the three cases. In quantum Hall, for example, 1D

edge modes arise at high magnetic fields but in quantum spin Hall case the edge modes

arise at zero magnetic fields because of bulk spin orbit effects in 2D topological insulators

[25, 26]. In quantum anomalous Hall case 1D edge modes arise in absence of magnetic

field but with doping of magnetic adatoms in 2D topological insulator or a ferromagnetic

topological insulator. In quantum Hall case 1D edge modes are chiral (see Fig. 1.1(a)), i.e.,

at one edge of the sample electrons move in one direction and at the other edge of the

sample electrons move in opposite direction. In quantum spin Hall case, the edge modes

are chiral not only with respect to edge but also spin (see Fig. 1.1(b)). For example, if at the

top edge of the topological insulator spin up electrons are moving in one direction, then spin

down electrons are moving in the opposite direction at the same edge and at the bottom

edge vice-versa. In QAH case, 1D edge modes are chiral, similar to QH case, but spin

polarized (see Fig. 1.1(c)), i.e., either spin up chiral edge modes are moving in the system

or spin down chiral edge modes depending on the spontaneous magnetization direction

of the ferromagnetic topological insulator. In Fig. 1.1 (d) the distinguishing property of an

edge mode is highlighted. An edge mode will never backscatter from an impurity placed

in the sample. This is the main difference between a ballistic mode and an edge mode. A

ballistic mode will scatter from an impurity while an edge mode because of its provenance

as explained in the next sections won’t. Of course, edge mode transport in QSH samples
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     QH QSH QAH

(a) (b) (c)

Edge mode

(d)

Figure 1.1: (a) Chiral quantum Hall edge mode, (b) helical quantum spin Hall edge modes, (c) chiral
spin polarized quantum anomalous Hall edge mode and (d) the distinguishing property of an edge mode is
highlighted. An edge mode will never backscatter from a non-magnetic impurity placed in the sample. Black
solid line denotes spin unpolarized edge mode, red solid line denotes spin up edge mode and blue solid line
denotes spin down edge mode.

will be impacted by magnetic impurities which may lead to spin flip scattering. However,

edge modes be they QH, QSH or QAH are all protected against non-magnetic impurities,

ballistic modes aren’t and therein lies the importance of edge modes. In this chapter the

origin of QH, QSH and QAH edge modes are discussed first, e.g., how these edge modes

appear at low temperature in 2DEG’s and topological insulators? The characteristics of

these edge modes are then discussed following thus the Landauer-Buttiker formalism is

applied to derive the Hall, 2-terminal, longitudinal and non-local resistances in ideal 6

terminal QH, QSH and QAH samples. The importance of these edge modes and the reason

for studying these edge modes is discussed next. The application of these edge modes in

thermoelectrics to design efficient quantum heat engines and quantum refrigerators forms

an important part of this thesis. An introduction to quantum heat engines and quantum

refrigerators is given next. Finally, the chapter concludes with an overview of the complete

thesis.

1.1 Quantum Hall Effect

Quantum Hall effect is one of the most important discoveries of the 1980s[27]. It is observed

in a two-dimensional electron system at low temperatures and high magnetic field. The Hall
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(a) (b)

Figure 1.2: (a)Rectangular Hall bar with magnetic field applied in the z-direction perpendicular to the
plane of the conductor, (b) Schematic of measured longitudinal resistance RL = (V2−V3)

I1
and Hall resistance

RH = (V2−V6)
I1

in units of h/e2 for the conductor shown in (a) as function of magnetic field (B) in Tesla.

conductance of a 2D sample is-

σ =
Ichannel

VHall
= ν

e2

h
, (1.1)

where Ichannel is the channel current, VHall is the Hall voltage developed, e is the elementary

charge and h is Planck’s constant. ν is known as the filling factor, it can take either integer

1,2,3,...for integer quantum Hall effect (QHE) or fractional values 1/2,1/3, 1/4, 2/3 ,.... for

fractional quantum Hall effect (FQHE). Integer quantum Hall effect or quantum Hall (QH)

effect is described by single particle Hamiltonian and it is well understood. However,

FQHE is complicated and it needs electron-electron interactions to describe it properly.

Besides in two-dimensional electron gas, QH effect has been studied in other systems

too like graphene[28, 30, 29, 31], square lattice model [32], etc, with interesting twists.

The quantization of the Hall resistance and characteristics of the longitudinal resistance in

presence of magnetic field, is discussed next.

Shubnikov deHaas Oscillations

At high magnetic field the longitudinal resistance in a two dimensional electron gas (2DEG)

shows oscillatory behaviour with increase of the magnetic field, while Hall resistance exhibits
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plateaus corresponding to the minima in the longitudinal resistance[32, 33] (see Fig. 1.2(b)).

These oscillations in the longitudinal resistance are known as Shubnikov-deHaas (or SdH)

oscillations. To understand these features one has to understand the formation of Landau

levels which is a quantum mechanical effect. The main reason for the SdH oscillations is

the breaking of the step like density of states for the 2DEG at zero magnetic field (B)-

Ns(E) =
m

π~2 ϑ(E−Es), (1.2)

into a sequence of peaks spaced by ~ωc at high magnetic fields (see Fig. 1.3(a)),

Ns(E,B) =
2eB

h

∞

∑
n=0

[δ(E−Es− (n+
1
2
)~ωc)]. (1.3)

Here, ωc = eB/m is the cyclotron frequency and B is the applied magnetic field in perpen-

dicular direction in Eq. (1.3). It is shown in Fig. 1.3(a). The different values of n refer to

different Landau levels. The density of states of a 2DEG thus depends on the magnetic field.

When one changes the magnetic field the peaks in the density of states also change and the

longitudinal resistivity ρxx = RL(for 2DEG) completes one oscillation (see Fig. 1.2(b)) while

the Fermi energy passes through the center of one Landau level to the center of the next

Landau level. The longitudinal resistivity ρxx is minimum whenever the Fermi energy lies

between two Landau levels because in the bulk there are no states so that electrons on the

upper edge of 2DEG can’t deflect to the lower edge of 2DEG, but there are edge states that

carry current (see Fig. 1.3(b)). The Fermi energy crosses Landau levels only at the edges

of the conductor if it lies between Landau levels. Thus due to the absence of backscattering,

the longitudinal resistivity ρxx goes to zero, whenever Fermi energy is between two Landau

levels. It is maximum when the Fermi energy coincides with any Landau level. Next the

Schroedinger equation is solved for electrons in presence of magnetic field and a confining

potential and it is shown how the 1D chiral spin unpolarized edge states arise only at the
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(a) (b)

Figure 1.3: (a) Schematic of Density of states NS(E,B) vs. energy E for a 2DEG in a magnetic field. (b)
Confining potential U(y) vs y and Landau Levels with Fermi energy (maroon line).

edges of the conductor.

1.1.1 How do quantum Hall edge modes arise?

Consider a rectangular conductor that is uniform in the x-direction and has some transverse

confining potential U(y) [33]. The motion of electrons in such a conductor is described by

the effective mass equation[33]-

[
Es +

(i~∇+ eA)2

2m
+U(y)

]
ψ(x,y) = Eψ(x,y), (1.4)

where Es = Ec +Ez. Ez is the cut-off energy in the z direction, m is the effective mass

of electron and Ec is the band-edge energy (bulk). U(y) is the confining potential in

the y direction. A constant magnetic field B in the z-direction perpendicular to the plane

of the conductor is present. This can be represented by a vector potential of the form-

Ax =−By,Ay = 0. Thus, Eq. (1.4) can be written as -

[
Es +

(px + eBy)2

2m
+

p2
y

2m
+U(y)

]
ψ(x,y) = Eψ(x,y), (1.5)
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Where px =−i~ ∂

∂x and py =−i~ ∂

∂y . The solutions of Eq. (1.5) can be expressed in the form

of plane waves, L is the length of conductor over which the wave-functions are normalized,-

ψ(x,y) =
1√
L

exp[ikx]χ(y), (1.6)

where χ(y) satisfies the equation-

[
Es +

(~k+ eBy)2

2m
+

p2
y

2m
+U(y)

]
χ(y) = Eχ(y). (1.7)

For any arbitrary potential there is no analytical solution. However, if U(y) is a parabolic

potential such as-

U(y) =
1
2

mω
2
oy2, (1.8)

where ωo is the strength of confining potential. Then substituting yk =
~k
eB , ωc = eB/m, and

ω2
co = ω2

c +ω2
o, Eq. (1.7) reduces to-

[
Es +

1
2

m
ω2

oω2
c

ω2
co

y2
k +

p2
y

2m
+

1
2

mω
2
co

[
y+

ω2
c

ω2
co

yk

]2
]

χ(y) = Eχ(y). (1.9)

This equation is similar to a 1D Schrödinger equation with parabolic potential, so the solution

of Eq. (1.9) is-

χn,k(y) = un

[
q+

ω2
c

ω2
co

qk

]
, un(q) = exp[−q2/2]Hn(q), (1.10)

with q =
√

mωc/~y, Hn(q) is the Hermite polynomial, n is the Landau Level and qk =√
mωc/~yk, the Landau level energies then are-

E(n,k) = Es +
1
2

m
ω2

oω2
c

ω2
co

y2
k +

(
n+

1
2

)
~ωco = Es +

(
n+

1
2

)
~ωco +

~2k2

2m
ω2

o
ω2

co
. (1.11)
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V1

 V2 V3

V4

V5V6

(c)

Figure 1.4: (a) Magneto-electric subbands in a parabolic potential: Dispersion relation, E(k) vs. k for
different subbands indexed by n. (b) A conductor in the quantum Hall regime. The edge states carrying current
to the right are in equilibrium with the left contact while those carrying current to the left are in equilibrium
with the right contact, (c) a six terminal ideal QH bar (both spin up and down edge modes move in the same
direction). Red solid line denotes spin up edge mode, while blue solid line denotes spin down edge mode.

The velocity of an electron in any one of the Landau levels is thus-

υ(n,k) =
1
~

∂E(n,k)
∂k

=
~k
m

ω2
o

ω2
co
. (1.12)

The centroid of a Landau level eigenstate is located at y =−yk, with

yk =
~k
eB

= υ(n,k)
ω2

o +ω2
c

ωcω2
o

. (1.13)

From Eq. (1.13) we can see that the position of the Landau level depends on the velocity

of electrons in these states. As magnetic field is increased, the states carrying current in

the +x direction shift to one side of the conductor while states carrying current in the −x

direction will shift to the other side. Increasing the magnetic field, the overlap between the

states going in opposite directions will be reduced. Due to this divided highway for the

two groups of states going in opposite directions, backscattering cannot take place even in

presence of sample impurities leading to edge mode transport exclusively. Next the current

carried by each of these edge states is calculated from their dispersion relation.
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Current carried by each edge mode

Depending on the position of Fermi energy in the E(k) vs k plot (see Fig. 1.4(a)), one can

check how many edge modes will be present in a quantum Hall conductor. It is because

below the Fermi energy all Landau levels are filled while above it all are empty at zero

temperature. So, only those Landau levels which have cut-off energy (εn) below the Fermi

energy will carry current. The number of Landau levels M below Fermi energy EF carrying

current is-

M(EF) = ∑
N

ϑ(EF − εn), with εn = E(n,k = 0) (1.14)

is the cut-off energy for nth Landau level see Eq. (1.11). Consider a single edge mode

whose +k states are occupied with probability given by Fermi function f+(E). Now a 2DEG

with N being the electron density per unit length, of length L carries a current Neυ. The

electron density associated with a single k state in a conductor of length L is (1/L). Thus

current I+ of the +k states is-

I+ =
e
L ∑

n,k
υ f+(E) =

e
L ∑

n,k

1
~

∂E
∂k

f+(E). (1.15)

Similarly, the current I− of the −k states is-

I− =
e
L ∑

n,k
υ f−(E) =

e
L ∑

n,k

1
~

∂E
∂k

f−(E), (1.16)
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where f− is probability of occupation of −k states. Assuming periodic boundary condition

and converting the sum into the integral -

∑
k
→ 2 (for spin)

L
2π

∫
dk, one has-

I+ =
2e
h ∑

n

∫
∞

εn

f+(E)dE and I− =
2e
h ∑

n

∫
∞

εn

f−(E)dE.

Thus I = I+− I− =
2e
h

∫ µL

µR

( f+(E)− f−(E))M(EF)dE, (1.17)

is the net current in the 2DEG. From Eq. (1.17) one can conclude that current carried by

each edge mode per unit energy by a occupied state is 2e/h, which is equal to 80 nA/meV.

If M is constant over a range of energy, i.e., µL > E > µR, then at zero temperature Fermi

functions are just step functions and one has-

I =
2e2

h
M
(µL−µR)

e
=

2e2

h
M(VL−VR) (with, Vi =

µi

e
), i = L,R, (1.18)

where µL and µR are the chemical potential of the left and right reservoir respectively

(Fig. 1.4(b)). If T is the probability for an electron injected at one end contact to transmit to

the other end contact. Then Eq. (1.18) becomes-

I =
2e2

h
MT (V1−V2) with G =

2e2

h
MT. (1.19)

Eq. (1.19) is applicable for 2-terminal systems. For multi-terminal systems one has to follow

the Landauer-Buttiker formalism, which is discussed below.
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1.1.2 Landauer-Buttiker formalism for quantum Hall systems

Landuaer-Buttiker formula for an N terminal QH system at zero temperature is a generaliza-

tion of the two terminal case, see [10]-

Ii = ∑
j 6=i

(G jiVi−Gi jVj) =
2e2M

h

N

∑
j=1, j 6=i

(TjiVi−Ti jVj), (1.20)

herein Vi is the voltage at ith contact, Ii is the current flowing out of that contact, M is the

number of edge modes, Ti j is the transmission probability from jth to ith contact and Gi j is

the associated conductance. In this thesis the phrase terminal/contact/probe represents

the same thing a metallic reservoir for electrons.

1.1.2.1 Distinguishing between voltage and current contacts

A voltage contact is used to measure the potential difference between any two points within

the conductor, while current contact is used to measure the current through those points of

the conductor. Due to the difference in their use, a voltage contact has to be designed so

as not to disturb the potential distribution of the sample and to draw no net current. On the

other hand a current contact has to be designed so as to draw maximum current through it.

A voltage contact differs from a current contact in the sense that the net current through

a voltage contact is always zero while for current contact it is finite and equal to current

in sample. The potential of a voltage contact is floating because this floating potential is

adjusted in such a way that the current entering to a voltage contact is always equal to

the current coming out of it and thus cancelling the net current through it. On the other

hand for current contacts the potential is fixed from external source either to a finite value or

to zero, i.e., grounded. A contact regardless of whether its a voltage or a current contact

may be ideal (i.e., reflectionless) or disordered. A disordered contact as is wont is not

reflectionless. Edge modes as shown earlier are impervious to non-magnetic impurities
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placed in the sample. However, both ballistic, as well as edge modes, are scattered by

disordered contacts[10, 12].

1.1.3 Edge mode transport in an ideal quantum Hall sample

An ideal six terminal QH sample is shown in Fig. 1.4(c). Herein all contacts are ideal, i.e.,

the transmission probability of an electron through that contact is unity (reflection is zero).

The current voltage relations can be derived from the conductance matrix below:

G =−2e2M
h



−1 0 0 0 0 1

1 −1 0 0 0 0

0 1 −1 0 0 0

0 0 1 −1 0 0

0 0 0 1 −1 0

0 0 0 0 1 −1


, (1.21)

where the diagonal elements Gii = ∑
6
j=1, j 6=i G ji =

2e2

h ∑
N
j=1, j 6=i Tji and the non-diagonal

elements Gi j =
2e2

h Ti j (for j 6= i). The diagonal element, for example, G11 =
2e2

h ∑
6
j=1, j 6=i Tj1.

M represents the total no. of modes while a factor 2 is introduced due to the spin degeneracy

of the electrons. In setup as shown in Fig. 1.4(c), M = 1 to avoid clutter. From Fig. 1.4(b) we

see that there is transmission of electrons only between the adjacent contacts in clockwise

direction, i.e., transmission probability for an electron from contact i to i+1 (for i = 1−5

and T16 = 1) is unity, while rest of the transmission probabilities are zero. The diagonal

conductance G11 thus reduces to 2e2

h MT21 =
e2

h M (since T21 = 1). Similarly, rest of the

probabilities can be derived. Substituting I2, I3, I5, and I6 = 0 (since contacts 2,3,5 and

6 are voltage contacts) and choosing reference potential V4 = 0, we have V1 = V2 = V3

and V4 = V5 = V6 = 0. When a voltage bias is applied across contacts 1 and 4 (see
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Fig. 1.4(c)) and the response (potential drop) is measured between the same two probes

then it is called local resistance measurement and again when voltage bias is applied

across contacts 1 and 2 but response is measured far away across contacts 5 and 4 (see

Fig. 1.4(c)), it is called non-local resistance measurement. The local resistance measured

then is defined as R2T = R14,14 = V1−V4
I1

, where contacts 1 and 4 are both current and

voltage contacts simultaneously. Non-local set-up resistance measurement is defined

as RNL = R12,54 = V5−V4
I1

, where the current is measured across contacts 1 and 2, and

resistance is measured far away between voltages contacts 5 and 4. In QH sample shown

in Fig. 1.4(c) local or 2-terminal resistance is h
2e2M and non-local resistance is zero. The Hall

resistance RH = R14,26 =
h

2e2
1
M , while longitudinal resistance RL = R14,23 = 0. The Hall

and 2-terminal resistances are quantized in units of M and the longitudinal and non-local

resistances vanish for an ideal QH sample with ideal (reflection less) contacts.

1.1.4 Why do we study quantum Hall systems?

Quantum Hall edge modes are well known for their dissipation less transport even in

presence of sample disorder. Due to the robustness of QH edge modes to disorder, they

are ideal candidates for low power information processing and transport[34, 35]. There

are many other applications of QH edge modes such as- 1) the quantization of the Hall

resistance is so accurate with accuracy of parts per million, that it has been used in

metrology as a resistance standard, 2) the quantized Hall effect is also used to measure the

universal constants like fine structure constant α = e2

~c , Plank’s constant h and electronic

charge e, 3) quantum heat engines based on quantum Hall edge modes have a higher

performance characteristic than most other quantum heat engines[18, 36]. Our aim in this

thesis is to probe QH edge modes in six terminal Hall bar in presence of disorder placed

at contacts and check its susceptibility to contact disorder. Further, including inelastic

scattering within the sample one can check its effect on Hall, longitudinal, 2-terminal and
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non-local resistances. Extending this approach to a N terminal quantum Hall bar one can

obtain a generalized formula for all the resistances, such that just by knowing the number of

terminals and strength of disorder, one can derive all the resistances (RH ,R2T ,RL,RNL).

Moreover, performing non-local Hanbury Brown and Twiss (HBT) correlations measurement

on the QH edge modes one can differentiate them from the QSH edge modes, which is

discussed in chapter 3. Our study on QH edge modes in presence of disorder and inelastic

scattering to find its characteristics can be useful in order to understand their use in low

power information transport and other purposes more wisely.

1.2 Quantum Spin Hall Effect

The quantum spin Hall (QSH) state with1D spin polarized helical edge state is a topological

state of matter that exists in certain two dimensional semi-conducting or insulating material

with a quantized spin Hall conductance and vanishing charge Hall conductance. It is

topological as it has gapless edge states and is robust to sample disorder. The QSH state

was proposed by Kane, Mele and Bernevig, Zhang independently in Refs. [21, 22]. The

QSH state can be viewed as two copies of the QH state with opposite Hall conductances.

The QSH state in graphene, proposed by Kane, Mele could not be observed due to the

very small spin-orbit interaction in graphene. The QSH state does not break time reversal

(TR) symmetry while QH state breaks it. This can be shown in a simple way as follows. In

QH case Hall current is given by jx = σxyEy (for a 2D conductor lying in x− y plane, jx is

the current in x direction, Ey is the applied electric field in the y direction and σxy is the Hall

conductivity) wherein jx is odd under TR symmetry, but Ey is not, so σxy 6= 0 breaks TR

symmetry. In QSH case the spin Hall current is given by js
x = σs

xyEy where js
x is even under

TR symmetry, so σs
xy 6= 0 is consistent with TR symmetry. QH case can be compared to

a free-way(single-way highway) where if one has to go in opposite direction it has to go
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Figure 1.5: (a) Spin-momentum locked quantum spin Hall edge modes, (b) an ideal six terminal QSH bar.
Red solid line denotes spin up edge mode while blue solid line denotes spin down edge mode.

in a different lane (chiral) (Fig. 1.4(b)). Due to this chiral traffic rule electrons are forced

to avoid impurities, and follow the same direction. But QSH case can be considered as

two copies of QH states one for each spin (helical) (Figs. 1.5(a, b)). Here backscattering is

suppressed by another traffic rule- helical traffic rule. If an electron has to backscatter it has

to flip its spin which breaks the TR symmetry. If TR symmetry is conserved, as is the case

with non-magnetic impurity, there will be no backscattering.

1.2.1 How do quantum spin Hall edge modes arise?

Efforts to see quantum spin Hall effect in graphene were unrealized because in graphene the

spin orbit coupling is very small[37, 38]. Soon afterwards Bernevig, Hughes and Zhang[39]

predicted a quantum phase transition in HgTe/CdTe quantum wells from a trivial insulator

phase to a QSH phase controlled by the thickness d of the quantum well. The idea behind

the transition is as follows- CdTe has a normal band structure (see Fig. 1.6 (a)) with the

valence band lying below the conduction band. On the other hand, HgTe has an inverted

band structure with valence band lying above the conduction band (see Fig. 1.6 (b)) due to

strong spin orbit coupling. Starting from bulk bands, one can consider different behaviours

for thin and thick quantum wells, whose band structures are determined by confinement, as
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schematically shown in Fig. 2 of Ref. [40]. When the central layer of HgTe is thin, the energy

bands align in a normal ordering, similar to the ones of CdTe. On the other hand, when the

width of HgTe is above a critical thickness dc, due to confinement, the energy bands will be

aligned in the inverted regime, similar to bulk HgTe. The change of sign of band gap from

positive (Trivial insulator) to negative (Topological insulator) is the necessary condition to

get the edge states which are described in the next section. The transition between normal

and inverted regime occurs at the critical thickness dc ≈ 6.3 nm for HgTe/CdTe quantum

wells[40].

Quantum Spin Hall Edge Modes

The effective model for QSH effect was derived by Bernevig, Hughes and Zhang [41] for a

quantum well of HgTe/CdTe -

HBHZ =

 h(k) 0

0 h(−k)∗

 , (1.22)

where h(k) = ε(k)I2 +A(kxσx + kyσy)+ [M−B(k2
x + k2

y)]σz.

In Eq. (1.22), ε(k) =C−D(k2
x +k2

y), I2 is a 2×2 unit matrix and σ j ’s are the Pauli matrices

with j = x,y,z. This model is actually a modified two dimensional Dirac equation. A, B, C,

D, and M are parameters that are determined by the thickness of the quantum well and

other material parameters. The upper block h(k) is for spin up and lower block is for spin

down states. The gap parameter M changes sign at the critical thickness dc denoting a

quantum phase transition from a trivial to non-trivial or topological state. If one consider a

semi infinite plane of HgTe/CdTe topological insulator with an open boundary condition at

y = 0, kx is a good quantum number (in the x direction it has a plane wave solution) but ky
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Figure 1.6: Schematic diagram of (a) band gap in trivial insulator, (b) band gap in topological insulator (red
and blue lines denote spin up and spin down edge states). For a trivial insulator band gap is positive, i.e.,
conduction band lies above valence band as in (a). In topological insulator the band gap is negative and
conduction band lies below the valence band as in (b).

is given by −i∂y. The Hamiltonian(1.22) is thus-

H (kx,−i∂y) =

 h↑(kx,−∂y) 0

0 h↓(kx,−∂y)

 , (1.23)

with, h↑(kx,−i∂y) =

 M−B+(k2
x −∂2

y) A(kx−∂y)

A(kx +∂y) −M+B−(k2
x −∂2

y)

 ,

and B± = B±D . The eigen value problem for upper and lower blocks can be solved

separately, as h↑Ψ↑ = EΨ↑ and h↓Ψ↓ = EΨ↓. Because the lower block h∗(−k) is the time

reversal of the upper block h(k), the solution Ψ↓(kx,y) = ΘΨ↑(kx,y), where Θ =−iσyK,

is a time reversal operator, and K is for complex conjugation. Here we will focus on the

upper block of the Hamiltonian,

h↑Ψ↑ = EΨ↑. (1.24)

Considering a trial wave function -

Ψ↑ =

 c

d

eλy (1.25)
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and substituting this in Eq. (1.24) and using Dirichlet boundary condition Ψ↑(kx,y = 0) =

Ψ↑(kx,y = ∞) = 0, we get-

Ψ↑ =

 c̃(kx)

d̃(kx)

(e−λ1y− e−λ2y), (1.26)

where λ1 and λ2 are real and positive. If λ1 and λ2 are purely imaginary then we would get

a solution that is distributed over the whole space and is a solution for the bulk states. But

here we want to look for bound states, which are real. From Eq. (1.26) one can also see

that the states are distributed strictly near the edge. So these are edge states. Substituting

Eq. (1.26) into Eq. (1.24), we get-

E↑(kx) =−MD/B+A
√

B+/B−kx +O(k2
x). (1.27)

The effective velocity of the spin-up states thus are-

v↑ =
∂E+

∂kx
=+sign(B)A

√
B+D
B−D

. (1.28)

Since Ψ↑(kx,y) is an eigenstate of σy with an eigen value +1 for B> 0 and−1 for B< 0, so

spin polarization and direction of propagation both are defined by sign(B). As the spin and

direction of propagation are coupled, there is spin-momentum locking which is a property

of helical edge states. Electrons with opposite spins counter-propagate. Similarly, we can

calculate the energy states for lower block in Hamiltonian (1.23)-

E↓(kx) =−MD/B−A
√

B+/B−kx +O(k2
x). (1.29)
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The effective velocity of the spin-down states are-

v↓ =
∂E−
∂kx

=−sign(B)A

√
B+D
B−D

. (1.30)

Thus we see the velocity of the edge states are opposite- one is positive (1.28) and the

other one is negative (1.30). These two states form helical edge states near the boundary

(Fig. 1.5(a)).

1.2.2 Landauer-Buttiker formalism for quantum spin Hall systems

Landuaer-Buttiker formula for an N terminal QSH system at zero temperature is a gener-

alization of the Landauer-Buttiker formalism for N terminal QH system, shown in section

1.1.2, and is given as[34, 42]-

Ii =
N

∑
j=1
j 6=i

(G jiVi−Gi jVj) =
e2M

h

N

∑
j=1
j 6=i

∑
σ,σ′

[T σσ′
ji Vi−T σσ′

i j Vj], (1.31)

where Gi j =
e2M

h ∑σ,σ′ T σσ′
i j is the conductance between contact j and i, M is the number

of edge modes, T σσ′
i j is the transmission probability for an electron from contact j to contact

i with initial spin σ′ to final spin σ, Vi is the potential bias at contact i.

1.2.3 Edge mode transport in an ideal quantum spin Hall sample

An ideal six terminal QSH bar is shown in Fig. 1.5(b). The current voltage relations can be
derived from the conductance matrix below:

G =−e2M
h


−2 1 0 0 0 1
1 −2 1 0 0 0
0 1 −2 1 0 0
0 0 1 −2 1 0
0 0 0 1 −2 1
1 0 0 0 1 −2

 , (1.32)

Page 60 of 269



where the diagonal elements are given as- Gii = ∑ j, j 6=i G ji while the off-diagonal ele-

ments, for example, (1,2)th element the conductance between contact 2 and 1 is given

by ∑σ,σ′ T σσ′
12 , similarly the other off-diagonal elements can be written. The diagonal ele-

ment G11 = ∑
6
j=2 G j1 where G j1 =

2e2M
h (T ↑↑j1 +T ↑↓j1 +T ↓↑j1 +T ↓↓j1 ), j = 2,3,4,5,6 can be

calculated as follows- from Fig. 1.5(b) we see that there is transmission of edge modes

only between the adjacent contacts (as the contacts are reflection less), say for exam-

ple, for spin up edge mode from contact i to i+ 1 the transmission is unity (for i = 1 to

5 and T ↑↑61 = 1) while for spin down edge mode from contact i to i− 1 transmission is

unity (for i = 2 to 6 and T ↓↓61 = 1), rest of the transmission probabilities are zero. Thus

G reduces to e2

h M(T ↑↑21 +T ↓↓61 ) =
2e2

h M (since transmission probabilities: T ↑↑21 = T ↓↓61 = 1).

Similarly the other diagonal and off diagonal elements of the conductance matrix (Eq. (1.32))

can be calculated. Substituting I2, I3, I5, and I6 = 0 (since contacts 2,3,5 and 6 are volt-

age probes) and choosing reference potential V4 = 0, we get V3 = V2/2 = V1/3 and

V5 =V6/2 =V1/3. The charge Hall resistance RH = R14,26 = 0 obviously and longitudinal

resistance is RL = R14,23 =
h
e2

1
2M , two terminal resistance R2T = R14,14 =

h
e2

3
2M and non-

local resistance RNL = R12,54 =
h
e2

1
6M . Thus, charge Hall resistance vanishes, longitudinal

resistance is quantized in units of 2M while two terminal and non-local resistances are

quantized in units of 2
3M and 6M respectively.

1.2.4 Why do we study quantum spin Hall systems?

The advantage of quantum spin Hall edge modes over quantum Hall edge modes is that

these edge modes arise in absence of magnetic field, while in QH effect edge modes arise

at the cost of a large magnetic field. The non-local transport in QSH systems is also a

potential candidate for low power information processing due to its dissipation less transport

with in the system[34]. Edge modes are also protected by their topological character and

thus are robust to disorder within the system as long as it is non-magnetic. We probe QSH
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edge modes via disordered contacts and inelastic scattering to find out their resilience

and to check if they are as suitable for low power transport as claimed. A reasonable

comparison between the QH and QSH edge modes is also desired to show which one

can sustain itself better against disorder and inelastic scattering. Further in this thesis the

nonlocal shot noise (Hanbury Brown and Twiss correlation)[14, 15] for QSH edge modes

are calculated to differentiate them from topological QH edge modes and also from trivial

(or quasi-helical) QSH edge modes since there are recent experiments which claim to have

observed quasi-helical edge modes in a trivial insulator too[43]. Quasi-helical or trivial QSH

edge modes are spin polarized too like helical QSH edge modes but are prone to spin flip

scattering unlike helical QSH edge modes which are not. Further, this thesis checks the

potential of QSH edge modes in designing charge and spin quantum heat engines and

compares their performance with other quantum heat engines such as based on quantum

Hall edge modes or ballistic modes in graphene.

1.3 Quantum anomalous Hall effect

Another member of the Hall family is the quantum anomalous Hall (QAH) effect, which again

is the quantum version of the classical anomalous Hall effect[44, 45]. In a ferromagnetic

topological insulator (doped with magnetic atoms) at low temperatures quantum anomalous

Hall edge modes arise in absence of an external magnetic field unlike quantum Hall

effect[33, 10]. QAH edge modes are chiral similar to QH edge modes but spin polarized,

i.e., these edge modes consist of a particular type of spin- either spin up or spin down

depending on direction of the spontaneous magnetization in a ferromagnetic topological

insulator. At the upper edge of the sample if spin up electrons are moving in one direction

then at the lower edge of the system too spin up electrons are moving in the opposite

direction. These edge modes give quantized Hall conductance νe2

h (with ν =integer) and a
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vanishing longitudinal resistance (similar to the quantum Hall effect).

1.3.1 How do quantum anomalous Hall edge modes arise?

In a topological insulator quantum spin Hall (QSH) edge modes appear at low temperature

due to the inverted band structure. These QSH edge modes are helical, i.e., spin polarized

edge modes with opposite chirality. Thus a QSH system can be thought of as two QAH

edge states with opposite Hall conductances which exactly cancel each other. If we remove

one spin chiral edge mode (i.e., one QAH edge state) from the picture, then we are left with

the other spin chiral edge mode, which is nothing but a QAH edge mode with non-vanishing

Hall conductance. This is achieved by doping magnetic atoms like Mn atoms within the

topological insulator. Here, we theoretically describe the origin of QAH edge modes as

follows. The Hamiltonian for a QSH system (e.g., HgTe/CdTe QW structure) can be written

as (see Fig. 1 of Ref. [46])-

H =

 h(k) 0

0 h∗(−k)

 . (1.33)

The Hamiltonian is written in the basis of spin up conduction band |E1,↑〉 (E↑1 is the energy of

spin up conduction band), spin up valence band |H1,↑〉 (H↑1 is the energy of spin up valence

band), spin down conduction band |E1,↓〉 (E↓1 is the energy of spin down conduction band)

and spin down valence band |H1,↓〉 (H↓1 is the energy of spin down valence band). The

upper block h(k) in Hamiltonian (1.33) is for spin up sub-bands while lower block represents

spin down sub-bands, which are time reversal counterparts of each other. If time-reversal
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Figure 1.7: (a) Quantum anomalous Hall edge mode, (b) six terminal QAH bar, (c) QAH edge mode along
with quasi-helical QSH edge modes. Red solid line denotes spin up topological QAH edge mode while red
and blue dashed line denote spin up and spin down quasi-helical QSH edge modes.

symmetry is broken by introducing a magnetic field (represented by Hamiltonian Hs), then-

Hs =



GE 0 0 0

0 GH 0 0

0 0 −GE 0

0 0 0 −GH


, (1.34)

where 2GE is the splitting energy for conduction bands, i.e., 2GE = E↑1−E↓1 and 2GH is the

splitting energy for valence bands, i.e., 2GH = H↑1 −H↓1 . In QSH case opposite spin chiral

edge states appear only when there is a inverted band structure. For normal (non-inverted)

band structure edge modes do not appear. If one can manipulate the sub-bands such that

for up-spin sub-bands the band gap is inverted (generates spin up QAH edge state) and for

spin-down sub-band the band gap is normal (no QAH edge state for down-spin) then finally

we are left with just a spin-up QAH edge mode. This is the first condition to get a QAH edge

state from QSH edge states. The second condition is the the entire system must be in the

insulating regime, i.e., conduction band and valence band should not overlap on each other.

Both of these conditions are satisfied when GEGH < 0, i.e., the splitting of valence band

and conduction band should be of opposite signs, see also Ref. [45].
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1.3.2 Landauer-Buttiker formalism for quantum anomalous Hall edge

modes

In QAH case, since edge modes are spin polarized, we can use the Landauer-Buttiker

formalism built for QSH case. According to this formalism, for a multi-terminal device at

zero temperature, the current at contact i is given as follows[33, 10, 12]:

Ii =
N

∑
j=1
j 6=i

(G jiVi−Gi jVj) =
e2M

h

N

∑
j=1
j 6=i

∑
σ,σ′

[T σσ′
ji Vi−T σσ′

i j Vj], (1.35)

where Gi j =
e2M

h ∑σ,σ′ T σσ′
i j is the conductance between terminal j and i, T σσ′

i j is the

transmission probability for an electron from contact j to contact i with initial spin σ′ to final

spin σ and Vi is the potential bias at contact i.

1.3.3 Edge mode transport in an ideal quantum anomalous Hall sam-

ple

An ideal six terminal quantum anomalous hall (QAH) bar is shown in Fig. 1.7(b). The current
voltage relations can be derived from the conductance matrix below:

G =−e2M
h


−1 0 0 0 0 1
1 −1 0 0 0 0
0 1 −1 0 0 0
0 0 1 −1 0 0
0 0 0 1 −1 0
0 0 0 0 1 −1

 , (1.36)

where the diagonal elements are given as- Gii = ∑ j, j 6=i G ji while the off-diagonal ele-

ments, for example, (1,2)th element the conductance between contact 2 and 1 is given by

∑σ,σ′ T σσ′
12 , similarly the other off-diagonal elements can be written. The diagonal element

G11 = ∑
6
j=2 G j1 where G j1 =

2e2M
h (T ↑↑j1 +T ↑↓j1 +T ↓↑j1 +T ↓↓j1 ), j = 2,3,4,5,6 can be calcu-

lated as follows. From Fig. 1.7(b) we see that there is transmission of spin up edge modes
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between the adjacent contacts (as the contacts are reflection less) in the clockwise direction

only, say for example, for spin up edge mode from contact i to i+ 1 the transmission is

unity (for i = 1 to 5 and T ↑↑61 = 1) while for spin down edge mode all the transmission

probabilities are zero (T ↑,↓i j = T ↓,↑i j = T ↓,↓i j = 0 for i, j = 1 to 6), since there is no spin down

edge mode for particular magnetization direction (see Fig. 1.7(b)). Thus G11 reduces to

e2

h MT ↑↑21 = e2

h M (since transmission probability: T ↑↑21 = 1). Similarly the other diagonal

and off diagonal elements of the conductance matrix (Eq. (1.36)) can be calculated. M

represents the total no. of modes. In setup as shown in Fig. 1.7(b), M = 1 to avoid clut-

ter. Substituting I2, I3, I5, and I6 = 0 (since contacts 2,3,5 and 6 are voltage probes) and

choosing reference potential V4 = 0, we get V1 =V2 =V3 and V4 =V5 =V6 = 0. Thus, the

Hall resistance RH = R14,26 =
h
e2

1
M , longitudinal resistance RL = R14,23 = 0, two terminal

resistance R2T = R14,14 =
h
e2

1
M and the non-local resistance is RNL = R12,54 = 0. The Hall

resistance is quantized in units of M and thus both longitudinal and non-local resistances

vanish and the two terminal resistance is quantized in units of M.

1.3.4 Why do we study quantum anomalous Hall edge modes?

In some recent experiments, it has been shown that QAH edge modes have finite lon-

gitudinal resistance along with quantized Hall resistance[44, 45, 47, 48, 49]. This finite

longitudinal resistance leads to a discrepancy because QAH edge modes are chiral, and

ideal chiral QAH edge modes should always give vanishing longitudinal resistance as

observed in QH case. In Ref. [44], it is shown that presence of a quasi-helical (or, trivial)

QSH edge modes along with a topological chiral QAH edge mode satisfies the experimental

observation (i.e., finite longitudinal resistance and quantized Hall resistance), see Ref. [44].

The conclusion of QAH experiments such as done in Ref. [44] is that chiral QAH edge

modes occur along with quasi-helical QSH edge modes (see FIg. 1.7(c)). This is because

chiral QAH edge modes themselves originate from QSH edge modes via doping of magnetic
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atoms or/and suppressing one of the spin polarized edge modes. In some other recent

works[5], it has been shown that this finite longitudinal resistance can also be described

by a single chiral QAH edge modes but at finite temperature, and at zero temperature

this longitudinal resistance vanishes. Now it is a moot point whether this finite longitudinal

resistance is due to the finite temperature effect on the single chiral QAH edge mode as

in Ref. [5] or due to the presence of trivial QSH edge modes[44] along with chiral QAH

edge mode. These questions are our motivation to study QAH edge modes. Another

important question we concentrate on is what if this topological QAH edge mode along with

quasi-helical QSH edge modes loses its topological character in presence of a magnetic

impurity. This is very much possible if in the conversion process from QSH edge modes to

chiral QAH edge mode via magnetic doping, topological protection of the QAH edge mode

is lost. These aforesaid two questions have been answered in chapter 4 of this thesis. This

completes the introduction for first part of this thesis which consists of the discussion on

origin and properties of the edge modes in QH, QSH and QAH samples.

In the next section an introduction to the second part of this thesis is given which consists

of the application of these edge modes in thermoelectrics in chapter 5 and their com-

parison with thermoelectrics based on ballistic modes in chapter 6. As explained earlier,

ballistic modes differ from edge modes in that they are prone to backscattering within the

sample while edge modes aren’t. However, both ballistic modes and edge modes are

perfect transmission channels through any 2DEG. Graphene is the ideal candidate to see

these ballistic modes in operation as because it has perfectly conducting transmission

channels[50] and pristine graphene is easily available. Thus it is a moot point to check how

do ballistic and edge modes stack up against each other in thermoelectric applications. In

the next section quantum heat engines and quantum refrigerators are introduced and then

the working formulas for the thermoelectric coefficients in the quantum heat engine and

quantum refrigerator are derived.
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1.4 Application of edge mode transport in thermoelectrics

Quantum Hall and quantum spin Hall edge modes are well known for their dissipation

less transport. The chiral motion of electrons in QH systems or the helical motion in QSH

systems can be tuned further for the purpose of generating large thermoelectric responses,

see Refs. [36, 18]. For thermoelectric applications a quantum system can work in two ways-

either as a quantum heat engine or as a quantum refrigerator. The difference between a

quantum heat engine or quantum refrigerator and their classical counterparts is that the

size of these systems are so small (less than the electron inelastic scattering length) that

classical laws break down at these length scales. When a quantum system converts waste

heat energy back into electricity (thus generating electrical energy) from the heat current

flowing between hot and cold contacts, it is called a quantum heat engine. On the other

hand, when the quantum system transfers heat from cold to hot contacts via consuming

power from an external source then it is called quantum refrigerator. Another application of

edge modes is as a quantum heat diode, i.e., to use the chiral motion of the edge modes

to control the flow of heat current. Quantum heat engines are of two types-a) cyclic and

b) steady state. Cyclic [51] heat engines are defined by the time dependent parameters

like volume, temperature etc, where all of these parameters return to their previous position

after one complete cycle in parameter space. Some examples of cyclic heat engines are

Carnot engines, Otto engines, etc. On the other hand, steady state heat engines have no

time dependent parameter and they do the conversion from heat to work via steady state

flows of microscopic particles like electron, phonon, etc [51]. This thesis only deals with

steady state heat engines. Next the theoretical framework needed to understand steady

state quantum heat engines and quantum refrigerators is discussed.
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Figure 1.8: (a) Two-terminal quantum heat engine with temperature bias applied at the left contact while
potential bias at the right contact. Electric (Ie) and heat (JQ) currents are flowing from hotter to colder region
with output power P > 0 and JQ > 0 (b) A two terminal quantum refrigerator with electric and heat currents
flowing from colder to hotter region with P < 0 and JQ < 0.

1.4.1 What are quantum heat engines and quantum refrigerators?

A quantum heat engine converts heat energy given to a system into electrical work, while

a quantum refrigerator converts the work done on system into absorbing heat from a low

temperature region of the system to dump it onto a higher temperature region. For a system

to work as a quantum heat engine, heat energy (JQ) is given to system, i.e., JQ > 0 (heat

energy flows from hot to cold region) and system generates output power (P ), i.e., P > 0,

see Fig. 1.8(a). To work as a quantum refrigerator external work (power) is done on the

system, i.e., P < 0 and system absorbs heat energy from cold region and dumps it onto

a hotter region, i.e., JQ < 0 (heat energy flows from lower to higher temperature region),

see Fig. 1.8.(b). These sign conventions must be followed for a system to either work

as a heat engine or as a refrigerator. Next the main working formulas for a general two

terminal system to work as a quantum heat engine or a quantum refrigerator are derived.

To do this one considers a two dimensional system connected to two reservoirs at the two

ends as shown in Fig. 1.8. In the linear transport regime, electric and heat current in the

system are linearly proportional to the applied biases such as electric bias E or thermal

bias ∆θ. This linear dependence can be expressed in terms of Onsager matrix as shown
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below[52, 53, 36]-  Ie

JQ

=

 L11 L12

L21 L22


 E

∆θ

 , (1.37)

where Ie and JQ are the electric and heat currents, the Onsager coefficients L11 and L22

are related to the electric and thermal conductances while the non-diagonal coefficients

(L12 and L21) are related to the Seebeck and Peltier coefficients. The Seebeck coefficient

is defined as the potential difference generated across the system due to unit temperature

difference ∆θ, while the Peltier coefficient is defined as the heat current generated due to

unit potential bias applied to the system[51, 52]. They are expressed as-

S =−L12

L11 and P =
L21

L11 . (1.38)

The Onsager matrix (in Eq. (1.37)) relating the electric and heat currents to potential bias

and temperature difference can be written as [52, 54]-

 L11 L12

L21 L22

=

 L0 L1/eθ

L1/e L2/e2θ

 , (1.39)

wherein, Lα = G0

∫
∞

−∞

dε(−∂ f
∂ε

)ρ(ε)(ε−µ)αT (ε), (1.40)

here G0 = (e2/~)(W/π2), L0 = G is conductance of system with sample width W [55], ε

the energy of the electron, ρ(ε) the density of states, f the Fermi-Dirac distribution, µ is

Fermi energy, θ is the temperature of colder terminal and T (ε) the transmission probability

for electrons through the system at electronic energy ε. Once one knows the energy

dependent transmission function T (ε) for any system, one can calculate the Onsager

coefficients Li j using Eq. (1.40) and thus calculate the thermoelectric coefficients such as

the Seebeck coefficient, Peltier coefficient, thermal conductance. In the following subsection

the maximum output power generated in a quantum heat engine and the efficiency at that
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maximum output power are discussed.

1.4.2 Quantum heat engine: power and efficiency

The output power [53] generated for a general quantum heat engine system is given as-

P =−IeE =−(L11E +L12
∆θ)E , (1.41)

which is maximized by dP
dE = 0, at E =− L12

2L11 ∆θ which gives the maximum power as-

Pmax =
1
4
(L12)2

L11 (∆θ)2 =
1
4

S2G(∆θ)2. (1.42)

The efficiency at maximum power is defined as the ratio of maximum power to the heat

current transported and is-

η(Pmax) =
Pmax

JQ =
ηc

2
θL122

2L11L22−L12L21 =
ηc

2
GS2θ/κ

2+GS2θ/κ
,

(1.43)

at E =− L12

2L11 ∆θ = S
2∆θ, which is the condition for maximum power and κ is the thermal

conductance, defined as-

κ =
L11L22−L12L21

L11 . (1.44)

Similarly, efficiency η is the ratio of output power to heat current transported[53]-

η =
P
jQ =

(L11E +L12∆θ)E
(L21E +L22∆θ)

=
−(E −S∆θ)E

(θSE − ( κ

G +θS2)∆θ)
. (1.45)
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To calculate maximal efficiency we need to find the relation between E and ∆θ, substituting

dη

dE = 0 in Eq. (1.45), with the condition jQ > 0, gives-

E =
L22

L21 (−1+

√
L11L22−L12L21

L11L22 )∆θ and ηmax = ηc

√
ZT +1−1√
ZT +1+1

, (1.46)

wherein ηc =
∆θ

θ
is the Carnot efficiency and ZT is the figure of merit, a dimensionless

quantity, defined as-

ZT =
GS2θ

κ
. (1.47)

Eqs. (1.46), (1.47) define the operational characteristics of a quantum heat engine based on

charge transport. However, quantum heat engines can also operate via spin transport[16].

In chapters 5 and 6 we discuss both charge and spin based quantum heat engines.

1.4.3 Why do we study quantum heat engines?

In nanostructured electronics such as microchips or integrated circuits used in computers,

a lot of heat energy is produced due to Joule heating and other processes. This generation

of heat increases the temperature of the system and thus can interrupt the smooth working

of the system. A large amount of energy in these systems is completely wasted in the form

of heat, which is called waste heat energy. A system which can convert this waste heat

energy to useful work by generating electric current in the quantum regime, is a quantum

heat engine. To design an efficient quantum heat engine in linear response regime we need

a material with large Seebeck coefficient, large electrical conductivity and small thermal

conductivity. Since these quantities are inter related, if one tries to increase the Seebeck

coefficient, electrical conductivity reduces and vice versa. This is why, it is very difficult to

increase the performance of quantum heat engines beyond a certain limit. The aim in this
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thesis is to design quantum heat engines working at high efficiency and maximum output

power as compared to other quantum heat engines.

1.4.4 Quantum refrigerator: cooling power and coefficient of perfor-

mance

For a general two terminal system to work as a quantum refrigerator, we need to define

two quantities- a) coefficient of performance (COP) and b) cooling power. COP is defined

as the ratio of the heat energy absorbed (JQ) from the colder region to the work done the

system (P ). On the other hand cooling power is the heat energy absorbed from the colder

region. These quantities are expressed as follows-

COP: η
r =

JQ

P
, Cooling power =−JQ, (1.48)

where JQ < 0 and P < 0 (since JQ is always negative, to plot cooling power as a positive

quantity a minus sign is taken before JQ). COP of the system can be set to maximum via

dηr

dE = 0, which gives the maximum COP (considering JQ < 0 and P < 0) at [53]-

E =−L22

L21

(
1+

√
detL

L11L22

)
∆θ,where L=

 L11 L12

L21 L22

 , (1.49)

and detL refers to determinant of Onsager matrix L. The maximum COP and the cooling

power JQ are -

η
r,max =

ηr
c

x

√
y+1−1√
y+1+1

, with y =
L21L12

detL
, x =

L12

θL21 ,

and JQ(ηr,max) = L22

(√
detL

L11L22

)
∆θ, (1.50)
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where, ηr
c = θ/∆θ is the Carnot efficiency of refrigerators. Here we see that for a system

to work as a good quantum refrigerator (large COP) the asymmetric parameter (x), i.e.,

ratio of Seebeck to Peltier coefficient should be equal to or less than unity. As asymmetric

parameter x increases from one to ∞, coefficient of performance of the refrigerator reduces

to zero.

1.4.5 Why do we study quantum refrigerators?

An efficient quantum refrigerator is useful in cooling down a quantum system below the

temperature of its surroundings. For quantum systems to work efficiently it has to be close

to zero degree Kelvin. This is done by quantum refrigerators. The aim of this thesis is

to analyse the thermoelectric properties of chiral or helical edge modes so as to design

efficient quantum refrigerators. Comparing the performance of these quantum refrigerators

based on edge modes to other quantum refrigerators like those based on ballistic modes in

graphene helps in designing better quantum refrigerators. This is because in both cases

electron transport occurs with almost zero scattering in the coherent transport regime. This

completes the introduction for second part of this thesis.

1.5 This thesis

In this thesis, some important scattering problems are addressed in the mesoscopic

transport regime. The length of the systems considered in this thesis is small such that

electrons are not affected by inelastic scattering. Inelastic scattering between edge modes

is introduced phenomenologically which realistically takes place via electron- electron

scattering at low temperature or electron-phonon scattering at high temperature[33]. In

chapter 2 the effect of disordered contacts and inelastic scattering on QH and QSH edge

modes is considered and the robustness or otherwise of these edge modes are compared.
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Chapter 2 is based on Refs. [1, 2]. In chapter 3 the topological helical QSH edge modes

are distinguished from the topological chiral QH edge modes via non-local Hanbury-Brown

and Twiss (HBT) noise correlations. Chapter 3 is based on Ref. [3]. In the same chapter

the topological origin of the helical QSH edge modes is also discussed via non-local HBT

noise measurements. Chapter 4 addresses, the question, whether topological protection of

QAH edge modes is sustained during the evolution of QAH edge modes from QSH edge

modes or not and its consequences. Chapter 4 is based on Refs. [4, 6]. In chapters 5,6 the

focus is on the application of these edge modes in thermoelectrics. In chapter 5 quantum

heat engines and quantum refrigerators based on QSH edge modes are studied. Chapter 5

is based on Ref. [9]. In chapter 6 charge as well as spin based quantum heat engines and

quantum refrigerators are discussed, which operate with ballistic modes in graphene. A

comparison is made between the quantum heat engines and quantum refrigerators based

on edge modes (discussed in chapter 5) to that based on ballistic modes in graphene

(discussed in chapter 6). Chapter 6 is based on Refs. [7, 8]. In chapter 7 this thesis

concludes with a summary of all the chapters and a perspective on future endeavours.

Finally, the Mathematica programs used to plot the various thermoelectric coefficients are

given in the Appendix (Chapter 8), first for the QSH heat engine (described in Chapter 5) in

section 8.1 and then for the graphene spin heat engine (described in Chapter 6) in section

8.2.
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2. Effect of disorder and inelastic

scattering on quantum Hall and

quantum spin Hall edge modes

“When you ask people, ’What’s the opposite of fragile?,’ they tend to say robust,

resilient, adaptable, solid, strong. That’s not it. The opposite of fragile is something

that gains from disorder.”

– Nassim Nicholas Taleb

2.1 Introduction

It is widely known that transport along edge modes in a quantum Hall (QH) setting is resilient

to disorder[10]. In lieu of this, one can ask the question whether in a quantum spin Hall

(QSH) bar the QSH edge modes will be more/less resilient to the twin effects of disorder

and inelastic scattering- the bane of any phenomena which relies on complete quantum

coherence. The expectation is that since QSH edge modes are spin dependent and spin

has longer relaxation times than charge, the spin Hall edge modes would be far more robust

to disorder and inelastic scattering. However, contrary to expectations one sees in this

chapter not only that there is no added advantage of QSH edge modes as against QH edge
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modes, its rather a disadvantage. QSH edge modes are far more susceptible to disorder

and inelastic scattering than QH edge modes. This is of possible relevance to the use

of QSH edge modes in spintronics and quantum computation applications[56] as also in

setups wherein QSH edge modes are utilized to generate Majorana fermions[57, 58].

The aim of this chapter is to compare the quantization of Hall and longitudinal resistance

seen in ideally contacted QH or QSH sample as shown in sections 1.1.3 and 1.2.3 of the

introduction of this thesis and investigate how this quantization is affected by disordered

contacts, inelastic scattering and the number of contacts. A disordered contact in contrast

to an ideal contact does not have a transmission probability of one. Further, as sample size

increases edge modes will be affected by inelastic scattering, in case inelastic scattering

length lin < L (length of sample). There is no inter edge scattering, what inelastic scattering

does is to equilibrate the populations of edge states with each other on same side of the

sample[10, 12]. This is the case for inelastic scattering in QH samples.

In QSH samples on the other hand one has spin-up and spin-down edge modes and

equilibration might happen at the same edge between spin up and spin down edge modes

in effect with spin flip scattering. In absence of spin flip scattering also edge modes will

equilibrate due to inelastic processes like electron-electron or electron-phonon scattering,

however this time spin-up edge modes will equilibrate only with spin-up and not spin-

down, similarly for spin-down edge modes. The edge states once equilibrated remain

in equilibrium[10]. In contrast to an earlier work[59] which predicted quantized values of

conductance in the presence of strong disorder for topological insulator edge modes in the

chapter it is shown that quantization of longitudinal conductance and Hall conductance is

lost even when a single contact is disordered. Of course, one has to caveat the aforesaid

statement since Ref. [59] considers disorder in the sample itself but in the cases considered

in this chapter, disorder is confined to the contacts only. The effect of random magnetic

fluxes on QSH edge modes has been considered earlier[60] wherein it was concluded that
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spin Hall edge modes are localized in their presence. Localization of QSH edge modes has

also been predicted for non-magnetic disorder in the sample, see Ref. [61]. This chapter

discusses the effects of both disordered contacts and inelastic scattering on Hall resistance,

non-local resistance, 2-terminal resistance and longitudinal resistance in QH and QSH

samples. There is a special focus on non-local resistance because of two factors, which we

outline below.

2.1.1 Importance of non-local measurement

Non-local conductance measurement can distinguish between chiral and helical edge

conduction [34]. In a multi-terminal Hall sample, local or 2-terminal resistance for QH

case is h
2e2M and for QSH case is h

2e2M . So measuring the local resistance one can’t

distinguish between chiral(QH) and helical(QSH) edge modes, while non-local resistance

for helical(QSH) edge mode transport is h
4e2M for a 4-terminal sample and for chiral(QH)

edge mode transport is zero. Non-local transport is not affected by the bulk conduction but

local transport is affected by bulk conduction. To confirm edge mode conduction within a

sample non-local measurement is used rather than local measurement. Non-local transport

in helical(QSH) regime is dissipation less and this heat generation due to ohmic dissipation

in logic gates based on semiconductor design can be considerably reduced by using

non-local transport in helical(QSH) regime along-with improved performance[34].

2.1.2 Resilience of non-local measurement

In a remarkable experiment conducted in Ref. [62] and theoretically analysed in Ref. [63],

an Aharonov-Bohm ring based four-probe set up was considered, in it was shown that the

non-local resistance is less affected by dephasing than the local two-probe resistance. This

chapter tries to answers the question, whether in a QSH bar the non-local resistance will be
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adversely affected by the twin effects of disorder and inelastic scattering-the bane of any

phenomena which relies on complete quantum coherence. In this chapter it is shown that

non-local edge state transport in the QSH case is quite susceptible to disorder and even

a single disordered probe can change the non-local resistance. Although it is well known

that spin flip scattering adversely affects the non-local transport in QSH case[59], in this

chapter, it is seen that non-spin flip scattering with disorder and inelastic scattering can

greatly affect the non-local transport too. The reason for looking into this case is because of

a point made in the abstract of Ref. [34]- that non-local transport through edge channels in

topological insulators will have potential applications in low power information processing.

In this chapter it is shown that this statement is not true in presence of disorder and/or

inelastic scattering with or without spin flip processes.

2.1.3 This chapter

The structure of this chapter is as follows. First the effect of disordered contacts is discussed

on QH and QSH edge mode transport in section 2.2. Then the effect of inelastic scattering

is included to see its effect in section 2.3. The focus is on the effects of disorder and

inelastic scattering on both local and non-local edge mode transport. Next the discussion on

disorder and inelastic scattering is extended to N terminal QH/QSH samples in section 2.4.

Then a comparison is made in section 2.5 in two Tables 2.1, 2.2 comparing the resilience of

edge mode transport in both QH and QSH samples to both disorder and inelastic scattering.

Finally this chapter concludes in section 2.6 with a perspective.

2.2 Effect of disordered contacts

A disordered contact can be thought of as an ideal contact with a disordered region

separating the reservoir and the sample. The contact can be treated in the same way as the
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Figure 2.1: QH (a) ideal case, (b) single contact disordered case, (c) all contacts disordered case. Maroon
solid line denotes chiral spin unpolarized QH edge modes. Edge modes are transmitted through a disordered
contact i with transmission probability Ti = 1−Di and reflection probability Ri = Di while Di being the strength
of disorder at contact i.

two-terminal sample, where the total transmission and reflection probabilities for electrons

coming from the sample are T and R[12, 10] respectively. An ideal contact is reflection

less thus T = 1, R = 0 while if a contact is disordered with strength D, then its reflection

probability is R = D while its transmission probability is T = 1−D.

2.2.1 Quantum Hall sample with single disordered contact

The ideal case without any disorder is represented in Fig. 2.1(a) for six terminal QH sample.

The current voltage relation and conduction matrix are shown in Eqs. (1.20), (1.21) in

chapter 1- Introduction. The resistances for the ideal case have also been calculated in

section 1.1.3 of chapter 1. We do not repeat it here and start with the case of single

disordered contact. QH sample with single disordered contact is shown in Fig. 2.1(b). Here

contact 2 is disordered with transmission probability T2 and reflection probability R2. The

strength of disorder at contact 2- D2 is related to the reflection and transmission probabilities

by the relation- T2 = (1−D2) and R2 = D2. Depending on the disorder strength D2 only a

fraction of the edge modes will transmit through the disordered contact. Landuaer-Buttiker
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formula for an 6 terminal QH system at zero temperature is given as[10]-

Ii =
6

∑
j=1
j 6=i

(G jiVi−Gi jVj) =
2e2M

h

6

∑
j=1,
j 6=i

(TjiVi−Ti jVj), (2.1)

herein Vi is the voltage at ith contact and Ii is the current flowing out of that contact, M is

the number of edge modes, Ti j is the transmission probability from jth to ith contact and Gi j

is the associated conductance. The conduction matrix for six terminal QH sample relating

the currents to the voltages is -

G =−2e2

h



−M 0 0 0 0 M

T2 −T2 0 0 0 0

R2 T2 −M 0 0 0

0 0 M −M 0 0

0 0 0 M −M 0

0 0 0 0 M −M


, (2.2)

where the diagonal elements Gii = ∑
6
j=1, j 6=i G ji =

2e2

h ∑
N
j=1, j 6=i Tji and the non-diagonal ele-

ments Gi j =
2e2

h Ti j (for j 6= i). For example, the diagonal element G11 =
2e2

h M ∑
6
j=1, j 6=i Tj1,

M represents the total no. of modes while a factor 2 is introduced due to the spin degeneracy

of the electrons. In setup as shown in Fig. 2.1(b), M = 1 to avoid clutter. From Fig. 2.1(b) we

see that an electron coming out of contact 1 can either transmit into the contact 2 with prob-

ability T2 = (1−D2) or it can reflect to contact 3 with probability R2 = D2 (since contact 2 is

disordered). So the (1,1)th element of the conduction matrix G reduces to 2e2

h M(T21 +T31)

(since there is no transmission from contact 1 to 4 or 5 or 6, so T41 = T51 = T61 = 0). Thus,

G11 =
2e2

h M(T2 +R2) =
2e2

h M. Similarly rest of the transmission probabilities Ti j’s can be

derived. Substituting I2, I3, I5, and I6 = 0 (since contact 2,3,5,6 are voltage probes and

current through voltage probe is zero) and choosing reference potential V4 = 0, we get
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V1 =V2 =V3, and V4 =V5 =V6 = 0. Thus, as done in section 1.1.3 for an ideal contact,

for a single disordered contact we get the Hall resistance RH = R14,26 =
h

2e2
1
M , longitudinal

resistance RL = R14,23 = 0, two terminal resistance R2T = R14,14 =
h

2e2
1
M and non-local

resistance RNL = R12,54 = 0. We see the Resistance characteristics are completely inde-

pendent of the strength of disorder. Similar to the case of ideal contacts, the Hall resistance

is quantized in units of M and both the longitudinal and non-local resistances vanish while

the 2-terminal resistance is also quantized in units of M.

2.2.2 Quantum Hall sample with all disordered contacts

The case of all disordered contacts is shown in Fig. 2.1(c). All the contacts of the six

terminal QH sample are disordered with strength Di (i = 1,2,3,4,5,6). Disorder strength

Di is related to the reflection and transmission probabilities Ri and Ti by the relation

Ti = (1−Di)M and Ri = DiM. The current voltage relations can be derived from the

conductance matrix below:

G =−2e2M
h



−T11 T12 T13 T14 T15 T16

T21 −T22 T23 T24 T25 T26

T31 T32 −T33 T34 T35 T36

T41 T42 T43 −T44 T45 T46

T51 T52 T53 T54 −T55 T56

T61 T62 T63 T64 T65 −T66


. (2.3)

M is the total number of edge modes in the sample. In setup as shown in Fig. 2.1(c), M = 1.

To avoid clutter only one mode is shown. In the above matrix T15 say is defined as the total
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transmission probability from contact 5 to contact 1 and can be calculated explicitly as-

T15 = (1−D5)D6(1−D1)M+(1−D5)D2
6D1D2D3D4D5(1−D1)M+ ...,

T15 = (1−D5)D6(1−D1)M[1+D1D2D3D4D5D6 + ...],

T15 =
(1−D5)D6(1−D1)M
1−D1D2D3D4D5D6

. (2.4)

The Eq. (2.4) can be understood as follows- An electron starting from contact 5 has proba-

bility 1−D5 to be transmitted from contact 5. Since we are interested in the probability of

its reaching contact 1, it has to be reflected from contact 6 with probability D6 and finally it

is transmitted to contact 1 with probability 1−D1. However, this is the shortest of the many

paths possible for an electron starting from 5 to reach 1, another path can be that of an

electron starting from contact 5 with probability 1−D5 and since we are interested in the

probability of its reaching contact 1, it has to be reflected from contact 6 with probability

D6 and then reflected from contact 1 with probability D1, similarly with probability D2 it will

be reflected from contact 2, with probability D3 from contact 3, with probability D4 from

contact 4, with probability D5 from contact 5 again get reflected with probability D6 from

contact 6 and finally get transmitted into contact 1, this is the second shortest path possible,

similarly one can sum over all the other paths leading to an infinite series, which can be

summed to yield the total probability per mode for transmission from contact 5 to 1 as in

Eq. (2.4). Similarly all the other transmission probabilities in Eq. (2.3) can be explained.

Since currents I2, I3, I5 and I6 = 0 as these are voltage probes and choosing reference

potential V4 = 0, we solve the Eqs. (1.20), (2.3) and calculate the Hall, longitudinal and

2-terminal resistances. So, the Hall resistance RH = R14,26 =
h

2e2
1
M , longitudinal resistance

RL = R14,23 = 0, two terminal resistance R2T = R14,14 =
h

2e2M
1−D1D4

(1−D1)(1−D4)
. Further, for

the non-local measurement currents I3, I4, I5 and I6 = 0 as these are voltage probes and

choosing reference potential V2 = 0 we get the non-local resistance RNL = R12,54 = 0, see
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Figure 2.2: QSH (a) ideal case: Contacts are reflection-less, (b) single contact disordered case (R2,T2
represent the reflection and transmission probability of edge modes from and into contact 2), (c) all contacts
disordered case. Red solid line denotes spin up edge mode while blue solid line denotes spin down edge
mode.

Figs. 2.3(a,b). The Hall, longitudinal and non-local resistances are all ideally quantized

and do not deviate from their ideal results however the 2-terminal (local) resistance does

deviate when more than one contact is disordered as in Figs. 2.3(a,b). This also shows that

non-local resistance is not affected by disorder unlike the local resistance agreeing with

what was observed in the AB ring in Ref. [62]. Next we discuss the effect of single contact

disorder and all contacts disorder on QSH edge modes.

2.2.3 Quantum spin Hall sample with single disordered contact

The ideal case without any disorder is represented in Fig. 2.2(a). The current voltage

relations and conduction matrix are shown in Eqs. (1.31), (1.32) in chapter 1- Introduction.

The resistances for the ideal case have also been calculated in section 1.2.3 of chapter 1.

We do not repeat it here and start with the case of single disordered contact. This case is

represented in Fig. 2.2(b), only a single contact 2 is disordered. Landuaer-Buttiker formula

for an 6 terminal QSH system at zero temperature is given as[34, 42]-

Ii=
6

∑
j=1
j 6=i

(G jiVi−Gi jVj) =
e2M

h

6

∑
j=1
j 6=i

∑
σ,σ′

[T σσ′
ji Vi−T σσ′

i j Vj], (2.5)
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where Gi j =
e2M

h ∑σ,σ′ T σσ′
i j is the conductance between terminal j and i, M is the number

of edge modes, T σσ′
i j is the transmission probability for an electron from contact j to contact

i with initial spin σ′ to final spin σ and Vi is the potential bias at contact i. The conduction

matrix for six terminal QSH sample relating the currents to the voltages is -

G =−e2

h



−2M T2 R2 0 0 M

T2 −2T2 T2 0 0 0

R2 T2 −2M M 0 0

0 0 M −2M M 0

0 0 0 M −2M M

M 0 0 0 M −2M


, (2.6)

where the diagonal elements Gii = ∑ j, j 6=i G ji =
e2M

h ∑
6
j=1, j 6=i,σ,σ′ T

σσ′
ji . The off-diagonal

elements (i, j)th element which is the conductance between contact j and i is given by

∑σ,σ′ T σσ′
i j . To understand the effect of single disordered contact we first look at the diagonal

element G11 = ∑
6
j=2 G j1 where G j1 =

e2M
h (T ↑↑j1 +T ↑↓j1 +T ↓↑j1 +T ↓↓j1 ), j = 2,3,4,5,6. From

Fig. 2.2(b), we see that an spin up electron after coming out of contact 1 can either transmit

to contact 2 with probability T2, thus T ↑↑21 = T2 = 1−D2 or can reflect from contact 2

with probability R2 = D2 and then enter contact 3 thus T ↑↑31 = R2 = D2 while a spin down

electron can directly transmit from contact 1 to contact 6 with transmission probability of

unity, thus T ↑↑61 = 1. Thus G11 in Eq. (2.5) reduces to e2

h M(T ↑↑21 +T ↑↑31 +T ↓↓61 ) (since rest of

the transmission probabilities from contact 1 to other contacts are zero, see Fig. 2.2(b)). So,

G11 =
e2

h M(T2 +R2 +1) = 2 e2

h M. Similarly, rest of the elements of the conduction matrix

G can be derived. Substituting I2, I3, I5, and I6 = 0 (since contacts 2,3,5,6 are voltage

probes) and choosing reference potential V4 = 0, we derive V5 =V6/2 =V1/3. So, the Hall

resistance RH = R14,26 = h
2e2M

D2
3+2D2

, longitudinal resistance RL = R14,23 = h
2e2M

3
3+2D2

,

2-terminal resistance R2T = R14,14 =
h

2e2M
9+3D2
3+2D2

. Further, for the non-local measurement
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currents I3, I4, I5 and I6 = 0 as these are voltage probes and choosing reference potential

V2 = 0 we get the non-local resistance RNL =R12,54 =
h

2e2M
1

6+4D2
. Thus all of the calculated

resistances Hall , longitudinal, 2-terminal and non-local lose their quantization and are

dependent on disorder. Notice that these quantities are all influenced by disorder in contrast

to the QH case in which they are immune to disorder.

2.2.4 Quantum spin Hall sample with all disordered contacts

The case for all disordered contacts is an extension of the case of single disordered contact

as represented in Fig. 2.2(c). Herein we consider all the contacts to be disordered in

general. The current voltage relations can be derived from the conductance matrix below:

G =−e2M
h



−T11 T12 T13 T14 T15 T16

T21 −T22 T23 T24 T25 T26

T31 T32 −T33 T34 T35 T36

T41 T42 T43 −T44 T45 T46

T51 T52 T53 T54 −T55 T56

T61 T62 T63 T64 T65 −T66


. (2.7)

2M represents the total number of modes. In setup as shown in Fig. 2.2(c), M = 1 to avoid

clutter and only a single pair of spin up and spin down modes are shown. In the above

matrix T15-the total transmission probability from contact 5 to 1, in contrast to that for QH

case (Eq. (2.4)) can be written explicitly as

T15 =
[(1−D5)D6(1−D1)+(1−D5)D4D3D2(1−D1)]M

1−D1D2D3D4D5D6
. (2.8)

The reason being there are two spin polarized edge modes which are moving in opposite

directions, the spin up polarized edge mode contributes to T15 via the first term while the
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spin down polarized edge mode contributes via the second term. So the total probability

per mode for transmission from contact 5 to 1 is as defined above in Eq. (2.8). Similarly all

other transmission probabilities occurring in the above matrix can be explained. Substituting

I2, I3, I5, and I6 = 0 as these are voltage probes and choosing reference potential V4 = 0,

we solve the above matrix and calculate the Hall, longitudinal and 2-terminal resistances.

Further, for the non-local measurement currents I3, I4, I5 and I6 = 0 as these are voltage

probes and choosing reference potential V2 = 0 we get the non-local resistance RNL. Since

the expressions for these are quite large we write down the expressions for D1 = D2 =

D3 = Du, D4 = D5 = D6 = Dl for Hall resistance and for equally disordered contacts

Di = D (i = 1,2,3,4,5,6) for rest of the resistances and also analyse them via plots as in

Figs. 2.3(a, b).

RH =
(Du−Dl)(1+2Du−Dl(2+Du))

6(1+Dl)(1+Du)(1−DlDu)
= 0 (when Du = Dl),

R2T =
h

2e2
(3−D(2−3D))

2(1−D2)
, RL = 3RNL =

h
2e2

(1−D)

2(1+D)
. (2.9)

As previously noted for QH case in section 2.2.2, we see that the difference between QH

and QSH is also quite stark when it comes to more than one disordered contact too. In QH

case, while the Hall and longitudinal resistances do not deviate from ideal quantized values

for QSH case these deviate from their ideal quantized values. In fact for a particular choice

as in Fig. 2.3(a), the Hall current for spin Hall edge modes not only is finite it changes sign

indicating the complete breakdown of the quantum spin Hall effect via disorder. Further in

Fig. 2.3(b), we see while non-local resistance for QH case is quantized the same for QSH

case deviates from its ideal quantized value indicating that QSH edge modes are much

more fragile than QH edge modes. The local 2-terminal resistance in both case is affected

by disorder as shown in Fig. 2.3(b).

Page 87 of 269



● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■

◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆

▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲

0.0 0.5 1.0

0.0

0.5

1.0

D

R

▲
QH

RL

◆
QSH

RL

■
QH

RH

●
QSH

RH

(a)

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■

0.0 0.5 1.0

0.0

0.2

0.1

D

R

■
QH

RNL

●
QSH

RNL

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■

0.0 0.5 1.0

2.1

3.0

1.2

■
QH

R2T

●
QSH

R2T

(b)

Figure 2.3: (a) Comparison of Hall and longitudinal resistances (in units of h/2e2) in QH and QSH samples
with parameters: D1 = D6 = 0.2, D2 = D3 = D4 = 0.5, D5 = D, (b) Comparison of local and non-local
resistance in QH and QSH samples with same parameters as in (a).

2.3 Effect of inelastic scattering

Inelastic scattering is not restricted to contacts but is all pervasive and comes into picture

when the sample length exceeds the inelastic scattering length. Furthermore, inelastic

scattering may be accompanied by spin-flip scattering too. In the cases we consider in this

chapter, the length of the sample for single disordered contact in both QH (section 2.2.1)

and QSH (section 2.2.3) cases are less than inelastic scattering length. For all disordered

contacts in both QH (section 2.2.2) and QSH (section 2.2.4) cases the length of sample is

less than inelastic scattering length. However, for all disordered contacts in both QH and

QSH cases the length of the sample may be less than inelastic scattering length and that

we are considering below. In this thesis the term “probe” and “contact” mean the same- a

metallic reservoir.

2.3.1 Quantum Hall sample with both disordered contacts and inelas-

tic scattering

The case of QH edge modes in presence of all disordered contacts and with inelastic

scattering included has been dealt with before in Refs. [10, 12]. We can look at Fig. 2.4(a)
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where we consider the length between disordered contacts is larger than inelastic scattering

length. On the occasion of an inelastic scattering event happening the edge states originat-

ing from different contacts with different energies are equilibrated to a common potential.

In Fig. 2.4(a), one can see that electrons coming from contacts 1 and 6 are equilibrated

to potential V ′1. If as before contacts 1 and 4 are chosen to be the current contacts then

no current flows into the other voltage probe contacts. Lets say a current e2

h T2V ′1 enters

contact 2 while current e2

h T2V2 leaves contact 2, and since contact 2 is a voltage probe net

current has to be zero, implying V2 =V ′1. The same thing happens at contact 3 and along

the lower edge where states are equilibrated to V ′4.

Now we write the current voltage relations in continuous fashion, eschewing our earlier

method of writing it in matrix form to avoid clutter as there are not only the 6 potentials

V1−V6, we also have the equilibrated potentials V ′1−V ′6.

I1 =
2e2

h
T1(V1−V ′6),

Ii =
2e2

h
Ti(Vi−V ′i−1), for i = 2,3,4,5,6. (2.10)

By putting the condition of net current into voltage probe contacts 2,3,4,5 to be zero we get

the following relations between the contact potentials: V2 =V ′1,V3 =V ′2,V5 =V ′4,and V6 =

V ′5. Further, due to the equilibration the net current just out of contact 2 is the sum

2e2

h (T2V2 +R2V ′1) and this should be equal to 2e2

h MV ′2 which is the equilibrated potential

due to inelastic scattering at contact 3. Thus, 2e2

h (T2V2 +R2V2) =
2e2

h MV ′2, or V2 =V ′2, as

T2 +R2 = M the total no. of edge modes in the system. Thus all the upper edges are

equilibrated to same potential V ′1 =V2 =V ′2 =V3 =V ′3.

Similarly for the equilibrated potentials at the lower end we get V ′4 =V5 =V ′5 =V6 =V ′6. So,

the Hall resistance RH = R14,26 =
h

2e2
1
M , longitudinal resistance RL = R14,23 = 0, 2-terminal

resistance R2T = R14,14 =
h

2e2
M2−R1R4

MT1T4
. Further, for the non-local measurement currents

Page 89 of 269



T6  R6 T5  R5

T2   R2 T3   R3

V1

V2 V3

V4

T1

R1

T4

R4

V'1

V4'

 
V6 V5

V'3

V6' V'5

V'2

(a)

T
T1

R1

T6    R6
T5   R5

T4

R4

T3    R3T2     R2

V1

V2 V3

V4

  V5V6

V'1 V'2 V'3

V'4V'5V'6

(b)

Figure 2.4: (a) QH system, (b) QSH system: with all contacts disordered and inelastic scattering. Violet
color starry blobs indicate equilibration of the edge modes via inelastic scattering.

I3, I4, I5 and I6 = 0 as these are voltage probes and choosing reference potential V2 = 0 we

get V3 =V ′3 =V4 =V ′4 =V5 =V ′5 =V6 = 0 and the non-local resistance RNL = R12,54 =

0. The quantum Hall edge mode conductance apart from the 2-terminal case remains

quantized even when all contacts are disordered with inelastic scattering included.

2.3.2 Quantum spin Hall sample with both disordered contacts and

inelastic scattering

The case of QSH edge modes in presence of completely disordered contacts and with

inelastic scattering included can be understood by extending the approach of section 2.3.1

to QSH edge modes. We can look at Fig. 2.4(b) where we consider the length between

disordered contacts is larger than inelastic scattering length. On the occasion of an inelastic

scattering event happening the edge states originating from different contacts with different

energies are equilibrated to a common potential as in QH case. In Fig. 2.4(b), one can see

that electrons coming from contacts 1 and 6 are equilibrated to potential V ′1. If as before

contacts 1 and 4 are chosen to be the current contacts then no current flows into the other

voltage probe contacts. Lets say a current e2

h (T2V ′1 +T2V ′2) enters contact 2, the first part

e2

h T2V ′1 is the spin-up component while the second part e2

h T2V ′2 is the spin-down component
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moving in exactly the opposite direction. Similarly, the current e2

h 2T2V2 leaves contact 2 and

since contact 2 is a voltage probe net current has to be zero, implying V2 = (V ′1 +V ′2)/2.

The same thing happens at contact 3 and along the lower edge.

Now we write the current voltage relations in continuous fashion, eschewing our earlier

method of writing it in matrix form to avoid clutter as there are not only the 6 potentials

V1−V6, we also have the equilibrated potentials V ′1−V ′6.

I1 =
e2

h
T1(2V1−V ′1−V ′6),

Ii =
e2

h
Ti(2Vi−V ′i−1−V ′i ), for i = 2,3,4,5,6. (2.11)

By putting the condition of net current into voltage probe contacts 2,3,4,5 to be zero we get

the following relations between contact potentials: V2 = (V ′1+V ′2)/2,V3 = (V ′2+V ′3)/2,V5 =

(V ′4 +V ′5)/2 and V6 = (V ′5 +V ′1)/2. Further, due to the equilibration the net spin-up current

out of contact 2 is the sum e2

h (T2V2 +R2V ′1) and the net spin-down current out of contact 3

is the sum e2

h (T3V3 +R3V ′3) and this should be equal to e2

h 2MV ′2 which is the net current

out of V ′2- the equilibrated potential due to inelastic scattering between contacts 2 and

3. Similarly, we can write the net spin polarized currents into and out of the equilibrated

potentials. Since there are 6 equilibrated potentials we will have six such equations. The

origin of the first equation has already been explained above herein below we list all of

them:

e2

h
(TiVi +RiV ′i−1)+

e2

h
(Ti+1Vi+1 +Ri+1V ′i+1) =

e2

h
2MV ′i , for i = 2,3,4,5,

e2

h
(T1V1 +R1V ′6)+

e2

h
(T2V2 +R2V ′2) =

e2

h
2MV ′1,

e2

h
(T1V1 +R1V ′6)+

e2

h
(T6V6 +R6V ′5) =

e2

h
2MV ′6. (2.12)

Solving the above six equations, gives the equilibrated potentials V ′i , i = 1, ..6 in terms of

Page 91 of 269



● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■

0.0 0.5 1.0

0.0

0.5

1.0

D

■
QH

RH

●
QSH

RH

●
●
●
●
●
●
●
●●●●●●●●●●●●●●●●●●●●●●●●●●●

0.0 0.5 1.0

0.032

0.040

0.048

(a)

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■

0.0 0.5 1.0

0.0

1.2

0.6

D

■
QH

RL

●
QSH

RL

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●●●●●●●●●●●●●●●●●●●●

0.0 0.5 1.0

1.248

1.256

1.264

(b)

●
●

●
●

●
●

●
●

●
● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■

0.0 0.5 1.0

0.0

0.6

0.3

D

■
QH

RNL

●
QSH

RNL

●●●●●●●●●
●●●●●

●●●●
●●●

●●
●●

●
●
●

●

●

●● ●

■■■■■■■■■■■■■■
■■■■■■

■■■
■■

■■
■
■
■

■

■

0.0 0.5 1.0
0.0

20.0

10.0

■
QH

R2T

●
QSH

R2T

(c)

Figure 2.5: QH and QSH samples with all disordered contacts and inelastic scattering. (a) Hall, (b)
longitudinal, (c) 2-terminal and non-local resistances (in units of h/2e2) with parameters Dl = 0.8, Du = 0.5,
Dc = D, M = 1.

the contact potentials Vi, i = 1, ..6. Substituting the obtained V ′i , i = 1, ..6 in Eq. (2.11), we

can derive the necessary resistances. For the non-local measurement currents I3, I4, I5

and I6 = 0 as these are voltage probes and choosing reference potential V2 = 0 we get the

non-local resistance RNL as below. We specially consider the case wherein Dc = D1 = D4,

Du = D2 = D3, Dl = D5 = D6 and we have-

RH = R14,26 =
h

2e2M
(Dl−Du)

3+2Dl +Du(2+Dl)+Dc(2+Dl +Du)
,

RL = R14,23 =
h

e2M
(3+2Dc +Dl)

3+2Dl +Du(2+Dl)+Dc(2+Dl +Du)
,

R2T = R14,14 =
h

e2M
(4D2

c− (3+Dl)(3+Du))

(−1+Dc)(3+2Dl +Du(2+Dl)+Dc(2+Dl +Du))
,

RNL = R12,54 =
h

4e2M
(2+Dc +Dl)(2+Dc +Du)

(1+Dc)(3+2Du +Dl(2+Du)+Dc(2+Dl +Du))
.(2.13)

Here Dc denotes disorder in current contacts while Du(Dl) represent disorder in contacts

at upper(lower) edge. When disorder in contacts at upper and lower edge are unequal one

sees finite charge Hall conductance and thus pure QSH effect vanishes. This is unlike what

happens in this case for QH edge modes not only quantum Hall conductance is resilient to

disorder and inelastic scattering it retains its quantization and the longitudinal resistance a

measure of voltage drop across the sample remains zero. So unlike in case of QH edge

modes where inelastic scattering restores Hall quantization in presence of all disordered
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contacts regardless of whether their strengths are equal or not, in case of QSH inelastic

scattering also fails to restore the pure QSH effect in presence of unequal disorder. In

Figs. 2.5(a, b) we plot the Longitudinal and Hall resistances for QH and QSH cases. One

can see from the insets how the QSH case is dependent on disorder while QH case remains

untroubled by disorder. The disorder dependent behaviour of the nonlocal QSH resistance

comes out clearly in Fig. 2.5 (c). For the disorder parameters considered, the nonlocal

resistance monotonically decreases, while the local resistance, on the other hand increases

with increasing disorder. In Fig. 2.5(c) we also see that while for QSH case the non-local

resistance loses its quantization, QH case remains quantized with vanishing non-local

resistance.

2.4 Generalization to N contacts

Till now we have only discussed six terminal QH and QSH samples in presence of disorder

in section 2.2 and in presence of both disorder and inelastic scattering in section 2.3. To

study the effects of number of contacts on the Hall, longitudinal, 2-terminal and non-local

resistances we extend the previous discussions to N terminals in both QH and QSH samples.

First we consider the case of ideal contacts for QH and QSH samples and finally we include

disorder and inelastic scattering to study its effect on the N terminal QH and QSH samples.

2.4.1 N terminal quantum Hall sample with ideal contacts

The ideal case is represented in Fig. 2.6(a). The current voltage relations can be derived

from the current voltage equation:
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Figure 2.6: (a) N terminal QH bar with ideal contacts, (b) N terminal QSH bar with ideal contacts.
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V1

V2

..
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Vk

Vk+1

..

VN−1
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,

(2.14)

where the diagonal elements Gii = ∑
N
j=1, j 6=i G ji =

2e2

h ∑
N
j=1, j 6=i Tji and the non-diagonal

elements Gi j =
2e2

h Ti j (for j 6= i). The diagonal element, for example, G11 =
2e2

h ∑
N
j=1, j 6=i Tj1.

M represents the total no. of modes while a factor 2 is introduced due to the spin degeneracy

of the electrons. In setup as shown in Fig. 2.6(a), M = 1 to avoid clutter. From Fig. 2.6(a)

we see that there is transmission of electrons only between the adjacent contacts in

clockwise direction, i.e., transmission probability for an electron from contact i to i+1 (for
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i = 1− (N−1) and T1N = 1) is unity, while rest of the transmission probabilities are zero.

The diagonal conductance G11 reduces to 2e2

h MT21 =
2e2

h M (since T21 = 1). Similarly rest

of the probabilities are derived. Substituting I2, I3, Ik−1 and Ik+1, ..IN = 0 and choosing

reference potential VN = 0, we derive V1 =V2 = ...=Vk−1 and Vk = ...=VN−1 =VN = 0.

So, the Hall resistance RH = R1k,i j =
h

2e2
1
M ,with1 ≤ i < k ≤ j ≤ N, then longitudinal

resistance RL = R1k,i j = 0,with 1 ≤ i, j < k and two terminal resistance R2T = R1k,1k =

h
2e2

1
M with 1≤ i, j < N. Further, for the non-local measurement currents I3, I4, ..., Ik, .., IN−1

and IN = 0 as these are voltage probes and choosing reference potential V2 = 0 we get

V3 = V4 = ... = Vk = ... = VN = 0 and the non-local resistance RNL = R12,i j = 0 with

2 < j < i ≤ N. The case of a single disordered probe as was done for 6 terminal case

in section 2.2.3 can be easily calculated and the resistances-Hall, Longitudinal and two

terminal are identical to the ideal case with disorder having no impact. Importantly the

quantization of Hall resistance is independent of any asymmetry in number of contacts at

upper and lower edge while as we will see below in case of QSH edge modes this is not

the case.
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2.4.2 N terminal quantum spin Hall sample with ideal contacts

The ideal case is represented in Fig. 2.6(b). The current voltage relations can be derived

from the current voltage equation:
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=−e2M
h
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,

(2.15)

where the diagonal elements Gii = ∑
N
j=1, j 6=i G ji and the off-diagonal elements, for example,

(1,2)th element which is the conductance between contact 2 and 1 is given by ∑σ,σ′ T σσ′
12 ,

similarly for the other off-diagonal elements. The diagonal element G11 = ∑
N
j=2 G j1 where

G j1 =
2e2M

h (T ↑↑j1 +T ↑↓j1 +T ↓↑j1 +T ↓↓j1 ), j = 2−N. From Fig. 2.6(b) we see that there is trans-

mission of edge modes only between the adjacent contacts (as the contacts are reflection

less), say for example, for spin up edge mode from contact i to i+1 the transmission is unity

(for i= 1−(N−1) and T ↑↑N1 = 1) while for spin down edge mode from contact i to i−1 trans-

mission is unity (for i = 2−N and T ↓↓N1 = 1), rest of the transmission probabilities are zero.

Thus (1,1)th element of the conduction matrix G reduces to e2

h M(T ↑↑21 +T ↓↓N1) =
2e2

h M (Since

the transmission probabilities T ↑↑21 = T ↓↓N1 = 1). Substituting I2, I3, Ik−1 and Ik+1, ..IN = 0 and

choosing reference potential VN = 0, we derive Vi = (i−1)V2− (i−2)V1, where 1≤ i≤ k

with V2 =
2k−N−2

k−1 V1. Similarly, Vi =−(N− i)V1, where k ≤ i≤ N.
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So, the Hall resistance-

RH = R1k,i j =
h

e2M
(i−1)(2k−N−2)

N
,with1≤ i≤ k, (2.16)

longitudinal resistance-

RL = R1k,i j =
h

e2M
(

j− i
N

)(1− k+N),with 1≤ i, j < k (2.17)

and two terminal resistance R2T = R1k,1k =
h

e2M
k−1

N (1− k+N),with 1≤ i, j ≤ N. Further,

for the non-local measurement currents I3, I4, ..., Ik, .., IN−1 and IN = 0 as these are voltage

probes and choosing reference potential V2 = 0 we get non-local resistance RNL = R12,i j-

RNL = R12,i j =
h

e2M
(
i− j

N
),with 2≤ j < i≤ N. (2.18)

Surprisingly, a finite charge Hall current flows even when there is no disorder. It arises only

due to asymmetry between number of contacts at upper and lower edge. This number

asymmetry has no role as far as QH edge modes are concerned.

2.4.3 Effect of inelastic scattering

We have already shown in section 2.3.1 for QH and in section 2.3.2 for QSH that in presence

of inelastic scattering for both QH and QSH samples (six terminal) there are no multiple

paths from one contact to another, thus the resistances remain quantized for QH (except

2-terminal resistance) while they lose their quantization in QSH. So next we discuss the N

terminal generalization for QH and then for QSH samples.
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Figure 2.7: N terminal (a) QH sample, (b) QSH sample with all equally disordered contacts and inelastic
scattering.

2.4.3.1 Quantum Hall sample with N disordered contacts and inelastic scattering

The completely disordered case with inelastic scattering is represented in Fig. 2.7(a) for N

terminal QH sample. Here all the contacts are disordered, i.e., Di 6= D j, i, j = 1...N and

i 6= j. It does not matter whether the contacts are equally disordered or not. The disorder

strengths Di’s can be written in terms of the Ti’s- the number of transmitted edge modes.

So, Ti = (1−Di) and Ri = Di. We can look at the Fig. 2.7(a) where we consider that

the length between disordered contacts is larger than inelastic scattering length. On the

occasion of an inelastic scattering event happening the edge states originating from different

contacts with different energies are equilibrated to a common potential. In Fig. 2.7(a), one

can see that electrons coming from contact 1 and N are equilibrated to potential V ′1. If as

before contacts 1 and k are chosen to be the current contacts then no current flows into the

other voltage probe contacts. Lets say a current 2e2

h MT2V ′1 enters contact 2 while current

2e2

h MT2V2 leaves contact 2, and since contact 2 is a voltage probe net current has to be

zero, implying V2 = V ′1. The same thing happens at contact 3 and along the lower edge

where states are equilibrated to V ′k . Now we write the current voltage relations in continuous

fashion, eschewing our earlier method of writing it in matrix form to avoid clutter as there
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are not only the N potentials V1−VN , we also have the equilibrated potentials V ′1−V ′N .

I1 =
2e2

h
T1(V1−V ′N),

Ik =
2e2

h
Tk(Vk−V ′k−1), for k = 2−N. (2.19)

By putting the condition of net current into voltage probe contacts 2,3, ...k−1,k+1...,N

to be zero we get the following relations between the contact potentials: V2 = V ′1,V3 =

V ′2, ....Vk−1 =V ′k−2,andVk+1 =V ′k , ...,VN =V ′N−1. Further, due to the equilibration the net

current just out of contact 2 is the sum 2e2

h M(T2V2 +R2V ′1) and this should be equal to

2e2

h MV ′2 which is the equilibrated potential due to inelastic scattering between contacts 2

and 3. Thus, 2e2

h M(T2V2+R2V2) =
2e2

h MV ′2, or V2 =V ′2, as T2+R2 = 1. Thus all the upper

edges are equilibrated to same potential V ′1 =V2 =V ′2 =V3 =V ′3 =V1 = ...=Vk−1 =V ′k−1.

Similarly for the equilibrated potentials at the lower edge we get V ′k =Vk+1 =V ′k+1 = ...=

VN =V ′N = 0, as VN = 0. So, the Hall resistance RH =R1k,i j =
h

2e2
1
M with 1< i< k < j≤N,

longitudinal resistance RL = R1k,i j = 0 with 1 < i, j < k and two terminal resistance R2T =

R1k,1k =
h

2e2
M2−R1Rk

MT1Tk
. Further, for the non-local measurement currents I3, I4, ...Ik, ..., IN = 0

as these are voltage probes and choosing reference potential V2 = 0 we get the non-local

resistance RNL = R12,i j = 0 with 2 < j < i < N. Thus sample geometry has no role in this

case.

2.4.3.2 Quantum spin Hall sample with N disordered contacts and inelastic scatter-

ing

The completely disordered case with inelastic scattering is represented in Fig. 2.7(b). Here

both the voltage as well as current probe contacts are disordered, i.e., Di = D j, i, j =

1...N. To simplify the calculation- all the contacts are considered equally disordered. The

disorder strengths D’s can be written in terms of the T’s- the transmission probabilities
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of transmitted edge modes. So, Ti = T = (1−Di) = (1−D) and Ri = R = Di = D. In

Fig. 2.7(b), we consider the length between disordered contacts to be larger than the

inelastic scattering length. On the occasion of an inelastic scattering event happening

the edge states originating from different contacts with different energies are equilibrated

to a common potential. In Fig. 2.7(b), one can see that electrons coming from contact 1

and N are equilibrated to potential V ′1. If as before contacts 1 and k are chosen to be the

current contacts then no current flows into the other voltage probe contacts. Lets say a

current e2

h M(T2V ′1 +T2V ′2) enters contact 2, the first part e2

h MT2V ′1 is the spin-up component

while the second part e2

h MT2V ′2 is the spin-down component moving in exactly the opposite

direction. Similarly, the current e2

h M2T2V2 leaves contact 2, and since contact 2 is a voltage

probe net current has to be zero, implying V2 = (V ′1 +V ′2)/2. The same thing happens at

contacts 3,4..k−1 and along the lower edge.

Now we write the current voltage relations in continuous fashion, and as before eschewing

our earlier method of writing it in matrix form to avoid clutter as there are not only the N

potentials V1−VN , we also have the equilibrated potentials V ′1−V ′N .

I1 =
e2

h
(2TV1−T (V ′1 +V ′N)),

Ik =
e2

h
(2TVk−T (V ′k−1 +V ′k)), for k = 2−N. (2.20)

Further, due to the equilibration the net current just out of contact 2 is the sum e2

h M(TV2 +

RV ′1 +RV ′3 +TV3) and this should be equal to e2

h 2MV ′2 which is the equilibrated potential

due to inelastic scattering between contacts 2 and 3. Similarly for the net current just out

of kth contact is the sum e2

h M(TVk +RV ′k−1 +RV ′k+1 +TVk+1) and this should be equal to

e2

h 2MV ′k which is the equilibrated potential due to inelastic scattering between contacts k

and k+ 1. By putting the condition of net current into voltage probe contacts 2,3, ...k−

1,k + 1...,N to be zero we get the following relations between the contact potentials:
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V ′i = (i−1)V ′2− (i−2)V ′1 with 2≤ i≤ (k−1) and V ′i =−(2N−2i−1)V ′N with k≤ i≤ N.

So, the Hall resistance with j = N− i+2 is given as-

RH = R1k,i j =
h

e2M
2(i−1)(2k−N−2)

(1+D)N
with 1 < i < k < j ≤ N

and if we consider k = N/2+1, i.e., a symmetric sample (with equal no of contacts at the

lower and upper edge) then RH = 0. So sample geometry (number asymmetry between

contacts at upper and lower edge) has a direct bearing on whether one sees a pure spin Hall

effect or it is contaminated by a charge current. Further in symmetric case although there

is no charge Hall current- it is seen only when all the contacts are equally disordered, i.e.,

quantum spin Hall effect is restored. If on the other hand contacts are not equally disordered

as seen in 6 terminal case in section 2.3.2 RH 6= 0 even in presence of inelastic scattering.

So unlike in case of quantum Hall edge modes where inelastic scattering restores Hall

quantization in presence of all disordered contacts regardless of their strengths are equal or

not, in case of quantum spin Hall inelastic scattering also fails to restore the pure quantum

spin Hall effect in presence of unequal disorder.

Next, longitudinal resistance-

RL = R1k,i j =
h

e2M
( j− i)2(1− k+N)

(1+D)N
with 2 < i, j < k

and finally the two terminal resistance

R2T = R1k,1k =−
h

e2M
2[(k−1)(k−N−1)−D(1+ k2 +2N− k(N +2))]

(1−D)(1+D)N
.

Further, for the non-local measurement currents I3, I4, ...Ik, ..., IN = 0 as these are voltage

probes and choosing reference potential V2 = 0 we get the non-local resistance RNL =

R12,i j =
h

e2M
2(i− j)
(1+D)N , with 3 ≤ i, j ≤ N. The N-terminal results reduce to the 6 terminal
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case of equal number of probes at the upper and lower edge (symmetric case) in all cases

confirming the results obtained as before. Further they shed light on the asymmetric case

wherein probes on upper and lower edge are unequal. Asymmetry has no role as far as

quantum Hall edge modes are concerned but in case of quantum spin Hall edge modes

they have a non-trivial role, even destroying the pure quantum spin Hall effect, regardless

of whether there is disorder or not.

2.5 Comparison of QH edge mode with QSH edge mode

in presence of disorder and/or inelastic scattering

The robustness of QH and QSH edge modes are compared in Tables 2.1 and 2.2 for a

six terminal QH or QSH sample in presence of disorder and inelastic scattering. In QH

sample for ideal case the Hall resistance is quantized to h/(2e2)M, longitudinal, non-local

resistances are zero and 2-terminal resistance is quantized to h/(2e2)M, see Tables 2.1,

2.2. In QSH sample for ideal case the Hall resistance is zero, longitudinal, non-local and

2-terminal resistances are quantized to h/(2e2)M, h/(6e2)M and 3h/(2e2)M respectively.

In presence of single disordered contact it can be seen that while in QH sample RH , RL, RNL

and R2T all remain quantized and unaffected by the disorder, in QSH sample Hall resistance

is finite (hD2/(2e2)M(3+D2)), longitudinal resistance is 3h/(2e2)M(3+D2), non-local

resistance is h/(2e2)M(3+D2) and finally 2-terminal resistance is 3h(3+D2)/(2e2)M(3+

D2). Thus all the resistances become dependent on disorder even if single contact is

disordered. In presence of all the disordered contacts for QH sample RH , RL and RNL

continued to remain unaffected,only R2T becomes dependent on disorder as shown in Table

2.2. In QSH sample they continued to remain affected by disorder, see Tables 2.1 and 2.2.

With inclusion of inelastic scattering in the sample for QH case all the resistances remain

unchanged from the all disordered contacts case while for QSH case all the resistances
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continued to remain affected as before, see Tables 2.1 and 2.2.

Table 2.1: How do the quantum spin Hall edge modes compare with quantum Hall edge
modes in a six terminal Hall bar?

QH Edge Modes QSH Edge Modes
RH RL RH RL

Ideal Case h
2e2

1
M 0 0 h

2e2M
Single disor-
dered probe

h
2e2

1
M 0 h

2e2M
D2

3+2D2
h

2e2M
3

3+2D2

Two or more dis-
ordered probes

h
2e2

1
M 0 Disorder dependent

(Fig. 2.3(a))
Disorder dependent
(Fig. 2.3(a))

Disorder+inelastic
scattering

h
2e2

1
M 0 Disorder dependent

(Fig. 2.5(a))
Disorder dependent
(Fig. 2.5(b))

Table 2.2: How do QH and QSH edge modes compare vis a vis their proclivity to disorder,
inelastic and spin-flip scattering in non- local and local set-ups?

QH Edge Modes QSH Edge Modes
RNL R2T RNL R2T

Ideal Case 0 h
2e2

1
M

h
e2M

1
6

3h
2e2M

Single disor-
dered probe

0 h
2e2

1
M

h
2e2M

1
3+2D2

h
2e2M

3(3+D2)
(3+2D2)

Two or more dis-
ordered probes

0 h
2e2

(1−D1D4)
(1−D1)(1−D4)M

Disorder dependent
(Fig. 2.3(b))

Disorder dependent
(Fig. 2.3(b))

Disorder+inelastic
scattering

0 h
2e2

(1−D1D4)
(1−D1)(1−D4)M

Disorder dependent
(Fig. 2.5(c))

Disorder dependent
(Fig. 2.5(c))

2.6 Conclusion

The aim of this chapter was to check the robustness of QH and QSH edge modes to the

twin effects of disorder and inelastic scattering- the bane of any phenomena in mesoscopic

physics. It was also expected that non-local transport regime is less affected by disorder

and inelastic scattering than the local transport regime, which is known to be true for

quantum ballistic transport[62, 63]. This question was addressed in this chapter whether
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this hypothesis is true for QH and QSH regime too or not. It is seen that in QH regime

non-local transport is not affected by disorder and inelastic scattering unlike local transport

(see Table 2.2) while in QSH regime non-local and local both are affected by disorder and

inelastic scattering. Thus the hypothesis regarding- “non-local transport regime is less

affected by disorder and inelastic scattering than the local transport regime” is true for

QH regime but untrue in QSH regime. How do increasing number of terminals in QH and

QSH system affect the Hall, longitudinal, 2-terminal and non-local resistance in presence of

disorder and inelastic scattering was also addressed in this chapter. It was observed that

while in QH system, increasing number of terminals had no effect on the various resistances,

it severally affected the same in QSH systems. The various resistances are calculated

using Landauer-Buttiker formalism as done in Refs. [66, 11, 10] too. It was also seen in

this chapter that while in QH regime Hall resistance, longitudinal resistance and non-local

resistance retain their quantization even in presence of disorder and inelastic scattering

(see Table 2.1), in QSH regime they become non-quantized even in presence of a single

disordered contact. This result raises questions regarding the usefulness of non-local QSH

transport in low-power information processing as reported in several works[34]. This also

shows that the widely used quantized non-local conductance as a tool to detect helical edge

mode transport has serious deficiencies especially in presence of disorder and inelastic

scattering. In short, the non-local conductance in helical (QSH) edge mode transport does

not retain its quantization and so would be unable to detect helicity in presence of contact

disorder and inelastic scattering. Further, since QSH edge modes are considered to be

useful in a host of other areas ranging from topological quantum computation[56] (braiding

of majorana fermions) to searching for novel spin dependent effects, this chapter casts a

shadow of doubt as regards their utility in such applications.

Page 104 of 269



3. Probing Helical edge modes and

their topological origins

“The noise is the signal”

– Rolf Landauer

“I think there’s something strangely musical about noise.”

– Trent Reznor

“In the beginning, there was noise. Noise begat rhythm, and rhythm begat every-

thing else.”

– Mickey Hart

3.1 Introduction

In presence of a magnetic field and at low temperatures, chiral quantum Hall (QH) edge

modes appear in a 2 dimensional electron gas[10, 33]. In such systems, edge modes

flow in a manner (shown in Fig. 3.1(a), left panel) such that at the top edge electrons only

move in one direction to the right. At the other, i.e., bottom edge electrons flow to the

left in exactly opposite direction, this is called the chiral traffic rule. At low temperatures

and in Mercury Telluride/Cadmium Telluride (HgTe/CdTe) heterostructure’s[25] with strong
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spin-orbit coupling quantum spin Hall (QSH) edge modes appear. Herein spin of the

electron is locked to its momentum. If at the top edge of the sample spin up electrons are

moving in one direction (say, right) then spin down electrons are moving in the opposite

direction (left), and at the bottom edge vice versa. Thus a new traffic rule comes into

effect-helical traffic rule and these edge modes are helical[25], see Fig. 3.1(a) (middle

panel). To scatter, in the opposite direction an electron has to flip its spin. This is prohibited

by time reversal(TR) symmetry as QSH samples obey TR symmetry in contrast to QH

samples which don’t. However, it is not always that the origin of helical edge modes in QSH

samples is topological, recently there have been cases[43] where spin-momentum locked

quasi-helical edge modes appear but these are not topologically protected. It has to be

pointed out that the spin momentum locking among quasi-helical edge modes does not

survive non-magnetic disorder and intra-edge backscattering comes into effect. These are

termed trivial or quasi-helical edge modes and are shown in Fig. 3.1(a) (right panel).

The reason it is necessary to probe helicity is because the QSH state is a new state of

matter- it is a topologically ordered phase in absence of magnetic field. This unique state

of matter has to be experimentally and rigorously probed such that its existence is proved

beyond doubt. Secondly, the confusion regarding the origin of helical edge states whether

its really topological and therefore protected from sample disorder and inelastic scattering

or its due to some trivial reason and thus of non-topological origin is a current topic of

interest as evidenced by the recent works in this field[43, 64].

There are different methods for distinguishing helicity from chirality. The usual way to

probe the existence of chiral/helical edge modes is via conductance measurements in

multi terminal transport experiments[34, 65]. Lets consider an elementary set-up as in

Fig. 3.1(b)(left panel)- a two terminal conductor with contacts 1 and 3 as source and

sink. Herein, the words terminal/contact/probe imply the same thing a metallic reservoir

for electrons. If a third probe is added in between contacts 1 and 3 as a voltage probe
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(Topological)

   Helical
(Topological)

 Quasi-Helical
     (Trivial)
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Figure 3.1: (a) Chiral vs helical(Topological) vs quasi-helical (Trivial), (b) 3-terminal chiral, helical(Topological)
and quasi-helical (Trivial) bar. Black solid line denotes spin unpolarized QH edge mode, while red and blue
solid line denote spin up and spin down QSH edge modes. Arrows between two edge modes at the same
edge denote intra-edge spin flip scattering among them.
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(Fig. 3.1(b) (left panel)) then for QH sample one edge mode enters probe 2 from source and

another edge mode goes out from it. So to maintain net current zero at probe 2 its potential

is adjusted to potential of the source, and the two terminal conductance of the sample

remains same as before (without voltage probe 2). This can be understood from Landauer-

Buttiker formalism[10, 33], since current through voltage probe- I2 = G21(V2−V1) = 0,

it leads to V1 = V2. The total conductance of the QH sample (chiral-topological) is then

2 e2

h . The conductance of the QH sample does not change with addition of an extra voltage

probe. But in QSH sample (helical-topological) (Fig. 3.1(b) (middle panel)) one edge

mode enters the voltage probe from source and two edge modes come out of the voltage

probe. The current through voltage probe- I2 = G21(V2−V1)+G23(V2−V3) = 0 leads

to I2 = G(2V2−V1−V3) = 0, ⇒ V2 = V1/2, where G21 = G23 = G and V3 = 0. Thus

potential of voltage probe is adjusted to half of the potential of the source[98]. In QSH

(helical-topological) samples the conductance is reduced by adding a voltage probe and is

3
2

e2

h . Measuring the conductance with the inclusion of a voltage probe one can differentiate

between the topological helical and chiral edge modes. Now what about quasi-helical (trivial)

edge modes since these are not topologically protected and therefore are susceptible to

intra-edge scattering Fig. 3.1(b)(right panel). At the top edge the electronic edge mode with

spin-up (shown in red) has a finite probability of spin-flip scattering and reversing its path,

the same thing happens for the spin-down electron (shown in blue). The small arrows in

between the quasi-helical (trivial) edge modes indicates this process. The three terminal

conductance for the quasi-helical (trivial) case then is 3
2

e2

h (1− f ), where f is the probability

of intra-edge scattering- a measure of the vulnerability of trivial quasi-helical edge modes

to disorder and inelastic scattering. In clean samples where the probability of intra-edge

scattering( f ) is expected to be small, relying on conductance measurement alone may

not be wise. Therefore in this chapter the focus is on the noise in particular the non-local

Hanbury-Brown and Twiss (HBT) correlations [3].
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In this chapter it is assumed that the trivial quasi-helical edge modes, in absence of any

disorder, are similar to the topological helical edge modes and are spin-momentum locked.

In other words- helical, up-spin edge modes at same edge have exactly opposite momentum

to down-spin edge modes.

The subject of this chapter on distinguishing topological chiral and helical edge modes

and determining whether the origin of the helical edge modes is topological or not via

non-local HBT correlations has been dealt with in Ref. [3]. In chapter 2 the distinct attributes

of chiral QH and helical QSH topological edge modes have been explored. Further, few

more papers [70, 71, 72, 73] have explored the topic of helical vs. chiral edge modes

using superconductors[70], with polarized STM tips[73], with corner junctions[72] and finally

exploiting the Rashba coupling[71]. All these works while relying on different systems have

a common conductance measurement which acts as the arbiter of helicity. Since in quantum

spin Hall systems spin is locked to momentum, relying on just conductance measurements

is risky, wherein detecting degree of spin polarization in samples exposed to disorder and

spin-flip scattering will be tricky. In this chapter the aim is to use the Hanbury-Brown and

Twiss or shot-noise correlations to probe the presence of helical edge modes and determine

its origins whether topological or not. Non-local shot noise correlations on the other hand

are seen to use the disorder and/or inelastic scattering present as a resource in being better

able to differentiate between chirality and helicity and also between trivial and topological

edge modes.

The theoretical examination of noise in QSH systems has mostly focused on the effect

of electron-electron (e-e) interactions on the current-current correlations within a helical

Luttinger liquid model describing the QSH state. Further these studies are in presence of

a quantum point contact (QPC) in a QSH bar, as in Refs. [74, 75, 76]. There are also few

papers on current-current correlation studied via the scattering matrix approach or other

than helical Luttinger liquid approach, see Refs. [77, 78]. In this chapter zero frequency non-
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local shot noise correlations are studied for QSH systems as regards distinguishing chiral

versus helical (topological) and quasi-helical (trivial) phases. The focus of the aforesaid

references [74, 75, 76, 77, 78] is not on identifying the topological origins of helical edge

modes neither on the distinction between chiral and helical edge modes as is the case in

this chapter.

However, apart from noise, various research groups around the world have made intriguing

attempts at inferring helicity in edge mode transport in QSH systems via the conductance.

A very recent proposal concerns a π shift seen in the conductance measurement of a

QSH system[80]. This method also has an inherent weakness in that such a π shift is only

observed when backscattering is absent. This implies presence of disorder will trip this

method up rendering it un-fructuous. Another interesting proposal aims to use a Hong-Ou-

Mandel interferometer[81] with QSH/QH edge modes which uses noise and proposes to

use the dip in noise at zero power as a probe for helicity. However, this dip is shown as

function of the time delay between two sources in the interferometer and its magnitude is

compared for chiral and helical cases. These dips are affected by number of edge modes

making the clear cut differentiation difficult. Further, no comment is made on the presence

of disorder and inelastic scattering. Another work which includes disorder[82] and tries to

distinguish between chiral and helical edge modes via a quantization of the conductance

measurement obviates the weakness of Refs. [80, 81] but has an inherent weakness in

that- with disorder the quantization vanishes. An interesting proposal which also uses the

noise correlations[83] to distinguish between chiral and helical edge modes in presence of

disorder purports to be better than[82] but then it again would be difficult to experimentally

realize with current technology because of its reliance on QPC’s. Another related work

concerns the amount of net spin tunnelling between edge states and this can be also

used as an arbiter for helicity[84], however herein too effects of disorder and inelastic

scattering are not dealt with, finally a related work suggests the use of noise[76] and uses a

Page 110 of 269



four terminal QPC to probe the helicity versus chirality dilemma, however herein too the

dependence on QPC’s will hamper any experimental realization. Further, the distinction

between chiral and helical cases is via a difference in magnitude of the noise while a

better arbiter is the sign which we will focus on in this chapter and will aim to surmount

the challenges in the above proposals. On the question of topological helical vs. trivial

quasi-helical edge modes there have been a couple of experimental papers[43] which have

shown that quasi-helical edge modes do exist in trivial insulator but only a single theoretical

work has dealt with this problem. In Ref. [85], the authors propose a method to distinguish

between the two which relies on the addition of two non-magnetic impurities in an other wise

clean QSH sample. The occurrence of localized zero modes identifies the topological origin

of the helical edge modes. Notwithstanding the complexity of the method this approach

also will be hard to fashion experimentally since detecting zero modes is a non-trivial task.

Further, while local shot noise correlations have been calculated in some recent works

with QSH samples[77] to our knowledge this is the first time[3] wherein both the non-local

charge and spin shot noise correlations have been used as a probe of helicity and its

topological origins and also to discriminate between chiral and helical edge modes. In 1950,

R. Hanbury Brown and R. Twiss found out the diameter of radio stars via a intensity-intensity

correlation experiment[86, 10]. The fermionic analogue of this famous experiment was

realized in Refs. [87, 88] for a 2DEG in the chiral QH regime. The Hanbury Brown and Twiss

(HBT) or shot noise correlations were shown to be completely anti-correlated meaning

fermions are in obedience to Paulli exclusion principle. These correlations also go by the

name of shot noise which measures the correlations between fluctuations of the current[15].

In this chapter it is shown that while there is no distinction between charge and spin noise

correlations for topological helical edge modes, they are completely different for trivial

quasi-helical edge modes enabling an effective discrimination between the topological or

trivial origins of these edge modes.
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3.1.1 This chapter

The structure of this chapter is as follows, beginning with “What is noise?” in section 3.2 the

focus is on types of noise- thermal noise in section 3.2.1 and shot noise in section 3.2.2.

Next, the focus is on measurement of HBT correlations in a multi-terminal QH sample in

section 3.2.3 and in QSH sample in section 3.2.4. Next the focus is on the effect of disorder

in section 3.3, first for chiral QH case the non-local HBT correlations are calculated for two

disordered contacts in section 3.3.1, then for all disordered contacts in section 3.3.2. Next

the focus is on the topological helical QSH case, wherein both non-local charge and spin

correlations are calculated. Similar to chiral QH case, the non-local HBT correlations for two

disordered contacts are calculated in section 3.3.3, then the case of all disordered contacts

is discussed in section 3.3.4. Further, inelastic scattering is added to the set-ups discussed

previously in section 3.4, first for two disordered contacts in QH system in section 3.4.1

and and then for all disordered contacts in section 3.4.2. In all these cases it is seen that

non-local HBT correlations are always negative for QH systems. Then the focus is on a well

known theoretical work[14] and its subsequent experimental implementation[68] and it is

explained in section 3.4.3 why there is a difference between Refs. [14, 68] and the results

in sections 3.4.1 and 3.4.2. In this chapter, deliberately QPC’s are removed from the QH

or QSH systems discussed, since the focus is on obtaining positive correlations in helical

QSH samples, wherein due to Dirac nature of the edge states experimental implementation

with QPC’s is difficult. Like the QH case, inelastic scattering is added to the QSH set-up in

section 3.5. First for two disordered contacts in section 3.5.1 and finally for all disordered

contacts in section 3.5.2. It is seen that the non-local charge correlations can be positive in

presence of inelastic scattering for QSH samples.

Next the focus is on the question of distinguishing topological helical from trivial quasi-helical

edge modes in section 3.6. In section 3.6 first the case of trivial quasi-helical edge modes

is discussed in presence of two disordered contacts and inelastic scattering in section 3.6.1.
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Then the ratio of HBT noise to current (Fano factor) is calculated for both topological and

trivial QSH samples as well as to distinguish between chiral QH and helical QSH samples

in section 3.6.2. Finally the chapter concludes with a summary of the results in Tables 3.1

and 3.2 and with a perspective on future endeavours.

3.2 What is Noise?

Noise is any unwanted signal or sound that mixes with the desired signal. It disturbs people

or makes it difficult to identify the original signal (sound). Conversations of other people,

road traffic sounds may be called noise by people not involved in them. For our purpose the

fluctuations of an a electrical current will be identified as noise. Noise then is some irregular

fluctuations that accompanies any transmitted electrical signal but is not part of it and tends

to obscure it. Noise is mainly of two types: a) Thermal Noise (Johnson-Nyquist Noise), b)

Shot Noise.

3.2.1 Thermal Noise

The thermodynamic average of the occupation number 〈n〉 of a conductor is defined as

the Fermi-Dirac distribution function f [15]. In a conductor at equilibrium the time averaged

probability of occupation of a state is also defined as Fermi-Dirac distribution f . Therefore,

the time averaged probability of a state not being occupied is 1− f . The fluctuation in the

occupation number is then-

〈(∆n)2〉= 〈(n−〈n〉)2〉= 〈n2−2n〈n〉+ 〈n〉2〉= f (1− f ), (3.1)

where 〈n2〉 is equal to 〈n〉 since due to the Pauli exclusion principle any state can be

occupied with occupation number 1 or 0. Thermal noise defined by Eq. (3.1) is finite only
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when temperature is finite, at zero temperature it is zero. The fluctuations in the occupation

number give rise to equilibrium current fluctuations in the external circuit which are via the

fluctuation-dissipation theorem related to the conductance of the system. Thermal noise

does not give more information than the conductance measurement about the system but

shot noise can[15].

3.2.2 Shot Noise

Shot noise in an electrical conductor is a consequence of the quantization of the charge.

Let’s say a single particle is incident on a rectangular barrier, either it is transmitted with

probability T or reflected with probability R = 1−T . The time averaged occupation number

of incident state 〈nin〉 is unity at zero temperature. The time averaged probability of occupa-

tion of a transmitted state 〈nT 〉 is T and for reflected state 〈nR〉 is R. The mean squared

fluctuation in the occupation number of incident state is 〈(∆nin)
2〉= 〈(nin−〈nin〉)2〉= 0.

The mean squared auto correlation either in the fluctuations in the transmitted or reflected

current is 〈(∆nT )
2〉= 〈(∆nR)

2〉= T R. Finally, HBT or shot noise cross correlation between

the fluctuations of the reflected and transmitted current is-

〈(∆nT ∆nR)〉= 〈(nT −〈nT 〉)(nR−〈nR〉)〉=−T R, (3.2)

where ∆nX = nX −〈nX〉 with X = in,T,R. Since the particle in the incident state is either

transmitted or reflected, so 〈nT nR〉= 0. From Eq. (3.2) it is evident that the auto correlation

〈(∆nT )
2〉= 〈(∆nR)

2〉= T R is always positive and the cross correlation 〈(∆nT ∆nR)〉−T R=

−T (1−T ) is always negative for fermions[15].
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3.2.3 How to measure Hanbury-Brown and Twiss noise in a multiter-

minal quantum Hall system?

Following the scattering matrix approach one can calculate the shot noise cross correlation

(Sαβ) between the currents at two contacts α and β from the scattering matrix of a multi

terminal QH system[15]-

Sαβ =
2e2

h

∫
dE ∑

γλ

Tr
{

Aα

γλ
Aβ

λγ

}
fγ(1− fλ), (3.3)

where Aα

γλ
= δαγδαλ− s†

αγsαλ is derived from the scattering matrix elements si j with i, j

being the contact indices. In this chapter we only consider four terminal QH systems with

α,β = 4,3 respectively. fγ is the Fermi-Dirac distribution at contact γ. In this chapter the

zero temperature limit is only considered, hence fγ can take values 0 or 1 only.

3.2.4 How to measure Hanbury-Brown and Twiss noise in a multiter-

minal quantum spin Hall system?

As the edge modes in QSH are spin polarized, so the shot noise cross correlation can be

calculated separately for charge as well as spin. The charge shot noise formula is given as

follows-

Sch
αβ

= ∑
σ,σ′=↑,↓

Sσσ′

αβ
= S↑↑

αβ
+S↑↓

αβ
+S↓↑

αβ
+S↓↓

αβ
. (3.4)

The above expression can be easily derived by extending the formalism of section 3.2.3 to

spin. The spin shot noise formula is given as-

Ssp
αβ

= S↑↑
αβ
−S↑↓

αβ
−S↓↑

αβ
+S↓↓

αβ
, (3.5)
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(a) (b)
Figure 3.2: Four terminal quantum Hall bar showing chiral edge modes with (a) two disordered contacts, (b)
all disordered contacts. Disordered contact: Ri = Di and Ti = 1−Di, represents the reflection (transmission)
probability of edge modes from and into contact i with the strength of disorder (Di) in contact i ranging from
0 < Ri(or, Di)< 1. To avoid clutter only a single edge state is shown in (a) and (b).

with Sσσ′

αβ
=

2e2

h

∫
dE ∑

γ,γ′
∑

ρ,ρ′=↑,↓
Tr
[
Aρρ′

γγ′ (α,σ)A
ρ′ρ
γ′γ (β,σ

′)
]

fγ(1− fγ′), (3.6)

herein the {m,n}th element of the Buttiker current matrix Aρρ′

γγ′ (α,σ) is given by[102]-

[
Aρρ′

γγ′ (α,σ)
]

mn
= δmnδγαδγ′αδ

σρ
δ

σρ′−∑
k

[
sσρ†

αγ

]
mk

[
sσρ′

αγ′

]
kn
.

One can clearly see that the equations for charge and spin shot noise differ by a minus

sign in front of the opposite spin correlations. This has important consequences since in

presence of finite spin-flip scattering the charge and spin shot noise behave in a dis-similar

manner unlike the case in absence of spin-flip wherein these are identical.

3.3 Effect of disorder on HBT noise

Herein, we consider the contacts to be disordered in a similar way as described in section

2.2 of chapter 2. A disordered contact can be thought of as an ideal contact with a
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disordered region separating the reservoir and the sample. The contact can be treated

in the same way as a two-terminal sample, where the total transmission and reflection

probabilities for electrons coming from the sample are T and R respectively[12, 10].

3.3.1 Quantum Hall system with two disordered contacts

The case of QH sample with two disordered contacts is depicted in Fig. 3.2(a) with contacts

1 and 3 disordered. The scattering matrix relating the incoming edge states to the outgoing

is given as: 

b1

b2

b3

b4


= s



a1

a2

a3

a4


,with s =



r1 0 0 t1

−t1 0 0 r1

0 −t3 r3 0

0 r3 t3 0


, (3.7)

ri =
√

Di and ti =
√

1−Di (Di is the strength of disorder at contact i) represent the

reflection and transmission amplitudes at contact i. For ideal contacts Di = 0 and thus

ri = 0 and ti = 1. In Fig. 3.2(a), M, the no. of edge modes is one for clarity. Each

element of the total scattering matrix s can be calculated in the following way: suppose an

electron incoming in edge state (a1) can reflect as b1 edge state with amplitude r1, thus

s11 represents scattering of an edge state from contact 1 to itself which is r1. The way we

derive S21 is as follows- S21 defines the scattering of an electron coming from contact 1 to

2. An electron comes out of a contact with scattering amplitude −t1 and enters contact

2 without reflection. When an electron comes out of a contact, a minus sign is always

multiplied with its transmission amplitude, while for an electron entering into a contact

no such sign is multiplied. This is just to distinguish forward and backward directions of

propagation. This also makes the s-matrix ‘s’ in Eq. (3.7) unitary. Similarly rest of the

elements of the scattering matrix s can be derived. The scattering matrix s obeys the

unitarity relation s†s = ss† = I , I being identity matrix, which is the necessary condition for
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conservation of current. The equations required to satisfy the scattering matrix to be unitary

are |ti|2 + |ri|2 = 1, where i = contact index. Contact 2 is a current probe with V2 = 0 while

other potentials V1 =V , V3 =V4 = 0. Thus all four contacts are basically current probes.

Further, f1 = 1 and f2 = f3 = f4 = 0 (for 0 < E < eV1) at zero temperature, where E is the

electronic energy and fi = Θ(eVi−E) Fermi-Dirac distribution at contact i which basically

depends on the potential of that contact. Since current is flowing from contact 1 to 2 via

edge modes as bias voltage V1 is applied only at contact 1, and as the edge modes are

chiral there is only current flowing between contacts 1 and 2 and not between any other

contacts as others are all grounded. From Eq. (3.3) one can calculate the nonlocal HBT

cross correlation between contacts 3 and 4 as-

S43 =
2e2

h

∫
dE
[
A4

12A3
21 f1(1− f2)+A4

13A3
31 f1(1− f3)+A4

14A3
41 f1(1− f4)

]
,

=
2e2

h

[
e(V1−V2)A4

12A3
21 + e(V1−V3)A4

13A3
31 + e(V1−V4)A4

14A3
41
]
,

=
2e2

h
|eV1|

[
s†

41s42s†
32s31 + s†

41s43s†
33s31 + s†

41s44s†
34s31

]
= 0,

herein si j are the elements of scattering matrix (Eq. (3.7)). Thus, the nonlocal correlation

S43 vanishes for case of two disordered contacts in QH system, see Fig. 3.2(a).

3.3.2 Quantum Hall system with all disordered contacts

The case of all disordered contacts in a QH sample is depicted in Fig. 3.2(b). The scattering

matrix relating the incoming and outgoing edge states is given as:

s =
1
a



r1− r2r3r4 −t1t2r3r4 −t1t3r4 −t1t4

−t1t2 r2− r1r3r4 −t2t3r1r4 −t2t4r1

−t1t3r2 −t2t3 r3− r1r2r4 −t3t4r1r2

−t1t4r3r2 −t2t4r3 −t3t4 r4− r1r2r3


, (3.8)
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herein a= 1−r1r2r3r4, arises because of the multiple reflections from disordered contacts[1,

3]. Each element of the total scattering matrix can be calculated in the following way: sup-

pose an electron incoming in edge state (a1) can reflect as b1 edge state with amplitude r1,

but then, it can also follow a different path by transmitting through contact 1 and then get

reflected at contact 2, then again reflected at 3 and then at 4 after which it transmits through

contact 1 into b1 state. The amplitude for this path is −t1× r2× r3× r4× t1 =−t2
1 r2r3r4.

Following this one can also have a third path with amplitude −t2
1 r1(r2r3r4)

2 and so on.

Summing all these terms we get the scattering amplitude from contact 1 to itself, as

(r1− r2r3r4)/(1− r1r2r3r4). The origin of minus sign in the transmission amplitudes is

same as explained in section 3.3.1. Similarly, rest of the elements of the s matrix of

the four terminal QH system can be derived. This matrix satisfies the unitarity relation

s†s = ss† = I. Herein too the potentials are identical to the two disordered contact case-

V1 = V , V2 = V3 = V4 = 0. Thus, f1 = 1 and f2 = f3 = f4 = 0 (for 0 < E < eV1) at zero

temperature. We can calculate the nonlocal HBT correlation from Eq. (3.3) as shown below-

S43 =
2e2

h

∫
dE
[
A4

12A3
21 f1(1− f2)+A4

13A3
31 f1(1− f3)+A4

14A3
41 f1(1− f4)

]
,

=
2e2

h

[
e(V1−V2)A4

12A3
21 + e(V1−V3)A4

13A3
31 + e(V1−V4)A4

14A3
41
]
,

=
2e2

h
|eV1|

[
s†

41s42s†
32s31 + s†

41s43s†
33s31 + s†

41s44s†
34s31

]
,

= −2e2

h
|eV |

T 2
1 T3T4R2

2R3

a4 ,

wherein we have used the unitarity or conservation of probability condition |ri|2 + |ti|2 =

Ri + Ti = 1. Here the correlation depends on the disorder at contacts 2 and 3 which

explains why the correlation for two disordered contacts (contacts 1 and 3) case is zero.

The nonlocal HBT correlation is negative which is the property of the Fermi-Dirac distribution

which directly relates to the antisymmetric wave function of electrons.
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(a) (b)
Figure 3.3: Four terminal Quantum Spin Hall bar showing QSH edge modes. These edge modes differ
from their QH counterparts since these are spin polarized and helical, contacts 3 and 4 are detectors kept
at zero potential. (a) Two disordered contacts and (b) all disordered contacts. Ri = 1−Ti represents the
reflection probability of edge modes from and into contact i with the strength of disorder in contact i ranging
from 0 < Ri < 1. To avoid clutter the edge states are only shown in (a). (b) Have exactly similar edge states
to and from the contacts, these aren’t shown explicitly.

3.3.3 Quantum spin Hall system with two disordered contacts

The case of two disordered contacts for a QSH sample is depicted in Fig. 3.3(a). The

scattering matrix relating the incoming to the outgoing edge states is given as:



b↑1

b↓1

b↑2

b↓2

b↑3

b↓3

b↑4

b↓4



= s



a↑1

a↓1

a↑2

a↓2

a↑3

a↓3

a↑4

a↓4



,with s =



r1 0 0 0 0 0 t1 0

0 r1 0 t1 0 0 0 0

−t1 0 0 0 0 0 r1 0

0 0 0 0 0 t3 0 r3

0 0 −t3 0 r3 0 0 0

0 0 0 0 0 r3 0 −t3

0 0 r3 0 t3 0 0 0

0 −t1 0 r1 0 0 0 0



, (3.9)
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with ri and ti being the reflection and transmission amplitudes at contact i. There are four

contacts in the case described above and the samples have two edge modes on each

side- one for spin up and the other for spin down going in the opposite directions (spin-

momentum locked), the scattering matrix s is thus a 8×8 matrix. Each element of the total

scattering matrix s can be calculated in the following way: suppose an up-spin/down-spin

electron incoming in edge state (aσ
1 ) can reflect as bσ

1 edge state with amplitude r1, thus

sσσ
11 scattering of an spin up/spin down edge state from contact 1 to itself is r1. Similarly rest

of the elements of the scattering matrix s can be derived. This matrix satisfies the unitarity

relation s†s = ss† = I. Here the potentials are similar to the case of QH systems with two

disordered contacts case- V1 =V , V2 =V3 =V4 = 0. Further, as before at zero temperature

we have the Fermi-Dirac functions as: f1 = 1 and f2 = f3 = f4 = 0 for (0 < E < eV1). From

Eqs. (3.4), (3.6) one can calculate the nonlocal HBT correlation as-

S↑↑43 =
2e2

h

∫
dE ∑

ρρ′=↑,↓

[
Aρρ′

12 (4,↑)Aρ′ρ
21 (3,↑) f1(1− f2)+Aρρ′

13 (4,↑)Aρ′ρ
31 (3,↑) f1(1− f3)

+Aρρ′

14 (4,↑)Aρ′ρ
41 (3,↑) f1(1− f4)

]
,

=
2e2

h ∑
ρρ′=↑,↓

[
e(V1−V2)A

ρρ′

12 (4,↑)Aρ′ρ
21 (3,↑)+ e(V1−V3)A

ρρ′

13 (4,↑)Aρ′ρ
31 (3,↑)

+e(V1−V4)A
ρρ′

14 (4,↑)Aρ′ρ
41 (3,↑)

]
,

=
2e2

h
|eV1| ∑

ρρ′=↑,↓

[
s↑ρ†

41 s↑ρ
′

42 s↑ρ
′†

32 s↑ρ31 + s↑ρ†
41 s↑ρ

′

43 s↑ρ
′†

33 s↑ρ31 + s↑ρ†
41 s↑ρ

′

44 s↑ρ
′†

34 s↑ρ31

]
,

= 0.

Similarly one can calculate S↑↓43 = S↓↑43 = S↓↓43 = 0. Thus Sch
43 = Ssp

43 = 0. This result is identical

to QH case.
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3.3.4 Quantum spin Hall system with all disordered contacts

Fig. 3.3(b) depicts the all disordered contacts case. The scattering matrix relating the

incoming and the outgoing edge states is given as:

s =
1
a


r1−r2r3r4 0 −t1t2r3r4 0 −t1t3r4 0 −t1t4 0

0 r1−r2r3r4 0 −t1t2 0 −t1t3r2 0 −t1t4r2r3
−t1t2 0 r2−r1r3r4 0 −t2t3r1r4 0 −t2t4r1 0

0 −t1t2r3r4 0 r2−r1r3r4 0 −t2t3 0 −t2t4r3
−t1t3r2 0 −t2t3 0 r3−r1r2r4 0 −t3t4r1r2 0

0 −t1t3r4 0 −t2t3r1r4 0 r3−r1r2r4 0 −t3t4
−t1t4r2r3 0 −t2t4r3 0 −t3t4 0 r4−r1r2r3 0

0 −t1t4 0 −t2t4r1 0 −t3t4r1r2 0 r4−r1r2r3

 , (3.10)

wherein a = 1− r1r2r3r4. Each element of the total scattering matrix can be calculated in

the following way: suppose an spin up/spin down electron incoming in edge state (aσ
1 ) can

reflect as spin up/spin down bσ
1 edge state with amplitude r1, but then, it can also follow a

different path by transmitting through contact 1 and then get reflected at contact 2, then

again reflected at 3 and then at 4 after which it transmits through contact 1 into bσ
1 state.

The amplitude for this path is −t1× r2× r3× r4× t1 =−t2
1 r2r3r4. Following this one can

also have a third path with amplitude −t2
1 r1(r2r3r4)

2 and so on. Summing all these terms

we get the scattering amplitude from contact 1 to itself, as (r1− r2r3r4)/(1− r1r2r3r4).

Similarly, rest of the elements of the s matrix of the four terminal QSH system can be derived.

The above matrix satisfies the unitarity condition- s†s = ss† = I. Herein the potentials are

identical to the two disordered probes case- V1 =V , V2 =V3 =V4 = 0. Here again f1 = 1

and f2 = f3 = f4 = 0 (for 0<E < eV1). From Eqs. (3.4),(3.6) we can calculate the non-local

HBT shot noise cross correlation for both charge as well as spin as-

Sch
43 = Ssp

43 =−
2e2

h
|eV |

T 2
1 T3T4(R2

2R3 +R4)

a4 .

Thus both nonlocal charge and spin correlation depends on the disorder at contacts 2, 3

and 4 which explains why the correlation is zero for two disordered contacts case (disorder
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(a) (b)
Figure 3.4: (a) Four terminal QH bar with two disordered contacts and inelastic scattering- probe 2 (curvy
box) is a voltage probe (with current into it I2 = 0), (b) four terminal QH bar with all disordered contacts and
inelastic scattering- probe 2 (curvy box) is a voltage probe (with current into it I2 = 0).

at contacts 1 and 3). This correlation is always negative irrespective of the magnitude of

disorder.

3.4 Effect of inelastic scattering on HBT noise in quan-

tum Hall edge modes

In chapter 3 we have used Buttiker voltage probe methods to model inelastic scattering. In

chapter 2 we used the method of equilibration of edge modes to model inelastic scattering.

Both methods have their advantages and disadvantages. The advantage of Buttiker voltage

probe method is that it is very simple to use and calculation done in voltage probe method

are not tedious. The disadvantage of using voltage probe method to model inelastic

scattering is that herein inelastic scattering only takes place at specific probe or contact.

However, inelastic scattering in mesoscopic sample at low temperature generated electron-

electron interaction can take place any where in the sample not just a specific place. A

better method to model inelastic scattering is via equilibration of edge modes as was done
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in chapter 2. The equilibration method model inelastic scattering as taking place any where

between two adjacent contacts not restricted to any specific place. However, calculation

using equilibration method are tedious for conductance itself as done in chapter 2. For noise

calculating scattering matrices between contacts and equilibrating potentials and combining

these inelastic matrices is far more difficult although not impossible. Further most of the

related theoretical works on shot noise or HBT correlation in both QH as well as QSH edge

mode transport use Buttiker voltage probe methods to model inelastic scattering. Since

in this chapter we compare the results for helical QSH as well as chiral QH transport to

those works we also use Buttiker voltage probe method to model inelastic scattering. Thus,

in this chapter inelastic scattering is introduced via replacing the current probe 2 with a

voltage probe (shown by a curvy box at contact 2 in Figs. 3.4(a, b)). The difference between

a voltage probe and a current probe is that the current through a voltage probe is zero

unlike a current probe where it is finite. Whenever a edge state enters a voltage probe from

the sample it loses its identity and lost in the reservoir. The current I2 through the voltage

probe is zero. The current through any contact is defined by-Iα = 1
e
∫

dE ∑β Gαβ fβ +δIα,

herein the second term is due to the intrinsic fluctuation[14] (with Sαβ = 〈δIαδIβ〉) and the

conductance matrix

Gαβ =
2e2

h
(Nαδαβ−Tr

[
s†

αβ
sαβ

]
), (3.11)

with Nα = No. of edge modes at contact α. We need to fix the fluctuating part of the

current at contact 2, ∆I2 = 0. This condition ∆I2 = 0 affects the fluctuation of current at

other contacts [14] as follows-
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Iα =< Iα >+∆Iα, with < Iα > the average current in contact α,

Thus,
1
e

dE ∑
β

Gαβ fβ +δIα =
1
e

∫
dE ∑

β

Gαβ f̄β +∆Iα,

or,
1
e

∫
dE ∑

β

Gαβ( fβ− f̄β)+δIα = ∆Iα,

wherein, f̄β is average of the Fermi-Dirac distribution function in contact β.

Now,
1
e

Gα2(µ2− µ̄2)+δIα = ∆Iα, (3.12)

(for contacts i = 1,3,4 µi = µ̄i, since these are current probes)

µ2, µ̄2 being chemical potential and average chemical potential at contact 2.

For α = 2, we get- ∆I2 =
1
e

G22(µ2− µ̄2)+δI2, thus,0 =
1
e

G22(µ2− µ̄2)+δI2,

since contact 2 is a voltage probe, I2 = 〈I2〉= ∆I2 = 0,
δI2

G22
=−1

e
(µ2− µ̄2),

substituting this in Eq. (3.12) we get- ∆Iα = δIα−
Gα2

G22
δI2, (3.13)

wherein the first term is due to the intrinsic part of the fluctuation and the second term is due

to voltage fluctuation at contact 2. Thus, the nonlocal HBT correlation between contacts α,

β due to the inelastic scattering is-

Sin
αβ

= < ∆Iα∆Iβ >=< (δIα−
Gα2

G22
δI2)(δIβ−

Gβ2

G22
δI2)>,

= < (δIαδIβ−
Gα2

G22
δIβδI2−

Gβ2

G22
δIαδI2 +

Gα2Gβ2

G2
22

δI2δI2)>,

= Sαβ−
Gα2

G22
Sβ2−

Gβ2

G22
Sα2 +

Gα2Gβ2

G2
22

S22. (3.14)
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3.4.1 Quantum Hall system with two disordered contacts and inelas-

tic scattering

Two contacts are considered to be disordered for this case, see Fig. 3.4(a). The scattering

matrix relating the incoming to the outgoing edge state is given as in Eq. (3.7). Here, we have

considered source V1 =V and contacts 3, 4 (with V3 =V4 = 0) are detectors. As contact 2

is the voltage probe, I2 = G21(V2−V1)+G24(V2−V4) =
2e2

h [T1(V2−V1)+R1(V2−V4)] =

2e2

h (V2−T1V1), putting I2 = 0, we get- V2 = T1V1. The Fermi-Dirac distribution functions

at zero temperature in the probes are as follows- f1 = 1, f3 = 0, f4 = 0 (for 0 < E < eV1),

f2 = 1 (for 0 < E < eV2) and f2 = 0 (for eV2 < E < eV1) as probes 3 and 4 are used as

detectors and are at zero voltage. Following Eq. (3.3) the non-local charge correlation

between probes 3 and 4 is-

S43 =
2e2

h

∫
dE
[
A4

12A3
21 f1(1− f2)+A4

13A3
31 f1(1− f3)+A4

14A3
41 f1(1− f4)

+A4
23A3

32 f2(1− f3)+A4
24A3

42 f2(1− f4)
]
,

=
2e2

h

[
e(V1−V2)A4

12A3
21 + e(V1−V3)A4

13A3
31 + e(V1−V4)A4

14A3
41

+e(V2−V3)A4
23A3

32 + e(V2−V4)A4
24A3

42
]
,

=
2e2

h
|eV1|

[
s†

41s42s†
32s31 + s†

41s43s†
33s31 + s†

41s44s†
34s31

+T1(s
†
42s43s†

33s32 + s†
42s44s†

34s32)
]
,

= −2e2

h
|eV |[T1T3R3]. (3.15)

Similarly, one can calculate S32 = S42 = 0 and S22 =
2e2

h |eV |T1R1 and the conductances

(following Eq. (3.11)) are- G42 =−2e2

h R3, G32 =−2e2

h T3 and G22 =
2e2

h . Following Eq. (3.14)

we get the non-local correlation in presence of inelastic scattering as-

Sin
43 = S43−

G42

G22
S32−

G32

G22
S42 +

G32G42

G2
22

S22 =−
2e2

h
|eV |[T 2

1 T3R3]. (3.16)
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(a) (b)

Figure 3.5: (a) Non-local correlation in quantum Hall case Sin
43 vs R3 for all disordered probes with inelastic

scattering with parameters R1 = R2 = R4 = 0.5 (solid line) and R1 = R4 = 0.9,R2 = 0.8 (dashed line), (b)
The Texier, et. al.,/Oberholzer, et. al., set-up as in Refs. [14, 68] to detect positive non-local HBT correlations
in a quantum Hall set up. Here, probe 2 is a voltage probe (I2 = 0) while probes 3 and 4 are detectors kept at
zero voltage. Note that by using constrictions inside the sample and having edge modes transmitting with
different probabilities one can engineer positive non-local correlations. However, in the set-ups we have in this
chapter positive non-local correlation in quantum Hall regime are impossible.

If there are multiple no. of edge modes then the correlation is just multiplied by the no.

of edge modes and it remains always negative irrespective of the disorder or inelastic

scattering for QH case.

3.4.2 Quantum Hall set-up with all disordered contacts and inelastic

scattering

All contacts are considered to be disordered for this case. The scattering matrix relating the

incoming to the outgoing edge states is given in Eq. (3.8). In the set up of Fig. 3.4(b), only

one edge mode is shown. We have considered V1 =V and V3 =V4 = 0. As contact 2 is the

voltage probe, from Landauer-Buttiker formalism putting I2 = 0 gives V2 =
T1V1

1−R1R3R4
. The

Fermi-Dirac distribution functions are in the zero temperature limit given as follows- f1 = 1,

f3 = 0, f4 = 0 (for 0 < E < eV1), f2 = 1 (for 0 < E < eV2) and f2 = 0 (for eV2 < E < eV1).

From Eq. (3.3) and (3.14) one can calculate the non-local correlation Sin
43 in presence of
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inelastic scattering as-

Sin
43 =

T1T3T4R3

(1−R1R4R3)a8 [R1T 3
2 (1−R3R4)((1+R2)(1+R1R3R4)−4

√
R1R2R3R4)

−2R1T 2
2 a2(R2 +R3R4−R2R3R4T1−2

√
R1R2R3R4)

−a4(1−R1R2(1+T2)−R1R2
2R3R4T1)],

where a = 1− r1r2r3r4. We plot the shot noise in presence of inelastic scattering obtained

from the above equation in Fig. 3.5(a). In Fig. 3.5(a)(dashed line) we see for large disorder at

probe 1,2,4 non-local correlation almost vanishes for low levels of disorder at probe 3. This

is because the contact with larger disorder behaves as closed for the edge mode, meaning

electron cannot transmit into the probe. So it is more probable for the electron to follow a

path through a contact with less disorder. This makes the electron behaviour deterministic

(particle like behaviour) rather than probabilistic (wave like behaviour), which reduces the

noise correlation (almost to zero). As disorder at probe 3 increases electron path becomes

more probabilistic and negative correlations appear. One can clearly conclude that probes

with same or close to the same disorder will show maximum stochastic nature in the system

and will show maximum negative correlation, which is shown in Fig. 3.5(a)(solid line).

3.4.3 Why is shot noise in our quantum Hall set-up always negative

but in Texier, et. al., /Oberholzer, et. al., [14, 68] set-ups it can

be positive?

Our set-up is different than Texier, et. al./Oberholzer, et. al., set-ups. They considered a

constriction/QPC in their sample which can back scatter edge modes and thus creates

noise within the system. In our case disorder is relegated to the probe/contact. In our case

with disorder at contacts we don’t have any back scattering within the sample in contrast
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to Texier, et. al.,/Oberholzer, et. al., set-ups of Fig. 3.5(b). Further, in their set-ups they

consider two edge modes with different transmission probabilities- one which is completely

transmitted while the other is partially transmitted. However, in our case we have identical

transmission probabilities for different edge modes arising from a particular contact. Also

getting a positive cross correlation in their set-up depends on the no. of edge modes in the

sample but in our set-up the results are independent on the no. of edge modes. The shot

noise result (with inelastic scattering) derived in Ref. [14] is Sin
43 =−(e2/h)|eV |R3

2 [2T3(1+

T1)− (1+T3)R1T1], which is positive for T3 = 0, Sin
43 =+(e2/h)|eV |R1T1/2 for two edge

modes with different transmissions. But if two edge modes have same transmission (lets

say the two edge modes are partially transmitted with identical transmittances) then the

shot noise result is Sin
43 =−2(e2/h)|eV |R3

2 [2T3T1−T3R1T1] =−2(e2/h)|eV |T1T3R3
2 [1+T1]

is completely negative as we see in our case too. The different transmittances for different

edge modes arising from a particular contact is the reason why there is a positive correlation.

The experimental realization of [14] set-up in Ref. [68] requires QPC’s in order to generate

different transmittances for different edge modes which for chiral QH samples maybe alright

but is quite difficult for helical QSH samples, since in the latter due to Dirac nature of edge

states(Klein effect) its extremely difficult to tune their transmittances via a QPC, although not

impossible as some recent studies indicative[95]. In this context the set-up we have which

does not rely on QPC’s but as we will see in next section generates positive correlations for

helical edge modes becomes much more relevant for easier experimental implementation.

Generating positive non-local correlations is the first step to generating entangled currents,

which will have important applications in quantum information processing tasks.
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(a) (b)
Figure 3.6: Four terminal Quantum Spin Hall bar showing QSH edge modes. (a) Two disordered contacts
with inelastic scattering, (b) all disordered contacts with inelastic scattering, (contact 2 is a voltage probe in
both (a) and (b) with I2 = 0).

3.5 Effect of inelastic scattering on quantum spin Hall

edge modes

To calculate the shot noise in QSH case in presence of both disorder as well as inelastic

scattering we generalize the formula obtained for QH case (Eq. (3.14)) by including spin.

The non-local charge correlations for QSH case in presence of inelastic scattering then is-

Sch−in
αβ

= Sch
αβ
−

Gch
α2

Gch
22

Sch
β2−

Gch
β2

Gch
22

Sch
α2 +

Gch
α2Gch

β2

Gch
22

2 Sch
22,

= (S↑↑
αβ

+S↑↓
αβ

+S↓↑
αβ

+S↓↓
αβ
)−

Gch
α2

Gch
22
(S↑↑

β2 +S↑↓
β2 +S↓↑

β2 +S↓↓
β2)

−
Gch

β2

Gch
22
(S↑↑

α2 +S↑↓
α2 +S↓↑

α2 +S↓↓
α2)−

Gch
β2Gch

α2

Gch
22

2 (S↑↑22 +S↑↓22 +S↓↑22 +S↓↓22). (3.17)
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Eq. (3.17) can be simplified by separating the individual spin components as follows:

Sch−in
αβ

= (S↑↑
αβ
−

Gch
α2

Gch
22

S↑↑
β2−

Gch
β2

Gch
22

S↑↑
α2 +

Gch
α2Gch

β2

Gch
22

2 S↑↑22)+(S↑↓
αβ
−

Gch
α2

Gch
22

S↑↓
β2−

Gch
β2

Gch
22

S↑↓
α2 +

Gch
α2Gch

β2

Gch
22

2 S↑↓22)

+(S↓↑
αβ
−

Gch
α2

Gch
22

S↓↑
β2−

Gch
β2

Gch
22

S↓↑
α2 +

Gch
α2Gch

β2

Gch
22

2 S↓↑22)+(S↓↓
αβ
−

Gch
α2

Gch
22

S↓↓
β2−

Gch
β2

Gch
22

S↓↓
α2 +

Gch
α2Gch

β2

Gch
22

2 S↓↓22),

= S↑↑,in
αβ

+S↑↓,in
αβ

+S↓↑,in
αβ

+S↓↓,in
αβ

. (3.18)

In the above equation Gch
kl = G↑↑kl +G↑↓kl +G↓↑kl +G↓↓kl is the conductance summed over all

the spin indices’s, for example G↑↓kl represents the probability that a spin down electron is

transmitted as a spin up electron. The non-local spin correlations is particular to QSH case

and can be similarly written as-

Ssp−in
αβ

= S↑↑,in
αβ
−S↑↓,in

αβ
−S↓↑,in

αβ
+S↓↓,in

αβ
, (3.19)

with Sσσ′,in
αβ

,σ,σ′ =↑,↓ defined as in Eq. (3.18). We proceed now to calculate the non-local

charge and spin correlations in the next sub-section and beyond for QSH edge modes.

3.5.1 Quantum spin Hall set-up with two disordered contacts and in-

elastic scattering

For the case of two disordered probes in QSH case, depicted in Fig. 3.6(a). The scattering

matrix relating the incoming to outgoing edge states is given as in Eq. (3.9), following
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Eq. (3.6) we first calculate S↑↑43 as follows-

S↑↑43 =
2e2

h

∫
dE ∑

γγ′
∑

ρρ′=↑,↓
Tr
[
Aρρ′

γγ′ (4,↑)A
ρ′ρ
γ′γ (3,↑)

]
fγ(1− f ′γ),

=
2e2

h

∫
dE ∑

γγ′
∑

ρρ′=↑,↓
Tr
[
s↑ρ†

4γ
s↑ρ

′

4γ′ s
↑ρ′†
3γ′ s↑ρ3γ

]
fγ(1− f ′γ),

=
2e2

h ∑
ρρ′=↑,↓

[
Tr
[
s↑ρ†

41 s↑ρ
′

42 s↑ρ
′†

32 s↑ρ31

]
e(V1−V2)+Tr

[
s↑ρ†

41 s↑ρ
′

43 s↑ρ
′†

33 s↑ρ31

]
e(V1−V3)

+Tr
[
s↑ρ†

41 s↑ρ
′

44 s↑ρ
′†

34 s↑ρ31

]
e(V1−V4)+Tr

[
s↑ρ†

42 s↑ρ
′

43 s↑ρ
′†

33 s↑ρ32

]
e(V2−V3)

+Tr
[
s↑ρ†

42 s↑ρ
′

44 s↑ρ
′†

34 s↑ρ32

]
e(V2−V4)

]
=

2e2

h
[0+0+0+(−T3R3eV2)+0] ,

= −2e2

h
|eV1|T1T3R3/2. (3.20)

Similarly from Eq. (3.6) and Eq. (3.4), one can calculate S↑↓43 = S↓↑43 = S↓↓43 = 0 then

Sch
43 = S↑↑43 +S↑↓43 +S↓↑43 +S↓↓43 =−

2e2

h |eV1|T1T3R3/2. Now to add the effect of inelastic scat-

tering we have to calculate Sch−in
43 using Eq. (3.17), further the shot noise cross-correlations

Sch
32, Sch

42 and Sch
22 are determined following Eq. (3.4). Here again we consider V1 =V , and

V3 =V4 = 0. As contact 2 is the voltage probe which induces inelastic scattering, substitut-

ing I2 = 0 gives V2 = T1V1/2. The Fermi-Dirac distribution functions are as follows- f1 = 1,

f3 = 0, f4 = 0 (for 0 < E < eV1), f2 = 1 (for 0 < E < eV2) and f2 = 0 (for eV2 < E < eV1).

From Eqs. (3.4), (3.6) and Eq. (3.18), we calculate the non-local charge correlation in

presence of inelastic scattering as-

Sch−in
43 =−2e2

h
|eV |

[
T1T3R3

2
− T1T3R1(R1 +R3)

4

]
, (3.21)

which can be positive for a range of values of T1 and T3 as shown in Fig. 3.7(a). Putting

R3 = 0 we get Sch−in
43 = 2e2

h |eV |[T1R2
1/2], which is completely positive for all values of R1 as

shown in Fig. 3.7(b). From Fig. 3.7(a) one can conclude that small values of T1 (large R1)

and larger values of T3 (small R3) help in generating stronger positive cross correlation. In
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Figure 3.7: S43 vs. Disorder. (a) T1 vs T3 for two probe disorder with inelastic scattering for QSH (Positive
cross correlation), (b) correlation S43 vs R3 for two probe disorder with inelastic scattering for QSH with
parameters R3 = 0, (c) Non-local correlation S43 vs R4 for all probe disorder with inelastic scattering for QSH
with parameters R1 = 0.9, R2 = 0.4 and R3 = 0.2.

QSH case, inelastic scattering in presence of disorder induces a positive cross correlation

in the system which is unexpected for electrons as they are fermions, they should show a

negative cross correlation, which is the basis of the famous HBT experiment[106]. We can

understand this in this way that QSH edge modes are spin polarized and there are spin

up electrons, which after getting out of the probe 2 (voltage probe which redistributes the

current) follow one edge of the Hall bar and directly reach the contact 3 (a detector), at the

same time spin down electrons after getting out from same contact 2 follow the other edge

of the Hall bar reaching contact 4 (another detector) via contact 1- and these two electrons

can be correlated positively. Since these two electrons are travelling via two completely

different paths and as different probes are disordered with varying degrees of disorder

these two paths will have different transmission probabilities. But in QH case (as discussed

in section 3.4.2) if there are two edge modes, they do not travel via different paths (one

cannot separate the paths taken by the two edge modes from voltage probe to detector)

and therefore even if probes are affected with varying degrees of disorder the transmission

probabilities of two edge modes will be identical. That’s why positive non-local correlation

is not observed in the QH set-ups as in section 3.4.2 even in presence of disorder and

inelastic scattering.
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3.5.2 Quantum spin Hall set-up with all disordered contacts and in-

elastic scattering

The set-up for this case is depicted in Fig. 3.6(b). The scattering matrix relating the incoming

edge states to the outgoing one is given as in Eq. (3.10). Here we have considered

V1 = V , and V3 = V4 = 0. As contact 2 is the voltage probe, substituting I2 = 0 gives

V2 =
T1V1

2(1−R1R3R4)
. The Fermi-Dirac distribution functions as usual at zero temperature and

with probes 3 and 4 as detectors are as follows- f1 = 1, f3 = 0, f4 = 0 (for 0 < E < eV1),

f2 = 1 (for 0 < E < eV2) and f2 = 0 (for eV2 < E < eV1). Thus, from Eqs. (3.4),(3.6) and

(3.19) one can calculate the non-local correlation Sch−in
43 , as expressions are large we will

analyse them in Fig. 3.7(c). Positive non-local correlations are obtained in this case similar to

the two probe case discussed above, while inelastic scattering and the fact that up and spin

down edge modes have different transmittances through the sample (due to the difference

in their paths) is critical to getting positive correlations, the effect of disorder on these

positive correlations is more ambiguous. Some disorder is of course necessary to have

noise but other than that there is no clear cut influence of increasing/decreasing disorder on

the positive correlations so obtained. Till now we have only considered topological Helical

QSH edge modes. Now we ask the question what happens to the positive correlations so

obtained if we are not sure of their topological origin. This question has become relevant

recently with some papers[43] showing that in a trivial insulator quasi-helical edge modes

can also occur, of course they are without any topological protection. In the next section we

address this question.
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3.6 Topological vs. Trivial quasi-helical quantum spin Hall

edge modes

We consider trivial quasi-helical QSH edge modes as shown in Fig. 3.8(a). In Ref. [43] the

difference between trivial and topological QSH modes is determined from the non-local

resistance. Herein we show the non-local noise (both spin as well as charge) can be very

effective in determining the topological origins of QSH edge modes. Since these trivial

quasi-helical edge modes are not topologically protected there is a finite probability ’f’

that with disorder and inelastic scattering they will scatter to another mode and change

their direction and spin. We denote by parameter ’f’- the probability for an electron with

a particular spin orientation in a trivial QSH edge mode to change its direction and spin

via intra edge scattering. This intra-edge scattering is shown in Fig. 3.8(a) by small arrows

connecting two oppositely moving edge modes. Thus, ’linking’ up and spin down modes

due to the possibility of backscattering because of sample disorder/inelastic scattering.

However, we note that in both cases trivial quasi-helical as well as topological helical

QSH edge modes (see Fig. 3.3(a)), spin-momentum locking is preserved in absence of

any non-magnetic disorder. An up-spin electron is backscattered as a down-spin electron

moving in exactly opposite direction.

3.6.1 Trivial QSH set-up with two disordered probes and inelastic

scattering

The case represented in Fig. 3.8(a), depicts two disordered probes with inelastic scattering

in a trivial QSH set-up. The scattering matrix relating the incoming to the outgoing edge
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Figure 3.8: (a) QSH sample with trivial quasi-helical edge modes. There are two disordered probes with
inelastic scattering included via voltage probe 2, small arrowheads indicate intra edge scattering. The effect of
such intra-edge scattering on positive non-local charge(b) and spin(c) correlations. Non-local charge(b) (Sch−in

43
vs R1) and spin(c) correlations (Ssp,in

43 vs R1) in a trivial quasi-helical QSH sample with two disordered probes
(R3 = 0.2) and inelastic scattering. Note the exactly opposite behaviour to the nonlocal charge correlations.
The intra edge scattering parameter: f = 0(topological) (red) and f = 0.1 (blue), f = 0.2(pink), f = 0.3
(black), f = 0.4 (brown), f = 0.5(purple) in (b) and (c).

states is given as follows:

s =



(1+ f )r1
a1

−it21
√

f
a1

0 it1r1
√

f (1− f )
a1

0 0 t1
√

1− f
a1

0

−it21
√

f
a1

(1+ f )r1
a1

0 t1
√

1− f
a1

0 0 it1r1
√

f (1− f )
a1

0

−t1
√

1− f
a1

−it1r1
√

f (1− f )
a1

0 i(1+R1)
√

f
a1

0 0 r1(1− f )
a1

0

0 0 i(1+R3)
√

f
a3

0 −it3r3
√

f (1− f )
a3

−t3
√

1− f
a3

0 r3
√

1− f
a3

0 0 t3
√

1− f
a3

0 (1+ f )r3
a3

−it23
√

f
a3

0 it3r3
√

f (1− f )
a3

0 0 it3r3
√

f (1− f )
a3

0
−it23
√

f
a3

(1+ f )r3
a3

0 t3
√

1− f
a3

0 0 r3
√

1− f
a3

0 −t3
√

1− f
a3

−it3r3
√

f (1− f )
a3

0 i(1+R3)
√

f
a3

−it1r1
√

f (1− f )
a1

−t1
√

1− f
a1

0 r1(1− f )
a1

0 0 i(1+R1)
√

f
a1

0


,

(3.22)

with a1 = 1+ f r2
1,a3 = 1+ f r2

3, whenever there is intra-edge scattering we introduce a π/2

phase in the scattering amplitude. Here too as before we have V1 =V , and V3 =V4 = 0.

As contact 2 is a voltage probe, putting I2 = 0 gives-

V2 =
(1−R2

3 f 2)T1(1+R1 f )V1

2−R2
1 f (1+ f )−R2

3 f (1+ f )+2R2
1R2

3 f 3
. (3.23)

At zero temperature, the Fermi-Dirac distribution functions are as follows: f1 = 1, f3 = 0,

f4 = 0 (for 0 < E < eV1), f2 = 1 (for 0 < E < eV2) and f2 = 0 (for eV2 < E < eV1). From

Eqs. (3.4), (3.6), and (3.22) one can calculate the non-local charge correlation Sch−in
43 as
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well as spin correlation Ssp−in
43 , as the expressions are large we will analyse them via plots

in Figs. 3.8(b) and (c). As intra-edge scattering probability f increases to 0.25, Fig. 3.8(b)

the correlation can be positive or negative depending on the disorder at probe 1, and as f

increases to 0.5 one can see that non-local charge correlation becomes completely negative

irrespective of the disorder. Strong spin flip scattering completely destroys the positive

correlation effect induced in the non-local fluctuation by inelastic scattering in the trivial QSH

sample. One can also calculate non-local spin shot noise correlation from Eqs. (3.5), (3.6),

(3.19), and (3.18). This is plotted in Fig. 3.8(c). In this case we see opposite behaviour to

the non-local charge correlation shown in Fig. 3.8(b). The non-local spin correlation turn

completely positive with increased intra-edge scattering. Of course the non local charge

and spin correlations are identical for QH case as well as for topological QSH samples. The

nonlocal HBT spin correlation can thus be a good detector of trivial QSH edge modes.

3.6.2 Distinguishing topological vs trivial quasi-helical edge modes

via Fano factor

The Fano factor, like the coefficient of variation, is a measure of the dispersion of the

probability distribution of noise. It is basically the signal to noise ratio, named after Ugo

Fano. Surprisingly, the noise is usually smaller than a Poisson distribution noise (in which

the variance is equal to the mean value, and F = 1 for Poisson distributions) and it is called

sub-poissonian noise (F < 1). If noise is greater than Poisson distribution then it is called

super-poissonian noise. The Fano factor is defined by - Fi j =
Si j

2e|I| . The charge Fano factor

is Fch
43 =

Sch−in
43

2e|Ich−in
1 |

, while spin Fano factor is Fsp
43 =

Ssp−in
43

2e|Isp−in
1 |

. The charge current for trivial

quasi-helical QSH system as shown in Fig. 3.8(a) is Ich−in
1 = 2T1V1− 2T1V1 f+T1V2(1− f )

1−R1 f , and

the spin current Isp−in
1 = T1V2(1− f )

1+R1 f , where V2 is defined as in Eq. (3.23). As the expression

for Sch−in
43 and Ssp−in

43 are large, we analyse them via plots in Fig. 3.9. We compare the

charge Fano factors in the topological QH and QSH cases in Fig. 3.9(a) while the charge
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Figure 3.9: The effect of disorder on charge Fano factors (a) Topological QH versus Topological QSH
cases, and the effect of intra-edge scattering on Fano factors in (b) for charge and spin Fano factors in trivial
QSH phase. The charge Fano factor (c) and spin Fano factor (d) in the trivial phase ( f 6= 0) are completely
distinct from topological ( f = 0) QSH phase. (a) Non-local charge Fano factors in topological helical QSH and
topological chiral QH cases Fch

43 vs R2 for all disordered probes (R4 = 0,R3 = 0.2,R1 = 0.8) with inelastic
scattering. Intra-edge scattering probability: f = 0. Note the sub-poissonian behaviour in both cases for
the charge Fano factor. (b) Non-local charge Fano factor Fch

43 and spin Fano factor in trivial quasi-helical
QSH sample Fsp

43 vs f (intra-edge scattering probability) for two disordered probes (R3 = 0.2,R1 = 0.8) with
inelastic scattering. Note the super Poissonian behaviour of the spin Fano factor as compared to the charge
Fano factor. (c) Non-local charge Fano factors for topological( f = 0) and trivial( f 6= 0) QSH edge modes.
Fch

43 vs R3 for two disordered probes (R1 = 0.5) with inelastic scattering as function of R3. (d) Non-local spin
Fano factors for topological( f = 0) and trivial( f 6= 0) QSH edge modes. Fsp

43 vs R3 for two disordered probes
(R1 = 0.5) with inelastic scattering as function of R3.
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and spin Fano factors in the trivial QSH case in Fig. 3.9(b). The charge Fano factor for

topological QSH case changes sign while for QH case doesn’t as a function of disorder.

Further, in case of QSH we have two different Fano factors corresponding to charge and

spin. The spin Fano factor is super-Poissonian regardless of whether the edge modes

are topological or trivial while the charge Fano factor is sub-Poissonian. Thus, the spin

Fano factor can also be a good arbiter of the presence or absence of topological helical

edge modes. In Figs. 3.9(c) the charge Fano factors are plotted as function of disorder for

increasing intra edge scattering ( f ), for the topological case while Fano factor changes sign

as function of disorder as intra edge scattering increases, i.e., edge modes are in trivial

regime, the charge Fano factors turn more and more negative. Thus one can conclude that

for trivial quasi-helical edge modes charge Fano factors will be negative. In Fig. 3.9(d) we

plot the spin Fano factor, although there is no sign change but entering the trivial regime the

spin Fano factor increases in magnitude for increasing intra-edge scattering f . The charge

shot noise measured in our case is sub-Poissionian, and the charge Fano factor is well

below 1/3, which is in agreement with the experimental work of Ref. [103] on QSH systems.

We summarize the main results on distinction between chiral and helical edge modes and

second between topological and trivial origins of QSH edge modes in two Tables 3.1 and

3.2.

3.7 Conclusion

The aim of this chapter was to distinguish topological helical QSH edge modes from chiral

QH edge mode via non-local HBT noise measurement rather than present method of

conductance measurement. It is also required to identify the topological origin of QSH edge

modes via non-local HBT noise measurements since in presence of disorder or inelastic

scattering conductance measurements to distinguish them (topological and trivial helical
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Table 3.1: Topological Helical vs. Topological Chiral edge modes via non-local HBT
correlations.

QH Edge Mode QSH Edge Mode

Shot Noise Charge Shot Noise Spin Shot
Noise

Two Probe Disor-
der

0 0 0

All Probe Disor-
der

−2e2

h |eV |T
2

1 T3T4R2
2R3

a4 −2e2

h |eV |T
2

1 T3T4(R2
2R3+R4)

a4 Identical to
charge

Two Probe Dis-
order + Inelastic
Scattering

−2e2

h |eV |[T 2
1 T3R3] −2e2

h |eV |
[

T1T3R3
2 − T1T3R1(R1+R3)

4

]
Identical to
charge

All Probe Disor-
der + Inelastic
Scattering

Negative Positive /Negative Identical to
charge

Charge Fano
Factor

sub-poissonian,
no sign change

sub-poissonian, changes sign absent

Spin Fano Fac-
tor

absent sub-poissonian super-
poissonian

edge modes) is not a reliable method as shown in the introduction of this chapter. To

fulfil these twin aims, disorder is introduced at the contacts of a four terminal QH and

QSH samples as shown in chapter 2 and inelastic scattering via voltage probe 2 rather

than within the sample. The results are derived following Buttiker method as shown in

Refs. [15, 14] for QH and Ref. [102] for QSH samples. It is shown in this chapter while

these non-local HBT noise can be positive with topological helical QSH edge modes but will

always be negative with chiral QH edge modes. So, one can differentiate between chiral or

helical edge modes just by looking at the sign of HBT noise in those systems rather than

its magnitude. Further, it is shown that the difference between the non-local charge and

spin correlations can distinguish between the topological or trivial helical edge modes. The

non-local charge correlations turn completely negative for trivial quasi-helical edge modes

while the non-local spin correlations turn completely positive. In Table 3.1 the results for
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Table 3.2: Topological helical vs. Trivial quasi-helical edge modes via non-local HBT
correlations.

Topological Helical Trivial Helical

Non-local charge noise
correlations

positive turn completely negative

Non-local Spin Noise
correlations

maybe positive/negative turn completely positive

Charge Fano factor changes sign No sign change (com-
pletely negative)

Spin Fano factor positive but small positive and large

the distinction between chiral and Helical edge modes are summarized while in Table 3.2

the differences between trivial and topological QSH edge modes are summarized. To end,

it is pointed out that although this chapter exclusively focused on chiral and helical edge

modes and their topological origins the detection technique (Non-local HBT correlations)

used in this chapter can be a very effective tool to probe helicity and its origin in Weyl semi

metals[104] too. Moreover, this positive HBT cross correlation observed in topological QSH

edge modes could also be a signature of entanglement in these systems, for which one

need to check the violation of Bell’s inequality which can confirm whether the edge modes

are entangled or not. For this further investigations are needed.
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4. Role of helical edge modes in the

chiral quantum anomalous Hall state

“In order to describe a particular subculture, you might want to portray people who

are typical or representative of that subculture; but to dramatize it, to make it an

interesting setting for a story, you want to bring someone anomalous into that

setting, to see how she conforms to it, and it to her.”

– Jonathan Dee

4.1 Introduction

Quantum anomalous Hall (QAH) effect, the third member of the Hall family, is seen in

ferromagnetic topological insulators in absence of magnetic field at low temperatures[44, 47,

49]. QAH edge modes are chiral and spin polarized unlike quantum Hall (QH) edge modes

which are chiral but spin-unpolarized. QAH edge modes are either spin up polarized or spin

down polarized depending on the magnetization direction in a ferromagnetic topological

insulator. The importance of QAH edge modes lies in the fact that they arise in absence of

magnetic field which is the main reason for occurrence of QH edge modes. Being chiral

and spin polarized QAH edge modes can be used in spintronic devices for spin transport

as well as low power information processing[48, 49]. However, experiments to detect a true

142



QAH effect haven’t been completely conclusive. Having said that, the experiment depicted

in Ref. [47] is most probably a detection of a single topological chiral quantum anomalous

Hall(QAH) edge mode. There have been some other quite recent experiments[48, 49, 44]

where it has been reported that QAH edge modes occur in conjunction with quasi helical

quantum spin Hall(QSH) edge modes[45]. Quasi-helical QSH edge mode are prone to

backscattering and are nothing but QSH edge modes which occur in a trivial insulator[43].

In chapter 3 we looked into the case of quasi-helical edge modes occurring in a trivial

insulator. The experiments which “see” QAH edge modes are in fact designed out of QSH

edge mode setups in a topological insulator. By applying an extra Ferromagnetic layer or

otherwise, an energy gap is sought to be created between the pair of helical edge modes in

a QSH sample splitting them away from each other and suppressing one of them, leads

to single chiral QAH edge mode transport in a sample. However, contrary to expectation

it is not just a chiral QAH mode which was seen in the experiments in Refs. [48, 49, 44].

QAH edge modes seen in Refs. [48, 49, 44] have additional quasi-helical QSH edge modes

moving along side[45].

Helical QSH edge modes from which chiral QAH edge modes evolve occur in topological

insulators[44, 48, 49]. However, as discussed in chapter 3 and shown in Ref. [43] quasi-

helical edge modes occur in a trivial insulator. Applying a similar technique of attaching a

ferromagnetic layer to a trivial insulator, one can make quasi-helical edge modes evolve

into chiral QAH edge modes. However, in the latter case, the chiral QAH edge mode so

produced wont have a topological character and therefore this chiral QAH edge mode won’t

be protected against backscattering. Now this begs the question how can one be sure of

the topological character of QAH edge modes.

Another question which can crop up is, does the topological nature of the QAH edge modes

which evolve from helical QSH edge modes in a topological insulator survive the evolution.

This “evolution” from helical QSH to chiral QAH edge mode as has been described in
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Refs. [48, 49, 44] is via addition of magnetic impurities or a ferromagnetic layer. This may

destroy their topological character since helical QSH edge modes are susceptible to spin

flip scattering in presence of magnetic impurities. In this context the aim of this chapter is a

substantial ‘What If?’ question- in case QSH edge modes, from which QAH edge modes

evolve, are not topologically-protected then the QAH edge modes wont be topologically-

protected too and thus unfit for use in any applications, becomes relevant. Further, as

a corollary one can also ask if the topological-protection of QSH edge modes does not

carry over during the evolution process to QAH edge modes then the ‘What if?’ scenario

becomes apparent again. In those QAH experiments[44, 48, 49] what is quite evident is

that the quantization of Hall resistance is attributed to chiral topological QAH edge modes

which exist in combination with quasi helical QSH edge modes. What this chapter aims to

reveal is that a chiral trivial QAH edge mode which exists in combination with quasi helical

QSH edge modes gives the quantization of Hall resistance and not a chiral topological QAH

edge mode when occurring with quasi-helical QSH edge modes. Thus, a shadow of doubt

creeps up regarding the interpretation of the experiments in Refs. [44, 48, 49].

The focus is specifically on 4 and 6 terminal quantum anomalous Hall samples. Three

cases are distinguished one in which there is just a single chiral QAH edge mode which

is topological in character (this hasn’t been experimentally seen), the second wherein the

chiral topological QAH edge mode exists along with a pair of trivial QSH edge modes (this

case is the supposed experimental result as in Refs. [48, 49, 45]) and finally the case

wherein a trivial QAH edge mode exists with a pair of trivial QSH edge modes (the ’What

If?’ scenario). Both the 4 terminal and 6 terminal samples are analysed in two distinct

regimes-A. when there is disorder but no inelastic scattering and B. when both disorder and

inelastic scattering are present in the sample. The disorder considered in our sample is

restricted to terminal/contacts while inelastic scattering is present inside the sample and

leads to the energy equilibration of the edge modes, see chapter 2 and Refs. [12, 1, 2] for
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further details on energy equilibration as applied in different contexts in quantum Hall and

quantum spin Hall samples.

4.1.1 This chapter

The structure of this chapter is as follows- beginning with the Landuer-Buttiker formalism

for a multi terminal QAH sample in section 4.2, the three cases as explained above- chiral

(topological) QAH edge mode in a four terminal QAH sample is discussed in section 4.2.1,

chiral (topological) QAH edge mode along with quasi-helical edge modes in a four terminal

QAH sample in section 4.2.2 and chiral (trivial) QAH edge mode along with quasi-helical

edge modes in a four terminal QAH sample in section 4.2.3. In each of these sections the

effect of only disorder and both disorder and inelastic scattering on Hall resistance(RH ), two

terminal (local) resistance R2T and finally the non-local resistance RNL are studied. Next

the focus is on six terminal QAH sample and herein too the effect of only disorder and both

disorder and inelastic scattering on longitudinal resistance (RL) is studied for the aforesaid

three cases in sections 4.3.1, 4.3.2 and 4.3.3 respectively. Then the results of some recent

QAH experiments reporting finite longitudinal resistance and a loss of quantization of the

Hall resistance as temperature increases is discussed in section 4.4. Finally, the chapter

concludes in section 4.5 with a summary of the results.

4.2 Four terminal quantum anomalous Hall sample

In a quantum anomalous Hall (QAH) sample, since edge modes are spin polarized, we

can use the Landauer-Buttiker formalism for the quantum spin Hall case. According to this

formalism, for a multi-terminal device at zero temperature, the current at contact i is given
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Figure 4.1: Four terminal quantum anomalous Hall bar showing chiral (Topological) QAH edge mode with
(a) disorder at contacts 2 and 4, (b) disorder and inelastic scattering: R2,T2 and R4, T4 represent the reflection
and transmission probability of edge modes from and into contact 2 and 4 respectively.

as[33, 10, 12]:

Ii =
N

∑
j=1
j 6=i

∑
σ,σ′

[Gσσ′
ji Vi−Gσσ′

i j Vj] =
e2M

h

N

∑
j=1
j 6=i

∑
σ,σ′

[T σσ′
ji Vi−T σσ′

i j Vj], (4.1)

where T σσ′
i j is the transmission probability for an electron from contact j to contact i with

initial spin σ′ to final spin σ, Vi is the potential bias at contact i and M is the number of edge

modes.

4.2.1 Chiral topological QAH edge mode

The four terminal sample is shown in Fig. 4.1. We calculate the Hall resistance RH = R13,24,

the local (two probe) resistance R2T = R13,13 and the non-local resistance RNL = R14,23

for various cases starting with just a single chiral(topological) QAH edge mode, then the

chiral(topological) QAH edge mode with quasi-helical QSH edge modes and finally the case

of chiral(trivial) QAH edge mode with quasi-helical QSH edge modes.
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4.2.1.1 Effect of disorder

Herein we consider two of the contacts (2,4) to be disordered, see Fig. 4.1(a). Relations

between the currents and voltages at the various terminals can be deduced from the

conductance matrix, given below:

G =
e2M

h



1 0 −R4 −T4

−T2 T2 0 0

−R2 −T2 1 0

0 0 −T4 T4


. (4.2)

Ri = Di and Ti = 1−Di (Di is the strength of disorder at contact i) represent the reflection

and transmission probabilities at contact i with Ri +Ti = 1 (for i = 2,4). In Fig. 4.1(a), M,

the no. of edge modes is one for clarity. Here the diagonal elements Gii is defined as

Gii = ∑ j 6=i,σ,σ′Gσσ′
ji and non-diagonal elements Gi j = ∑σ,σ′Gσσ′

i j . The diagonal element

G11 = ∑
4
j=2 G j1 where G j1 =

e2M
h (T ↑↑j1 +T ↑↓j1 +T ↓↑j1 +T ↓↓j1 ), j = 2,3,4. From Fig. 4.1(a) we

see that an spin up edge state after coming out of contact 1 can either transmit to contact

2 with probability T2, i.e., T ↑↑21 = T2 or it can reflect from contact 2 with probability R2 and

transmit to contact 3 without reflection, i.e., T ↑↑31 = R2. Since only spin up edge state is

present in topological QAH case, transmission probability for other spin components are zero.

Thus (1,1)th element of the conduction matrix G reduces to e2

h M(T ↑↑21 +T ↑↑31 ) =
e2

h M (Since

the transmission probabilities T ↑↑21 +T ↑↑21 = T2+R2 = 1). Similarly rest of the elements of the

conduction matrix can be derived. We can check from the conduction matrix- the summation

of all the elements of each row or column is zero, which is the necessary condition for

the conservation of current. Choosing reference potential V3 = 0, further since 2 and 4

are voltage probes, I2 = I4 = 0, we thus have V2 = V1 and V3 = V4 = 0. So, local (two

terminal) resistance RQAH
2T = R13,13 =

h
e2M . Hall resistance- RQAH

H = R13,24 =
V2−V4

I1
= h

e2M .

Disorder has no effect on the topological chiral QAH edge mode, the Hall resistance and
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local resistance remain the same as in the ideal(zero disorder) case. Finally, to calculate the

non-local resistance RNL we consider 2,3 as voltage probes and 1,4 as current probes, we

get V2 =V3 which gives RNL = 0. Thus disorder has no effect on a single chiral(topological)

QAH edge mode.

4.2.1.2 Effect of disorder and inelastic scattering

Similar to before, we consider two of the contacts (2,4) are disordered, see Fig. 4.1(b).

Here the inelastic scattering is shown by starry blobs as in Fig. 4.1(b). Inelastic scattering

doesn’t take place only at a particular point, it can take place any where in the sample: For

representation purpose only we put starry blobs. The electrons in-coming from probe 1 with

energy e2

h R2V1 are equilibrated with the electrons coming from 2 with energy e2

h T2V2 to a

new energy e2

h (R2+T2)V ′2 =
e2

h V ′2. Similarly electrons coming from probe 3 are equilibrated

with the electrons entering from probe 4 to a new energy as shown below-

e2M
h

R2V1 +
e2M

h
T2V2 =

e2M
h

V ′2,
e2M

h
V1 =

e2M
h

V ′1,

e2M
h

R4V3 +
e2M

h
T4V4 =

e2M
h

V ′4,
e2M

h
V3 =

e2M
h

V ′3. (4.3)

The currents and voltages at the contacts from 1 to 4 are related by the equations-

I1 =
e2M

h
(V1−V ′4),

Ii =
e2M

h
Ti(Vi−V ′i−1) for i = 2,3,4. (4.4)

Choosing reference potential V3 = 0 and I2 = I4 = 0, since 2 and 4 are voltage probes, we

thus derive V2 =V1 and V3 =V4 = 0. So, local (two probe) resistance RQAH
2T = R13,13 =

h
e2M .

The Hall resistance RQAH
H = R13,24 =

V2−V4
I1

= h
e2M . Similarly non-local resistance is derived

as before-RQAH
NL = (V2−V3)/I1 = 0. So inelastic scattering too, like disorder at voltage
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(a) (b)

Figure 4.2: Four terminal quantum anomalous Hall bar showing chiral (topological) QAH edge mode with
quasi-helical QSH edge modes with (a) disorder at contacts 2 and 4, (b) disorder at contacts 2,4 with inelastic
scattering in sample represented by starry blobs. R2,T2 and R4, T4 represent the reflection and transmission
probability of edge modes from and into contact 2 and 4 respectively.

probe has no effect on the a single chiral(topological) QAH edge mode.

4.2.2 Chiral (topological) QAH edge mode with quasi-helical edge

modes

Herein we calculate first the effect of disorder and then the effect of both disorder and inelas-

tic scattering on chiral (topological) QAH edge modes along with quasi-helical edge modes.

Since the chiral QAH edge modes are topological, they aren’t prone to backscattering while

quasi-helical edge modes can backscatter via spin-flip scattering among themselves. The

four terminal system with chiral (topological) QAH edge mode with quasi-helical edge modes

is shown in Figs. 4.2(a,b). The solid black line in Fig. 4.2 represents chiral (topological) QAH

edge mode while blue and red dotted lines represents spin up and spin down quasi-helical

edge modes with small arrows showing the possibility of backscattering between them.

Magenta coloured starry blobs shown in Fig. 4.2(b) represents the inelastic scattering via

electron-electron or electron-phonon interaction. The spin flip probability between two
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quasi-helical edge modes is f .

4.2.2.1 Effect of disorder

Herein, as before we consider two of the contacts 2 and 4 to be disordered, see Fig. 4.2(a).

The relations between currents and voltages at the various terminals can be obtained from

the conductance matrix below:

G =
e2M

h



T11 −T12 −T13 −T14

−T21 −T22 −T23 T24

T31 T32 T33 T34

T41 T42 T43 T44


, (4.5)

where

T11 = (3−2 f −a1R2
2(1− f )/(a)−R2

4(1− f )a1/(c)),

T12 = (1− f )T2/(1−R2 f ),

T13 = ((1− f )2R2/a+((1− f )2 +(1− f )2)R4 +R3
4a2

1/c),

T14 = ((−2+ f + f R4)T4)/(−1+ f R4),

T21 = ((−2+ f + f R2)T2)/(−1+ f R2),

T22 = T2(3−2 f T2/(1− f R2)),

T23 = (1− f )T2/(1−R2 f ), T 24 = 0, (4.6)

with a = 1−R2
2 f 2,c = 1−R2

4 f 2,a1 = f (1− f ). By interchanging R2 and R4 in the above

expressions for T11, T12, ..,T23 rest of the transmission probabilities T31 to T44 can be

deduced. Here the diagonal elements Gii is defined as Gii = ∑
4
j=1, j 6=i,σ,σ′G

σσ′
ji and non-

diagonal elements Gi j = ∑σ,σ′Gσσ′
i j . The non-diagonal element, say G23 = ∑σσ′

e2M
h T σσ′

23

can be explained as follows. The transmission probabilities are calculated in this way-
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say T23 = ∑σσ′ T σσ′
23 , the transmission probability of electron from terminal 3 to 2 can be

explained as the sum of paths available from 3 to 2 for one chiral topological edge mode

and one pair of trivial helical edge modes. An electron in the topological edge mode coming

out of probe 3 has probability zero to reach probe 2. But an electron in the trivial helical

edge mode has finite probability to reach probe 2 from 3. An electron coming out of probe

3 can reach probe 2 with probability T2(1− f ), but that is just one path, it can also reach 2

with probability f R2T2(1− f ) following a second path due to spin flip scattering, similarly

a third path is f 2R2
2T2(1− f ). Thus, we can form an infinite number of paths from probe

3 to 2, these can be summed to get the total transmission probability as T23 =
T2(1− f )
(1−R2 f ) .

Similarly, the other transmission probabilities in Eq. (4.6) are obtained. We can check

from the conduction matrix- the summation of all the elements of each row or column is

zero, which is the necessary condition for the conservation of current. Choosing reference

potential V3 = 0, and since 2 and 4 are voltage probes, we derive the local (two probe)

resistance in absence of disorder (R2 = R4 = 0) as RTopo
2T = R13,13 =

h
e2M

3−2 f
5−6 f+2 f 2 . The

Hall resistance- RTopo
H = R13,24 =

h
e2M

1
(5+2 f 2−6 f ) . Similarly, as before non-local resistance

is deduced as RTopo
NL = h

e2M
(2− f )(1− f )(3−2 f )

(5−6 f+2 f 2)(7−9 f+3 f 2)
. For general case (i.e., with disorder) the

expressions for RH , R2T and RNL are too large to be reproduced here, so we will analyse

them via plots, see Figs. 4.3(a-d).

4.2.2.2 Effect of disorder and inelastic scattering

Herein we consider the effect of both disorder and inelastic scattering on topological QAH

edge modes as shown in Fig. 4.2(b). Here the inelastic scattering is shown by starry blobs

as in Fig. 4.2(b). As the QAH edge mode is topological, it will not equilibrate its energy with

trivial helical edge modes. Thus, topological chiral edge modes equilibrate only between

themselves, these equilibrate to energy V ′′i where i is the contact index from 1 to 4. The
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Figure 4.3: RNL, R2T and RH vs. Disorder. (a) Hall resistance vs. Disorder R2 with R4 = 0.5 and
spin-flip probability f = 0.3 and f0 = 0.3, (b) Hall resistance vs. disorder R2 with R4 = 0.5 and spin-flip
probability f = 0.5 and f0 = 0.5. (c) Two-terminal resistance vs. Disorder R2 with R4 = 0.5 and spin-flip
probability f = 0.5 and f0 = 0.5, (d) Non-local resistance vs. Disorder R2 with R4 = 0.5 and spin-flip probability
f = 0.5 and f0 = 0.5.
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trivial helical edge modes equilibrate with other helical edge modes and these equilibrate

their energy to V ′i . The contacts 2 and 4 are disordered as in the previous case. The

currents and voltages at the contacts from 1 to 4 are related by the equations-

I1 =
e2M

h
((3−2 f )V1−V ′′4 − (1− f )(V ′1 +V ′4)),

I2 =
e2M

h
((3T2−

2T 2
2 f

(1−R2 f )
)V2−T2V ′′1 −

T2(1− f )
(1−R2 f )

(V ′1 +V ′2)),

I3 =
e2M

h
((3−2 f )V3−V ′′2 − (1− f )(V ′2 +V ′3)),

I4 =
e2M

h
((3T4−

2T 2
4 f

(1−R4 f )
)V4−T4V ′′3 −

T4(1− f )
(1−R2 f )

(V ′3 +V ′4)),

(4.7)

where the potentials V ′i and V ′′i are related to Vi by-

V ′′1 =V1,
e2M

h
(R2V ′′1 +T2V2) =

e2M
h

V ′′2 ,

V ′′3 =V3,
e2M

h
(R2V ′′3 +T2V4) =

e2M
h

V ′′4 , (4.8)

and

(1− f )V1 +
T2(1− f )
(1−R2 f )V2 +

R2(1− f )2

a V ′2) = ((1− f )+ T2(1− f )
(1−R2 f ) +

R2(1− f )2

a )V ′1,

(1− f )V3 +
T2(1− f )
(1−R2 f )V2 +

R2(1− f )2

a V ′1 = ((1− f )+ T2(1− f )
(1−R2 f ) +

R2(1− f )2

a )V ′2,

(1− f )V3 +
T4(1− f )
(1−R4 f )V4 +

R4(1− f )2

c V ′4 = ((1− f )+ T4(1− f )
(1−R4 f ) +

R4(1− f )2

c )V ′3,

(1− f )V1 +
T4(1− f )
(1−R4 f )V4 +

R4(1− f )2

c V ′3 = ((1− f )+ T4(1− f )
(1−R4 f ) +

R4(1− f )2

c )V ′4,

(4.9)

with a = 1−R2
2 f 2,c = 1−R2

4 f 2. Choosing reference potential V3 = 0, and the contact 2

and 4 to be voltage probe as before, i.e., I2 = I4 = 0, we derive local (two probe) resistance
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(a) (b)

Figure 4.4: Four terminal quantum anomalous Hall bar showing Chiral (trivial) QAH edge mode with
quasi-helical QSH edge modes with (a) disorder at contacts 2 and 4, (b) disorder and inelastic scattering:
R2,T2 and R4, T4 represent the reflection and transmission probability of edge modes from and into contact 2
and 4 respectively.

in absence of disorder as RTopo
2T = R13,13 = h

e2M
4−2 f

5−4 f+ f 2 (for R2 = R4 = 0). The Hall

resistance RTopo
H = R13,24 =

h
e2M

2
(5−4 f+ f 2)

. For the general case (including disorder) the

expressions for RH , R2T and RNL are again large, hence they are analysed via plots, see

Figs. 4.5(a-d).

4.2.3 Chiral (trivial) QAH edge mode with quasi-helical edge modes

Herein too we calculate first the effect of disorder and then the effect of both disorder and

inelastic scattering on chiral (trivial) QAH edge modes along with quasi-helical edge modes.

Since the chiral QAH edge modes aren’t topological, they are prone to backscattering

and behaves similar to a quasi-helical edge modes. The four terminal system with chiral

(trivial) QAH edge mode with quasi-helical edge modes is shown in Figs. 4.4(a,b). The

dashed black line in Fig. 4.4 represents chiral (trivial) QAH edge mode while blue and red

dotted lines represents spin up and spin down quasi-helical edge modes with small arrows

showing the possibility of backscattering between them. Magenta coloured starry blobs
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shown in Fig. 4.4(b) represents the inelastic scattering via electron-electron or electron-

phonon interaction. The spin flip probability between chiral (trivial) QAH edge mode and

quasi-helical edge modes is f0 while the same between two quasi-helical edge modes is f .

4.2.3.1 Effect of disorder

Herein as before we consider two of the contacts 2 and 4 to be disordered, see Fig. 4.4(a).

The current-voltage relations are derived from the conductance matrix below:

G =
e2M

h



T11 −T12 −T13 −T14

−T21 −T22 −T23 T24

T31 T32 T33 T34

T41 T42 T43 T44


, (4.10)

where

T11 = (3−2( f + f0)−a1R2
2(1− f − f0)/(a)−R2

4(1− f − f0)a1/(c)),

T12 = ((1− f − f0)T2/a+(1− f − f0)T2( f + f0)R2/a),

T13 = ((1− f − f0)
2R2/a+((1− f )2 +(1− f0)

2)R4 +R3
4a2

1/c),

T14 = (T4(2− f − f0)+( f + f0)T4R2
4a1/c+T4R4a1/c),

T21 = ((2− f − f0)T2 +T2R2a1/a+T2R2
2a1( f + f0)/a),

T22 = (3T2−T 2
2 ( f + f0)/a−T 2

2 R2( f + f0)
2/a−T 2

2 ( f + f0)/a−T 2
2 R2( f 2 + f 2

0 )/a),

T23 = ((1− f − f0)T2(R2( f + f0)/a+1/a)),

T24 = 0, (4.11)

with a= 1−R2
2( f 2+ f 2

0 ),c= 1−R2
4( f 2+ f 2

0 ),a1 = f (1− f )+ f0(1− f0). By interchanging

R2 and R4 in the above Eq. (4.11) rest of the transmission probabilities T31 to T44 can
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be deduced. The non-diagonal element, say G23 = ∑σσ′
e2M

h T σσ′
23 can be explained as

follows. The transmission probabilities, say T23 = ∑σσ′ T σσ′
23 , the transmission probability

of electron from terminal 3 to 2 can be explained as the sum of probabilities from 3 to

2 for all the edge modes over all possible paths. An electron coming out of probe 3 at

upper edge can reach probe 2 with probability T2(1− f − f0), but that is just one path, it

can also reach 2 with probability ( f + f0)R2T2(1− f − f0) following a second path due

to spin flip scattering, similarly probability for a third path is ( f 2 + f 2
0 )R

2
2T2(1− f − f0).

These first, third, fifth.. paths form an infinite series with total transmission probability

T2(1− f− f0)
a and second, fourth, sixth... paths form a infinite series with total transmission

probability ( f+ f0)R2T2(1− f− f0)
a . So, the total transmission probability is sum of the two

and is written as T23 as in Eq. (4.11). Similarly, the other transmission probabilities in

Eq. (4.11) are obtained. We can check from the conduction matrix- the summation of

all the elements of each row or column is zero, which is the necessary condition for

the conservation of current. Choosing reference potential V3 = 0, and I2 = I4 = 0 (as

2 and 4 are voltage probes) we derive local (two probe) resistance in absence of any

disorder as RTriv
2T = R13,13 =

h
e2M

3−2( f+ f0)
5−6( f+ f0)+2( f+ f0)2 . The Hall resistance- RTriv

H = R13,24 =

h
e2M

1
(5+2 f 2+2(−3+ f0) f0+ f (−6+4 f0))

again for zero disorder. Similarly, as before the non-

local resistance is deduced as RTriv
NL = h

e2M
(2− f− f0)(1− f− f0)(3−2 f−2 f0)

(5−6( f+ f0)+2( f+ f0)2)(7−9( f+ f0)+3( f+ f0)2)
for zero

disorder. For, general case the expressions for RH , R2T and RNL are again too large to be

reproduced here, so we will examine them via plots, see Figs. 4.3(a-d).

4.2.3.2 Effect of disorder and inelastic scattering

Herein, we consider the trivial QAH edge modes with both disorder and inelastic scattering

as shown in Fig. 4.4(b). Here the QAH chiral as well as helical both edge modes are in the

trivial phase, i.e., they are all prone to intra edge back scattering due to spin-flips. All the

edge modes interact among themselves leading to their energies being equilibrated to the
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potential V ′i (‘i′ is from 1 to 4). The contacts 2 and 4 are disordered as in the previous case.

The currents and voltages at the contacts from 1 to 4 are related by the equations-

I1 =
e2M

h
([3−2( f + f0)]V1− [1− ( f + f0)]V ′1− [2− ( f + f0)]V ′4),

I2 =
e2M

h
(T2(3−

(2( f + f0 +( f 2 + f f0 + f 2
0 )R2)T2)

(1−R2
2( f 2 + f 2

0 )))
V2−

[1− ( f + f0)][1+R2( f + f0)]T2

[1−R2
2( f 2 + f 2

0 )]
V ′2−

[2− ( f + f0)+((1− f ) f +(1− f0) f0)R2− ( f − f0)
2R2

2)T2

[1−R2
2( f 2 + f 2

0 )]
V ′1),

I3 =
e2M

h
([3−2( f + f0)]V3− [1− ( f + f0)]V ′3− [2− ( f + f0)]V ′2),

I4 =
e2M

h
(T2(3−

(2( f + f0 +( f 2 + f f0 + f 2
0 )R4)T4)

(1−R2
4( f 2 + f 2

0 )))
V4−

[1− ( f + f0)][1+R4( f + f0)]T4

[1−R2
4( f 2 + f 2

0 )]
V ′4−

[2− ( f + f0)+((1− f ) f +(1− f0) f0)R4− ( f − f0)
2R2

4)T2

[1−R2
4( f 2 + f 2

0 )]
V ′3). (4.12)

The relations between potentials V ′i ’s and Vi are written as follows.

(2− f − f0)V1 +
[1−( f+ f0)][1+( f+ f0)R2]T2

[1−R2
2( f 2+ f 2

0 )]
V2 +

R2(1− f− f0)2

[1−R2
2( f 2+ f 2

0 )]
V ′2 = [(2− f − f0)+

[1−( f+ f0)][1+( f+ f0)R2]T2
[1−R2

2( f 2+ f 2
0 )]

+ R2(1− f− f0)2

[1−R2
2( f 2+ f 2

0 )]
]V ′1,

[2−( f+ f0)+((1− f ) f+(1− f0) f0)R2−( f− f0)2R2
2)T2

[1−R2
2( f 2+ f 2

0 )]
V2 +[1− ( f + f0)]V3

+
(2+(−2+ f ) f+(−2+ f0) f0)R2+( f− f0)2R3

2
[1−R2

2( f 2+ f 2
0 )]

V ′1 = [
[2−( f+ f0)+((1− f ) f+(1− f0) f0)R2−( f− f0)2R2

2)T2
[1−R2

2( f 2+ f 2
0 )]

+[1− ( f + f0)]

+
(−2+ f ) f+(−2+ f0) f0)R2+( f− f0)2R3

2
[1−R2

2( f 2+ f 2
0 )]

]V ′2,(2− f − f0)V3 +
[1−( f+ f0)][1+( f+ f0)R4]T4

[1−R2
4( f 2+ f 2

0 )]
V4 +

R2(1− f− f0)2

[1−R2
2( f 2+ f 2

0 )]
V ′4

= [(2− f − f0)+
[1−( f+ f0)][1+( f+ f0)R2]T2

[1−R2
2( f 2+ f 2

0 )]
+ R2(1− f− f0)2

[1−R2
2( f 2+ f 2

0 )]
]V ′3,

[2−( f+ f0)+((1− f ) f+(1− f0) f0)R4−( f− f0)2R2
4)T4

[1−R2
4( f 2+ f 2

0 )]
V4 +[1− ( f + f0)]V1 +

(2+(−2+ f ) f+(−2+ f0) f0)R4+( f− f0)2R3
4

[1−R2
4( f 2+ f 2

0 )]
V ′3

= [
[2−( f+ f0)+((1− f ) f+(1− f0) f0)R4−( f− f0)2R2

4)T4
[1−R2

4( f 2+ f 2
0 )]

+[1− ( f + f0)]+
(−2+ f ) f+(−2+ f0) f0)R4+( f− f0)2R3

4
[1−R2

2( f 2+ f 2
0 )]

]V ′4.

(4.13)

Choosing reference potential V3 = 0, and as before I2 = I4 = 0 (these are voltage probes),

we derive the local (two probe) resistance RTriv
2T = R13,13 and the Hall resistance RTriv

H =

R13,24. Similarly, as before the non-local resistance is deduced as RTriv
NL = R14,23. The

expressions for RH , R2T and RNL are large, so again we will analyse them via plots as in

Figs. 4.5(a-d).

In Table 4.1 we tabulate the results obtained so far. One important thing left out of our
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Table 4.1: Comparison of chiral(topological) QAH edge modes, chiral(topological) QAH edge mode
with quasi-helical QSH edge modes and chiral(trivial) QAH edge mode with quasi-helical QSH edge
modes.

QAH(topological) QAH(topological) +
Trivial QSH

QAH(trivial) + Trivial
QSH

RH

Ideal (zero
disorder)

Quantized e2

h Not quantized Not quantized

RH(↑) =−RH(↓) RH(↑) =−RH(↓) RH(↑) =−RH(↓)
Finite disor-
der

Quantized e2

h Not quantized Not quantized

RH(↑) =−RH(↓) RH(↑) =−RH(↓) RH(↑) =−RH(↓)
Disorder + In-
elastic scat-
tering

Quantized e2

h Not quantized
(Fig. 4.5(a))

Quantized (Fig. 4.5(a))

RH(↑) =−RH(↓) RH(↑) 6=−RH(↓) RH(↑) =−RH(↓)

R2T

Ideal (zero
disorder)

Quantized e2

h Not quantized Not quantized

R2T (↑) = R2T (↓) R2T (↑) = R2T (↓) R2T (↑) = R2T (↓)
Finite disor-
der

Quantized e2

h Not quantized
(Fig. 4.3(b))

Not quantized
(Fig. 4.3(b))

R2T (↑) = R2T (↓) R2T (↑) = R2T (↓) R2T (↑) = R2T (↓)
Disorder + In-
elastic scat-
tering

Quantized e2

h Not quantized
(Fig. 4.5(b))

Quantized (Fig. 4.5(b))

R2T (↑) = R2T (↓) R2T (↑) 6= R2T (↓) R2T (↑) = R2T (↓)

RNL

Ideal (zero
disorder)

0 Finite Finite

RNL(↑) = RNL(↓) RNL(↑) = RNL(↓) RNL(↑) = RNL(↓)
Finite disor-
der

0 Finite (Fig. 4.3(c)) Finite (Fig. 4.3(c))

RNL(↑) = RNL(↓) RNL(↑) = RNL(↓) RNL(↑) = RNL(↓)
Disorder + In-
elastic scat-
tering

0 Finite (Fig. 4.5(c, d)) 0 (Fig. 4.5( d))

RNL(↑) = RNL(↓) RNL(↑) 6= RNL(↓) RNL(↑) = RNL(↓)
Note: In the 4T QAH samples depicted in Figs. 4.1(a,b,c) the magnetization direction is (↑) implying
the QAH edge mode shown by black solid or dashed line is spin-up polarized. The conductance
matrices depicted in Eqs. (4.2), (4.5) and (4.10) as well as the calculations shown in Eqs. (4.4),

(4.7), (4.9), (4.12) and the 2T, Hall and non-local resistances derived and plotted in Figs. 4.3, 4.5 are
therefore for magnetization (↑). We follow similar procedure to calculate the resistances for

magnetization direction (↓) in which case the QAH edge modes shown by black solid or dashed
lines in Figs. 4.6(a-d) will be spin-down polarized and mention the results in this Table.
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Figure 4.5: RH , R2T and RNL under the effect of inelastic scattering. (a) Hall resistance vs. Disorder R2
with parameters R4 = 0.5 and spin-flip probability f = f0 = 0.5, (b) Two terminal resistance vs. Disorder R2
with parameters R4 = 0.5 and spin-flip probability f = 0.5, f0 = 0.5, (c) Non-local resistance vs. Disorder
R2 parameters R4 = 0.5 and spin-flip probability f = 0.3, f0 = 0.3, (d) Non-local resistance vs. Disorder R2
parameters R4 = 0.5 and spin-flip probability f = 0.5, f0 = 0.5.

discussion so far has been the role of spin in QAH edge mode. A single chiral (topological)

QAH should satisfy the following symmetry relations for RH(↑) = −RH(↓) and RNL = 0.

We see that RNL(↑) 6= RNL(↓) for topological QAH(with quasi helical QSH) while this isn’t

case for trivial QAH(with quasi helical QSH) edge modes, see Fig. 4.6. Importantly while in

case of trivial QAH edge mode RTriv
NL (↑) = RTriv

NL (↓) = 0, for the case of topological QAH

edge mode RTopo
NL (↑) 6= RTopo

NL (↓) 6= 0. In fact we see that RTriv
NL for the case of disorder and

inelastic scattering approaches zero similar to a single chiral QAH edge mode, while for

the RTopo
NL this doesn’t, again leading to a contradiction with the way the experiments of

Ref. [48] have been interpreted as in Ref. [45].
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Figure 4.6: Non-local resistances (RNL(↑)) for magnetization direction (↑) and (RNL(↓)) for magnetization
direction (↓) in presence of both disorder as well as inelastic scattering. (a) RNL(↑) for chiral(topological)
QAH edge mode with quasi-helical QSH edge modes and chiral (trivial) QAH edge mode with quasi-helical
QSH edge modes for parameters R4 = 0.5, f = f0 = 0.5, (b) RNL(↑) for chiral(topological) QAH edge mode
with quasi-helical QSH edge modes and chiral (trivial) QAH edge mode with quasi-helical QSH edge modes
for parameters R2 = 0.5, f = f0 = 0.5. (c) RNL(↓) for chiral(trivial) QAH edge mode with quasi-helical
QSH edge modes and chiral(trivial) QAH edge mode with quasi-helical QSH edge modes for parameters
R4 = 0.5, f = f0 = 0.5, (d) RNL(↓) for chiral(trivial) QAH edge mode with quasi-helical QSH edge modes and
chiral(trivial) QAH edge modes with quasi-helical edge modes for parameters R2 = 0.5, f = f0 = 0.5.
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(a) (b)

Figure 4.7: Six terminal chiral (Topological) QAH edge mode with (a) disorder at contacts 1, 4, (b) inelastic
scattering and disorder at contacts 1, 4.

4.3 Six terminal quantum anomalous Hall bar

In this section we analyse a six terminal QAH bar, we especially focus on the longitu-

dinal resistance RL. For a single chiral(topological) QAH edge mode RL = 0, but the

experiments[48, 49, 44] revealed a finite longitudinal resistance. This result prompted the

interpretation of the experiments [48, 49, 44] as seeing not just a chiral(topological) QAH

edge mode but in addition also a pair of quasi-helical QSH edge modes[45]. Since a non

zero RL is the hallmark of helical QSH edge modes. Here we probe further by comparing

as in sections before the three cases and try to find out if a topological QAH edge mode or

a trivial QAH edge mode occurring with quasi-helical edge modes results in a non-zero RL.

4.3.1 Chiral(topological) QAH edge mode

The six terminal sample is shown in Fig. 4.7. We calculate the longitudinal resistance

RL = R23,14 for various cases starting with just a single chiral(topological) QAH edge mode,

then the chiral(topological) QAH edge mode with quasi-helical QSH edge modes and finally

the case of chiral(trivial) QAH edge mode with quasi-helical QSH edge modes. For each of

these cases first we study the effect of disorder and then the effect of both disorder and

inelastic scattering similar to four terminal case. The black solid line in Fig. 4.7 represents

chiral (topological) QAH edge mode.
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4.3.1.1 Effect of disorder

Herein we consider two of the contacts 1 and 4 to be disordered, see Fig. 4.7(a). The

relations between the currents and voltages at the various terminals can be derived from

the conductance matrix below:

G =
e2M

h



T1 0 0 0 0 −T1

−T1 1 0 0 0 −R1

0 −1 1 0 0 0

0 0 −T4 T4 0 0

0 0 −R4 −T4 1 0

0 0 0 0 −1 1


. (4.14)

Ri and Ti represent the reflection and transmission probabilities at contact i with Ri+Ti = 1

(for i = 1,4). In Fig. 4.7(a), M, the no. of edge modes is one for clarity. Here the diagonal

elements Gii is defined as Gii =∑ j 6=i,σ,σ′Gσσ′
ji and non-diagonal elements Gi j =∑σ,σ′Gσσ′

i j .

The diagonal element G11 = ∑
6
j=2 G j1 where G j1 = e2M

h (T ↑↑j1 + T ↑↓j1 + T ↓↑j1 + T ↓↓j1 ), j =

2,3,4,5,6. From Fig. 4.7(a) we see that an spin up edge state comes out of contact

1 with probability T2 and enters contact 2 without reflection, i.e., T ↑↑21 = T2. Since only

spin up edge state is present in topological QAH case, transmission probability for other

spin components are zero. Thus (1,1)th element of the conduction matrix G reduces

to e2

h M(T ↑↑21 = e2

h MT1 (Since the transmission probability T ↑↑21 = T1). Similarly rest of the

elements of the conduction matrix can be derived. We can check from the conduction

matrix the summation of all the elements of each row or column is zero, which is the

necessary condition for the conservation of current. Choosing reference potential V4 = 0

and I2 = I3 = I5 = I6 = 0 (as these are voltage probes), we get V3 = V2 = T1V1
1−R1R4

and

V3 = V4 =
T1R4V1
1−R1R4

. So the longitudinal resistance RQAH
L = (V2−V3)/I1 = 0. So disorder

has no effect on the longitudinal resistance for a single chiral QAH edge mode.
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4.3.1.2 Effect of disorder and inelastic scattering

Herein we consider two of the contacts (1,4) to be disordered, see Fig. 4.7(b). The electrons

incoming from probe 6 with energy e2M
h R1V ′6 are equilibrated with the electrons incoming

from probe 1 with energy e2M
h T1V1 to a new energy e2M

h (R1 +T1)V ′1 = e2M
h V ′1. Similarly

electrons coming from probe 3 are equilibrated to the electrons coming from probe 4 to a

new energy as shown below-

e2M
h

R1V ′6 +
e2

h
T1V1 = e2M

h V ′1,
e2M

h V6 =
e2M

h V ′6,

e2M
h

R4V ′3 +
e2

h
T4V4 = e2M

h V ′4,
e2M

h V3 =
e2M

h V ′3,

e2M
h

V ′5 = e2

h V5,
e2M

h V ′2 =
e2M

h V2. (4.15)

The currents and voltages at the contacts from 1 to 4 are related by the equations-

I1 =
e2M

h
T1(V1−V ′6), I2 =

e2M
h

(V2−V ′1),

I3 =
e2M

h
(V3−V ′2), I4 =

e2M
h

T4(V4−V ′3),

I5 =
e2M

h
(V5−V ′4), I6 =

e2M
h

(V6−V ′5). (4.16)

Choosing the reference potential V4 = 0 and I2 = I4 = I5 = I6 = 0 (as these are voltage

probes), we thus derive V3 =V2 =V ′1 =V ′2 which gives the longitudinal resistance RQAH
L =

R14,14 = 0.

4.3.2 Chiral(topological) QAH edge mode with quasi-helical edge modes

Herein too we calculate first the effect of disorder and then the effect of both disorder and

inelastic scattering on chiral (topological) QAH edge modes along with quasi-helical edge

modes. The solid black line in Fig. 4.8 represents chiral (topological) QAH edge mode while
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(a) (b)

Figure 4.8: Six terminal chiral (Topological) QAH along with quasi-helical QSH edge modes with (c) disorder
at contacts 1, 4, (d) inelastic scattering and disorder at contacts 1, 4.

blue and red dotted lines represents spin up and spin down quasi-helical edge modes with

small arrows showing the possibility of backscattering between them. Magenta coloured

starry blobs shown in Fig. 4.8(b) represents the inelastic scattering via electron-electron

or electron-phonon interaction. The spin flip probability between two quasi-helical edge

modes is f .

4.3.2.1 Effect of disorder

As before we consider two of the contacts 1 and 4 to be disordered, see Fig. 4.8(a). The

relations between currents and voltages at the various terminals can be derived from the

conductance matrix below:

G =
e2M

h



T11 −T12 −T13 −T14 −T15 −T16

−T21 T22 −T23 −T24 −T25 T26

−T31 −T32 T33 −T34 −T35 −T36

−T41 −T42 −T43 T44 −T45 −T46

−T51 −T52 −T53 T54 T55 −T56

−T61 −T62 −T63 −T64 −T65 T66


, (4.17)
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where,

T11 = T1(3− f (2+R1))/(1− f R1),

T12 = T 61 = T1(1− f )/(1− f R1),

T13 = 0, T 14 = 0, T 15 = 0,

T16 = T 21 = T1(2− f − f R1)/(1− f R1),

T22 = T 66 = (3−2 f )+(1− f 2) f R2
1/(1− f 2R2

1),

T23 = (1− f ), T 24 = 0, T 25 = 0,

T26 = (R1(2− f (2− f (1−R2
1))))/(1− f 2R2

1),

T65 = 1− f , T 62 = (1− f )2R1/(1− f 2R2
1), T63 = T64 = 0.

(4.18)

Replacing R1 with R4 in the above equation rest of the transmission probabilities T31 to T56

can be deduced. All the elements of the conduction matrix can be calculated in a similar

way as done in section 4.2.2 for four terminal sample. Choosing reference potential V4 = 0,

and I2 = I3 = I5 = I6 = 0 (as these are voltage probes), we derive longitudinal resistance

RTopo
L = h

e2M
2−3 f+ f 2

9−15 f+9 f 2−2 f 3 (for zero disorder). For finite disorder, the expression for RTopo
L

is quite large, so we plot it in Fig. 4.10(a).

4.3.2.2 Effect of disorder and inelastic scattering

Herein we consider the effect of disorder and inelastic scattering on the various resistances

for the sample as shown in Fig. 4.8(b). The contacts 1 and 4 are disordered as in the

previous case. The currents and voltages at the contacts from 1 to 6 are related by the
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equations-

I1 =
e2M

h
((3T1−2T 2

1 f/A)V1−T1V6−T1(1− f )/A(V ′1 +V ′6)),

I4 =
e2M

h
((3T4−2T 2

4 f/C)V4−T4V3−T4(1− f )/C(V ′4 +V ′3)),

I2 =
e2M

h
((3−2 f )V2− (1− f )(V ′1 +V ′2)−V ′′1 ),

I3 =
e2M

h
((3−2 f )V3− (1− f )(V ′3 +V ′2)−V2),

I5 =
e2M

h
((3−2 f )V5− (1− f )(V ′4 +V ′5)−V ′′4 ),

I6 =
e2M

h
((3−2 f )V6− (1− f )(V ′5 +V ′6)−V5),

(4.19)

with A = 1−R1 f and C = 1−R4 f , where the potential V ′′i are related to Vi by-

V ′′2 =V2, V ′′5 =V5, R1V6 +T1V1 =V ′′1 ,

V ′′3 =V3, V ′′6 =V6, R4V ′′3 +T4V4 =V ′′4 (4.20)

and the relation between equilibrated potentials V ′i and contact potentials Vi are mentioned

as follows.

(1− f )(V2 +V3) = 2(1− f )V ′2, (1− f )(V5 +V6) = 2(1− f )V ′5,

(1− f )V3 +( T4(1− f )
(1−R2

4 f 2)
+ T4R4 f (1− f )

1−R2
4 f 2 )V4 +

R4(1− f )2

(1−R2
4 f 2)

V ′4 = ((1− f )+( T4(1− f )
(1−R2

4 f 2)
+ T4R4 f (1− f )

1−R2
4 f 2 )+ R4(1− f )2

(1−R2
4 f 2)

)V ′3,

(1− f )V6 +( T1(1− f )
(1−R2

1 f 2)
+ T1R1 f (1− f )

1−R2
1 f 2 )V1 +

R1(1− f )2

(1−R2
1 f 2)

V ′1 = ((1− f )+( T1(1− f )
(1−R2

1 f 2)
+ T1R1 f (1− f )

1−R2
1 f 2 )+ R1(1− f )2

(1−R2
1 f 2)

)V ′3,

(1− f )V5 +( T4(1− f )
(1−R2

4 f 2)
+ T4R4 f (1− f )

1−R2
4 f 2 )V4 +

R4(1− f )2

(1−R2
4 f 2)

V ′3 = ((1− f )+( T4(1− f )
(1−R2

4 f 2)
+ T4R4 f (1− f )

1−R2
4 f 2 )+ R4(1− f )2

(1−R2
4 f 2)

)V ′3,

(1− f )V2 +( T1(1− f )
(1−R2

1 f 2)
+ T1R1 f (1− f )

1−R2
1 f 2 )V1 +

R1(1− f )2

(1−R2
1 f 2)

V ′6 = ((1− f )+( T1(1− f )
(1−R2

1 f 2)
+ T1R4 f (1− f )

1−R2
1 f 2 )+ R1(1− f )2

(1−R2
1 f 2)

)V ′3.

(4.21)
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(a) (b)

Figure 4.9: Six terminal chiral (Trivial) QAH along with quasi-helical QSH edge modes with (c) disorder at
contacts 1, 4, (d) inelastic scattering and disorder at contacts 1, 4.

Choosing reference potential V4 = 0, and since 2,3, 5, 6 are voltage probes, I2 = I3 =

I5 = I6 = 0 we derive longitudinal resistance RL = h
e2M

3−4 f+ f 2

14−15 f+6 f 2− f 3 for zero disorder but

finite inelastic scattering. The expression for RL in presence of both disorder and inelastic

scattering is large so we analyse them via plots as in Fig. 4.10(b).

4.3.3 Chiral(trivial) QAH edge mode with quasi-helical edge modes

Herein too we calculate first the effect of disorder and then the effect of both disorder and

inelastic scattering on chiral (trivial) QAH edge modes along with quasi-helical edge modes.

The six terminal system with chiral (trivial) QAH edge mode with quasi-helical edge modes

is shown in Figs. 4.9(a,b). The dashed black line in Fig. 4.9 represents chiral (trivial) QAH

edge mode while blue and red dotted lines represents spin up and spin down quasi-helical

edge modes with small arrows showing the possibility of backscattering between them.

Magenta colored starry blobs shown in Fig. 4.9(b) represents the inelastic scattering via

electron-electron or electron-phonon interaction. The spin flip probability between chiral

(trivial) QAH edge mode and quasi-helical edge modes is f0 while the same between two

quasi-helical edge modes is f .
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4.3.3.1 Effect of disorder

Herein again we consider two of the contacts 1 and 4 to be disordered, see Fig. 4.9(a). The

current voltage relations are derived from the conductance matrix below:

G =
e2M

h



T11 −T12 −T13 −T14 −T15 −T16

−T21 T22 −T23 −T24 −T25 T26

−T31 −T32 T33 −T34 −T35 −T36

−T41 −T42 −T43 T44 −T45 −T46

−T51 −T52 −T53 T54 T55 −T56

−T61 −T62 −T63 −T64 −T65 T66


, (4.22)

where,

T11 = T1(3−2( f + f0)T1/a−2( f 2 + f 2
0 + f f0)T1R1/a),

T12 = ((1− f − f0)T1/a+(1− f − f0)R1T1( f + f0)/a),

T16 = (T1(2− f − f0)+a1T1R1/a+a1T1R2
1( f + f0)/a),

T13 = T 14 = T 15 = 0,

T22 = (3−2( f + f0)− (1− f − f 0)R2
1a1/a),

T23 = (1− f − f0),

T21 = (T1(2− f − f0)+T1R2
1( f + f0)a1/a+T1R1a1/a),

T26 = (R1((1− f )2 +(1− f0)
2)+R3

1a2
1/a),

T25 = T24 = 0, (4.23)

with a = 1−R2
2( f 2 + f 2

0 ),c = 1−R2
4( f 2 + f 2

0 ),a1 = f (1− f ) + f0(1− f0). Replacing

R1 with R4 in the above equation rest of the transmission probabilities T31 to T66 can be

deduced. All the elements of the conduction matrix can be calculated in a similar way as

Page 168 of 269



Figure 4.10: (a) Longitudinal resistance RL vs. Disorder R4 for parameters R1 = 0.5 and spin-flip probability
f = f0 = 0.5, (b) Longitudinal resistance vs. Disorder R4 in presence of inelastic scattering for parameters
R1 = 0.5 and spin-flip probability f = f0 = 0.5. Note the longitudinal resistance vanishes for the trivial case
but not for the topological case.

done in section 4.2.3 for four terminal sample. Choosing reference potential V4 = 0, and

I2 = I4 = I5 = I6 = 0 (as 5,2,3 and 6 are voltage probes) we derive longitudinal resistance

RTriv
L =R23,14 =− h

e2M ((2+ f 2−3 f0+ f 2
0 + f (−3+2 f0))/(−9+2 f 3+15 f0−9 f 2

0 +2 f 3
0 +

f 2(−9+6 f0)+3 f (5−6 f0+2 f 2
0 ))) for ideal (zero disorder) case. However, in general the

expressions for RL are too large to reproduce here, so we will analyse them via plots as in

Fig. 4.10(a).

4.3.3.2 Effect of disorder and inelastic scattering

Herein we consider the trivial QAH edge modes with disorder and inelastic scattering, as

shown in Fig. 4.9(b). Here the QAH chiral as well as the QSH helical edge modes are in

the trivial phase, i.e. they can scatter from one edge mode to the other. All the edge modes

interact with each other and via inelastic scattering equilibrate their energy to a potential

V ′i (‘i′ is from 1 to 6). The contacts 1 and 4 are disordered as in the previous case. The
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currents and voltages at the contacts from 1 to 6 are related by the equations-

I1 = (3T1−2T 2
1 ( f + f0)/a−T 2

1 R1( f + f0)
2/a−T 2

1 R1( f 2 + f 2
0 )/a)V1

− (T1(1− f − f0)/a+T1R1(1− f − f0)( f + f0)/a)V ′1− (T1(2− f

− f0)+T1R1( f (1− f )+ f0(1− f0))/a+T1R2
1( f (1− f )

+ f0(1− f0))( f + f0)/a)V ′6,

I2 = (3−2( f + f0))V2− (2− ( f + f0))V ′1− (1− ( f + f0))V ′2,

I3 = (3−2( f + f0))V3− (2− ( f + f0))V ′2− (1− ( f + f0))V ′3,

I5 = (3−2( f + f0))V5− (2− ( f + f0))V ′4− (1− ( f + f0))V ′5,

I6 = (3−2( f + f0))V6− (2− ( f + f0))V ′5− (1− ( f + f0))V ′6.

(4.24)

The relation between equilibrated potentials V ′i ’s and contact potentials Vi are given as
follows.

(T1(2− f − f0)+T1R1( f (1− f )+ f0(1− f0))/a+T1R2
1( f + f0)( f (1− f )+ f0(1− f0))/a)V1 +(1− f − f0)V2

+(R1((1− f )2 +(1− f0)
2)+R3

1((1− f ) f + f0(1− f0))
2/a)V ′6 = (T1(2− f − f0)+T1R1( f (1− f )+ f0(1− f0))/a

+T1R2
1( f + f 0)( f (1− f )+ f0(1− f0))/a+(1− f − f0)+R1((1− f )2 +(1− f0)

2)+R3
1((1− f ) f + f0(1− f0))

2/a)V ′1,

(2− f − f0)V6 +(T1(1− f − f0)/a+T1R1( f + f0)(1− f − f0)/a)V1 +R1(1− f − f0)
2/aV ′1 = ((2− f − f0)

+(T1(1− f − f0)/a+T1R1( f + f0)(1− f − f0)/a)+R1(1− f − f0)
2/a)V ′6,

(2− f − f0)V2 +(1− f − f0)V3 = (3−2( f + f0))V ′2,

(2− f − f0)V5 +(1− f − f0)V6 = (3−2( f + f0))V ′5,

(T4(2− f − f0)+T4R4( f (1− f )+ f0(1− f0))/c+T4R2
4( f + f0)( f (1− f )+ f0(1− f0))/c)V4 +(1− f − f0)V5

+(R4((1− f )2 +(1− f0)
2)+R3

4((1− f ) f + f0(1− f0))
2/c)V ′3 = (T4(2− f − f0)+T4R4( f (1− f )+ f0(1− f0))/c

+T4R2
4( f + f0)( f (1− f )+ f0(1− f0))/c+(1− f − f0)+R4((1− f )2 +(1− f0)

2)+R3
4((1− f ) f + f0(1− f0))

2/c)V ′4,

(2− f − f0)V 3+(T4(1− f − f0)/c+T4R4( f + f0)(1− f − f0)/c)V4 +R4(1− f − f0)
2/cV ′4 = ((2− f − f0)

+(T4(1− f − f0)/c+T4R4( f + f0)(1− f − f0)/c)+R4(1− f − f0)
2/c)V ′3 (4.25)
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Choosing reference potential V4 = 0, and as before I2 = I3 = I5 = I6 = 0 (these are

voltage probes), we derive the longitudinal resistance RTriv
L = R23,14 in presence of inelastic

scattering but for zero disorder as shown below-

RTriv
L = −(((−3+2 f +2 f0)(2+ f 2−3 f0 + f 2

0 + f (−3+2 f0))
2)/(65+2 f 6−198 f0

+255 f 2
0 −180 f 3

0 +75 f 4
0 −18 f 5

0 +2 f 6
0 +6 f 5(−3+2 f0)+15 f 4(5−6 f0 +2 f 2

0 )+

20 f 3(−9+15 f0−9 f 2
0 +2 f 3

0 )+15 f 2(17−36 f0 +30 f 2
0 −12 f 3

0 +2 f 4
0 )

+ 6 f (−33+85 f0−90 f 2
0 +50 f 3

0 −15 f 4
0 +2 f 5

0 ))). (4.26)

The expression for longitudinal resistance in the general case of arbitrary disorder are

quite large so we examine it via plots as in Fig. 4.10(b). One thing is quite clear from

Fig. 4.10(b), the case of trivial QAH edge mode with QSH quasi-helical goes over to single

chiral(topological) QAH edge mode rather than the topological QAH edge mode with QSH

quasi-helical edge modes. This behaviour replicated in the four terminal case too calls for a

reinterpretation of the experimental results[48, 49, 45]. In Table 4.2 we tabulate the results

obtained for various cases for the longitudinal resistance. We also focus on the change due

to change in magnetization from ↑ to ↓. There is a symmetry RL(↑) = RL(↓) for trivial QAH

edge mode which does not hold for a topological QAH edge mode with quasi helical QSH

edge modes. This response of the trivial QAH edge mode with a quasi-helical QSH edge

modes is again in line with what was experimentally seen.
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Table 4.2: Comparison of chiral(topological) QAH edge mode, chiral(topological) QAH edge mode
with quasi-helical QSH edge modes and chiral(trivial) QAH edge mode with quasi-helical QSH edge
modes, see also Fig. 4.10(a,b).

QAH(topological) QAH(topological)+QSH(trivial) QAH(quasi-
helical)+QSH(quasi-
helical)

Zero disorder RL 0 (RL(↑) = RL(↓)) Finite (RL(↑) 6= RL(↓)) 0 (RL(↑) = RL(↓))
Disordered
probes

RL 0 (RL(↑) = RL(↓)) Finite (RL(↑) 6= RL(↓)) 0 (RL(↑) = RL(↓))

Disorder +in-
elastic scatter-
ing

RL 0 (RL(↑) = RL(↓)) Finite (RL(↑) 6= RL(↓)) 0 (RL(↑) = RL(↓))

Note: In the 6T QAH sample depicted in Fig. 4.7 the magnetization direction is (↑) implying the QAH edge
mode shown by black solid or dashed line is spin-up polarized. The conductance matrices depicted in

Eqs. (4.14), (4.17), (4.3.3.1) as well as the calculations shown in Eqs. (4.16), (4.19), (4.24) and the
longitudinal resistances derived and plotted in Fig. 4.10 are therefore for magnetization (↑). We follow similar
procedure to calculate the longitudinal resistance for magnetization direction (↓) in which case the QAH edge
modes shown by black solid or dashed lines in Fig. 4.7 will be spin-down polarized and mention the results in

this Table.

4.4 QAH edge modes: Recent experiments

In some recent experiments [5, 47], it has been shown that in observations of the quantum

anomalous Hall (QAH) effect the finite longitudinal resistance RL increases as temperature T

increases, while Hall resistance RH loses its quantization with increase in T . This behaviour

was explained in Refs. [5, 47] due to increased thermal fluctuations as T increases, see

Figs. 4.11(a,b). A possible question then arises- Is finite temperature the sole reason behind

the finite longitudinal resistance or can the presence of quasi-helical QSH edge modes

along with the chiral QAH edge mode be a plausible reason? In Ref. [6] this question,

is addressed wherein it is shown that similar effects arise in QAH samples with quasi-

helical edge modes as disorder increases, in presence of disorder (see Figs. 4.12(a,b)) or

both disorder and inelastic scattering even at zero temperature. In Ref. [6] a six terminal

QAH bar is examined focusing on longitudinal resistance RL and Hall resistance RH at

zero temperature. Following Landauer-Buttiker formalism as done in sections 4.2 and 4.3
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(b)(a)

Figure 4.11: (a) The longitudinal resistance and (b) the Hall resistance (both in units of e2/h) as in Ref. [5]
for a six terminal QAH sample, adapted from Figure 3 of Ref. [5].

the resistances at zero temperature are calculated. The longitudinal resistance for the

chiral (topological) QAH edge mode with quasi-helical QSH edge modes increases with

disorder, while the Hall resistance decreases, which is similar to the behaviour observed as

function of temperature. Including both disorder and inelastic scattering in the analysis as in

Ref. [6] and studying the system at zero temperature one sees again similar behaviour. The

conclusion from Ref. [6] is that experiments of Refs. [5, 47] can not just be interpreted as

indication of chiral QAH effect but can also be interpreted as a QAH edge modes occurring

with a quasi-helical QSH edge modes. Further, temperature is not the sole reason for

seeing finite RL, the existence of quasi-helical edge modes can also be a plausible reason.

4.5 Conclusion

The aim of this chapter was to identify the topological origin or otherwise of the QAH

edge mode observed along with quasi-helical edge modes in QAH experiments. The

reason behind the finite longitudinal resistance and non-quantized Hall resistance in QAH

experiments as finite temperature fluctuation or due to the presence of quasi-helical edge

modes along with the chiral QAH edge mode, see Refs. [5, 47, 45], is also explored. To

fulfill these twin aims, disorder is introduced at the contacts of a four and six terminal QAH
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(a) (b)

Figure 4.12: (a) The longitudinal resistance and (b) the Hall resistance (both in units of e2/h) vs disorder
(D4) at contact 4 is shown for a 6 terminal QAH sample at T = 0K. The “QAH+” in the superscript of resistance
implies that the chiral topological QAH edge mode exists in conjunction with quasi-helical QSH edge modes
while ‘QAH’ implies a single chiral QAH edge mode alone. Parameters are R1 = D1 = 0.5, spin-flip scattering
f = 0.9.

samples. The QAH set-ups with disordered contacts are analysed both with and without

inelastic scattering. The results are derived following Landauer-Buttiker formalism similarly

as shown in Refs. [10, 45]. It is seen in this chapter that trivial(chiral) QAH edge mode with

quasi-helical QSH edge modes is more closer to the experimental situation, as interpreted

in Ref. [45] than the topological(chiral) QAH edge mode with quasi-helical QSH edge modes

case. This implies a reevaluation of the consensus regarding those quantum anomalous

Hall experiments[48, 49, 44]. Perhaps, something else is happening and maybe these are

not true chiral(topological) quantum anomalous Hall edge modes which were seen, but

rather what could be described as chiral(trivial) QAH edge modes. Further, on the second

aim we dispel the notion that finite longitudinal resistance and non-quantized Hall resistance

are only finite temperature effect in QAH sample (Ref. [5]). Our results show in QAH sample

populated with quasi-helical edge modes a finite RL and non-quantized RH can also be

seen at zero temperature.
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5. Thermoelectrics with quantum spin

Hall edge modes

“Maybe thermoelectricity will be able to power a tablet someday.”

– Ann Makosinski

“Weather systems are natural heat engines, and like all other heat engines, both

natural and artificial, they are driven not by temperature per se, but by differences

in temperature between one location and another.”

– Robert Zubrin

5.1 Introduction

Nano-structured materials are attracting a lot of attention due to their high thermopower and

low thermal conductances[99, 53]. High thermo power materials can be used for energy

harvesting, i.e., to convert waste heat back into electricity [131]. Another possible use is

in refrigeration, i.e., using electrical work to absorb heat from a low temperature region

and to dump it in a region at higher temperature[101]. In this chapter the application of a

three terminal(3T) quantum spin Hall (QSH) insulator as a quantum heat engine (QHE) and

quantum refrigerator will be discussed. Quantum spin Hall(QSH) effect is observed at low

temperatures in strong spin-orbit coupling systems like HgTe/CdTe quantum well structures
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as discussed in chapters 2, 3. QSH edge states are spin-momentum locked, i.e., if spin

up electron is moving in one direction then spin down electron is moving in the opposite

direction at one edge of the sample and at the other edge vice-versa. They are helical

edge states. 2D edge/surface states are also included in QSH effect but materials where

they occur differ like e.g., Bi2Se3, Bi2Te3, Bi1−xSbx, etc. Since this chapter deals with 1D

QSH edge modes, our candidate materials are HgTe/CdTe quantum well structures. Using

the helical properties of the 1D edge modes a powerful quantum heat engine as well as

a quantum refrigerator is proposed. In Refs. [36, 18] a 3T quantum Hall (QH) system is

shown to work as a QHE with the aid of quantum interference or quantum point contacts

(QPC). Multi-terminal QH heat engines have broken time-reversal (TR) symmetry and thus

either the Seebeck coefficient (defined previously in Eq. (1.38) of chapter 1) finite and

Peltier coefficient (Eq. (1.38)) zero or vice-versa due to the nature of chiral QH edge modes.

The asymmetric parameter(AP)- ratio of Seebeck to Peltier coefficient, in QH quantum heat

engines therefore is either zero or infinity. AP is intimately related to the working of a heat

engine as refrigerator. The fact that AP is either zero or infinity reduces the ability of QH

heat engines to be used as a refrigerator, see Ref. [17]. In contrast for a QSH system

TR symmetry is not broken and thus AP is unity, which implies that the upper bound of

coefficient of performance (COP) (see Eq. (1.38) of chapter 1) of a QSH refrigerator is

equal to the Carnot efficiency (Eq. (1.38)) of the refrigerator. The main aim of this chapter is

to show that a 3T QSH system (see Fig. 5.1) can work both as QHE as well as refrigerator

operating at full power.

5.1.1 This chapter

The structure of this chapter is as follows, beginning with the theory required to explain

the working of a QSH heat engine in section 5.2, the focus is on the quantum heat engine

in section 5.2.1 and then on quantum refrigerator in section 5.2.2. Next the discussion
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Figure 5.1: 3T QSH thermoelectric system. Blue dashed line represents spin up and maroon solid line
represents spin down edge mode. Voltage bias ∆V is applied between terminals 1 and 2. Thermal gradient is
applied at terminal 3 which acts as a voltage probe too.

dwells on the focus is on designing a 3T QSH system with energy dependent transmissions

through constrictions X,Y (see Fig. 5.1). The two constrictions can be modeled by QPC’s

or antidots [18] and are studied in section 5.3. The focus then shifts to the analysis of the

performance of the 3T QSH system both as a quantum heat engine as well as a quantum

refrigerator in section 5.3.1. The analysis is done via few plots of the conduction and

Seebeck coefficients in section 5.3.1.1, charge power (see Eq. (1.42)) and spin power in

section 5.3.1.2. Efficiencies for charge (Eq. (1.43)) and spin based QSH heat engine are

discussed in section 5.3.1.2 while the coefficient of performance and cooling power for

QSH refrigerator are analysed in section 5.3.1.3. The experimental realization of the QSH

system as both a QHE and refrigerator is discussed in section 5.3.2. The performance and

characteristics of the QSH heat engine and refrigerator are compared with chiral QH heat

engine proposals in Tables 5.1 and 5.2 in section 5.4. Finally, the chapter concludes in

section 5.5 with a perspective on future investigations on this topic.

5.2 Theoretical modeling

In two terminal heat engines as seen in chapter 1, the flow of heat energy and electric

currents are through the same terminals, so its not possible to control separately the flow
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of heat and charge current via tuning the transmission function at different terminals. In

multi-terminal heat engines, however the separate flow of heat energy and electric current

is possible through different terminals.

5.2.1 Three terminal quantum heat engine

Herein we discuss the theoretical approaches needed to describe a general three terminal

quantum spin heat engines where not only charge but also spin of the electrons take

part in converting heat to energy unlike quantum heat engine described in section 1.4 in

the introduction of this thesis. For simplicity, we have considered only one spin up edge

mode shown by blue dashed line and one spin down edge mode by maroon solid line,

see Fig. 5.1. The terminals 1 and 2 are at same temperature θ, while the terminal 3 is at

a higher temperature θ3 = θ+∆θ with respect to the other terminals. We describe the

problem via Landauer-Buttiker formalism, i.e., the electric and heat currents transported

from one terminal to another are defined via the transmission probabilities as long as we

are in the linear response regime[52]. In linear response regime, the electric (Ie,s
i ) and heat

currents (Ih,s
i ) can be written in terms of the driving forces, i.e., bias voltage and temperature

difference, as [18, 52]-

 Ie,s
i

Ih,s
i

=
1
h ∑

j

∫
∞

−∞

dE[δi j−T s
i j(E)](−

d f
dE

)

 e2 eE/θ

eE E2/θ


 ∆Vj

∆θ j

 , (5.1)

where T s
i j(E) is the energy dependent transmission from terminal j to i for spin s =↑ / ↓

electrons, f is the Fermi-Dirac distribution with Fermi energy EF = 0, and Ie,s
i , Ih,s

i define

the electric and heat currents at terminal i for spin ‘s’ electrons and ∆θ3 = ∆θ with ∆θ1 =

∆θ2 = 0 is the thermal bias applied only at terminal 3. Since terminal 3 is a voltage probe,

electric charge current, Ie
ch,3 = Ie,↑

3 + Ie,↓
3 , through it is zero. From conservation of current

we thus have Ie
1,ch =−Ie

2,ch, and as temperature difference is applied only at terminal 3, we
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can rewrite Eq. (5.1) in terms of Onsager coefficients, see [52] as-

 Ie,s

Ih,s
3

=

 Ls
eV Ls

eθ

Ls
hV Ls

hθ


 ∆V

∆θ3

 , (5.2)

where Ls
eV = Gs is the electric and Ls

hθ
is the thermal conductance respectively for spin ‘s’

electrons, while the off-diagonal elements are the thermoelectric responses. Since in this

chapter, we do not have any spin-flip scattering, from Eq. (5.2), one can define charge/spin

Seebeck (Sch/sp) and Peltier coefficients (Pch/sp) as-

Sch =
S↑+S↓

2
, Ssp = S↑−S↓, with Ss =

Ls
eθ

Ls
eV
, (5.3)

Pch =
P↑+P↓

2
, Psp = P↑−P↓, with Ps =

Ls
hV

Ls
eV

. (5.4)

Summing over spin s of the electrons, in Eq. (5.2), we can write the charge Ie
ch = Ie,↑

1 + Ie,↓
1 ,

spin Ie
sp = Ie,↑

1 − Ie,↓
1 electric currents at terminal 1 and the heat Ih

ch = Ih,↑
3 + Ih,↓

3 current at

terminal 3 in terms of the driving forces Vch, Vsp and ∆θ as follows[16]-


Ie
ch

Ie
sp

Ih
ch

 =


Gch Gsp L+

eθ

Gsp Gch L−eθ

L+
hV L−hV L+

hθ




Vch

Vsp/2

∆θ

 , (5.5)

where Vch = V ↑+V ↓
2 and Vsp = V ↑−V ↓ are the charge and spin voltages at terminal 1,

Gch = G↑+G↓ and Gsp = |G↑−G↓| are the charge and spin conductances respectively.

The thermoelectric responses are defined as L±k = L↑k±L↓k , where k = hV , hθ or eθ. In our

setup we apply only a charge voltage bias V1−V2 = ∆V =V1, thus Vsp = 0 and Vch =V1.
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This gives the output power for charge current at terminal 1 as-

Pch =−Ie
chV1 =−(GchV 2

1 +L+
eθ

V1∆θ). (5.6)

The maximum charge output power can be calculated by differentiating Pch with respect

to V1 and equating it to zero, dPch
dV1

= 0. This gives the maximum output charge power at

V1 =−
L+

eθ

2Gch
∆θ. Similarly, the output power for spin current-

Psp =−Ie
spV1 =−(GspV 2

1 +L−eθ
V1∆θ), (5.7)

can also be set to maximum via dPsp
dV1

= 0, which gives the maximum at V1 =−
L−eθ

2Gsp
∆θ. The

maximum charge/spin output power at terminal 1 can thus be calculated from Eqs. (5.6)

and (5.7) as-

P max
ch =

1
4
(L+

eθ
)2

Gch
(∆θ)2 and P max

sp =
1
4
(L−eθ

)2

|Gsp|
(∆θ)2. (5.8)

Following from Eq. (5.8), the charge/spin efficiency at that maximum charge/spin power can

be calculated by substituting V1 =−
L+

eθ

2Gch
∆θ for charge currents and V1 =−

L−eθ

2Gsp
∆θ for spin

currents in expressions for P max
ch and Pmax

sp as follows-

η(P max
ch ) =

P max
ch

Ih
ch

= θ
ηc

2
(L+

eθ
)2

2GchL+
hθ
−L+

eθ
L+

hV
,

η(P max
sp ) =

P max
sp

Ih
ch

= θ
ηc

2
(L−eθ

)2

2GspL+
hθ
−L−eθ

L+
hV

. (5.9)

Eqs. (5.8), (5.9) are the main working formulas for the QSH heat engine. Next we explore

how to turn our model into a quantum refrigerator for both charge as well as spin.
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5.2.2 Three terminal quantum refrigerator

For our model depicted in Fig. 5.1 to work as a quantum refrigerator, first we need to

define the co-efficient of performance (COP)[17]. COP is the ratio of heat current extracted

by the system from cooler terminal to the electrical work done on the system. Here, the

terminals 1 and 2 are both at the same temperature, i.e., cooler than terminal 3. So, heat

is absorbed from terminals 1 and 2 and dumped into terminal 3. Mathematically, COP is

defined as- ηr
ch =

JQ

Wch
for charge currents, wherein JQ = Ih

ch =−∑s[(I
h,s
1 + Ih,s

2 )] = ∑s Ih,s
3 ,

see Eq. (5.1). The charge output power Wch = Pch is the electrical work done on the system

via charge currents with Ie
ch defined as in Eq. (5.5). Similarly in case of spin, we can define

COP(spin) given by[8]- ηr
sp =

JQ

Wsp
, where Wsp = Ie

spV1 is the spin work done on the system

via spin currents with Ie
sp is given in Eq. (5.5). COP of the system can be set to maximum

for given charge/spin currents by allowing for
dηr

ch(sp)
dV = 0, which is maximum for charge

current (considering JQ < 0 and Wch < 0) at [53]-

V =−
L+

hθ

L+
hV

(
1+

√
detL+

GchL+
hθ

)
∆θ,where L+ =

 Gch L+
eθ

L+
hV L+

hθ

 (5.10)

and detL+ refers to determinant of matrix L+. The maximum COP and the cooling power

JQ for the charge currents are -

η
r,max
ch =

ηr
c

x

√
y+1−1√
y+1+1

, with y =
L+

hV L+
eθ

detL+
, x = θ

L+
eθ

L+
hV

,

and JQ(ηr,max
ch ) = L+

hθ

(√
detL+

GchL+
hθ

)
∆θ, (5.11)
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while COP for spin currents is maximum at -

V =
L+

hθ

L+
hV

(
−1−

√
detL−

GspL+
hθ

)
∆θ,where L− =

 Gsp L−eθ

L+
hV L+

hθ

 (5.12)

and detL− refers to determinant of matrix L−. The maximum COP and cooling power at

that maximum COP for spin current is-

η
r,max
sp =

ηr
c

x

√
y′+1−1√
y′+1+1

, with y′ = |
L+

hV L−eθ

detL−
|,

and JQ(ηr,max
sp ) = L+

hθ

(√
detL−

GspL+
hθ

)
∆θ, (5.13)

where, ηr
c = θ/∆θ is the Carnot efficiency of refrigerators. The QSH system depicted in

Fig. 5.1 can work both as a quantum heat engine as well as a quantum refrigerator as

it does not break TR symmetry. This is a major advantage of the 3T quantum spin Hall

heat engine in comparison to quantum Hall heat engines which are difficult to convert

for refrigeration. For systems with broken TR symmetry the asymmetry parameter(AP)

x = θ
L+

eθ

L+
hV

(ratio of Seebeck to Peltier coefficient), deviates from unity. The more AP deviates

from unity, more the upper bound of COP goes below the Carnot efficiency ηr
c[17].

5.3 Helical thermoelectrics and refrigeration

A 3T QSH system is shown in Fig. 5.1. The transmissions between the terminals, is

modulated by constrictions at X, Y. The transmission through these constrictions is en-

ergy dependent, which is the main criteria to get a finite thermoelectric response. Here,

we discuss two kinds of transmission (see [18])-a) QPC like: the transmission below a

certain energy is zero, and above a particular energy is unity and in between it is par-
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ℏω0

⟷

El

E


QPC

(a)

Γ
⟷

El

E


RES

(b)
Figure 5.2: Two types of energy dependent transmission-a) QPC type- described by a saddle point potential,
b) resonant tunnelling type- due to the presence of an antidot.

tially transmitting, mathematically, T QPC
l (E) = [1 + exp(−2π(E − El)/~ω0)]

−1 and b)

resonant tunnelling like: only at a particular energy range the transmission is finite, oth-

erwise zero, mathematically, T RES
l (E) = Γ2

l [Γ
2
l +4(E−El)

2]−1. Here, El is the position

of the step at constriction l = X ,Y , while ω0 and Γl are the width of the same for QPC

and resonant tunnelling respectively. The first kind of transmission is present in case of

QPC constrictions, and the second kind is present in case of antidot constrictions [18].

Depending on what kind of transmission is present at which constriction, there are four

possible configurations. Configuration 1 consists of two QPC’s at X and Y, configuration 2

consists of a QPC at X and an antidot (resonant tunnelling) at Y. Configuration 3 consists

of an antidot at X and a QPC at Y while configuration 4 consist of two antidots at X, Y. To

calculate maximum power and efficiency at that maximum power, first we need to calculate

the conduction Gs and Seebeck coefficient Ss for spin s electrons. The thermoelectric re-

sponse is generated due to the energy dependent transmission through the QPC’s/antidots

between the terminals[107] and is calculated below. The conduction of spin up and spin

down electrons can be calculated in a 3T QSH bar following Landauer-Buttiker formalism.

For a multi-terminal setup with thermoelectric transport, the spin dependent electric and
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heat currents are given below[108]-

Ie,s
i = ∑

j
Gs

i jVj +∑
j

Ls
i j,eθ∆θ j,

Ih,s
i = ∑

j
Ls

i j,hVVj +∑
j

Ls
i j,hθ∆θ j, (5.14)

where, Gs
i j =

e2

h
∫

∞

−∞
dE[Ms

i δi j−T s
i j(E)](−

d f
dE ), Ls

i j,eθ
= e

hθ

∫
∞

−∞
dE(E−µ)[Ms

i δi j−T s
i j(E)]

(− d f
dE ) = Ls

i j,hV/θ and Ls
i j,hθ

= 1
θh

∫
∞

−∞
dE(E − µ)2[Ms

i δi j − T s
i j(E)](−

d f
dE ) with Ms

i =the

no. of edge modes at contact ‘i’ for spin ‘s’ electron, T s
i j is the transmission probability

from terminal ‘ j’ to terminal ‘i’ for spin ‘s’ electrons, µ is the Fermi energy, ‘E ’ is energy

of electrons and ‘ f ’ is the Fermi-Dirac distribution, ∆θ is the temperature bias applied

at terminal 3. The spin polarized conductances Gs
i j are related to the the constriction

conductances Gl with l = X ,Y where

Gl =
e2

h

∫
∞

−∞

dETl(E)(−
d f
dE

), (5.15)

with Tl(E), the transmission probability through constriction l = X ,Y . T s
11 is the probability

of a electron coming out of terminal 1 and going again back to the same terminal after

reflection at constrictions X. Thus, 1−T s
11 implies an electron coming out of terminal 1 but

not going back into the same terminal, i.e., the transmission probability to transmit through

constriction X without getting scattered, which is defined by Gs
11. So, G↑11 = G↓11 = GX , the

constriction conductance. The conductance Gs
12 is related to the transmission probability

T s
12 of a spin ‘s’ electron to transmit from terminal 2 to 1. T ↑12, the transmission probability of

spin up electron from terminal 2 to 1, shown by the blue dashed line in Fig. 5.1, is zero due

to helical transport. We have spin up edge modes moving from left to right at the bottom

edge while spin down edge modes move from right to left at top edge. Thus G↑12 = 0, but

T ↓12 the transmission probability for spin down electron from terminal 2 to terminal 1, shown
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by the maroon solid line in Fig. 5.1, is equal to the product of the transmission probabilities

at constrictions X and Y because a spin down electron emitted from terminal 2 passes the

constriction Y with probability TY (E) and then constriction X with probability TX(E) to enter

terminal 1. So, T ↓12 = TX(E)TY (E) and G↓12 =−J1 (minus sign is due to the current flowing

in a clockwise direction), where

Jn = An

∫
∞

−∞

dE(E−µ)n−1TX(E)TY (E)(−
d f
dE

), (5.16)

with A1 =
e2

h , A2 =
e

θh , A3 =
1

θh . The thermopower Sl generated across the QPC’s/antidots

at constriction ‘l’ is defined as-

Sl =
e

θhGl

∫
∞

−∞

dE(E−µ)(− d f
dE

)Tl(E). (5.17)

Similarly, L↑13,eθ
depends on the transmission probability T ↑13 of a spin up electron from

terminal 3 to terminal 1 (see the expression for Ls
i j,eθ

below Eq. (5.20) ). The spin up electron

emitted from terminal 3 enters terminal 1 after passing through the constriction X, thus,

T ↑13 = TX(E) and L↑13,eθ
=−GX SX . The rest of the conductances Gs

i, j and thermoelectric

responses, Ls
i j,k’s too depend on the transmission probability from terminal j to i in a similar

fashion. Thus, electric current and voltages at the three terminals are related as follows-



Ie,↑
1

Ie,↓
1

Ie,↑
3

Ie,↓
3


=



GX 0 −GX −GX SX

GX −J1 −GX + J1 −GX SX + J2

−GX + J1 −GY GX +GY − J1 GX SX +GY SY − J2

−GX −GY + J1 GY +GY − J1 GX SX +GY SY − J2





V1

V2

V3

∆θ


. (5.18)

Since the third terminal is an ideal voltmeter, electric charge current through this terminal

is zero Ie
ch,3 = 0 and as terminal 2 is grounded, V2 = 0. So, the total electric current

Ie
ch,3 = Ie,↑

3 + Ie,↓
3 = 0⇒V3 =

2GX−J1
2(GX+GY−J1)

V1− GX SX+GY SY−J2
GX+GY−J1

∆θ. Substituting this value in
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Eq. (5.18), we get-

Ie,↑
1 = G↑V1 +L↑eθ

∆θ, and Ie,↓
1 = G↓V1 +L↓eθ

∆θ, (5.19)

wherein,

G↑ =
GX(2GY − J1)

2(GX +GY − J1)
, G↓ =

2GX GY +GX J1− J2
1

2(GX +GY − J1)
,

L↑eθ
=

GX GY

GX +GY − J1
(SY −SX)+

GX

GX +GY − J1
(J1SX − J2),

L↓eθ
=

GX GY

GX +GY − J1
(SY −SX)−

GY

GX +GY − J1
(J1SY − J2), (5.20)

for spin up and down electric currents. The first term in the thermoelectric responses- Ls
eθ

,

(s =↑,↓) in Eq. (5.20) is proportional to the difference between the thermopower generated

at the two constrictions. The second term is related to the coherent transport between

the respective terminals and the sign of this term is related to the helicity of the different

spins. Spin up electrons are moving in counter clockwise direction, which is opposite to that

of spin down electrons which are moving in clockwise direction. So, different spins have

opposite effect on the thermoelectric responses as shown in the second term. Similarly,

the heat conductance of spin up and spin down electrons can be calculated in a 3T QSH

bar following Landauer-Buttiker formalism. For a multi-terminal setup with thermoelectric

transport, the heat currents using Landauer-Buttiker formalism are given as follows[108]-

Ih,s
i = ∑

j
Ls

i j,hVVj +∑
j

Ls
i j,hθ∆θ j, (5.21)

where Ls
i j,hV = e

h
∫

∞

−∞
dE(E − µ)(− d f

dE )[M
s
i δi j−Ti j(E)] and Ls

i j,hθ
= 1

θh
∫

∞

−∞
dE (E − µ)2

[Ms
i δi j−Ti j(E)](− d f

dE ). The Peltier term Ls
11,hV depends on the probability (1−T s

11) (see

the expression for Ls
i j,hV ) for spin s electrons. T s

11 is the probability of a spin ‘s’ electron
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emitted from terminal 1 to again go back to same terminal, after getting reflected at the

constrictions X. For spin up electron, probability (1− T ↑11) defines the transmission for

spin up electron coming out of terminal 1 and not going back to the same terminal (see

the blue dashed line in Fig. 5.1), i.e., after coming out of terminal 1, it is transmitted

through the constriction X, so (1− T ↑11) = TX (E). Thus, L↑11,hV = L↓11,hV = GX SX θ =

e
h
∫

dE(E − µ)(− d f
dE )TX(E). Similarly, the thermal conductance L↑13,hθ

depends on the

transmission of thermal current from terminal 3 to 1, i.e. on the transmission function

T ↑13 = TX(E) (see the blue dashed line in Fig. 5.1) for spin up electron, so L↑13,hθ
=−NX ,

where

Nl =
1

θh

∫
∞

−∞

dETl(E)(E−µ)2(− d f
dE

), (5.22)

is the thermal conductance across the QPC/antidot at constriction ‘l’ with l = X ,Y . Each of

the entries in matrix (Eq. (5.23)) can be explained in this way.



Ih,↑
1

Ih,↓
1

Ih,↑
2

Ih,↓
2

Ih,↑
3

Ih,↓
3


=



GX SX θ 0 −GX SX θ −NX

GX SX θ −J2θ −(GX SX − J2)θ −(NX − J3)

−J2θ GY SY θ −(GY SY − J2)θ −(NY − J3)

0 GY SY θ −(GY SY )θ −NY

−(GX SX − J2)θ −GY SY θ (GX SX +GY SY − J2)θ (NX +NY − J3)

−GX SX θ −(GY SY − J2)θ (GX SX +GY SY − J2)θ (NX +NY − J3)





V1

V2

V3

∆θ


.(5.23)

In our setup, we need only the heat current Ih,↑
3 and Ih,↓

3 at terminal 3 in terms of the

potential bias and thermal bias, by putting the value of V3 in terms of V1 and ∆θ we get-

Ih,↑
3 = L↑hVV1 +L↑hθ

∆θ,

Ih,↓
3 = L↓hVV1 +L↓hθ

∆θ, (5.24)
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(a) (b)

(c) (d)

Figure 5.3: (a) Spin up and (b) spin down conductances (in unit of e2

h ) are shown for QPC at constriction X

and resonant tunnelling at constriction Y. (c) Spin up and (d) spin down Seebeck coefficients (in unit of kB
e )

(S↑ and S↓) are shown for QPC at constriction X and resonant tunnelling at constriction Y. Parameters are
~ω0 = 0.1kBθ, Γ = 2kBθ and θ = 0.1K.

where,

L↑hV = θL↓eθ
=

θGX GY

GX +GY − J1
(SY −SX)−

θGY

GX +GY − J1
(J1SY − J2),

L↓hV = θL↑eθ
=

θGX GY

GX +GY − J1
(SY −SX)+

θGX

GX +GY − J1
(J1SX − J2),

L↑hθ
= L↓hθ

= (N1 +N2− J3)−θ
(GX SX +GY SY − J2)

2

(GX +GY − J1)
. (5.25)

From Eq. (5.25) we see that (L↑hV +L↓hV ) = θ(L↑eθ
+L↓eθ

), which implies that the TR sym-

metry is preserved in three terminal QSH systems unlike in three terminal QH systems,

see Ref. [18]. Nl =
1

θh
∫

∞

−∞
dETl(E)(E−µ)2(− d f

dE ) is the thermal conductance across the

QPC/antidot at constriction ‘l’. From Eq. (5.25) we see that L+
hV = θL+

eθ
, which implies TR

symmetry is preserved in 3T QSH systems unlike in 3T QH systems, see Ref. [18]. Since

TR symmetry is preserved in a QSH system, which is also seen from the Onsager relations

between the off-diagonal coefficients, we have high Peltier coefficients along with high
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Seebeck coefficient. A high Seebeck coefficient is a necessary condition to get a QHE with

large power, a high Peltier coefficient is required condition to get a quantum refrigerator

with large cooling power [17].

5.3.1 Onsager Coefficients

Our aim is to design a powerful QSH heat engine as well as a good refrigerator. For

these twin purposes we need to have a large Seebeck as well as large Peltier coefficient.

Seebeck and Peltier coefficients are related to the off-diagonal elements of the Onsager

matrix, Ls
eθ

and Ls
hV respectively, as shown in Eq. (5.2). First we discuss the conditions

required to have a powerful QSH heat engine. To have large charge power (Pmax
ch ) we need

a large thermoelectric response L+
eθ

with small charge conductance Gch, as in Eq. (5.8).

The efficiency at that charge power (see Eq. (5.9)) will be large only when the thermal

conductance L+
hθ

is small along with the condition for large power. For each of the four

configurations explained before (see paragraph above Eq. (5.14)), we have analysed

the results. From the thermoelectric properties, maximum power and efficiency for each

of these configurations we find that those properties depending on charge currents are

best seen for configuration 2 (QPC at X and antidot at Y), while properties related to spin

currents are best seen for configuration 1 (QPC at both X and Y). Hence, we have shown

the maximum power and efficiency of charge current for configuration 2 (see Figs. 5.4(a,b))

and the same of spin current for configuration 1 (see Figs. 5.4(c,d)).

5.3.1.1 Conductance and Seebeck coefficient

For transport through QPC if, −El >> ~ω0 then it is open, i.e., the transmission through

QPC is 1, but if |El| ≤ ~ω0 then it is noisy, i.e., electrons are partially transmitted through

QPC, else if El > ~ω0 the QPC is closed. For transport through antidot, if |El|>> ~ω0 then
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(a) (b)

(c) (d)

Figure 5.4: (a) Maximum power for charge currents Pmax
ch in unit of (kB∆θ)2

h and (b) Efficiency at that power

in unit of ηc for both in configuration 2. (c) Maximum power for spin currents Pmax
sp in unit of (kB∆θ)2

h and (d)
efficiency at that power in unit of ηc for both in configuration 1. Parameters are ~ω0 = 0.1kBθ and θ=0.1K.

it is closed, but if |El|< ~ω0 then it is partially open. In Figs. 5.3 (a, b), for configuration 2,

we see that spin up and down conductances are maximum when constriction at Y is partially

open, i.e., |EY | ≤ ~ωo and at X is open. In Figs. 5.3 (c,d), for the same configuration, the

spin up Seebeck coefficient |S↑| is maximum when constriction at X is closed and at Y is

open. Similarly, the spin down Seebeck current |S↓| is maximum when constriction at X is

closed and Y is open.

5.3.1.2 Power and efficiency of QSH heat engine

In Fig. 5.4 (a), we see the maximum charge power as large as 0.25(kB∆θ)2/h with efficiency

at that power equal to 0.8ηc (for configuration 2), as shown in Fig. 5.4 (b). We see

these large power and efficiency occurs at the same parameter value where the Seebeck

coefficients |S↑| and |S↓| are maximum, as in Eqs. (5.3), (5.8). The power and efficiency both

are maximum when constriction at X is partially open and at Y is open. The maximum power
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delivered by our system is double that of a quantum Hall(QH) system, due to presence of

helical edge modes rather than chiral, although the efficiency generated at that maximum

power is comparable to the QH system[18]. The use of QSH system to design a quantum

spin heat engine is only possible because of the presence of spin up/down edge modes.

This is exclusive to the QSH heat engine. In Fig. 5.4 (c), we see that a large spin power

15(kB∆θ)2/h is obtained in case of spin currents with efficiency at that spin power 0.4ηc

(for configuration 1), as shown in Fig. 5.4(d). The maximum power and efficiency for spin

currents are maximum when constriction at X is closed while that at Y is open. Due to

quantum effects and in the non-linear transport regime there is an upper limit to how much

heat energy can be carried by each channel/edge mode, see Ref. [105]. As a result, it also

limits the efficiency achieved at maximum power by any heat engine irrespective of whether

it is two/three terminal heat engine or TR symmetry is broken or not. Though this kind of

bound will not affect our results in this chapter as we are in linear transport regime where

the temperature difference applied between the two terminals is small and the heat energy

carried by each edge mode will always be less than this upper bound.

5.3.1.3 Coefficient of performance(COP) and cooling power of refrigerator

The use of the quantum spin Hall system as a charge or spin refrigerator is the subject of

this subsection. In Figs. 5.5 (a,b), the cooling power (JQ(ηmax
ch )) (see Eq. (5.11)) for charge

currents of around 3.5(kB∆θ)2/h with a COP 0.2ηr
c is observed for configuration 2. We

see that the cooling power (JQ(ηmax
ch )) is maximum when both constrictions at X and Y

are open, although the coefficient of performance for charge currents is maximum when

constriction at X is partially open while at Y is open. In Figs. 5.5 (c,d), the cooling power

(JQ(ηmax
sp )) for spin currents is shown in (c), which is around 20(kB∆θ)2/h and maximum

COP (ηmax
sp )of around 0.15 ηr

c is shown in Fig. 5.5(d) for configuration 2. The cooling power

and COP for spin currents are maximum when constriction at X is closed and at Y is open.
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(a) (b)

(c) (d)

Figure 5.5: (a) Maximum cooling power for charge currents JQ(ηr,max
ch ) in unit of (kB∆θ)2

h and (b) maximum
efficiency η

r,max
ch in unit of ηr

c for configuration 2. (c) Maximum cooling power for spin currents JQ(ηr,max
sp ) in unit

of (kB∆θ)2

h and (d) maximum efficiency η
r,max
sp in unit of ηr

c for configuration 1. Parameters are ~ω0 = 0.1kBθ

and θ=0.1K.

Again because of the preservation of TR symmetry in our system, it can act as a very

good refrigerator with giant cooling power of 3.5 (kB∆θ)2/h for charge refrigeration which

is more than 150 times than that seen in the quantum dot (QD) refrigerators (see Table 5.2)

[110, 109].

5.3.2 Experimental Realization

2D QSH samples are well known topological insulators, known for their dissipation less

spin transport. These helical edge modes have been experimentally realized, see Refs.

[40, 111]. Though the design of a QPC in a QSH insulator is not so easy, very recently they

have been experimentally realized in Ref. [95]. Realization of resonant tunnelling in QSH

system can be done by an antidot[112]. Thus, the experimental realization of our model

would not be that difficult. Spin power of our system can also be converted to charge

power by using inverse spin Hall effect or spin valve to do electrical work by the system, as
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shown in Ref. [16].

5.4 Chiral vs Helical thermoelectrics

The performance of the quantum spin Hall system as a quantum heat engine as well

as a refrigerator is discussed in section 5.3. Herein a comparison is made between the

performance of quantum spin Hall heat engine with that of other quantum Hall heat engines

in Table 5.1. Since there are no refrigerators based on chiral quantum Hall systems, the

helical QSH refrigerator is compared with quantum dot refrigerators in Table 5.2. From Table

5.1, one can see that the maximum power for charge currents for a 3-terminal quantum spin

Hall heat engine is 0.8(kB∆θ)2/h which is double than that of a 3-terminal quantum Hall

heat engine based on quantum point contacts[18], but much larger than that of a 3-terminal

quantum Hall heat engine based on Mach-Zehnder interferometers [36]. The efficiency

at maximum power for the QSH heat engine is 0.28ηc which is comparable to that seen

in [18] but much larger than what is seen in [36]. Further, it can also be seen from Table

5.1 that if a 1 cm2 area is fabricated with quantum spin Hall heat engines (area of each

nano-scale QSH heat engine is say 100 nm2) then a huge output power of around 0.08

Watt can be generated which is much larger than that seen in Refs. [18, 36]. Thus it is

clear from Table 5.1 that quantum spin Hall heat engines outperform quantum Hall heat

engines quite easily. From Table 5.2, one can see that a quantum spin Hall refrigerator too

outperforms other quantum dot refrigerators with large cooling power of 3.5(kB∆θ)2/h and

co-efficient of performance of 0.2ηr
c.
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Table 5.1: How does the QSH heat engine compare with quantum Hall heat engine
proposals?

Heat Engines Maximum
power Pmax
(kB∆θ)2/h

Efficiency at
maximum power
η(Pmax)

Power generated in
1cm2 area fabricated
by nano engines

QH (MZI)(3T)[36] 0.14 0.042 ηc 0.04 Watt
QH (QPC) [18] 0.4 0.3 ηc 0.06 Watt

QSH heat engine (3T) 0.8 0.28ηc 0.08 Watt
Note: The power and efficiencies are based on charge transport, see Eqs. (1.42), (1.43)

and Figs. 5.4(a, b).

Table 5.2: Comparison with quantum dot (QD) refrigerators

Quantum refrigerator Cooling Power JQ at maximum
COP in units of (kB∆θ)2/h

Maximum COP
in units of ηr

c
QD refrigerator[110] 0.002 0.4

Magnon QD refrigerator [109] 0.025 0.2
QSH refrigerator (3T) 3.5 0.2

Note: The cooling power and coefficient of performance are based on charge transport,
see Eq. (5.11) and Figs. 5.5(a, b).

5.5 Conclusion

The aim in this chapter was to design a powerful quantum spin Hall (QSH) heat engine. The

ability of the helical QSH system to work as an efficient quantum refrigerator is also explored.

Besides designing a charge based heat engine, a powerful spin based heat engine can

also be modelled in the QSH system. To fulfil these twin aims, two QPC’s/antidots are

introduced at the two junctions X ,Y of a 3T QSH system (as discussed in section 5.3). The

results are derived following Landauer-Buttiker formalism in section 5.3. It is shown that

for configuration 2 (QPC at constriction X and antidot at constriction Y) the charge power

and efficiency for charge current are maximum for QSH heat engine and refrigerator. The

power and efficiency for spin currents are maximum for configuration 1 (QPC at both the
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constrictions X and Y). Further, it is shown that the performances of QSH heat engine is

better than that of quantum Hall (QH) heat engines[36, 18] in section 5.4. The performance

of QSH system as a refrigerator too is better than quantum dot refrigerators. Herein only a

3-terminal QSH system is analysed both as a quantum heat engine as well as a quantum

refrigerator. In future this can be extended to multi-terminal (more than 3-terminal) QSH

heat engines to improve their performance further and more interesting effects like spin

Nernst effect could be explored in multi-terminal QSH systems.
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6. Thermoelectrics in strained

graphene

“What is important about graphene is the new physics it has delivered.”

– Andre Geim

“The concept of graphene came along in 1947, but nobody paid much attention

to it. I was fascinated because it had a linear E versus K while everything else

that people were working on at that time had a quadratic dispersion relationship. I

wondered why this was and what was so special about it. That was my fascination.”

– Mildred S. Dresselhaus

6.1 Introduction

The aim of this chapter is to design both a powerful quantum heat engine as well as a

quantum refrigerator using ballistic modes in a monolayer graphene system. Graphene

is a allotrope of carbon and it consists of a single layer of carbon atoms arranged in a

hexagonal lattice[122]. It is a semi-metal with zero band gap. In chapter 5, the application

of edge modes in thermoelectrics is discussed. In this chapter, the use of ballistic modes

in graphene to thermoelectric application is probed and compared with the edge modes

in chapter 5. The reason for comparing ballistic modes in graphene to edge modes in
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QH or QSH heat engines is that graphene is available in its pure form very easily and

even in presence of impurity scattering it has perfectly conducting ballistic channels[50]

similar to edge modes observed in QH or QSH systems. The efficacy of quantum heat

engines(QHE) at the nanoscale has been made more than obvious in the past half decade

[113]. From being useful in schemes for removal of excess heat in nanosystems to novel

nano heat engines which produce huge amounts of power they have been one of the

most productive areas of research [16]. Graphene as a thermoelectric material has a very

small thermoelectric figure of merit ZT around 0.1−0.01, which is much smaller than the

most efficient thermoelectric material Bi2Te3, see Refs. [114, 115]. This is due to its large

thermal conductance and absence of any band gap. In some recent works, a moderate

improvement of the thermoelectric figure of merit ZT is noticed in graphene based systems.

This improved thermoelectric figure of merit ZT of around 2.5−3 has been observed in

2D graphene systems with disorder [116, 117] or isotopes[117] or nanopores[118] or by

nano-patterning the graphene surface[114]. This thermoelectric figure of merit observed

in 2D graphene system is still smaller than that of the heat engine based on spin wave

ferromagnetic system, see Ref. [16]. In this chapter a recipe is provided to design a

graphene spin heat engine and refrigerator using spin polarized ballistic modes in strained

graphene. Giant thermoelectric factors of around 50 for both charge as well as spin transport

are seen in the graphene spin heat engine.

There have been a few papers on marrying spin transport into heat engines, mention

may be made of Ref. [16] wherein both the spin as well as charge thermoelectric factors

are calculated along with the power and efficiency of both charge as well as spin heat

engines. In Ref. [42], charge/spin thermoelectric properties of a carbon atomic chain

sandwiched between two ferromagnetic zigzag graphene nanoribbon is studied at various

temperature (ranges from 0−400 K). In Ref. [52] the spin and charge thermoelectric figure

of merits for a ferromagnetic graphene based QHE is calculated. Finally, in Ref. [119] the
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authors calculate the thermoelectric figure of merit as well as power output in a graphene

based heat engine with spin polarized edge modes. In Ref. [119] it is mentioned that a

thermoelectric figure of merit (around 3) is obtained in the device. In this chapter a charge

thermoelectric figure of merit 10−20 times the number obtained in Ref. [119] is predicted

in a graphene based system. The giant thermoelectric figure of merit for charge is not

unique us, in Ref. [16] a thermoelectric figure of merit of around 100 is seen. However,

what is unique to this model is that the same graphene based heat engine under strain

and doped with a magnetic impurity can work as a highly efficient charge as well as spin

heat engine with giant thermoelectric figure of merits for not only charge but also spin. The

graphene device considered generates a charge power almost twice than what is seen

in it’s closest competitor, see Ref. [119]. Further, the graphene device exhibits excellent

characteristics (coefficient of performance) when used as a charge or spin refrigerator. In

some of the recent works, see Refs. [152, 153, 154], the possibility of graphene to work as

spin caloritronic devices is studied, where graphene nanoribbon devices are engineered to

generate large spin currents on application of a temperature difference at the two opposite

edges of the system.

Further, in this chapter, a huge charge/spin thermoelectric figure of merit (ZTch/sp) is

observed in a graphene system in presence of strain and a magnetic impurity. In Refs. [52,

119], which are based on a graphene system, this huge charge/spin thermoelectric figure of

merit is not observed. In Ref. [16], a large charge thermoelectric figure of merit is observed,

but it’s not a graphene based system but a ferromagnetic system. The aim in this chapter

is to design a graphene based quantum heat engine and refrigerator. The prospect for

the device realization of a graphene based quantum heat engine is quite high. Since in

graphene, electronic transport can be very easily tuned by a gate voltage alone. The huge

ZTsp seen in the graphene spin heat engine of this chapter is not seen in any (graphene/non-

graphene) system till date. The graphene system considered can work as a quantum
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refrigerator as well with huge charge/spin co-efficient of performances(COP). In Ref. [18], it

is demonstrated that a quantum dot heat engine, coupled to two ferromagnetic metals and

a ferromagnetic insulator, can convert heat to spin polarized charge current as well as pure

spin current depending on the spin orientation directions of the two ferromagnetic metal

reservoirs. In the model graphene spin heat engine, by optimizing the parameters, heat

can be converted to a spin polarized charge current as well as a pure spin current similar

to Ref. [18]. In this chapter, not only charge and spin based heat engines are considered

but the model is extended to charge and spin based refrigerators based on the same

graphene based system. A large coefficient of performance is observed for the graphene

spin refrigerator in both charge as well as spin domains too.

6.1.1 This chapter

The structure of this chapter is as follows, beginning with the theoretical description required

to operate a 2-terminal graphene quantum spin heat engine in section 6.2, the spin Seebeck

coefficient is described in section 6.2.1, the maximum power and efficiency for charge as

well as spin currents are derived in section 6.2.2 and then the coefficient of performance,

cooling power are derived in section 6.2.3. Next in section 6.3 the model of graphene

quantum spin heat engine is described. Herein the focus is on our model which consists of

strained graphene system embedded with a magnetic impurity as in section 6.3.1. Then the

Hamiltonian of the system is described and wave functions are solved using the boundary

conditions in section 6.3.2. The charge/spin conductances and Seebeck coefficient are

calculated in section 6.3.3. Next the focus is on the performance of the system to work as

an efficient quantum heat engine in section 6.3.4. Next in section 6.3.5 a comparison is

made between graphene spin heat engine with related proposals in Table 6.1. In sections

6.4 the special case of graphene quantum heat engine when magnetic impurity is absent

is also discussed. Next the conductance, Seebeck coefficient of graphene quantum heat
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engine are discussed in section 6.4.1 and maximum power, efficiency at that power are

discussed in section 6.4.2. Then the focus is on the performance of the graphene spin

system to work as a quantum refrigerator in section 6.5. Again the special case when the

magnetic impurity is absent is discussed in section 6.5.1 for graphene refrigerator. The

experimental realization of this model is discussed in section 6.6. A comparison between

the performance of the graphene quantum spin heat engine based on ballistic modes with

that of quantum heat engines based on quantum spin Hall edge modes (as described in

chapter 5 of this thesis) is done in section 6.7 (Tables. 6.2, 6.3 and 6.4). Finally, the chapter

concludes in section 6.8.

6.2 Theory of the quantum spin heat engine and refriger-

ator

6.2.1 Onsager coefficients

The aim of this chapter as stated in the introduction is to design a quantum spin heat engine

and refrigerator using a strained graphene layer embedded with a magnetic impurity. It

goes without saying that our device acts as a quantum charge heat engine too. For this

we begin by defining the thermoelectric properties of our graphene system in the linear

transport regime- the electric and heat currents are linearly proportional to the applied

biases be it electric or thermal. As is well known electrons in graphene can be both valley

(K/K′) polarized as well as spin (↑ / ↓) polarized[90, 121]. The linear dependencies can

be expressed as follows [52, 53, 36]-

 jv
s

jq,v
s

=

 L11,v
s L12,v

s

L21,v
s L22,v

s


 −E

−∆θ

 , (6.1)
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where jv
s and jq,v

s are the electric and heat currents for spin ‘s’ electrons (s ∈ ↑,↓) respec-

tively, and v is for K/K′ valley, Li j with i, j ∈ 1,2 represents the Onsager coefficients for

a two terminal thermo-electric system. The electric response due to a finite temperature

difference ∆θ across the graphene layer is denoted as the Seebeck coefficient while the

heat current generated due to the applied bias voltage E across graphene layer is denoted

as Peltier coefficient. Using Eq. (6.1) these aforesaid coefficients can be expressed as-

Sv
s =−

L12,v
s

L11,v
s

, and Pv
s =

L21,v
s

L11,v
s

. (6.2)

Due to the additional spin(s) and valley(ν) degrees of freedom for electrons in graphene

the charge(Sν

ch) and spin Seebeck(Sν
sp) and Peltier coefficients(Pν

ch,P
ν
sp) for any valley

(ν = K/K′) can be written as[16]-

Sv
ch =

Gv
↑S

v
↑+Gv

↓S
v
↓

Gv
↑+Gv

↓
and Sv

sp =
Gv
↑S

v
↑−Gv

↓S
v
↓

Gv
↑+Gv

↓
, (6.3)

Pv
ch =

Gv
↑P

v
↑ +Gv

↓P
v
↓

Gv
↑+Gv

↓
and Pv

sp =
Gv
↑P

v
↑ −Gv

↓P
v
↓

Gv
↑+Gv

↓
. (6.4)

The sum over both valleys (K and K′) gives the total charge/spin Seebeck and Peltier

co-efficients-

Sch = SK
ch +SK′

ch and Ssp = SK
sp +SK′

sp, (6.5)

Pch = PK
ch +PK′

ch and Psp = PK
sp +PK′

sp . (6.6)

To simplify matters, the Onsager co-efficient matrix in Eq. (6.1), relating electric and heat

currents to temperature difference and applied electric bias, can be rewritten as follows
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[52, 122, 55]-

 L11,v
s L12,v

s

L21,v
s L22,v

s

=

 L0,v
s L1,v

s /eθ

L1,v
s /e L2,v

s /e2θ

 , (6.7)

with, Lα,v
s = G0

∫
π/2

−π/2
dφcosφ

∫
∞

−∞

dε(−∂ f
∂ε

)
|ε|
~v f

(ε−µ)αT v
s (ε,φ), (6.8)

herein G0 = (e2/~)(W/π2), with W being the width of graphene layer in y− direction,

L0,v
s = Gv

s is conductance of graphene electrons with spin s, in valley v [55]. φ is the

angle at which the electron is incident, ε is the energy of the electron, f is the Fermi-Dirac

distribution, µ is the Fermi energy and T ν
s (ε,φ) is the transmission probability for spin s

electrons through strained graphene for valley ν. To calculate the Onsager coefficients

Li j,ν
s in Eq. (6.1), one first has to calculate the transmission probability T ν

s (ε,φ) and then

after calculating the Onsager coefficients Li j,v
s in Eq. (6.1), we calculate efficiency and

power of our quantum spin heat engine. To do that we need to write the response matrix

in terms of electric charge(Jch) and spin(Jsp) currents as well as heat current (JQ), which

can be calculated from Eq. (6.1) by using the relations- Jch = j↑+ j↓, Jsp = j↑− j↓ and

JQ = jq
↑+ jq

↓ as follows [16]-


Jch

Jsp

JQ

= Gch


1 P Sch

P 1 P′Sch

SchT P′Sch K /Gch



−E

−Esp

−∆θ

 . (6.9)

In the above Eq. (6.9), E is the applied electric field while the spin voltage applied Esp = 0 in

our system. Here we have summed the contribution of two valleys such that the total electric

charge conductance Gch = G↑+G↓ and spin conductance Gsp = |GchP|, with Gs = ∑v Gv
s

and Ss =
1
2 ∑v Sv

s with s =↑,↓, Sch and Ssp are the charge and spin Seebeck co-efficients

respectively, P is the polarization of spin conductance while P′ is the polarization of the
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product of Seebeck coefficient and conductance [16, 113] which are defined as follows:

Sch =
G↑S↑+G↓S↓

G↑+G↓
, P =

∣∣∣∣G↑−G↓
G↑+G↓

∣∣∣∣ , P′ =
∣∣∣∣G↑S↑−G↓S↓
G↑S↑+G↓S↓

∣∣∣∣ . (6.10)

Similarly Ssp = SchP′. The spin polarization also affects the thermal conductance which are

defined as-

K = κ+
1+P′2−2PP′

(1−P2)
GchS2

chT = κ+G↑S2
↑T +G↓S2

↓T, (6.11)

with κ being the thermal conductivity in absence of any electrical charge or spin conductivity[16],

defined as-

κ = κ↑+κ↓, κs =
L11

s L22
s −L12

s L21
s

L11
s

, (6.12)

with Li j
s = ∑v Li j,v

s as in Eq. (6.1).

6.2.2 Efficiency and power of quantum spin heat engine

The charge(spin) power[53] defined as usual as the product of electric current and volatge

applied then can be written as-

Pch(sp) =−Jch(sp)E =−(Gch(sp)E +GchSch(sp)∆θ)E . (6.13)

The above equation is maximized by
dPch(sp)

dE = 0, at E =−GchSch(sp)
2Gch(sp)

∆θ, which gives maxi-

mum power as-

Pmax
ch =

1
4

S2
chGch(∆θ)2 and Pmax

sp =
1
4

S2
sp

G2
ch

Gsp
(∆θ)2. (6.14)
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The efficiency at maximum power is defined as the ratio of maximum power to the heat

current transported and can be derived as follows[53]-

η(P max
ch ) =

P max
ch
JQ

=
ηc

2
GchS2

chθ/(K −GchS2
chθ)

2+GchS2
chθ/(K −GchS2

chθ)
=

ηc

2
ZT |ch

2+ZT |ch
, (6.15)

η(P max
sp ) =

P max
sp

JQ
=

ηc

2
G2

chS2
spθ/(GspK −G2

chSchSspθ)

2+G2
chSchSspθ/(GspK −G2

chSchSspθ)
=

ηc

2
P′

ZT |sp

2+ZT |sp
,(6.16)

at Ech(sp) = −
GchSch(sp)
2Gch(sp)

∆θ, which is the condition for maximum power. Herein, ηc is the

Carnot efficiency defined by ∆θ

θ
and ZT |ch/sp is the figure of merit, a dimensionless quantity,

defined as-

ZT |ch =
GchS2

chθ

K −GchS2
chθ

, (6.17)

ZT |sp =
P′GchS2

chθ

PK −P′GchS2
chθ

. (6.18)

Similarly, efficiency η can be written as[53]-

ηch =
Pch

JQ
=

(GchE +GchSch∆θ)E
(GchSchθE +K ∆θ)

, (6.19)

ηsp =
Psp

JQ
=

(GspE +GchSsp∆θ)E
(GchSchθE +K ∆θ)

. (6.20)

To calculate maximal efficiency for the charge transported we need to calculate dηch
dE = 0 in

Eq. (6.19), this with the condition JQ > 0, gives-

E =
K

GchSchθ
(−1+

√
1−

GchS2
chθ

K
)∆θ,

Thus, substituting E in Eq. (6.19)- η
max
ch = ηc

√
ZT |ch +1−1√
ZT |ch +1+1

. (6.21)
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Similarly, to calculate the maximal efficiency for spin transport we need to calculate dηsp
dE = 0

in Eq. (6.20), this again with the condition JQ > 0, gives-

E =
K

GchSchθ
(−1+

√
1− P′

P
GchS2

chθ

K
)∆θ,

Thus, substituting E in Eq. (6.20)- η
max
sp = ηcP′

√
ZT |sp +1−1√
ZT |sp +1+1

. (6.22)

After determining the expressions for the quantities (both charge as well as spin) like

Seebeck coefficient, Thermoelectric figure of merit, maximum power output and efficiency

of respective heat engines at maximum power, we plot them in sections 6.3.3 and 6.3.4.

We also discuss and analyse the aforesaid plots in the same section.

6.2.3 Coefficient of Performance of quantum charge/spin refrigerator

To use our model as a quantum refrigerator, we have to find the coefficient of performance

of our system. The co-efficient of performance of the refrigerator is defined by the ratio of

heat current extracted from the hot reservoir to the electrical power P , such as for charge

transport [17]-

η
r
ch =

JQ

Pch
, (6.23)

which is maximum (considering JQ < 0 and Pch < 0) for -

E =
K

GchSchθ
(−1−

√
1−

GchS2
chθ

K
)∆θ. (6.24)

Thus, substituting E in Eq. (6.23)- η
r,max
ch = η

r
c

√
ZT |ch +1−1√
ZT |ch +1+1

, (6.25)

Page 205 of 269



where ηr
c =

θ

∆θ
is the efficiency of an ideal refrigerator. The reason we have the condition

JQ < 0,Pch < 0 when deriving η
r,max
ch is because we intend to use it as a refrigerator. A

refrigerator to describe it crudely converts work done to heat (JQ < 0) or for a refrigerator

work is done on the refrigerator system and it results in lowering of temperature and transfer

of heat to environment, this is opposite to what a heat engine does for which JQ > 0.

Similarly we can calculate the coefficient of performance of a spin dependent refrigerator

via the ratio of heat current extracted to spin power supplied,

η
r
sp =

JQ

Psp
, (6.26)

which is again maximum (considering JQ < 0 and Psp < 0) for-

E =
K

GchSchθ
(−1−

√
1− P′

P
GchS2

chθ

K
)∆θ,

Thus, substituting E in Eq. (6.26)- η
r,max
sp =

ηr
c

P′

√
ZT |sp +1−1√
ZT |sp +1+1

. (6.27)

For the systems with broken time-reversal(TR) symmetry, the upper bound of the refrigerator

coefficient of performance (COP) η
r,max
ch is always less than the Carnot limit ηr

c , and it

decreases with the deviation of asymmetric parameter x = L12

L21 from 1, see Ref. [17]. For

systems with conserved TR symmetry, the upper bound of the corresponding maximum

COP η
r,max
ch equals ηr

c at ZT |ch→ ∞ for giant thermoelectric figure of merit [53]. This is

the advantage of multiterminal quantum heat engine systems with time reversal symmetry

preserved, these systems can be converted to work as a refrigerator with larger COP than

multi-terminal quantum heat engine systems with broken TR symmetry. Since our quantum

heat engine system is a two terminal system, it always conserves the TR symmetry due to

current conservation, see Ref. [126] and thus works as a highly efficient refrigerator with

large COP.
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Figure 6.1: Monolayer graphene with a magnetic impurity at x = 0 denoted by thick maroon line. The middle
portion is strained region while the two side portions are normal graphene regions. Voltages V1 and V2 are
applied to the two sides which are at temperatures T1 and T2 respectively.

6.3 Graphene spin heat engine

6.3.1 Model

A graphene sheet is lying in the x− y plane, a strain is applied as before to the region

0 < x < L, see Fig. 6.1, with a magnetic impurity at x = 0. The in-plane uniaxial strain

impacts the hopping between nearest neighbours and is generally delineated via a gauge

vector which takes opposing signs in the two valleys (K and K′) of graphene [138]. In the

Landau gauge, the vector potential corresponding to the strain is ~A = (0,Ay). The system

is then defined by the Hamiltonian-

HK /K ′ = HK/K′+ Js.Sδ(x) (6.28)

with HK = ~v f σ.(k− t) and HK′ = ~v f σ∗.(k+ t). Strain is denoted as t = Ay/~v f [Θ(x)−

Θ(x−L)] with Θ the Heaviside step function and vF the Fermi velocity. The first term in

Eq. (6.28) represents the kinetic energy in graphene with σ = (σx,σy) - the Pauli matrices

that operate on the sublattices A or B and k = (kx,ky) the 2D wave vector. The second

term in Eq. (6.28) denotes the exchange interaction between Dirac electron and magnetic

impurity with J representing the strength of the exchange interaction. The spin of Dirac
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electron is denoted by s, while S represents spin of the magnetic impurity and m its magnetic

moment, while magnetic moment of Dirac electrons is 1/2 (spin up) or −1/2 (spin down).

For better understanding of our model we have compared our delta potential magnetic

impurity with a rectangular potential barrier magnetic impurity in Fig. 6.2. There is a single

magnetic impurity located along the line x = 0. A solid black color line is shown at x = 0 in

Fig. 6.2(a). The magnetic impurity is lying along this line. The magnetic impurity is modelled

as a delta potential in x−, but is uniform in the y−direction. A magnetic quantum dot doped

with few Mn+ ions can be thought of as a magnetic impurity, see Refs. [127, 128]. It is

assumed to have a finite width with a translational invariance in the y−direction. This can be

understood with an analogy to a rectangular potential barrier in graphene. Klein tunnelling

in graphene is a 2D scattering problem, see Ref. [129]. The Klein setup has a rectangular

potential barrier between x = 0 and x = L with translational invariance in the y−direction,

as shown in Fig. 6.2(c). The potential barrier affects the transmission of incident particles in

the x−direction but doesn’t affect the transmission in y−direction because the transmitting

particle cannot feel the potential change in the y−direction. As one reduces the length L of

the potential barrier, it becomes similar to a delta potential located at x = 0, see Ref. [130].

Similarly, a magnetic impurity can have a finite width between x = 0 and x = L with a

translational invariance in the y−direction, as shown in Fig. 6.2(b), see Ref. [127]. If one

decreases the width L of the impurity, it reduces to a delta function like profile affecting the

transmission in the x−direction but not in the y−direction, see Fig. 6.2(a). All electrons

passing through the system interact with the impurity. Refs. [90, 121, 134, 135, 127, 128]

too have a magnetic impurity embedded into a graphene monolayer very similar to us. The

analysis as done in Refs. [90, 121, 127], is used in this chapter also. In Ref. [127], a delta

potential approximation of a rectangular barrier magnetic impurity in a graphene monolayer

shows that for a range of incident angles from −π/6 to π/6 the difference between the

transmissions through delta potential magnetic impurity and that of the rectangular barrier
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Figure 6.2: 2D graphene monolayer with (a) a delta potential magnetic impurity, (b) rectangular barrier
magnetic impurity, (c) a rectangular potential barrier and (d) a delta potential barrier. A rectangular barrier
magnetic impurity(b) models a magnetic quantum dot (see Ref. [127]) the transmission through which
approximates that of a delta potential magnetic impurity(a) to a great extent. Similarly, a rectangular potential
barrier(c) approximates a delta potential(d) in modelling the Klein paradox (see Refs. [129, 130]).

magnetic impurity is quite small. In Ref. [127], the delta potential magnetic impurity is an

approximation for a magnetic quantum dot with spin.

We consider a magnetic impurity as the prototype of a magnetic quantum dot doped with

few Mn+ ions, oriented by an external magnetic field and put in a specific state with spin

S and spin magnetic moment in z-direction m, see Refs. [127, 128]. It can be oriented

such that only a particular state-defined by S,m is occupied. Two types of scattering can

happen: 1. with spin-flip (same S but m→ m±1) or 2. without spin-flip (same S as well as

m) of magnetic impurity. The rest of the states would have zero occupation probability as

shown in the analysis of the scattering of electrons due to the magnetic impurity in the next

subsection, see also Refs. [127, 90, 121].

6.3.2 Wave functions and boundary conditions

To calculate the transmission probability and from it the Onsager coefficients and the

thermoelectric factors we consider a spin-up electron with energy E incident at the strained

graphene interface at x = 0 at an incident angle φ . At the interface itself we also have a
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magnetic impurity. The incident electron thus can be scattered due to the strained region.

Further, its spin can also be affected because of the magnetic impurity. The incident electron

thus can be scattered as a spin up or down electron depending on the spin and magnetic

moment of the magnetic impurity. The wave function for A-sublattice in each region (normal

and strained) for K- valley can be written as:

For x < 0-

ψ
1
A(x,y) =

 (eikxx + r↑e−ikxx)χm

−r↓e−ikxxχm+1

 , (6.29)

ψ
1
B(x,y) =

 (eikxx+iφ + r↑e−ikxx−iφ)χm

−r↓e−ikxx−iφχm+1

 , (6.30)

in region 0 < x < L-

ψ
2
A(x,y) =

 (a↑eiqxx +b↑e−iqxx)χm

(a↓eiqxx−b↓e−iqxx)χm+1

 , (6.31)

ψ
2
B(x,y) =

 (a↑eiqxx+iγ +b↑e−iqxx−iγ)χm

(a↓eiqxx+iγ−b↓e−iqxx−iγ)χm+1

 , (6.32)

and for x > L-

ψ
3
A(x,y) =

 t↑eikxxχm

t↓eikxxχm+1

 , (6.33)

ψ
3
B(x,y) =

 t↑eikxx+iφχm

t↓eikxx+iφχm+1

 . (6.34)
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The x component of the wave-vector in strained region is qx =
√

(E/~vF)2− (ky− t)2,

whereas in the normal region qx is substituted with kx , wherein kx = E cosφ/~vF , and

the phase factor in strained region is given by tanγ = (ky− t)/qx . χm is the eigen state

of z−component of spin operator of magnetic impurity Sz with Szχm = mχm, m being the

corresponding eigen-value. The spin flipping mechanism is considered elastic and the sum

of the z−components of the spin magnetic moment of impurity(m) and of electron(m′ =

±1/2), i.e., M = m+m′ remains conserved before and after spin-flip scattering. Following

Ref. [143], one obtains the boundary conditions at x = 0:

i~vF [ψ
2
B(x = 0)−ψ

1
B(x = 0)] =

J
2

s.S[ψ1
A(x = 0)+ψ

2
A(x = 0)], (6.35)

i~vF [ψ
2
A(x = 0)−ψ

1
A(x = 0)] =

J
2

s.S[ψ1
B(x = 0)+ψ

2
B(x = 0)] (6.36)

and at x = L as-

ψ
2
A(x = L) = ψ

3
A(x = L) and ψ

2
B(x = L) = ψ

3
B(x = L). (6.37)

The spin flip process is attributed to the interaction between the spin of electron (s) and the

spin of magnetic impurity (S), with s.S = szSz+
1
2(s
−S++ s+S−), where s−S+

 1

0

χm =

F

 0

1

χm+1 and s+S−

 0

1

χm = F ′

 1

0

χm−1 with F =
√
(S−m)(S+m+1) and

F ′=
√
(S+m)(S−m+1). Here, sz with sz

 1

0

= 1
2

 1

0

 and Sz are the z-components

of the spin operator of electron and magnetic impurity, respectively. S± = Sx± iSy, where

S+ and S− are the spin raising and spin lowering operators for magnetic impurity, and

s± = sx± isy are the same for electrons. After substituting the wave functions (6.29)-(6.34)
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in Eqs. (6.35)-(6.37), at x = 0 we get-

a↑(eiγ + iαm)−b↑(e−iγ− iαm)− (eiφ− iαm)+ r↑(e−iφ + iαm)+ iαF(a↓+b↓+ r↓) = 0,

a↓(eiγ− iα(m+1))−b↓(e−iγ + iα(m+1))+ r↓(eiφ− iα(m+1))+ iαF(a↑+b↑+ r↑+1) = 0,

a↑(1+ iαmeiγ)+b↑(1− iαme−iγ)− (1− iαmeiφ)− r↑(1+ iαme−iφ)+ iαF(a↓eiγ−b↓e−iγ

− r↓e−iφ) = 0,a↓(1− iα(m+1)eiγ)+b↓(1+ iα(m+1)e−iγ)− r↓(1− iα(m+1)e−iφ)+ iαF(a↑eiγ

−b↑e−iγ + eiφ− r↑e−iφ) = 0, (6.38)

and at x = L we get-

t↑eikL = a↑eiqL +b↑e−iqL, t↓eikL = a↓eiqL +b↓e−iqL,

t↑eikL+iφ = a↑eiqL+iγ−b↑e−iqL−iγ, t↓eikL+iφ = a↓eiqL+iγ +b↓e−iqL−iγ. (6.39)

In the above equations α = J/(4~v f ). Eqs. (6.38), (6.39) consist of 8 unknowns a↑, a↓,

b↑, b↓, r↑, r↓, t↑ and t↓ satisfy the probability conservation- |r↑|2 + |t↑|2 + |r↓|2 + |t↓|2 = 1.

Similarly, for spin down incident electron from the left side we can derive the scattering

amplitudes. Further, for K′ valley too solving the Hamiltonian one can get the transmission

amplitude (ts) and reflection amplitude (rs) with s = ↑,↓ again in a nod to probability

conservation satisfying |r↑|2 + |t↑|2 + |r↓|2 + |t↓|2 = 1 for K′ valley also. Since there is no

inter valley scattering, our results remain identical for K′ valley after integrating over both

energy and the incident angle. So we focus on the transmission probability Ts = |ts|2 in one

valley v = K only. Since the expression for Ts is large we only analyse the thermoelectric

properites via plots in Figs. 6.3-6.10. We get a simplified transmission probability of

an electron for only J = 0 case (considering no magnetic impurity at x = 0), which is
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(c)

(a)

(d)

(b)

Figure 6.3: (a) Charge Conductance (Gch) vs. EF (Fermi energy) for various values of magnetic moment m,
length of strained graphene layer L = 40nm and width W = 20 nm, strain t = 50meV , temperature θ = 30K
with spin of magnetic impurity S = 5/2 and J =−600meV , (b) Spin Conductance (Gsp) vs. EF (Fermi energy)
for various values of magnetic moment m, length of strained graphene layer L = 40nm, strain t = 50meV ,
temperature θ = 30K with spin of magnetic impurity S = 5/2 and J =−600meV , (c) Charge conductance
(Gch) vs J (impurity coupling strength) for various strains at Fermi energy EF = 50meV , length of strained
graphene layer L = 60nm, temperature θ = 30K with spin of magnetic impurity S = 5/2 and spin magnetic
moment m =−5/2. (d)Spin conductance (Gsp) vs. J (impurity coupling strength) for various strains at Fermi
energy EF = 50meV , length of strained graphene layer L = 60nm, temperature θ = 30K with spin of magnetic
impurity S = 5/2 and spin magnetic moment m =−5/2.

(T↑+T↓ = T )-

T (ε,φ) =
1

cos2[qxL]+ sin2[qxL](1−sin[θ]sin[φ]
cos[θ]cos[φ] )

2
. (6.40)

6.3.3 Onsager coefficients

In Figs. 6.3 (a) and (b) we plot the charge and spin conductance for various m values

(spin magnetic moment in z-direction) of magnetic impurity. We see that though different

magnetic orientations have no effect on the charge conductance, the spin conductance
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increases as the magnitude of m increases, but it is unaffected by the direction of m.

Decreasing the spin magnetic moment m of the magnetic impurity reduces the transmission

probability of spin up electrons, but increases the transmission probability for spin down

electrons. The total charge conductance remains unaffected by the changing m, but the

spin conductance increases as the difference between spin up current and spin down

current increases. Similar effects on the charge/spin conductances are observed when the

exchange interaction J is altered. In Fig. 6.3 (c) we see that the charge conductance is

almost constant as function of the exchange interaction (J), however the spin conductance

increases as shown in Fig. 6.3 (d). If an electron is incident at the interface of strained

and unstrained region, it is refracted to the strained region with a refraction angle γ =

tan−1 (ky− t)/qx in K valley. So, if one increases the strain t, electrons with incident angle

0 to π/2 will refract close to the normal to the interface between the two regions and thus

their transmission probability increases, but electrons with incident angle 0 to (−π/2) will

refract away from the normal to interface reducing the transmission probability more and

thus reducing the overall transmission (after integrating over incident angle φ) in the the

K valley. In the K′ valley, the electrons refract in the opposite direction to that of the K

valley with a refraction angle γ = tan−1(ky + t)/qx, but overall transmission probability (after

integrating over incident angle φ) reduces with strain and is always equal to the K valley

unless a magnetic field is applied at the interface to create a valley polarization, see Ref.

[132]. Increasing strain decreases both the charge as well as spin conductances. Similar

to Fig. 6.3, in Fig. 6.4 we see the effect of the orientation of the magnetic impurity in z−

direction (m) and strain on the charge and spin Seebeck coefficients. In Figs. 6.4 (a) and

(b) we see that impurity orientation m has no effect on the charge Seebeck coefficient, but

it has a huge impact on the spin Seebeck coefficient. In Figs. 6.4 (c) and (d) we see that

charge and spin Seebeck coefficients both increase with increasing strain, which is opposite

to the effect on charge and spin conductances. This can be understood as follows- A
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(a) (b)

(c) (d)

Figure 6.4: (a) Charge Seebeck coefficient (Sch) vs. Fermi energy for various m of magnetic impurity at
T = 30K,J = −600 meV-nm, strain (t)=50 meV and spin S = 5/2 and length of strained graphene region
L = 40nm and width w = 20 nm and (b) Spin Seebeck coefficient Ssp vs. Fermi energy EF in meV for various
m of magnetic impurity, length of strained graphene layer L = 40 nm, strain = 50meV , temperature θ = 30K
with spin of magnetic impurity S = 5/2 and J =−600meV . (c) Charge Seebeck coefficient (Sch) vs Fermi
energy for various strains at J = 600meV −nm, length of strained graphene layer L = 60nm, temperature
θ = 30K with spin of magnetic impurity S = 5/2 and spin magnetic moment m =−5/2, (d) Spin Seebeck
coefficient (Ssp) vs Fermi energy for various strains with parameters same as (c).

bandgap in a nanostructured material can increase the Seebeck coefficient significantly.

In graphene, due to its gapless bandstructure the Seebeck coefficient is very small, see

Ref. [55]. Applying strain in a graphene device can shift the Dirac points in opposite direction

by opening a conduction gap without opening a bandgap. This conduction gap increases

with increasing strain and so also the charge/spin Seebeck coefficients.

From Fig. 6.4 (b), it’s evident that spin Seebeck coefficient depends on the sign (orientation)

of the magnetic impurity m, i.e., Ssp|m = −Ssp|−m, unlike the spin conductance which

is independent, since Gsp = |G↑−G↓|. In Fig. 6.5(a) we see that exchange interaction

strength J has no effect on charge Seebeck coefficient Sch at zero strain, while the spin

Seebeck coefficient Ssp increases with J, as shown in Fig. 6.5(b). In presence of strain,

the effect of J on Sch is negligible. One thing to note in Figs. 6.4 and 6.5 is that both spin
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(a) (b)

(c) (d)

Figure 6.5: (a) Charge Seebeck coefficient Sch vs. Fermi energy (EF ) for various exchange coupling
strength J with parameters at L = 40 nm, strain t = 0 meV, θ = 30 K, S = 5/2, m =−5/2, (b) spin Seebeck
coefficient Ssp vs. Fermi energy (EF ) for various exchange coupling strength J with parameters at L = 40 nm,
strain t = 0 meV, θ = 30K, S = 5/2, m =−5/2, (c) charge Seebeck coefficient Sch vs. Fermi energy (EF ) for
various exchange coupling strength J with parameters at L = 40 nm, strain t = 100 meV, θ = 30K, S = 5/2,
m =−5/2, (d) spin Seebeck coefficient Ssp vs. Fermi energy (EF ) for various exchange coupling strength J
with parameters at L = 40 nm, strain t = 100 meV, θ = 30K, S = 5/2, m =−5/2.

as well as charge Seebeck coefficients are anti-symmetric as function of Fermi energy

(EF), i.e., Sch/sp(EF) = −Sch/sp(−EF) at zero strain. In presence of finite strain while

Sch(EF) =−Sch(−EF), Ssp has no symmetry with respect to sign reversal of Fermi energy,

in effect change of charge carriers from electrons to holes. All this is in contrast to the spin

and charge conductances which are symmetric, Gch/sp(EF) = Gch/sp(−EF), to reversal of

charge carriers.

The sign change seen in Fig. 6.5(a) for the charge Seebeck coefficient Sch near the charge

neutrality point or Dirac point is because the charge carriers switch from electrons to holes.

The origin of second peak in Fig. 6.5(c) is solely strain. On the other hand the first peak seen

in Fig. 6.5(c) which appears close to the Dirac point is due to the asymmetric contribution
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(b)(a)

(c) (d)

Figure 6.6: (a) Charge conductance Gch vs. Fermi energy (EF ) for various spin S and magnetic moment
m of the magnetic impurity with parameters at L = 40 nm, W = 20 nm, strain t = 50 meV, θ = 30K, and
exchange coupling J = 600 meV, (b) spin conductance Gsp vs. Fermi energy (EF ) for various spin S with
fixed magnetic moment m = 1/2 of the magnetic impurity with parameters same as (a), (c) charge Seebeck
coefficient Sch vs. Fermi energy (EF ) for various spin S and magnetic moment m = 1/2 of the magnetic
impurity with parameters same as (a), (d) spin Seebeck coefficient Ssp vs. Fermi energy (EF ) for various spin
S and magnetic moment m = 1/2 of the magnetic impurity with parameters same as (a).
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to the Seebeck current from electrons and holes, which arises due to the unique energy

dependent density of states of graphene. The first peak is always present in graphene

even in absence of strain, see Figs. 6.5(a) and (b) and Ref. [149]. In presence of strain,

in addition to this unique energy dependent density of states of graphene, an asymmetry

is created in the transmission probability as function of energy and that gives rise to the

second peak in Fig. 6.5(c). See also Ref. [7], where a similar peak is observed due to

strain in graphene. It should be noted that the position of the first peak is always fixed,

i.e., close to the Dirac point but changing the parameters like length of the strained region

one can change the position of the second peak and thus these two peaks may merge to

form a single large peak, see Figs. 6.4(c) and (d) which in turn leads to large power and

efficiency. It is to be noted from Figs. 6.5 (c) and (d) that at the Dirac point the charge

Seebeck coefficient is exactly zero, while the spin Seebeck coefficient is finite, leading

to the generation of pure spin current within the system due to temperature difference

only. In Fig. 6.6, we have shown the effect of large spin S of the magnetic impurity on the

charge/spin conductances and Seebeck coefficients. In Fig. 6.6 (a), we see that the charge

conductance is not affected much by the high spin state of the magnetic impurity while the

spin conductance is maximum when the spin of the magnetic impurity is small, as shown

in Fig. 6.6(b). In Fig. 6.6 (c), we see that the Sch is large for small S−the spin state of the

magnetic impurity with the magnetic moment in the z−direction fixed while in Fig. 6.6 (d),

we see that the spin Seebeck coefficient Ssp too is large for small values of S. For this

reason, we have used a relatively lower value of spin S = 5/2 of magnetic impurity to get

the maximum charge/spin Seebeck coefficient and conductances.

Recently, there have been some interesting works on quantum heat engines concentrating

on the weakly non-linear regime, see Refs. [133, 131]. In the weakly non-linear regime, the
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Figure 6.7: Linear and non-linear contribution to the charge Seebeck coefficient vs the Fermi energy.
Parameters are as follows- Length of the strain region L = 40 nm, strain t = 100 meV, θ = 30 K, spin
configuration of the magnetic impurity S = 5/2, m =−5/2 and exchange interaction J = 200 meV-nm. (The
same parameters as in Fig. 6.5(c).)

charge Seebeck coefficient can be written as-

S′ch = Sch +S1
ch∆θ+O(∆θ

2),

with Sch = − L11

G11
,

and S1
ch = − 1

G11
[G111L2

11 +L111G2
11 +G11L11(M121−M111)], (6.41)

where, Sch is the linear contribution to the Seebeck coefficient, same as defined in Eq. (6.3)

above and S1
ch is the first order correction to the Seebeck coefficient in a two terminal

system, i.e., the nonlinear contribution to the Seebeck coefficient. Here, G11 and G111

define the charge conduction of the system in the linear and non-linear regime respectively,

and L11 and L111 define the Seebeck current in the linear and non-linear regime respectively.

The terms M111 and M121 define the other non-linear contributions, see Refs. [131, 133].

The linear terms G11 and L11 are equal to ∑s L11
s and ∑s L12

s , respectively, i.e., G11(of Ref.

[131])= L11
↑ +L11

↓ (of this chapter)= G↑+G↓ = Gch and L11(of Ref. [131])= L12
↑ +L12

↓ (of

this chapter)= G↑S↑+G↓S↓ as in Eq. (6.3)(above). The nonlinear terms G111, L111, M121
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and M111 are defined as follows-

G111 = ∑
s,v
(2

∂L11,v
s

∂∆V
+G0e

∫
π/2

−π/2
dφcosφ

∫
∞

−∞

dε(−∂ f
∂ε

)
|ε|
~v f

∂T v
s (ε,φ)

∂ε
),

L111 = ∑
s,v
(2

∂L12,v
s

∂∆θ
+

G0

e

∫
π/2

−π/2
dφcosφ

∫
∞

−∞

dε(−∂ f
∂ε

)
|ε|
~v f

(ε−µ)2

θ2
∂T v

s (ε,φ)

∂ε
),

M111 = ∑
s,v
(
∂L12,v

s

∂∆V
+

∂L11,v
s

∂∆θ
+G0

∫
π/2

−π/2
dφcosφ

∫
∞

−∞

dε(−∂ f
∂ε

)
|ε|
~v f

(ε−µ)
θ

∂T v
s (ε,φ)

∂ε
),

M121 = ∑
s,v
(−∂L12,v

s

∂∆V
+

∂L11,v
s

∂∆θ
). (6.42)

If the nonlinear contribution, S1
ch is much smaller than the linear contribution Sch, then we

can neglect the nonlinear contribution. In Fig. 6.7, we have compared the nonlinear term

S1
ch to the linear term Sch and found that for our graphene spin heat engine the linear term

is much larger than the nonlinear term, around eight orders of magnitude large. Thus, all

the calculations including that of Seebeck coefficient are done in this chapter in the linear

response regime only. Finally, we have neglected the phonon contribution in our calculations

since the phonon contribution to the thermal conductance of graphene is quite small (almost

absent) at low temperatures 0− 30K, see Figs. 2,3 of Ref. [54] and Fig. 5 of Ref. [151].

Beyond 25−30K range, the phonon contribution increases linearly with temperature, as

shown in Refs. [54, 151]. Thus, the phonon contribution to the thermal conductance can be

neglected at the temperature range 20−30K as discussed in this chapter.

Page 220 of 269



(b)(a)

Figure 6.8: (a) Charge thermoelectric figure of merit (ZT |ch) vs. Fermi energy for various strains with
parameters T = 30 K, J = 232 meV-nm and L = 80 nm, w = 20 nm and spin S = 5/2, magnetic moment
m =−5/2 of magnetic impurity, (b) Spin thermoelectric figure of merit ZT |sp vs. Fermi energy for various
strains with parameters θ = 30K, J = 232 meV-nm and L = 80 nm, w = 20 nm and spin S = 5/2, magnetic
moment m =−5/2 of magnetic impurity.

6.3.4 Thermoelectric figure of merit, power and efficiency of graphene

spin heat engine

To get large efficiency for our charge and spin heat engines we need a large charge and

spin thermoelectric figure of merit (ZT |ch and ZT |sp). From Eq. (6.17) we see that charge

thermoelectric figure of merit is proportional to the product of square of the charge Seebeck

coefficient Sch and charge conductance Gch, i.e., S2
chGch, while spin thermoelectric figure

of merit (ZT |sp) is proportional to the product of charge and spin Seebeck (Sch and Ssp)

coefficients with charge conductance Gch, i.e., SchSspGch = P′GchS2
ch as in Eq. (6.18).

In Fig. 6.8, charge and spin thermoelectric figure of merits are plotted as function of Fermi

energy for various strains. In Fig. 6.8 (a) we see that charge figure of merit ZT |ch increases

with strain, while spin figure of merit ZTsp decreases as shown in Fig. 6.8 (b). ZT |ch takes

values around 50 which is quite large and similar to those obtained in Ref. [16]. Further,

ZT |sp approaches 100 which is completely unheard of. These giant charge and spin

thermoelectric factors are crucial for designing highly efficient quantum charge and spin

heat engines and are one of the main novelties of this chapter.

According to Eq. (6.15), this large ZTch will give rise to a large efficiency at maximum power,
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(a) (b)

Figure 6.9: (a) Maximum power for charge current (Pmax
ch ) vs. Fermi energy (EF ) in meV for various strains

at J = 600 meV-nm, length of strained graphene layer L = 60 nm, width W = 20 nm, temperature T = 30
K with spin of magnetic impurity S = 5/2 and spin magnetic moment m =−5/2, (b) Efficiency at maximum
power vs. Fermi energy (EF ) in meV for strain t = 30 meV, L = 70 nm, W = 20 nm, θ = 30 K, J = 232
meV-nm and spin S = 5/2, magnetic moment m =−5/2 of magnetic impurity.

η(Pmax
ch ) = 0.48ηC, corresponding to this value of ZTch the maximum power delivered by our

graphene spin heat engine is 0.02(kb∆θ)2/h, which is quite small. This is the remarkable

trade off between power and efficiency in a quantum heat engine, that when efficiency is

maximum the corresponding power is minimum. That’s why, we choose a set of parameters

where power and efficiency both are moderately large to give the optimal performance. With

a certain set of parameters, we obtain ZTch ∼ 2 for which we get the efficiency at maximum

power ηmaxP = 0.166ηC and maximum power delivered ≡ 0.16 (kB∆θ)2

h , which is a large

value compared with some other charge QHE’s, see Table 6.1.

(a) (b)

Figure 6.10: (a) Maximum power for spin current (Pmax
sp ) vs. Fermi energy (EF ) for various strains with

parameters J = 600 meV-nm, L = 60 nm, W = 20 nm, T = 30 K, S = 5/2, m = −5/2, (b) Maximum spin
power (Pmax

sp ) and efficiency at maximum power (η(Pmax
sp )) in units of ηc vs. Fermi energy (EF ) at L = 40 nm,

W = 20 nm, θ = 30 K, J =−600 meV-nm, strain t = 50 meV, S = 5/2, m =−5/2.
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In Fig. 6.9 we plot the maximum power for charge heat engine at various strains, we see

that there are two peaks in Pmax
ch . The first peak in Pmax

ch (which is proportional to S2
chGch) is

observed when the charge conductance Gch dominates over the charge Seebeck coefficent

Sch, which can be seen at strain (t = 50 meV). The second peak appears when the charge

Seebeck coefficient Sch dominates over the charge conductance Gch, this can be verified

easily because the second peak increases with increasing strain. In Fig. 6.9(b) we plot both

maximum power(Pmax
ch ) and the efficiency at maximum power (η(Pmax

ch )) as function of the

Fermi energy (EF ). We see that η(Pmax
ch ) goes to almost 0.2ηc, this is also a very large

value as compared to other similar heat engines. The efficiency at maximum charge power

as derived from Eq. (6.15) depends only on ZT |ch. Since in our case ZT |ch takes quite high

values its not surprising that we have a highly efficient charge heat engine. Further, we see

that the efficiency η(Pmax
ch ) is maximum (0.2ηc) for EF = 18meV but at this Fermi energy

the maximum power delivered is around 0.1(kB∆θ)2/h. However, at Fermi energy close

to 23.5meV the efficiency although slightly lower at 0.16ηc the maximum power output is

0.16(kB∆θ)2/h. We not only need high efficiency but we need to deliver large output power

too, balancing these two needs implies operating the charge heat engine at EF = 23.5meV

will satisfy both our needs. Similarly, in Fig. 6.10 we plot the maximum power for spin heat

engine for various strains, we see that there are two peaks in Pmax
sp also. The first peak in

Pmax
sp (which is proportional to S2

sp
G2

ch
Gsp

) is observed when the factor
G2

ch
Gsp

dominates over the

spin Seebeck coefficient Ssp, which can be seen at strain t = 50meV . The second peak

appears when the spin Seebeck coefficient Ssp dominates over the factor
G2

ch
Gsp

, this can be

again verified as the second peak increases with increasing strain. In Fig. 6.10(b) we plot

both maximum power(Pmax
sp ) and efficiency at maximum power (η(Pmax

sp )) as function of the

Fermi energy (EF ). We see that η(Pmax
sp ) goes to almost 0.15(kB∆θ)2/h. The efficiency

at maximum spin power as derived from Eq. (6.22), depends on two factors ZT |sp and P′.

Since in our case ZT |sp takes quite large values its not surprising that we have a highly
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efficient spin heat engine in addition to a highly efficient charge based one too. Further,

we see that the efficiency η(Pmax
sp ) is maximum 0.15ηc for EF = 30meV but at this Fermi

energy the maximum spin power delivered is around 0.07(kB∆θ)2/h. However, at Fermi

energy close to 35meV the efficiency although slightly lower at 0.1ηc the maximum spin

power output is 0.1(kB∆θ)2/h . As stated before, we not only need high efficiency but we

need to deliver large output spin power too balancing these two needs implies that operating

the spin heat engine at EF = 35meV will satisfy both our needs.

6.3.5 Comparison of graphene spin heat engine with related propos-

als

In Table 6.1 η(Pmax
ch ),η(Pmax

sp ),Pmax
ch ,Pmax

sp ,ZT |ch and ZT |sp and the maximum charge power

generated in 1cm2 area in this graphene spin heat engine with some other related works

are compared, which can work both as a charge and spin QHE. It can be seen that our

model system has excellent characteristics compared to other works like the maximum

charge and spin thermoelectric figure of merit ZT |ch/sp achieved in our model is more than

most of the other works, see Refs. [52, 16, 119]. Although the model spin heat engine of

Ref. [16], has a larger ZT |ch it has but a smaller ZT |sp. As efficiency ηmax
ch/sp is proportional

to the ZT |ch/sp, a large ZT |ch/sp leads to a large efficiency ηmax
ch/sp (not shown in Table 6.1).

From Ref. [52] we have calculated the Pmax
ch to be 0.09(KB∆θ)2and η(Pmax

ch ) to be 0.06ηc

for charge based heat engine and thus they are smaller than what is obtained for this

graphene spin heat engine. In Ref. [16] only ZT |ch/sp is calculated but Pmax
ch and η(Pmax

ch )

are missing. In Ref. [119], a large value for the maximum charge power Pmax
ch is obtained

more than that seen in our model, although, η(Pmax
ch ) is comparable to our’s. The reason for

this is explained below. The maximum charge power Pmax
ch observed in our system is greater

than that in Ref. [52] but less than that of Ref. [119]. Although the maximum charge power

generated in Ref. [119] is larger than that generated in our graphene spin heat engine,
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however, the system dimensions of the quantum heat engine(QHE) of Ref. [119] are much

larger than ours too. In our case, the area of our graphene spin heat engine is 1200nm2

with dimensions used in plot for maximum charge power (Fig. 6.9(a))- length L ∼ 60nm

while width W ∼ 20nm, however in Ref. [119] the area of their QHE system is 8316nm2

with dimensions of length L∼ 1350nm and width W ∼ 6.16nm making the area of the QHE

of Ref. [119] around 7 times larger then our graphene spin heat engine. Thus, if a 1cm2

area is fabricated with these small quantum heat engines then for those systems whose

dimensions are small, more can be fitted in this area and more the charge power generated.

We have found that under these circumstances the total charge power generated in our

system is twice that of Ref. [119], see Table 6.1. The maximum spin power obtained in our

graphene spin heat engine is not discussed in any other QHE before.

Table 6.1: Comparison of graphene spin heat engine with related models

Ramsheti,
et. al.,
Ref. [52]

Bauer, et.
al., Ref. [16]

Po-Hao
Chang, et.
al., Ref. [119]

This model

ZT |ch 0.3 100 3 55
ZT |sp 1.5 0.9 N.A. 50

Pmax
ch 0.09 (KB∆θ)2

h N.A. 0.5 (KB∆θ)2

h 0.16 (KB∆θ)2

h
Maximum
charge power
generated in
1cm2 area

N.A. N.A. 1.7∗10−3 W 3.8∗10−3 W

Pmax
sp N.A. N.A. N.A. 0.1 (KB∆θ)2

h
η(Pmax

ch ) 0.06ηc N.A. 0.3ηc 0.48ηc
η(Pmax

sp ) N.A. N.A. N.A. 0.1ηc
N.A.-This property is not addressed in the paper. Note: Ref. [119] includes phonon
contribution too, while Refs. [16, 52] as also our model ignore it since we are in the

temperature regime 0−30K. ZT |ch = 3 seen in Ref. [119] is at 40 K, in the regime 0−30
K where phonon contribution is negligible, ZT |ch < 3 in Ref. [119].
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Figure 6.11: (a) Charge conductance (in units of ”2e2/h”) at 30 K for various values of strain with L = 40
nm and width W = 20 nm, (b) charge Seebeck co-efficient S in units of (kb/e) at 30 K for different values of
strain with L = 40 nm and width W = 20 nm.

6.4 Graphene quantum heat engine

In this section we consider the special case of J = 0 (Eq. (6.28)), i.e., absence of magnetic

impurity. For J = 0 case there is no spin transport only charge transport. Therefore in this

section we identify the Onsager coefficients, Power, efficiency of graphene quantum heat

engine of graphene quantum heat engine by the charge only and thus we omit the subscript

ch from these coefficients. It has to be remembered that all quantities plotted in various

figures in this section are based on the graphene quantum heat engine working in the

charge domain. Now, we discuss the model of graphene quantum heat engine. The model

consists of an uniaxial strain applied in the x direction as shown in Fig. 6.1 in absence of

magnetic impurity. The Hamiltonian of this model is similar to that shown in Eq. (6.28) (with

absence of magnetic impurity). This system is described by the Hamiltonian, which is given

for K and K′ valleys as-

HK = ~v f σ(k− t), HK′ =−~v f σ
∗(k+ t). (6.43)
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In Eq. (6.43), t = Ay
~v f

[Θ(x)−Θ(x−L)] is the applied strain, σ = (σx,σy) are the Pauli

matrices operating on the graphene sublattices A and B with σ∗ being the complex conjugate,

k(= {kx,ky}) is the 2D wave vector, Θ being the Heaviside step function and v f the Fermi

velocity.

6.4.1 Onsager coefficients

From Eq. (6.43) and wave functions Eqs. (6.29)-(6.34) and putting J = 0 in the boundary

conditions Eqs. (6.35)-(6.37) we get a system of equations. This system of equations is

solved to get the conductance, Seebeck coefficient, maximum power and efficiency for the

graphene system in absence of magnetic impurity. In Figs. 6.11(a, b) the conductance and

Seebeck coefficient are plotted. Increasing strain reduces the electrical conductance, see

Fig. 6.11(a), but increases the Seebeck coefficient, as in Fig. 6.11(b), which is also seen in

Ref. [55]. As strain is increased the total transmission probability of electrons decreases,

thus reducing the electrical conductance. From Fig 6.11(a), we see that increasing strain

opens a gap in the conduction, which is due to the shift of the Dirac cones by the strain in

the Brillouin zone. A band gap opens for strain beyond 20 percent (540 meV) in pristine

graphene [142], so we will restrict ourselves only to a maximum of 15 percent strain (400

meV). A sign change in Fig. 6.11(b) is observed in the Seebeck co-efficient near the charge

neutrality point (CNP) (EF = 0), which is due to switch between the current carriers from

hole to electron. The first peak, close to the CNP, is due to the imbalance in electron and

hole contribution to the thermo-electric co-efficient L12 = ∑ν L12,ν (see Eqs. (6.7), (6.8)),

which is present at zero strain, but dies at a distance from the CNP. The origin of the second

peak in the Seebeck co-efficient (blue line in Fig. 6.11(b)) is solely strain. As a result of

applied strain transmission probability becomes a function of energy and gives rise to a

large Seebeck co-efficient, which leads to large power with a finite efficiency.
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6.4.2 Power and efficiency of graphene quantum heat engine

At lower values of strain (t = 50 meV) our engine achieves maximum power, i.e., 0.2

(kb∆θ)2/h = 0.057 pico-Watts at 30K for a 40nm strained region, considering ∆θ = 1K,

see Figs. 6.12(a, b), which is more than two and three terminal quantum Hall heat engine at

maximum power [36]. From Fig. 6.11(b) we see with applied strain transmission probability

becomes a function of energy and give rise to a large Seebeck co-efficient, which leads

to a large power with a finite efficiency. At lower values of strain (t = 50 meV) our engine

achieves maximum power, i.e., 0.2 (kb∆θ)2/h = 0.057 pico-Watts at 30K for a 40nm

strained region, considering ∆θ = 1K, see Figs. 6.12(a) and 6.12(b), which is more than

two and three terminal quantum Hall heat engine at maximum power [36]. The efficiency at

maximum power η(Pmax) is 0.1ηc, which is also good enough as compared to the other

QHE’s, see Fig. 6.12(c). Efficiency at maximum power can also be increased to a large

value(more than 0.4 ηc), as in Fig. 6.13(a), but then maximum power Pmax reduces to

less than 0.03 (kb∆θ)2/h. This is because while power depends on both Seebeck co-

efficient and electrical conductance, see Eq. (6.14) the two factors so conspire to reduce

the maximum power. On the other hand, the overall efficiency at maximum power again

though dependent on Seebeck co-efficient (S), conductance G and thermal conductance

κ, effectively increases with increasing strain. Individually, S increases with increasing

strain, while for G and κ it is the opposite. Although the maximum efficiency η(Pmax) and

maximum power Pmax are good for this system, the dimension of the heat engine is large,

equal to 20× 40 nm2. A effective QHE should deliver a high power with high efficiency

and its dimensions should be as small as possible, so that in less area more number of

nano heat engines can be fabricated, and thus good amount of power can be generated.

From Fig. 6.13 (b) we see that with increasing strain (150meV ), while decreasing length

(L = 21nm) large power and efficiency can be generated. The performance of the heat

engine can be increased more by tuning one more variable, the Fermi velocity v f . Till
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now, we have considered the Fermi velocity of Dirac electrons to be equal to 106m/s, but

increasing strain can reduce the Fermi velocity to 6×105m/s [125], then performance of

the heat engine can be increased more, such as- maximum power as well as efficiency at

maximum power both can be increased to a value as high as 0.268 (kb∆θ)2/h and 0.1ηc

respectively, see Fig. 6.13 (c). This can be understood better as, if 1cm2 area is fabricated

by this quantum nano heat engines in parallel, then 0.06Watts total power can be generated

with efficiency 0.1 ηc, which is better than quantum Hall heat engines but comparable to

quantum dot heat engines, see Table 6.2 below.
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Figure 6.12: (a) Maximum Power (Pmax) in units of ((kB∆θ)2/h) at 30 K for different lengths(L) of strained
region with strain = 50 meV and width(W ) of strained region = 20 nm, (b) Maximum Power (Pmax) in units of
((kB∆θ)2/h) at θ = 30 K, where strain is along the y direction and Fermi energy E f is along the x direction
with L = 40 nm and width W = 20 nm, (c) Efficiency at maximum power in units of (ηc) at 30 K with strain
= 50 meV and width W = 20 nm.
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Figure 6.13: (a) Efficiency at maximum power (η(Pmax)) in units of (ηc) at θ = 30 K with width W = 20
nm and L = 40 nm, (b) Maximum Power Pmax in units of ((kB∆θ)2/h) and η(Pmax) in units of (ηc) at 30 K,
for v f = 106 m/s and (c) Maximum Power Pmax in units of ((kB∆θ)2/h) and η(Pmax) in units of (ηc) at 30 K,
v f = 6×105 m/s with width W = 20 nm.
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6.5 Graphene quantum spin refrigerator

Herein, we explain the working of graphene spin heat system as a refrigerator. Again, one

needs to have a large coefficient of performance as defined in Eq. (6.23) for the charge

refrigerator and in Eq. (6.27) for the spin refrigerator to work. In Figs. 6.14(a) and (b) we plot

the coefficient of performance at various strains for charge and spin refrigerators respectively.

We see that for both charge and spin refrigerators the coefficient of performance increases

with strain. In Fig. 6.14(a) we see that a high coefficient of performance for charge based

refrigerator η
r,max
ch = 0.47ηr

c is obtained at strain t = 80 meV, which is expected as it

depends only on ZT |ch. Similarly in Fig. 6.14 (b) we see that coefficient of performance

(ηr,max
sp ) for spin based refrigerator too is large 0.9ηr

c. The reason however is different than

that for charge based refrigerator. Here, ZT |sp does not increase with increase in strain, the

increase in η
r,max
sp is because of the decrease of P′, see (Eq. (6.27)) with strain. However,

one has to note that strain moderates the peaks of ZT |sp, while at lower strains peaks

appear in ZT |sp, as strain increases the peaks disappear.

(a) (b)

Figure 6.14: (a) Coefficient of performance (ηr,max
ch ) in units of ηr

c for charge based refrigerator vs. Fermi
energy (EF ) for various strains with parameters J = 800 meV-nm, L = 70 nm, θ = 30 K, S = 5/2, m =−5/2,
(b) Coefficient of performance (ηr,max

sp ) in units of ηr
c for spin based refrigerator vs. Fermi energy (EF ) for

various strains with parameters J = 600 meV-nm, L = 60 nm, θ = 30 K,S = 5/2, m =−5/2.
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6.5.1 Graphene quantum refrigerator

Finally, we discuss the use of our model as a quantum refrigerator for the special case of J =

0, i.e., absence of magnetic impurity and discuss the coefficient of performance and cooling

power. Since we are in charge domain exclusively we do not identify the thermoelectric

coefficients with subscript ‘ch’. However these are all calculated and plotted for graphene

refrigerator working in charge domain only. As in our model external magnetic field is

absent, so Time-Reversal (TR) symmetry is not broken. The co-efficient of performance of

the refrigerator is defined by the ratio of heat current extracted from the hot reservoir to the

electrical power P , such as -

η
r =

jq

P
, (6.44)

which is maximum, considering jq < 0 and P < 0, for -

E =
L22

L21 (−1−
√

L11L22−L12L21

L11L22 )∆θ, (6.45)

and, η
r
max = η

r
c

√
ZT +1−1√
ZT +1+1

, JQ = L22

√
L11L22−L12L21

L11L22 ∆θ, (6.46)

where ηr
c =

θ

∆θ
is the efficiency of an ideal refrigerator. For systems with broken TR

symmetry, the upper bound of the refrigerator efficiency ηr
max decreases from ηr

c as the

asymmetric parameter x= θL12/L21 deviates from one (1) [17]. For systems with conserved

TR symmetry, the asymmetric parameter x becomes unity, and the upper bound of the

corresponding maximum efficiency ηr
max equals ηr

c. This is the advantage of systems with

conserved TR symmetry, that it can work as both quantum heat engine as well as quantum

refrigerator with higher bound on the efficiency. For systems with broken TR symmetry, this

upper bound reduce from ηr
c, when used as quantum refrigerators.
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6.6 Experimental realization

Our proposal of a quantum heat engine based on a strained monolayer graphene layer

doped with a magnetic impurity (or in absence of a magnetic impurity) is experimentally

realizable. There are many theoretical (see Ref. [138] which initiated the field of straintronics

in graphene and Ref. [147] for a recent review) works which are based on strained graphene.

There are experimental works (see Refs. [139, 140]) which deal with uniaxial strain in

monolayer graphene system. Thus, there should not be much difficulty in realizing strain

in a graphene system. A graphene quantum heat engine without magnetic impurity could

be realizable with ease. In addition, there are theoretical works which deal with effects

of magnetic impurities on electronic transport in graphene, see Refs. [90, 128, 127]. In

Ref. [127], it is shown that a delta potential approximation of a rectangular barrier magnetic

impurity in graphene can be a very effective model of a magnetic quantum dot(a quantum

dot with spin). For a range of incident angles from -π/6 to π/6, it is seen that the difference

between the transmissions through delta potential magnetic impurity and that through a

rectangular barrier magnetic impurity in graphene is quite small. The graphene based

system in Ref. [127] is very similar to our set-up, and the problem too is solved similar

to ours, only difference being that there is no strain in Ref. [127]. In Refs. [144, 145], an

extended line defect has been studied in a graphene nanostructure experimentally. These

line defects can be replaced by a magnetic quantum dot doped with Mn+ ions to realize a

magnetic impurity, see Refs. [127, 128]. Ref. [128] is an experimental work which shows

how doping Mn+ ions into semiconductor quantum dots realizes magnetic quantum dots.

Further, magnetic quantum dots have been experimentally realized in graphene recently,

see Ref. [148]. Since in the aforesaid papers, people have worked on similar systems, thus

the applied aspect of our model is evidently realizable. The amount of strain applied in

our system is very small. The maximum strain used in our system is 110meV , which is

equivalent to 4% strain in graphene. In pristine graphene, maximum 20% strain can be
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reached without opening a band gap. All the numerical values of different parameters are

physically realizable and are used in other works also, see Refs. [138, 55, 90].

6.7 Edge vs ballistic modes in quantum thermoelectrics

In this section a comparison is made between the performance of quantum heat engines

discussed in this chapter, based on ballistic modes in strained graphene systems (either in

presence or absence of magnetic impurity) with that of quantum heat engines based on

edge modes like quantum spin Hall heat engine (discussed in chapter 5) or quantum Hall

heat engine (see Ref. [36]). The reason for comparing ballistic modes in graphene to edge

modes in QH or QSH heat engines is that graphene is available in its pure form very easily

and even in presence of impurity scattering it has perfectly conducting ballistic channels[50]

similar to edge modes observed in QH or QSH systems. First, strained graphene quantum

spin heat engine (J 6= 0 case, i.e., in presence of magnetic impurity) is compared with

the quantum spin Hall heat engine (discussed in chapter 5 of this thesis), in Table 6.2.

Next, graphene spin refrigerator (J 6= 0 case) is compared with quantum dot refrigerators in

Table 6.3 and then finally strained graphene heat engine (J = 0 case, i.e., in absence of

magnetic impurity) is compared with quantum Hall heat engine [36] in Table 6.4. From Table

6.2, it is seen that the maximum power and efficiency at that power for charge currents

in graphene spin heat engine is 0.16(kB∆θ)2/h and 0.16ηc respectively, which are much

less than that of the quantum spin Hall heat engine (maximum power 0.8(kB∆θ)2/h and

efficiency at maximum power 0.28ηc). Further, maximum power and efficiency for spin

currents for graphene spin heat engine are 0.1(kB∆θ)2/h and 0.1ηc which are also less

than that of the quantum spin Hall heat engine. One can conclude from Table 6.2 that the

performance of graphene quantum spin heat engine based on ballistic modes is not better

than that of the quantum spin Hall heat engine based on edge modes. For our model as
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graphene spin refrigerator too the cooling power and efficiency for charge currents are

0.7(kB∆θ)2/h and 0.1ηr
c respectively, which is much less than that of the quantum spin

Hall refrigerators, see Table 6.3. From Table 6.4, it can be seen that the maximum power

generated in the 2-terminal strained graphene quantum heat engine is 0.268 (kB∆θ)2/h

which is much greater than that of the chaotic cavity heat engine and almost double than

the 2-terminal quantum Hall heat engine based on Mach-Zehnder interferometer[36]. Even

for 3-terminal quantum Hall heat engine the maximum power generated is much less than

that of our model. Although, in our model efficiency at maximum power is 0.1ηc, larger than

that of chaotic cavity heat engine and 3-terminal quantum Hall heat engine, it is same for a

2-terminal quantum Hall heat engine. It can also be seen from Table 6.4 that if a 1cm2 area

is fabricated with these nano heat engines, then also the output power generated in that

area is 0.06 Watts for graphene quantum heat engine which is huge compared to 2-terminal,

3-terminal quantum Hall and chaotic cavity heat engines. Thus it is clear from Table 6.4

that 2-terminal strained graphene quantum heat engine based on ballistic modes is more

efficient than quantum Hall heat engines based on chiral edge modes. However, helical

quantum heat engines discussed in Table 6.2 and helical quantum refrigerator discussed in

Table 6.3 are better than their strained graphene counterparts.

Table 6.2: Comparison of quantum spin heat engine based on QSH (Chapter 5) and ballistic
mode in graphene (Chapter 6)

Heat Engines Ballistic mode in graphene QSH edge modes
Charge power 0.16 (Fig. 6.9(b)) 0.8 (Fig. 5.4(a))

Efficiency 0.16 (Fig. 6.9(b)) 0.28 (Fig. 5.4(b))
Spin power 0.1 (Fig. 6.10(b)) 10 (Fig. 5.4(c))

Spin efficiency 0.1 (Fig. 6.10(b)) 0.4 (Fig. 5.4(d))
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Table 6.3: Comparison of quantum refrigerator based on QSH (chapter 5) and ballistic
mode in graphene (chapter 6)

Refrigerator Ballistic mode in graphene QSH edge modes
Cooling power 0.7 3.5 (Fig. 5.5(a))

C.O.P. 0.1 0.2 (Fig. 5.5(b))
Note: Charge power, spin power and cooling power are in the same unit (kB∆θ)2/h while

efficiency (for charge currents), spin efficiency (for spin current) are in unit of ηc and
coefficient of performance in unit of ηr

c.

Table 6.4: How does the strained graphene QHE (J = 0) compare with related proposals?

Heat Engines Maximum Power
Pmax in units of
(kB∆θ)2/h

Efficiency at
maximum Power
η(Pmax)

Power generated in 1
cm2 area fabricated
by nano engines

Quantum Hall
Heat Engine(two
terminal)[36]

0.14 0.10 ηc (Fig. 3) of
Ref. [36]

0.04 Watts

Quantum Hall Heat
Engine(three termi-
nal) [36]

0.14 (Fig. 2(b)) of
Ref. [36]

0.042 ηc 0.04 Watts

Chaotic Cavity[150] 0.0066 0.01 ηc 0.00189 Watts
Strained Graphene
QHE(J = 0)

0.268
(Fig. 6.13(b))

0.1 (Fig. 6.13(b))
ηc

0.06 Watts

6.8 Conclusion

The aim of this chapter was to design an efficient graphene spin heat engine using uniaxial

strain in a monolayer graphene system embedded with a magnetic impurity between

strained and unstrained region at x = 0. Beside this it is also required to check the ability

of the same graphene model to work as a graphene spin refrigerator. Finally the main

reason behind this chapter was to compare the performance of a quantum heat engine

and a quantum refrigerator based on ballistic modes in graphene to that of a quantum heat

engine and a quantum refrigerator based on edge modes in QH and QSH samples. To fulfil
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these aims, an uni-axial strain is introduced between the region x = 0 and x = L (L = the

length of the strained region) and a magnetic impurity at x = 0, see Fig. 6.1. The results

are derived following Onsager matrix relations similarly as also shown in Refs. [52, 16]. In

this chapter it is shown that a strained graphene layer embedded with a magnetic impurity

can act both as charge as well spin heat engine with better performance characteristics

like high efficiency than many other systems operating as charge as well as spin heat

engines. In this system though strain and magnetic impurity are present, since it is a two

terminal system none of them breaks TR symmetry, so it can act as both heat engine

as well as refrigerator. In Table 6.1 η(Pmax
ch ),η(Pmax

sp ),Pmax
ch ,Pmax

sp ,ZT |ch and ZT |sp and

the maximum charge power generated in 1cm2 area in this graphene spin heat engine

and compared with some other related works, which can work both as a charge and spin

QHE. It can be seen that our model system (graphene spin heat engine) has excellent

characteristics compared to other models like the maximum charge and spin thermoelectric

figure of merit ZT |ch/sp achieved in our model is more than most of the other models, see

Refs. [52, 16, 119]. Although the model spin heat engine of Ref. [16], has a larger ZT |ch

it has smaller ZT |sp. As efficiency ηmax
ch/sp is proportional to the ZT |ch/sp, a large ZT |ch/sp

leads to a large efficiency ηmax
ch/sp (not shown in Table 6.1). From Ref. [52] Pmax

ch is calculated

to be 0.09(KB∆θ)2and η(Pmax
ch ) to be 0.06ηc for charge based heat engine and thus they

are smaller than what is obtained for this graphene spin heat engine. In Ref. [119], a large

value for the maximum charge power Pmax
ch is obtained more than that seen in our graphene

spin heat engine, although, η(Pmax
ch ) is comparable to it. The maximum charge power Pmax

ch

observed in the graphene spin heat engine is greater than that in Ref. [52] but less than

that of Ref. [119]. Although the maximum charge power generated in Ref. [119] is larger

than that generated in our graphene spin heat engine, however, the system dimensions

of the quantum heat engine(QHE) of Ref. [119] are much larger than the graphene spin

heat engine too. In this chapter, the area of the graphene spin heat engine is 1200nm2
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with dimensions used in plot for maximum charge power (Fig. 6.9(a))- length L ∼ 60nm

while width W ∼ 20nm, however in Ref. [119] the area of their QHE system is 8316nm2 with

dimensions of length L∼ 1350nm and width W ∼ 6.16nm making the area of the QHE of

Ref. [119] around 7 times larger then the graphene spin heat engine. Thus, if a 1cm2 area is

fabricated with these small quantum heat engines then for those systems whose dimensions

are small, more can be fitted in this area and more the charge power generated. It is shown

that under these circumstances the total charge power generated in the graphene spin

heat engine system is twice that of Ref. [119], see Table 6.1. The maximum spin power

obtained in our graphene spin heat engine is not discussed for any other quantum heat

engine before. Further, the efficiency at maximum power for spin too is only calculated

in this chapter on graphene spin heat engine. In addition, the power and efficiency are

calculated for our graphene based quantum spin heat engine(QSHE). The spin power

generated in our graphene spin heat engine can be converted to charge power by using

a suitable method, like inverse spin Hall effect or spin valve method[16]. The graphene

spin heat engine discussed in this chapter not only displays excellent characteristics as a

charge/spin quantum heat engine, it also doubles up as a charge/spin refrigerator with high

coefficient of performance. Finally, the device can generate a pure spin current too. On the

other hand, the performance of graphene quantum heat engine (with J = 0, i.e., absence

of magnetic impurity) is also better than 2-terminal/3-terminal quantum Hall heat engines

[36] (see Table 6.4), implying ballistic modes are better suited than chiral edge modes in

quantum heat engine/quantum refrigerator applications. However, in comparison to helical

edge modes, spin polarized ballistic modes in graphene aren’t that effective in quantum

thermoelectrics as seen in Tables 6.2 and 6.3 of this chapter.

Page 237 of 269



7. Conclusion

“A conclusion is the place where you get tired of thinking.”

– Arthur Bloch

This thesis compared the chiral quantum Hall (QH), helical quantum spin Hall (QSH) and

quantum anomalous Hall (QAH) edge modes as regards their proclivity to disorder and in-

elastic scattering via conductance measurements, non-local HBT shot noise measurements

and investigated the applicability of these edge modes in thermoelectrics. In the first chapter

of this thesis the origin of chiral QH, helical QSH and chiral QAH edge modes is dealt with

and then the characteristics of these edge modes are discussed. In the same chapter the

basic theory required to understand a two-terminal quantum heat engine and quantum

refrigerator is also discussed. The introduction also focuses on the reasons behind studying

these edge modes and their application in quantum heat engines and quantum refrigerators.

In the second chapter of this thesis the effect of disorder and inelastic scattering on Hall

resistance (RH ), longitudinal resistance (RL), 2-terminal resistance (R2T ) and non-local

resistance (RNL) have been studied and it is shown that while in quantum Hall regime

non-local transport is not affected by disorder and inelastic scattering, in quantum spin Hall

regime non-local and local transport both are strongly affected by disorder and inelastic

scattering. This result raises a question about the usefulness of non-local quantum spin

Hall transport in low-power information processing as reported in several works. Chapter

2 also brings out the fact that the widely used quantized non-local conductance as a tool
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to detect helical edge mode transport has serious deficiencies especially in presence of

disorder and inelastic scattering. In short, the non-local conductance in helical (QSH)

edge mode transport does not retain its quantization and so would be unable to detect

helicity in presence of contact disorder and inelastic scattering. In presence of either

disorder or both disorder and inelastic scattering the quantization is lost in quantum spin

Hall samples and it will be difficult to distinguish between topological QSH edge modes

and quasi-helical QSH edge modes in their presence. Non-local HBT shot noise could be

a saviour in distinguishing the topological or otherwise, i.e., trivial, origin of helical edge

modes and this is discussed in chapter three of this thesis. In chapter three of the thesis it is

shown that non-local charge Hanbury-Brown and Twiss (HBT) correlations turn completely

negative while the non-local spin correlations turn completely positive for quasi-helical edge

modes. Further, non-local HBT charge cross correlations can be positive for topological

helical QSH edge modes but will always be negative for chiral quantum Hall edge mode

transport. Thus, non-local HBT cross correlations can distinguish between topological chiral

QH and topological helical QSH edge modes. In chapter four of this thesis the experimental

observation of finite longitudinal resistance in some recent experiments in QAH samples

has been discussed. The origin of this finite longitudinal resistance has been explained

by introducing quasi-helical QSH edge modes along with topological QAH edge mode in

Ref. [45]. In chapter four of this thesis it is shown that the trivial(chiral) QAH edge mode with

quasi-helical QSH edge modes is more closer to the experimental situation, as interpreted

in Ref. [45] than the topological(chiral) QAH edge mode with quasi-helical QSH edge modes

is. This implies a re-evaluation of the consensus regarding those quantum anomalous

Hall experiments[48, 49, 44]. Perhaps, something else is happening and maybe these

are not true chiral(topological) quantum anomalous Hall edge modes which were seen.

This concludes the first part of this thesis which deals with the robustness, identification of

topological origin and the characteristics of QH, QSH and QAH edge modes.
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In second part of this thesis the application of these edge modes in thermoelectrics is

discussed utilizing the characteristics of these edge modes established in the first part of this

thesis. In chapter five of this thesis it is shown that a topological insulator (quantum spin Hall

insulator) can work both as a charge/spin heat engine as well as a charge/spin refrigerator

which uses charge/spin currents to extract heat from a cooler region of the system to dump

it into a hotter region of the system. It is also shown that the maximum output power and

efficiency at that maximum charge power generated in helical QSH heat engine are much

larger than the chiral QH heat engine as reported in Refs. [36, 18]. Further, when adapted

as a quantum refrigerator too its performance is better than other quantum refrigerators.

It is shown that the maximum charge coefficient of performances (COP) of this model is

comparable to other models but the cooling power of our model is huge compared to other

proposals. The performance of a quantum heat engine based on helical QSH edge modes

is compared with a quantum heat engine based on ballistic modes in strained graphene

systems in chapter six of this thesis. It is shown in chapter six of this thesis that while the

maximum power and efficiency generated in a strained graphene system can be larger than

a two terminal chiral quantum Hall system, it is still smaller than that of a helical QSH heat

engine. In strained graphene spin heat engine a huge thermoelectric figure of merit is also

observed which is larger than most other quantum heat engines. The spin power generated

in the helical QSH and graphene spin heat engines can be converted to charge power by

using a suitable method, like inverse spin Hall effect or spin valve method[16]. The helical

QSH and graphene spin heat engines shown in chapters five and six of this thesis not only

display excellent characteristics as a charge/spin quantum heat engine, they also double up

as a charge/spin refrigerator with high coefficient of performance. Finally, in the graphene

spin heat engine pure spin current generation is also possible. This thesis concludes with

the realization that the use of QSH edge modes in low power information processing could

be doubtful owing to its fragility to disorder and inelastic scattering, but its application as a
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quantum heat engine and/or quantum refrigerator could be more fructuous.
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8. Appendix

8.1 Mathematica program to calculate spin polarized con-

ductance and Seebeck coefficients for chapter 5 on

helical thermoelectrics and refrigeration

The following Mathematica code is used to calculate the charge/spin thermoelectric proper-

ties of a three terminal quantum spin Hall heat engine in the linear transport regime with a

potential bias ∆V applied at contact 1, while a temperature difference ∆θ applied at contact

3. Thus contacts 1 and 3 are at lower temperature θ and contact 2 is grounded, i.e., V2 = 0.

In our model contact 3 served as a voltage probe, which implies that the electric current

through contact 3 is zero, i.e., Ie
3 = 0. For simplicity, we have considered only one spin up

edge mode shown by blue dashed line and one spin down edge mode by maroon solid

line, see Fig. 8.1. The electric (Ie,s
i ) and heat (Ih,s

i ) currents in our system are related to the

V
1 2

3

V
2
=0

V
3

1

θ+Δθ

θθ
X Y

Figure 8.1: 3T QSH thermoelectric system. Blue dashed line represents spin up and maroon solid line
represents spin down edge mode. Voltage bias ∆V is applied between terminals 1 and 2. Thermal gradient is
applied at terminal 3 which acts as a voltage probe too.

242



applied potential bias ∆V and temperature difference ∆θ via Onsager matrix as shown in

Eq. (5.1) in chapter 5 of this thesis, which is-

 Ie,s
i

Ih,s
i

 =
1
h ∑

j

∫
∞

−∞

dE[δi j−T s
i j(E)](−

d f
dE

)

 e2 eE/θ

eE E2/θ


 ∆Vj

∆θ j

 (8.1)

=

 Ls
eV Ls

eθ

Ls
hV Ls

hθ


 ∆Vj

∆θ j

 (8.2)

Substituting Ie
3 = 0 since it is a voltage probe, we have already solved Eq. (8.2) and derived

the Onsager coefficients Ls
eV , Ls

eθ
, Ls

hV , Ls
hθ

in Eqs. (5.20), (5.25). The Mathematica program

described below calculates the spin polarized conductances and Seebeck coefficients. The

time required to run this Mathematica program is less than 5 minutes. Herein, Fig. 5.3 of

chapter 5 of this thesis is generated via the Mathematica program below.

h = 6.634∗10∧(−34);h = 6.634∗10∧(−34);h = 6.634∗10∧(−34); h=Planck constant

hb = 1.05∗10∧(−34);hb = 1.05∗10∧(−34);hb = 1.05∗10∧(−34); hb=h/2π

e = 1.6∗10∧(−19);e = 1.6∗10∧(−19);e = 1.6∗10∧(−19); e=electric charge

ae = 1.6∗10∧(−22);ae = 1.6∗10∧(−22);ae = 1.6∗10∧(−22); 1meV=ae

kb = 1.38∗10∧(−23);kb = 1.38∗10∧(−23);kb = 1.38∗10∧(−23); kb=Boltzmann constant

SetSharedVariable[list]SetSharedVariable[list]SetSharedVariable[list] list is shared by all the kernels, needed for parallel programming

list = {};list = {};list = {}; A list is created where the generated data will be stored

µo = 0;Γ = 2.1a;µo = 0;Γ = 2.1a;µo = 0;Γ = 2.1a; µo=Fermi energy, Γ=bandwidth of resonant tunnelling transmission

T = 0.1;kbT1 = T∗ kb;M = h/(4(kb∧2));T = 0.1;kbT1 = T∗ kb;M = h/(4(kb∧2));T = 0.1;kbT1 = T∗ kb;M = h/(4(kb∧2)); T=temperature

G=.;ω1 = 0.1kb*T/(hb);ω2 = 0.1kb*T/(hb);a = kb*T;G=.;ω1 = 0.1kb*T/(hb);ω2 = 0.1kb*T/(hb);a = kb*T;G=.;ω1 = 0.1kb*T/(hb);ω2 = 0.1kb*T/(hb);a = kb*T; ω1=ω2=width of the step function

M is a constant;

ParallelDo[{ParallelDo[{ParallelDo[{ Do loop for parallel programming

For[ε1 =−5a,ε1≤ 5a,ε1 = ε1+ .5a,For[ε1 =−5a,ε1≤ 5a,ε1 = ε1+ .5a,For[ε1 =−5a,ε1≤ 5a,ε1 = ε1+ .5a,

{{{
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no =−0.1∗ae;n1 = 0.1∗ae;no =−0.1∗ae;n1 = 0.1∗ae;no =−0.1∗ae;n1 = 0.1∗ae;

no and n1 are initial and final limit of the integration to calculate the elements of onsager matrix;

T1 = 1./(1+Exp[−2Pi(G− ε1)/(hb∗ω1)]);T1 = 1./(1+Exp[−2Pi(G− ε1)/(hb∗ω1)]);T1 = 1./(1+Exp[−2Pi(G− ε1)/(hb∗ω1)]); T1=QPC like tunnelling;

T2 = Γ∧2/(Γ∧2+4(G− ε2)∧2);T2 = Γ∧2/(Γ∧2+4(G− ε2)∧2);T2 = Γ∧2/(Γ∧2+4(G− ε2)∧2); T2=resonant tunnelling, Γ=width of the resonant tunnelling;

df = Exp[(G−µo)/(kbT1)]/((Exp[(G−µo)/(kbT1)]+1)∧2a);df = Exp[(G−µo)/(kbT1)]/((Exp[(G−µo)/(kbT1)]+1)∧2a);df = Exp[(G−µo)/(kbT1)]/((Exp[(G−µo)/(kbT1)]+1)∧2a);

df=derivative of the Fermi-Dirac distribution;

G1 = e∧2/(h)NIntegrate[T1∗df,{G,no,n1},Method→ “LocalAdaptive”];G1 = e∧2/(h)NIntegrate[T1∗df,{G,no,n1},Method→ “LocalAdaptive”];G1 = e∧2/(h)NIntegrate[T1∗df,{G,no,n1},Method→ “LocalAdaptive”];

G1=conductance for junction 1;

G2 = e∧2/(h) NIntegrate[T2∗df,{G,n2,n3},Method→ “LocalAdaptive”];G2 = e∧2/(h) NIntegrate[T2∗df,{G,n2,n3},Method→ “LocalAdaptive”];G2 = e∧2/(h) NIntegrate[T2∗df,{G,n2,n3},Method→ “LocalAdaptive”];

G2=conductance for junction 2;

J1 = e∧2/(h) NIntegrate[T1∗T2∗df,{G,no,n1},Method→ “LocalAdaptive”];J1 = e∧2/(h) NIntegrate[T1∗T2∗df,{G,no,n1},Method→ “LocalAdaptive”];J1 = e∧2/(h) NIntegrate[T1∗T2∗df,{G,no,n1},Method→ “LocalAdaptive”];

J2 = e/(T h) NIntegrate[T1∗T2∗G∗df,{G,no,n1},Method→ “LocalAdaptive”];J2 = e/(T h) NIntegrate[T1∗T2∗G∗df,{G,no,n1},Method→ “LocalAdaptive”];J2 = e/(T h) NIntegrate[T1∗T2∗G∗df,{G,no,n1},Method→ “LocalAdaptive”];

J3 = 1/(T h) NIntegrate[T1∗T2∗G∧2∗df,{G,no,n1},Method→ “LocalAdaptive”];J3 = 1/(T h) NIntegrate[T1∗T2∗G∧2∗df,{G,no,n1},Method→ “LocalAdaptive”];J3 = 1/(T h) NIntegrate[T1∗T2∗G∧2∗df,{G,no,n1},Method→ “LocalAdaptive”];

N1 = 1./(h∗T )NIntegrate[T1∗G∧2∗df,{G,no,n1},Method→ “LocalAdaptive”];N1 = 1./(h∗T )NIntegrate[T1∗G∧2∗df,{G,no,n1},Method→ “LocalAdaptive”];N1 = 1./(h∗T )NIntegrate[T1∗G∧2∗df,{G,no,n1},Method→ “LocalAdaptive”];

N1=heat conductance through junction 1;

N2 = 1./(h∗T )NIntegrate[T2∗G∧2∗df,{G,no,n1},Method→ “LocalAdaptive”];N2 = 1./(h∗T )NIntegrate[T2∗G∧2∗df,{G,no,n1},Method→ “LocalAdaptive”];N2 = 1./(h∗T )NIntegrate[T2∗G∧2∗df,{G,no,n1},Method→ “LocalAdaptive”];

N2=heat conductance through junction 2;

S1 = e/(h∗T ∗G1) NIntegrate[G∗T1∗df,{G,no,n1},Method→ “LocalAdaptive”];S1 = e/(h∗T ∗G1) NIntegrate[G∗T1∗df,{G,no,n1},Method→ “LocalAdaptive”];S1 = e/(h∗T ∗G1) NIntegrate[G∗T1∗df,{G,no,n1},Method→ “LocalAdaptive”];

S1= Seebeck coefficient for junction 1;

S2 = e/(h∗T ∗G2) NIntegrate[G∗T2∗df,{G,n2,n3},Method→ “LocalAdaptive”];S2 = e/(h∗T ∗G2) NIntegrate[G∗T2∗df,{G,n2,n3},Method→ “LocalAdaptive”];S2 = e/(h∗T ∗G2) NIntegrate[G∗T2∗df,{G,n2,n3},Method→ “LocalAdaptive”];

S2=Seebeck coefficient for junction 2;

Gu = (G1)(2G2− J1)/(2(G1+G2− J1));Gu = (G1)(2G2− J1)/(2(G1+G2− J1));Gu = (G1)(2G2− J1)/(2(G1+G2− J1));

Gu=Spin up conductance for 3T QSH system;

Gd = (2G1G2+G1J1− J1∧2)/(2(G1+G2− J1));Gd = (2G1G2+G1J1− J1∧2)/(2(G1+G2− J1));Gd = (2G1G2+G1J1− J1∧2)/(2(G1+G2− J1));

Gd=Spin down conductance for 3T QSH system;

GG = G1∗G2/(G1+G2− J1);GG = G1∗G2/(G1+G2− J1);GG = G1∗G2/(G1+G2− J1);
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χ1u = GG/G2(S1∗ J1− J2);χ1u = GG/G2(S1∗ J1− J2);χ1u = GG/G2(S1∗ J1− J2);

χ2u = GG/G1(S2∗ J1− J2);χ2u = GG/G1(S2∗ J1− J2);χ2u = GG/G1(S2∗ J1− J2);

χ1d = GG/G2(S1∗ J1− J2);χ1d = GG/G2(S1∗ J1− J2);χ1d = GG/G2(S1∗ J1− J2);

χ2d = GG/G1(S2∗ J1− J2);χ2d = GG/G1(S2∗ J1− J2);χ2d = GG/G1(S2∗ J1− J2);

LeVu = Gu;LeVu = Gu;LeVu = Gu; LeVu=spin up component of (1,1) element Onsager matrix;

LeVd = Gd;LeVd = Gd;LeVd = Gd; LeVd=spin down component of (1,1) element Onsager matrix;

LeTu = (GG(S2−S1)+χ1u);LeTu = (GG(S2−S1)+χ1u);LeTu = (GG(S2−S1)+χ1u); LeTu=spin up component of (1,2) element Onsager matrix;

LeTd = (GG(S2−S1)−χ2d);LeTd = (GG(S2−S1)−χ2d);LeTd = (GG(S2−S1)−χ2d); LeTd=spin down component of (1,2) element Onsager matrix;

LhVu = T LeTd;LhVu = T LeTd;LhVu = T LeTd; LhVu=spin up component of (2,1) element Onsager matrix;

LhVd = T LeTu;LhVd = T LeTu;LhVd = T LeTu; LhVu=spin down component of (2,1) element Onsager matrix;

LhTu = (N1+N2− J3)−T (G1∗S1+G2∗S2− J2)∧2/(G1+G2− J1);LhTu = (N1+N2− J3)−T (G1∗S1+G2∗S2− J2)∧2/(G1+G2− J1);LhTu = (N1+N2− J3)−T (G1∗S1+G2∗S2− J2)∧2/(G1+G2− J1);

LhTd = LhTu;LhTd = LhTu;LhTd = LhTu; spin up/down component of (2, 2) element Onsager matrix;

κch = (LhTu+LhTd);κch = (LhTu+LhTd);κch = (LhTu+LhTd); charge heat conductance;

Su = LeTu/(LeVu);Su = LeTu/(LeVu);Su = LeTu/(LeVu); Spin up Seebeck coefficient;

LhTa = κch;LhTa = κch;LhTa = κch;

Sd = LeTd/(LeVd);Sd = LeTd/(LeVd);Sd = LeTd/(LeVd); Spin down Seebeck coeffcient;

Gch = Gu+Gd;Gch = Gu+Gd;Gch = Gu+Gd; Charge conductance ;

Gsp = Abs[Gu−Gd];Gsp = Abs[Gu−Gd];Gsp = Abs[Gu−Gd]; Spin condctance;

LeTa = (LeTu+LeTd);LeVa = (LeVu+LeVd);LhVa = (LhVu+LhVd);LeTa = (LeTu+LeTd);LeVa = (LeVu+LeVd);LhVa = (LhVu+LhVd);LeTa = (LeTu+LeTd);LeVa = (LeVu+LeVd);LhVa = (LhVu+LhVd);

ηmaxP = T LeTa∧2/(2(2LeVa∗LhTa−LeTa∗LhVa));ηmaxP = T LeTa∧2/(2(2LeVa∗LhTa−LeTa∗LhVa));ηmaxP = T LeTa∧2/(2(2LeVa∗LhTa−LeTa∗LhVa));

Efficiency at maximum power;

Pmax = LeTa∧2/LeVa∗M;Pmax = LeTa∧2/LeVa∗M;Pmax = LeTa∧2/LeVa∗M;

Maximum powerfor charge curents;

detLa = LeVa∗LhTa−LeTa∗LhVa;detLa = LeVa∗LhTa−LeTa∗LhVa;detLa = LeVa∗LhTa−LeTa∗LhVa;

y = Abs[LhVa∗LeTa/(detLa)];y = Abs[LhVa∗LeTa/(detLa)];y = Abs[LhVa∗LeTa/(detLa)];
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ηr = (Sqrt[y+1]−1)/(Sqrt[y+1]+1);ηr = (Sqrt[y+1]−1)/(Sqrt[y+1]+1);ηr = (Sqrt[y+1]−1)/(Sqrt[y+1]+1);

Coefficient of performances for charge currents;

JQ = LhTa(Sqrt[detLa/(LeVa∗LhTa)])∗h/kb∧2;JQ = LhTa(Sqrt[detLa/(LeVa∗LhTa)])∗h/kb∧2;JQ = LhTa(Sqrt[detLa/(LeVa∗LhTa)])∗h/kb∧2;

Cooling power for charge currents;

LeVb = Abs[(LeVu−LeVd)];LeTb = Abs[(LeTu−LeTd)];LeVb = Abs[(LeVu−LeVd)];LeTb = Abs[(LeTu−LeTd)];LeVb = Abs[(LeVu−LeVd)];LeTb = Abs[(LeTu−LeTd)];

detLb = LeVb∗LhTa−LeTb∗LhVa;detLb = LeVb∗LhTa−LeTb∗LhVa;detLb = LeVb∗LhTa−LeTb∗LhVa;

y1 = Abs[LhVa∗LeTb/(detLb)];y1 = Abs[LhVa∗LeTb/(detLb)];y1 = Abs[LhVa∗LeTb/(detLb)];

ηrsp = (Sqrt[y1+1]−1)/(Sqrt[y1+1]+1);ηrsp = (Sqrt[y1+1]−1)/(Sqrt[y1+1]+1);ηrsp = (Sqrt[y1+1]−1)/(Sqrt[y1+1]+1);

Coefficient of performances for spin currents;

JQsp = LhTa(Sqrt[detLb/(LeVb∗LhTa)])∗h/kb∧2;JQsp = LhTa(Sqrt[detLb/(LeVb∗LhTa)])∗h/kb∧2;JQsp = LhTa(Sqrt[detLb/(LeVb∗LhTa)])∗h/kb∧2;

Cooling power for spin currents;

Pmaxsp = 1./4∗LeTb∧2/LeVb∗M;Pmaxsp = 1./4∗LeTb∧2/LeVb∗M;Pmaxsp = 1./4∗LeTb∧2/LeVb∗M;

Maximum power for spin curents;

ηmaxsp = T LeTb∧2/(2(2LeVb∗LhTa−LeTb∗LhVa));ηmaxsp = T LeTb∧2/(2(2LeVb∗LhTa−LeTb∗LhVa));ηmaxsp = T LeTb∧2/(2(2LeVb∗LhTa−LeTb∗LhVa));

Efficiency at maximum powerfor spin currents;

list = AppendTo[list,{ε2/a,ε1/a,LeVu∗ (h/(e∧2)),LeVd∗ (h/(e∧2)),Su∗ e/kb,Sd∗ e/kb}]list = AppendTo[list,{ε2/a,ε1/a,LeVu∗ (h/(e∧2)),LeVd∗ (h/(e∧2)),Su∗ e/kb,Sd∗ e/kb}]list = AppendTo[list,{ε2/a,ε1/a,LeVu∗ (h/(e∧2)),LeVd∗ (h/(e∧2)),Su∗ e/kb,Sd∗ e/kb}]

}];}];}];

},{ε2,−5∗a,5a, .5a}]; //AbsoluteTiming},{ε2,−5∗a,5a, .5a}]; //AbsoluteTiming},{ε2,−5∗a,5a, .5a}]; //AbsoluteTiming

list = Sort[list];Export[“check1.dat”, list]list = Sort[list];Export[“check1.dat”, list]list = Sort[list];Export[“check1.dat”, list]

Export generated data to a output file

{“27.618”,Null}{“27.618”,Null}{“27.618”,Null}

check1.dat

Import data from output stored file

data = Import[“check1.dat”, “Table”][[All,{2,1,3}]];data = Import[“check1.dat”, “Table”][[All,{2,1,3}]];data = Import[“check1.dat”, “Table”][[All,{2,1,3}]];

data1 = Import[“check1.dat”, “Table”][[All,{2,1,4}]];data1 = Import[“check1.dat”, “Table”][[All,{2,1,4}]];data1 = Import[“check1.dat”, “Table”][[All,{2,1,4}]];

data2 = Import[“check1.dat”, “Table”][[All,{2,1,5}]];data2 = Import[“check1.dat”, “Table”][[All,{2,1,5}]];data2 = Import[“check1.dat”, “Table”][[All,{2,1,5}]];
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data3 = Import[“check1.dat”, “Table”][[All,{2,1,6}]];data3 = Import[“check1.dat”, “Table”][[All,{2,1,6}]];data3 = Import[“check1.dat”, “Table”][[All,{2,1,6}]];

Plot data in a grid view

A = ListDensityPlot[data, ImageSize→ 145,ColorFunction→ ColorDataA = ListDensityPlot[data, ImageSize→ 145,ColorFunction→ ColorDataA = ListDensityPlot[data, ImageSize→ 145,ColorFunction→ ColorData

[“TemperatureMap”],PlotLegends→ Automatic];[“TemperatureMap”],PlotLegends→ Automatic];[“TemperatureMap”],PlotLegends→ Automatic];

B = ListDensityPlot[data1, ImageSize→ 180,ColorFunction→ “TemperatureMap”,B = ListDensityPlot[data1, ImageSize→ 180,ColorFunction→ “TemperatureMap”,B = ListDensityPlot[data1, ImageSize→ 180,ColorFunction→ “TemperatureMap”,

PlotLegends→ Automatic,PlotRange→ Automatic,PlotLegends→ Automatic,PlotRange→ Automatic,PlotLegends→ Automatic,PlotRange→ Automatic,

FrameLabel→{None,Style ["E2/KBT",20]}] ;FrameLabel→{None,Style ["E2/KBT",20]}] ;FrameLabel→{None,Style ["E2/KBT",20]}] ;

c = ListDensityPlot[data2, ImageSize→ 145,ColorFunction→ “TemperatureMap”,c = ListDensityPlot[data2, ImageSize→ 145,ColorFunction→ “TemperatureMap”,c = ListDensityPlot[data2, ImageSize→ 145,ColorFunction→ “TemperatureMap”,

PlotLegends→ Automatic,PlotRange→ Automatic,PlotLegends→ Automatic,PlotRange→ Automatic,PlotLegends→ Automatic,PlotRange→ Automatic,

FrameLabel→{Style ["E1/KBT",20] ,None}] ;FrameLabel→{Style ["E1/KBT",20] ,None}] ;FrameLabel→{Style ["E1/KBT",20] ,None}] ;

d = ListDensityPlot[data3, ImageSize→ 175,ColorFunction→ “TemperatureMap”,d = ListDensityPlot[data3, ImageSize→ 175,ColorFunction→ “TemperatureMap”,d = ListDensityPlot[data3, ImageSize→ 175,ColorFunction→ “TemperatureMap”,

PlotLegends→ Automatic,PlotRange→ Automatic,PlotLegends→ Automatic,PlotRange→ Automatic,PlotLegends→ Automatic,PlotRange→ Automatic,

FrameLabel→{Style ["E1/KBT",20] ,Style ["E2/KBT",20]}] ;FrameLabel→{Style ["E1/KBT",20] ,Style ["E2/KBT",20]}] ;FrameLabel→{Style ["E1/KBT",20] ,Style ["E2/KBT",20]}] ;

e = Grid[{{A,B},{c,d}}]e = Grid[{{A,B},{c,d}}]e = Grid[{{A,B},{c,d}}]

Export[“helical con Seebeck.jpeg”,e, ImageResolution→ 300]Export[“helical con Seebeck.jpeg”,e, ImageResolution→ 300]Export[“helical con Seebeck.jpeg”,e, ImageResolution→ 300]

helical con Seebeck.jpeg
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(a) (b)

(c) (d)

Figure 8.2: (a) Spin up and (b) spin down conductances (in unit of e2

h ) are shown for QPC at constriction X

and resonant tunnelling at constriction Y. (c) Spin up and (d) spin down Seebeck coefficients (in unit of kB
e )

(S↑ and S↓) are shown for QPC at constriction X and resonant tunnelling at constriction Y. Parameters are
~ω0 = 0.1kBθ, Γ = 2kBθ and θ = 0.1K. This figure corresponds to Fig. 5.3 in chapter 5 of this thesis.

8.2 Mathematica program to calculate charge conductance

for graphene spin heat engine

The following program is used to calculate the charge/spin thermoelectric properties of a

two terminal graphene quantum spin heat engine in the linear transport regime. A graphene

sheet is lying in the x-y plane, a strain is applied to the region 0 < x < L, see Fig. 8.3, with

a magnetic impurity at x = 0. The in-plane uniaxial strain impacts the hopping between

nearest neighbors and is generally delineated via a gauge vector which takes opposing

signs in the two valleys (K and K′) of graphene [138]. In the Landau gauge, the vector

potential corresponding to the strain is ~A = (0,Ay). The system is then defined by the

Hamiltonian-

HK /K ′ = HK/K′+ Js.Sδ(x), (8.3)
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Figure 8.3: Monolayer graphene with a magnetic impurity at x = 0 denoted by thick maroon line. The middle
portion is strained region while the two side portions are normal graphene regions. Voltages V1 and V2 are
applied to the two sides which are at temperatures T1 and T2 respectively.

with HK = ~v f σ.(k− t) and HK′ = ~v f σ∗.(k+ t), . Strain is denoted as t = Ay/~v f [Θ(x)−

Θ(x−L)] with Θ the Heaviside step function and vF the Fermi velocity. The first term in

Eq. (8.3) represents the kinetic energy in graphene with σ = (σx,σy) - the Pauli matrices

that operate on the sublattices A or B and k = (kx,ky) the 2D wave vector. The second

term in Eq. (8.3) denotes the exchange interaction between Dirac electron and magnetic

impurity with J representing the strength of the exchange interaction. The spin of Dirac

electron is denoted by s, while S represents spin of the magnetic impurity and m its magnetic

moment, while magnetic moment of Dirac electrons is 1/2 (spin up) or −1/2 (spin down).

The Mathematica program described below calculates the charge conductance for system

shown in Fig. 8.3. Time required to run this Mathematica program ranges from 5 minutes

to 1 hour depending on the strength of strain parameter. For higher value of strain it takes

longer time because larger strain increases the refraction angle for electron to close to

90◦ which increases the integration time. Herein, Fig. 6.3(a) of chapter 6 of this thesis is

generated with this Mathematica program.

S = 5/2;S = 5/2;S = 5/2; Total spin of the magnetic impurity

m =−5/2;m =−5/2;m =−5/2; Spin component of the magnetic impurity in the z direction

F = Sqrt[(S−m)(S+m+1)];F = Sqrt[(S−m)(S+m+1)];F = Sqrt[(S−m)(S+m+1)];

F1 = Sqrt[(S+m)(S−m+1)];F1 = Sqrt[(S+m)(S−m+1)];F1 = Sqrt[(S+m)(S−m+1)];

a1=.;a2=.;b1=.;b2=.; r1=.; r2=.; t1=.; t2=.;γ=.;ky=.;qy=.;a1=.;a2=.;b1=.;b2=.; r1=.; r2=.; t1=.; t2=.;γ=.;ky=.;qy=.;a1=.;a2=.;b1=.;b2=.; r1=.; r2=.; t1=.; t2=.;γ=.;ky=.;qy=.;
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sol = Solve[{a1(Exp[Iγ]+ Iαm)+b1(−Exp[−Iγ]+ Iαm)sol = Solve[{a1(Exp[Iγ]+ Iαm)+b1(−Exp[−Iγ]+ Iαm)sol = Solve[{a1(Exp[Iγ]+ Iαm)+b1(−Exp[−Iγ]+ Iαm)

−(Exp[Iφ]− Iαm)+ r1(Exp[−Iφ]+ Iαm)+ IαF(a2+b2+ r2) == 0,−(Exp[Iφ]− Iαm)+ r1(Exp[−Iφ]+ Iαm)+ IαF(a2+b2+ r2) == 0,−(Exp[Iφ]− Iαm)+ r1(Exp[−Iφ]+ Iαm)+ IαF(a2+b2+ r2) == 0,

a2(Exp[Iγ]− Iα(m+1))−b2(Exp[−Iγ]+ Iα(m+1))+a2(Exp[Iγ]− Iα(m+1))−b2(Exp[−Iγ]+ Iα(m+1))+a2(Exp[Iγ]− Iα(m+1))−b2(Exp[−Iγ]+ Iα(m+1))+

r2(Exp[−Iφ]− Iα(m+1))+ IαF(a1+b1+1+ r1) == 0,r2(Exp[−Iφ]− Iα(m+1))+ IαF(a1+b1+1+ r1) == 0,r2(Exp[−Iφ]− Iα(m+1))+ IαF(a1+b1+1+ r1) == 0,

a1(1+ IαmExp[Iγ])+b1(1− IαmExp[−Iγ])− (1− IαmExp[Iφ])a1(1+ IαmExp[Iγ])+b1(1− IαmExp[−Iγ])− (1− IαmExp[Iφ])a1(1+ IαmExp[Iγ])+b1(1− IαmExp[−Iγ])− (1− IαmExp[Iφ])

−r1(1+ IαmExp[−Iφ])+ IαF(a2Exp[Iγ]−b2Exp[−Iγ]− r2Exp[−Iφ]) == 0,−r1(1+ IαmExp[−Iφ])+ IαF(a2Exp[Iγ]−b2Exp[−Iγ]− r2Exp[−Iφ]) == 0,−r1(1+ IαmExp[−Iφ])+ IαF(a2Exp[Iγ]−b2Exp[−Iγ]− r2Exp[−Iφ]) == 0,

a2(1− Iα(m+1)Exp[Iγ])+b2(1+ Iα(m+1)Exp[−Iγ])−a2(1− Iα(m+1)Exp[Iγ])+b2(1+ Iα(m+1)Exp[−Iγ])−a2(1− Iα(m+1)Exp[Iγ])+b2(1+ Iα(m+1)Exp[−Iγ])−

r2(1− Iα(m+1)Exp[−Iφ])+ IαF(a1Exp[Iγ]−b1Exp[−Iγ]r2(1− Iα(m+1)Exp[−Iφ])+ IαF(a1Exp[Iγ]−b1Exp[−Iγ]r2(1− Iα(m+1)Exp[−Iφ])+ IαF(a1Exp[Iγ]−b1Exp[−Iγ]

+Exp[Iφ]− r1Exp[−Iφ]) == 0,+Exp[Iφ]− r1Exp[−Iφ]) == 0,+Exp[Iφ]− r1Exp[−Iφ]) == 0,

a1Exp[IqxL]+b1Exp[−IqxL] == t1Exp[IkxL],a1Exp[IqxL]+b1Exp[−IqxL] == t1Exp[IkxL],a1Exp[IqxL]+b1Exp[−IqxL] == t1Exp[IkxL],

a2Exp[IqxL]+b2Exp[−IqxL] == t2Exp[IkxL],a2Exp[IqxL]+b2Exp[−IqxL] == t2Exp[IkxL],a2Exp[IqxL]+b2Exp[−IqxL] == t2Exp[IkxL],

a1Exp[IqxL+ Iγ]−b1Exp[−IqxL− Iγ] == t1Exp[IkxL+ Iφ],a1Exp[IqxL+ Iγ]−b1Exp[−IqxL− Iγ] == t1Exp[IkxL+ Iφ],a1Exp[IqxL+ Iγ]−b1Exp[−IqxL− Iγ] == t1Exp[IkxL+ Iφ],

a2Exp[IqxL+ Iγ]−b2Exp[−IqxL− Iγ] == t2Exp[IkxL+ Iφ]a2Exp[IqxL+ Iγ]−b2Exp[−IqxL− Iγ] == t2Exp[IkxL+ Iφ]a2Exp[IqxL+ Iγ]−b2Exp[−IqxL− Iγ] == t2Exp[IkxL+ Iφ]

},{a1,a2,b1,b2, r1, r2, t1, t2}];},{a1,a2,b1,b2, r1, r2, t1, t2}];},{a1,a2,b1,b2, r1, r2, t1, t2}];

Solving above equations we get the transmission amplitudes for an incident spin up electron

tuu = t1/.sol[[1]];tuu = t1/.sol[[1]];tuu = t1/.sol[[1]];

Transmission amplitude for an electron with initial spin up to final spin up

tdu = t2/.sol[[1]];tdu = t2/.sol[[1]];tdu = t2/.sol[[1]];

Transmission amplitude for an electron with initial spin up to final spin down

sol = Solve[{a1(Exp[Iγ]+ Iα(m−1))+b1(−Exp[−Iγ]+ Iα(m−1))+sol = Solve[{a1(Exp[Iγ]+ Iα(m−1))+b1(−Exp[−Iγ]+ Iα(m−1))+sol = Solve[{a1(Exp[Iγ]+ Iα(m−1))+b1(−Exp[−Iγ]+ Iα(m−1))+

r1(Exp[−Iφ]+ Iα(m−1))+ IαF(a2+b2+1+ r2) == 0,a2(Exp[Iγ]− Iα(m))r1(Exp[−Iφ]+ Iα(m−1))+ IαF(a2+b2+1+ r2) == 0,a2(Exp[Iγ]− Iα(m))r1(Exp[−Iφ]+ Iα(m−1))+ IαF(a2+b2+1+ r2) == 0,a2(Exp[Iγ]− Iα(m))

−b2(Exp[−Iγ]+ Iα(m))+ r2(Exp[−Iφ]− Iα(m))+−b2(Exp[−Iγ]+ Iα(m))+ r2(Exp[−Iφ]− Iα(m))+−b2(Exp[−Iγ]+ Iα(m))+ r2(Exp[−Iφ]− Iα(m))+

IαF(a1+b1+ r1) == Exp[Iφ]+ Iα(m),a1(1+ Iα(m−1)Exp[Iγ])+IαF(a1+b1+ r1) == Exp[Iφ]+ Iα(m),a1(1+ Iα(m−1)Exp[Iγ])+IαF(a1+b1+ r1) == Exp[Iφ]+ Iα(m),a1(1+ Iα(m−1)Exp[Iγ])+

b1(1− Iα(m−1)Exp[−Iγ])− r1(1+ Iα(m−1)Exp[−Iφ])+b1(1− Iα(m−1)Exp[−Iγ])− r1(1+ Iα(m−1)Exp[−Iφ])+b1(1− Iα(m−1)Exp[−Iγ])− r1(1+ Iα(m−1)Exp[−Iφ])+

IαF(a2Exp[Iγ]−b2Exp[−Iγ]+Exp[Iφ]− r2Exp[−Iφ]) == 0,IαF(a2Exp[Iγ]−b2Exp[−Iγ]+Exp[Iφ]− r2Exp[−Iφ]) == 0,IαF(a2Exp[Iγ]−b2Exp[−Iγ]+Exp[Iφ]− r2Exp[−Iφ]) == 0,

a2(1− Iα(m)Exp[Iγ])+b2(1+ Iα(m)Exp[−Iγ])− r2(1− Iα(m)Exp[−Iφ])a2(1− Iα(m)Exp[Iγ])+b2(1+ Iα(m)Exp[−Iγ])− r2(1− Iα(m)Exp[−Iφ])a2(1− Iα(m)Exp[Iγ])+b2(1+ Iα(m)Exp[−Iγ])− r2(1− Iα(m)Exp[−Iφ])
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+IαF(a1Exp[Iγ]−b1Exp[−Iγ]− r1Exp[−Iφ]) == 1+ Iα(m)Exp[Iφ],+IαF(a1Exp[Iγ]−b1Exp[−Iγ]− r1Exp[−Iφ]) == 1+ Iα(m)Exp[Iφ],+IαF(a1Exp[Iγ]−b1Exp[−Iγ]− r1Exp[−Iφ]) == 1+ Iα(m)Exp[Iφ],

a1Exp[IqxL]+b1Exp[−IqxL] == t1Exp[IkxL],a1Exp[IqxL]+b1Exp[−IqxL] == t1Exp[IkxL],a1Exp[IqxL]+b1Exp[−IqxL] == t1Exp[IkxL],

a2Exp[IqxL]+b2Exp[−IqxL] == t2Exp[IkxL],a2Exp[IqxL]+b2Exp[−IqxL] == t2Exp[IkxL],a2Exp[IqxL]+b2Exp[−IqxL] == t2Exp[IkxL],

a1Exp[IqxL+ Iγ]−b1Exp[−IqxL− Iγ] == t1Exp[IkxL+ Iφ],a1Exp[IqxL+ Iγ]−b1Exp[−IqxL− Iγ] == t1Exp[IkxL+ Iφ],a1Exp[IqxL+ Iγ]−b1Exp[−IqxL− Iγ] == t1Exp[IkxL+ Iφ],

a2Exp[IqxL+ Iγ]−b2Exp[−IqxL− Iγ] == t2Exp[IkxL+ Iφ]a2Exp[IqxL+ Iγ]−b2Exp[−IqxL− Iγ] == t2Exp[IkxL+ Iφ]a2Exp[IqxL+ Iγ]−b2Exp[−IqxL− Iγ] == t2Exp[IkxL+ Iφ]

},{a1,a2,b1,b2, r1, r2, t1, t2}];},{a1,a2,b1,b2, r1, r2, t1, t2}];},{a1,a2,b1,b2, r1, r2, t1, t2}];

Solving above equations we get the transmission amplitudes for an incident spin down electron

tud = t1/.sol[[1]];tud = t1/.sol[[1]];tud = t1/.sol[[1]];

Transmission amplitude for an electron with initial spin down to final spin up

tdd = t2/.sol[[1]];tdd = t2/.sol[[1]];tdd = t2/.sol[[1]];

Transmission amplitude for an electron with initial spin down to final spin down

h = 6.634∗10∧(−34);h = 6.634∗10∧(−34);h = 6.634∗10∧(−34); h=Planck constant

hb = 1.05∗10∧(−34);hb = 1.05∗10∧(−34);hb = 1.05∗10∧(−34); hb=h/2π

e = 1.6∗10∧(−19);e = 1.6∗10∧(−19);e = 1.6∗10∧(−19); e=electronic charge

ae = 1.6∗10∧(−22);ae = 1.6∗10∧(−22);ae = 1.6∗10∧(−22); ae=1 meV

vf = 1.∗10∧6;vf = 1.∗10∧6;vf = 1.∗10∧6; vf=Fermi velocity

kb = 1.38∗10∧(−23);kb = 1.38∗10∧(−23);kb = 1.38∗10∧(−23); kb=Boltzmann constant

n = hbvf;n = hbvf;n = hbvf;

SetSharedVariable[list]SetSharedVariable[list]SetSharedVariable[list]

list = {};list = {};list = {};

z = ae∗10∧(−9)/n;z = ae∗10∧(−9)/n;z = ae∗10∧(−9)/n;

µo=.;µo=.;µo=.;

L = 40∗10∧(−9);T = 30.0;J = 50∗ z;kbT1 = T ∗ kb;L = 40∗10∧(−9);T = 30.0;J = 50∗ z;kbT1 = T ∗ kb;L = 40∗10∧(−9);T = 30.0;J = 50∗ z;kbT1 = T ∗ kb;

L=length of strained region, T=temperature, J=coupling strength between

magnetic impurity and electron

f = 0.005Pi; t = 100∗ae;M = h/(4(kb∧2));f = 0.005Pi; t = 100∗ae;M = h/(4(kb∧2));f = 0.005Pi; t = 100∗ae;M = h/(4(kb∧2));
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t=Strength of strain

G=.;G=.;G=.;

φ=.;W = 2∗ (20)∗10∧(−9)∗ e∧2/(h∗Pi);φ=.;W = 2∗ (20)∗10∧(−9)∗ e∧2/(h∗Pi);φ=.;W = 2∗ (20)∗10∧(−9)∗ e∧2/(h∗Pi);

W=width of our system

φ=Angle of incident electron;

F = Sqrt[5];F1 = Sqrt[0];m =−5/2;α = J;d = e/kb;F = Sqrt[5];F1 = Sqrt[0];m =−5/2;α = J;d = e/kb;F = Sqrt[5];F1 = Sqrt[0];m =−5/2;α = J;d = e/kb;

ParallelDo[{ParallelDo[{ParallelDo[{

γ = ArcSin[Sin[φ]− t/G];γ = ArcSin[Sin[φ]− t/G];γ = ArcSin[Sin[φ]− t/G];

γ=Angle of refracted electron;

kx = (G/n)Cos[φ];kx = (G/n)Cos[φ];kx = (G/n)Cos[φ];

kx=Wave vector in un-strained region;

qx = (G/n)Cos[γ];qx = (G/n)Cos[γ];qx = (G/n)Cos[γ];

qx=Wave vector in strained region;

T11 = tuutuu∗;T11 = tuutuu∗;T11 = tuutuu∗;

Transmission probability of incident spin up electron as a up-spin electron;

T21 = tudtud∗;T21 = tudtud∗;T21 = tudtud∗;

Transmission probability of incident spin down electron as a up-spin electron;

df = Exp[(G−µo)/(kbT1)]/((Exp[(G−µo)/(kbT1)]+1)∧2kbT1);df = Exp[(G−µo)/(kbT1)]/((Exp[(G−µo)/(kbT1)]+1)∧2kbT1);df = Exp[(G−µo)/(kbT1)]/((Exp[(G−µo)/(kbT1)]+1)∧2kbT1);

Derivativeof the Fermi-Dirac distribution function;

ρ = Abs[G]/((hbvf));ρ = Abs[G]/((hbvf));ρ = Abs[G]/((hbvf));

Density of states;

T3 = tdutdu∗;T3 = tdutdu∗;T3 = tdutdu∗;

Transmission probability of incident spin up electron as a down-spin electron;

T4 = tddtdd∗;T4 = tddtdd∗;T4 = tddtdd∗;

Transmission probability of incident spin down electron as a down-spin electron;

no = µo−50∗ae;n1 = µo+50∗ae;no = µo−50∗ae;n1 = µo+50∗ae;no = µo−50∗ae;n1 = µo+50∗ae;
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sum1 =WNIntegrate[df∗ρ∗ (T11+T21)∗Cos[φ],{G,no,n1}sum1 =WNIntegrate[df∗ρ∗ (T11+T21)∗Cos[φ],{G,no,n1}sum1 =WNIntegrate[df∗ρ∗ (T11+T21)∗Cos[φ],{G,no,n1}

,{φ,−Pi/2+ f ,Pi/2− f}];,{φ,−Pi/2+ f ,Pi/2− f}];,{φ,−Pi/2+ f ,Pi/2− f}];

Spin up component of (1,1) element of Onsager matrix;

suum1 =WNIntegrate[df∗ρ∗ (T11+T21)∗ (G−µo)∗Cos[φ],{G,no,n1}suum1 =WNIntegrate[df∗ρ∗ (T11+T21)∗ (G−µo)∗Cos[φ],{G,no,n1}suum1 =WNIntegrate[df∗ρ∗ (T11+T21)∗ (G−µo)∗Cos[φ],{G,no,n1}

,{φ,−Pi/2+ f ,Pi/2− f}];,{φ,−Pi/2+ f ,Pi/2− f}];,{φ,−Pi/2+ f ,Pi/2− f}];

Spin up component of (1,2) element of Onsager matrix;

suuum1 =WNIntegrate[df∗ρ∗ (T11+T21)∗ (G−µo)∧2∗Cos[φ],{G,no,n1}suuum1 =WNIntegrate[df∗ρ∗ (T11+T21)∗ (G−µo)∧2∗Cos[φ],{G,no,n1}suuum1 =WNIntegrate[df∗ρ∗ (T11+T21)∗ (G−µo)∧2∗Cos[φ],{G,no,n1}

,{φ,−Pi/2+ f ,Pi/2− f}];,{φ,−Pi/2+ f ,Pi/2− f}];,{φ,−Pi/2+ f ,Pi/2− f}];

Spin up component of (2,2) element of Onsager matrix;

sum2 =WNIntegrate[df∗ρ∗ (T3+T4)∗Cos[φ],{G,no,n1}sum2 =WNIntegrate[df∗ρ∗ (T3+T4)∗Cos[φ],{G,no,n1}sum2 =WNIntegrate[df∗ρ∗ (T3+T4)∗Cos[φ],{G,no,n1}

,{φ,−Pi/2+ f ,Pi/2− f}];,{φ,−Pi/2+ f ,Pi/2− f}];,{φ,−Pi/2+ f ,Pi/2− f}];

Spin down component of (1,1) element of Onsager matrix;

suum2 =WNIntegrate[df∗ρ∗ (T3+T4)∗ (G−µo)∗Cos[φ],{G,no,n1}suum2 =WNIntegrate[df∗ρ∗ (T3+T4)∗ (G−µo)∗Cos[φ],{G,no,n1}suum2 =WNIntegrate[df∗ρ∗ (T3+T4)∗ (G−µo)∗Cos[φ],{G,no,n1}

,{φ,−Pi/2+ f ,Pi/2− f}];,{φ,−Pi/2+ f ,Pi/2− f}];,{φ,−Pi/2+ f ,Pi/2− f}];

Spin down component of (1,2) element of Onsager matrix;

suuum2 =WNIntegrate[df∗ρ∗ (T3+T4)∗ (G−µo)∧2∗Cos[φ],{G,no,n1}suuum2 =WNIntegrate[df∗ρ∗ (T3+T4)∗ (G−µo)∧2∗Cos[φ],{G,no,n1}suuum2 =WNIntegrate[df∗ρ∗ (T3+T4)∗ (G−µo)∧2∗Cos[φ],{G,no,n1}

,{φ,−Pi/2+ f ,Pi/2− f}];,{φ,−Pi/2+ f ,Pi/2− f}];,{φ,−Pi/2+ f ,Pi/2− f}];

Spin down component of (2,2) element of Onsager matrix;

SS1 =−Re[suum1]/(e∗T );SS1 =−Re[suum1]/(e∗T );SS1 =−Re[suum1]/(e∗T );

SS2 =−Re[suum2]/(e∗T );SS2 =−Re[suum2]/(e∗T );SS2 =−Re[suum2]/(e∗T );

suuum1 =−Re[suuum1]/(e∗ e∗T );suuum1 =−Re[suuum1]/(e∗ e∗T );suuum1 =−Re[suuum1]/(e∗ e∗T );

suuum2 =−Re[suuum2]/(e∗ e∗T );suuum2 =−Re[suuum2]/(e∗ e∗T );suuum2 =−Re[suuum2]/(e∗ e∗T );

S1 = sum1;S2 = sum2;S1 = sum1;S2 = sum2;S1 = sum1;S2 = sum2;

A1 = SS1/(S1);A1 = SS1/(S1);A1 = SS1/(S1);

Spin up Seebeck coefficient;

A2 = SS2/(S2);A2 = SS2/(S2);A2 = SS2/(S2);
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Spin down Seebeck coefficient;

list = AppendTo[list,{µo/ae,σch∗h/e∧2,σsp∗h/e∧2,A1∗d,A2∗d}]list = AppendTo[list,{µo/ae,σch∗h/e∧2,σsp∗h/e∧2,A1∗d,A2∗d}]list = AppendTo[list,{µo/ae,σch∗h/e∧2,σsp∗h/e∧2,A1∗d,A2∗d}]

(*}]; *)(*}]; *)(*}]; *)

},{µo,0∗ae,100∗ae,1∗ae}]; //AbsoluteTiming},{µo,0∗ae,100∗ae,1∗ae}]; //AbsoluteTiming},{µo,0∗ae,100∗ae,1∗ae}]; //AbsoluteTiming

list = Sort[list];list = Sort[list];list = Sort[list];

Export[“check2.dat”, list]Export[“check2.dat”, list]Export[“check2.dat”, list]

Needs[“PlotLegends̀”]Needs[“PlotLegends̀”]Needs[“PlotLegends̀”]

data = Import[“check1.dat”, “Table”][[All,{1,2}]];data = Import[“check1.dat”, “Table”][[All,{1,2}]];data = Import[“check1.dat”, “Table”][[All,{1,2}]];

ListLinePlot[data,PlotLegend→{Style[“m=-5/2”,Bold,24]},LegendPosition→{.002,−0.3},ListLinePlot[data,PlotLegend→{Style[“m=-5/2”,Bold,24]},LegendPosition→{.002,−0.3},ListLinePlot[data,PlotLegend→{Style[“m=-5/2”,Bold,24]},LegendPosition→{.002,−0.3},

PlotRange→{{0,100},Automatic},Frame→ True,PlotRange→{{0,100},Automatic},Frame→ True,PlotRange→{{0,100},Automatic},Frame→ True,

FrameTicks→{{{{0, “0.0”},{02, “2.0”},{04, “4.0”}},None},{{{0, “0.0”},{100, “100.0”},FrameTicks→{{{{0, “0.0”},{02, “2.0”},{04, “4.0”}},None},{{{0, “0.0”},{100, “100.0”},FrameTicks→{{{{0, “0.0”},{02, “2.0”},{04, “4.0”}},None},{{{0, “0.0”},{100, “100.0”},
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Figure 8.4: Charge Conductance (Gch) vs. EF (Fermi energy) for magnetic moment m =−5/2, length of
strained graphene layer L = 40nm and width W = 20 nm, strain t = 50meV , temperature T = 30K with spin
of magnetic impurity S = 5/2 and J =−600meV . This figure corresponds to Fig. 6.3(a) in chapter 6 of this
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