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SUMMARY

Density functional theory (DFT) is one of the most widely used methods to understand

the properties of many-particle systems due to its affordable computational cost to accu-

racy ratio. The foundation of DFT started with the discovery of Hohenberg-Kohn (HK)

[1] theorem which proved a one-to-one mapping between the external potential and the

ground state density of a many-electron system. In principle, this allows us to investi-

gate the properties of a system in terms of the ground state density alone. However, the

practical application of DFT gains popularity only after the Kohn-Sham (KS) formalism

[2] which maps the interacting many-body system to an effective non-interacting system

with the same density. This ensures the ground state energy of both systems remains

the same. The KS equation contains the kinetic energy term, interaction of electrons

with nucleus, classical interaction between the electrons i.e. Hartree interaction, and the

exchange-correlation (XC) term. All the terms in the KS equation are known exactly ex-

cept the XC potential. So, for practical calculations, we need to approximate the form

of XC functional. Over the years, there are several approximations developed for the XC

functional starting from local density approximation (LDA), generalized gradient approx-

imation (GGA), meta-GGA to hybrid functional.

This thesis will be focused on the development and application of the meta-GGA XC

functional both at the semilocal and the meta-GGA range-separated hybrid level. Ex-

change energy functional can be derived if the corresponding exchange hole is known.

Also, the exchange hole can be used to derive the range-separated exchange energy func-

tional. In fact, we have developed a long-range corrected XC functional using the recently

developed Tao-Mo [3] meta-GGA exchange hole. The proposed long-range corrected

functional improves the properties of a broad range of molecular databases and also for

the fractional particle number cases and dissociation energies because of its improved

long-range behaviour. Next, we construct meta-GGA exchange functionals by modelling
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the exchange hole using model hydrogen and cuspless hydrogen densities, following a

modified Becke-Roussel (BR) [4] approach. These functionals are applied to predict the

band gap of the narrow, intermediate, and wide gap insulators and the layered materi-

als. Their performance is comparable to the hybrid functional results and better than the

known semilocal functionals. It is also shown that the cuspless hydrogen density is more

suitable for solid-state calculation than the hydrogen density. Next, we build a meta-GGA

exchange functional by satisfying some exact constraints, following the BR approach,

which depends only on the Pauli kinetic enhancement factor. This functional is shown to

give good results over a broad range of molecular and solid-state systems. In fact, this

functional is the best performing semilocal functional for the semiconductor band gaps.

Further, this functional is applied to predict the phase stability ordering of the Fe2, TiO2

and MnO2 polymorphs. These systems are challenging for semilocal functionals and the

proposed functional is shown to recover the correct ordering of all the polymorphs.
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Chapter 1

Quantum Many-Body Problem

1.1 Introduction

The exact description of the electronic structure of atoms, molecules, and solids is impor-

tant to understand the properties of the significant portion of condensed matter physics,

quantum chemistry, and material science. However, this is a daunting task mainly be-

cause of two reasons. Firstly, electrons in a matter must be described by the laws of

quantum mechanics rather than classical ones. This is because the de Broglie wavelength

(λ = h/p) of an electron in a many-electron environment is comparable to the average

inter-particle separation, where h is the Planck’s constant and p be the momentum of the

electron. The second problematic case arises from the complex multi-particle interaction

due to the overlapped de Broglie wavelength. This causes the solution to be impossible for

many-electron systems and the complexity grows drastically with the increasing number

of electrons. For these reasons, the electronic structure of matter is known as the quantum

many-body problem.

The quantum many-body problem is surprising because the equations required for ex-

act solution are known but the exact solution is possible only for a few restricted systems.

The properties of any time-independent quantum system can be characterized by solving
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the Schrödinger equation,

Ĥψ({RI},{xi}) = Eψ({RI},{xi}), (1.1)

where Ĥ, ψ({RI},{xi}) and E are the Hamiltonian, many-body wavefunction, and total

energy of the system respectively. Here, {xi} ≡ {ri,σi} for i = 1,2,3, · · · ,N denotes the

position and spin coordinates of N electrons and similarly, {RI} for I = 1,2,3, · · · ,M
denotes the position of the M nuclei of the interacting system under consideration. The

Hamiltonian of Eq. 1.1 consists of the following terms

Ĥ = T̂n(R)+ T̂e(r)+V̂nn(R)+V̂ee(r)+V̂ne(r,R)

=−
M

∑
I=1

h̄2

2MI
∇2

I −
N

∑
i=1

h̄2

2me
∇2

i +
e2

4πε0

M

∑
I

M

∑
J>I

ZIZJ

|RI −RJ|
(1.2)

+
e2

4πε0

N

∑
i

N

∑
j>i

1
|ri − r j|

− e2

4πε0

M

∑
I

N

∑
i

ZI

|RI − ri|
,

where ZI , MI , and me are the atomic numbers, nuclear masses, and electron mass re-

spectively. The first two terms of the above equation represent the kinetic energy of the

nuclei and electrons. The last three terms represent the interaction energy operators be-

tween nuclei-nuclei (V̂nn), electron-electron (V̂ee) and electron-nuclei (V̂ne) respectively.

In practice, the partial differential equation 1.1 is almost impossible to solve within a full

quantum mechanical framework. There are various features that contribute to this diffi-

culty, but the most important one is that the two-body nature of the Coulomb interaction

which makes the above Schrödinger equation not separable.

As a first approximation, we can partially decouple the motion of electrons from the

nuclear motion due to the time scale associated with the motion of nuclei is much larger

than that of electrons. This is known as the Born-Oppenheimer approximation.1 Using

this approximation, we can factorize the total wavefunction ψ into a nuclear wavefunction

ψn and electronic wavefunction ψe,

ψ({RI},{xi}) = ψn({RI})ψe({RI};{xi}). (1.3)
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This approximation allows us to fix nuclear configuration at some particular value Rc and

solve for the electronic wavefunction ψe({Rc};{xi}) which depends parametrically on

R. If we repeat this for several values of R, we will get the potential energy curve along

which nuclei move. Finally, the electronic Shrödinger equation for fixed nuclear position

becomes

Ĥeψe({RI};{xi}) = Eeψe({RI};{xi}), (1.4)

where the electronic Hamiltonian is

Ĥe =−
N

∑
i=1

1
2

∇2
i +

N

∑
i

N

∑
j>i

1
|ri − r j|

−
M

∑
I

N

∑
i

ZI

|RI − ri|
. (1.5)

In the above equation, we use atomic units, whereby h̄ = e = me = 4πε0 = 1. Unless

otherwise stated, we will use this unit for the rest part of the thesis.

Although we simplified our many-body Schrödinger equation in Eq. 1.4 by applying

Born-Oppenheimer approximation, but still the solution of the electronic Schrödinger

equation i.e. Eq. 1.4 is too complex because of the many-electron wavefunction which

depends on 3N variables and which for a solid of N ∼ 1026 electrons, is an unmanageable

number of degrees of freedom. In the next section, we will briefly describe the various

wavefunction based approaches to obtain approximate solutions of Eq. 1.4.

1.2 Wavefunction Based Methods for Solving Many-Electron

Schrödinger Equation

Many-electron wavefunction ψ is the basic quantity for the wave function based methods

but its functional form is very complicated. Practically, we start with some reasonable

guess for the ψ and then try to calculate it using the variational principle. The variation

principle states that for any guessed wave function the expectation value of the Hamilto-

nian (Ĥe) always gives the upper bound to the electronic ground state energy

�ψ|Ĥe|ψ� ≥ �ψ0|Ĥe|ψ0�, (1.6)
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where the equality sign holds only for the true ground state wave function ψ0. In the next

section, this principle will be applied for the minimization of the approximated Hartree-

Fock wave function.

1.2.1 Hartree-Fock Method

The starting point of this method was introduced by D. R. Hartree in 1928, where each

electron in a many-electron system is assumed to be moving in an effective potential

which takes into account the effect of attraction to the nucleus and the average effect of the

repulsive electron-electron interactions due to other electrons. Each electron in the system

is described by its own wavefunction. In 1930, V. A. Fock generalized Hartree’s method

which takes into account the antisymmetry requirement of the many-electron wavefunc-

tion. In the Hartree-Fock (HF) approximation, the trial wavefunction of a N electron

system is taken as a Slater determinant2

ψHF =
1√
N!

�������������

φ1(x1) φ1(x2) . . . φ1(xN)

φ2(x1) φ2(x2) . . . φ2(xN)

...
... . . . ...

φN(x1) φN(x2) . . . φN(xN)

�������������

(1.7)

, where the spin-orbitals follow the orthonormality condition i.e.

�φi|φ j�=
�

φ∗
i (x)φ j(x)dx = δi j. (1.8)

In the above equation,
�

dx implies an integration over space coordinates and summation

over spin coordinates. The expectation value of the Hamiltonian of Equation 1.5 is given

by

EHF = �ψHF|Ĥe|ψHF�=
N

∑
i=1

hi +
1
2

N

∑
i, j=1

(Ji j −Ki j), (1.9)
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where

hi =
�

φ∗
i (x)

�
−1

2
∇2

r + vext(r)
�

φi(x)dx (1.10)

Ji j =
� �

φ∗
i (x1)φ∗

j (x2)
1

ri j
φi(x1)φ j(x2)dx1dx2 (1.11)

Ki j =
� �

φ∗
i (x1)φ∗

j (x2)
1

ri j
φi(x2)φ j(x1)dx1dx2 (1.12)

The terms in Eq. 1.10 represent the kinetic energy and interaction energy of the electrons

with the external potential respectively. The term in Eq. 1.11 is the classical Coulomb

interaction energy between electrons and the Eq. 1.12 represents the exchange energy

between electrons arising due to the Pauli correlation. For i = j, we have Jii = Kii i.e.

the self-interaction energy is properly cancelled in the HF theory. Minimizing the above

expression w.r.t. the orbital φi gives the canonical HF equation for the ith orbital

�
−1

2
∇2

r + vext(r)+
� ρ(r�)

|r− r�|dr�
�

φi(r)− ∑
i, j

(σi||σ j)

� � φ∗
j (r�)φ j(r)φi(r�)

|r− r�| dr� = εiφi(r),

(1.13)

where εi is the Lagrange multiplier to ensure the orthonormality of the orbitals and σi is

the spin index of the ith orbital. The Eq. 1.13 should be solved self-consistently and the

solution results in a set of orthonormal orbitals with corresponding eigenvalues. Some of

the important advantages of the HF method are:

1. The enormous conceptual simplification from the complicated many-body problem

due to the independent particle approximation.

2. The good accuracy of the total energy of molecules. For example, 98.5% for He,3

99% for LiH,4 99.5% for N2
5 etc.

3. HF orbitals are suitable as zero-order states for perturbation schemes.6

However, there are some important disadvantages of the HF theory:

1. The error in the binding energy of molecules is large.

2. The dissociation limit of molecules is usually predicted incorrectly.
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1.2.2 Post HF method

The HF method is an approximation to solve the Schrödinger equation where the electrons

move in the average field of other electrons. However, the position of an electron in a

system depends on the position of other electrons, and on average they are further apart

than described by the HF method. This phenomenon of correlated motion of electrons is

known as electron correlation. Conventionally, correlation energy is defined as

Ec = Eexact −EHF, (1.14)

where Eexact is the exact ground state energy of Eq. 1.4 and EHF is the ground state energy

in the HF approximation method. There are two kinds of correlation which is missed

in the HF method, one is called dynamical correlation and another one is static correla-

tion. Dynamical correlation is dominated by the movement of electrons with opposite

spin, which is poorly described in the HF theory. Static correlation is important in sys-

tems where the ground state is well described only with more than one degenerate Slater

determinant.

Some of the post HF method includes:

• Configuration Interaction : The correlated wavefunction ψCI in this approach is

taken as a linear combination of the ground and excited-state determinants

ψCI = ∑
I

CIψI =C0ψHF +∑
ia

Ca
i ψa

i + ∑
a>b
i> j

Cab
i j ψab

i j + · · · , (1.15)

where i, j, .. denotes occupied spin orbitals in ψHF while a,b, .. are the unoccupied

spin orbitals. ψa
i , ψab

i j , .. are the singly, doubly, .. excited state determinants. The

expansion coefficients CI are determined using the variational principle.

• Coupled Cluster : The wavefunction of the coupled cluster method is written as

ψCC = exp(T̂ )ψHF, (1.16)
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where T̂ is the cluster operator which produces a linear combination of excited

state determinants upon acting on the reference HF wavefunction. If we include all

possible excitations, this wavefunction is equivalent to full CI wavefunction. The

choice of exponential ansatz guarantees the size extensivity of the solution.

• Møller-Plesset Perturbation Theory : This method adds electron correlation by

using Rayleigh-Schrödinger perturbation theory, usually up to second (MP2), third

(MP3) or fourth (MP4) order. HF Hamiltonian is taken as the unperturbed Hamilto-

nian and the perturbation term is the difference between the exact electronic Hamil-

tonian and the HF Hamiltonian.

Although, the mentioned post HF methods improve the result from the HF method, but

these methods are computationally very expensive. In the next section, we will describe

a method of solving Eq. 1.4 in which the many-electron wavefunction is bypassed using

the density and which gives the reasonable computational cost to accuracy ratio.

1.3 Density Functional Theory

Density functional theory uses the density ρ(r) as the central quantity. The main advan-

tage of using the density rather than wave function is that it is always three dimensional

regardless of the number of electrons in the system. This enables DFT to compute the

properties of large systems containing hundreds to thousands of atoms. Electron density

is defined as

ρ(r) = N
�

· · ·
�

|ψ(x1,x2, · · · ,xN)|2dσ1dx2 · · ·dxN , (1.17)

and this determines the probability of getting one of the N electrons with arbitrary spin at

r while the other N −1 electrons have arbitrary spin and positions in the state ψ . This is

always non-negative and integrates to the total number of electrons

�
ρ(r)dr = N. (1.18)
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1.3.1 Thomas-Fermi Theory

The first attempt to solve a many-body problem by taking density as a basic variable is

given by Thomas and Fermi. This is known as Thomas-Fermi (TF)7,8 theory. In this the-

ory, the kinetic energy of an interacting many-particle system of N electrons is considered

as a homogeneous system of N independent fermions. The kinetic energy of it is given by

the expression

TTF[ρ] =Ck

�
ρ(r)5/3dr, (1.19)

where Ck = 3(3π2)2/3/10 and ρ(r) be the density of electrons at space point r. The total

energy is given by adding the kinetic energy given above with the classical electrostatic

energy and interaction with external potential i.e.

ETF[ρ] = TTF[ρ]+
1
2

� � ρ(r)ρ(r�)
|r− r�| drdr�+

�
vext(r)ρ(r)dr. (1.20)

The energy calculated using the above expression overestimates the total energy because

of the missing exchange and correlation energy. The TF equation for density is obtained

by minimizing the TF energy w.r.t. density which satisfies the number of particles,

5
3

Ckρ(r)2/3 + vext(r)+
� ρ(r�)

|r− r�|dr� = µ, (1.21)

where µ is the Lagrange multiplier to satisfy the constraint
�

ρ(r)dr = N. In general,

the TF equation can be solved self-consistently. The TF equation can be improved by

including the exchange energy functional into the total energy functional. However, it

was very difficult to express exchange energy functional in terms of density only. This

is done in the same spirit of kinetic energy, where the exchange energy is approximated

same as the exchange energy of the homogeneous electron gas with the density replaced

by local density ρ(r) at each point. This was suggested by Dirac9 and the corresponding

TFD energy functional and the corresponding equation are given as

ETFD[ρ] = TTF[ρ]+
1
2

� � ρ(r)ρ(r�)
|r− r�| drdr�+

�
vext(r)ρ(r)dr+Cx

�
ρ(r)4/3dr, (1.22)
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5
3

Ckρ(r)2/3 + vext(r)+
� ρ(r�)

|r− r�|dr�+
4
3

Cxρ(r)1/3 = µ, (1.23)

where Cx =−3
4

� 3
π
�1/3

.

Although the idea of realizing the inhomogeneous system as locally homogeneous for

the kinetic energy term is reasonable for metallic systems but it turns out to be a very bad

approximation for atomic and molecular systems. The density diverges at the nucleus and

it does not show atomic shell structure. To improve these features, better treatment of

kinetic energy functional was needed. However, in the next section, we will describe the

modern density functional theory (DFT) approaches where the kinetic energy is treated to

a better accuracy at the cost of introducing one-particle orbitals.

1.3.2 The Hohenberg-Kohn Theorem

The objective of the TF approach was to write the energy of a many-electron system

solely in terms of density. However, the idea was intuitive at that time because of the

unavailability of the proper framework which guarantees the above mapping. In 1964,

Hohenberg and Kohn (HK)10 proved a theorem that provides solid mathematical grounds

for the TF ideas.

Theorem I There exists a one-to-one mapping between the electron density and the ex-

ternal potential up to a trivial constant.

Corollary Since the density ρ(r) determines the external potential, hence it also deter-

mines the complete Hamiltonian. The ground state wavefunction ψ is obtained by solv-

ing the full many-electron Schrödinger equation. Therefore, the ground state energy is

expressed as a functional of the density

E[ρ] = �ψ|Ĥe[ρ]|ψ�= F [ρ]+
�

vext(r)ρ(r)dr, (1.24)

where

F [ρ] = �ψ|T̂ [ρ(r)]+V̂ee[ρ(r)]|ψ�. (1.25)
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Eq. 1.25 is called the universal functional as it is independent of the external potential.

Its form remains unchanged irrespective of the system. Therefore, a particular kind of

system is completely determined by vext [ρ(r)].

Theorem II The ground-state energy can be determined using variational principle and

the density which minimizes the total energy functional is the exact ground-state density.

Corollary This implies that the energy functional E[ρ(r)] gives the true ground-state

energy only for the exact ground-state density ρ0(r). For any other density, the predicted

energy will be higher than the ground state energy.

E[ρ0] = min
ρ(r)

�
E[ρ(r)]

�
≤ E[ρ(r)]. (1.26)

The ground-state energy can be calculated using the variational principle with the con-

straint of conserving the number of electrons.

δ
�

E[ρ(r)]−µ
��

ρ(r)dr−N
��

= 0. (1.27)

This leads to the Euler-Lagrange equation,

δE[ρ(r)]
δρ(r)

= µ = vext(r)+
δF [ρ(r)]

δρ(r)
, (1.28)

where, µ is the Lagrange multiplier and also known as the chemical potential of the

electrons. These two theorems form the mathematical basis of density-functional theory.

1.3.3 Constrained Search Formulation

In the HK theorem, the electron density which determines the external potential needs to

come from some antisymmetric ground state wave function. Although, it is necessary for

the true ground state density ρ0 but it may violate for other trial density ρ̃ .

In 1982, Levy11 formulated DFT in such a way that assures the antisymmetric origin

of density. Levy proposed the constrained search formalism by which the expression of
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Eq. 1.25 is redefined in the following way

F [ρ] = min
ψ→ρ

�
�ψ|T̂ +V̂ee|ψ�

�
, (1.29)

where the density ρ is such that

ρ(r)≥ 0,
�

ρ(r)dr = N and
�

|∇ρ1/2(r)|2dr < ∞ (1.30)

with the additional constraint that density should come from an antisymmetric wave func-

tion. In this way, this formalism eliminates the conceptual difficulty of possible unphysi-

cal densities.

1.4 Practical DFT : Kohn-Sham Construction

The Eqs. 1.24 and 1.26 in the previous subsection give a way of calculating the ground-

state properties if the form of F [ρ] is known. However, for practical calculations, we have

to rely on the approximate form of F [ρ], and finding a good approximation for this is not

easy. As we have already seen in TF and TFD theory, an approximate form of T [ρ ] and

Vee[ρ] is used. Although this provides a nice simplicity but the main drawback of the

TF procedure is related to the expression of the kinetic energy part in terms of density.

In 1965, Kohn and Sham (KS)12 introduced an idea to approximate the kinetic energy

term in a better way. They assumed that there exists an equivalent non-interacting system

corresponding to the interacting system, where the ground-state density ρ(r) remains the

same for both the systems. This system of non-interacting N electrons with density ρ(r)

is described by the Hamiltonian,

ĤKS =
N

∑
i=1

�
−1

2
∇2

i + vKS(ri)

�
. (1.31)

Here, the effective potential vKS(r) is such that the ground-state density of ĤKS equals to

ρ(r). The HK theorem ensures that the ground state energy remains the same for both the
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interacting and non-interacting system.

As the Hamiltonian in Eq. 1.31 has no electron-electron interactions, one can write its

eigenstate in terms of a single Slater determinant Φ[ρ] in the same way of Eq. 1.7. Within

this approximation, density and kinetic energy will be expressed as

ρ(r) =
N

∑
i=1

|φi(r)|2 and Ts[ρ] =
N

∑
i=1

�φi|−
1
2

∇2|φi�, (1.32)

where the single particle orbitals φi(r) are obtained by solving the KS equation

ĤKSφi(r) = εiφi(r). (1.33)

The universal density functional of Eq. 1.25 can be rewritten as follows

F [ρ] = Ts[ρ]+EH[ρ]+Exc[ρ], (1.34)

where EH[ρ] = 1
2
� � ρ(r)ρ(r�)

|r−r�| drdr� is the classical part of the electron-electron interaction

or the Hartree energy and the term Exc contains the Pauli and Coulomb correlation and

the ignored kinetic correlation in Ts[ρ]. We finally obtain the KS total energy functional,

EKS[ρ] = Ts[ρ]+
�

ρ(r)vext(r)dr+EH[ρ]+Exc[ρ]. (1.35)

The Kohn-Sham potential is determined by minimizing the KS energy functional w.r.t.

density under the constraint of the density integrates to the N electrons,

δ
δρ(r)

�
EKS[ρ]−µ

�
ρ(r)dr

�
= 0. (1.36)

From the above equation, we obtain the following equation for the minimizing ground

state density
δTs[ρ]
δρ(r)

+ vext(r)+
� ρ(r�)

|r− r�|dr�+
δExc

δρ(r)
= µ. (1.37)
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The effective KS potential vKS will be

vKS(r) = vext(r)+ vH(r)+ vxc(r), (1.38)

where vH(r) =
� ρ(r�)

|r−r�|dr� and vxc(r) = δExc
δρ(r) are the Hartree and exchange-correlation

(XC) potential respectively. The KS equation should be solved self-consistently and a

flowchart for the solution is shown in Fig. 1.1. The XC energy can be written as the sum

Figure 1.1: Flowchart for the iterative solution of the KS equation.

of exchange and correlation terms independently:

Exc[ρ] = Ex[ρ]+Ec[ρ], (1.39)

where Ex[ρ] and Ec[ρ] are defined as13

Ex[ρ] = �Φmin[ρ]|V̂ee|Φmin[ρ]�−EH[ρ], (1.40)

Ec[ρ] = �Ψmin[ρ]|T̂ +V̂ee|Ψmin[ρ]�−�Φmin[ρ]|T̂ +V̂ee|Φmin[ρ]�. (1.41)
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Here, Ψmin[ρ] minimizes the �T̂ + V̂ee� and Φmin[ρ] minimizes �T̂ � and both yield same

density ρ .

The main advantage of the KS approach is that through Ts[ρ] it captures a large part

of the total kinetic energy which is responsible for the density oscillations of the shell

structure. On the other hand, it is more convenient to approximate Exc[ρ] using local or

semilocal quantities rather than T [ρ]. In the next section, we will discuss about various

approximations to the XC energy term for practical calculations.

1.5 Exchange-Correlation Functionals

It is necessary to know the form of XC energy functional for the practical use of the KS

equation. However, the exact form of Exc is not known till date. Thus, since the advent

of DFT various types of approximations for Exc have been used for practical calculations.

Proposed XC functionals are categorized as different rungs of a Jacob’s ladder14 depend-

ing upon the ingredients used as shown in Fig. 1.2. Furthermore, the XC functionals can

be divided into non-empirical which are proposed by satisfying some physical rules, and

empirical ones which are proposed by fitting to known atomic or molecular properties.

Next, we briefly describe the rungs of the Jacob’s ladder to introduce some of the most

widely used XC functionals which also have been used later in this thesis for studying

different properties of solid-state and molecular systems.

Local Density Approximation (LDA) : In this approximation, a real inhomogeneous

system is divided into infinitesimal volumes and within each infinitesimal volume, the

density is taken to be uniform. The XC energy for each volume can be calculated using

the XC energy for the uniform electron gas at that density and the total XC energy for the

system can be written as

ELDA
xc =

�
ρ(r)εunif

xc (ρ(r))dr, (1.42)
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Figure 1.2: Schematic representation of the Jacob’s ladder of the exchange-correlation
functional approximations.

where εunif
xc (ρ(r)) is the XC energy density for the interacting electron gas of density ρ(r).

The analytical form of the exchange energy is known in this case and given by13,15

ELDA
x =−3

4

�
3
π

�1/3 �
ρ(r)4/3dr. (1.43)

However, there is no simple form available for the correlation energy and generally ob-

tained by analysis and interpolation of highly accurate quantum Monte-Carlo simulations

of the uniform electron gas.16 Some of the popularly used LDA functionals are the Vosko-

Wilk-Nusair (VWN),17 Perdew-Zunger (PZ)18 and Perdew-Wang (PW).19

The LDA shows good performance for various properties of solid-state systems such

as equilibrium structures, vibrational frequencies etc.. LDA works remarkably well for

metallic systems. A possible explanation for this success can be related to the error can-

cellation between the exchange and correlation energies in LDA. Typically, LDA overes-

timates the exchange and underestimates the correlation energies for real systems and as

a result of which it gives good values of ELDA
xc . This error cancellation appears because

the LDA satisfies the exact sum rule20,21 of XC energy.

However, LDA underestimates the lattice constants by 2− 3%,22 overestimates the

cohesive energies by 15−20%23 for solids and overestimates the atomization energies of
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molecules by ∼ 20%.24 LDA gives a very large error for weakly bonded system where

Van der Waals interaction is dominant.

Generalized Gradient Approximation (GGA) : The first step to improve the per-

formance of LDA is to include the gradient of density (∇ρ(r)) into the XC functional in

order to capture the varying electron densities of many materials. The earlier attempt was

called the gradient-expansion approximation (GEA), where the gradient correction terms

in powers of ∇ρ(r), |∇ρ(r)|2, ∇2ρ(r), etc. are added to LDA. However in reality the

lowest order gradient correction deteriorates the LDA result for most of the cases.25 Also,

it is very difficult to calculate the higher-order correction terms.

After the failure of GEA, it was found that one could write the expression of XC

functional as a more general function of ρ(r) and ∇ρ(r) and the general form of such

functional can be written as

EGGA
xc =

�
f GGA
xc (ρ(r),∇ρ(r))dr. (1.44)

The functional form of f GGA
xc is taken such that it can capture the correction to the LDA

XC energy while following the exact sum rules. The exchange energy functional within

GGA takes the form

EGGA
x =

�
ρ(r)εunif

x (ρ(r))FGGA
x (s)dr, (1.45)

where FGGA
x (s) is the exchange enhancement factor which determines the enhanced ex-

change energy over the LDA for a given density and ’s’ is the dimensionless reduced

density gradient

s =
|∇ρ(r)|

2(3π2)
1/3 ρ(r)4/3

. (1.46)

The functional form of GGA correlation energy EGGA
c is expressed as a complex function

of density gradient and relative spin polarization. Some widely used GGA functionals are

PBE,26 PW91,27 LYP28 and AM05.29

Normally GGAs improve the LDA results but this is not always the case. GGAs im-
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prove binding energies, atomic energies, and dynamical properties of water, ice, and water

clusters30 over the LDA results. However, lattice constants of solids are typically overes-

timated by GGAs. A particularly problematic situation is that self-interaction present in

the Hartree term is not compensated satisfactorily in the GGA functionals.

meta-GGA : The next step towards improving the performance of GGA is to con-

sider the fourth-order gradient expansion of the exchange and correlation energy. This

was first done in 1999 by constructing a meta-GGA that uses kinetic energy density
�
τ(r) = ∑i |∇φi(r)|2

�
or the Laplacian of density (∇2ρ(r)) as an additional semilocal in-

formation.31 Meta-GGA functionals improve results over GGA by satisfying other known

constraints which are missing in the GGA level and at the same time these functionals re-

tain the good formal properties of the GGAs. In general meta-GGA exchange functionals

are expressed as,

EMGGA
x =

�
ρ(r)εunif

x (ρ(r))FMGGA
x (s,α)dr, (1.47)

where s is defined in Eq. 1.46 and α = τ−τw

τuni f with τw = |∇ρ(r)|2
8ρ(r) is the von Weizsäcker

kinetic energy density and τuni f = 3
10

�
3π2�2/3 ρ5/3 is the uniform kinetic energy density.

MGGA correlation energy EMGGA
c can be expressed as a complex functional of the density

gradient, relative spin polarization and spin-polarized kinetic energy density. We can

construct a one-electron self-interaction18 free correlation energy functional at the meta-

GGA level i.e.

Ec[ρ] = 0 for any density such that
�

ρ(r)dr = 1. (1.48)

Some of the widely used meta-GGA functionals are PKZB,31 TPSS,32 TM,33 and SCAN.34

The TM functional is developed by modelling the exchange hole using density matrix ex-

pansion under a generalized coordinate transformation. The SCAN density functional

satisfies seventeen known exact constraints for the exchange and correlation. These func-

tionals are very accurate for predicting lattice constants, cohesive energies, and frequen-

cies of the solid-state systems and at the same time give accurate atomization energies of

molecules.32,34
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The most important unresolved issue at the meta-GGA level is the incomplete cancel-

lation of the self-interaction by the exchange term. Also, meta-GGA functionals do not

include the static correlation and van der Waals interaction.

Hybrid Functional : The observation that the trends of semilocal approximations are

opposite to those of the HF approximation initiates the development of approximations

that mix these two approaches. However, the concept of hybrid functionals can be derived

using the “adiabatic connection”35 for the XC energy of the DFT, which is expressed in

the following way

Exc =
� 1

0
Uλ

xcdλ , (1.49)

where λ is the parameter for the interelectronic coupling strength which switches on the

Coulomb interaction between the electrons and Uλ
xc is the potential energy of the XC at

a particular value of λ . The Eq. 1.49 connects the non-interacting Kohn-Sham system

for λ = 0 to the fully interacting system for λ = 1 through a series of partially interact-

ing systems in between 0 < λ < 1 and all of the systems have the same density as the

interacting one. As the non-interacting limit (λ = 0) is described by the HF exchange,

we might expect an important role of the exact exchange for the improvement of the XC

functionals. Thus in the hybrid functionals, semilocal XC approximation is mixed with

the HF exchange in the following way

Ehyb
xc = αEHF

x +(1−α)EDFT
x +EDFT

c . (1.50)

The most popular and widely used hybrid functional within the quantum chemistry

community is the B3LYP36 which uses three parameters for controlling the mixing of the

HF exchange and the DFT XC and the functional form can be written as

EB3LYP
xc = ELDA

xc +α0(EHF
x −ELDA

x )+αxΔEB88
x +αcΔELYP

c , (1.51)

where α0 = 0.20, αx = 0.72 and αc = 0.81 are determined empirically by fitting to exper-

imental data, ΔEB88
x and ΔELYP

c are the gradient corrections for the exchange and corre-

lation respectively.28,37 In the case of PBE038 functional, PBE GGA is used in Eq. 1.50.
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In this case, the mixing coefficient α is taken to be 0.25 from the perturbative calcula-

tion.39 These functionals improve the performance over semilocal functionals for several

molecular properties.40,41

The hybrid functionals discussed till now are called the global hybrids as the mixing

coefficient is constant over the whole range. However, there are some hybrid functionals

which use position dependent mixing to further reduce the self-interaction error. These are

called local hybrid functionals42,43 which can model two-centre, three-electron symmetric

radicals accurately.

There are another class of hybrid functionals where the HF exchange and the semilo-

cal XC functionals are mixed using the range separation of the Coulomb interaction op-

erator. These are called range separated functionals and popular examples of this type

of functionals are the CAM-B3LYP,44 HSE06,45 LC-ωPBE,46 LC-ωPBEh47 etc.. These

functionals will be discussed in great detail in the second chapter.

Besides these four rungs of the Jacob’s ladder, there are other XC functionals in the

higher rungs with increasing complexity. Although, it is expected to get improved re-

sults by climbing higher on Jacob’s ladder but it is not always the case.23 Most of the

proposed XC functionals have been implemented in the library of exchange-correlation

functional (LIBXC)48 which can be interfaced with several first-principle codes for the

DFT calculations.

1.6 Designing Exchange-Correlation Functional via the

Exchange-Correlation Hole

In the previous section, we have introduced different levels of approximations for the XC

energy functional. In this section, we will describe how one can derive XC functional

using the concept of XC hole. By combining Eqs. 1.39, 1.40, and 1.41 we can express the

XC energy functional as

Exc[ρ] = (Vee[ρ]−EH[ρ])+(T [ρ]−Ts[ρ]) . (1.52)
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The first part of the contribution is associated with the second-order reduced density ma-

trix and the second one with the first-order reduced density matrix. A brief description of

the reduced density matrix is given in Appendix A. Using the adiabatic connection theo-

rem, we can derive a single expression for the XC energy functional in terms of the XC

hole. Let’s define the universal functional for any intermediate interaction strength as

Fλ [ρ(r)] = min
ψ→ρ

�ψ|T̂ +λV̂ee|ψ�. (1.53)

Then Eq. 1.52 reduces to

Exc =
� 1

0

∂Fλ (ρ)
∂ρ

dλ −EH(ρ). (1.54)

Finally, inserting the value of ∂Fλ (ρ)
∂ρ in the above equation, we obtain49

Exc[ρ] =
1
2

� � ρ(r)ρxc(r,r�)
|r− r�| drdr�. (1.55)

The XC hole ρxc represents a fictitious charge reduction due to the exchange and correla-

tion effects. In other words, it represents that the presence of an electron at r reduces the

probability of getting another electron at r� in the vicinity of r. The XC hole follows the

following sum rule20 - �
ρxc(r,r�)dr� =−1. (1.56)

This signifies that the XC hole consists of exactly one displaced electron. We can disinte-

grate exchange and correlation contributions from ρxc. We can define the exchange hole

as

ρx(r,r�) =−1
2
|ρ1(r,r�)|2

ρ(r)
, (1.57)

where ρ1(r,r�) is the first-order reduced density matrix. Using this exchange energy will

be expressed as

Ex =
1
2

� � ρ(r)ρx(r,r�)
|r− r�| drdr�. (1.58)
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and the exchange hole satisfies

�
ρx(r,r�)dr� =−1. (1.59)

Then the correlation hole must integrate to zero,
�

ρc(r,r�)dr� = 0 and the correlation

energy is

Ec =
1
2

� � ρ(r)ρc(r,r�)
|r− r�| drdr�. (1.60)

From the above discussion, it is clear that the exchange energy corresponds to the inter-

action energy of the electrons with a charge distribution of one unit charge and the cor-

relation energy equals the interaction of the electrons with a neutral charge distribution.

We will construct exchange energy functional using Eq. 1.58 which will be discussed in

detail in the third & fourth chapter.

1.7 Important Properties Of The Exchange-Correlation

Functional

In the previous section, we have discussed about the exact expression of the XC energy

functional in terms of the XC hole. But the exact form of the exchange hole is known

only for the homogeneous electron gas. Hence, for the calculation purpose, we need to

approximate the form of the XC energy functional. Although the exact form of the XC

functional is unknown, many features of the exact Exc[ρ] are known. In general non-

empirical XC functionals are designed to satisfy as many exact constraints as possible.

1.7.1 Scaling Properties

In uniform density scaling, a scaling factor γ is introduced which changes the length scale

of the density, either stretches out (γ < 1) or squeezes in (γ > 1), while maintaining the
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normalization. Under this condition, density scales as

ργ(r) = γ3ρ(γr), (1.61)

where the prefactor is chosen to maintain the normalization-

N =
�

ργ(r)dr =
�

γ3ρ(γr)dr =
�

ρ(r�)dr�. (1.62)

Scaling properties of the exact exchange functional is given as50

Ex[ργ ] = γEx[ρ]. (1.63)

However, the exact scaling relation for the correlation energy is not known. It follows the

following inequalities50

Ec[ργ ]> γEc[ρ] for γ > 1

Ec[ργ ]< γEc[ρ] for γ < 1
(1.64)

1.7.2 One-Electron Limit

In the case of a one-electron system, the exact exchange energy should cancel the classical

Coulomb interaction energy due to the self-interaction present in both the terms. As

exchange and Hartree term cancel each other, correlation energy must be zero in this

case to avoid any spurious self-interaction error. It is very hard to follow these condition

exactly when we approximate XC functional in terms of density. Our XC functional

designing strategies would be to follow these conditions as closely as possible. Thus for

any one-electron density ρ(1),

Ex[ρ(1)] =−EH[ρ(1)],

Ec[ρ(1)] = 0.
(1.65)
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1.7.3 The Lieb-Oxford Bound

Exact XC energy functional satisfies the following inequalities51

Ex[ρ]≥ Exc[ρ]≥−1.679
�

ρ4/3(r)dr. (1.66)

The above inequality will be satisfied if the enhancement factor defined in Eq. 1.45 satisfy

the following relation26

Fx ≤ 1.804. (1.67)

The Lieb-Oxford bound is satisfied by some of the popular semilocal functionals includ-

ing PBE, PKZB, and TPSS. In the case of two-electron systems, where α = 0, an optimal

lower bound on exchange was derived52 for the meta-GGA functional and it is satisfied

for all possible densities if and only if

Fx(s,α = 0)≤ 1.174. (1.68)

It is also conjectured that for any general α the enhancement factor of the meta-GGA

functional should follow the following relation52

Fx(s,α)≤ Fx(s,α = 0)≤ 1.174 (1.69)

This tight lower bound is satisfied by the MVS53 and MGGAC54 meta-GGA XC function-

als. This condition will be used in chapter four to develop meta-GGA exchange energy

functional.

1.7.4 Spin Scaling Relations

The total density of a system can be written as a sum of up and down spin densities i.e.

ρ(r) = ρ↑(r)+ρ↓(r). (1.70)
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Since the exchange is only allowed between like spins, exchange energy functional can

be decomposed in terms of up and down spin densities in the following way,

Ex[ρ↑,ρ↓] =
1
2
�
Ex[2ρ↑]+Ex[2ρ↓]

�
. (1.71)

By using the above formula any spin unpolarized exchange energy functional can be trans-

formed into its spin-polarized form. This is very useful for calculating the properties of

magnetic systems. However, there is no simple spin scaling relation for the correlation

energy functional.

To conclude, in this chapter we have discussed a brief overview of the density func-

tional method including its practical applications for which we need exchange-correlation

functional. As the exact XC functional is unknown, for practical calculations we need to

approximate the same. Then, we have presented different levels of approximation for the

XC term in terms of the Jacob’s ladder of DFT. Next, we have provided some exact con-

straints of the XC functional which are useful for functional development. In this thesis,

we will discuss about new developments of the XC functionals both in the semilocal and

hybrid level and the application of those developed functionals for different solid-state

and molecular systems.

1.8 Outline of the Thesis

In the second chapter, we will develop a long-range corrected density functional using

semilocal exchange hole. This chapter will have a rigorous theoretical description of the

range-separated density functional from the adiabatic connection theorem. The developed

functional will be applied to calculate the properties of various molecular test sets and

benchmarked by comparing with other popularly known range-separated functional.

In the third chapter, a semilocal density-functional will be developed by modelling the

exchange hole using cuspless hydrogen density as a model for the band gap of solid-state

systems. The proposed functional will be applied to calculate band gap of narrow and

moderate band gap semiconductors and layered materials.
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In the fourth chapter, we will extend the method of the second chapter and propose

a meta-GGA exchange functional depending only on the Pauli kinetic energy density. In

combination with a GGA correlation, the proposed functional will be applied to calculate

the properties of various thermochemical test-sets, bulk solids, and surfaces.

In the fifth chapter, we will apply the developed functional in the fourth chapter for

the case of phase stability of FeS2, TiO2 and MnO2.





Chapter 2

Long-range Corrected Hybrid Density

Functional Using Semilocal Exchange

Hole

2.1 Introduction

The semilocal XC functionals described in the previous chapter have an excellent accu-

racy to computational cost ratio and are mostly easy to implement. These functionals are

very successful in predicting atomization energies,55,56,57,58 lattice constants,22,23,59 equi-

librium bond lengths,58,60 cohesive energies,23,59 and surface properties.59 However, DFT

with these class of functionals exhibits noticeable failures including underestimation of

reaction barriers,61 instability of anions,62,63 incorrect dissociation limit of molecules,64,65

absence of Rydberg states66 and wrong prediction of oscillator strength.67,68,69

The aforementioned shortcomings of the semilocal functionals are linked with their

failures to deal with the self-interaction error (SIE), also known as delocalization error.

For one-electron systems, the Hartree energy should be cancelled by the exact XC en-

ergy. On the contrary, the Hartree-Fock (HF) theory correctly follows this constraint and

hence gives correct dissociation limit for one electron system. For many-electron case, an
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XC functional is said to be one-electron self-interaction free if it satisfies the following

condition18-

Exc[ρ j]+EH[ρ j] = 0, (2.1)

where ρ j = ∑ |ψ j|2 is the one-electron density. However, Eq. 2.1 is puzzling in the case

of the many-electron system as we cannot always identify orbital densities with electrons.

An XC functional is many-electron self-interaction free if it satisfies the piecewise linear-

ity70 condition of total energy E(N) as a function of particle number N

E(N) = (1− ε)E(N0)+ εE(N0 +1), (2.2)

where E(N0) and E(N0 + 1) are the ground-state energies of the N0 and N0 + 1 electron

systems respectively and 0 ≤ ε ≤ 1. Although semilocal functionals give a good estimate

of ground-state energies of the system with integer particle number, but give too low

energies for fractionally occupied systems. This gives rise to deviation from the linearity

condition and we get a convex curve for semilocal functionals and on the other hand, the

HF theory gives the energy curve to be concave.

It is expected that self-interaction error is connected to the XC potential. If an electron

is removed to infinity from a finite neutral-charge system, it will feel the hole of charge

one that is left behind and as a result the potential felt by that electron should have −1/r

asymptote.71

lim
|r|→∞

Vxc(r) =− 1
|r| . (2.3)

The XC potential coming from semilocal functionals shows incorrect asymptotic be-

haviour and decays faster than −1/r. Missing non-locality72 of the semilocal XC func-

tionals is essential to describe barrier heights, long-range charge transfer and dissociation

limit of the molecules. One of the possible solutions to include the missing non-locality is

to consider the global hybrid functional defined in the previous chapter where a fraction of

HF exchange is mixed with semilocal functional. Although B3LYP36 and other73,74 pop-

ular hybrid XC functionals give satisfactory results in most of the cases but still, they have

accuracy issues in describing dissociation energy and phenomena involving fractional oc-
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cupation number. For global hybrids, XC potential decays asymptotically as −c/r, where

c is the fraction of mixed Hartree-Fock exchange but this violates the condition stated in

Eq. 2.3. Another possible way to include non-locality and at the same time follow the

Eq. 2.3, is to use the range-separation technique66,75 of the Coulomb interaction operator.

In this scheme, exact HF exchange is used for long-range interaction and semilocal DFT

is adopted for the short-range interaction.

Usually, range-separated functionals are designed from the spherically averaged ex-

change holes33,76 or the holes constructed from the reverse engineering technique.77,78

The CAM-B3LYP functional is designed employing LDA exchange hole and including

the inhomogeneity through the modification of Thomas-Fermi wave-vector.44 Following

this, the HSE06,45 LC-ωPBE,46 and LC-ωPBEh47 functionals are designed using the

PBE exchange hole. In this chapter, we construct a long-range corrected density func-

tional using Tao-Mo33 semilocal exchange hole. First, we briefly describe the theoretical

framework of the range-separated functional. The proposed form of the long-range cor-

rected functional is given in section 2.3. Finally, computational details and results for

different benchmarking test sets are discussed in the subsequent sections.

2.2 Theoretical Background

In range-separated density functional theory, Coulomb interaction Vee(ri,r j) =
1

ri j
be-

tween two electrons at ri and r j can be splitted into a short-range (SR) and long-range

(LR) parts in the following way

1
ri j

=
1− f (ri j)

ri j� �� �
SR

+
f (ri j)

ri j� �� �
LR

. (2.4)

where f (ri j) is some smooth range-separation function. The most suitable form for the

function ‘ f ’ from both physical and computational point of view is f (ri j) = erf(µri j),

where µ is a parameter. However other forms79,80 of the function ‘ f ’ have been used

in the literature. For this choice, the first term of the equation goes to zero as ri j → ∞
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and the second term goes to 2µ/
√

π for ri j → 0. Parameter µ can be regarded as a cut-

off between long-range and short-range parts. For interelectronic distances larger than

the cut-off radius (rc ≈ 1/µ), LR part of the interaction (V LR
ee ) reproduces long-range

Coulomb tail as shown in Fig. 2.1. The most natural form of these functionals, also called
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Figure 2.1: Coulomb interaction (Vee) and its long-range (V LR
ee ) and short-range (V SR

ee )
parts versus electron-electron distance |ri −r j| are shown for range separation parameter
µ = 0.33 in a.u.. rc ≈ 1/µ is the cut-off radius for the range of interaction.

as Coulomb-attenuating method (CAM)75 functional defined as

1
ri j

=
1− [α +β f (ri j)]

ri j� �� �
SR

+
α +β f (ri j)

ri j� �� �
LR

, (2.5)

where α is the fraction of exact HF exchange and α + β is the fraction of LR HF ex-

change.81 The parameters α and β should follow the relations 0 ≤ α +β ≤ 1, 0 ≤ α ≤ 1,

0 ≤ β ≤ 1. Mixing DFT and HF in this way gives rise to different global hybrids and

long-range corrected functionals as limiting cases depend on the values of α and β .

Till now, range-separated functionals have been introduced from the empirical back-

ground. However, these functionals can be derived from the adiabatic connection theo-

rem. Let’s assume there exists a one parameter smooth representation of electron-electron

Coulomb interaction operator, V̂ee → V̂ µ
ee for 0 ≤ µ ≤ ∞ such that V̂ 0

ee = 0 and V̂ ∞
ee = V̂ee.
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The universal functional for this kind of interaction is written as

Fµ [ρ] = min
ψµ→ρ

�ψµ |T̂ +V̂ µ
ee|ψµ�. (2.6)

Then by construction F0 = T 0 for the Kohn-Sham system and F∞ = F for real interacting

system. The XC functional from the adiabatic connection theorem82 is given by

Exc[ρ] =
� ∞

0

dFµ �

dµ � dµ � −EH[ρ]

=
� ∞

0
�ψµ � |dV̂ µ �

ee

dµ � |ψ
µ � �dµ � −EH[ρ]. (2.7)

Given a value of parameter µ , if we assume the wavefunction in Eq. 2.7 to be Slater

determinant Φ for µ � < µ and full interacting wavefunction for µ � > µ then the above

equation reduces to

Exc[ρ] = Eµ,LR
x,HF [ρ]+

�
�ψ|V̂ee −V̂ µ

ee|ψ�− 1
2

�
V SR

ee ρ(r)ρ(r�)d3rd3r�
�

� �� �
Eµ,SR

xc

. (2.8)

To sum up, the full energy functional in range-separated hybrid scheme becomes

ERSH [ρ] = T 0[ρ]+Vext[ρ]+EH[ρ]+Eµ,LR
x,HF [ρ]+Eµ,SR

xc [ρ]. (2.9)

After applying the range-separation only on the exchange part, the above equation can be

written as

ERSH[ρ] = T 0[ρ]+Vext[ρ]+EH[ρ]+Eµ,LR
x,HF [ρ]+Eµ,SR

x [ρ]+Ec[ρ]. (2.10)

The functional obtained above is called the long-range corrected (LC) functional. In

Eq. 2.10, the form of the long-range part of the exchange interaction is

Eµ,LR
x,HF [ρ] =−1

2 ∑
σ

occ

∑
i, j

� �
φ∗

iσ (ri)φ∗
jσ (r j)

erf(µri j)

ri j
φ jσ (ri)φiσ (r j)dridrj, (2.11)
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where φiσ is the ith σ -spin molecular orbital and the short-range exchange functional is

given as

Eµ,SR
x [ρ] =

1
2

� � ρ(ri)(1− erf(µri j))ρx(ri,rj)

ri j
dridrj, (2.12)

where ρx(ri,rj) = −|ρ1(ri,rj)|2/2ρ(ri) is the exchange hole and ρ1(ri,rj) be the first

order reduced density matrix. Therefore knowing the exchange hole, the short-range part

of the exchange functional can be designed.

2.3 Proposed Long-range Corrected Functional

We design a long-range corrected functional using the recently proposed Tao-Mo33 semilo-

cal exchange hole. This exchange hole is derived from density matrix expansion (DME)

making use of the fact that the exchange hole can be made localized under a generalized

coordinate transformation. Tao-Mo semilocal exchange hole at a reference point r due to

another electron at r� has the following form

ρx(r,u) =−9ρ(r)
2

j2
1(ku)
k2u2 − 105 j1(ku) j3(ku)

k4u2 G − 3675 j2
3(ku)

8k6u4 H , (2.13)

where u= r�−r, G = 3(λ 2−λ + 1
2)(τ−τuni f − |∇ρ(r)|2

72ρ(r) )−(τ−τuni f )+7(2λ −1)2 |∇ρ(r)|2
18ρ(r) ,

H =(2λ −1)2 |∇ρ(r)|2
ρ(r) , τ is the Kohn-Sham kinetic energy density, τuni f =

3
10(3π2)2/3ρ5/3,

λ is the parameter for the generalized coordinate transformation83,84 and j1, j3 are the

spherical Bessel functions of order one and three respectively. To take care the inhomo-

geneity in the system, the modified momentum vector k is defined as k = f kF , where

kF is the Fermi momentum for the uniform electron gas. The inhomogeneity parame-

ter33 f is fixed using the sum rule of exchange hole by extrapolating its large and small

gradient limit and is given by f = [1+ 10(70y/27)+ βy2]1/10, where y = (2λ − 1)2s2,

s = |∇ρ|/(2kFρ) and β is a parameter. This semilocal exchange hole has the following

properties

(i) It correctly recovers the exchange hole of the uniform electron gas ρuni f
x (r,u) =

−9ρ(r)
2

j21(kF u)
k2

F u2 , which is the first term in equation 2.13.
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(ii) It correctly reproduces the small u expansion of the exchange hole proposed by

Becke.76

(iii) Exchange hole converge at large u limit such that the form of exchange energy can

be evaluated without any numerical cutoff procedure.85

As prescribed by Tao-Mo,33 the parameters λ and β are fixed from the condition of getting

the exchange energy of the hydrogen atom and the enhancement factor to be smoothly

increasing function of s in the iso-orbital region. This gives λ and β to be 0.6866 and

79.873 respectively. Using the exchange hole of Eq. 2.13, the short-range part of the

exchange functional becomes

Eµ,SR
x [ρ] =

1
2

�
ρ(r)(M +N +Q)d3r, (2.14)

where

M =−9πρ(r)
2k2

�
1− 8

3
a
�√

π erf
� 1

2a

�
+(2a−4a3)exp

�
− 1

4a2

�

−3a+4a3
��

,

(2.15)

N =−35π
3k4 G

�
1+24a2

�
(20a2 −64a4)exp

�
− 1

4a2

�
−3−36a2 +64a4

+10a
√

π erf
� 1

2a

���
,

(2.16)

Q =−245π
48k4 H

�
1+

8
7

a
�
(−8a+256a3 −576a5 +3840a7 −122880a9)exp

�
− 1

4a2

�

+24a3(−35+224a2 −1440a4 +5120a6)+2
√

π(−2+60a2)erf
� 1

2a

���
,

(2.17)

and a = µ
2k . Most of the previously proposed LC hybrid XC functionals employ system

independent value for the screening parameter µ . However, there are some reports regard-

ing the use of system-dependent screening parameter,86,87 but those are computationally

not efficient due to their non-trivial implementation. The value of the parameter µ for LC

functionals generally lies between 0.25 to 0.40.44,46,87,88,89,90,91,92 This parameter can be
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optimized from a small test set of atomization energy of molecules92 or vertical ionization

potential of some molecule.90,91 For the present case, the value of µ is chosen to be 0.33,

analogous with the CAMB3LYP functional which gives balanced results for both thermo-

chemistry and barrier heights. We use one electron self-interaction free LYP28 correction

with our proposed LC functional and we term it as LC-TMLYP.

2.4 Computational Details And Benchmark Test-sets

The newly proposed LC functional of Eq. 2.14 is implemented in the modified local

version of NWChem-6.6.93 All calculations have been performed self-consistently in

NWChem. Spin polarized calculation has been done for open shell systems. The value

of µ = 0.33 is used for all parts of the code. A medium grid is used for the numerical

evaluation of the exchange-correlation contribution to the density functional. The details

of the basis set used in the calculations are discussed in the result section. In Table 2.1,

we have shown the dataset used for benchmarking LC-TMLYP functional. The devia-

tion from theoretical results from the reference values are reported as mean error (ME)

and mean absolute error (MAE). To compare the results of LC-TMLYP, we consider the

four other popularly known range-separated functionals HSE06,45 CAM-B3LYP,44 LC-

ωPBE,46 and LC-ωPBEh.47

2.5 Results

2.5.1 Total Energies of Atoms

The total energies of atoms up to Cl are computed for the functionals under investigation.

The 6-311++G(3df,3pd) basis set is used for all atoms except He, for which aug-cc-pVQZ

basis set is used. The comparison of calculated results using different functionals with

the accurate non-relativistic reference values96 is provided in Table 2.2. Overall, CAM-

B3LYP has the smallest MAE and LC-ωPBEh gives the largest MAE for this test set.

LC-TMLYP gives MAE 0f 0.14 Hartree, which is very close to the prediction of CAM-
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Table 2.1: Summary of the test sets used for benchmarking calculations.

Database Description Ref.
AE17 17 atomic energies (H-Cl) 94

Thermochemistry
G2/97 148 atomization energies 95

IP13 13 ionization potentials 94

EA13 13 electron affinities 94

PA8 8 proton affinities 94

NCCE31 31 non-covalent interactions 94

πTC13 13 thermochemistry of π system 94

ABDE12 12 alkyl bond dissociation energies 94

ISOL6 6 isomerization energies 94

HC7 11 hydrocarbon chemistry 94

DC7 7 difficult cases 94

Barrier Height
HTBH38 38 hydrogen transfer barrier height 94

NHTBH38 38 non-hydrogen transfer barrier height 94

B3LYP. For the case of the total energy of H atom, LC-ωPBE has the largest deviation

among the tested functionals. Any deviation of the total energy of H atom (one elec-

tron) from the reference value can be linked with the one-electron self-interaction error.

There is a spurious one-electron self-interaction error of 0.006 Hartree for LC-ωPBE.

LC-TMLYP and CAM-B3LYP have the lowest error of about 0.002 Hartree for this case.

2.5.2 Thermochemical Test Set

Atomization Energy:

Atomization energy of a molecule is defined as the difference between the total energy of

the molecule and sum of the energy of its constituent free atoms, all measured at 0K. The

atomization energies of 148 molecules for the G2/9795 test set are calculated. The total

energy is calculated using 6-311++G(3df,3pd) basis set and MP2(full)/6-31G* optimized

geometry for each molecule. The calculated results are then compared with that of the

CCSD(T) values,97 which is assumed to be gold-standard in quantum chemistry. All the
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Table 2.2: Total energies (Hartree) of atoms from H to Cl (AE17) test set.

Atom Ref. LC-TMLYP CAM-B3LYP LC-ωPBE LC-ωPBEh HSE06
H -0.500 -0.498 -0.498 -0.506 -0.503 -0.504
He -2.904 -2.904 -2.901 -2.904 -2.897 -2.902
Li -7.478 -7.479 -7.470 -7.469 -7.468 -7.475
Be -14.667 -14.659 -14.649 -14.637 -14.639 -14.647
B -24.654 -24.650 -24.640 -24.624 -24.622 -24.631
C -37.845 -37.846 -37.836 -37.816 -37.809 -37.819
N -54.589 -54.592 -54.580 -54.559 -54.547 -54.558
O -75.067 -75.082 -75.070 -75.038 -75.021 -75.034
F -99.734 -99.755 -99.741 -99.698 -99.676 -99.691

Ne -128.938 -128.958 -128.941 -128.887 -128.861 -128.877
Na -162.255 -162.284 -162.266 -162.191 -162.176 -162.196
Mg -200.053 -200.085 -200.071 -199.968 -199.964 -199.987
Al -242.346 -242.378 -242.368 -242.251 -242.252 -242.275
Si -289.359 -289.386 -289.380 -289.254 -289.255 -289.279
P -341.259 -341.274 -341.274 -341.140 -341.141 -341.166
S -398.110 -398.124 -398.130 -397.981 -397.981 -398.006
Cl -460.148 -460.156 -460.170 -460.007 -460.006 -460.031

ME -0.012 -0.004 0.057 0.064 0.049
MAE 0.014 0.012 0.058 0.064 0.049

range-separated functionals including LC-TMLYP are performing well in this case, giving

MAE below 6 kcal/mol. Table 2.3 shows that the CAM-B3LYP has the lowest MAE in

this case, followed by LC-TMLYP. The LC-ωPBEh gives the largest MAE among the

functionals considered here.

Ionization Potential, Electron Affinity and Proton Affinity:

Ionization potential (IP) and electron affinity (EA) is defined as the difference in energy of

the ion (cation for IP and anion for EA) and the corresponding neutral atom or molecule,

all measured at 0 K. We calculate IP and EA for the IP13 and EA13 databases respectively

with QCISD/MG398 level optimized geometry. Single point energy is calculated using 6-

311++G(3df,3pd) basis set. From Table 2.3, it is clear that all the considered functionals

overestimate IP and underestimate EA except CAMB3LYP. HSE06 is performing best for

IP giving MAE of 0.139 eV and for EA it is CAM-B3LYP with MAE of 0.084 eV. For

both IP and EA, LC-TMLYP performs with comparable accuracy with the other range-
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Table 2.3: ME and MAE for the following benchmark datasets using the consid-
ered range-separated functionals. Best/worst MAE result for each dataset is shown in
bold/underline style.

Dataset Error LC-TMLYP CAM-B3LYP LC-ωPBE LC-ωPBEh HSE06
G2/97

(kcal/mol)
ME -4.494 1.199 1.746 2.276 -4.610

MAE 5.099 4.329 5.362 5.735 5.195

IP13
(eV)

ME 0.083 0.158 0.239 0.147 0.108
MAE 0.169 0.196 0.239 0.167 0.139

EA13
(eV)

ME -0.077 0.022 -0.027 -0.052 -0.068
MAE 0.128 0.084 0.089 0.105 0.123

PA8
(eV)

ME 0.012 -0.047 0.086 0.470 0.077
MAE 0.051 0.084 0.086 0.470 0.077

NCCE31
(kcal/mol)

ME -0.27 -0.24 -0.70 -0.45 -0.46
MAE 0.45 0.45 0.78 0.56 0.71

ABDE12
(kcal/mol)

ME -9.08 -6.63 -5.52 -6.42 -9.38
MAE 9.08 6.63 5.52 6.42 9.38

ISOL6
(kcal/mol)

ME -1.96 -1.80 -1.05 -0.65 -1.12
MAE 1.96 2.03 1.57 1.67 1.42

HC7
(kcal/mol)

ME -5.37 -5.35 16.05 9.22 0.24
MAE 5.37 5.35 20.07 13.65 5.92

DC7
(kcal/mol)

ME -15.69 -4.40 4.43 -1.15 -21.21
MAE 15.69 9.53 15.44 17.54 23.07
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separated functionals.

Proton affinity (PA) is the amount of released energy when a proton is added to an

atom or molecule in its ground state. We compute the PA of the PA8 database with

MP2/6-31G(2df,p) level optimized geometry. Except for CAM-B3LYP, all the investi-

gated functionals overestimate PA. LC-TMLYP is the most accurate for PA among the

tested functionals.

Binding Energy of Weakly Interacting System:

Weak interactions play a significant role in diverse physical, chemical, and biological

phenomena in nature.99,100,101 It is very important to accurately describe these interac-

tions theoretically for understanding the above technologically influential fields. Inclu-

sion of weak interactions within semilocal DFT is difficult due to their inability to cap-

ture the non-local nature of these interactions. However, including kinetic energy den-

sity within semilocal DFT considerably reduces the errors of LDA and GGA XC func-

tionals for predicting the binding energy of the weakly interacting systems.94 We assess

our proposed meta-GGA level long-range corrected functional for the NCCE/31 test set

with MC-QCISD/3 level optimized geometry.98 Single point energy is calculated using 6-

311++G(3df,3pd) basis set for all the molecules except for the inert gas related molecules

where we use aug-cc-pVQZ basis set. All the range-separated functionals perform well

for this case as shown in Table 2.3. LC-TMLYP and CAM-B3LYP are the best choices

for this database.

Alkyl Bond Dissociation Energies, Isomerization Energies, Hydrocarbon Chemistry

and Difficult cases:

Predicting alkyl bond dissociation energy which depends on the size of the alkyl group

proved to be challenging for many density functionals.102 The database ABDE12 for alkyl

bond dissociation contains two subsets ABDE4/05 and ABDEL8.98 ABDE4 subset con-

tains four bond dissociation energies of R-Y type organic molecules, where R = methyl

and isopropyl and X = CH3 and OCH3 and ABDEL8 includes eight molecules with R =

ethyl and tert-butyl and Y = H, CH3, OCH3 and OH. For isomerization energy, hydrocar-

bon chemistry and difficult cases, we use ISOL6,94 HC7,94 and DC994 test set. For all

calculations in this section, 6-311++G(3df,3pd) basis set is used. LC-ωPBE performs the
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best for alkyl bond dissociation energy with MAE of 5.52 kcal/mol.

For the isomerization of large molecules, all the investigated functionals underesti-

mate which is evident from Table 2.3. HSE06 gives the best results for ISOL6 and other

functionals also give comparable results with that of HSE06.

The hydrocarbon chemistry (HC7) database consists of seven challenging systems

containing medium-range correlation energies in hydrocarbons. LC-TMLYP, CAM-B3LYP

and HSE06 give comparable results for this test case while LC-ωPBE and LC-ωPBEh are

not performing well for this case giving MAE of 20.07 and 13.65 kcal/mol respectively.

The Difficult cases (DC9) includes the reaction energies of nine cases which are found

to be challenging for density functional theory.103,104 The most popular global hybrid

density functional, B3LYP, gives an MAE of 20.7 kcal/mol for this case.105 The general

tendency of range-separated functionals is to underestimate the value of reaction energies

except for LC-ωPBE. CAM-B3LYP gives the lowest MAE of 9.53 kcal/mol, followed by

LC-ωPBE, LC-TMLYP, and LC-ωPBEh functionals.

Thermochemistry of π system:

The database for π system (πTC13)106,107 consists of three secondary databases - (i)

πIE3/06- database of three isomeric energy differences between propyne and allene and

higher homologs, (ii) PA-CP5/06- proton affinities of five conjugated polyenes and (iii)

PA-SB5/06- proton affinities of five conjugated Schiff bases. Molecules with π bonds are

challenging for DFT due to their multiconfigurational state functions which comes from

their small HOMO-LUMO gap, where HOMO is the highest occupied molecular orbital

and LUMO is the lowest unoccupied molecular orbital. The performance of the range-

separated functionals for this database are tested and a summary of results for the full and

its secondary databases are shown in Table 2.4. We have taken MP2/6-31+G(d,p) level

optimized geometries98 and 6-311++G(3df,3pd) basis set for all the calculations. All the

tested functionals overestimate the result for this case. The CAM-B3LYP provides the

best result for this case with an MAE of 3.39 kcal/mol, followed by LC-TMLYP with an

MAE of 4.19 kcal/mol.

Barrier Heights of Chemical Reactions:
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Table 2.4: Shown are the MAE for πTC13 and its secondary databases for the tested
functionals. Best/worst MAE result is shown in bold/underline style. All values are given
in kcal/mol.

πTC13 πIE3/06 PA-CP5/06 PA-SB5/06
Functional ME MAE ME MAE ME MAE ME MAE
LC-TMLYP 4.19 4.19 0.99 0.99 5.19 5.19 5.12 5.12
CAM-B3LYP 3.39 3.41 2.37 2.37 3.58 3.61 3.82 3.82
LC-ωPBE 4.05 4.24 0.17 0.98 4.92 4.92 5.51 5.51
LC-ωPBEh 4.79 4.79 2.39 2.39 5.45 5.45 5.58 5.58
HSE06 6.45 6.54 4.54 4.94 6.96 6.96 7.09 7.09

The semilocal density functionals often underestimate the barrier height of chemical re-

action. A chemical reaction usually involves the breaking and formation of bonds. In this

process, transition state have stretched bonds and hence electron delocalization where the

same electron is shared between different molecular fragments. Most of the time semilo-

cal density functionals give lower energy for the transition state with respect to reactants

and products, which result in negative barrier height because of the large self-interaction

error for these systems.65 On the other hand, HF theory overestimates the barrier heights.

Hence, the error in predicting the transition state energy can be substantially reduced by

mixing a portion of HF exchange with the semilocal functionals. However, very often

over 50 % of HF exchange is needed to get accurate kinetics, which worsen the results of

thermochemistry.108

Both forward and reverse reaction barrier heights are computed for nineteen hydrogen

and nineteen non-hydrogen transfer reactions from HTBH38 and NHTBH38 dataset109,110

respectively. Moreover, the set NHTBH38 is partitioned into a set of six heavy-atom

transfer reactions, eight nucleophilic substitution reactions, and five unimolecular and as-

sociation reactions. Single point energy is computed using 6-311++G(3df,3pd) basis set

and geometries are taken from Minnesota database.98 Table 2.5 summarizes the ME and

MAE for all the functionals tested. LC-ωPBE and LC-TMLYP give the lowest MAE for

hydrogen transfer and non-hydrogen transfer barrier heights respectively. Overall, both

LC-ωPBE and LC-TMLYP give comparable results for barrier heights. In this case, the

performance of HSE06 is not satisfactory with an MAE of 3.48 kcal/mol for HTBH38
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and 5.04 kcal/mol for NHTBH38 respectively.

2.5.3 Dissociation Energy

Here, we describe the dissociation of the H+
2 and NaCl molecule which are proved to

be challenging for density functional approximations. Dissociation energy is defined as

the energy required to break all possible chemical bonds in a molecule by isolating all

its constituent atomic species. Semilocal density functionals fail to interpret the disso-

ciative nature of symmetric radical cations.111 This failure of semilocal XC functionals

can be attributed to self-interaction error, which comes from the delocalization error112

associated with these functionals. In the case of H+
2 , semilocal XC functionals predict

electron to be equally shared between two infinitely separated hydrogen atoms and for

such a fractionally occupied system gives very low energy compared to the hydrogen

atom. All the GGA functionals give an error of 50− 60 kcal/mol in case of H+
2 dissoci-

ation, which is very large compared to chemical accuracy.113 The dissociation curve of

H+
2 obtained from the tested range-separated functionals is compared with the HF one.

The HF gives the exact result in this case because of its self-interaction free behaviour

for one electron system. From Fig. 2.2, it is clear that all the functionals are giving the

same equilibrium bond length, but the results start to deviate from the exact one as we go

further from equilibrium bond distance. This is due to the enormous self-interaction error

at large internuclear distances. LC-TMLYP and LC-ωPBE are giving almost the same

dissociation curve while all other functionals deviate too much from the exact result. The

HSE06 functional does not perform satisfactorily in this case.

The NaCl molecule is an ionic pair when the interatomic distance ’R’ is near about the

equilibrium distance. However, at infinite inter-atomic separation, it dissociates into two

neutral Na and Cl atoms due to the fact that the IPNa > EACl. There is a sudden charge

transfer (Na++Cl− � Na+Cl) that happens at a critical distance Rc,70 which is given by

Rc = 1/(IPNa −EACl), assuming only the electrostatic interaction between the atoms at

Rc. We estimate the value of Rc ≈ 9.4 Å from the experimental value114 of IP and EA

for Na and Cl respectively. The HF theory overestimates the value of (IPNa −EACl), and
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as a result, it underestimates the critical distance by giving Rc = 5.72 Å. The dissociation

curves of LC-TMLYP and LC-ωPBEh show almost the same behaviour and give Rc =

8.51 Å. CAM-B3LYP and LC-ωPBE provide a good description of NaCl dissociation

because of their accurate prediction of (IPNa−EACl) difference and yield Rc = 8.93 Å and

9.70 Å respectively. All the range-separated functionals tested here perform reasonably

well in the case of NaCl dissociation except for HSE06, which completely fails in this

case.
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Figure 2.2: Dissociation energy curves of H+
2 using 6-311++G(3df,3pd) basis set. The

zero of the energy level is set to the energy of the hydrogen atom (E(H)).
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Figure 2.3: Dissociation energy curves of NaCl molecule using 6-311++G(3df,3pd) basis
set. The zero of the energy level is set to the energy of E(Na)+E(Cl).
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2.5.4 Fractional Particle Number

Here, the performance of the investigated range-separated functionals is explored for the

case of fractional electron number perspective. This type of situation arises in the case of

ionization potential, electron affinity, and the band gap of the system where the observable

properties depend explicitly on the particle number. We take C atom as for illustration

and vary the electron number between 5 to 7 in fractional steps using −1 ≤ ε ≤ 0 and

0 ≤ ε ≤ 1, where ε is defined in Eq. 2.2. The value of ΔE is plotted as a function of

particle number for the considered functionals in Fig. 2.4, where ΔE is defined as

ΔE(−1 ≤ ε ≤ 0) = E(N0 + ε)− [(1+ ε)E(N0)− εE(N0 −1)]

ΔE(0 ≤ ε ≤ 1) = E(N0 + ε)− [(1− ε)E(N0)+ εE(N0 +1)] (2.18)

Due to the inherent delocalization error, the density functionals, predict lower energy for

the fractionally occupied state in general and that gives rise to the concave curve shown

in Fig. 2.4. For the exact case, ΔE should be zero for the fractionally occupied state

which is shown by the black dashed line in Fig. 2.4. The deviation of ΔE from zero is a

measure of the delocalization error present in the corresponding XC functional. Mixing

HF exchange with semilocal functional reduces the delocalization error. From Fig. 2.4,

it is clear that in the range −1 ≤ ε ≤ 0, LC-ωPBE gives the lowest error in comparison

with the exact straight line followed by LC-TMLYP. Other range-separated functionals

give substantial deviation in this range. Whereas, for 0 ≤ ε ≤ 1 the LC-ωPBE has the

tendency of slight over localization. Also, the LC-TMLYP gives almost the same amount

of delocalization as LC-ωPBE localizes the system. This region in important for the

stability of C− anaion. Overall, LC-TMLYP and LC-ωPBE yield result very close to the

exact straight line. From Fig. 2.4, it is evident that HF theory overlocalizes the system

with fractional electron number which gives rise to the convex curve in the whole region.
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Figure 2.4: Deviation of energy of C atom for fractional occupation for both −1 ≤ ε ≤ 0
and 0 ≤ ε ≤ 1 using 6-311++G(3df,3pd) basis set.

2.6 Conclusions

The three most important conditions that hinder the accuracy of the density functional

approximations are the piecewise linearity of the total energy with fractional particle

numbers, one-electron self-interaction free total energy, and asymptotic corrected (−1/r)

potential for a finite system. In this chapter, these problems are addressed through devel-

oping a new long-range corrected exchange-functional in DFT. The underlying theory is

based on the Savin’s long-range corrected scheme, where error function is used to split

the Coulomb interaction into short-range and long-range parts. The Tao-Mo exchange

hole is used in the short-range part and long-range part is described by HF exchange. For

benchmarking, the results obtained by using our functional are compared with four pop-

ularly known range-separated functionals such as CAM-B3LYP, LC-ωPBE, LC-ωPBEh

and HSE06. Out of these functionals, HSE06 mixes HF exchange at the short-range and

semilocal exchange hole at the long-range to reduce the computational cost for the ex-

tended systems. The CAM-B3LYP and LC-ωPBEh mix HF exchange both at short and

long-range and as a consequence of which two extra parameters are needed along with

the range-separation parameter µ . The newly developed LC-TMLYP is of LC-ωPBE

type, where only one parameter µ is used. The proposed functional gives correct asymp-

totic exchange potential and at the same time, it retains all the constraints satisfied by
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TM exchange hole. The LC-TMLYP functional performs well for the tested molecular

databases, also for the fractional particle number cases and dissociation energy because

of its less self-interaction error and improved long-range behaviour. This new functional

also yields results comparable to the heavily parametrized range-separated functionals

like M11115 and ωB97X.116 The interesting and promising achievement of this present

construction suggests that this functional can be applied for the charge transfer and Ryd-

berg state related problems.



Chapter 3

Semilocal Functional for the Band Gap

of Solid-State Systems

3.1 Introduction

Although the semilocal density functionals described in chapter one gives reasonable ac-

curacy to computational ratio but they underestimate the band gap of solid-state systems.

Efficient prediction of band gap is very important from the application point of view. Let’s

try to understand why semilocal functional tend to underestimate the band gap of solids.

The fundamental gap of an insulating solid is defined as

Eg = I(N)−A(N), (3.1)

where I(N) and A(N) are the ionization energy and electron affinity of the N electron

system respectively. In terms of the Kohn-Sham eigen values, the above equation can be

expressed as

Eg = εN+1(N +1)− εN(N), (3.2)

where εN and εN+1 are the highest occupied KS energy eigen values of N and N + 1

electron system respectively.
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In the case of a non-interacting KS system, the band gap is defined as

EKS
g = εN+1(N)− εN(N). (3.3)

However, the actual gap of interacting system, Eg and the KS gap EKS
g are related by the

following equation

Eg = EKS
g +Δxc, (3.4)

where Δxc be the many-body correction to the KS gap and is defined by

Δxc = εN+1(N +1)− εN+1(N). (3.5)

The term Δxc is related to the derivative discontinuity70 of the density functionals. The

Figure 3.1: The total energy is shown as a function of particle number. There is disconti-
nuity of energy at the integer particle number.

total energy is given by a set of straight lines connecting the energy values at the integer

particle numbers as shown in Fig. 3.1 and expressed as

EN+ε = (1− ε)EN + εEN+1, where 0 ≤ ε ≤ 1. (3.6)

The discontinuity of total energy at the integer particle number leads to the term Δxc and
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it is related to the XC functional in the following way117

Δxc =
δExc[ρ]
δρ(r)

����
N+

− δExc[ρ]
δρ(r)

����
N−

, (3.7)

where N± = limε→0 N ± ε . The inclusion of Δxc improves the calculated band gap value

using LDA or GGA functionals.118,119 Meta-GGA functionals implemented within the

generalized KS (gKS) scheme improve the band gap of solids by including some amount

of Δxc.120,121 The strongly constrained and appropriately normed (SCAN)34 and meta-

GGA made very simple (MVS)53 functionals have shown promising results for the band

gap and in many cases, the accuracy of the MVS functional is comparable to the hybrid

functional.121 Although the hybrid functionals are very accurate in predicting the band

gap but they are computationally quite expensive due to the inclusion of the HF exchange

term.

In this chapter, we will construct a meta-GGA exchange functional for the band gap

of solids using the Becke-Roussel approach.76 The exchange hole will be modelled using

both the hydrogen density and cuspless hydrogen density. The proposed exchange func-

tional in combination with a meta-GGA correlation will be applied to assess the band gap

of various solids, from narrow gap semiconductors to wide gap insulators.

3.2 Theoretical Background

3.2.1 Overview of the Becke-Roussel Model

The Becke-Roussel (BR) model for the calculation of the exchange energy of a many-

electron system is introduced as it will be used later for functional construction. As de-

scribed in chapter one, the exchange energy at a point can be regarded as the interaction

of the electron density at that point with the exchange hole surrounding that point. Gen-

eralizing the Eq. 1.58 for each spin density ρσ (r), the exchange energy will be expressed

as

Ex =
1
2 ∑

σ

� � ρσ (r)�ρxσ (r,r+u)�
u

drdu, (3.8)
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where u = r� − r. The exchange energy is dependent only on the spherical average ex-

change hole which is defined as

�ρxσ (r,r+u)�=−�|ρ1σ (r,r+u)|2�
ρσ (r)

, (3.9)

with

�|ρ1σ (r,r+u)|2�= 1
4π

�
|ρ1σ (r,r+u)|2 dΩu. (3.10)

where ρ1σ (r,r+u) = ∑occ
i φ∗

iσ (r)φiσ (r+u) is the first-order reduced density matrix for

spin σ and φiσ be the KS orbital. The exchange hole potential can be defined at reference

point r as the potential generated by the spherical averaged exchange hole and given as

Uxσ (r) =−
� �ρxσ (r,r+u)�

u
du. (3.11)

By making use of Eq. 3.11 in Eq. 3.8, the exchange energy can be rewritten as

Ex =
1
2 ∑

σ

�
ρσ (r)Uxσ (r)dr . (3.12)

The small u expansion of the exact spherically averaged exchange hole is given as76

�ρxσ (r,r+u)�= ρσ (r)+
u2

6

�
∇2ρσ (r)−4τσ +

1
2
(�∇ρσ (r))2

ρσ (r)

�
+ · · ·, (3.13)

where τσ = 1
2 ∑i |∇φiσ |2. In the BR approach, the above equation is compared with the

exchange hole derived using hydrogen density. The inhomogeneity parameter used in this

model is defined as

Qσ =
1
6

�
∇2ρσ (r)−2γDσ

�
, (3.14)

where, Dσ = 2τσ − 1
4
(�∇ρσ (r))2

ρσ (r) , and γ is an adjustable parameter to recover exact homo-

geneous potential. After comparing, we can calculate the exchange potential by solv-

ing a non-linear equation and subsequently the exchange energy can be calculated using

Eq. 3.12.
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3.2.2 Laplacian Free BR model

The exchange hole becomes divergent near the nucleus due to the laplacian term present in

the Eq. 3.14. We can get rid of this situation by using the second-order gradient expansion

(GE2) of the kinetic energy density as,

∇2ρσ (r)≈ 3

�
2τσ − τuni f

σ − 1
36

(�∇ρσ (r))2

ρσ (r)

�
, (3.15)

where τuni f
σ = 3

5

�
6π2�2/3 ρσ

5/3. There exist several other approximations of ∇2ρσ (r) in

terms of τσ
122,123,124 , but for our present case we only discuss the GE2 expression of

Eq. 3.15. After putting the value of ∇2ρσ (r), equation 3.14 reduces to the following form

Qσ = (
1
2
−2γ)τ �σ − 1

2
τuni f

σ +(
γ
2
− 1

12
)
|∇ρσ |2

ρσ
, (3.16)

where τ �σ = 2τσ . Let us generalize the above equation in the following way

Qσ = a1τ �σ − 1
2

τuni f
σ +a2

|∇ρσ |2
ρσ

+a3
|∇ρσ |4

ρ11/3
σ

, (3.17)

where a fourth-order gradient contribution125,126 term is added to Qσ . The above equation

will be used further for our functional development and the parameters (a1, a2 and a3) will

be determined from several conditions, as discussed in the next section.

3.3 Proposed BR like meta-GGA exchange functionals

Here, laplacian free BR exchange functionals using model hydrogen density and cuspless

hydrogen density will be constructed.
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3.3.1 Hydrogen Hole Density

Model hydrogen density127 is given as

ρH(r) =
α3

8π
e−αr. (3.18)

Spherically averaged hydrogen exchange hole can be calculated as

ρH
x (r,u) =

1
4π

�
ρH(r+u)dΩu

=
α

16πru

�
e−α|r−u|(α|r−u|+1)− e−α(r+u)(α(r+u)+1)

�
(3.19)

If we take α and r as parameters a and b and then comparing the Taylor expansion of the

Eq. 3.19 with Eq. 3.13, the BR non-linear equation is obtained as,76

xexp(−2x/3)
x−2

=
2
3

π2/3 ρ5/3
σ

Qσ
, (3.20)

where Qσ is given by Eq. 3.17 and x = ab with b given by the following expression

b3 =
x3 exp(−x)

8πρσ
. (3.21)

The above non-linear equation can be solved using the numerical technique of efficient

root finding or by analytic representation,128 for each value of density, gradient of density,

and kinetic energy density. After obtaining the values of x and b, the exchange potential

can be calculated using the expression

UH
xσ (r) =−(1− e−x − 1

2
xe−x)/b, (3.22)

The meta-GGA exchange functional is calculated by substituting Eq. 3.22 into Eq. 3.12.

Since x is a dimensionless ingredient, the exchange energy functional behaves properly

under uniform density scaling as described in section 1.7.1. The parameters a1 and a2 that

are needed to calculate the value of Qσ , are analytically determined from the following
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exact conditions:

1. In case of homogeneous density i.e. ρσ (r) = ρσ ,0, ∇ρσ = 0, τ �σ = τuni f
σ , the

exchange hole potential of Eq. 3.22 should reduce to the LDA value, UH
xσ (r) =

ULDA
xσ (r) =−3( 3

4π )
1/3ρ1/3

σ .

For homogeneous electron gas Qσ 0 = (a1 − 1
2)τ

uni f
σ . After putting this value in

Eq. 3.20 , we get

a1 −
1
2
= K0

x0 −2
x0e−2x0/3 , (3.23)

where K0 = 0.156876. From the condition of above mentioned exchange hole po-

tential we get
ex0/3

x0
(1− e−x0 − 1

2
x0e−x0) = K1, (3.24)

where K1 = 0.635348. The solution of the non-linear equation results x0 to be

1.104301. Using this value of x0 in Eq. 3.23, we obtain

a1 =
1
2
−0.26568 = 0.23432. (3.25)

2. The exchange energy functional should follow the modified second-order gradi-

ent expansion (MGE2) for the case of slowly varying density i.e. ρσ (r) = ρσ ,0 +

δρσ (r), with δρσ (r)� ρσ (r) and sσ = |∇ρσ |/[2kF σ ρσ ]≤ 1. The MGE2 provides

accurate behaviour for large atoms and for the Thomas-Fermi density scaling.129,130

By considering a small and long wave length perturbation of the homogeneous

electron gas, the value of Qσ and x will be changed slightly from their respective

homogeneous value i.e. Qσ = Qσ 0 +Qσ 1, and x = x0 + x1, with Qσ 1 � Qσ 0, and

x1 � x0. After taking the gradient expansion of Eq. 3.17, we find

Qσ 1 =
�a1

36
+a2

� |∇ρσ |2
ρσ

. (3.26)

Taking the Taylor expansion of Eq. 3.20, and keeping only the linear terms, we
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obtain

e−2x0/3 (x
2
0 −2x0 +3)
(x0 −2)2 x1 = π2/3 ρ5/3

σ
Qσ 02 Qσ 1, (3.27)

with x1 = 0.305
� a1

36 +a2
� |∇ρσ |2

ρ8/3
σ

. Taking the Taylor expansion of Eq. 3.22, the fol-

lowing equation is obtained.

UH
xσ = UH

xσ0 +UH
xσ1

= −1.861ρ1/3
σ −0.272ρ1/3

σ x1

= −1.861ρ1/3
σ −0.0830

�a1

36
+a2

�
ρ1/3

σ
|∇ρσ |2

ρ8/3
σ

. (3.28)

The second-order gradient expansion of the exchange energy density130 is given as

εxσ =−1.861ρ1/3
σ −0.0306µxρ1/3

σ
|∇ρσ |2

ρ8/3
σ

(3.29)

with µx be the second-order coefficient and the value of µx = 10/81 for GE2131 and

µx = 0.26 for MGE2.130 Eq. 3.28 follows MGE2 if

a2 =−a1

36
+

0.0306
0.0830

µx ≈ 0.089. (3.30)

3. The remaining parameter a3 is fixed from the band gap values of a small test set of

bulk solids, which contains CdTe, CdSe, C, AgBr, and Ne. We choose the value of

a3 = 0.0053 to get well balanced band gaps of the narrow (CdTe, CdSe), interme-

diate (C, AgBr), and wide (Ne) band gap solids.

We call the developed exchange functional as modified Becke-Roussel exchange with

hydrogen hole density for the band gap of solids (mBRxH-BG).
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3.3.2 Cuspless Hydrogen Hole Density

Model cuspless hydrogen density is given as127

ρC(r) =
α3

32π
e−αr(1+αr). (3.31)

The exchange hole for this model density is

ρC
x (r,u) =

α
64πru

�
e−α|r−u|[α2(r−u)2 +3α|r−u|+3]

−e−α(r+u)[α2(r+u)2 +3α(r+u)+3]
�
.

(3.32)

Using the same approach as described in 3.3.1, the non-linear equation is obtained as

(1+ x)
5
3

(x−3)
e−2x/3 = (32π)2/3 1

6
ρ5/3

σ
Qσ

, (3.33)

and the corresponding exchange hole potential is given by

UC
xσ =− 1

8b
e−x(−x2 −5x+8ex −8), (3.34)

where

b3 =
x3(1+ x)e−x

32πρσ
. (3.35)

The parameter a1, a2 and a3 are determined using conditions same as described in 3.3.1.

1. For homogeneous density, replacing the value of Qσ by Qσ0 in Eq. 3.33, we obtain

a1 −
1
2
= K0

x0 −3
(1+ x0)5/3e(−2x0/3)

, (3.36)

where K0 = 0.39530296. From the condition of exchange hole potential UC
xσ (r) =

ULDA
xσ (r) =−3( 3

4π )
1/3ρ1/3

σ , we get

e−2x0/3

x0(1+ x0)1/3 (−x2
0 −5x0 +8ex0 −8) = K1, (3.37)
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where K1 = 3.2019539. After solving numerically, we get the value x0 = 1.201014

and putting this value in Eq. 3.36 we obtain

a1 =
1
2
−0.425254 = 0.074746. (3.38)

2. If we perform the same perturbative analysis as done for the hydrogen density case,

we get

4e−2x0/3 (x
2
0 −3x0 +6)(1+ x0)

2/3

(x0 −3)2 x1 = (32π)2/3 ρ5/3
σ

Qσ 02 Qσ 1, (3.39)

where x1 = 0.4
� a1

36 +a2
� |∇ρσ |2

ρ8/3
σ

, and

UC
xσ =−1.861ρ1/3

σ −0.0532
�a1

36
+a2

�
ρ1/3

σ
|∇ρσ |2

ρ8/3
σ

. (3.40)

Comparing the above equation with Eq. 3.29, we get

a2 =−a1

36
+

0.0306
0.0532

µx ≈ 0.147. (3.41)

3. The remaining parameter a3 is fitted in the same way as done in the hydrogen den-

sity case.

Table 3.1: Shown are the parameter values for the mBRxH-BG and mBRxC-BG exchange
energy functionals.

a1 a2 a3
mBRxH-BG 0.23432 0.089 0.0053
mBRxC-BG 0.074746 0.147 0.0032

We call this exchange functional as modified Becke-Roussel exchange with cuspless hy-

drogen hole density for the band gap of solids (mBRxC-BG). The parameters for both the

proposed functionals are shown in Table 3.1.
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3.3.3 Comparison between the mBRxH-BG and mBRxC-BG meta-

GGA Exchange Functionals

In the left panel of Fig. 3.2, we have shown the electron densities for both the hy-

drogen and the cuspless hydrogen densities and their reduced density gradients (sσ =

|∇ρσ |/[2kF σ ρσ ]). The hydrogen density is more localized due to its nuclear cusp and the

density gradient for this case increases monotonically from its minimum value at r = 0

(sH ≥ sH
min ≈ 0.376). Hence the value of s in the region 0 ≤ s < 0.376 is not well rep-

resented by the hydrogen density and for bulk solids, s can be smaller than sH
min. This

limitation is resolved by the more delocalized cuspless hydrogen density and its reduced

density gradient covers all possible values of s (sC ≥ 0).
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Figure 3.2: Left panel: The probability distribution and reduced density gradient are
shown for both the hydrogen and cuspless hydrogen density case with α = 2. Right
panel: Comparison of the mBRxH-BG and mBRxC-BG exchange functionals with
MGE2 (FMGE2

x = 1+0.26s2) and SCAN meta-GGA functionals. Solid and dashed lines
represent α = 1 and α = 10 cases respectively.

In the right panel of Fig. 3.2, the exchange enhancement factor of mBRxH-BG and

mBRxC-BG functionals are compared with the MGE2 and SCAN meta-GGA functionals

for α = 1 and α = 10. Here, α = (τ − τW )/τuni f is a well-known meta-GGA ingredient

with τW = |∇ρ|2/(8ρ). The mBRxH-BG and mBRxC-BG functionals recover MGE2 by

construction when α ≈ 1 and s ≤ 0.5 and for other values of s, they are larger than MGE2

due to the fourth-order gradient term in the expression of Qσ . This large enhancement of
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the exchange w.r.t. LDA is coming from the a3 term which is fitted to the band gap ener-

gies of few solids. For this reason, these functionals are not suitable for the ground-state

properties. It is important to note that even MGE2 is not accurate for solid-state calcula-

tions and we need a negative fourth-order gradient term which is present in the SG4 GGA

functional.130 In the present case, a more sophisticated form of Qσ and incorporation of

more exact constraints can give good results for ground-state properties which will be

discussed in the chapter four but in this chapter, we solely focus on the band gap. Finally,

we conclude that mBRxC-BG enhancement factor performs better than mBRxH-BG one

and this shows that the cuspless density is more relevant for the BR method applied to

solid-state calculations.

3.4 Computational Details

We use one-electron self-interaction free Tao-Perdew-Staroverov-Scuseria32 (TPSSc) cor-

relation functional in combination with our proposed exchange functionals. Although the

choice of other correlation functionals is possible. But, we found that the TPSS cor-

relation functional is properly fitted with our mBRxBG functionals for the narrow and

intermediate band gap solids. We implement the mBRxBG functionals in the Vienna

ab initio simulation package (VASP)132,133 which is a plane wave pseudopotential based

code. To implement the functionals, we follow the gKS framework which is described in

Appendix B. A 15×15×15 Monkhorst-Pack k-mesh and 700 eV kinetic energy cut-off

for plane waves is used for all the calculations.

We perform a convergence checking of the proposed functionals by calculating the

band gap of diamond w.r.t. the energy cut-off and k-mesh which is shown in Fig. 3.3. For

comparison, we have also included the result of mBJLDA134 calculated with VASP. From

Fig. 3.3, it is obvious that all methods show smooth convergence starting from 400 eV

energy cut-off and 15×15×15 k-mesh.



3.5 Results 59

��� ��� ��� ��� ��� ��� ��� ���

�������������������

���

���

���

���

���

�
�
�
�
��
�
�
��
�
�
�

��������

��������

������

� � �� �� �� ��

������

���

���

���

���

���

���

���

���

���

�
�
�
�
��
�
�
��
�
�
�

��������

��������

������

Figure 3.3: Left panel: Convergence of plane wave cut-off with band gap. We used
15×15×15 Monkhorst-Pack k-mesh for this test. Right panel: Convergence of k-mesh
with band gap. We used 700 eV energy cut-off for this test.

3.5 Results

To benchmark our functionals, we examine fifteen narrow band gap semiconductors with

0 ≤ Eg ≤ 2 eV, thirty intermediate band gap semiconductors with 2 ≤ Eg ≤ 6.5 eV, nine

wide band gap ionic solids with 7 ≤ Eg ≤ 14.2 eV, four rare gas solids with 9.2 ≤ Eg ≤
21.5 eV and nine layered materials with 1 ≤ Eg ≤ 3 eV. The spin-orbit coupling (SOC)

effect is taken into account for the calculation of band gaps. The SOC plays an important

role in the case of narrow band gap semiconductors and its influence tends to lower the

calculated band gap.135,136 The SOC correction to the band gap have been calculated using

PBE functional and for other functionals we subtract the SOC corrected PBE values which

are shown to be a reasonable approximation.135

3.5.1 Narrow Band Gap Semiconductors

Narrow band gap materials are very important from technological viewpoint. From Ta-

ble 3.2 and Fig. 3.4, it is clear that mBRxC-BG performs better than MVS, SCAN and

mBRxH-BG, but worse than mBJLDA and HSE06. Note that the mBJLDA134 is a po-

tential only functional designed for band gap of solids and for calculation purpose used
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with LDA XC energy. On the other hand, HSE06 is a hybrid functional for which the

computational cost is high. In general, the mBRxC-BG slightly overestimates the band

gap of these semiconductors with the exceptions of InN, Ge, GaSb, ScN, and GaAs where
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Figure 3.4: Calculated band gaps vs experimental band gaps for the narrow gap semicon-
ductors.

it predicts smaller band gap values. We observe that the MVS functional largely overes-

timates the band gaps of some solids (InSb, InAs, GaSb, InP, GaSb, GaAs and CdTe).

In summary, we can conclude that the mBRxC-BG functional provides good band gap

values within the meta-GGA XC functionals, except for a few cases (for example Si).

3.5.2 Intermediate Band Gap Semiconductors

The mBRxH-BG and mBRxC-BG functionals provide balanced band gap values over the

different band-gap range of materials in this category and improve over SCAN and MVS

functionals. SCAN has the natural tendency to underestimate the band gap. On the other

hand, although MVS gives larger gap than SCAN but in most cases still underestimate

the gap. The mBRx based functionals give band gap values closer to the mBJLDA and

HSE06 results. The SOC effect is important for some materials (e.g, ZnTe, BaTe, MgTe
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and AgI) but the correction due to it is well below 10% of the experimental band gap

values. An overview of the functionals performance is shown in Fig. 3.5.
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Figure 3.5: Calculated band gaps vs experimental band gaps for the intermediate gap
semiconductors.
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Figure 3.6: Left panel: The electron pseudodensities of the valence band along [111]
direction of diamond bulk using different functionals. Right panel: The electron pseudo-
densities of the CBM and VBM along the same direction as in the left panel.

In Fig. 3.6, we have plotted the pseudodensity of the valence band and also that of

the conduction band minima (CBM) and valence band maxima (VBM) along the [111]
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direction of carbon diamond to understand the physical behaviour of the meta-GGA func-

tionals. The mBRxH-BG and mBRxC-BG valence band pseudodensities are slightly low-

ered w.r.t. other curves in the bonding region, in the range 3 to 5 Å(see the left pannel of

Fig. 3.6). This is due to the strong exchange enhancement of these functionals. However,

all curves agree well with each other in other regions. From the right panel of Fig. 3.6, it

is clear that the CBM pseudodensity of mBRxC-BG differs significantly from LDA and

SCAN values in the same bonding region.

Table 3.2: The band gap of considered solids using different level of XC functional ap-
proximations. The SOC effect is taken into account by subtracting the SOC correction
calculated by PBE functional given in parentheses. The SOC uncorrected HSE06 and
mBJLDA values are taken from Ref..137 All calculations are performed at the experimen-
tal lattice constant, given in Ref..137 The experimental band gap values are taken from
Ref..137 Mean absolute error (MAE) and mean absolute relative error (MARE is percent)
are reported for each group of solids.

solids PBE (SOC) SCAN MVS mBJLDA mBRxH-BG mBRxC-BG HSE06 Exp.

Narrow band gaps (0−2 eV)

InSb -0.23 (0.23) -0.23 1.38 0.24 -0.16 0.11 0.22 0.24

SnTe -0.11 (0.18) -0.11 0.21 -0.03 0.43 0.20 -0.01 0.36

InAs -0.11 (0.11) -0.06 1.29 0.56 0.22 0.43 0.34 0.42

InN 0.03 (0.00) 0.12 0.51 0.89 0.11 0.31 0.70 0.72

Ge 0.00 (0.08) 0.16 1.06 0.75 -0.03 0.33 0.74 0.74

GaSb 0.00 (0.17) 0.02 1.32 0.78 0.06 0.36 0.71 0.82

SnSe 0.55 (0.03) 0.78 0.95 0.86 1.23 1.19 0.95 0.90

ScN -0.09 (0.09) 0.17 0.3 0.79 0.12 0.36 0.81 0.90

Si 0.59 (0.00) 0.84 0.93 1.15 1.79 1.64 1.17 1.17

InP 0.71 (0.03) 1.06 1.96 1.59 1.53 1.68 1.40 1.42

BAs 1.10 (0.07) 1.34 1.41 1.64 1.87 1.89 1.79 1.46

GaAs 0.49 (0.11) 0.76 2.08 1.53 0.80 1.09 1.29 1.52

CdTe 0.50 (0.26) 0.76 2.22 1.53 1.56 1.61 1.31 1.61

AlSb 0.99 (0.21) 1.16 1.62 1.54 1.98 1.96 1.59 1.69

CdSe 0.51 (0.12) 0.87 1.93 1.87 1.99 1.93 1.40 1.85

MAE 0.73 0.54 0.40 0.10 0.42 0.29 0.14

MARE 84.80 69.55 71.64 15.32 53.51 33.34 16.66

Intermediate band gaps (> 2−6.5 eV)

BP 1.24 (0.00) 1.54 1.42 1.85 1.91 1.98 1.98 2.10

Cu2O 0.41 (0.09) 0.43 0.49 0.72 0.58 0.59 1.89 2.17

AlAs 1.34 (0.12) 1.64 2.4 2.01 2.88 2.68 1.99 2.23

GaP 1.60 (0.03) 1.85 2.16 2.22 2.41 2.51 2.25 2.35

ZnTe 1.00 (0.27) 1.32 2.79 2.15 1.84 1.88 1.98 2.39

SiC 1.35 (0.00) 1.71 1.84 2.25 1.96 2.29 2.23 2.42

MgSe 1.76 (0.14) 2.39 3.01 2.79 3.34 3.25 2.6 2.47
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Table 3.2 (continued.)

solids PBE (SOC) SCAN MVS mBJLDA mBRxH-BG mBRxC-BG HSE06 Exp.

CdS 1.16 (0.00) 1.52 2.29 2.67 3.06 2.87 2.14 2.50

AlP 1.56 (0.04) 1.91 2.17 2.27 3.22 3.04 2.26 2.50

AgCl 0.86 (0.04) 1.29 1.85 2.91 3.14 2.80 2.37 3.25

AgBr 0.60 (0.08) 1.08 1.81 2.42 2.48 2.31 1.93 2.71

ZnSe 1.16 (0.12) 1.63 2.72 2.63 2.45 2.37 2.25 2.82

AgI 1.10 (0.23) 1.41 2.43 2.54 3.06 2.83 2.25 2.91

CuBr 0.33 (0.03) 0.63 1.14 1.53 2.00 1.77 2.12 3.07

BaTe 1.26 (0.27) 1.6 1.98 2.01 3.35 2.76 2.04 3.08

CuI 0.98 (0.16) 1.32 2.18 2.04 2.32 2.19 2.49 3.12

GaN 1.72 (0.00) 2.09 2.53 2.85 1.54 2.04 2.85 3.28

CuCl 0.38 (0.07) 0.64 1.00 1.62 2.36 1.97 2.3 3.40

ZnO (Wurzite) 0.77 (0.00) 1.14 1.47 2.65 1.95 1.76 2.50 3.44

GaN (Wurzite) 1.99 (0.00) 2.36 2.82 3.17 1.91 2.38 3.15 3.5

MgTe 2.23 (0.26) 2.84 3.40 3.35 4.71 4.36 3.13 3.60

BaSe 1.75 (0.15) 2.12 2.49 2.71 3.81 3.32 2.64 3.58

ZnS 2.09 (0.00) 2.6 3.34 3.65 3.84 3.61 3.3 3.84

BaS 2.07 (0.05) 2.43 2.75 3.22 4.61 4.04 3.06 3.88

MgS 3.56 (0.00) 4.23 4.68 5.17 6.97 6.27 4.66 4.78

AlN 3.38 (0.00) 3.99 4.17 4.88 3.85 4.45 4.55 4.90

LiH 2.98 (0.00) 3.61 4.08 5.06 6.69 6.04 4.06 4.94

C 4.13 (0.00) 4.54 4.10 4.92 4.74 4.78 5.26 5.50

AlN (Wurzite) 4.15 (0.00) 4.81 5.15 5.51 4.48 5.05 5.49 6.19

BN 4.47 (0.00) 4.96 5.06 5.80 5.34 5.67 5.76 6.36

MAE 1.66 1.25 0.86 0.52 0.83 0.70 0.53

MARE 50.93 38.71 26.00 16.42 24.33 21.14 16.05

Ionic wide-band gap solids

CaO 3.65 (0.00) 4.22 4.59 5.35 4.55 4.70 5.26 7.00

MgO 4.76 (0.00) 5.6 6.01 7.13 6.00 6.25 6.47 7.83

KCl 5.15 (0.04) 5.74 6.70 8.44 10.74 10.09 6.49 8.50

NaCl 5.13 (0.04) 5.89 6.79 8.41 11.14 9.53 6.57 8.50

LiCl 6.37 (0.03) 7.26 7.97 8.61 10.73 9.77 7.78 9.40

BeO 7.51 (0.00) 8.36 8.59 9.66 8.48 8.93 9.48 10.60

KF 6.10 (0.09) 6.68 7.48 10.31 11.56 11.11 8.09 10.90

NaF 6.35 (0.04) 7.09 7.91 11.42 11.72 10.36 8.53 11.50

LiF 9.20 (0.03) 10.09 10.69 12.86 12.98 12.18 11.43 14.20

MAE 3.80 3.05 2.41 0.69 1.63 1.32 2.04

MARE 39.06 31.25 24.49 7.45 18.50 14.41 20.83

Rare gas solids

Xe 5.80 (0.44) 6.47 7.75 8.04 11.83 10.87 7.00 9.29

Kr 7.02 (0.23) 7.77 9.12 10.57 14.90 13.69 8.48 11.59

Ar 8.62 (0.06) 9.46 10.86 13.78 18.06 16.46 10.31 14.15

Ne 11.50 (0.12) 12.77 14.47 22.21 28.57 22.33 14.15 21.48

MAE 5.89 5.01 3.58 0.84 4.21 1.71 4.14

MARE 40.63 34.25 23.44 7.07 29.12 13.87 28.19
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3.5.3 Ionic Wide Band Gap Solids and Rare Gas Insulators

The results of this section are reported in the lower panel of the Table 3.2 and shown in

Fig. 3.7. The mBRxC-BG produces very promising results in this case within semilocal

functionals and outperforms the SCAN, MVS, and HSE06 screened hybrid functional.

The performance of mBRxC-BG is remarkably accurate for these class of solids and very

close to the mBJLDA values.
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Figure 3.7: Calculated band gaps vs experimental band gaps for the ionic and rare gas
solids.

In Fig. 3.8, we compare the band structure of Ar solid calculated using the SCAN and

mBRxC-BG functionals. The mBRxC-BG predicts accurate band gap of Ar crystal and

at the same time shows a smooth and physical band structure. This improvement of the

band gap of the insulators is mainly due to the fourth-order gradient terms in the Qσ of

Eq. 3.17, which plays a significant role when s ≥ 0.5 (see the right panel of Fig. 3.2).

3.5.4 Layered Solids

Layered materials are promising candidates for application in various electronic and op-

toelectronic devices. Recently, more than 5000 layered materials have been determined
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Figure 3.8: Band structure of Ar solid is shown using the mBRxC-BG and SCAN func-
tionals.

from high-throughput DFT calculations138 and accurate prediction of their band gaps is

very important for further application. The results of the band gaps of the considered

layered solids are shown in Table 3.3. The best performing functional is the mBRxC-

BG with MAE = 0.18 eV, followed by HSE with MAE = 0.19 eV, MVS and mBJLDA

with MAE = 0.28 eV and SCAN with MAE = 0.40 eV. Although the performance of

mBJLDA is the best for other solids, but in this case, it shows a systematic underesti-

mation of the band gaps. This underestimation of mBJLDA is an inherent problem that

is related to the unit cell average of a quantity involving density and gradient of density,

used in the construction of the mBJLDA potential. Recently, a reparametrized form of the

mBJLDA is proposed for layered materials.139 However, other functionals such SCAN,

MVS, mBRxC-BG, and hybrid functionals are free from such an anomaly.

3.5.5 Overall Statistics

Overall error statistics for the band gaps computed using different functionals are shown in

Table 3.4. Different errors have been reported as the mean (relative) error (M(R)E), mean

absolute (relative) error (MA(R)E), and the standard deviation (relative) error (STD(R)E).
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Table 3.3: The band gaps of the considered layered materials in their bulk form as cal-
culated using different XC functionals. Experimental band gaps are taken from the ref-
erences.140,141,142,143 The mBJLDA calculations are performed in the WIEN2k code.144

The HSE06 calculations are performed in the VASP132,133 code. The SOC effect is taken
into account in the same way as described in the Table 3.2. The last line reports MAE and
MARE (%) in eV.

Solids PBE (SOC) SCAN MVS mBJLDA mBRxH-BG mBRxC-BG HSE06 Expt.
HfS2 0.94 (0.00) 1.29 1.52 1.64 1.56 1.71 1.70 1.96
HfSe2 0.32 (0.16) 0.68 0.94 0.90 0.81 0.98 0.98 1.13
MoS2 0.91 (0.00) 1.01 1.05 1.12 1.13 1.18 1.46 1.29
MoSe2 0.85 (0.00) 0.96 1.01 1.02 1.14 1.21 1.33 1.10
WS2 0.99 (0.05) 1.18 1.13 1.18 1.32 1.38 1.51 1.35
WSe2 0.91 (0.08) 1.11 1.05 1.07 1.28 1.32 1.36 1.20
ZrS2 0.81 (0.00) 1.12 1.32 1.26 1.44 1.50 1.59 1.68
ZrSe2 0.20 (0.13) 0.51 0.74 0.57 0.72 0.78 0.87 1.20
ZrSeS 0.52 (0.06) 0.83 1.05 1.02 1.10 1.16 1.24 1.40

MAE 0.65 0.40 0.28 0.28 0.23 0.18 0.19
MARE 47.19 28.90 19.96 20.58 16.56 13.28 15.45

Table 3.4: Summary of different error calculations of 67 test solids using various XC
functionals.

SCAN MVS mBJLDA mBRxH-BG mBRxC-BG HSE06
ME (eV) -1.45 -0.88 -0.36 0.01 -0.15 -0.78

MAE (eV) 1.45 1.05 0.44 0.97 0.68 0.82
STDE (eV) 1.42 1.29 0.50 1.48 0.90 1.19
MRE (%) -43.03 -6.54 -11.44 -10.00 -8.56 -14.57

MARE (%) 43.03 35.05 14.97 29.32 21.48 17.34
STDRE (%) 31.22 69.80 20.11 39.13 25.80 16.63
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The SCAN meta-GGA functional gives the worst result with MAE = 1.45 eV and MARE

= 43.03 eV and followed by the MVS functional with MAE = 1.05 eV and MARE =

35.05 eV. On the other hand, the performance of mBRxC-BG is comparable to the HSE06

functional and slightly worse than the mBJLDA potential only functional. It has been

observed that the mBRxC-BG provides systematic improvement over mBRxH-BG.

3.6 Conclusions

Two meta-GGA exchange functionals (mBRxH-BG and mBRxC-BG) are proposed using

the model hydrogen and cuspless hydrogen density respectively. The functionals are de-

signed using BR model by modifying and generalizing the second-order gradient expan-

sion Qσ in such a way that it becomes laplacian free and satisfies several exact constraints

(see Eq. 3.17). In combination with TPSS correlation, the mBRxH-BG and mBRxC-BG

functionals are used to calculate the band gaps of a large palette of bulk solids including

narrow to wide gap solids and covalently bonded solids to noncovalently bonded layered

materials. The performance of mBRxC-BG is better than mBRxH-BG, MVS, and SCAN

functionals and close to the mBJLDA and HSE06 results. The mBRxC-BG could be a

potential replacement for computationally demanding hybrid functional for calculating

the band gaps of semiconductors. This method of constructing exchange functionals can

be further investigated by considering the more sophisticated expression of Qσ to recover

other exact constraints of XC functional.





Chapter 4

Importance of the Pauli Kinetic Energy

Density for Semilocal Functionals

4.1 Introduction

In the previous chapter, we have discussed how meta-GGA functionals are constructed by

using modified Becke-Roussel approach for the band gap of solids. Meta-GGA exchange

energy density [εMGGA
xc (ρ(r),∇ρ(r), ∇2ρ(r),τ(r))] is in general depends upon the elec-

tron density, density gradient, Laplacian of density, and positive definite KS kinetic energy

density τ(r) = ∑occ
i

|∇φi(r)|2
2 , where φi is the ith occupied KS orbital. However, ∇2ρ(r) is

not favoured in constructing meta-GGA functionals due to its unphysical oscillation in

the functional derivative and on the other hand, almost entire information of ∇2ρ(r) is

contained in τ(r). One of the advantages of the meta-GGA functionals is that they can be

reliably used for both in the quantum chemistry and solid-state physics. The use of τ(r) in

the meta-GGA functional gives us the freedom to recover the important exact conditions

of the XC functional.32,53 Most of the calculations involving meta-GGA functional are

performed in the generalized Kohn-Sham (gKS) scheme.

Regarding the recent developments in the meta-GGA functional, Pauli kinetic en-

hancement factor α = (τ − τW)/τunif has been shown to be an important ingredient and

used together with s = |∇ρ|/[2(3π2)1/3ρ4/3] in the construction of meta-GGA function-
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als.32,33,34 Note that, α can be rewritten as

α = FKS
s − 5

3
s2, (4.1)

where FKS
s = τ/τunif is the exact KS kinetic energy enhancement factor. It is important

to note that α contains all the many-body fermionic effect of the kinetic energy and is

directly related to the electron localization function.145 Alpha (α) can distinguish different

bonding environments inside a many-electron system in the following way

1. α = 0 recognizes one- and two-electron densities characterizing single bonds.

2. α ≈ 1 is the slowly varying density density limit which characterizes metallic

bonds.

3. α � 1 corresponds to the region of density overlap between closed shells and it is

the characteristic of weak noncovalent bonds.

The recently developed MVS,53 SCAN,34 and TM33 functionals use both α and s as their

ingredients.

Getting motivated by these recent developments, in this chapter, we will develop a

technique for meta-GGA exchange functional construction depending only on the Pauli

kinetic energy density. Our procedure will be based on a generalization of the BR model

using the cuspless hydrogen density as a model. In the previous chapter, we investigated

almost similar idea in a different way and proposed mBRxC-BG meta-GGA functional,

efficient for the band gap energy of bulk solids.146 However, here our aim is to build a

meta-GGA functional which will be accurate for the quantum chemistry as well as solid-

state physics. This will be validated by applying our functional for several molecular and

solid-state test cases.
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4.2 Proposed Functional Based on Pauli Kinetic Energy

Density

Let’s start with the exchange functional construction following the BR76 approach using

the model cuspless hydrogen density ρC(r) = a3

32π e−ar(1+ ar)] with a ≥ 0. However,

unlike previous functional construction where we have considered both the hydrogen and

cuspless hydrogen density for functional development, here the cuspless hydrogen density

only will be taken into consideration. This is due to the known limitation of the hydrogen

density for which the density gradient s starts from a nonzero minimum value (smin ≈
0.38) at the nuclear cusp as shown in Fig. 3.2. Hence the region 0 ≤ s ≤ smin is not

well represented by the hydrogen density. However, this issue is solved by the use of

cuspless hydrogen density. The angle averaged exchange hole density for this case has

the following form

ρC
x (r,u)=

a
64πru

{e−a|r−u|[a2(r−u)2+3a|r−u|+3]−e−a(r+u)[a2(r+u)2+3a(r+u)+3]},
(4.2)

which satisfies the normalization condition
�

du4πu2ρC
x (r,u) = 1, for any a ≥ 0. The

corresponding BR non-linear equation can be written as

(1+ x)5/3

x−3
e−2x/3 = Λ(ρ,∇ρ ,τ), (4.3)

where we have generalized the right hand side of Eq. 3.33 by a function Λ which will be

defined later. Exchange energy can be calculated as

Ex =
�

ρ(r)UC
x (r)dr

= −(16π)1/3

16

�
ρ4/3 e−2x/3(−x2 −5x+8ex −8)

x(1+ x)1/3 dr (4.4)

To arrive at the above equation, Eqs. 3.34 and 3.35 are used. The enhancement factor

defined in Eq. 1.47 is given by
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Fx =
1
6

�2π2

3

�1/3 e−2x/3(−x2 −5x+8ex −8)
x(1+ x)1/3 . (4.5)

In order to satisfy the scaling relation described in section 1.7.1, the root x of the Eq. 4.3

and implicitly the function Λ(ρ,∇ρ,τ) must be independent of the uniform density scal-

ing ργ(r) = γ3ρ(γr), with γ ≥ 0. This constraint can be fulfilled by using the well known

dimensionless ingredients Λ(ρ,∇ρ,τ) =Λ(s,α). For the case of mBRxC-BG meta-GGA

functional, the function Λ(s,α) can be written as Λ(s,α) = (c1α + c2 + c3s2 + c4s4)
−1,

where the parameters ci are fixed from the exact constraints and band gap energies of few

bulk solids. However, the enhancement factor of the mBRxC-BG tends to larger values

than MGE2130 as s increases and approaches to infinity as s → ∞. This behaviour of the

enhancement factor worsens the ground state properties of atoms, molecules, and solids.

There are some exchange functionals which are giving accurate ground state results in

spite of the fact that the enhancement factor diverges when s tends to infinity but their

enhancement factor is usually smaller than FMGE2
x .33,37,147

Here, our functional construction using cuspless hydrogen density following the mod-

ified BR approach depends on the design of the function Λ(s,α). We consider Λ as a

functional of α only without any explicit dependence on the reduced density gradient.

Hence, the only ingredient of our exchange functional is the Pauli kinetic enhancement

factor α . Let us take the following Padé approximation148,149 for Λ

Λ(α) =
β1 +β2α +β3α2

1+β4α +β5α2 , (4.6)

where βi are the parameters which will be determined from the following conditions

1. At first, we investigate the case with α = 0. This type of situation arises for any one-

and two-electron singlet states and α ≈ 0 at the nuclear cusp, in the non-degenerate

iso-orbital region.150,151 For the two-electron system, the value of the enhancement

factor is Fx = 1.174 and it is shown to be reasonably accurate for these systems.152

Using the condition in Eq. 4.5, we get
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e−2x/3(−x2 −5x+8ex −8)
x(1+ x)1/3 = 3.7591. (4.7)

By solving the above non-linear equation, and putting the value of x in Eq. 4.3, we

will get

β1 = 3.712. (4.8)

2. Next, we check the limit α → ∞. For this case, we chose the minimum value of

enhancement factor Fx = minxFx(x) = 0.937 for x = 0 as found from Eq. 4.5. This

type of density regime, where α → ∞ is highly non-local and usually found at the

tail of the density, when the highest occupied orbital is degenerate. This condition

is closely related to the cuspless hydrogen density model and gives the following

relation

β5 =−3β3. (4.9)

3. For the homogeneous electron gas α = 1, the enhancement factor should reduce to

Fx = 1, in order to recover the exact LDA. This condition is very important for most

of the bulk solids where α ≈ 1. Putting the value Fx = 1 in Eq. 4.5, we get

e−2x/3(−x2 −5x+8ex −8)
x(1+ x)1/3 = 0.5336. (4.10)

After solving this non-linear equation, if we put the value of x in Eq. 4.3, we will

get a relation between β2, β3 and β4.

β3 = 2.595+0.5197β4 +0.559β2. (4.11)

4. We enforce the tight Lieb-oxford bound Fx ≤ 1.17452 for our proposed enhance-

ment factor of Eq. 4.5. This condition was used in the construction of MVS53 and



74 Importance of the Pauli Kinetic Energy Density for Semilocal Functionals

SCAN34 meta-GGA XC functionals.

β4 −0.2694β2 ≤ 0,

β 2
2 −4β1β3 ≤ 0, (4.12)

where β3 ≥ 0 and β2 ≥ 0, which ensures that Λ �= 0.

5. The remaining parameters β2 and β4 are determined from the exchange energies

of noble gas atoms and at the same time follow the inequality of Eq. 4.12. The

parameters β2 and β4 are fixed to be 2.0 and 0.1 respectively. This procedure pro-

vides an accurate description of the semiclassical atom theory,129 which is shown

to be significant for both quantum chemistry and solid-state physics, and used in

the development of some recent exchange functionals.130 Parameter values for the

MGGAC functionals are shown in Table 4.1.

Table 4.1: Shown are the parameter values for the MGGAC exchange energy functional.

β1 β2 β3 β4 β5
3.712 2.0 3.765 0.1 -11.295

Table 4.2: Shown are the exchange energies of the noble gas atoms using spin restricted
Hartree-Fock orbital and densities153 for different XC functionals.

Atoms HF53 PBE53 SCAN34 MVS53 MGGAC
He -1.026 -1.014 -1.031 -1.031 -1.037
Ne -12.109 -12.067 -12.108 -12.121 -12.157
Ar -30.190 -29.996 -30.188 -30.127 -30.173
Kr -93.892 -93.425 -93.890 -93.892 -93.516
Xe -179.169 -178.24 -179.200 -179.172 -178.206

After the development of the proposed exchange functional (MGGAC), we have shown

the exchange energies of the noble gas atoms in Table 4.2 and compared them with those

obtained from other known exchange functionals. The results are reasonably accurate

for all the noble gas atoms and comparable with the results of other popular functionals.
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However, MGGAC slightly underestimates the exchange energy of the He atom. This

is almost the same as the value of PBE overestimation. This fact is related to the sim-

plest, fully local behaviour of the MGGAC exchange functional for the case of one- and

two-electron system, where by construction FMGGAC
x = 1.174.

4.2.1 Behaviour of the Exchange Enhancement Factor

We have shown the enhancement factor FMGGAC
x (α) as a function of α in the left panel

of Fig. 4.1. It is smooth and decreases monotonically from its maximum value of 1.174 at

α = 0 to its minimum value of 0.937 at α = ∞. It also matches very well with the FMVS
x

for s = 0.01 and α ≈ 1. In the right panel of Fig. 4.1, the derivate of the enhancement

factors w.r.t. α is shown for MVS and MGGAC functionals. FMGGAC
x shows almost zero

slope when α → 0 and for all other values of α , dFx/dα ≤ 0 is a convex function. This

property of the exchange functionals is directly related to the band gap of solids.154 In

general, our proposed FMGGAC
x is very simple compared with the FMVS

x which shows a

lot of structure and dependent on both s and α .
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Figure 4.1: Left panel: The exchange enhancement factor Fx as a function of α for the
MVS and MGGAC functionals. Right panel: Same as in the left panel but for the deriva-
tive of the enhancement factor dFx/dα .
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4.2.2 Properties of the BR Non-linear Equation

At this point, let us discuss about the solution of the non-linear Eq. 4.3 which is very

crucial for getting the exchange energy. As we have already shown in Fig. 4.1 that

FMGGAC
x (α) is smooth and this implies the well-behaved character of the non-linear

equation everywhere. The equation can be solved numerically using Newton-Raphson

method155 and for any function Λ it has a unique solution x ≥−1. We solve the inverse of

Eq. 4.3 i.e. 1/Λ(α) = (x−3)e2x/3/(1+x)5/3 in order to remove possible numerical insta-

bility at x = 3. We have shown in Fig. 4.2 that both 1/Λ(α) and x(α) are analytic function

of α . Notice that x ≥ 0 always and x → 0 when α → ∞. The computational cost of the
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Figure 4.2: Shown are the solution x(α) of Eq. 4.3 and the value of 1/Λ(α) of Eq. 4.6
with respect to α .

proposed functional is comparable with other meta-GGA functionals because of the good

behaviour of the non-linear equation. Note that it is also possible to find an analytical

representation of the MGGAC non-linear equation like the existing BR exchange.128

4.2.3 Correlation Part of the MGGAC Functional

For the correlation part to be associated with the proposed exchange functional, we used

PBE26 expression with modified second-order gradient coefficient β to be fixed at 0.030.

We get this value of β from the fitting of equilibrium lattice constants of twenty densely
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packed solids from the LC20 test set.156 We note that the fixed value of β is very close

to the LDA linear response value (β = 0.0375),157 which is supposed to be exact in the

low-density regime.158,159

4.3 Computational Details

The MGGAC functional is implemented in the development version of the QCHEM160

for quantum chemistry calculations. The def2-QZVP basis set is used for all calculations

and XC integrals are performed with a radial grid of 99 points and an angular Lebedev

grid of 590 points. Note that meta-GGA functionals especially SCAN is very sensitive to

the choice of the grid and particularly for the potential energy curves of the non-bonded

interactions.161 However, our choice of the grid is sufficient for the complete energy con-

vergence of the non-bonded systems.

Solid-state calculations are performed by implementing the MGGAC functional in the

plane wave pseudopotential code Vienna ab initio simulation package (VASP).132,133 A

15× 15× 15 Monkhorst-Pack k-mesh and 700 eV energy cutoff is used for all the bulk

calculations including the band gap calculations. To calculate the bulk modulus of solids,

we use third-order Birch-Murnaghan162 equation of state to fit the energy-volume data.

An antisymmetric box size of 23× 24× 25 Å3 is considered for the atomic calculation

of cohesive energies. Surface energies of six transition metals and CO adsorption on the

transition metal surfaces are done with 16×16×1 Γ centred k-mesh and 700 eV energy

cut-off. In the case of surface calculations, a vacuum of greater than 20 Åis used to avoid

the interaction between the periodic surfaces. We relax the top two layers for the case of

CO adsorption.
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4.4 Results

4.4.1 Molecular Systems

To check the performance of MGGAC for molecular systems, we examine the follow-

ing widely used thermochemical and non-covalent interaction test sets: the AE658 and

G2/148163 test sets for the atomization energy, the BH76RC164 test set of thirty chemical

reactions, 76 barrier heights (BH76)164 including 38 hydrogen transfer (HTBH38) and 38

non-hydrogen165,166 transfer barrier heights, hydrogenic (MGHBL9) and non-hydrogenic

(MGNHBL11)106 bond lengths, six hydrogen bond dissociation (HB6) energies,58,167

binding energies of seven charge transfer complexes (CT7),58,167 five dissociation ener-

gies (PPS5)58,167 of π-π system, six dipolar bond dissociation energies (DI6),58,167 seven

hydrocarbon chemistry (HC7),58,168 nine difficult cases (DC9/12),58,169 and non-covalent

interaction energies of S22170 test set.

The MAE and RMAE w.r.t. PBE values are shown in the Table 4.3 and all the detailed

results are given in the supplementary material of Ref..54 The performance of MGGAC

is quite precise for all the molecular test sets except HB6, where it has been noticed

that a substantial underestimation of the hydrogen bond reaction with an MAE of 0.87

kcal/mol. The MGGAC functional outperforms the MVS and TPSS meta-GGAs with an

RMAE of 0.78, and their performance is very close to SCAN (RMAE=0.78) and B3LYP

(RMAE=0.74) hybrid functionals. The good performance of MGGAC for atomization

energies, barrier heights, reaction energies, and difficult cases make it suitable for the

thermochemistry calculations. To justify the above point, we want to mention the perfor-

mance of MGGAC for the DC9/12 test set which is composed of the difficult reactions

and atomization energies. MGGAC provides the best result for this case with an MAE

of 6.3 kcal/mol, which is almost twice better than SCAN meta-GGA with MAE=11.1

kcal/mol. In addition, the MGGAC gives all the relative errors below 20%, and the re-

sult is very accurate for seven out of nine cases. Interestingly, the performance of MVS

meta-GGA is worst in this case with an MAE of 43.8 kcal/mol.
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Table 4.3: Shown are the mean absolute errors (MAE) of all the molecular test
sets for different XC energy functionals. All results are in kcal/mol except for
MGHBL and MGNHBL where MAEs are reported in mÅ. The last line provides
the averaged MAE relative to the PBE (RMAE= 1

N ∑N
i MAEi/MAEPBE

i , with N
being the total number of test sets). The best/worst MAE result of each test set is
shown in bold/underline style.1

PBE TPSS SCAN MVS MGGAC HSE06 B3LYP
AE6 15.03 5.74 3.43 10.55 5.24 5.41 3.47
G2/148 15.17 5.47 3.73 12.86 4.38 4.47 4.70
BH76 9.32 8.56 7.76 4.77 3.88 4.32 4.63
BH76RC 3.33 1.78 2.32 3.49 2.51 1.60 1.67
MGHBL9 11 7 2 3 3 2 2
MGNHBL11 7 5 6 12 10 10 7
HB6 0.33 0.47 0.76 0.42 0.87 0.33 0.65
CT7 2.77 1.98 2.99 2.18 1.60 0.95 0.60
PPS5 2.38 2.91 0.72 0.79 0.67 1.87 2.98
DI6 0.41 0.51 0.53 0.43 0.65 0.35 0.84
HC7 4.23 10.73 6.51 9.45 4.10 8.85 17.00
DC9/12 39.83 17.29 11.13 43.82 6.35 16.57 20.32
S22 2.54 3.41 0.92 0.75 1.20 2.33 3.70
RMAE 1.00 0.95 0.78 0.93 0.78 0.74 1.09
1 All the details of the geometries used in the calculations and reference values can be found

in the supplementary material of Ref..54

4.4.2 Solid-State Systems

Here, we assess the performance of the MGGAC functional for the following solid state

test sets - the equilibrium lattice constants (LC20), bulk modulus (BM20) and the co-

hesive energies (COH20) of twenty strongly bonded solids,34,156 the band gaps of the

semiconductors from the SBG31171 test set, the surface (111) formation energies of six

transition metals (Au, Cu, Pd, Pt, Rh, and Ir), and the adsorption energies of CO molecule

on top of the (111) surface of transition metals (Cu, Ir, Pd, Pt, and Rh). The results of

the above test sets are reported in Table 4.4 as MAE and RMAE w.r.t the PBEsol values

and the full results are given in the supplementary material of Ref..54 Note that PBEsol is

considered to be the best for many solid state calculations and we took this as a reference

for computing RMAE.

The overall performance of MGGAC (RMAE=1.0) is comparable to the PBEsol func-
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Table 4.4: Shown are the MAEs of the lattice constants (a0), bulk moduli
(B0), cohesive energies (Ecoh), band gaps (Eg), transition metal surface
(111) energies (σ ) and CO adsorption energies (Ead) on top of the (111)
surface of the five transition metals.Best/worst MAE result of each col-
umn is shown in bold/underline style. The average MAEs are shown in
the last column w.r.t. PBEsol (RMAE = 1

N ∑N
i=1MAEi/MAEPBEsol).1

a0 B0 Ecoh Eg σ Ead RMAE
(Å) (GPa) (eV/atom) (eV) (J/m2) (eV)

LDA 82 10.1 0.64 1.20 0.16 0.83 1.6
PBE 60 10.5 0.14 1.06 0.67 0.31 1.2

PBEsol 35 6.2 0.25 1.16 0.37 0.50 1.0
TPSS 43 7.9 0.17 0.98 0.38 0.18 0.9
SCAN 26 4.5 0.16 0.75 0.46 0.51 0.8
MVS 34 12.2 0.37 0.59 0.22 0.50 1.1

MGGAC 45 10.0 0.39 0.52 0.21 0.28 1.0
HSE06 31 7.2 0.28 0.28 0.34 0.49 0.9
1 The results (a0, B0 and Ecoh) of LDA, PBE, PBEsol and TPSS are taken from

Ref.,156 SCAN, MVS and reference values are from Refs.,172173 and.156 Surface
energies of the LDA, PBE, PBEsol and SCAN functionals are from Ref.,174 the
TPSS ones from Ref.173 and the reference results are from Ref..175 Adsorption
energies of PBE, SCAN, HSE06 and reference values are taken from Ref..176

tional and better than LDA, MVS, and PBE functionals. The SCAN meta-GGA functional

performs the best for the case of lattice constants and bulk moduli. For cohesive energies,

the performance of MGGAC is in line with the MVS functional and the PBE functional

outperforms all others in this case. The LDA gives the lowest MAE for transition metal

surface energies. On the other hand, it has the largest MAE for the CO adsorption on the

transition metal surfaces. For these two cases, the performance of MGGAC is quite good

and it outperforms the SCAN, MVS, PBE, PBEsol, and HSE06 functionals. MGGAC is

the best performing semilocal functional for the semiconductor band gaps of the SBG31

test set. In order to highlight this point, we have shown the band structure and density of

states of the Si bulk crystal calculated using MGGAC, SCAN and HSE06 functional in

Fig. 4.3. The SCAN and MGGAC functionals give almost the same occupied bands, but

the conduction band picture is drastically improved at the MGGAC level. The indirect

band gap for MGGAC is 1.21 eV, which is comparable to the HSE06 (1.17 eV) and the

experimental band gap (1.17 eV). On the other hand, SCAN underestimates the band gap
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value by giving 0.83 eV in this case. Furthermore, the description of the direct band gap

at the Γ point is improved for the MGGAC functional giving 3.32 eV, compared to the
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Figure 4.3: The band structure and the density of states for Si bulk crystal as calculated
using MGGAC, SCAN and HSE06 hybrid functionals.

experimental value of 3.35 eV, whereas SCAN gives 2.85 eV. It is evident from 4.3 that

the unoccupied part of the band and DOS in the case of MGGAC resemble very well that

of the HSE06. This manifests the significant accuracy of the MGGAC functional and

this can be used for multiscale simulation of Si clusters and various Si quantum dots.177

Note that the Becke-Johnson exchange potential178 and the Tran-Blaha modified Becke-

Johnson exchange potential134 were constructed using the Becke-Roussel technique and

accurate for the band gap energy of bulk solids. Recently, the good performance of the

MGGAC functional has been shown for the prediction of the band gaps of the layered

materials.179

4.4.3 Orbital Energies of Noble Gas Atoms

Now, we study the orbital energies of noble gas atoms, from He to Rn, to check whether

the good performance of the MGGAC functional also holds for the finite systems as well.
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In Table 4.5, we have shown the MAEs of the highest occupied (HOMO), lowest unoc-

cupied (LUMO), and second lowest unoccupied (denoted as LUMO+1) molecular orbital

energies w.r.t. the reference values. The MGGAC functional performs exceptionally well

in this case and improves the results significantly over TPSS, SCAN, and MVS. This im-

provement of the MGGAC functional is coming from the Becke-Roussel approach used in

its construction and this procedure has been shown to be relevant for the better description

of excitation energies.180

Table 4.5: Shown are the MAEs (eV) of the HOMO, LUMO, and LUMO +
1 for the noble gas atoms from He to Rn. The Best/worst result of each case
is shown in bold/underline style.1

Orbital PBE TPSS SCAN MVS MGGAC HSE06 B3LYP
HOMO 5.58 5.47 5.18 4.91 4.76 4.28 4.16
LUMO 2.03 1.89 1.43 1.64 0.86 1.78 1.83

LUMO+1 2.06 1.94 1.63 2.72 1.27 1.80 1.85
1 Reference HOMO eigenvalues are taken from the experimental ionization potential181

using the Koopman’s theoem (εHOMO =−IP). Reference LUMO and LUMO+1 eigen-
values are taken from the long-range corrected hybrid functional (ωB97X-D3)182 cal-
culation. The UGBS basis set is used. Detailed results are given in the supplementary
information of Ref..54

4.5 Conclusions

We have proposed an exchange functional using the Becke-Roussel approach which is

an unusual but powerful way of building exchange functional. The non-linear equation

[see Eq. 4.3] in this approach is derived using the cuspless hydrogen density. The function

Λ(ρ,∇ρ,τ) can be modelled in such a way that the resulting exchange functional will fol-

low several exact constraints. The use of cuspless density is crucial in this case, because,

unlike the hydrogen density, both the slowly and rapidly varying density regimes are well

described. We have proposed a very simple expression of Λ(α) [see Eq. 4.6] such that

the proposed MGGAC meta-GGA exchange functional depends only on the Pauli kinetic

enhancement factor α . In spite of this heavy simplification, the MGGAC functional cou-

pled with a GGA correlation performs well for a large variety of systems and properties,
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and the results are comparable and often better than the more sophisticated and popular

functionals. The MGGAC accuracy demonstrates that

1. further improvements of the semi-local DFT can be improved by using reduced

density gradient s with α to build a more elaborated form of Λ(s,α).

2. the ingredient α which is a signature of the electron localization function, can be

used as a standalone variable in DFT functional development.





Chapter 5

Structural Phase Stability of FeS2, TiO2

and MnO2 Polymorphs

5.1 Introduction

Semilocal functionals33,34,54 developed in recent times are quite successful in describing

a large palette of solid-state and quantum chemical properties. Despite their successful

application for solids, there are some challenging cases for which their performance is

not up to the mark and even the newly developed meta-GGAs and hybrid functionals fail

for these cases. Such a challenging solid-state problem is the correct stability prediction

of the FeS2, TiO2, and MnO2 polymorphs. Note that these are quite emerging materials

from the application point of view. FeS2 and TiO2 are quite useful in electrocatalyst and

photoelectrochemical183,184,185,186 applications due to their suitable band gaps. MnO2 has

important application in battery, energy storage, and catalysis.187,188 From the experimen-

tal results, it is established that the pyrite and rutile are the most stable configurations of

FeS2 and TiO2, respectively. However, most of the DFT calculations using semilocal XC

functionals including Hubbard-U correction (DFT+U) show the wrong prediction of the

ground state of FeS2 and TiO2, and all the semilocal functionals fail to predict simultane-

ously the correct ground state for both the systems.189,190

These systems have been investigated using the approximations from the higher rung
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of Jacob’s ladder including hybrid density functionals and random phase approximation

(RPA) methods. The RPA successfully predicts the stability ordering of both these solids

while the HSE0645 functional fails for the case of TiO2. In general, the RPA calcula-

tions are performed on top of the semilocal functional and the final results depend on the

starting orbitals.189,190 However, the structural relaxation using the self-consistent RPA

approach is not practical due to its huge cost and lack of analytic forces.

In this chapter, we investigate the relative stability of the FeS2, TiO2, and MnO2 poly-

morphs using the developed functional (MGGAC) in chapter 4. We also consider the

recently proposed Tao-Mo (TM)33 and SCAN34 meta-GGA functional to assess their per-

formance for these challenging systems. Both the TM and SCAN functionals are accurate

for a diverse range of bonding environments such as covalent, non-covalent, and hydro-

gen bonding. The SCAN and the MGGAC functional satisfy the tight lower bound for

exchange52 unlike the TM functional. In the next section, we briefly describe about the

methods used to explore the stability ordering of the above systems.

5.2 Brief Overview of Methods

Unlike GGAs, the meta-GGA functionals can recognize different bonding environments

inside a many-electron system using the electron localization indicator which depends

upon the density gradient (∇ρ) and the KS kinetic energy density τ(r) = 1
2 ∑i |∇φi(r)|2,

where φi is the ith occupied KS orbital. In recent years, several non-empirical meta-GGA

functionals have been proposed.33,34,54 The SCAN meta-GGA functional follows seven-

teen known exact constraints that a meta-GGA functional can satisfy. Its enhancement

factor depends upon the reduced density gradient (s = |∇ρ|/(2kFρ)) and the Pauli kinetic

enhancement factor α = (τ − τW )/τuni f .

The TM meta-GGA functional is constructed from the exchange hole derived using

density matrix expansion and coupled with the slowly varying density gradient expansion

for exchange which is important for solids. Its enhancement factor is dependent on both

the meta-GGA ingredients z = τW/τ and α . At this point, we want to mention about the

order-of-limit191 problem of some meta-GGA functionals. This arises due to the differ-
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ent results from the order of two limiting conditions α → 0 and p → 0 (p = s2) on the

exchange enhancement factor. In the case of TM functional, it can be expressed as

lim
α→0

�
lim
p→0

�
FTM

x (p,α)
��

= 1.0137, (5.1)

and

lim
p→0

�
lim
α→0

�
FTM

x (p,α)
��

= 1.1132. (5.2)

This problem worsens the functional performance for the transition pressure of solids and

leads to inaccurate energy differences between different crystal structures.192,193

The MGGAC meta-GGA functional which is discussed in the previous chapter and its

exchange enhancement factor depends only on the Pauli kinetic enhancement (α) factor.

This functional is developed using the cuspless hydrogen density following the Becke-

Roussel technique. Unlike TM functional, the SCAN and the MGGAC functionals do

not suffer from the order-of-limit problem. The derivative of the exchange enhancement

factor w.r.t. α is negative for both the SCAN and MGGAC functionals and this property

is very important for the band gap problem.194 This fact helps to include some amount

of derivative discontinuity of the XC energy within the generalized KS scheme and this

improves the description of the band gap energy of the bulk and layered systems. The

SCAN and TM functionals satisfy the fourth-order gradient expansion for exchange. On

the other hand, the MGGAC functional form is quite simple and recovers the LDA in the

slowly varying density limit. The correlation part of the SCAN and TM is one-electron

self-interaction free, whereas the MGGAC correlation follows from a simple modification

of the PBE correlation functional.

Nonetheless, apart from PBE, PBEsol, and TPSS functionals, the SCAN, TM, and

MGGAC meta-GGA functionals incorporate some interesting and peculiar features such

as tight lower bound for exchange, the exchange hole constraint, or the Becke-Roussel

non-linear equation using cuspless hydrogen density. Therefore, the study of the perfor-

mance of these functionals for the challenging systems is interesting from both practical

and theoretical points of view.
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5.3 Computational Details

All the DFT calculations are performed using Vienna ab initio simulation package (VASP)132,133

which is a plane wave pseudopotential based code. We have used GW tuned norm con-

serving projector augmented wave pseudopotentials to assure the numerical accuracy as

suggested in the previous study.190 The 3s and 3p semicore states are considered as va-

lence states for Fe and Ti. We use a 6×6×6 (7×6×10) Γ centered Monkhorst-Pack195

k-mesh for FeS2 pyrite (marcasite) and 6×6×8 (6×6×6) for TiO2 rutile (anatase). Plane

wave cut-off of 800 eV is used for all the calculations. Structural optimization has been

performed with a force convergence criteria of 0.01 eV/Å for each atom. To get the

energy-volume data for a particular crystal phase, a set of crystal structures with range

Vcell ±10% are optimized by relaxing their internal coordinates and crystal shape, where

Vcell is the equilibrium unit cell volume. The obtained energy-volume data is fitted with

the Birch-Murnaghan162 equation of state to get the equilibrium volume Vcell, bulk mod-

ulus B0 and ground state energy E0.

Phonon calculations are performed using the Phonopy196 code interfaced with VASP.

A 2× 2× 2 supercell is used for the phonon calculation and this is constructed from the

optimized structure with force convergence criteria of 0.001 eV/Å for each functional.

Once we get the phonon energy spectrum, the vibrational internal energy (Uvib) is calcu-

lated from the following equation

Uvib(T ) = ∑
q,n

h̄ω(q,n)
�

1
2
+

1
exp(h̄ω(q,n)/kBT )−1

�
, (5.3)

where n is the band index and kB is the Boltzmann constant. The enthalpy difference (ΔH)

between the two phases of a particular crystal structure at temperature T and pressure P

is given by

ΔH = ΔE +ΔUvib(T )+ pΔV, (5.4)

where ΔE and ΔV are the energy and volume differences between the two phases. The

last term of Eq. 5.4 has a very little contribution to our case and can be safely ignored.189
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5.4 Results

5.4.1 Relative Stability of FeS2 Polymorphs

5.4.1.1 Structural Properties, Relative Energies, and Band Gaps

FeS2 pyrite exhibits rock salt structure with space group pa3̄ and its conventional unit

cell contains four units of FeS2. In pyrite, the FeS6 octahedra share corners with 12

neighbours. The marcasite phase crystallizes in the orthorhombic space group pnnm and

its conventional unit cell contains two units of FeS2. In this phase, the FeS6 octahedra

shares edges along the unit cell c-axis and corners along with other directions. Marcasite

is more loosely packed than pyrite.

The equilibrium volume Vcell and bulk modulus B0 results are shown in Table 5.1

for both the marcasite and pyrite phases, calculated using different XC functionals. Al-

though we have shown the results of many different functionals including widely used

GGAs, meta-GGAs and hybrids, here we mainly discuss the performance of the MGGAC,

SCAN, and TM meta-GGA functionals. The energy vs volume curve for both the phases

using MGGAC and TM functional is shown in Fig. 5.1. Examining the performance, we

notice that the TM functional underestimates the volume of the marcasite phase by 2.4%

and that of pyrite by 2.8%, while the MGGAC and SCAN perform well and give values

within 0.5% close to the experimental value. In the case of bulk moduli, TM functional

overestimates the pyrite phase by 5.6% and marcasite phase by 9.3%, while the MGGAC

functional underestimates by 12.7% and 5.3% for the pyrite and marcasite phases, re-

spectively. The most precise results for bulk moduli are found from the PBE and TPSS

functionals, and the error lies within 3% of the experimental value.

The relative energy difference between the pyrite and marcasite phase ΔEP−M is

shown in Table 5.1, which is calculated from the ground state energy of each phase for

the respective functionals. Although the AM05, PBEsol, TPSS, MS2, and HSE06 give

the required ordering (i.e. ΔEP−M < 0), but their ΔEP−M values are deviated too much

w.r.t. the experimental enthalpy. The inclusion of van der Waals interaction also gives in-
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Table 5.1: Shown are the equilibrium volume of the unit cell Vcell, bulk modulus B0 and band
gap value Eg of the pyrite (P) and marcasite (M) phases of FeS2 calculated using different XC
functionals. The relative energy difference (ΔEP−M) between the two phases and the enthalpy dif-
ference (ΔHP−M) calculated by adding the zero point energy (ZPE) to (ΔEP−M) are also shown.1

Functional Vcell(Å3) B0(GPa) Δ EP−M ΔHP−M Eg (eV)
P M P M (meV/f.u) (meV/f.u) P M

MGGAC 159.59 (0.5) 81.52 (0.01) 135.8 (-12.7) 138.7 (-5.3) -28.03 -23.08 1.49 1.89

SCAN 158.64 (-0.1) 81.16 (-0.4) 145.6 (-6.4) 148.1 (1.1) 61.70 [60.30] 1.23 1.64

TM 154.42 (-2.8) 79.55 (-2.4) 164.3 (5.6) 160.18 (9.3) -39.38 -37.41 0.56 1.24

TPSS 158.20 (-0.4) 81.54 (0.04) 155.6 (0.06) 149.9 (2.3) -8.10 -5.82 0.54 1.16

RTPSS 155.11 (-2.3) 80.03 (-1.8) 161.9 (4.1) 155.9 (6.4) -16.5 [-15.10] 0.46 1.18

MS2 159.99 (0.7) 81.98 (0.6) 140.6 (-9.6) 140.8 (-3.9) -11.74 [-10.34] 1.54 1.89

AM05 150.06 (-5.5) 77.53 (-4.9) 182.9 (17.6) 172.5 (17.7) -5.22 [-59.80] 0.23 0.98

PBE 157.97 (-0.5) 81.52 (0.01) 157.0 (1.0) 149.3 (1.9) 27.90 29.50 0.67 0.86

PBEsol 151.10 (-4.9) 78.02 (-4.3) 182.7 (17.5) 172.5 (17.7) -4.50 -3.10 0.64 0.83

HSE06 159.23 (0.2) 81.26 (-0.3) 133.8 (-13.9) 135.8 (-7.3) -5.20 [-3.8] 2.80 2.70

optB88-vdW 160.38 (1.0) 82.69 (1.4) 153.6 (-1.2) 145.8 (-0.5) 25.5 [26.9] 0.79 1.01

Exp. 158.82197 81.51197 155.5198 146.5199 -42.9 0.70, 0.34200

±0.2201 2.62202,203,204,205,206

1 The PBE, PBEsol, HSE06, and optB88-vdW values are taken from Ref..189 The relative errors (%) of the calcu-
lated Vcell and B0 are given in the parentheses. Square bracket in the ΔHP−M column indicates that the ZPE of the
PBEsol functional from Ref.189 is used to calculate the enthalpy difference.

correct ordering, which is obvious from the optB88-vdW results. The MGGAC and TM

functionals correctly predict the pyrite phase as the stable one and they give ΔEP−M and

ΔHP−M values that are comparable to the experimental values. Notice that even if SCAN

is very successful for a wide range of molecular and solid-state systems,207 still it gives

incorrect ordering in this case.

We have compared the calculated band gap results of both the phases using semilocal

functionals with the results of hybrid functional and experimental values. The experi-

mentally reported optical band gap varies from 0.70 to 2.62 eV in the case of pyrite.205 In

the case of marcasite, all the semilocal functionals significantly overestimate the value of

band gap as compared to the experimental value of 0.34 eV. We find that the MGGAC and

MS2 functionals are most accurate in this case and their values are in better agreement

with the reference to HSE06 hybrid functional. The larger difference between the calcu-

lated band gap of marcasite from the experiment suggests that the experimental resistivity

measurement may need to be verified carefully.208
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Figure 5.1: Energy vs volume curves for both the phases of FeS2 calculated using the
MGGAC and TM functionals. Zero of the energy is taken as the total energy of the pyrite
phase at the equilibrium volume of each functional.

5.4.1.2 Temperature Effects and Zero-Point Energy

Here, we explore the impact of the vibrational energy and temperature on the relative

stability of the marcasite and pyrite phases of FeS2. The calculated value of ΔHP−M for

each functional is shown in Table 5.1. The density of states for each phase calculated

using the MGGAC and TM functional is shown in the left panel of Fig. 5.2. The largest

phonon peak for marcasite is observed around 445 cm−1 and around 488 cm−1 for pyrite

using MGGAC functional and the same for TM functional is observed around 429 cm−1

and 451 cm−1, respectively. Due to this reason, the zero-point energy of the pyrite phase

is larger than the marcasite phase irrespective of the functional used.209 After adding

the zero point energy contribution to ΔEP−M, the MGGAC functional underestimates the

experimental enthalpy by 19.8 meV per formula unit and TM functional by 5.5 meV per

formula unit. The enthalpy change ΔHP−M at any finite temperature is calculated using the

Eq. 5.3 and shown in the right panel of Fig. 5.2 for the MGGAC and TM functionals, along

with the experimental results. Within a temperature range of 0−700 K, the experimental

enthalpy change from pyrite to marcasite phase is decreased by 0.4 meV per formula

unit. However, from our DFT calculations, it is decreased by 4.0 meV and 1.5 meV for
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Figure 5.2: Left panel: Phonon density of states of the pyrite and marcasite phases calcu-
lated using the MGGAC and TM functionals. Right Panel: Calculated and experimental
enthalpy changes from pyrite to marcasite phases within temperature range 0− 700 K.
Experimental results are taken from.201

the MGGAC and TM functional, respectively. Both the MGGAC and TM functionals

correctly predict the pyrite phase as the most stable one within the above temperature

range and being in line with the experiment.

5.4.2 Relative Stability of TiO2 Polymorphs

5.4.2.1 Structural Properties, Relative Energies, and Band Gaps

TiO2 rutile and anatase crystallize in the space group I41/amd and P42/mnm, respectively.

The basic building block is TiO6 octahedron for both the structures, but the connection

between these octahedrons is different in the two phases. The rutile phase is more densely

packed than the anatase phase. The equilibrium volume and bulk modulus of the anatase

and rutile phases using all the considered functionals are shown in Table 5.2. The en-

ergy vs volume curve for both the phases using MGGAC and TM functional is shown in

Fig. 5.3. It is evident from Table 5.2 that the PBE functional overestimates the volume

of both the phases by less than 2.9%, whereas MGGAC, HSE06, and PBEsol underesti-

mate them by less than 1.8%. All of the other functionals give the unit cell volume with

good accuracy compared to the experiment. For the case of bulk moduli, the TM and
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TPSS functionals provide accurate results, whereas the MGGAC and SCAN functionals

overestimate for both rutile and anatase phases.

Table 5.2: The equilibrium volume of the unit cell Vcell, bulk modulus B0 and band
gap Eg of the rutile and anatase phases of TiO2 calculated using different XC func-
tionals. The relative energy difference (ΔER−A) between the two phases and the
enthalpy difference (ΔHR−A) computed by adding the zero point energy to ΔER−A
are also shown.1

Functionals Vcell(Å3) B0(GPa) ΔER−A ΔHR−A Eg (eV)
R A R A (kJ/mol) (kJ/mol) R A

MGGAC 61.34 (-1.8) 67.18 (-1.4) 257.8 (19.3) 197.9 (11.2) -0.82 -0.74 2.46 2.79
SCAN 62.14 (-0.5) 68.46 (0.5) 242.9 (12.4) 191.5 (7.6) 6.85 [6.01] 2.22 2.60

TM 62.83 (0.6) 68.69 (0.8) 222.1 (2.8) 182.6 (2.6) -2.01 -2.89 2.00 2.23
TPSS 63.16 (1.1) 69.45 (1.9) 213.7 (-1.1) 175.4 (-1.5) 12.16 11.11 1.97 2.28

RTPSS 63.06 (1.0) 69.20 (1.6) 216.9 (0.4) 173.7 (-2.4) 7.31 [6.47] 1.99 2.26
MS2 62.39 (-0.1) 68.47 (0.5) 224.7 (4.0) 185.8 (4.4) 10.18 [9.26] 2.21 2.53

AM05 62.06 (-0.6) 68.06 (-0.1) 213.8 (-1.0) 179.1 (0.6) 18.58 [17.74] 1.87 2.18
PBE 63.97 (2.4) 70.10 (2.9) 199.1 (-7.8) 171.1 (-3.9) 9.28 [8.44] 1.84 2.12

PBEsol 61.98 (-0.7) 67.96 (-0.2) 220.9 (2.3) 179.6 (0.9) 5.95 5.11 1.85 2.10
HSE06 61.80 (-1.0) 67.86 (-0.4) 232.9 (7.8) 199.5 (12.1) 8.74 [7.90] 3.45 3.73

optB88-vdW 62.83 (0.6) 68.75 (0.9) 215.7 (-0.1) 173.9 (-2.3) 1.35 [0.51] 1.88 2.19
Exp. 62.45210 68.13210 216211 178212 -1.69213 3.00214 3.20215

1 The PBE, PBEsol, HSE06, and optB88-vdW values are taken from Ref..190 The relative errors (%)
of the calculated Vcell and B0 are given in the parentheses. Square bracket in the ΔHP−M column
indicates that the ZPE of the PBEsol functional from Ref.190 is used to calculate the enthalpy
difference.
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Figure 5.3: Energy vs volume curves for both the phases of TiO2 calculated using the
MGGAC and TM functionals. Zero of the energy is taken as the total energy of the rutile
phase at the equilibrium volume of each functional.

Coming to the point of relative energy difference from the ground state calculation, we
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observe that all the functionals except MGGAC and TM failed to predict the rutile phase

as the stable one. Moreover, the TM and MGGAC values of ΔER−A are comparable to

the experiment. Note that, in this case, the inclusion of van der Waals interaction reduces

the energy difference in comparison with the standard GGA functionals, but still fails to

predict the correct ordering.

We find that the MGGAC is the most accurate semilocal functional in predicting the

band gaps of both the phases and it underestimates the values by around 0.5 eV compared

to the experiment. The performance of MGGAC is comparable to the accuracy of hybrid

functional HSE06, which overestimates the experimental values by about 0.5 eV.

5.4.2.2 Temperature Effects and Zero-Point Energy

Here, we discuss the impact of zero-point energy and temperature on the relative stability

of the rutile and anatase phases of TiO2. The phonon density of states of both the phases

using the MGGAC and TM functionals is shown in the left panel of Fig. 5.4. In the case

of MGGAC functional, the lowest energy peak in the phonon spectrum appears at about

173 cm−1 for anatase and 189 cm−1 for rutile. This small difference in the peak position

makes the zero-point energy almost the same for both the phases and favours the anatase

by 0.08 kJ/mol. For TM functional, the lowest energy peak for anatase and rutile phases

appears at about 138 cm−1 and 128 cm−1 respectively, which stabilizes the rutile phase

by 0.88 kJ/mol. Note that, we have used the highest energy peak for FeS2 and the lowest

energy peak for TiO2 to explain the zero-point energy difference between the two phases.

This is due to the density of states being large at the lowest peak position in TiO2, whereas

for FeS2 at the highest peak position. The calculated value of enthalpy difference ΔHR−A

is shown in Table 5.2. We also noticed that only zero-point energy is not sufficient to

change the ordering predicted by density functionals.

Using the phonon spectrum, we calculated the temperature dependence of ΔHR−A as

shown in the right panel of Fig. 5.4 for the case of the MGGAC and TM functionals,

along with the experimental results. The experimental enthalpy change from the rutile to

anatase phase is changed by 0.1 kJ/mol over a temperature range of 0−300 K. However,

from our theoretical calculations, it is changed by 0.47 kJ/mol and 0.12 kJ/mol for the
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Figure 5.4: Left panel: Phonon density of states of the rutile and anatase phases calcu-
lated using the MGGAC and TM functionals. Right panel: Calculated and experimental
enthalpy changes from rutile to anatase phases within temperature range 0− 300 K. Ex-
perimental results are taken from Ref..213

case of the MGGAC and TM functional, respectively.

5.4.3 Relative Stability of MnO2 polymorphs

MnO2 have six different phases which are pyrolusite β , ramsdellite R, hollandite α , in-

tergrowth γ , spinel λ and layered δ . In all these phases, MnO6 octahedrons are arranged

in corner- and edge-sharing manner with the Mn4+ ions in the spin-polarized 3d3 config-

uration and O2− ions in the spin-unpolarized 2p6 configuration. The various packing of

these octahedrons will lead to different kinds of polymorphs. These materials find a very

useful application in catalysis and energy storage devices.187,216,217 Experimentally, it is

confirmed that the pyrolusite β -MnO2 is the ground state of pure MnO2,218 but most of

the semilocal functionals and even hybrid functionals fail to predict the correct stability

ordering of these phases.219,220 All the MnO2 phases discussed here are exhibiting antifer-

romagnetic ordering and the chosen supercells are compatible with the antiferromagnetic

ordering and same as Ref..220 The MGGAC and the SCAN functionals correctly predict

the β -MnO2 as the ground state among the MnO2 polymorphs and the TM functional

fails in this case by predicting γ-MnO2 as the ground state. The formation enthalpy of

R-MnO2 with respect to βMnO2 from the SCAN and MGGAC functionals agree quanti-
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Figure 5.5: Shown are the formation enthalpies (ΔH = ER,α,γ,δ ,λ − Eβ ) of the MnO2
polymorphs w.r.t. the β -MnO2. Note, the arrows drawn for the experimental formation
energies for the α , γ , δ and λ phases indicate that the experimental formation energies
are some unknown positive quantity.

tatively with the experiment (56± 32 meV/MnO2). The failure of TM functional in this

case can be rectified by the use of the order-of-limit free TM functional which is shown

in Fig. 5.5.

5.5 Explanation of Results

At this point, let us discuss about the explanation of the above described results. Our study

clearly indicates that the MGGAC and TM functionals not only correctly predict the phase

ordering but also provide realistic phase transition enthalpies. The GGA functionals like

PBEsol and AM05 correctly recover the phase ordering for FeS2 but fail for TiO2. A very

similar performance is seen for the meta-GGA functionals like TPSS and RTPSS. The

SCAN and MGGAC exchange functionals follow the tight Lieb-Oxford bound, hence

their performances may be correlated with their different behaviour for slowly varying

density regimes.

Recently, it is observed that the SCAN functional recovers the correct phase ordering

for TiO2 at high temperature.221 To check that the SCAN source of errors are not coming
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from the corresponding XC potentials, we also compute the stability ordering of FeS2 and

TiO2 using rSCAN,222 r2SCAN223 and its different deorbitalized forms SCAN-L224 and

r2SCAN-L.225 The results are shown in Table 5.3 and all the revised SCAN methods fail

remarkably.

Table 5.3: Relative phase stability of FeS2 and TiO2 polymorphs using different modifi-
cations of the SCAN functional and their deorbitalized versions.

rSCAN r2SCAN SCAN-L r2SCAN-L
FeS2(meV/f.u.) 39.07 35.08 50.50 35.03
TiO2(kJ/mol) 8.04 8.10 5.02 6.28

Finally, the dramatic failure of TM functional in predicting the structural phase stabil-

ity of MnO2 can be understood from the order-of-limit problem of this functional.191,193 In

fact, the proposed order-of-limit free TM functional (reg-TM)193 solves the problem and

predicts the correct phase ordering qualitatively. The reg-TM functional overestimates

the experimental transition enthalpy from β -MnO2 to R-MnO2 and for other cases also it

overestimates the formation energies compared to the MGGAC and SCAN functionals as

shown in Fig. 5.5.

5.6 Conclusions

We have assessed the performance of different levels of semilocal and hybrid density

functional approximations in predicting the relative phase stability of FeS2, TiO2, and

MnO2 polymorphs. These are known to be challenging systems for density functional ap-

proximations. Most of the XC functionals including SCAN and van der Waals corrected

functional fail to predict the correct stability ordering of these systems simultaneously.

The present study shows that only the MGGAC functional developed using a general-

ized Becke-Roussel model recovers the correct stability ordering of all the systems. The

MGGAC functional can also predict the band gap of narrow and intermediate band gap

semiconductors with good accuracy, hence it can be used for different solid-state applica-

tions. Further, the good performance of TM functional for FeS2 and TiO2 can be regarded

as fortuitous because of its order-of-limit problem which is evident in the case of MnO2.
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Our study shows that the performance of MGGAC is promising for these challenging

systems and can be further explored in combination with the higher-order RPA based

correlation methods.



Chapter 6

Summary and Discussion

We started the thesis by describing various wave function-based methods to solve the

many-electron Schrödinger equation. However, the computational cost of these methods

is very high. In contrast, the computational effort in density functional theory is much

lower by making use of the electron density to describe the interacting many-particle sys-

tem. The fundamental theorem of DFT was postulated by Hohenberg and Kohn in 1964

and its practical application is possible after the Kohn-Sham (KS) formalism which maps

the interacting many-body system into an effective auxiliary non-interacting system. The

effective potential which is also called the KS potential includes the external potential and

electron-electron interaction in terms of the Hartree and exchange-correlation potential.

For practical calculation, we need to approximate the exchange-correlation part of the KS

potential. This thesis is dedicated to the development and application of the exchange-

correlation (XC) functional both at the semilocal meta-GGA and range-separated hybrid

meta-GGA level.

In chapter 2, we have constructed a long-range corrected exchange energy functional

using the recently proposed Tao-Mo semilocal exchange hole by using the standard error

function technique. The proposed long-range corrected exchange functional in combi-

nation with LYP correlation, is applied to calculate various molecular properties. We

have also discussed the impact of one- and many-electron self-interaction error and the

asymptotic corrected (−1/r) potential for a finite system. The developed long-range cor-
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rected functional performs reasonably well in comparison with the other popularly known

functionals in this category.

In chapter 3, we have looked at the problem of band gap prediction from semi-local

functionals perspective, keeping in mind that the meta-GGA functionals include some

amount of derivative discontinuity which is important in this case. We have developed

two exchange functionals using the model hydrogen and cuspless hydrogen density fol-

lowing the Becke-Roussel procedure. It is shown that the cuspless hydrogen density is

more suitable for functional development than the hydrogen density. The developed func-

tional using cuspless density performs better than the other semilocal functionals and

gives comparable results with the hybrid functional, in the case of solid-state band gap

prediction.

In chapter 4, we have developed an exchange energy functional which is dependent

only on the Pauli kinetic energy density and follows some exact constraints of XC energy

functional. Coupled with a GGA correlation, the proposed exchange functional works

very well for a broad range of molecular and solid-state properties. Our study shows

that the Pauli kinetic energy density can be the standalone ingredient for the DFT XC

functional development.

In chapter 5, we have applied the developed functional in chapter 4, to the case of

phase stability of the FeS2, TiO2, and MnO2 polymorphs. It is shown that the MGGAC

functional correctly recovers the stability ordering of all the polymorphs.

Our study will help to understand the performance of the recently proposed meta-

GGA functionals and the range-separated functionals. It also helps to further develop

new functionals with greater accuracy.



Appendix A

Density Matrices

The concept of density matrices is very useful in DFT, specifically when it comes to the

point of designing the exchange energy functional using the density matrix expansion

technique or the Taylor series expansion of the exchange hole. If we have N electron

wavefunction ψ(x1,x2, · · · ,xN) in the coordinate representation, then the Nth order den-

sity matrix is defined as

γN(x�1x�2 · · ·x�N ,x1x2 · · ·xN) = ψ(x�1,x
�
2, · · · ,x�N)ψ∗(x1,x2, · · · ,xN). (A.1)

The reduced density matrix of mth order is defined by

γm(x�1x�2 · · ·x�m,x1x2 · · ·xm) =

�
N
m

��
· · ·

�
γN(x�1x�2 · · ·x�mxm+1 · · ·xN ,x1x2 · · ·xN)

dxm+1 · · ·dxN ,

(A.2)

where
�N

m

�
is the binomial coefficient. The most important 2nd and 1st order reduced

density matrices are given as

γ2(x�1x�2,x1x2) =
N(N −1)

2

�
· · ·

�
ψ(x�1x�2x3 · · ·xN)ψ∗(x1x2x3 · · ·xN)dx3 · · ·dxN ,

(A.3)
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and,

γ1(x�1,x1) = N
�

· · ·
�

ψ(x�1x2 · · ·xN)ψ∗(x1x2 · · ·xN)dx2 · · ·dxN . (A.4)

If we sum over the spin coordinates, then the 2nd and 1st order spinless reduced density

matrices are written as

ρ2(r�1r�2,r1r2) = ∑
σ1,σ2

γ1(x�1x�2,x1x2), (A.5)

and,

ρ1(r�1,r1) = ∑
σ1

γ1(x�1,x1). (A.6)

Using this 1st order reduced density matrix, the exchange energy can be expressed as

Ex =−1
4

� � |ρ1(r1,r2)|2
|r1 − r2|

dr1dr2. (A.7)



Appendix B

Functional Derivative of the Modified

Becke-Roussel model

The self-consistent implementation of the meta-GGA functionals is given in Ref..156

Here, we only give the derivatives needed for the implementation of the functional. The

modified version of the BR exchange potential depends on the density, gradient of density

and kinetic energy density. Hence it can be implemented using the generalized Kohn-

Sham (gKS) formalism. The required functional derivatives of the BR exchange func-

tional is given in Ref..226 Here, we discuss about the functional derivatives involved in

our calculation. In the gKS framework, the exchange potential is given by-

Vxσ φ KS
iσ =

∂
∂ρσ

�
1
2

ρσUXσ

�
φ KS

iσ −∇ ·
�

∂
∂∇ρσ

�
1
2

ρσUXσ

�
φ KS

iσ +
∂

∂τKS
σ

�
1
2

ρσUXσ

�
∇φ KS

iσ

�

+

�
∂

∂∇ρσ

�
1
2

ρσUXσ

��
·∇φ KS

iσ (B.1)

and the exchange energy is given as follows-

Ex =
1
2

σ

∑
i=1

�
ρσ (r)UXσ d3r,

=
σ

∑
i=1

�
G[ρσ ,x] d3r, (B.2)
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For our modified BR functionals, the form of G can be constructed from Eqs. 3.22, 3.34,

and 4.4. We need to calculate ∂G
∂ρσ

, ∂G
∂ |∇ρσ | and ∂G

∂τKS
σ

separately. Now, following the chain

rule, we can write

∂G
∂ρσ

=
∂G
∂ρσ

+
∂G
∂x

∂x
∂ρσ

,

∂G
∂ |∇ρσ |

=
∂G

∂ |∇ρσ |
+

∂G
∂x

∂x
∂ |∇ρσ |

,

∂G
∂τKS

σ
=

∂G
∂τσ

+
∂G
∂x

∂x
∂τKS

σ
. (B.3)

To calculate the value of ∂x
∂ρσ

, ∂x
∂ |∇ρσ | and ∂x

∂τKS
σ

, we need to consider the non-linear equation

[see Eqs. 3.20 and 3.33] which in general can be written as

f (x) = h
�
ρσ , |∇ρσ |,τKS

σ

�
. (B.4)

Now,
d f (x)

dx
=

∂h
∂ρ

∂ρ
∂x

, (B.5)

which implies that
∂x
∂ρ

=
∂h
∂ρ

�
d f (x)

dx
. (B.6)

Similarly, we get
∂x

∂ |∇ρσ |
=

∂h
∂ |∇ρσ |

�
d f (x)

dx
, (B.7)

and
∂x
∂τ

=
∂h
∂τ

�
d f (x)

dx
. (B.8)

This procedure can be applied to any BR-like functional to calculate its derivatives which

are needed to calculate the exchange potential.
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