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Summary

In this thesis, we have discussed a particular limit (spacetime dimensionsD → ∞ limit) of
Einstein’s equation and demonstrated some of the simplifications it offers. In picturesque
terms, the effect of takingD → ∞ limit, can be thought of as to concentrate the gravitational
effect of the black hole within a thin region of thickness of the order O

(
1
D

)
outside the

horizon, leaving a hole in an otherwise undistorder background geometry. The surface of
the hole can then be thought of as a membrane in that background geometry with properties
obtained by integrating Einstein’s equation near the horizon. This is what had previously
been done for flat background spacetime in the papers [1–3] and known in the literature as
Large-D membrane paradigm.

In chapter 2 and chapter 3 of this thesis, we have generalized the large-D program in
arbitrary background spacetime, in particular to AdS/dS spacetime up to second subleading
order in 1

D
expansion.

In chapter 4 of this thesis, we have constructed a stress tensor on the membrane world
volume up to second subleading order in 1

D
expansion and demonstrated that the membrane

equation derived in chapter 3 follows from the conservation equation of this stress tensor.
This had previously been done up to first subleading order in 1

D
expansion in the paper [4].

There exists another perturbative technique namelyFluid-Gravity Correspondence, which
can be used to generate solutions of Einstein’s equation in presence of negative cosmologi-
cal constant. In chapter 5 of this thesis, we have compared these two perturbative techniques
namely Large-D membrane paradigm and Fluid-Gravity Correspondence, and found that
there is a regime in the parameter space where both these two techniques can be applied
simultaneously, and in this overlap regime, we have found a perfect match between these
two perturbative techniques up to first subleading order on both sides.
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Chapter 1

Introduction
1.1 Large-DMembrane Paradigm

Most of the theories in physics have some parameters - some of them have continuous one,

such as coupling constant, some other have discrete one, such as number of fields - these

parameters can be varied from their actual values maintaining the consistency of the theory.

It often happens in physics that the theories become simplified at the edge of the allowed

values of these parameters. So, it is a fruitful strategy to try to solve the equation at this

limit and then correct the solution order by order in a perturbative expansion.

General Theory of Relativity, in absence of any matter, described by Einstein-Hilbert

action L =
√
−gR lacks any adjustable parameter. The only natural parameter one can

think of is the dimensions of spacetime D. General Theory of Relativity is well defined in

any dimensionsD ≥ 4 and also retains one of its most basic objects namely black hole. One

might hope that the limitD → ∞ results in a convenient simplification and possibly also a

novel reformulation of the theory, at least for some phenomena. This strategy is somewhat

similar in spirit with that of ’t Hooft [5] who introduced a parameter N in the Yang Mills

theory by replacing SU(3) gauge group by SU(N).

There might be several usefulness of this perturbative technique. Firstly, it is always

good to have a new technique. Secondly, Einstein’s equation in vacuum

RAB = 0 (1.1)

look innocuous, but, it is almost impossible to find exact solution of these coupled, non

linear, partial differential equations for any phenomenon of interest unless there is a sub-

4



1 Introduction

stantial amount of symmetry. Whatever we know about any physical situation, for example,

collision of two black holes and its subsequent merger is due to numerics. However, the nu-

merics involved is very much challenging, “Large-D” technique might give some analytic

handle on the problem.

The first systematic study of the large dimensional limit of General Relativity has been

done by Emparan and collaborators [1, 6–8]. Consider Schwarzschild-Tangherlini black

hole solution [9] with Schwarzschild radius r0 in D spacetime dimensions.

ds2 = −
(
1−

(r0
r

)D−3
)
dt2 +

dr2(
1−

(
r0
r

)D−3
) + r2dΩ2

D−2 (1.2)

Now, if we take r > r0 and keep it fixed then in the limit D → ∞ the term
(
r0
r

)D−3 → 0,

so, the solutions (1.2) reduces to flat space solution. But, if we take r = r0
(
1 + R

D−3

)
and

keep R fixed, then, in the limit D → ∞ the term
(
r0
r

)D−3 → e−R. It follows that the tail

of the black hole extends a distance of order R
D−3

outside the horizon, this will be referred

as membrane region.

Emparan and collaborators have computed quasinormal mode (QNMs) frequencies of

(1.2) in the limit when spacetime dimensions is very large [7, 10]. They have shown that

there are two sets of quasi normal modes(QNMs)

• Fast, non-decoupled QNMswith frequencies of the orderO
(
D
r0

)
. Most of the QNMs

are in this category.

• Slow, decoupled QNMs with frequencies of the order O
(

1
r0

)
. There are only a few

of them.

These slow, decoupled QNMs have support only in the thin region around the horizon.

This result at the linear level suggests that this might be possible to construct a fully non-

linear theory of the slow decoupled QNMs. This effective theory for black holes at large

dimensions has been worked out in the papers [2, 11, 12]

5



1 Introduction

In picturesque terms, the effect of taking D >> 1 can be thought of as to concentrate

the gravitational effect of the black hole within a thin sliver of thickness of the orderO
(

1
D

)
outside the horizon, leaving a hole in an otherwise undistorder background geometry. The

surface of the hole then can be thought of as a membrane in that background with properties

obtained by integrating Einstein’s equation near the horizon. This is what has been done

for flat background spacetime in the papers [2, 3].

In Chapter 2 and Chapter 3 of this thesis, we will generalize the large-D program in

arbitrary background spacetime, in particular to AdS/dS spacetime. In last couple of years,

there have been some interesting developments in Large-D program. It has been gener-

alised for Einstein-Maxwell system in [13–15], for higher curvature gravity in [16–26].

Effective equation for special case of stationary membrane has been worked out in [27,28].

Black hole physics become simplified at large dimensions due to the existence of a para-

metrically separated length scale r0
D
other than the horizon length scale r0. For Black branes

there is another interesting length scale which is r0√
D
as has been discussed in [12,29]. The

works that first successfully used 1
D
as a perturbation parameter are [30, 31], although, the

systematic study of black hole physics at large dimensions did not begin until the work of

Emparan et al. [1].

Effective theory has been extended in several different directions - see [32, 33] for

deformed boundary metrics, see [34–36] for effective theories at higher orders in 1
D
, see

[21, 37–41] for effective theories for finite black holes.

Large-D technique has been used for the analysis of black holes collision in [42–44], for

Greggory-Laflamme instability in [29,35,45] and for turbulence in [22,46,47]. See [48–54]

for further developments. There is a recent review by Emparan and Herzog [55] about

Large-D program, its application and its future prospects.

6



1 Introduction

1.2 Stress Tensor for the Large-D membrane

It is a very natural question to ask - what is the gravitational radiation for any arbitrary

membrane motion? The computation of radiation is a bit complicated. The explicit result

for the metric corrections (see chapters 2 and 3) are valid for points whose distance from

the horizon S obeys the inequality S << r0, where r0 is horizon length scale. So it would

not be possible to read off the radiation by simply putting S to be very large in the explicit

expressions. But, when S >> r0
D
the solution reduces to a small fluctuations around the

background spacetime. So, both the linearized approximation and the Large-D approxima-

tion are valid in the regime
r0
D
<< S << r0 (1.3)

We can use Large-D approximation to calculate the effective linearized solution in the over-

lap regime then continue it using linearized approximation till infinity to get the radiation.

There is a elegant way to implement the second step; first, calculate the Brown-York stress

tensor of the linearized solution on the membrane

8πT
(out)
AB = K

(out)
AB −K(out)p

(out)
AB

∣∣∣∣
ψ=1

(1.4)

Where,K(out)
AB and p(out)AB are respectively extrinsic curvature and the projector on the mem-

brane world volume (see (4.69) for definitions). Then subtract from it T (in)
AB - which can be

determined from the variation of a ‘boundary counterterm’. Final expression of the stress

tensor on the membrane is given by

TAB = T
(out)
AB − T

(in)
AB (1.5)

T
(out)
AB and T (in)

AB are both tangential to membrane world volume and therefore, can equally

well be regarded as stress tensor T (out)
µν and T (in)

µν - which entirely live on the membrane

world volume 1.
1Here, {A,B} denote full spacetime index whereas, {µ, ν} denote membrane world volume index

7



1 Introduction

It turns out that

T (in)
µν = − 1√

−g(ind)
δ

δgµν(ind)
S(in) (1.6)

Where,

S(in) = − 1

8π

∫ √
−g(ind)

[√
R+

1

2

(RµνRµν

R 3
2

)
+O

(
1

D

)]
(1.7)

here, g(ind)µν , Rµν and R are respectively intrinsic metric, intrinsic Ricci tensor and Ricci

scalar.

This procedure yields a stress tensor on the membrane Tµν [4] which is conserved and

moreover, it satisfies a crucial identity TµνKµν = 0 order by order. Membrane equations

follows from the conservation of the stress tensor. The stress tensor acts as the effective

source for the radiation. To calculate the radiation, one needs to convolute the source against

a retarded Green’s function. Though the stress tensor is substantial, in fact, it is of the order

O(D), the radition sourced by the membrane is of the order
1

DD
that is non perturbative

in 1
D
expansion. The radiation being non perturbative, follows from the property of the

Green’s function in large dimensions [4].

We have computed the stress tensor at the second subleading order in Chapter 4. Our

main motivation for undertaking this very tedious calculation comes from the paper [56]

where the authors tried to give a ‘finite-D’ completion of the large-D stress tensor. Here,

we very briefly discuss the finite-D program.

The part of the stress tensor [4] that contribute to the leading order membrane equation

is given by

16πTµν = KPµν − 2σµν + (Kµν −Kgµν) (1.8)

Where, σµν is the shear tensor of the velocity field uµ andPµν = gindµν +uµuν is the projector

orthogonal to the membrane velocity. Now, if we consider (1.8) to be exact stress tensor at

any finite-D then there is an inconsistency. Normal component of the conservation of the

8



1 Introduction

stress tensor gives the following identity

KµνTµν = 0 (1.9)

The stress tensor (1.8) does not satisfy the above condition exactly. This implies the stress

tensor (1.8) does not even give consistent dynamics at finite-D. In [56], the authors have

tried to cure the problem, they have proposed a finite-D completion of large-D stress tensor

16πTµν = K̃Pµν − 2σµν + (Kµν −Kgµν) (1.10)

Where,

K̃ =
K2 −KµνKµν + 2Kµνσµν

K + u · K · u
(1.11)

It is not difficult to show that K̃ reduces toK at the large-D limit. So, the improved stress

tensor reduces to large-D stress tensor at large-D limit, nevertheless, (1.10) satisfies the

condition (1.9) at finite-D exactly.

This finite-D stress tensor exhibits some appealing properties. For example, the ther-

modynamics of static spherical membrane in flat as well as in AdS spacetime, obtained via

this finite-D completion agrees exactly with their dual black holes even in finite dimension.

Themotion of a probe membrane in Poincare Patch AdS sources linearized gravitational

radiation and so a corresponding boundary stress tensor. The resultant boundary stress ten-

sor, in the long wavelength limit, is a hydrodynamic stress tensor for a boundary conformal

fluid. When expanded in derivative expansion, this boundary stress tensor gives answer

that matches with that of the fluid gravity answer at zero and first derivative order even

at finite-D. But, there is a mismatch in the second derivative order in finite-D. Finite-D

stress tensor has been constructed from the membrane stress tensor which was known up to

first order in 1
D
expansion. Membrane stress tensor at the second order in 1

D
expansion will

help to write a further improved finite-D stress tensor. Mainly motivated by this, we have

calculated the membrane stress tensor at the second subleading order in Chapter 4.
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1 Introduction

1.3 Comparison between ‘Fluid-Gravity’ and ‘Membrane-
Gravity’ dualities

Fluid-Gravity correspondence [57–63] is another perturbative technique that can generate

solutions of Einstein’s equation in a perturbative series expansion in number of derivatives

in presence of negative cosmological constant. Solutions generated using derivative ex-

pansion are ‘black-hole’ type solutions (i.e., spacetime with singularity shielded behind the

horizon) that are in one to one correspondence with the solutions of relativistic Navier-

Stokes equations. On the other hand, solutions generated using Large-D technique are also

similar ‘black hole’ type solutions, but dual to the dynamics of a codimension-one mem-

brane embedded in the asymptotic geometry.

It is natural to ask whether it is possible to apply both the perturbation techniques si-

multaneously in any regime(s) of the parameter space of the solutions, and if so, how the

two solutions compare in those regimes. In chapter 5, we have tried to answer these two

questions. In a nutshell, our final result is only what is expected.

• It is possible to apply both the perturbation techniques simultaneously. Further, in the

regime where both D is large and derivatives are small in an appropriate sense, we

could treat
(

1
D

)
and ∂µ (with respect to some length scale) as two independent small

parameters, with no constraint on their ratio.

• In other words, if the metric dual to hydrodynamics is further expanded in inverse

powers of dimension, it matches with the metric dual to membrane-dynamics, again

expanded in terms of derivatives.

However, this matching is not at all manifest. We could see it only after some appropriate

gauge or coordinate transformation of one solution to the other. The whole subtlety of our

computation lies in finding the appropriate coordinate transformation.

10



1 Introduction

The ‘large-D’ expansion technique, as described in chapter 2 and 3, generates the dynamical

black brane geometry in a ‘split form’ where the full metric could always be written as a

sum of pure AdS metric and something else. In other words, the black brane spacetime,

constructed through ‘large-D’ approximation would always admit a very particular point-

wise map to pure AdS geometry.

On the other hand, the spacetime dual to fluid dynamics does not require any such map for

its perturbative construction and apparently there is no guarantee that the particular map

used in ‘large-D’ technique, would also exist for the dynamical black brane geometries,

constructed in ‘derivative expansion’.

In chapter 5, we have shown that the ‘hydrodynamic metric’2 indeed could be ‘split’ as

required through an explicit computation up to first order in derivative expansion. This

map could be constructed in any number of dimension and is independent of the ‘large -D’

approximation. After determining this map, we have matched these two different gravity

solutions up to the first subleading order on both sides.

One interesting outcome of this exercise is the matching of the dual theories of both

sides. It essentially reduces to a rewriting of hydrodynamics in a large number of dimen-

sions, in terms of the dynamics of the membrane. After implementing the correct gauge

transformation, we finally get a field redefinition of the fluid variables (i.e., fluid veloc-

ity and the temperature) in terms of membrane velocity and its shape3. We hope such a

rewriting would lead to some new ways to view fluid and membrane dynamics and more

ambitiously to a new duality between fluid and membrane dynamics in a large number of

dimensions, where gravity has no role to play (See [46], [56] for a similar discussion on such

field redefinition and rewriting of fluid equations though in [46] the authors have taken the
2In this thesis, the black brane solution dual to fluid dynamics would always be referred to as the ‘hydro-

dynamic metric’.
3Truly speaking, what we have actually worked with is the reverse of what we have stated here, i.e.,

we determined the membrane velocity and the shape in terms of fluid variables, up to corrections of order
O
(

1
D , ∂

2
)
. This is just for convenience. The relations we found are easily invertible within perturbation.

11



1 Introduction

large D limit in a little different way than ours).
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Chapter 2

Large-Dmembrane paradigm in AdS/dS
at leading order
This chapter is based on [65].

As discussed in the introduction 1.1, in the large-D limit the dynamics is confined in the

near horizon region, therefore, it does not care much about the asymptotic spacetime. This

implies that the whole ‘large-D’ programme of solving Einstein’s equation could easily

be extended to situations where the asymptotic spacetime is not exactly flat. Membrane-

Gravity correspondence is expected to hold for such cases, but now the membrane will be

a codimension-one hypersurface in some non flat asymptotic geometry. In particular, this

construction should be applicable in presence of cosmological constant [29].

In [3] and [14], the analysis is strictly applicable for asymptotically flat spacetime,

though the answer has been expressed in ‘background-covariant’ form. In [3], where the au-

thors have calculated membrane equations and metric corrections up to second subleading

order, the covariance has also been implemented in the complicated intermediate steps.

Here we have extended the analysis of [2,14] in such a way that the background covari-

ance is manifest in every steps. We have also included cosmological constant which might

have any sign.

The main motivation for including cosmological constant is the following. There exists

another perturbative technique namely ‘Fluid-Gravity’ correspondence [58] which can be

used to generate black hole solutions of Einstein’s equation in presence of negative cosmo-

logical constant. Fluid-Gravity correspondence is true in any dimension, in particular, in

13



2 Large-D membrane paradigm in AdS/dS at leading order

large dimensions. We would eventually like to see how these two perturbative techniques

can be compared? We will discuss about this in section 4.

The organization of this chapter is as follows. In section 2.1, we have described the

initial set up of the problem, the main equation that we would like to solve for and the

scheme of our perturbation technique. In section 2.2, we described how in our scheme,

different quantities scale with the dimension D, the perturbation parameter. In section 2.3,

we have described how we could guess the leading ansatz. Next in a small section 2.4, we

described how our approach becomes manifestly covariant with respect to the embedding

geometry of the membrane. In section 2.5, we briefly explained the algorithm we used to

solve for the first subleading correction. In section 2.6, and section 2.7, we have derived and

presented the first subleading correction to the metric and the equation governing the dual

membrane and the velocity field. Then, in section 2.8, we have performed several checks

on our ansatz. We have matched our solution with Schwarzschild AdS/dS black hole/brane

and then with rotating black hole solution up to the required order in an expansion in
(

1
D

)
.

Finally, in section 2.9, we have ended with discussions. We have several appendices with

the details of all computation.

2.1 Set up

In this section, we will describe the basic set up of the problem and also the final goal in

terms of equations. We will also present the final solution in schematic form that we will

eventually determine. The two derivative action we will be working with is the Einstein-

Hilbert action with cosmological constant

S =

∫ √
−G [R− Λ] (2.1)

14



2 Large-D membrane paradigm in AdS/dS at leading order

here Λ is assumed to scale with dimension D as follows 1.

Λ = [(D − 1)(D − 2)]λ, λ ∼ O(1) (2.2)

The equation of motion we get by varying (2.1) with respect to the metric is

EAB ≡ RAB −
(
R− Λ

2

)
GAB = 0 (2.3)

Our goal, as mentioned before, is to find new ‘black hole type’ solutions (i.e. solutions

with event horizon) of equation (2.3) in a power series expansion in 1
D
. Schematically, the

solution will have the form

GAB = gAB +
∞∑
k=0

(
1

D

)k
G

(k)
AB (2.4)

2 Here, gAB is also a smooth solution to the same equation eq.(2.3). In the previous section,

we have referred gAB as the ‘background’ metric. The G(k)
AB’s, on the other hand, are not

smooth and their forms are such that the full metricGAB would have horizon, and possibly

singularities behind it. The full non linear dynamics of the decoupled QNMs are captured

by G(k)
AB’s. Since, the decoupled QNMs have support only in the membrane region, the

G
(k)
AB’s should vanish exponentially as we go away from the horizon which implies that the

gAB is the asymptotic metric.

As explained in [2,3,14], our final solution will be parametrized by a codimension-one

membrane, embedded in the background spacetime, with a velocity field on it. However,

the velocity field and the curvature of this membrane are not independent data. We can

solve for G(k)
AB’s provided the velocity field and the extrinsic curvature of the membrane

1See section (2.5) for motivation of this choice
2In the later sections, we will often use the notation G[k]

AB to denote the solution corrected up to order
O
(

1
Dk

)
G

[k]
AB = gAB +

m=k∑
m=0

1

Dm
G

(m)
AB

15



2 Large-D membrane paradigm in AdS/dS at leading order

together satisfy some integrability condition. We would view this integrability condition as

the dynamical equation for the codimension-one membrane. This leads to a ‘membrane-

gravity’ duality in the sense that corresponding to every solution of the membrane equation

we will be able to find a solution of the equation (2.3) in an expansion in
(

1
D

)
.

We will determineG(k)
AB’s in such a way that if we view the membrane as a codimension-

one hypersurface in the full spacetimeGAB, it becomes the event horizon of the metricGAB

and the velocity field on it reduces to its null generators [3, 14].

2.2 Scaling with D

Roughly speaking, Einstein’s equation in D dimension are a set of D(D+1)
2

equations for
D(D+1)

2
components of the metric tensor (modulo coordinate redefinition freedom). So, a

naive large D limit would imply that both the number of equations as well as number of

variables are blowing up with the perturbation parameter.

To get rid of this problem, we will implicitly assume that the large part of the metric is

fixed by some symmetry and the metric is dynamical along some finite directions. In other

words, we will assume the following form of the metric.

dS2 = GAB dX
AdXB = G̃ab({xa}) dxadxb + f({xa})dΩ2 (2.5)

Here, G̃ab({xa}), {a, b} = {0, 1, · · · , p} is a finite (p+ 1) dimensional dynamical metric,

dΩ2 is the line element of the infinite (D−p−1) dimensional symmetric space and f({xa})

is some arbitrary function of {xa}.

Since, the metric is dual to the membrane embedded in the background spacetime gAB

with a velocity field along the membrane, the symmetry of the metric must be there in

the membrane as well as in the velocity field and in the background. This will imply that

the dual membrane is dynamical only along the finite xa directions and simply wrap the

symmetric space (with metric ΩAB). Similarly, the velocity field will have components
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2 Large-D membrane paradigm in AdS/dS at leading order

only along the finite xa directions and also the non zero components will not depend on

the coordinates of the Ω space. The same feature (i.e. no component along the symmetry

directions as well as all the non-zero components depend only on {xa}) would be true for

any vector constructed out of membrane data. Similarly for tensors, the components along

the symmetry directions would be proportional to the metric of the symmetric space ΩAB.

In such cases, we could very easily see that the divergence of any vector or one form

would be D times higher than the order of the quantity itself [2, 3, 14]. In fact such a rule

would be true for any generic tensor with arbitrary number of indices. If TA1A2···An is a

generic tensor of order O
(

1
D

)k maintaining the symmetry of (2.5), then its divergence is
of order O

(
1
D

)k−1.

TA1A2···An ∼ O
(

1

D

)k
⇒ gApAq∇ApTA1,A2,···Aq ··· ∼ O

(
1

D

)k−1

(2.6)

If the background metric gAB admits a decomposition of the form (2.5), then Riemann

tensor, Ricci tensor and Ricci scalar evaluated on gAB will be of order O(1), O(D) and

O(D2) respectively.

RABCD|on gAB
∼ O(1), RAB|on gAB

∼ O(D), R|on gAB
∼ O(D2) (2.7)

This implies that the Einstein’s tensor evaluated on gAB would be of order O(D2)3 and

as we want gAB to solve (2.3), it justifies our choice of the scaling for the cosmological

constant with D as given in (2.2).

However, we would not require any details of the decomposition as given in (2.5) [3].

The only aspect of it that we will use is the scaling law (2.6).
3Such a scaling is true for any generic case. It is always possible to choose special background where

equation (2.7) is not true. A different choice of the D dependence for cosmological constant Λ would have
led to such a ‘non-generic’ background.
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2 Large-D membrane paradigm in AdS/dS at leading order

2.3 Leading Ansatz

In our calculation, G(0)
AB is the leading ansatz that captures the nonlinear dynamics of the

decoupled QNMs at the leading order. Any perturbation theory works provided we have a

good guess of the leading answer. In this sense, we can carry on with our program provided

we know the correct form of G(0)
AB that solves the equation (2.3) at the leading order in 1

D

expansion. Now, we will describe how we can guess the form of the leading ansatz.

2.3.1 The form of the leading ansatz

As mentioned before, our solutions are characterized by two parameters namely the shape

of a codimension-one hypersurface in the background spacetime and a unit normalized ve-

locity field uµ along the membrane4.

We will first construct a smooth function ψ in the background spacetime such that

(ψ = 1) is the equation of the membrane. Next, we will construct a smooth one form

(O = OA dX
A), defined everywhere in the background, such a way that the projection of

(−OA) on the membrane reduces to uµ. We will determine our final solution in terms of

the membrane shape ψ and the one form field O. Note that, at this stage, there is a large

ambiguity in the construction of ψ andO. The conditions that they have to reduce to some-

thing specific on ψ = 1 surface is certainly not enough to determine them completely. We

will fix these ambiguity with some convenient choices (see subsection 2.5.2 for a detailed

discussion on this point)

At this point, the simplest structure we could imagine for G(0)
AB (without involving any

4Throughout the thesis, we use Greek letters to denote indices along the membrane world volume as
embedded in the background metric gAB , whereas capital Latin letters denote full spacetime indices. Velocity
field uµ is unit normalized with respect to the induced metric on the membrane (denoted as g(ind)µν )

uµuνg
µν
(ind) = −1
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2 Large-D membrane paradigm in AdS/dS at leading order

derivative of ψ and OA) is the following

G
(0)
AB = F OAOB ⇒ GAB = gAB + F OAOB +O

(
1

D

)
(2.8)

here, F is any arbitrary scalar function of ψ and (O ·O) 5. The inverse of the metric GAB

is given by

GAB = gAB −
(

F

1 + F (O ·O)

)
OAOB +O

(
1

D

)
(2.9)

Here, all raising and lowering are with respect to the metric gAB .

Now, firstly we want ψ = 1 to be the horizon when embedded in the full metric GAB.

This implies (∂Aψ)(∂Bψ)GAB = 0 on ψ = 1. We will impose this condition order by order
1
D
expansion. At leading order, we have[

dψ · dψ −
(

F

1 + F (O ·O)

)
(O · dψ)2

]
ψ=1

= O
(

1

D

)
[

F

1 + F (O ·O)

]
ψ=1

=

[
1

O · n

]2
ψ=1

+O
(

1

D

)

where nA =
∂Aψ√
dψ · dψ

(2.10)

Secondly, we want our velocity vector field to be the null generator of the horizon

tA = GABnA|ψ=1

Also, by definition the velocity field is given by the projection of (−OA) along the mem-

brane. This in turn, implies[
ΠA
BO

B +GABnB
]
ψ=1

= 0, where ΠA
B = projector = δAB − nAnB

⇒
[
OA − (O · n)nA + nA −OA

(
F

1 + F (O ·O)

)
(O · n)

]
ψ=1

= O
(

1

D

)
⇒
[(

1− 1

O · n

)(
OA − (O · n)nA

)]
ψ=1

= O
(

1

D

) (2.11)

5Throughout the thesis ‘·’ denotes contraction with respect to the background metric gAB
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2 Large-D membrane paradigm in AdS/dS at leading order

We have used (2.10) to go to the third line from the second line. From equation (2.11) it

follows that

(O · n)|ψ=1 = 1 +O
(

1

D

)
(2.12)

On the other hand, the velocity field on the membrane (viewed as a hypersurface in the

background spacetime gAB) is normalized to minus one which implies

ΠABOAOB = −1 (2.13)

From (2.12) and (2.13) it follows that O is a null one-form with respect to gAB at leading

order in
(

1
D

)
expansion

gABOAOB = O
(

1

D

)
(2.14)

We will sometimes express OA as

OA = nA − uA

where, uA = −ΠB
AOB, ΠA

B = δAB − nAnB

(2.15)

Here uA, by construction, is always along the membrane and it will be the velocity vector

field uµ, when expressed in terms of the intrinsic coordinates of the membrane. From our

analysis so far, we could see that the simplest form of G(0)
AB is the following.

G
(0)
AB = F OAOB = F (nA − uA)(nB − uB)

Now, if we do not want any derivative at the zeroth order F could only be a function of

ψ since (O · O) is zero at the leading order. We also want F to be vanishing outside the

thin membrane region of thickness of order O
(

1
D

)
around ψ = 1 surface. This would be

ensured provided F (ψ) ∝ ψ−D. Now, if we substitute the fact that O is null at leading

order in the equation (2.10), we find

F |ψ=1 = 1 +O
(

1

D

)
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2 Large-D membrane paradigm in AdS/dS at leading order

This fixes the proportionality constant in F to be one. So, the final expression of the leading

ansatz6 we get, is the following

G
(0)
AB = ψ−DOAOB (2.16)

This ansatz metric will solve equation (2.3) at leading order provided the following

conditions are satisfied [2, 14]

G
(0)
AB = ψ−DOAOB√
gAB(∂Aψ)(∂Bψ)|ψ=1 =

K

D
+O

(
1

D

)
gAB∇AOB = K +O(1)

(2.17)

Here, K is the trace of the extrinsic curvature of the membrane which is a O(D) quantity.

The membrane ψ = 1 is viewed as a codimension-one hypersurface embedded in the back-

ground spacetime gAB and∇A denotes covariant derivative with respect to the background

metric gAB.

2.3.2 When ansatz solves the leading equation

Now we will demonstrate how G
(0)
AB as given in equation (2.17) satisfies the equation (2.3)

at leading order. We will simply evaluate the Einstein’s equation on the metric gAB +G
(0)
AB

and will see that the leading order (which turns out to beO(D2)) piece vanishes after using

the conditions mentioned in (2.17)

Before getting into the details, we will first simplify the equation (2.3) by subtracting

the trace of the equation

RAB −
(
R

2

)
GAB = −

[
(D − 2)(D − 1)λ

2

]
GAB

⇒ R = D(D − 1)λ

⇒ EAB ≡ RAB − (D − 1)λ GAB = 0

(2.18)

6We would like to emphasize that what we have presented here should not be thought of as a derivation
for the ansatz metric. In the end, this is a ‘guess’ and our perturbation technique is developed around this
starting ansatz. This guess could also be motivated from the fact that the final solution, in a very small region
of size ofO

(
1
D

)
, looks like aD dimensional Schwarzschild black hole solution with a local radius and boost

velocity [3, 14]
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2 Large-D membrane paradigm in AdS/dS at leading order

Now, we will evaluate RAB on the metric G[0]
AB = gAB + G

(0)
AB. Details of the calculation

are in appendix (A.2). Here we simply quote the final result.

RAB|G[0]
AB

= ψ−D
(
DN

2

){
[DN − (∇ ·O)] (nAOB + nBOA) + (K −DN)OAOB

}
+

(
ψ−2D

2

){
DN [DN − (∇ ·O)]OAOB

}
+ R̄AB +O (D)

(2.19)

where,

• R̄AB is the Ricci tensor evaluated on the background metric gAB

• ∇A denotes the covariant derivative with respect to gAB

• K is the trace of the extrinsic curvature of the membrane as embedded in the back-

ground spacetime with metric gAB : K ≡ ∇A n
A

• N is the norm of the one form dψ : N ≡
√

(∂Aψ)(∂Bψ)gAB

From (2.7), it follows that R̄AB ∼ O(D). So, the leading equation reduces to[
ψ−D(K −DN) + ψ−2D(DN −∇ ·O)

]
OAOB

+ ψ−D(DN −∇ ·O)(nAOB + nBOA) = O(1)
(2.20)

As, OA and nA are two independent vectors in the background spacetime, equation (2.20)

implies

(∇ ·O −DN)ψ=1 = O(1)

(K −DN)ψ=1 = O(1)
(2.21)

Equation (2.20) is simply the conditions mentioned previously in equation (2.17). At lead-

ing order, the RHS of equation (2.3), which contains the effect of cosmological constant,

does not contribute. Note also that the two equations in (2.20) together imply that

(∇ · u)ψ=1 = O(1) (2.22)
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2 Large-D membrane paradigm in AdS/dS at leading order

Where, u is defined in equation (2.15)7

2.4 Covariance w.r.t. ‘background’ metric

We could recast all the calculations in a manifestly covariant form with respect to the back-

ground metric gAB. In fact, this feature is already there in the previous section (see equation

(2.19)). The expression ofRAB involves partial derivatives of the metric. However, the ex-

pression in (2.19) have only covariant derivatives with respect to the background metric

gAB. In [3], the authors have argued this point from a physical point of view.

Here, we will see how it follows algebraically. This follows from the fact that though

the Christoffel symbols are not tensors their differences are and therefore, the Christoffel

symbols of the full metric GAB could always be written as the Christoffel symbols of the

background metric gAB plus some correction which will have a form of a tensor with re-

spect to the background metric. Then this feature could very easily be extended for the

construction of the Riemann tensor and also for the Ricci tensor of the full metric GAB.

The general form of our metric is given by

GAB = gAB + χAB

Let Γ̂ABC and ΓABC denote the Christoffel symbols corresponding to the metric gAB andGAB

respectively

ΓABC =
1

2
GAC′

(
∂C GC′B + ∂B GC′C − ∂C′ GBC

)
= Γ̂ABC +

1

2
GAC′

(
∇C χC′B +∇B χC′C −∇C′ χBC

) (2.23)

Here, ∇A denotes the covariant derivative with respect to the background metric gAB. We

define the Ricci Tensor, RAB , of the full metric by the following expression.

RAB = ∂kΓ
k
AB − ∂BΓ

k
Ak + ΓkkmΓ

m
AB − ΓkBmΓ

m
Ak

7 as explained in section(2.2), if we naively use the rules for counting order in
(

1
D

)
expansion, (∇ · u)

should have been of O(D)
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Using equation (2.23), we could very easily rewrite it in the following form.

RAB = R̄AB +∇k

[
δΓkAB

]
−∇B

[
δΓkAk

]
+
[
δΓkkm

]
[δΓmAB]−

[
δΓkBm

]
[δΓmAk] (2.24)

where R̄AB is the Ricci Tensor of the background and
[
δΓABC

]
is the tensor appearing in the

second term of equation (2.23)

[
δΓABC

]
=

1

2
GAC′

(
∇C χC′B +∇B χC′C −∇C′ χBC

)
(2.25)

Equations(2.23) and (2.24) are the main equations that we will use to determine the sub-

leading order corrections to the ansatz metric in a manifestly covariant form.

2.5 General strategy for the first subleading correction

Once the leading ansatz G(0)
AB, the function ψ and the one-form O are well-defined every-

where in the background with metric gAB, we can describe the strategy to determine the

subleading corrections to the metric i.e., the G(k)
AB for k > 0. In this chapter, our goal is to

determine G(1)
AB. Our method is essentially same as the one described in [3]. The purpose

of this section is to mainly set up the notation and convention. We shall omit any detailed

justification or ‘all order proof’, for the statements. Interested reader should refer to [3] for

a thorough discussion.

2.5.1 Summary of the algorithm

We already know that if we evaluate Ricci tensor on G[0]
AB = gAB +G

(0)
AB, the leading piece

is of orderO(D2). This leading piece vanishes providedOA and ψ satisfy equations (2.21).

Clearly after imposing equation (2.21), the leading non-vanishing piece in RAB would be

of order O(D). To cancel this piece up to corrections of order O(1) we add the new terms

in the metric -
(

1
D

)
G

(1)
AB . Therefore, to begin with,

(
1
D

)
G

(1)
AB will have the most general

form that could contribute to the equation of motion (2.18) at order O(D). Also, any term
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in equation of motion that involves product of two components of G(1)
AB (i.e., non-linear in

G
(1)
AB) will contribute at most at order O(1). Since in this chapter, we are interested only at

order O(D), we have to treat G(1)
AB simply as a linear perturbation on G[0]

AB. Then at order

O (D), the equation of motion (2.18) will have two pieces. One piece will take the form of

a linear differential operator acting on different (and so far unknown) components of G(1)
AB

and the second piece will involve the O(D) piece coming from G
[0]
AB. The first piece will

have an universal structure at all orders and we shall call it as ‘homogeneous piece’ orHAB.

The second part will be termed as ‘source’ (SAB) . Schematically,

EAB ∼ HAB + SAB

Our solution procedure will essentially be an ‘inversion’ of the universal differential oper-

ator in HAB.

We shall determine G(1)
AB completely in terms of the function ψ and the one-form O,

that are directly related to the basic data of our construction - the membrane and the ve-

locity field. One advantage of our formalism is that we never need to choose any specific

coordinate system on the membrane or for the background gAB.

2.5.2 Subsidiary condition

Note that, so far, all the conditions on ψ and O are imposed only along the membrane. We

want ψ to be one on the membrane hypersurface and the projection ofO onto the membrane

to reduce to the velocity field uµ. The gravity equation (2.3) at leading order (see equation

(2.21)) imposes some more constraints on ψ andO, but still they needed to be satisfied only

at (ψ = 1). Therefore, there is a large ambiguity in the construction of the function ψ and

the one-form O. In this subsection, we shall fix this ambiguity with a certain convenient

choice, which, following [2, 3, 14], we shall refer to as ‘subsidiary conditions’.8.
8The subsidiary conditions we have chosen in this thesis are different from what has been used in [2,3,14].

We found this choice most convenient because the metric correction at the first subleading order takes the
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Subsidiary condition on ψ is chosen as follows.

∇2ψ−D = 0 everywhere (2.26)

It could be shown that equation (2.26) is enough to determine ψ in an expansion in
(

1
D

)
around the membrane (ψ = 1) [4]. Also we could easily see that (2.26) is consistent with

the second equation (2.21)(See appendix (A.6)).

Now, we shall describe how we fixed the ambiguity in the definition of OA. Unlike ψ,

since OA is a vector in the background with D components, we need D equations to fix it

completely. From the construction of G(0)
AB we know that on the membrane, OA is a null

vector and O ·n = 1, where nA in the unit normal to the membrane. Firstly, note that, once

we have imposed equation (2.26), ψ = constant surfaces and therefore the unit normal to

them are well-defined everywhere. Therefore, we could easily lift these two conditions on

O, which are initially imposed only on the membrane, to everywhere in the background. In

terms of equation what we mean is the following

O ·O = 0 and O · n = 1 everywhere (2.27)

Equation (2.27) gives two scalar conditions on O. We still need (D− 2) equations through

which we would be able to determine the remaining (D−2) components ofOA, everywhere

in the background . To fix them, we use the following differential equation.

PB
A (O · ∇)OA = 0 everywhere

where PB
A ≡ δBA − nAO

B −OAn
B +OAO

B,
(2.28)

Since, PA
B is the projector to the subspace orthogonal to both n and O, equation (2.28)

is effectively a collection of (D − 2) equations as required9. Equations (2.27) and (2.28)

simplest form. As we shall see, with this subsidiary condition, it simply vanishes and the first non-trivial
correction appears only at the second subleading order.

9 Because of equation (2.27) OA(O · ∇)OA and nA(O · ∇)OA are already determined.

OA(O · ∇)OA = 0, nA(O · ∇)OA = −OA(O · ∇)nA
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together fix the ambiguities in all components of O, everywhere in the background.

It is possible to rewrite the subsidiary condition on O in a more geometric form. From

equations (2.27) and (2.28), it follows that

(O · ∇)OA =
[
nB(O · ∇)OB

]
OA everywhere (2.29)

Equation (2.29) simply implies that throughout the background geometry, OAs are the tan-

gent vectors to the null geodesics passing through the membrane.

In course of analysis we shall often define a uA field everywhere in the background10.

uA ≡ −ΠB
AOB where ΠA

B ≡ Projector on constant ψ slices = δAB − nAnB (2.30)

Note that as a consequence of equation (2.27), uA turns out to be a unit normalized time-like

vector, which is orthogonal to nA by construction.

gABuAuB = −1, gABuAnB = 0

From equation (2.27), it follows that O · n = O · u = 1 or OA = nA − uA everywhere.

Also the projector PAB of equation (2.28) is actually a projector orthogonal to both nA and

uA and therefore could equivalently be expressed as

PAB = gAB − nAnB + uAuB

2.5.3 Choice of gauge

We shall choose a gauge such that

OAG
(1)
AB = 0 (2.31)

Note that our leading ansatz also satisfies this same gauge.

10Equation (2.30) apparently looks very similar to equation (2.15). However the main difference is that
equation (2.30) is true for any constant ψ slices whereas equation (2.15) was specifically applied to the mem-
brane i.e., (ψ = 1).
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After imposing equation (2.31), the most general structure for G(1)
AB is the following

G
(1)
AB = S1OAOB +

(
1

D

)
S2PAB + [OAVB +OBVA] + TAB

where

uAVA = nAVA = 0; uATAB = nATAB = 0; gABT (1)
AB = 0

(2.32)

Here, the unknown scalar, vector and the tensors, [Si, i = {1, 2}], VA, TAB are all of order

O(1) and have explicit dependence on ψ as well as the derivatives of ψ and O.

Note the extra factor of
(

1
D

)
in the term proportional to PAB. This is because, by definition,

G
(1)
AB is the collection of those terms in the metric that contribute to the gravity equation

at order O(D). As we shall see below, the term proportional to PAB will contribute one

extra factor ofD in some terms of the gravity equation (the ones that involve a trace of the

metric tensor). In other words, unless we suppress this term by an extra factor of
(

1
D

)
, it

will contribute and mess-up the matching and solving of the equations at order O(D2).

2.5.4 The form of explicit ψ dependence

We know that within the region where the metric correction is nontrivial, (ψ−1) is of order

O
(

1
D

)
. Therefore wewould define a new orderO(1) variableR ≡ D(ψ−1) to parametrize

the explicitψ dependence of the unknown scalar, vector and the tensor functions in equation

(2.32). In terms of equation, we mean the following.

S1 =
∑
n

fn(R) sn, S2 =
∑
n

hn(R) sn

VA =
∑
n

vn(R) [vn]A TAB =
∑
n

tn(R) [tn]AB

R ≡ D(ψ − 1)

(2.33)

Here fn(R), vn(R), tn(R) and hn(R) are functions that do not involve any explicit factors

ofD. The other expressions, sn, [vn]A, [tn]AB are the different scalar, vector and the tensor

structures of orderO(1), involving the derivatives of nA and OA that could appear at order

O(1). The upper limit for the sum over n will generically be different in scalar, vector and
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tensor sector. These structures, by construction will not have any explicit dependence on ψ,

since all such explicit dependence at this order will be captured by the function fn, vn, tn

and hn. However these structures will depend on ψ implicitly through the derivatives of nA

andOA. But note that this will be a ‘slow’ dependence in
(

1
D

)
expansion. More precisely, if

we compute the variations of sn, vn or tn in the direction of ∂Aψ it will always be of O(1),

whereas the variations of fn(R), hn(R), vn(R) and tn(R), will be of order O(D). This

is the reason, we could treat these structures, sn, [vn]A and [tn]AB effectively as constants

when we are doing the leading order computation with G(1)
AB. See the next subsection for

details.

2.5.5 Structure of ‘Homogeneous piece’

In this subsection we shall list the detailed form of the homogeneous piece. As mentioned

before, the homogeneous piece could be computed by simply linearizing the gravity equa-

tions (2.18) around G[0]
AB, where the gauge-fixed form of the linear perturbation is given by

G
(1)
AB. (See appendix A.1 for the details of the computation)

For convenience, we shall decompose the homogeneous piece into four parts.

HAB = Hscalar
AB +Hvector

AB +H tensor
AB +H trace

AB (2.34)

where

Hscalar
AB =

(
DN2

2

)∑
n

sn (f
′′
n + f ′

n)

[
nBOA + nAOB −

(
1− ψ−D)OBOA

]
(2.35)

Hvector
AB =

(
N

2

)∑
n

(∇ · vn)
[
v′n (nAOB + nBOA)− ψ−DvnOBOA

]
+

(
DN2

2

)∑
n

(v′′n + v′n)

{(
uB [vn]A + uA [vn]B

)
+ ψ−D

(
OB [vn]A +OA [vn]B

)} (2.36)
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H tensor
AB = −

(
DN2

2

)∑
n

[
t′′n(1− ψ−D) + t′n

]
[tn]AB

+

(
N

2

)∑
n

t′n

(
nB (∇C [tn]

C
A) + A↔ B

) (2.37)

H trace
AB = −

(
DN2

4

)∑
n

sn

{
2h′′n nAnB + h′n

[
ψ−D(nAnB − uAuB) + ψ−2DOBOA

]}
(2.38)

Here X ′ for any function X(R) denotes dX
dR
.

From the explicit expressions of HAB, it follows that(
1

D

)
ΠABHAB = O(1) (2.39)

where, ΠAB is the projector perpendicular to (ψ = 1) hypersurface as embedded in the

background.

It turns out that we could easily decouple these homogeneous parts of the EAB by taking

the following linear combination of the components.

PA
CHABP

B
C′ −

PCC′

D

(
PABHAB

)
=−

(
DN2

2

)∑
[tn]CC′

[
t′′n
(
1− ψ−D)+ t′n

] (2.40)

uAHABP
B
C = −

(
DN2

2

)∑
n

(1− ψ−D)(v′n + v′′n)[vn]C (2.41)

uAHABu
B = −

(
DN2

2

)
(1− ψ−D)

∑
n

sn

[
f ′′
n + f ′

n −
(
ψ−D

2

)
h′n

]
−
(
N

2

)
ψ−D

∑
n

vn(∇ · vn)
(2.42)

OAOBHAB = −DN
2

2

∑
n

h′′nsn (2.43)
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Note that given equation (2.39), equations (2.40), (2.41) and (2.42) are simply the dif-

ferent components of
(
ΠA′
A ΠB′

B HA′B′

)
at leading non-trivial order in (1/D) expansion.

2.5.6 Structure of ‘Source’

In general the source SAB will depend on all the coordinates, through some explicit depen-

dence on ψ and also through different derivatives ofOA and nA. As before, we can classify

the ψ dependence of SAB as ‘slow’ and ‘fast’. The ‘fast’ pieces are those whose derivatives

in the directions of increasing will have a factor ofD, (i.e., the dependence on ψ is through

R ≡ D(ψ − 1)). These are the parts which have been treated exactly at a given order. All

other variations of the source terms, both along and away from the membrane hypersurface,

are ‘slow’ (i.e., the derivatives are suppressed by a factor of
(

1
D

)
compared to the ‘fast’ de-

pendence) and therefore could effectively be treated as constants while solving for the next

correction to the metric i.e, G(1)
AB. This is why we simply invert the homogeneous piece

HAB assuming it to be an ordinary differential operator in the ‘fast’ variable R. See [2]

and [14] for a more detailed explanation.

As we have seen in the previous subsection, the projected components of the homoge-

neous piece (ΠA′
A ΠB′

B HA′B′) could be viewed as ordinary second order differential operator

in the ‘fast’ variableR, acting on the unknown functions appearing in the metric correction.

It follows that to determine the unknown functions f(R), v(R) and t(R), it is enough to

solve the projected components of the gravity equations (2.18)

ΠA′

A ΠB′

B EA′B′ = 0

The traceless piece of the projected EAB leads to the following set of second order inhomo-

geneous differential equations for three sets of the unknown functions, fn(R), vn(R) and

tn(R).
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∑
n

d

dR

[(
eR − 1

)
t′n
]
[tn]AB =

(
2 eR

DN2

)[
PC
A P

C′

B − PAB

(
PCC′

D

)]
SCC′

(1− e−R)
∑
n

d

dR

[
eRv′n

]
[vn]A =

(
2 eR

DN2

)[
uBSBCP

C
A

]

(1− e−R)
∑
n

d

dR

[
eRf ′

n −
hn
2

]
sn =

(
2 eR

DN2

)(
uASABu

B
)
−
∑
n

vn

(
∇ · vn
DN

)
(2.44)

In equation (2.44), we have also used the fact that
[
ψ−D = e−R +O

(
1
D

)]
.

The equation for h(R) is given by the EAB with both indices projected in the direction of

O.

OAOBEAB = 0 ⇒
∑
n

h′′nsn =

(
2

DN2

)[
OA SAB O

B
]

(2.45)

Note that the last two equations in (2.44) will admit regular solutions at ψ = 1 only if[
uBSBCP

C
A

]
R=0

= 0[(
2

DN2

)(
uASABu

B
)
−
∑
n

vn

(
∇ · vn
DN

)]
R=0

= 0
(2.46)

We shall see that both of these conditions will be true as a consequence of our membrane

equation. In fact in [2] this is the regularity condition that has been used to determine the

membrane equation.

2.5.7 Boundary condition

Since our differential operator (in R) is second order, we need two sets of boundary condi-

tions to fix the integration constants. One of these is the ‘normalizability’. In our construc-

tion it must be true that the metric is non-trivial only in a thin region of thickness O
(

1
D

)
around the membrane ψ = 1. This defines the normalizability conditions on the metric

functions fn(R), vn(R), tn(R) and hn(R); in R coordinates they must vanish exponen-

tially as R → ∞ (recall R = D (ψ− 1)), so that outside the ‘membrane region’ the metric
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is that of the background. This ‘normalizability’ fixes one integration constant in each of

the three differential equations in (2.44). It turns out that for equation (2.45) both the zero

modes are non-normalizable or in other words in this case the ‘normalizability’ condition

is enough to fix hn(R).

The other integration constant is fixed by the condition on the horizon. For fn and vn, it

is fixed by our definition of the horizon itself. We want ψ = 1 to be the exact equation for

the horizon of this geometry and uA to be the null generator of the horizon. This implies

that the following ‘all order’ equation on the horizon

uAGAB|ψ=1 = nB (2.47)

Note that by construction at any order the metric will take the form

GAB = gAB + f OAOB + (VA OB + VB OA) + h PAB + tAB

where OA = nA − uA, V · O = V · n = 0, OAtAB = nAtAB = 0, PABtAB = 0

Contracting this metric with uA we find

uAGAB = uB + f OB + VB

Now (2.47) fixes the values of f and VA on ψ = 1 or equivalently R = 0.

f |ψ=1 = 1 ⇒ fn(R = 0) = 0,

VA |ψ=1 = 0 ⇒ vn(R = 0) = 0
(2.48)

For the tensor sector i.e., the function tn(R), the other integration constant could be fixed

by demanding the solution is regular at the horizon.

2.5.8 Solution in the form of integral

Once the boundary conditions are fixed, we can explicitly invert the differential operators

and could write the solutions for fn(R), vn(R), tn(R), and hn(R) in terms of some definite
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integrals of the source. In this subsection, we shall present these formulas explicitly. As

mentioned before in subsection (2.5.6), we could always rewrite source SAB at any given

order as some functions of ‘fast’ variableRmultiplied by the ‘slowly’ varying scalar, vector

or tensor structures relevant for that order. In other words the RHS of the three equations

in (2.44) could be expressed as

RHS of 1st eqn =

(
2eR

N2

)∑
n

[tn]AB S
tensor
n (R)

RHS of 2nd eqn =

(
2eR

N2

)∑
n

[vn]A S
vector
n (R)

RHS of 3rd eqn =

(
2eR

N2

)∑
n

[sn]S
scalar
n (R)−

(
1

DN

)∑
n

vn(R) (∇ · vn)

(2.49)

Similarly RHS of (2.45) could be written as

RHS =

(
2

N2

)∑
n

S trace
n (R) sn (2.50)

Now we can explicitly write the solution forG(1)
AB in terms of definite integral of the source.

G
(1)
AB = S1OAOB +

(
1

D

)
S2PAB + [OAVB +OBVA] + TAB

where,

uAVA = nAVA = 0; uATAB = nATAB = 0; gABTAB = 0

(2.51)

where,

TAB =−
(

2

N2

)∑
n

[tn]AB

∫ ∞

R

(
dy

ey − 1

)(∫ y

0

dx
[
ex S tensor

n (x)
])

VA =−
(

2

N2

)∑
n

[vn]A

∫ ∞

R

dy e−y
[ ∫ y

0

dx

(
e2x

ex − 1

)
Svector
n (x)

]
+ e−RKvector

A

S2 =

(
2

N2

)∑
n

sn

∫ ∞

R

dy

[ ∫ ∞

y

dx S trace
n (x)

]
S1 =−

(
2

N2

)∑
n

sn

∫ ∞

R

dy e−y
[ ∫ y

0

dx

(
e2x

ex − 1

)
Sscalar
n (x)

]
+

(
1

2

)∫ ∞

R

dz e−z
[
− S2 + 2

∫ z

0

(
dx

1− e−x

)(
∇ · V
DN

)]
+ e−RKscalar

(2.52)
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Here Ks and Kv are two constants added so that S1|R=0 = VA|R=0 = 0

Kscalar =

(
2

N2

)∑
n

sn

∫ ∞

0

dy e−y
[ ∫ y

0

dx

(
e2x

ex − 1

)
Sscalar
n (x)

]
−
(
1

2

)∫ ∞

0

dz e−z
[
− S2 + 2

∫ z

0

(
dx

1− e−x

)(
∇ · V
DN

)]
Kvector
A =

(
2

N2

)∑
n

[vn]A

∫ ∞

0

dy e−y
[ ∫ y

0

dx

(
e2x

ex − 1

)
Svector
n (x)

] (2.53)

2.5.9 Constraint and membrane equation

Consider the following combinations of different components of HAB.

1. (nB − ψ−DOB) HBC P
C
A = N

2
(1− e−R)

∑
n∇B(tn)BA t

′
n

2. (nB − ψ−DOB) HBC u
C =

(
DN
2

)∑
n

(∇·vn
D

) [
v′n(1− e−R)− vne

−R]
Note that the above combinations have at most one R derivative of the unknown functions.

Clearly the same feature would be true if we take the above combinations on the components

of EAB, since the source SAB does not involve any of the unknown functions. Hence these

combinations could be viewed as equations that restrict the ‘initial conditions’ (defined on

any constant R slice) for the second order differential equations (see (2.44)) controlling the

‘R-evolution’ of the unknown functions. It follows that the ‘constraint’ equations in our

case has the following form

C ≡ (nB − ψ−DOB) EBC uC

CA ≡ (nB − ψ−DOB) EBC PC
A

(2.54)
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In terms of source SAB and the unknown metric functions, the above two constraints will

take the following structure 11

C = (nB − e−ROB) SBC u
C +

(
DN

2

)∑
n

(
∇ · vn
D

)[
v′n(1− e−R)− vne

−R]
CA = (nB − e−ROB) SBC P

C
A +

N

2
(1− e−R)

∑
n

∇B(tn)BA t
′
n

(2.55)

Now it is known that if the constraint is satisfied along one slice and the dynamical equations

are satisfied everywhere, then the constraint is automatically satisfied along all hypersur-

faces [68]. In [3], this theorem has been explicitly verified for the constraint equations

listed above in equations (2.55). Because of this theorem, we are allowed to impose the

constraints (2.55) only on ψ = 1 hypersurface and do not worry about how these equations

are solved away from the membrane. So at order O(D), the final form of the membrane

equations
C|R=0 = uB SBC u

C |R=0

CA|R=0 = uB SBC P
C
A |R=0

(2.56)

In deriving equation (2.56) we have used the fact that OA = nA − uA and vn(R = 0) = 0

because of our boundary condition. We also used the fact that T (1)
AB is regular at R = 0 due

to choice of integration limits (see equation (2.52)) and thus the term involving unknown

tensor metric correction in CA vanishes at R = 0.

Equations (2.56) are the genuine membrane equations that do not involve any of the un-

known functions and therefore only constrain our membrane data. Also note that these
11We know that given the foliation of the spacetime withψ = const hypersurfaces, the equations of gravity

could be decomposed into dynamical and constraint equations [68]. The constraint equations are the ones
where one of the indices of the Einstein’s equation is projected along the normal to the foliating hypersurfaces.
In [3], this theory has been used and explained in detail in the context of our large D expansion. Along with
the two combinations we mentioned in equations (2.54) one more constraint equation appears in [3], whose
abstract form is the following

A ≡ (1− ψ−D) OAOB EAB − PAB EAB

However, we shall not analyze this combination here since it will not be required to obtain the final gravity
solution and the membrane equations
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are the combinations that appear in the RHS of the first two equations in (2.44) and the

regularity of the solutions also demand the vanishing of these constraints on R = 0.

The fact that given a solution to these constraint equations along the membrane, we

can always solve the other dynamical equations (i.e. the other components of the EAB),

by inverting the linear differential operator appearing in HAB , establishes the ‘membrane-

gravity duality’ that we have mentioned in the introduction.

2.6 The first subleading correction: G(1)
AB

In this section we shall describe how we calculate the first subleading correction to the

metric along with the coupled equations of motion for the membrane and the velocity field

along it. As described in the previous section, at this order the source SAB will simply

be determined by evaluating the Ricci Tensor RAB on the metric G[0]
AB = gAB + G

(0)
AB =

gAB + ψ−DOAOB. The details of the computation of the Ricci Tensor are presented in the

appendix (A.2). For convenience we quote the final answer for the source at first subleading

order.

SAB = e−R
(
K

2

)[
e−ROBOA

((
∇̂ · u

)
R=0

− R

K

(
∇̂ · E

)
R=0

)
+ (nAOB + nBOA)

((
∇̂ · u

)
R=0

− R

K

(
∇̂ · E

)
R=0

)
+ (OBP

C
A +OAP

C
B )

(
∇̂2uC
K

− ∇̂CK

K
+ uDKDC − (u · ∇̂)uC

)
R=0

] (2.57)

Where, ∇̂ is defined as follows, for any general tensor with n indicesWA1A2···An

∇̂AWA1A2···An = ΠC
A ΠC1

A1
ΠC2
A2

· · ·ΠCn
An

(∇CWC1C2···Cn) (2.58)

Here,KAB is the extrinsic curvature of the ψ = 1 hypersurface viewed as a submanifold in

the background spacetime gAB, defined as

KAB = ΠC
A∇CnB (2.59)
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2.6.1 Constraint equation

In the previous section we have described how we could determine the constraint equations

on the membrane by taking appropriate combination of the components of the source terms

evaluated at ψ = 1. In this subsection, we shall first evaluate those combinations on SAB

and determine the constraints on the membrane data at the first subleading order. Note that

at leading order there was only one scalar constraint on the membrane data

∇ · u ∼ O(1)

It turns out that at first subleading order we shall have one scalar and one vector equation.

This matches with the number of free data we have on the membrane: the shape of the

membrane (scalar function) and the unit normalized velocity field on it (the vector function).

Constraint in the vector sector

First we shall describe the constraint equation in the direction perpendicular to uA. We shall

refer to this as ‘Vector constraint’.

uBSBCP
C
A = O(1)

⇒ K

2
PC
A

[
∇̂2uC
K

− ∇̂CK

K
+ uDKDC − (u · ∇̂)uC

]
= O(1)

⇒ PC
A

[
∇̂2uC
K

− ∇̂CK

K
+ uDKDC − (u · ∇̂)uC

]
= O

(
1

D

) (2.60)

Note that in equation (2.60), all derivatives and all the indices (both contracted and free) are

projected along the hypersurface (ψ = 1). Now it is easy to rewrite the constraint equation

as an equation intrinsic to the membrane.

Pν
µ

[
∇̄2uν
K

− ∇̄νK
K

+ uαKαν − (u · ∇̄)uν

]
= O

(
1

D

)
(2.61)

Where, Pµν = g
(ind)
µν + uµuν , g

(ind)
µν denotes the induced metric on the membrane (ψ = 1

hypersurface) and ∇̄ is the covariant derivativewith respect to g(ind)µν . The velocity field uµ is
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the pull back of the bulk velocity field uA andKµν is the pull back of the extrinsic curvature

of the membrane onto the hypersurface 12 and K is the trace of the extrinsic curvature.

Constraint in the scalar sector

Now we shall describe the constraint equation in the scalar sector, i.e.,the constraint in the

direction of uA.

0 = uBSBC u
C =

K

2

[
∇̂ · u

]
(2.63)

As before, this equation also could be written purely in terms of the intrinsic data of the

membrane.

[
∇̂ · u

]
ψ=1

= ∇̄ · u (2.64)

where ∇̄ denotes the covariant derivative with respect to the intrinsic metric of the hyper-

surface (ψ = 1) viewed as a membrane embedded in the background.

We finally find

∇̄ · u ∼ O
(

1

D

)
(2.65)

2.6.2 Dynamical equation

In this section we shall give details of the dynamical equations. It turns out that given

our subsidiary condition and after imposing the scalar and vector constraint equations, the

sources for all dynamical equation simply vanish leading to the vanishing of G(1)
AB.

12In terms of equations, uµ and Kµν is defined as

uµ =

(
∂XA

∂yµ

)
uA, Kµν =

(
∂XM

∂yµ

)(
∂XN

∂yν

)
KMN (2.62)

where XM denotes the coordinates of the full spacetime and yµ denotes coordinates on the membrane.
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Tensor sector

From the first equation of (2.44) we get the relevant differential equation for the ‘tensor-

type’ correction at the first subleading order.

D
∑
n

[(
1− e−R

)
t′′n + t′n

]
[tn]AB =

(
2

N2

)[
PC
A P

C′

B − PAB

(
PCC′

D

)]
SCC′ (2.66)

But from equation (2.57) we could simply see that

PC
A P

C′

B SCC′ = 0

In the language of equation(2.49) it implies that Stensorn (R) vanishes for all (n). Substituting

this in the first equation of (2.52) we find T (1)
AB is zero.

Vector sector

From the second equation of (2.44) we get the relevant differential equation for the ‘vector-

type’ correction at the first subleading order.

De−R(1− e−R)
∑
n

d

dR

[
eRv′n

]
[vn]A =

(
2

N2

)[
uBSBCP

C
A

]
(2.67)

Note that the RHS of equation (2.67) implicitly depends on ψ. However the dependence is

‘slow’, in the sense as one goes away from (ψ = 1) hypersurface, the variation of the RHS

is suppressed by a factor of
(

1
D

)
. Thus, at this order, we need to evaluate the RHS only at

(ψ = 1) hypersurface.

Now from equations (2.60) and (2.61) it follows that

[
uBSBCP

C
A

]
ψ=1

= 0

In the language of equation(2.49) it implies that Svectorn (R) vanishes for all (n). Substituting

this in the second equation of (2.52) we find V(1)
A is zero.
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Scalar sector

In the scalar sector there are two unknown functions h(R) and f(R) and therefore we need

two equations. Clearly equation (2.45) and the last equation of (2.44) are the relevant equa-

tions here.

OAOBEAB = 0 ⇒
∑
n

h′′nsn =

(
2

DN2

)[
OA SAB O

B
]

and

De−R(1− e−R)
∑
n

d

dR

[
eRf ′

n −
hn
2

]
sn

=

(
2

N2

)(
uASABu

B
)
− e−R

∑
n

vn

(
∇ · vn
N

)
(2.68)

Now since PABSAB vanishes, the boundary conditions (see section (2.5.7) ensure that

hn(R) is zero for every n. Given that hn(R) is zero and there is no correction in the vector

sector (implying v(1)n (R) is zero for every n) the second equation of (2.68) reduces to

De−R(1− e−R)
∑
n

d

dR

[
eRf ′

n

]
sn =

(
2

N2

)(
uASABu

B
)

(2.69)

Now, following the same logic as we have used in ‘Vector sector’ , the RHS of equation

(2.69) is simply the scalar constraint equation and therefore vanishes. Now the boundary

conditions ensures that fn(R) = 0 for every n.

2.7 Final metric and membrane equation

In this section we shall simply summarize our final result i.e., the metric and the membrane

equation of motion up to the first subleading order. As we have seen in the previous section,

given our subsidiary condition, the next to leading correction to the metric vanishes.

GAB = gAB + ψ−DOAOB +O
(

1

D

)2

(2.70)
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where the scalar function ψ andOA are defined everywhere in the background (with metric

gAB) through the following equations

OC∂Cψ =
√
∂ψ · ∂ψ, O ·O = 0

∇2ψ−D = 0

(O · ∇)OA =

[(
∂Cψ√
∂ψ · ∂ψ

)
(O · ∇)OC

]
OA

(2.71)

Clearly the asymptotic form of the full spacetime is given by the metric gAB , which we have

referred to as ‘background’. ∇ is the covariant derivative with respect to gAB .

The equations (2.71) are enough to fix ψ and O everywhere provided the shape of the

(ψ = 1) hypersurface and the one form field OA on (ψ = 1) hypersurface are given.

We have referred to these two pieces of information as ‘membrane data’ . It turns out that

(2.70) is a solution of the gravity equation provided the membrane data satisfy the following

equation of motion

Pν
µ

{
∇̄2uν − ∇̄νK +K

[
uαKα

ν − (uα∇̄α)uν
]}

= O (1)

∇̄αu
α = O

(
1

D

) (2.72)

Equation (2.72) is an equation intrinsic to the membrane, in the sense that all raising and

lowering of indices and the covariant derivatives are defined with respect to the induced

metric on the membrane - a hypersurface embedded in the background gAB. All the indices

now can take (D − 1) values. Kµν is the extrinsic curvature tensor , viewed as a tensor

structure defined on the membrane only. K is the trace of Kµν . The velocity field uµ is the

projection of the one formOA along the hypersurface. AndPν
µ is the projector perpendicular

to the velocity field uµ. Like the extrinsic curvature tensor, this projector is also defined

only along the membrane worldvolume.

Equations (2.70), (2.71) and (2.72) together are the final result of this chapter.
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2.8 Checks: matching with known exact solutions

In this section we shall perform several checks on our solution for the metric and the equa-

tion of motion for the membrane. We know of few exact static and stationary black hole /

brane solutions of the equation (2.3) in arbitrary dimension. Now our effective membrane

equation (2.72) and the metric (2.70) are valid as long as the number of dimensions is very

large. Clearly static and stationary exact solutions are special cases which must solve our

equation and must match with our metric in the appropriate limit. In this section we shall

show this matching explicitly for three different exact solutions in Asymptotically AdS

space.

2.8.1 Schwarzschild Black Brane in AdS

In Kerr-Schild form AdS black brane is given by

dS2 = dS2
Poincare + r−(D−3)

(
dt+

dr

r2

)2

(2.73)

where dS2
Poincare is the line element in Poincare patch AdS space.

dS2
Poincare =

dr2

r2
− r2dt2 + r2dx⃗2D−2

(2.74)

For the black brane geometry (2.73), the hypersurface r = 1 is the horizon and the null

generator of the horizon is given by

lA∂A = ∂t

It follows that the dual membrane is given by the same surface r = 1, however viewed as a

hypersurface embedded in the AdS space with metric dS2
Poincare and the velocity field along

the horizon is simply u = −dt. The induced metric on the membrane

dS2
induced = − dt2 + dx⃗2D−2
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We can easily see that this velocity field u is divergence free along the membrane. It is

very easy to compute the extrinsic curvature tensor for this configuration. The non-zero

components of extrinsic curvature and trace of extrinsic curvature are given by

Kij = δij, Ktt = −1, K = D − 1 Where {i = 1, ..., D − 2} (2.75)

All the components of the derivatives of the velocity field on the membrane vanishes

∇̄µuν = 0, {µ = t, i} (2.76)

Substituting equations (2.75) and (2.76) in the membrane equation (2.72) and using the fact

that P t
t = P t

i = 0, we see that it is satisfied up to the required order.

Next we shall match the form of the metric. For this we need to read off ψ and uA in

such a way that

1. ψ = 1 surface is same as the r = 1 surface. In other words if we consider ψ as a

function of r, then ψ(r = 1) = 1.

2. uA|r=1 = lA

3. Both ψ and the uA satisfy the subsidiary conditions (2.26) and (2.29).

The normalized form of u is easy to guess.

uA dx
A = −r dt (2.77)

Translation symmetry in t and all i directions guarantees that ψ must be a function of r

alone and it follows that the subsidiary condition on u is trivially satisfied (since any vector

in the space perpendicular to n ∼ dr and u ∼ dt must vanish because of the symmetry).

Now we shall solve for ψ in an expansion in
(

1
D

)
. Let us start by expanding ψ around the

horizon r = 1.

ψ(r) = 1 +
(
a10 +

a11
D

)
(r − 1) + a20(r − 1)2 +O

(
1

D

)3

(2.78)
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Here a10, a11, a20 are constants (to be determined by solving the subsidiary condition

(2.26)) and we have also used the fact that within the ‘membrane region’ (r− 1) ∼ O
(

1
D

)
.

Substituting (2.78) in (2.26)) and solving order by order we find

ψ(r) = 1 +

(
1− 1

D

)
(r − 1) +O

(
1

D

)3

= r −
(
r − 1

D

)
+O

(
1

D

)3
(2.79)

Note that equations (2.79) and (2.77) imply that in the ‘membrane region’

dr

r
− r dt = OAdx

A

r−(D−3)

r2
= ψ−D +

(
1

D

)2 (2.80)

From equations (2.80) it follows that the metric of AdS Schwarzschild black brane is same

as the one we determined in equation (2.70) up to correction of order O
(

1
D

)2.
2.8.2 Schwarzschild Black Hole in Global AdS

In Kerr-Schild form, the global AdS black hole is given by

dS2 = dS2
Global +

(
r−(D−3)

1 + r2

)(√
1 + r2 dt+

dr√
1 + r2

)2

(2.81)

where dS2
Global is given by

dS2
Global =

dr2

1 + r2
− (1 + r2)dt2 + r2dΩ2

D−2 (2.82)

Horizon of this black hole spacetime (2.81) is located at the zero of the function f(r) =

1 + r2 − r−(D−3). If horizon is at r = r0 ⇒ f(r0) = 0, r0 ̸= 1.

The null generator of the horizon is given by

lA∂A =
1√

1 + r20
∂t

It follows that our membrane is given by the hypersurface r = r0 embedded in the AdS

space with metric as given by dS2
Global and the velocity field along the horizon is simply
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u = −
√
1 + r20 dt. The induced metric on the membrane

ds2induced = −(1 + r20)dt
2 + r20dΩ

2
D−2

We can easily see that this velocity field u is divergence free along the membrane. It is

very easy to compute the extrinsic curvature tensor for this configuration. The non-zero

component of the extrinsic curvature and the trace of extrinsic curvature are given by

Ktt = −
√
2, Kab =

√
2 Ωab, K =

1√
2
+ (D − 2)

√
2

Where Ωab is the metric on (D − 2) dimensional unit sphere
(2.83)

All the components of the derivatives of the velocity field on the membrane vanishes

∇̄µuν = 0, {µ = t, a} (2.84)

Substituting equations (2.83) and (2.84) in the membrane equation (2.72) and using the fact

that P t
t = P t

a = 0, we see that it is satisfied up to the required order.

Next we shall match the form of the metric. As in previous subsubsection we have to

read off appropriate ψ and uA defined everywhere in Global AdS space.

• Since the spacetime is static and also maintains spherical symmetry, ψ must be a

function of r only. This implies nAdxA ∝ dr. After normalization nAdxA = dr√
1+r2

.

• It follows that the normalized u has the form

uA dx
A = −

√
1 + r2 dt or OA dx

A =

(√
1 + r2 dt+

dr√
1 + r2

)
(2.85)

It is easy to see that this u will satisfy all the subsidiary condition as a consequence

of the symmetry.

• Now ψ has to satisfy the subsidiary condition,

∇2ψ−D = 0 (2.86)
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To solve the equation (2.86) we have to repeat the same procedure as we have done in

the previous subsubsection. Now the only difference is that the background is not AdS-

Poincare but global AdS and the covariant derivatives are also modified accordingly. This

calculation is a bit complicated and the details are given in appendix (A.3)

ψ(r) = 1 +
log 2
D

+

(
1

D

)2 [
(log 2)2

2

]
+

(
1 +

log 2 - 2
D

)
(r − 1) +O

(
1

D

)3

= r

(
1 +

log 2
D

)
− (r − 1)

2

D
+

(
1

D

)2
(log 2)2

2
+O

(
1

D

)3
(2.87)

Here also (2.87) imply that in the ‘membrane region’

r−(D−3)

1 + r2
= ψ−D +O

(
1

D

)2

(2.88)

As in the previous subsection from equations (2.80) and (2.85) it follows that the metric of

AdS Schwarzschild black hole is same as the one we determined in equation (2.70) up to

correction of order O
(

1
D

)2.
2.8.3 Rotating Black Hole in AdS

The explicit form of Kerr de-Sitter metric in D = 2n + 1 dimensions( [69], [70]) in Kerr-

Schild form is given by

dS2 = dS2
AdS +

2M

U
(kAdx

A)2

GABdx
AdxB = gABdx

AdxB +
2M

U
kAkBdx

AdxB
(2.89)

where,

dS2
AdS = −W (1 + r2)dt2 + Fdr2 +

n∑
i=1

r2 + a2i
1− a2i

(dµ2
i + µ2

i dϕ
2
i )

− 1

W (1 + r2)

( n∑
i=1

(r2 + a2i )µidµi
1− a2i

)2
(2.90)

W =
n∑
i=1

µ2
i

1− a2i
; F =

r2

1 + r2

n∑
i=1

µ2
i

r2 + a2i
; U =

n∑
i=1

µ2
i

r2 + a2i

n∏
j=1

(r2 + a2j) (2.91)
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kAdx
A =Wdt+ Fdr −

n∑
i=1

aiµ
2
i

1− a2i
dϕi (2.92)

gAB is actually the metric of global AdS, but written in some rotating coordinates. The

coordinate transformation that will bring it back to standard form (the one presented in

equation (2.81)) is given in [69]. However we shall continue to work in the coordinates as

given in equation (2.90). One of the advantage of using these coordinates is that the horizon

of the black hole spacetime in these rotating coordinates is given by constant r slices, where

the value of the constant is determined from the zero of the following function.

U

F
− 2M = 0 (2.93)

For convenience of computation we shall scale the parameterM in the following way

M =
n∏
i=1

(1 + a2i )

so that the horizon lies at r = 1, which would be the equation of our membrane. The

induced metric on the membrane

dS2
induced = −2W dt2 +

n∑
i=1

1 + a2i
1− a2i

(dµ2
i + µ2

i dϕ
2
i )−

1

2W

( n∑
i=1

(1 + a2i )µidµi
1− a2i

)2

(2.94)

It turns out that kA is null with respect to both the metric GAB and gAB. The null generator

of the horizon is given by

lA∂A =
1√
2

(
n∑
j=1

µ2
j

1 + a2j

)− 1
2
(
∂t + 2

n∑
i=1

ai
1 + a2i

∂ϕi

)
(2.95)

From here it follows that the velocity field along the horizon is given by

uAdx
A = −

√
2

(
n∑
j=1

µ2
j

1 + a2j

)− 1
2
(

n∑
i=1

µ2
i

1− a2i
(dt− ai dϕi)

)
(2.96)

Once we have the explicit form of the equation of the membrane and the velocity field, each

term of (2.72) are computable.
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Now as we have explained before, our
(

1
D

)
expansion is valid provided the spacetime sat-

isfies some large symmetry and is dynamical or non-trivial only in a finite number of di-

rections. The metric in (2.89) will belong to this class, if only a finite number of rotation

parameters ai’s are non-zero. But if we turn on arbitrary (though finite) number of ai’s, it

turns out that explicit computation is very tedious for this complicated metric. So we have

usedMathematica (version 9.0) here and to be explicit we have used two non-zero rotation

parameters. We have first checked that this velocity field and the extrinsic curvature of the

membrane do satisfy our membrane equation (2.72) up to the required order.

The next job is to check whether the spacetime metric (2.89) matches with equation

(2.70) up to correction of order O
(

1
D

)2. Now we know that kA is exactly null with respect

to gAB. Clearly kA is the most natural candidate for the null vector OA we have in our

metric.

Suppose

kA = A OA

where A is some unknown function of r at the moment. Now note that the metric (2.89)

will be precisely of the form (2.70) provided we identify

A2

(
2M

U

)
→
[
ψ−D +O

(
1

D

)2 ]
The above equation along with the fact that A is a function of r , will imply that ψ also

depends only on r. The unit normal to ψ = constant slices is then given by

nAdx
A =

√
F dr

Now OA n
A = 1 implies kAnA = A. Therefore once we know the explicit expression of

nA, we can fix A. It turns out

A =
√
F
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However just identifying
[
A2
(
2M
U

) ]
with ψ−D is not enough for the matching of the two

metrics. We also have to see whether these ψ andOA satisfy our subsidiary conditions. The

above identification will be consistent with our subsidiary condition (2.26) provided

∇2

[
A2

(
2M

U

)]
= O(1)

(k · ∇)kA ∝
[
kA +O

(
1

D

)]
, nAkA = 1

(2.97)

13 Here ∇ is defined with respect to the background metric gAB and all raising and lower-

ing of indices have been done using gAB. In Mathematica we have explicitly verified this

condition for two nonzero rotation parameters.

2.9 Discussions

In this chapter, we have used ‘large D’ techniques to find new dynamical ‘black hole’

solutions of Einstein’s equation in presence of cosmological constant. The solutions are

determined in an expansion in
(

1
D

)
and are in ‘one-to-one’ correspondencewith a dynamical

membrane (characterized by its shape and a velocity field on it) embedded in the asymptotic

geometry (which could be AdS or dS).

The method we have used is manifestly covariant with respect to this asymptotic geometry

(which we have referred to as ‘background’). We do not need to choose any coordinate

system for the background geometry at any point of our derivation. The same calculation

works for both global AdS and Poincare patch. The form of the final answer also remains

invariant. However, they are different solutions with different asymptotic geometries and

horizon topologies and this fact is encoded in the various covariant derivatives that appear

in the final solution. These covariant derivatives are always defined with respect to the

background.
13We already know that kAkA = 0. Now as along as nAkA = 1, we could always express kA as kA =

nA − uA such that u · u = −1 and n · u = 0 everywhere
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We have applied this method to calculate the metric and the governing equation for the

dual dynamical membrane up to the first subleading correction. Then we have performed

several checks for our universal coordinate independent answer, by specializing to different

coordinate systems.

• We matched them against the known exact and static solutions - Schwarzschild black

hole/brane and Myers-Perry black holes for both asymptotically AdS and dS spaces.

• We have linearized our membrane equations and matched them against the known

spectrum of black hole/brane QNMs in AdS space and black hole QNMs in dS space.

This linearized analysis is not included in this thesis, see [65] for details.

• We have taken a special scaling limit of our equations and recovered the dual effective

hydrodynamic equations that was determined in [29] for the AdS black branes in large

number of dimensions. This analysis is also not included in this thesis, see [65] for

details.

This calculation has been extended to Einstein-Maxwell system in presence of cosmological

constant in [15].
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Chapter 3

Large-Dmembrane paradigm in AdS/dS
at subleading order
This chapter is based on [64].

In this chapter, we would like to extend the calculation of chapter 2 to the second sub-

leading order. The key motivation is two-fold. Firstly, from the result of chapter 2, we

know that at the first subleading order the background curvature does not appear explicitly

in any of the equation or the solution. However, it should appear explicitly at second sub-

leading order (which, very roughly speaking, captures the effect of two derivatives on the

background). Secondly, from the experience of the ‘flat space computation’, it is expected

that at this order, we should see the entropy production from a dynamical black hole.

However, in this chapter, we shall confine ourselves only to the computation of the

membrane equation of motion and the metric correction up to the second subleading order

in
(

1
D

)
expansion. We leave the ‘study of entropy production’ for future.

The organization of this chapter is as follows. In section 3.1, we have described the

basic set-up of our problem in terms of equations and also the final result for the metric

corrections and the membrane equations. Next in section 3.2, we have given a sketch of

the computation, which turns out to be quite tedious in this case. Many of the details we

have collected in the appendices. In section 3.3, we have performed several checks of our

results. Finally in section 3.4, we end with some discussions and future directions.
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3.1 Set up and final result

In this section, we shall briefly define the basic set-up of our problem in terms of equations.

It is essentially an extension of section 2.1. So we shall be very brief here.

Our aim is to solve Einstein’s equation (2.18) up to second subleading order in 1
D
ex-

pansion. Schematically our solution will take the form

GAB = gAB +G
(0)
AB +

(
1

D

)
G

(1)
AB +

(
1

D

)2

G
(2)
AB + · · · (3.1)

Here gAB is the background metric andG(0)
AB is the leading ansatz given by (2.16). We shall

determine the metric corrections in terms of ψ and OA (defined in subsection 2.5.2) and

their derivatives.

As we have discussed in chapter 2, Einstein’s equation could be solved provided the

extrinsic curvature of the ψ = 1 hypersurface (viewed as a hypersurface embedded in the

background spacetime) and the velocity field uA together satisfy some constraint equations

on the horizon. We have determined the form of the constraint equation at the leading order

in chapter 2. The constraint equation at the leading order is given by eq.(2.61) and eq.(2.65).

Here, we are just rewriting the equation

Pν
µ

[
∇̄2uν
K

− ∇̄νK
K

+ uαKα
ν − (u · ∇̄)uν

]
= O

(
1

D

)
, ∇̄ · u = O

(
1

D

)
where Pµν = g(ind)µν + uµuν

(3.2)

Here g(ind)µν denotes the induced metric on the membrane (ψ = 1 hypersurface) and ∇̄ is the

covariant derivative with respect to g(ind)µν . The velocity field uµ is the pull back of the bulk

velocity field uA and Kµν is the pull back of the extrinsic curvature of the membrane onto

the hypersurface (see eq.(2.62) for definitions) andK is the trace of the extrinsic curvature.

As discussed in chapter 2, for every solution of the above constraint equations we could

determine G(1)
AB. It turns out that G

(1)
AB simply vanishes given our choice of subsidiary con-

ditions.
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In this chapter our goal is to find corrections to equation (3.2) to the next order in
(

1
D

)
expansion and also G(2)

AB .

But before getting into any details of the computation, we shall first present our final

result i.e., the subleading correction to the membrane equation (3.2) and the second sub-

leading order metric correctionG(2)
AB. The metric correction would take the following form.

G
(2)
AB =

[
OAOB

(
2∑

n=1

fn(R) sn

)
+ t(R) tAB + v(R)

(
vAOB + vBOA

)]
where R ≡ D(ψ − 1), PAB = gAB − nAnB + uAuB

and, nA vA = uA vA = 0, nA tAB = uA tAB = 0, gAB tAB = 0

(3.3)

where,

tAB = PC
A P

D
B

[
R̄FCDEO

EOF +
K

D

(
KCD − ∇̂CuD + ∇̂DuC

2

)
− PEF (KEC − ∇̂EuC)(KFD − ∇̂FuD)

]
vA = PB

A

[
K

D

(
nDuEOF R̄FBDE

)
+

K2

2D2

(
∇̂BK

K
+ (u · ∇̂)uB − 2 uDKDB

)

− P FD

(
∇̂FK

D
− K

D
(uEKEF )

)(
KDB − ∇̂DuB

)]

s1 = uEuFnDnCR̄CEFD +

(
u · ∇̂K
K

)2

+
∇̂AK

K

[
4 uBKA

B − 2
[
(u · ∇̂)uA

]
− ∇̂AK

K

]
− (∇̂AuB)(∇̂AuB)− (u ·K · u)2 −

[
(u · ∇̂)uA

]
[(u · ∇̂)uA] + 2

[
(u · ∇̂)uA

]
(uBKBA)

− 3 (u ·K ·K · u)− K

D

(
u · ∇̂K
K

− u ·K · u

)

s2 =
K2

D2

[
− K

D

(
u · ∇̂K
K

− u ·K · u

)
− 2 λ− (u ·K ·K · u) + 2

(
∇̂AK

K

)
uBKA

B −

(
u · ∇̂K
K

)2

+ 2

(
u · ∇̂K
K

)
(u ·K · u)−

(
∇̂DK

K

)(
∇̂DK

K

)
− (u ·K · u)2 + nBnDuEuF R̄FBDE

]
(3.4)
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Where, R̄ABCD is the Riemann tensor1 of the background metric gAB and ∇̂ is defined as

follows: for any general tensor with n indicesWA1A2···An

∇̂AWA1A2···An = ΠC
A ΠC1

A1
ΠC2
A2

· · ·ΠCn
An

(∇CWC1C2···Cn) , with ΠAB = gAB − nAnB

(3.5)

t(R) = − 2

(
D

K

)2 ∫ ∞

R

y dy

ey − 1

v(R) = 2

(
D

K

)3 [ ∫ ∞

R

e−xdx

∫ x

0

y ey

ey − 1
dy − e−R

∫ ∞

0

e−xdx

∫ x

0

y ey

ey − 1
dy

]
f1(R) = −2

(
D

K

)2 ∫ ∞

R

x e−xdx+ 2 e−R
(
D

K

)2 ∫ ∞

0

x e−xdx

(3.6)

f2(R) =

(
D

K

)[∫ ∞

R

e−xdx

∫ x

0

v(y)

1− e−y
dy − e−R

∫ ∞

0

e−xdx

∫ x

0

v(y)

1− e−y
dy

]

−
(
D

K

)4
[∫ ∞

R

e−xdx

∫ x

0

y2 e−y

1− e−y
dy − e−R

∫ ∞

0

e−xdx

∫ x

0

y2 e−y

1− e−y
dy

] (3.7)

As we can see that our solution is parametrized by the shape of the constant ψ hypersurfaces

(encoded in its extrinsic curvatureKAB) along with the velocity field uA. However, because

of our subsidiary conditions if we know KAB and uA along one constant ψ hypersurface,

they are determined everywhere else. In this sense, the real data in our class of solutions

are to be provided only along one simple surface; the most natural choice of which is the

horizon or the hypersurface ψ = 1.

As we have mentioned before, we cannot choose any arbitrary shape of the membrane

and velocity field as our initial data. The metric, presented above, would solve Einstein’s

equation (2.18) only if the data satisfy some constraint - the equation (3.2) with subleading
1 Riemann tensor is defined by the relation

[∇A,∇B ]ωC = R̄ D
ABC ωD
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corrections.[
∇̄2uα
K

− ∇̄αK
K

+ uβKβα − u · ∇̄uα
]
Pα
γ +

[
− uβKβδKδ

α

K
+

∇̄2∇̄2uα
K3

− (∇̄αK)(u · ∇̄K)

K3

− (∇̄βK)(∇̄βuα)

K2
− 2Kδσ∇̄δ∇̄σuα

K2
− ∇̄α∇̄2K

K3
+

∇̄α(KβδKβδK)

K3
+ 3

(u · K · u)(u · ∇̄uα)
K

− 3
(u · K · u)(uβKβα)

K
− 6

(u · ∇̄K)(u · ∇̄uα)
K2

+ 6
(u · ∇̄K)(uβKβα)

K2
+ 3

u · ∇̄uα
D − 3

− 3
uβKβα

D − 3
− (D − 1)λ

K2

(
∇̄αK
K

− 2uσKσα + 2(u · ∇̄)uα

)]
Pα
γ = O

(
1

D

)2

∇̄ · u− 1

2K
(
∇̄(αuβ)∇̄(γuδ)PβγPαδ

)
= O

(
1

D

)2

(3.8)

Where ∇̄ is the covariant derivative with respect to g(ind)µν , the induced metric on ψ = 1

hypersurface. Kµν and uµ are defined in (2.62). ∇̄(αuβ) is defined as

∇̄(αuβ) ≡ ∇̄αuβ + ∇̄βuα

3.2 Sketch of the computation

It turns out that though the computation to determine the second order metric correction

is tedious, conceptually it is a straightforward extension of what has been done in chapter

2. Therefore in this section, we shall omit most of the derivations and mention only those

where there are some differences from 2.

We shall follow the same convention as in chapter 2. In particular our choice of gauge

is also the same, namely

OBG
(2)
AB = 0
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With this gauge choice the second order correction could be parametrized as

G
(2)
AB =

(
OAOB

∑
n

fn(R) sn +
1

D
PAB

∑
n

hn(R) sn +
∑
n

tn(R) [tn]AB

+
∑
n

vn(R)
(
[vn]AOB + [vn]BOA

))
where, R ≡ D(ψ − 1), PAB = gAB − nAnB + uAuB

and, nA[vn]A = uA[vn]A = 0, nA[tn]AB = uA[tn]AB = 0, gAB[tn]AB = 0

(3.9)

Here sn, [vn]A, [tn]AB are different independent scalar, vector and tensor structures, con-

structed out of the membrane data.

Evaluating Einstein’s equation (2.18) on
[
GAB = gAB +G

(0)
AB +

(
1
D

)
G

(1)
AB +

(
1
D

)2
G

(2)
AB +O

(
1
D

)3]
up to order O(1), we get a set of coupled, ordinary but inhomogeneous differential equa-

tion for the unknown functions in equation (3.9). Boundary conditions for these differential

equations are set by the following physical conditions.

1. The surface (ψ = 1) or (R = 0) is the event horizon and therefore a null hypersurface

to all orders.

2. uA is the null generator of this event horizon to all orders.

3. Bulk metric GAB to all orders approaches gAB as R → ∞.

These conditions translate to the following constraints on the unknown functions.

fn(R = 0) = vn(R = 0) = 0, hn(R = 0) = tn(R = 0) = finite,

lim
R→∞

fn(R) = lim
R→∞

hn(R) = lim
R→∞

vn(R) = lim
R→∞

tn(R) = 0
(3.10)

The homogeneous part HAB (i.e., the part that acts like a differential operator on the

space of unknown functions appearing in G(2)
AB) is universal. It will have the same form as

in the ‘first order’ calculation and we do not need to recalculate it. For convenience, here

we shall quote the results for the homogeneous part as derived in chapter 2.

HAB ≡ H(1)OAOB +H(2)(nAOB + nBOA) +H(3)nAnB +H(tr)PAB

+
(
OAP

C
B +OBP

C
A

)
H

(V1)
C +

(
nAP

C
B + nBP

C
A

)
H

(V2)
C +H

(T )
AB

(3.11)
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where,

H(1) = −N
2

2
(1− e−R)

∑
n

sn (f
′′
n + f ′

n)−
N

2
e−R

∑
n

(∇ · vn)
D

vn +
N2

4
e−R(1− e−R)

∑
n

snh
′
n

H(2) =
N2

2

∑
n

sn (f
′′
n + f ′

n) +
N

2

∑
n

(∇ · vn)
D

v′n −
N2

4
e−R

∑
n

snh
′
n

H(3) = −N
2

2

∑
n

snh
′′
n

H(tr) = 0

H
(V1)
C = −N

2

2
(1− e−R)

∑
n

(v′′n + v′n) [vn]C

H
(V2)
C =

N2

2

∑
n

(v′′n + v′n) [vn]C +
N

2D

∑
n

t′n
(
∇D[tn]

D
C

)
H

(T )
AB = −N

2

2

∑
n

[
t′′n(1− e−R) + t′n

]
[tn]AB

(3.12)

Here for any R dependent function, X ′(R) denotes dX(R)
dR

.

The ‘source’ parts of these equations are determined by evaluating the Einstein’s equa-

tion on the first order corrected metric. By construction the order O(D2) and order O(D)

pieces of these equations will vanish and first non-zero contribution, relevant for the com-

putation of this chapter , will be of O(1).

From the above discussion it follows that the key part of the computation is to determine

the source term, which we denote here by SAB. Since G(1)
AB vanishes, just like in chapter

2, here also the source will be given by EAB calculated on
(
gAB +G

(0)
AB

)
, however the

complication lies in the fact that the calculation has to be carried out up to order O(1).

Here we are presenting the final result for the source. See appendix B.1 for the details. For
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convenience, we shall decompose SAB into its different components.
SAB ≡ S(1)OAOB + S(2)(nAOB + nBOA) + S(3)nAnB + S(tr)PAB

+
(
OAP

C
B +OBP

C
A

)
S
(V1)
C +

(
nAP

C
B + nBP

C
A

)
S
(V2)
C + S

(T )
AB

where OAS
(T )
AB = nAS

(T )
AB = 0, S

(T )
ABP

AB = 0 and PAB ≡ gAB + uAuB − nAnB
(3.13)

The explicit expression for the different components are the following.

S(1) = e−2R

(
K

2

)
Escalar +

(
e−R − e−2R

)
s1 + e−2R

(
R2

2

)(
D

K

)2

s2 −R

(
e−2R

2

)(
∇̂ · Evector

)
R=0

S(2) = e−R
[
−s1 +

(
K

2

)
Escalar

]
R=0

−R

(
e−R

2

)(
∇̂ · E

)
R=0

+ e−R
(
R2

2

)[(
D2

K2

)
s2

]
R=0

S
(V1)
C =

e−R

2

[
KEvector

C − 2 R

(
D

K

)
vC

]
, S

(T )
AB = e−R tAB

S(3) = Str = 0, S
(V2)
C = 0

(3.14)
Where

Escalar =

[(
∇̂ · u

) ∣∣∣∣
ψ=1

− 1

2K

[
∇̂(AuB)∇̂(CuD)P

BCPAD
]]

(3.15)

Evector
C =

[
∇̂2uA
K

− ∇̂AK

K
+ uBKBA − u · ∇̂uA

]
PA
C

+

[
− uBKBDK

D
A

K
+

∇̂2∇̂2uA
K3

− (∇̂AK)(u · ∇̂K)

K3
− (∇̂BK)(∇̂BuA)

K2

− 2KDE∇̂D∇̂EuA
K2

− ∇̂A∇̂2K

K3
+

∇̂A(KBDK
BDK)

K3
+ 3

(u ·K · u)(u · ∇̂uA)
K

− 3
(u ·K · u)(uBKBA)

K
− 6

(u · ∇̂K)(u · ∇̂uA)
K2

+ 6
(u · ∇̂K)(uBKBA)

K2

+ 3
u · ∇̂uA
D − 3

− 3
uBKBA

D − 3
− (D − 1)λ

K2

(
∇̂AK

K
− 2uDKDA + 2(u · ∇̂)uA

)]
PA
C

(3.16)
See equation (3.4) for the definitions of s1, s2, vC , tAB .

∇̂ is defined as follows: for any general tensor with n indicesWA1A2···An

∇̂AWA1A2···An = ΠC
A ΠC1

A1
ΠC2
A2

· · ·ΠCn
An

(∇CWC1C2···Cn) (3.17)
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The final set of coupled differential equations that we have to solve is simply

HAB + SAB = 0 (3.18)

As explained in chapter 2, the homogeneous part HAB could be decoupled after taking

its appropriate projection on different directions. Similar projections applied on SAB will

generate the sources for the scalar, vector, tensor and the trace sectors.

However, just as in the first order calculation, there is an ‘integrability’ condition. Note

that H(1) and H(V1)
C vanish at R = 02 . Hence consistency demands that S(1) and S(V1)

C

should also vanish on R = 0. In other words, these set of equations could be consistently

solved only if on the horizon the velocity field uA and the extrinsic curvature of the ψ = 1

membrane (viewed as a hypersurface embedded in the background) together satisfy the

following equations.

S(1)|R=0 =

(
K

2

)
Escalar|R=0 = 0

S
(V1)
C |R=0 =

(
K

2

)
Evector
C |R=0 = 0

(3.19)

By appropriate pull-back these equations could be recast as an intrinsic equation on the

hypersurface and they generate the next order correction to the constraint equation (3.2).

We have described them in equations (3.8).

Once the constraint equations are satisfied, we could see that in the source SAB only

two scalar structures (s1 and s2), one vector structure (vC) and one tensor structure (tAB)

appear. So altogether we have 6 unknown functions (2 functions for the scalar sector, 2 in

the trace sector, 1 in the vector sector and 1 in the tensor sector).

The decoupled ODEs for different unknown metric functions:

• Scalar sector:

For hn(R): H(3) + S(3) = 0 for fn(R): H(1) + S(1) = 0, n = 1, 2

2To see the vanishing of H(1) at R = 0 we have to use the fact that vn(R) vanishes at R = 0 as a
consequence of our boundary condition. See equation (3.10)
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• Vector sector:

For v(R): H(V1)
C + S

(V1)
C = 0

• Tensor sector:

For t(R): H(T )
AB + S

(T )
AB = 0

Now we shall give the explicit form of the equations sector by sector.

Tensor sector:

Here the explicit form of the equation is as follows

t′′(1− e−R) + t′ =
2

N2
e−R = 2

(
D

K

)2

e−R (3.20)

We can integrate this equation. After imposing

t(R = 0) = finite and lim
R→∞

t(R) = 0

we find the result as presented in the first equation of (3.6).

Vector sector:

Here the explicit form of the equation is as follows

(1− e−R)
d

dR
(eRv′) + 2

(
D

K

)3

R = 0 (3.21)

After imposing

v(R = 0) = 0 and lim
R→∞

v(R) = 0

we find the result as presented in the second equation of (3.6).

Trace sector:

The equations for hn(R) is simply given by

−N
2

2

∑
n

h′′nsn = 0 (3.22)
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Integrating this differential equation with the boundary condition (3.10), we found correc-

tion in the trace sector vanishes i.e., hn(R) = 0

Scalar sector:

The equations for f1(R) and f2(R) are given by

e−R(1− e−R)
d

dR

[
eRf ′

1

]
= 2

(
D

K

)2

e−R(1− e−R)

e−R(1− e−R)
d

dR

[
eRf ′

2

]
= −

(
D

K

)
e−R v(R) +

(
D

K

)4

R2 e−2R

(3.23)

To derive the second equation we have used the fact (see appendix B.2.2 for derivation)

∇ · v
D

= s2 (3.24)

After imposing

fn(R = 0) = 0 and lim
R→∞

fn(R) = 0, n = 1, 2

we find the result as presented in the third and the fourth equation of (3.6).

3.3 Checks

In this section we shall perform several checks on our calculation. Roughly the checks could

be of two types. The first is the internal consistency of our solutions and the systems of

equations, i.e, to verify that if we simply substitute our solution in the system of equations

(3.18), each and every component of it vanishes up to corrections of order O
(

1
D

)
. The

details of it would be presented in subsection 3.3.1.

The second type of checks are the ones where we shall take several limits and match

our results with some answers, known previously. One trivial check in this category that

we have tried on every stage of our computation is to match with the known results in
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asymptotically flat case [3], by setting the cosmological constant Λ to zero. The corrected

constraint equation (3.8) manifestly matches with equation no (4.5) and (4.12) respectively

of [3], if we set Λ to zero. At this stage it is difficult to match the two metrics even after

setting Λ to zero, since our subsidiary conditions are different from that of [3] and we leave

it for future.

The other significant check that we have performed is the matching of the spectrum of

linearized fluctuation derived from our constraint equations to that of the Quasi-Normal

modes already calculated in [10]. This linearized calculation is not included in this thesis,

see [64] for details.

3.3.1 Check for internal consistency

In this subsection, we shall explicitly verify that our solution for the metric along with the

membrane equations constraining the membrane data, does satisfy equation (3.18) i.e., each

of its components vanishes up to corrections of order O
(

1
D

)
.

Let EAB denote the LHS of equation (3.18).

EAB ≡ HAB + SAB

From the list of the decoupled ODEs (see the discussion below equation (3.18)) it is clear

that the 4 of the 7 independent components of EAB must be satisfied since we have solved

for the metric functions by integrating them. These components are

uAuBEAB, OAOBEAB, uAPC
B EAC , PC

A P
C′

B

[
ECC′ −

(
E

D − 2

)
PCC′

]
where E denotes the projected trace of EAB i.e., E = PABEAB

From the explicit expressions of HAB it is clear that uAHABu
B = H(1) and uAHACP

C
B =

H
(V1)
B vanish at ψ = 1 and membrane equations ensure that the same is true for the source.

As explained in chapter 2, if we consider ‘the variation of the metric as we go away from
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the horizon’ as ‘dynamics’, then the membrane equations play the role of ‘constraint equa-

tions’, whereas the equations we solved to determine the metric corrections are like the

‘dynamical’ ones. Now in any theory of gravity, it is enough to solve the ‘dynamical equa-

tions’ everywhere and the constraint equation only along one constant ‘time slice’ (in our

case which would be a constant ψ slice); gauge invariance will ensure that the full set of

equations are solved everywhere [68]. This theorem guarantees that the rest of the three

independent components of EAB must vanish provided we have solved the equations cor-

rectly. These components are

uAOBEAB = H(2) + S(2) ≡ E (2)

1

D
PABEAB = H(tr) + S(tr) ≡ E (tr)

OAPC
B EAC = H

(V2)
B + S

(V2)
B ≡ E (V2)

B

Therefore the fact that these components do vanish on our solution is an important consis-

tency check of our whole procedure and the final answer. Computationally it turns out to

be quite non-trivial. In fact we have to take help from Mathematica to prove them.

Vanishing of E (2)

From eq (3.12) it follows that

H(2) =
1

2

(
K

D

)2 2∑
n=1

sn

(
f ′′
n + f ′

n −
e−R

2
h′n

)
+

(
K

D

)(
∇ · v
2D

)
v′

=
1

2

(
K

D

)2

s1(f
′′
1 + f ′

1) +
1

2

(
K

D

)
s2 [N (f ′′

2 + f ′
2) + v′]

= e−Rs1 +
1

2

(
K

D

)
s2

[
− e−R

1− e−R
v +

(
D

K

)3
R2 e−R

1− e−R
+ v′

]

= e−Rs1 −
1

2

(
D

K

)2

R2e−R s2

(3.25)

Here we have used the fact that metric correction in the trace sector (i.e., hn(R)) vanishes.

Also we have used equation (3.24) for the divergence of vC and the last three equations

64



3 Large-D membrane paradigm in AdS/dS at subleading order

from (3.6) for the expressions of fn(R) and v(R).

From equation (3.14) we could see that H(2) is exactly the minus of S(2) as required.

Vanishing of E (tr)

This follows trivially from (3.14) and (3.12), as both S(tr) and H(tr) vanish at this order.

Vanishing of E (V2)
B

From equation (3.14) we see that S(V2)
C = 0, therefore H(V2)

C should also vanish on our

solution. The equation below checks that this is true.

H
(V2)
C ≡ 1

2

(
K

D

)2

(v′′ + v′) vC +
1

2

(
K

D

)
t′
(
∇Dt

D
C

)
D

=
1

2

(
K

D

)[(
K

D

)
(v′′ + v′) + t′

]
vC

= 0

(3.26)

In the second line we have used the identity (see Appendix B.2.1 for the derivation),

∇D

(
tDC
)
= D vC (3.27)

In the last line we have used the first and the second equation of (3.6) for the expressions

of v(R) and t(R).

3.4 Discussions

In this chapter, we have found new dynamical ‘black hole’ type solutions of the Einstein’s

equation in presence of cosmological constant in an expansion in the inverse powers of

dimension. We have done the calculation up to second subleading order. The spacetime,

determined here, will necessarily possess an event horizon. The dynamics of the horizon

could be mapped to the dynamics of a velocity field on a dynamical membrane, embedded

in the asymptotic background. We have determined the equation for this dual dynamics of

the membrane and the velocity field also in an expansion in
(

1
D

)
.
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3 Large-D membrane paradigm in AdS/dS at subleading order

As a check we have matched the spectrum of the Quasi-Normal modes. This matching

is not included in this thesis, see [64] for details. Another important check would be to

match the metric with the large dimension limit of known black hole solutions. Apart from

just a check on our results, this exercise could also give hints to some exact but non-trivial

solutions of our membrane equations. This might lead to some techniques to solve the

membrane equation analytically.

As we have mentioned in the introduction, one of our key motivation for this second

subleading calculation is to have some insight in entropy production, which is expected to

take place only at this order. Calculation of this entropy production could be one interesting

project.
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Chapter 4

Stress tensor for large-Dmembrane at sub-
leading order
This chapter is based on [71].

4.1 Introduction

As mentioned in the introduction 1.2, here our main goal is to compute membrane stress

tensor up to second subleading order in 1
D
expansion. In our case, the membrane, which is a

codimension-one hypersurface, is embedded in AdS/ dS space. More precisely, the metric

of the embedding space satisfies the following equation

RAB −
(
R− Λ

2

)
GAB = 0

Where, dimension(D) dependence of Λ is parametrized as follows

Λ = [(D − 1)(D − 2)]λ, λ ∼ O(1)

The membrane is characterized by its shape (encoded in its extrinsic curvature Kµν)

and a velocity field (uµ), unit normalized with respect to the induced metric of the mem-

brane. Before going into any details of the computation, we will first give the final answer.

The membrane stress tensor, that we report below, is a symmetric two-indexed tensor, con-

structed out of this velocity field, extrinsic curvature and its derivatives.

4.1.1 Final Result

In this subsection, we shall write our final result - the expression of the membrane stress

tensor up to order O
(

1
D

)
. Conservation of this stress tensor would give the membrane
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4 Stress tensor for large-D membrane at subleading order

equation derived in Chapter 3. For convenience, we shall decompose the stress tensor in

the following way

8πTµν = S1 uµuν + S2 g
(ind)
µν + Vµ uν + Vν uµ +Wµν (4.1)

Where,

S1 =
K
2
+

1

2

(
∇̄2K
K2

− λ
D − 1

K
− 1

K
KαβKαβ

)
+

1

K

[
− u · K · K · u− 13

(
u · ∇K

K

)2

+ 2 uαKαβ

(
∇̄βK
K

)
+ 14

(
u · ∇K

K

)
(u · K · u)− K

D

(
u · ∇K

K

)
+

K
D
(u · K · u) + 1

K3
∇̄2
(
∇̄2K

)
− 4 (u · K · u)2 − 8 λ

D

K

(
u · ∇K

K

)
+ 4 λ

D

K
(u · K · u)− 2

(
∇̄αK
K

)(
∇̄αK
K

)
+ λ− λ2

D2

K2

]
+

1

K
(2 Zeta[3]− 1)

[
− K
D

(
(u · ∇)K

K
− u · K · u

)
− λ− u · K · K · u+ 2

(
∇αK
K

)
uβKα

β

−
(
u · ∇K

K

)2

+ 2

(
u · ∇K

K

)
(u · K · u)−

(
∇̄αK
K

)(
∇̄αK
K

)
− (u · K · u)2

]

S2 = −1

2
(u · K · u)− 1

2K
KαβKαβ −

1

K

(
u · ∇K

K
− 1

2
(u · K · u)− K

2 D

)
(u · K · u) + λ

K

+
1

K
Kαβ(∇αuβ)−

2

K
uαKαβ

(
1

2

∇̄βK
K

− ∇̄2uβ
K

)
(4.2)

Vµ =
1

2

(
∇̄µK
K

)
−
(
∇̄2uµ
K

)
+

1

K
Kα
µKαβu

β − 1

K3
∇̄2
(
∇̄2uµ

)
+

1

K
∇̄µ

(
u · ∇K

K

)
+

1

K

(
∇̄2uµ
K

)(
− 2 (u · K · u) + 4

u · ∇K
K

+ 2 λ
D

K
− K
D

)
+

1

2 K

(
∇̄µK
K

)
(u · K · u)

(4.3)

Wµν =
1

2
Kµν −

1

2

(
∇̄µuν + ∇̄νuµ

)
− 1

K
Kµν (u · K · u) + 1

2 K
(
∇̄µuν + ∇̄νuµ

)
(u · K · u)

+
1

2 K

[
∇̄µ

(
∇̄2uν
K

)
+ ∇̄ν

(
∇̄2uµ
K

)
+ ∇̄µ (u

αKαν) + ∇̄ν (u
αKαµ)− 2 ∇̄µ

(
∇̄νK
K

)]
− 1

K
(
∇̄αuµ

) (
∇̄αuν

)
− 1

K

(
∇̄2uµ
K

)(
∇̄2uν
K

)
(4.4)

Here, g(ind)µν is the induced metric on the membrane, ∇̄µ is the covariant derivative with

respect to g(ind)µν . Membrane velocity uµ can also be viewed as a vector field uA in the full
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4 Stress tensor for large-D membrane at subleading order

background spacetime. uµ is related to uA through the following equation

uµ =

(
∂XA

∂yµ

)
uA (4.5)

Where, XA are the coordinates in the full spacetime and yµ are the coordinates on the

membrane world volume.

The extrinsic curvature of the membrane Kµν is defined as follows

Kµν =

(
∂XA

∂yµ

)(
∂XB

∂yν

)
KAB, Where, KAB = ΠC

A∇CnB (4.6)

Here, nA is the normal to the membrane and ΠAB is the projector orthogonal to the mem-

brane defined as ΠAB = gAB − nAnB.

4.1.2 Strategy

The two key principles that fix this stress tensor are the following

• Conservation of the stress tensor should reproduce the membrane equation up to the

relevant order.

• This stress tensor should be the source of the gravitational radiation, generated from

the massive fluctuating membrane.

In fact, it is the second principle that finally determines the algorithm to be used to derive

the stress tensor. The algorithm is such that the first principle is automatically ensured and

we have used it in the end as a consistency check for our long calculation.

Below, we shall just write down the steps to be used so that the final construction is

consistent with the second principle. However, we shall not write the justification for any

of these steps as they are explained in detail in [4] and explanation is completely independent

of the order in terms of 1
D
expansion.
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4 Stress tensor for large-D membrane at subleading order

• Step-1: Codimension-one membrane is given by a single scalar equation ψ = 1.

Define ψ > 1 region as ‘ outside of the membrane’ and ψ < 1 as ‘ inside of the

membrane’. ‘Outside region’ is the one that extends towards asymptotic infinity and

contains the gravitational radiation.

• Step-2: Next, we would like to write a spacetime metric for both outside and inside

region, with the following properties.

1. The metric would solve Einstein’s equation (in presence of cosmological con-

stant) linearized around pure AdS/dS metric.

2. The metric would fall off as ψ−D in the outside region and would be regular in

the inside region.

3. The metric should be continuous across the membrane though its first normal

derivative need not be.

It turns out that in 1
D
expansion, the above two conditions uniquely fix the metric on

both sides, in terms of the induced metric on the membrane, which we read off from

the large-D metric determined in Chapter 3.

• Step-3: Once we have determined the metric on both sides, the discontinuity of its

normal derivative across the membrane is also fixed unambiguously. The conserved

stress tensor associated with themembrane is computed from this discontinuity. More

precisely, it is the difference between the two Brown York stress tensors on the mem-

brane evaluated with respect to the inside and outside metric.

TAB = T
(in)
AB − T

(out)
AB (4.7)

Here,

8πT
(in)
AB = K

(in)
AB −K(in)p

(in)
AB and, 8πT (out)

AB = K
(out)
AB −K(out)p

(in)
AB (4.8)
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4 Stress tensor for large-D membrane at subleading order

are respectively the Brown York stress tensors of internal solution and external solu-

tion evaluated on the membrane. K(in)
AB and p(in)AB are respectively extrinsic curvature

and projector on to the membrane viewed as a submanifold of the background space-

time perturbed by the internal solution. Similarly, K(out)
AB and p

(out)
AB are respectively

extrinsic curvature and projector on to the membrane viewed as a submanifold of the

background spacetime perturbed by the external solution. T (out)
AB and T (in)

AB both satis-

fies nAT (out/in)
AB = 0. So, TAB can equally well be regarded as a tensor Tµν that lives

on the membrane world volume.

Calculationally, this is very lengthy. In the main text, we have just written the final re-

sults, most of the lengthy derivations are in the appendices. The organization of this chapter

is as follows: In section 4.2 we have linearized the Large -D solution known up to sublead-

ing order and have changed the gauge and subsidiary condition (as discussed just below

eq.(4.9)). In section 4.3 we have constructed a linearized solution of Einstein’s equation in

the inside region of the membrane. In section 4.4 we have calculated the membrane stress

tensor and in the section 4.5 we have shown that the subleading order membrane equation

follows from the conservation of this stress tensor.

4.2 Linearized Solution : Outside(ψ > 1)

In this section, we shall work out the metric in the outside region. However, what we

are finally interested in is just the difference between Brown York stress tensor across the

membrane. To compute it, we need to know the metric only very near the membrane.

The large D solution as described in Chapter 3, already determined the metric in this near

membrane region even at non-linear order. For our purpose, we shall simply read off the

‘outside metric’ from Chapter 3. In fact, we have to pick out only the part that is enough to

solve the linearized equations. In other words, we need only that part of the metric which
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4 Stress tensor for large-D membrane at subleading order

could be recast as

G
(out)
AB = gAB + ψ−DhAB = gAB + ψ−D

∞∑
m=0

(ψ − 1)mh
(m)
AB (4.9)

In the first subsection, we have described the large-D solution and read off the piece needed.

The main calculation of this section involves a change of gauge and ‘subsidiary condi-

tions’ (conventions that fix how the basic fields would evolve away from the membrane,

see Chapter 2 for more details). In the next two subsections, we have described the new set

of conventions, that are more useful for our purpose and performed the required changes

on the metric, read off in the first subsection. Needless to say, all steps are worked out in

an expansion in 1
D
.

4.2.1 Large-DMetric up to sub-subleading order : Linearized

In this subsection, we will just quote the solution of Einstein’s equation up to second sub-

leading order in 1
D
expansion as derived in chapter 3 and we will linearize the solution in

ψ−D. The solution is given by

GAB = gAB + ψ−DOAOB +

(
1

D

)2

G
(2)
AB + · · · (4.10)

Here, gAB is the background metric and OA = nA − uA.

G
(2)
AB =

[
OAOB (f1(R) s1 + f2(R) s2) + t(R) tAB + v(R)

(
vAOB + vBOA

)]
where R ≡ D(ψ − 1), PAB = gAB − nAnB + uAuB

and, nA vA = uA vA = 0, nA tAB = uA tAB = 0, gAB tAB = 0

(4.11)
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4 Stress tensor for large-D membrane at subleading order

Where,

t(R) = − 2

(
D

K

)2 ∫ ∞

R

y dy

ey − 1

v(R) = 2

(
D

K

)3 [ ∫ ∞

R

e−xdx

∫ x

0

y ey

ey − 1
dy − e−R

∫ ∞

0

e−xdx

∫ x

0

y ey

ey − 1
dy

]
f1(R) = −2

(
D

K

)2 ∫ ∞

R

x e−xdx+ 2 e−R
(
D

K

)2 ∫ ∞

0

x e−xdx

f2(R) =

(
D

K

)[∫ ∞

R

e−xdx

∫ x

0

v(y)

1− e−y
dy − e−R

∫ ∞

0

e−xdx

∫ x

0

v(y)

1− e−y
dy

]

−
(
D

K

)4
[∫ ∞

R

e−xdx

∫ x

0

y2 e−y

1− e−y
dy − e−R

∫ ∞

0

e−xdx

∫ x

0

y2 e−y

1− e−y
dy

]
(4.12)

And,

tAB = PC
A P

D
B

[
R̄FCDEO

EOF +
K

D

(
KCD − ∇̂CuD + ∇̂DuC

2

)
− PEF (KEC − ∇̂EuC)(KFD − ∇̂FuD)

]

vA = PB
A

[
K

D

(
nDuEOF R̄FBDE

)
+

K2

2D2

(
∇̂BK

K
+ (u · ∇̂)uB − 2 uDKDB

)

− P FD

(
∇̂FK

D
− K

D
(uEKEF )

)(
KDB − ∇̂DuB

)]

s1 = uEuFnDnCR̄CEFD +

(
u · ∇̂K
K

)2

+
∇̂AK

K

[
4 uBKA

B − 2
[
(u · ∇̂)uA

]
− ∇̂AK

K

]
− (∇̂AuB)(∇̂AuB)− (u ·K · u)2 −

[
(u · ∇̂)uA

][
(u · ∇̂)uA

]
+ 2

[
(u · ∇̂)uA

]
(uBKBA)

− 3 (u ·K ·K · u)− K

D

(
u · ∇̂K
K

− u ·K · u

)

s2 =
K2

D2

[
− K

D

(
u · ∇̂K
K

− u ·K · u

)
− 2 λ− (u ·K ·K · u) + 2

(
∇̂AK

K

)
uBKA

B −
(
u · ∇̂K
K

)2

+ 2

(
u · ∇̂K
K

)
(u ·K · u)−

(
∇̂DK

K

)(
∇̂DK

K

)
− (u ·K · u)2 + nBnDuEuF R̄FBDE

]
(4.13)
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4 Stress tensor for large-D membrane at subleading order

Here, R̄ABCD is the Riemann tensor of the background metric gAB and ∇̂ is defined through

the following equation - for a generic n-index tensorWA1A2···An

∇̂AWA1A2···An = ΠC
AΠ

C1
A1
ΠC2
A2

· · ·ΠCn
An
∇CWC1C2···Cn (4.14)

We want the sub-subleading order metric in linearized order in ψ−D. So, we need to

calculate the above integration (4.12) in linearized order in ψ−D. The answers are the fol-

lowing. See C.1 for details.

t(R) = −2

(
D

K

)2

e−R [R + 1] +O
(
e−2R

)
v(R) = 2

(
D

K

)3(
1 +R +

R2

2

)
e−R +O

(
e−2R

)
f1(R) = −2

(
D

K

)2

R e−R +O
(
e−2R

)
f2(R) = 2

(
D

K

)4

e−R (2 Zeta[3]− 1) +O(e−2R)

(4.15)

Using (4.15), we can write the full metric GAB as

GAB = gAB + ψ−DOAOB + ψ−D 1

D2

[
− 2

(
D

K

)2

(R + 1) tAB − 2

(
D

K

)2

R s1 OAOB

+ 2

(
D

K

)4

(2 Zeta[3]− 1) s2 OAOB + 2

(
D

K

)3(
1 +R +

R2

2

)(
vAOB + vBOA

)]

= gAB + ψ−D
[
OAOB +

1

K2

{
2
D2

K2
(2 Zeta[3]− 1) s2OAOB − 2 tAB + 2

D

K

(
vAOB + vBOA

)}]
+R ψ−D 1

K2

[
−2 tAB − 2 s1 OAOB + 2

(
D

K

)(
vAOB + vBOA

)]
+R2 ψ−D 1

K2

(
D

K

)(
vAOB + vBOA

)
+O

(
1

D3
, ψ−2D

)
(4.16)

Now, if we write GAB as

GAB = gAB + ψ−DMAB = gAB + ψ−D
∞∑
n=0

(ψ − 1)nM
(n)
AB (4.17)
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We will get

M
(0)
AB = OAOB +

2

K2

[
− tAB +

(D
K

)2
(2 Zeta[3]− 1) s2OAOB +

D

K

(
vAOB + vBOA

)]
+O

( 1

D

)3
M

(1)
AB = −2D

K2

[
tAB + s1 OAOB − D

K

(
vAOB + vBOA

)]
+O

( 1

D

)2
M

(2)
AB =

(D
K

)3(
vAOB + vBOA

)
+O

( 1

D

)
(4.18)

4.2.2 Change of Gauge Condition

Large-D solution (Chapter 2 andChapter 3) has been derived in the gauge conditionOAhAB =

0. But it turns out that, for the calculation of the stress tensor, it is more convenient to use

the gauge condition nAhAB = 0. In this subsection, we will implement this gauge transfor-

mation.

GAB = gAB + ψ−DMAB (4.19)

We do the following infinitesimal coordinate transformation

xA → x′A = xA − ψ−DξA(xA) (4.20)

Under the above coordinate transformation, metric transforms as follows

G′
AB(x

′) = GAB(x
′) +∇′

A

[
ψ−DξB(x

′)
]
+∇′

B

[
ψ−DξA(x

′)
]

(4.21)

Now, using (4.17), we get

M ′
AB =MAB + ψD∇A

[
ψ−DξB

]
+ ψD∇B

[
ψ−DξA

]
(4.22)

We choose the coordinate transformation in a way such that nAM ′
AB = 0. Now using the

expansion ξA =
∑∞

n=0(ψ − 1)nξ
(n)
A we get

−nA
∞∑
m=0

(ψ−1)mM
(m)
AB = ψD(n·∇)

[
ψ−D

∞∑
m=0

(ψ − 1)mξ
(m)
B

]
+ψDnA∇B

[
ψ−D

∞∑
m=0

(ψ − 1)mξ
(m)
A

]
(4.23)
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Now, using the following decomposition

ξ
(0)
B = ξ

(0,0)
B +

1

D
ξ
(0,1)
B +

1

D2
ξ
(0,2)
B +

1

D3
ξ
(0,3)
B +O

(
1

D

)4

ξ
(1)
B = ξ

(1,0)
B +

1

D
ξ
(1,1)
B +

1

D2
ξ
(1,2)
B +O

(
1

D

)3

ξ
(2)
B = ξ

(2,0)
B +

1

D
ξ
(2,1)
B +O

(
1

D

)2

(4.24)

from (4.23), we can determine ξ(m,n)A order by order in 1
D
expansion in terms ofM (n)

AB. See

Appendix C.2 for details. Different components of ξ(2)B become

ξ
(2,0)
B = 0

ξ
(2,1)
B =

1

N

[
nAM

(2)
AB + nAM

(1)
AB − nB

2

(
n ·M (2) · n+ n ·M (1) · n

)] (4.25)

Different components of ξ(1)B become

ξ
(1,0)
B = 0

ξ
(1,1)
B =

1

N

[
nAM

(1)
AB + nAM

(0)
AB − nB

2

(
n ·M (1) · n+ n ·M (0) · n

)]
ξ
(1,2)
B =

1

N

[
(n · ∇)ξ

(1,1)
B + (n · ∇)ξ

(0,1)
B

]
+

1

N

[
nA∇Bξ

(1,1)
A + nA∇Bξ

(0,1)
A

]
+ 2 ξ

(2,1)
B + ξ

(1,1)
B − nB

N

[
nA(n · ∇)ξ

(1,1)
A + nA(n · ∇)ξ

(0,1)
A

]
(4.26)

Different components of ξ(0)B become

ξ
(0,0)
B = 0

ξ
(0,1)
B =

1

N

[
nAM

(0)
AB − nB

2

(
n ·M (0) · n

)]
ξ
(0,2)
B =

1

N

[
(n · ∇)ξ

(0,1)
B + nA∇Bξ

(0,1)
A

]
+ ξ

(1,1)
B − nB

N

[
nA(n · ∇)ξ

(0,1)
A

]
ξ
(0,3)
B =

1

N

[
(n · ∇)ξ

(0,2)
B + nA∇Bξ

(0,2)
A

]
+ ξ

(1,2)
B − nB

N

[
nA(n · ∇)ξ

(0,2)
A

]
(4.27)

Using (4.25), (4.26) and (4.27) we can calculate M ′
AB from (4.22). We expect the final

answer to be fully projected and that is what we get. See Appendix C.2 for details.

M ′
AB = ΠC

AΠ
C′

B

[
M

(0)
CC′ + (ψ − 1)M

(1)
CC′ + (ψ − 1)2M

(2)
CC′

]
+ ∇̂Aξ

(0)
B + ∇̂Bξ

(0)
A

+ (ψ − 1)
(
∇̂Aξ

(1)
B + ∇̂Bξ

(1)
A

)
+O

(
1

D

)3 (4.28)
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Using (4.18), (C.53) and (C.54) we can finally writeM ′
AB as

M ′
AB = (ψ − 1)mM ′(m)

AB (4.29)

Where,

M ′(0)
AB = uAuB +

1

ψK

[
uA

∇̂BK

K
+ uB

∇̂AK

K
+KAB − ∇̂BuA − ∇̂AuB

]
+

2

K2

[
− tAB +

D2

K2
(2 Zeta[3]− 1) s2 uAuB − D

K

(
vAuB + vBuA

)]
+

1

K2

[
− (n · ∇)K

K

(
4 uA

∇̂BK

K
+KAB − 2 ∇̂BuA

)
+ 2 uA∇̂B

(n · ∇K
K

)
+ ∇̂B

{
uEKAE − (n · ∇)uA

}
− 2

∇̂BK

K

{
uEKAE − ΠC

A(n · ∇)uC
} ]

+
1

K2

[
− n · ∇K

K

(
4 uB

∇̂AK

K
+KAB − 2 ∇̂AuB

)
+ 2 uB∇̂A

(n · ∇K
K

)
+ ∇̂A

{
uEKBE − (n · ∇)uB

}
− 2

∇̂AK

K

{
uEKBE − ΠC

B(n · ∇)uC
} ]

+O
( 1

D

)3
(4.30)

M ′(1)
AB = −2D

K2

[
tAB + s1 uAuB +

D

K

(
vAuB + vBuA

)]
+

1

K

[
uA

∇̂BK

K
+ uB

∇̂AK

K
+KAB − ∇̂BuA − ∇̂AuB

]
+O

( 1

D

)2 (4.31)

4.2.3 Change of Subsidiary Condition

M ′(m)
AB can not yet be identified with h(m)

AB - we have used in the calculation of the stress

tensor. Because, we have imposed the condition ΠC
AΠ

C′
B (n.∇)h

(m)
CC′ = 0 on h(m)

CC′ . We

will expand M ′(m)
AB in a power series expansion in (ψ − 1) and will determine different

coefficients by satisfying ΠC
AΠ

C′
B (n.∇)h

(m)
CC′ = 0.

We define h(0)AB in the following way such that ΠC
AΠ

C′
B (n.∇)h

(0)
AB = 0

h
(0)
AB =M ′(0)

AB − (ψ − 1)C
(0)
AB − (ψ − 1)2E

(0)
AB +O(ψ − 1)3 (4.32)

Acting on the above equation byΠC
AΠ

C′
B (n.∇) and them equating the coefficient of (ψ−1)0

we get

C
(0)
AB =

1

N
ΠC
AΠ

C′

B (n.∇)M ′(0)
CC′ (4.33)
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Equating the coefficient of (ψ − 1) we get

E
(0)
CC′ = − 1

2N
ΠA
CΠ

B
C′(n.∇)C

(0)
AB (4.34)

The final form form of h(0)AB on ψ = 1 takes the following form. See Appendix C.2.1 for

details

h
(0)
AB = S(0) uAuB + uAH(0)

B + uBH(0)
A +W(0)

AB (4.35)

Where,

S(0) = 1− 2

K2

[
u ·K ·K · u− 3

(
(u · ∇)K

K

)2

− 2 uBKBD

(
∇̂DK

K

)
+ 2 u ·K · u

(
(u · ∇)K

K

)
+
K

D

(
(u · ∇)K

K

)
− K

D
(u ·K · u)

]
+

2

K2
(2 Zeta[3]− 1)

[
− K

D

(
(u · ∇)K

K
− u ·K · u

)
− λ− u ·K ·K · u+ 2

(
∇AK

K

)
uBKA

B

−
(
(u · ∇)K

K

)2

+ 2
(u · ∇)K

K
(u ·K · u)−

(
∇̂DK

K

)(
∇̂DK

K

)
− (u ·K · u)2

]
(4.36)

H(0)
A =

1

K

(
∇̂AK

K

)
+

2

K2
∇̂A

(
∇̂2K

K2

)
+

2

K2
KF
A

(
∇̂FK

K

)
− 2

K2

(
∇̂FuA

)(∇̂FK

K

)
+

2

K2

(
∇̂2uA
K

)[
u ·K · u− 2

(u · ∇)K

K

]
+

2

K2

(
∇̂AK

K

)[
u ·K · u− 2

(u · ∇)K

K
+ λ

D

K
+

K

2D

]
(4.37)

W(0)
AB =

1

K

[
KAB − ∇̂AuB − ∇̂BuA

]
− 2

K2
KAB

[
(u · ∇)K

K
− u ·K · u

]
− 2

K2

(
∇̂AuB + ∇̂BuA

)[ K
2D

− 2
(u · ∇)K

K
+ u ·K · u

]
+

2

K2
KF
AKFB − 2

K2

(
KF
A ∇̂FuB +KF

B ∇̂FuA

)
+

2

K2

(
∇̂FuA

)(
∇̂FuB

)
+

2

K2

(
∇̂2uA
K

)(
∇̂2uB
K

)
+

2

K2

(
∇̂AK

K

)(
∇̂BK

K

)
− 2

K2

[(
∇̂AK

K

)
uEKEB +

(
∇̂BK

K

)
uEKEA

]
+

1

K2

[
∇̂A

(
uEKEB

)
+ ∇̂B

(
uEKEA

)]
− 1

K2

[
∇̂A

(
∇̂2uB
K

)
+ ∇̂B

(
∇̂2uA
K

)]
(4.38)
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Now, h(1)AB on the surface ψ = 1 becomes

h
(1)
AB =M ′(1)

AB + C
(0)
AB (4.39)

The final form form of h(1)AB on ψ = 1 takes the following form. See Appendix C.2.1 for

details

h
(1)
AB = S(1) uAuB + uAH(1)

B + uBH(1)
A +W(1)

AB (4.40)

Where

S(1) = −2 λ

(
D

K2

)
(4.41)

H(1)
A =

D

K

(
∇̂2uA
K

)
+

D

K2

(
∇̂AK

K

)[
− 5

(u · ∇)K

K
+ 2 u ·K · u− λ

D

K

]
+

D

K2

(
∇̂2uA
K

)[
− 12

(u · ∇)K

K
+ 6 u ·K · u− 2 λ

D

K
+ 2

K

D

]
+

D

K2

[
− uBKBDK

D
A +

1

K2
∇̂2
(
∇̂2uA

)
− 3

(
∇̂BK

K

)
∇̂BuA +

1

K2
∇̂A

(
∇̂2K

)
+KD

A

(
∇̂DK

K

)]
(4.42)

W(1)
AB =

D

K2

[
u ·K · u− K

D

]
KAB +

D

K2

[
∇̂2K

K2
− λ

D

K

](
∇̂AuB + ∇̂BuA

)
+

D

K2
KF
AKFB

− D

K2
λ ΠAB − D

K2

(
KF
A ∇̂FuB +KF

B ∇̂FuA

)
+ 2

D

K2

(
∇̂FuA

)(
∇̂FuB

)
+ 2

D

K2

(
∇̂2uA
K

)(
∇̂2uB
K

)
+

D

K2

1

K
∇̂A

(
∇̂BK

)
− D

K2

[(
∇̂AK

K

)
uEKEB +

(
∇̂BK

K

)
uEKEA

]
− D

K2

1

K

[
∇̂A

(
∇̂2uB

)
+ ∇̂B

(
∇̂2uA

)]
+

D

K2

[(
∇̂AK

K

)(
∇̂2uB
K

)
+

(
∇̂BK

K

)(
∇̂2uA
K

)]
(4.43)

So, finally, we have brought the large-D solution in the following form

G
(out)
AB = gAB + ψ−DhAB = gAB + ψ−D

∞∑
m=0

(ψ − 1)mh
(m)
AB (4.44)

Where, h(m)
AB satisfies nAh(m)

AB = 0 and ΠA
CΠ

B
C′(n · ∇)h

(m)
AB = 0
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4.3 Linearized Solution : Inside(ψ < 1)

In this section, we shall construct the ‘inside solution’ i.e, the metric for region ψ < 1. As

we have mentioned before, we want this metric to be regular throughout the ‘inside region’

in order to make sure that the membrane is the sole source of the gravitational radiation in

this system.

Note that the solution presented in Chapter 3 continued to be a solution even when

ψ < 1. However, this solution diverges at the location of the black hole, the point where ψ

approaches zero and also it does not have any discontinuity across the event horizon - the

location of the membrane. Therefore, unlike the ‘outside solution’ we have to construct the

inside solution from scratch maintaining the regularity and the fact that on the membrane it

reduces to the same induced metric as the one read off from the ‘outside solution’.

We shall write the inside metric in the following form

G
(in)
AB = gAB + h̃AB = gAB +

∞∑
m=0

(ψ − 1)mh̃
(m)
AB (4.45)

Where, gAB is background metric. h̃(m)
AB satisfies the gauge condition nAh̃(m)

AB = 0. At

linearized order, Christoffel symbol for (4.45) is given by

ΓABC = Γ̄ABC +
1

2
gAC

′
[
∇C h̃BC′ +∇Bh̃CC′ −∇C′ h̃BC

]
︸ ︷︷ ︸

δΓA
BC

+O
(
h̃
)2

(4.46)

Where, Γ̄ABC is Christoffel symbol of gAB and ∇A is covariant derivative with respect to

gAB. Now, Ricci tensor is given by

R
(in)
AB = R̄AB +∇D

[
δΓDAB

]
−∇B

[
δΓDAD

]
(4.47)

Where, R̄AB is Ricci tensor for gAB.

δΓABA =
1

2
gAC

′
[
∇Ah̃BC′ +∇Bh̃AC′ −∇Ah̃BC′

]
=

1

2
∇Bh̃ (4.48)
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Where, h̃ = gAC
′
h̃AC′ . So, Ricci tensor for inside region(ψ < 1)

R
(in)
AB = R̄AB +

1

2
∇D∇Ah̃

D
B +

1

2
∇D∇Bh̃

D
A − 1

2
∇2h̃AB − 1

2
∇B∇Ah̃ (4.49)

Einstein’s equation in the inside region

R(in)
AB − (D − 1)λ G(in)

AB = 0

⇒ 1

2
∇D∇Ah̃

D
B +

1

2
∇D∇Bh̃

D
A − 1

2
∇2h̃AB − 1

2
∇B∇Ah̃− (D − 1)λh̃AB = 0

(4.50)

Projecting the above equation perpendicular to nA and nB we get

ΠA
CΠ

B
C′

[
∇A∇E h̃

E
B +∇B∇E h̃

E
A −∇2h̃AB −∇B∇Ah̃+ 2R̄EABC h̃

EC

+ R̄AC h̃
C
B + R̄BC h̃

C
A − 2(D − 1)λh̃AB

]
= 0

(4.51)

Using the following decomposition for h̃(1)AB

h̃
(1)
AB = h̃

(1,1)
AB +

1

D
h̃
(1,2)
AB (4.52)

We can solve for h̃(1,1)AB , h̃
(1,2)
AB , h̃

(2)
AB by solving (4.51) order by order in 1

D
expansion. The

final form form of h̃(1,1)AB on ψ = 1 takes the following form. See Appendix C.2.2 for details

h̃
(1,1)
CC′ = S̃(1,1) uCuC′ + uCH̃(1,1)

C′ + uC′H̃(1,1)
C + W̃(1,1)

CC′ (4.53)

where,

S̃(1,1) = O
(

1

D

)2

(4.54)

H̃(1,1)
C = −D

K

(
∇̂2uC
K

)
+

D

K2

[
∇̂2K

K2
− λ

D

K
− K

D

](
∇̂2uC
K

)
− D

K4
∇̂C

(
∇̂2K

)
− D

K2
KD
C

(
∇̂DK

K

)
+

D

K2
KF
CKFDu

D +
D

K2

(
∇̂FK

K

)(
∇̂FuC

)
+

D

K2

(
∇̂CK

K

)[
2
∇̂2K

K2
+
u · ∇K
K

− λ
D

K

]
(4.55)
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W̃(1,1)
CC′ = −2

D

K2

(
∇̂DuC

)(
∇̂DuC′

)
− 2

D

K2
(u ·K · u)KCC′ + λ

D

K2
ΠCC′

− D

K2

[
∇̂2K

K2
− λ

D

K

](
∇̂CuC′ + ∇̂C′uC

)
− D

K2

[(
∇̂2uC
K

)(
∇̂C′K

K

)
+

(
∇̂2uC′

K

)(
∇̂CK

K

)]
+

D

K2

[(
∇̂CK

K

)
uFKFC′ +

(
∇̂C′K

K

)
uFKFC

]
− D

K2
KE
CKEC′ − D

K2

1

K
∇̂C

(
∇̂C′K

)
+

D

K2

[
KD
C

(
∇̂DuC′

)
+KD

C′

(
∇̂DuC

)]
+

D

K2

1

K

[
∇̂C

(
∇̂2uC′

)
+ ∇̂C′

(
∇̂2uC

)]
(4.56)

The final form form of h̃(1,2)AB on ψ = 1 takes the following form. See Appendix C.2.2 for

details

h̃
(1,2)
CC′ = S̃(1,2) uCuC′ + uCH̃(1,2)

C′ + uC′H̃(1,2)
C + W̃(1,2)

CC′ (4.57)

Where,

S̃(1,2) = 2 λ

(
D

K

)2

(4.58)

H̃(1,2)
C =

D

K

[
− 1 +

D

K

(
∇̂2K

K2

)
+ λ

D2

K2

](
∇̂2uC
K

)
+
D2

K2

[
−
(
∇̂2∇̂2uC
K2

)
− 2

(
∇̂EK

K

)(
∇̂EuC

)
+ 2∇̂C

(
(u · ∇)K

K

)] (4.59)

W̃(1,2)
CC′ = −2

D2

K2

(
∇̂2uC
K

)(
∇̂2uC′

K

)
+ 2

D2

K2

(
∇̂CuC′ + ∇̂C′uC

) (u · ∇)K

K
(4.60)

The final form form of h̃(2)AB on ψ = 1 takes the following form. See Appendix C.2.2 for

details

h̃
(2)
CC′ = S̃(2) uCuC′ + uCH̃(2)

C′ + uC′H̃(2)
C + W̃(2)

CC′ (4.61)

Where,

S̃(2) = O
(

1

D

)
(4.62)

H̃(2)
C =

D

K

[
−1

2
−2

D

K

(
∇̂2K

K2

)
+λ

D2

K2

](
∇̂2uC
K

)
+
D2

2K2

[
∇̂2∇̂2uC
K2

−2

(
∇̂EK

K

)(
∇̂EuC

)]
(4.63)

W̃ (2)
CC′ =

D2

K2

(
∇̂2uC
K

)(
∇̂2uC′

K

)
(4.64)

82



4 Stress tensor for large-D membrane at subleading order

Adding (4.53) and (4.57) we get

h̃
(1)
CC′ = S̃(1) uCuC′ + uCH̃(1)

C′ + uC′H̃(1)
C + W̃(1)

CC′ (4.65)

Where,

S̃(1) = 2 λ
D

K2
(4.66)

H̃(1)
C = −D

K

(
∇̂2uC
K

)
+

D

K2

[
2
∇̂2K

K2
− 2

K

D

](
∇̂2uC
K

)
− D

K4
∇̂C

(
∇̂2K

)
− D

K2
KD
C

(
∇̂DK

K

)
+

D

K2
KF
CKFDu

D − D

K2

(
∇̂FK

K

)(
∇̂FuC

)
+

D

K2

(
∇̂CK

K

)[
2
∇̂2K

K2
+
u · ∇K
K

− λ
D

K

]
− D

K2

(
∇̂2∇̂2uC
K2

)
+ 2

D

K2
∇̂C

(
(u · ∇)K

K

)
(4.67)

W̃(1)
CC′ = −2

D

K2

(
∇̂DuC

)(
∇̂DuC′

)
− 2

D

K2
(u ·K · u)KCC′ + λ

D

K2
ΠCC′

− D

K2

[
∇̂2K

K2
− λ

D

K
− 2

(u · ∇)K

K

](
∇̂CuC′ + ∇̂C′uC

)
− D

K2

[
2

(
∇̂2uC
K

)(
∇̂2uC′

K

)
+

(
∇̂2uC
K

)(
∇̂C′K

K

)
+

(
∇̂2uC′

K

)(
∇̂CK

K

)]
+

D

K2

[(
∇̂CK

K

)
uFKFC′ +

(
∇̂C′K

K

)
uFKFC

]
− D

K2
KE
CKEC′ − D

K2

1

K
∇̂C

(
∇̂C′K

)
+

D

K2

[
KD
C

(
∇̂DuC′

)
+KD

C′

(
∇̂DuC

)]
+

D

K2

1

K

[
∇̂C

(
∇̂2uC′

)
+ ∇̂C′

(
∇̂2uC

)]
(4.68)

4.4 Stress Tensor

In this section, we will derive the expression for membrane stress tensor. The membrane

stress tensor is given by the discontinuity of the Brown-York stress tensor across the mem-

brane.1
1See subsection 3.3 of [4] for detailed discussion on this
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4.4.1 Outside(ψ > 1) Stress Tensor

The outside stress tensor is given by

8πT
(out)
AB = K

(out)
AB −K(out)p

(out)
AB

∣∣∣∣
ψ=1

(4.69)

Where, p(out)AB = G
(out)
AB −n(out)

A n
(out)
B ; G

(out)
AB = gAB+ψ

−DhAB; n
(out)
A =

∂Aψ√
GAB

(out)∂Aψ ∂Bψ

K
(out)
AB =

[
p(out)

]C
A

[
p(out)

]C′

B

(
∇̃Cn

(out)
C′

)
ψ=1

(4.70)

Where, p(out)AB = G
(out)
AB − n

(out)
A n

(out)
B and, ∇̃ is covariant derivative with respect to G(out)

AB

(4.71)

The final expression forK(out)
AB andK(out) are the followings. See Appendix C.3 for details.

K
(out)
AB = KAB − ND

2
h
(0)
AB +

N

2
h
(1)
AB +

1

2

(
h
(0)
BDK

D
A + h

(0)
ADK

D
B

)
K(out) = K − ND

2
h(0) +

N

2
h(1)

(4.72)

Putting the expression forK (out)
AB andK (out) from (4.72) in (4.69) we get the final expression

of T (out)
AB .

8πT
(out)
AB = KAB − ND

2
h
(0)
AB +

N

2
h
(1)
AB +

1

2

(
h
(0)
BDK

D
A + h

(0)
ADK

D
B

)
−
(
ΠAB + h

(0)
AB

)(
K − ND

2
h(0) +

N

2
h(1)
) (4.73)

4.4.2 Inside(ψ < 1) Stress Tensor

The inside stress tensor is given by

8πT
(in)
AB = K

(in)
AB −K(in)p

(in)
AB

∣∣∣∣
ψ=1

(4.74)

Where, p(in)AB = G
(in)
AB − n

(in)
A n

(in)
B ; G

(in)
AB = gAB + h̃AB; n

(in)
A =

∂Aψ√
GAB

(in)∂Aψ ∂Bψ
(4.75)
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Now,

K
(in)
AB =

[
p(in)

]C
A

[
p(in)

]C′

B

(
∇̆Cn

(in)
C′

)
ψ=1

(4.76)

Where, p(in)AB = G
(in)
AB − n

(in)
A n

(in)
B and, ∇̆ is covariant derivative with respect to G(in)

AB

(4.77)

The final expression for K(in)
AB andK(in) are the followings. See Appendix C.3 for details.

K (in)
AB = KAB +

1

2

(
h̃
(0)
BFK

F
A + h̃

(0)
AFK

F
B +Nh̃

(1)
AB

)
K (in) = K +

N

2
h̃(1)

(4.78)

Putting the expression for K(in)
AB and K(in) from (4.78) in (4.74) and using the fact that

h̃
(0)
AB = h

(0)
AB we get the final expression of T (in)

AB .

8πT (in)
AB = KAB +

1

2

(
h
(0)
BFK

F
A + h

(0)
AFK

F
B +Nh̃

(1)
AB

)
−
(
ΠAB + h

(0)
AB

)(
K +

N

2
h̃(1)
)

(4.79)

4.4.3 Membrane Stress Tensor

Membrane stress tensor is given by

8πTAB = 8π
[
T (in)
AB − T (out)

AB

]
=
ND

2

[
h
(0)
AB − ΠABh

(0)
]
− N

2

[
h
(1)
AB − h̃

(1)
AB − ΠAB

(
h(1) − h̃(1)

)]
+O (h)2

(4.80)

We can simplify the calculation of stress tensor by using a trick. We define

8πT
(NT )
AB =

ND

2
h
(0)
AB − N

2

[
h
(1)
AB − h̃

(1)
AB

]
(4.81)

Then from (4.80) we can very easily see that TAB − T
(NT )
AB ∝ ΠAB. Let’s call this propor-

tionality factor ∆. With this notation membrane stress tensor becomes

8πTAB = 8π
[
T

(NT )
AB +∆ΠAB

]
(4.82)
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Now, from the conditionKABTAB = 0 we get

8π ∆ = − 1

K
8π
(
KABT

(NT )
AB

)
(4.83)

Using (4.35), (4.40), (4.65) and identity (C.161) in (4.81) and after some simplification we

get the final form of T (NT )
AB as

8πT
(NT )
AB = S1 uAuB + VA uB + VB uA + W̃AB (4.84)

Where,

S1 =
K

2
+

1

2

(
∇̂2K

K2
− λ

D − 1

K
− 1

K
KABK

AB

)
+

1

K

[
− u ·K ·K · u− 13

(
u · ∇K
K

)2

+ 2 uBKBD

(
∇̂DK

K

)
+ 14

(
u · ∇K
K

)
(u ·K · u)

− K

D

(
u · ∇K
K

)
+
K

D
(u ·K · u) + 1

K3
∇̂2
(
∇̂2K

)
− 4 (u ·K · u)2 − 8 λ

D

K

(
u · ∇K
K

)
+ 4 λ

D

K
(u ·K · u)− 2

(
∇̂BK

K

)(
∇̂BK

K

)
+ λ− λ2

D2

K2

]
+

1

K
(2 Zeta[3]− 1)

[
− K

D

(
(u · ∇)K

K
− u ·K · u

)
− λ− u ·K ·K · u+ 2

(
∇AK

K

)
uBKA

B

−
(
u · ∇K
K

)2

+ 2

(
u · ∇K
K

)
(u ·K · u)−

(
∇̂DK

K

)(
∇̂DK

K

)
− (u ·K · u)2

]
(4.85)

VA =
1

2

(
∇̂AK

K

)
−
(
∇̂2uA
K

)
+

1

K
KF
AKFDu

D − 1

K3
∇̂2
(
∇̂2uA

)
+

1

K
∇̂A

(
u · ∇K
K

)
+

1

K

(
∇̂2uA
K

)(
− 2 (u ·K · u) + 4

u · ∇K
K

+ 2 λ
D

K
− K

D

)
+

1

2K

(
∇̂AK

K

)
(u ·K · u)

(4.86)
And,

W̃AB =
1

2
KAB − 1

2

(
∇̂AuB + ∇̂BuA

)
− 1

K
KAB (u ·K · u) + 1

2K

(
∇̂AuB + ∇̂BuA

)
(u ·K · u)

− 1

K

(
∇̂FuA

)(
∇̂FuB

)
− 1

K

(
∇̂2uA
K

)(
∇̂2uB
K

)
+
λ

K
ΠAB

+
1

2 K

[
∇̂A

(
∇̂2uB
K

)
+ ∇̂B

(
∇̂2uA
K

)
+ ∇̂A

(
uEKEB

)
+ ∇̂B

(
uEKEA

)
− 2 ∇̂A

(
∇̂BK

K

)]
(4.87)
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Now, we can calculate ∆

8π∆ = − 1

K
8π
(
KABT

(NT )
AB

)
= −1

2
(u ·K · u)− 1

2K
KABKAB − 1

2K

(
∇̂2K

K2
− λ

D

K
− K

D

)
(u ·K · u)

− 2

K
uAK

AB

(
1

2

∇̂BK

K
− ∇̂2uB

K

)
+

1

K
KAB(∇AuB)

(4.88)

So, the full stress tensor becomes

8πTAB = S1 uAuB + VA uB + VB uA + W̃AB + S̃2 ΠAB (4.89)

Where, S1, VA, W̃AB are given respectively by (4.85), (4.86), (4.87) and S̃2 is given by

S̃2 = −1

2
(u ·K · u)− 1

2K
KABKAB − 1

2K

(
∇̂2K

K2
− λ

D

K
− K

D

)
(u ·K · u)

− 2

K
uAK

AB

(
1

2

∇̂BK

K
− ∇̂2uB

K

)
+

1

K
KAB(∇AuB)

(4.90)

4.5 Conservation of the Membrane Stress Tensor

The final expression of membrane stress tensor (4.1) is very large. It would be quite difficult

to calculate the divergence of stress tensor by hand. We have written a Mathematica

code to calculate the divergence of the stress tensor, and verified that the divergence of

the membrane stress tensor indeed gives the membrane equation. Specifically, we have

checked the followings

• uA∇̂BTAB gives scalar membrane equation ( eq.(3.8) of Chapter 3 )

• PA
C ∇̂BTAB gives vector membrane equation ( eq.(3.8) of Chapter 3 )

Here, we want to make some comments about how we have done the large-D calculation

in Mathematica. We choose the following background metric

ds2 = −e2rdt2 + dr2 + e2rdxadx
a + e2rdxidx

i (4.91)
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which is pure AdS metric written in a slightly different coordinates than usual Poincare

patch coordinates
(
r → log r will give usual Poincare patch metric

)
. Here, ‘a’ runs over

some finite p dimension and i runs over large D − p − 2 dimension. ψ and uA are only

functions of (t, r, xa) and does not depend on xi. We can effectively do our calculation in

finite p + 2 dimension. We will calculate the contribution that will come from the large

D − p − 2 dimension by hand and will accordingly take into account. For example, if we

want to calculate ∇̂B∇̂BuA (whereA,B runs over fullD dimension), the first thing to note

is that it has non zero component only along ‘a’ direction and it is given by

∇̂B∇̂Bua = ∇̂b∇̂bua +
1

2

D − p− 2

e2r
(
∇̂be2r

)(
∇̂bua

)
− D − p− 2

4 e4r
(
∇̂ae

2r
)[
(u · ∂)e2r

]
(4.92)

Where ∇̂b is projected covariant derivative with respect to finite p+ 2 dimensional metric.

Similarly, we can calculate all the quantities appearing in the expression of the stress tensor.

4.6 Discussions

In this Chapter, we have calculated the membrane stress tensor up to order O
(

1
D

)
and

showed that the conservation of this stress tensor gives the subleading order membrane

equation.

Very briefly, our procedure is as follows : given the large-D solution outside the mem-

brane - linearize the solution - search for a regular solution inside the membrane region

with the condition that the induced metric is continuous on both sides of the membrane -

construct the Brown York stress tensor for inside and outside region - the difference of the

Brown York stress tensor across the membrane is the membrane stress tensor.

As it turns out, the computation leading to the stress tensor at subsubleading orders is

extremely tedious, though the final result is relatively compact and simple (presented in

Section 4.1.1). Still one might wonder what is the point of taking up such a calculation.
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4 Stress tensor for large-D membrane at subleading order

The key motivation we have already mentioned in the introduction 1.2. It is about the finite

D completion of membrane stress tensor [56].

Though this second order membrane stress tensor is just a small step towards this final

goal. We think, the following would be the next few steps, which might help to construct a

finite D completion of the membrane stress tensor (if it exists), by generating more data

• A detailed matching with the hydrodynamic stress tensor dual to the same gravity

system in the regime of overlap for these two perturbation techniques ( namely 1
D
ex-

pansion and derivative expansion (see [66,72])). Now after computing the membrane

stress tensor, we could extend this matching to include the effect of the gravitational

radiation as well.

• Recasting known rotating black hole solutions in arbitraryD, in the language of large

D expansion, capturing few terms that could contribute in a stationary situation, to

all orders.

• Finally, evaluating the second order membrane stress tensor on the rotating black

holes, hoping some novel pattern or truncation would emerge out of this exercise, that

will tell us in general how stationarity is encoded in this large-D expansion technique.

We find all of the above projects are interesting, themselves. They will teach us a lot

about how perturbation works in gravity and how they could be used to have analytic control

over the otherwise difficult to handle dynamics of gravitating systems. We leave all these

for future work.

89



Chapter 5

Comparison between ‘Fluid-Gravity’ and
‘Membrane-Gravity’ dualities
This chapter is based on [72].

As discussed in the introduction 1.3, here wewill describe a comparison between ‘Fluid-

Gravity’ and ‘Membrane-Gravity’ dualities up to first subleading order on both sides.

The organization of this chapter is as follows.

In section 5.1 we first discussed the overlap regime of these two perturbation schemes.

Next in the section 5.2 we discussed the map between the bulk of the ‘black-hole’ spacetime

and the pure AdS mentioned above, and described an algorithm to construct the map, when-

ever it exists. In section 5.3 we compared the two metrics and the two sets of dual equations

(controlling the fluid-dynamics and the membrane dynamics respectively) within the over-

lap regime, up to the first subleading order on both sides. This section contains the main

calculation of this chapter. We worked out the map between these two sets of dual variables,

leading to a map between largeD relativistic hydrodynamics and the membrane dynamics.

Finally, in the section 5.5 we concluded and discussed the future directions.

5.1 The overlap regime

In this section, we shall discuss whether we could apply both ‘derivative expansion’ and(
1
D

)
expansion simultaneously. We shall first define the perturbation parameters for both

these two techniques in a precise way and also fix the range of their validity. We shall see

that these two parameters are completely independent of each other and therefore their ratio
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could be tuned to any value, large or small.

Next, we shall compare the forms of the two metrics, determined using these two tech-

niques, assuming the ratio (between the two perturbation parameters) to have any arbitrary

value.

5.1.1 Perturbation parameter in ‘derivative expansion’

Here we shall very briefly describe the method of ‘derivative expansion’. See [63] for a

more elaborate discussion.

The technique of ‘derivative expansion’ could be applied to construct a certain class

of solutions to Einstein’s equation in the presence of negative cosmological constant in

arbitrary dimension D.

The key gravity equation:

EAB ≡ RAB + (D − 1)λ2gAB = 0
(5.1)

λ is the inverse of AdS radius. From now on, we shall choose units such that λ is set to one.

These gravity solutions are of ‘black hole’ type, meaning they would necessarily have a

singularity shielded by some horizon [59]. They are in one-to-one correspondence with

the solutions of relativistic Navier-Stokes equations in (D− 1) dimensional flat spacetime

(without any restriction on the value of D). In fact, we could use the hydrodynamic vari-

ables themselves to label the different gravity solutions, constructed using this technique of

‘derivative expansion’. The labeling hydrodynamic variables are

1. Unit normalized velocity: uµ(x)

2. Local temperature: T (x) =
(
D−1
4π

)
rH(x)

At the moment rH is just some arbitrary length scale, which would eventually be related to

the horizon scale of the dual black brane metric.
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{xµ}, µ = {0, 1, · · · , D − 2} are the coordinates on the flat spacetime whose metric is

simply given by the Minkowski metric, ηµν = Diag{−1, 1, 1, 1 · · · }.

‘Derivative expansion’ enters right into the definition of the hydrodynamic limit. The

velocity and the temperature of fluid are functions of spacetime but the functional depen-

dence must be slow with respect to the length scale rH(x). For a generic fluid flow at a

generic point, it implies the following.

Choose an arbitrary point xµ0 ; scale the coordinates (or set the units) such that in the

transformed coordinate rH(x0) = 1. Now the technique of derivative expansion would be

applicable provided in this scaled coordinate system

|∂̄α1 ∂̄α2 · · · ∂̄αnrH |x0 << |∂̄α1 ∂̄α2 · · · ∂̄αn−1rH |x0 << · · · << |∂̄α1rH |x0 << 1 ∀ n, αi, x0

|∂̄α1 ∂̄α2 · · · ∂̄αnu
µ|x0 << |∂̄α1 ∂̄α2 · · · ∂̄αn−1u

µ|x0 << · · · << |∂̄α1u
µ|x0 << |uµ| ∀ n, αi, x0

(5.2)

In other words, the number of ∂α derivatives in a given term determines how suppressed

the term is1. In terms of original xµ coordinates, each derivative ∂µ corresponds to rH ∂̄µ.

Therefore if we work in xµ (which, unlike x̄µ, are not defined around any given point)

coordinates, the parameter that controls the perturbation is schematically ∼ r−1
H ∂µ. 2.

The starting point of this perturbation is a boosted black brane in asymptotically AdS

space. The metric has the following form

(in coordinates denoted as {r, xµ}, µ = {0, 1, · · · , D − 2}. Units are chosen so that
1The conditions as described in (5.2) are for a generic situation. For a particular fluid profile, it could

happen that at a given point in spacetime some nth order term is comparable to or even smaller than some
(n + 1)th order term. One might have to rearrange the fluid expansion around such anomalous points if
they exist, but they do not imply a ‘breakdown’ of hydrodynamic approximation. As long as all derivatives
in appropriate dimensionless coordinates are suppressed compared to one, ‘derivative expansion’ could be
applied.

2For a conformal fluid in finite dimension, there is only one length scale, set by the local temperature
which also sets the scale of derivative expansion. But if we take D → ∞, T (x) and rH ∼ T (x)

D are two
parametrically separated scales and it becomes important to know which one among these two scales controls
the derivative expansion. In the condition (5.2) we have chosen rH to be the relevant scale and set it to order
O(1). Indeed the results in [61] seem to indicate that terms of different derivative orders in hydrodynamic
stress tensor, dual to gravity are weighted by factors of rH ∼ T (x)

D , and not T alone.
Note that here the temperature of the fluid would scale as D, which is different from the D scaling of the
temperature, imposed in [46].
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dimensionful constant, λ, appearing in equation (5.1) is set to one)3.

ds2 = −2uµdx
µdr − r2 f (r/rH) uµuνdx

µdxν + r2Pµνdx
µdxν

where f(z) = 1− 1

zD−1
, Pµν = ηµν + uµuν

(5.3)

Equation (5.3) is an exact solution to equation (5.1) provided uµ and rH are constants.

Now the algorithm for ‘derivative expansion’ runs as follows. Suppose, uµ and rH are not

constants but are functions of {xµ} . Equation (5.3) will no longer be a solution. If we

evaluate the gravity equation EAB on (5.3), the RHS will certainly be proportional to the

derivatives of uµ and rH . But uµ and rH being the hydrodynamic variables, their derivatives

are ‘small’ at every point in the sense described in (5.2). Therefore a ‘small’ correction in

the leading ansatz could solve the equation.

The r dependence of these ‘small corrections ’ could be determined exactly while the {xµ}

dependence would be treated in perturbation in terms of the labeling data uµ(x) and rH(x)

and their derivatives. uµ(x) and rH(x) themselves would be constrained to satisfy the hy-

drodynamic equation, order by order in derivative expansion. While dealing with the full

set of gravity equations (5.1), these equations on the hydrodynamic variables or the labeling

data would emerge as the ‘constraint equations’ of the theory of classical gravity.

5.1.2 Perturbation parameter in
(
1
D

)
expansion

This is a perturbation technique, which is applicable only in a large number of spacetime

dimension (denoted as D), as a series expansion in powers of
(

1
D

)
. Clearly

(
1
D

)
is the

perturbation parameter (a dimensionless number to begin with) here, which must satisfy(
1

D

)
<< 1

Unlike the derivative expansion, the
(

1
D

)
expansion does not necessarily need the presence

of cosmological constant, but we could also apply it if the cosmological constant is present
3Note that the scaling of λ withD is up to us. At finiteD it is of no relevance, but it matters while taking

the large D limit. Here λ would be fixed to one as we would take D to∞.
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provided we keep λ, the AdS radius (see equation (5.1) in subsection - 5.1.1) fixed as we

take D large. Note that the choice λ = 1, as we have done in previous subsection, is

consistent with this ‘D- scaling’.

The starting point here is the following metric.

dS2 ≡ GAB dX
AdXB = gAB dX

AdXB + ψ−D(OA dX
A)2 (5.4)

where, gAB, ψ and OA are defined as follows.

1. gAB is a smoothmetric of pure AdS geometry which we shall refer to as ‘background’.

We could choose any coordinate as long as the metric is smooth and all components

of the Riemann curvature tensors are of order O(1) or smaller in terms of large D -

order counting.

2.
(
ψ−D) is a harmonic function with respect to the metric gAB.

3. OA is the one-form dual to the tangent vector to a null geodesic in the background sat-

isfyingOAnB g
AB = 1. Where, nA is the unit normal on the constantψ hypersurfaces

(viewed as hypersurfaces embedded in the background).

The metric (5.4) would solve the Einstein’s equation (5.1) at leading order (which turns

out to be of orderO(D2)) provided the divergence of theO(1) vector field, UA ≡ nA−OA

with respect to the background metric is also of order O(1).

∇ · U ≡
(
∇ · n−∇ ·O

)
ψ=1

= O (1)

where ∇ ≡ covariant derivative w.r.t. gAB
(5.5)

Naively equation (5.5) does not seem to constrain the vector field UA since each of its com-

ponents along with their derivatives in every direction are of order O(1) (this is what we

mean by an ‘orderO(1) vector field’). However, it is indeed a constraint within the validity-

regime of
(

1
D

)
expansion. We could apply largeD techniques provided for a generic O(1)
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vector field V A∂A, its divergence is of order O(D)4.

One easy way to ensure such scaling would be to assume that the dynamics is confined

within a finite number of dimensions and the rest of the geometry is protected by some

large symmetry [65].

From now on, we shall assume such symmetry to be present in all the dynamics we discuss,

including the dual hydrodynamics, labeling the different geometries constructed in ‘deriva-

tive expansion’. For example, we shall assume that the divergence of the fluid velocity uµ,

which we shall denote byΘ(≡ ∂µu
µ), is always of orderO(D), whereas the velocity vector

itself is of order O(1).

Now we shall briefly describe some general features of this leading geometry in (5.9).

See [65] for a detailed discussion.

Firstly note that with the above conditions, the hypersurface ψ = 1 becomes null and we

could identify this surface with the event horizon of the full spacetime.

Also, if one is finitely away from the ψ = 1 hypersurface, the factor ψ−D vanishes for large

D and the metric reduces to its asymptotic form gAB .

Next, consider the region of thickness of the order of O
(

1
D

)
around ψ = 1 hypersurface.

This is the region5, where
(

1
D

)
expansion would lead to a nontrivial correction to the leading

4This requirement certainly restricts the allowed dynamics that could be handled using this method. But
it is not as restrictive as it might seem to begin with. To see it explicitly, let us choose a coordinate system
{z, yµ} for the background.

gzz =
1

z2
, gµν = z2ηµν Det[g] = −z(D−2)

∇ · V = z−(D−2)∂z

[
z(D−2)V z

]
+ ∂µV

µ

= ∂zV
z + ∂µV

µ + (D − 2)

(
Vz
z

) (5.6)

Here clearly the first term is of orderO(1). The second term could potentially be of orderO(D) since a large
number of indices are summed over. Still to precisely cancel against the last term, which certainly is of order
O(D) as long as

(
Vz

z

)
is not very small, it requires some fine tuning. Equation (5.5) says that UA∂A is such

a fine-tuned vector field.
5Following [65] , we shall refer to this region as ‘membrane region’
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geometry. To see why, let us do the following coordinate transformation.

XA = XA
0 +

x̃A

D
∂A = D ∂̃A

where {XA
0 } is an arbitrary point on the ψ = 1 hypersurface. In these new coordinates

dS2 = D2GAB dx̃Adx̃B, where GAB = GAB

(
X0 +

x̃

D

)
(5.7)

Now, if x̃A is not as large as D, it is possible to expand ψ−D, OA and gAB around XA
0 .

ψ−D(XA) = e−x̃
ANA +O

(
1

D

)
, where NA = [∂Aψ]XA

0

OA(X) = OA|XA
0
++O

(
1

D

)
, gAB(X) = gAB|XA

0
+O

(
1

D

) (5.8)

Note that from the second condition (see the discussion below equation (5.4)) it follows that

Extrinsic curvature of (ψ = 1) surface = K|ψ=1 = D
√
NANBḠAB +O(1)

Substituting equation (5.8) in equation (5.7) we find

GAB = OA(X0) nB(X0) +OB(X0) nA(X0) + PAB(X0)

−
(
1− e−x̃

ANA

)
OA(X0) OB(X0) +O

(
1

D

)
where PAB(X

0) ≡ projector perpendicular to nA(X0) and OA(X0)

nA =
∂Aψ√

(∂Aψ)(∂Bψ)gAB

(5.9)

Clearly, at the very leading order, the metric will have non-trivial variation only along the

direction of NA - the normal to the ψ = 1 hypersurface at point XA
0 . Variations along all

other directions are suppressed by factors of
(

1
D

)
. This is very similar to the metric in equa-

tion (5.3) where at leading order the non-trivial variation is only along a single direction - r.

Therefore, within this ‘membrane region’,
(

1
D

)
expansion would almost reduce to deriva-

tive expansion along directions other thanNA provided themetric (5.9) solves equation(5.1)

at very leading order. The conditions, listed below equation (5.4) along with equation (5.5)
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ensure that this is the case.

Once the leading solution is found, the same algorithm, described in the previous subsec-

tion, would work and we could find the subleading corrections handling the variations of

NA and OA along the constant ψ hypersurface. All such variations would be suppressed as

long as none of the components of NA, OA and their derivatives (in the unscaledXA coor-

dinates) are as large as D. In other words, we should be able choose a coordinate system,

along the horizon (or the hypersurface ψ = 1) such that

[
gAB

(
∂A ψ

−D) (∂B ψ−D)]− 1
2 ∂A |horizon << 1 (5.10)

It is enough to impose this inequality only on the ψ = 1 hypersurface; the conditions listed

below equation (5.4) will ensure that they are true on all constant ψ surfaces.

These conditions also specify the defining data (analogue of fluid-velocity and tempera-

ture in case of ‘derivative expansion’) for the class of metrics, generated by
(

1
D

)
expansion.

Here, the gravity solutions are expressed in terms of the auxiliary function ψ and the one-

formOA dX
A. These two auxiliary fields satisfy the second and the third conditions, listed

below equation (5.4). However, the above-mentioned conditions, being differential equa-

tions, could not fix the fields completely unless some boundary conditions are specified

along any fixed surface. The most natural choice for this hypersurface is the surface given

by ψ = 1, which, by construction, is the horizon of the full spacetime geometry. Differ-

ent metric solutions are classified by the shape of this surface and the components of OA

projected along the surface. Just as in ‘derivative expansion’, we could solve for the metric

correction only if these defining data (the projected OA field and the shape of the surface,

encoded in its extrinsic curvature) satisfy the constraint equation, which we shall refer to as

the ‘membrane equation’.
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5.1.3 Comparison between two perturbation schemes

In subsection-(5.1.2), we have seen that within the membrane region, O
(

1
D

)
expansion is

almost like ‘derivative expansion’ as described in subsection-(5.1.1). Still, it is also clear

that they are not quite the same. The leading ansatz itself looks quite different for the two

schemes, and there is no question of overlap if these two techniques compute perturbations

around two entirely different geometries. So, to find an ‘overlap regime’, the first step

would be to see where in the parameter-space and in what sense, equation (5.3) and (5.7)

describe the same leading geometry.

Note that though the leading geometries look different algebraically, they both have similar

geometric properties - namely the existence of a curvature singularity. In metric (5.3) it is

located at r = 0 and the metric (5.7) is singular at ψ = 0. Also, the singularity is shielded

by some event-horizon6.

To see the similaritiesmore explicitly, let us first choose a coordinate systemXA ≡ {ρ,Xµ},

such that the background metric- gAB in equation (5.8) takes the form

gAB dX
A dXB =

dρ2

ρ2
+ ρ2ηµνdX

µdXν , (5.11)

In this coordinate system, the following metric is an exact solution of equation (5.1)

ds2 =
dρ2

ρ2
+ ρ2ηµνdX

µdXν +

(
ρ

rH

)−(D−1)(
dρ

ρ
− ρ dt

)2

(5.12)

This is simply the Schwarzschild black brane solution, written in Kerr-Schild form. Now

let us note the following features of this metric [65].

• The function
(

ρ
rH

)−(D−1)

is harmonic with respect to the background up to correction

of order O
(

1
D

)2.
∇2

(
ρ

rH

)−(D−1)

= O
(

1

D

)2

6So far, the way both the techniques of ‘large-D expansion’ and ‘derivative expansion’ are developed, the
existence of a horizon is a must. It would be interesting to know whether we could depart from this condition
and still apply either of these two techniques to construct ‘horizon free’ or non-singular smooth geometries.
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Hence the function
(

ρ
rH

)−(D−1)

could be identified with ψ−D appearing in the metric

(5.4) up to corrections of order O
(

1
D

)2.
• The one form

(
dρ
ρ
− ρ dt

)
is null and satisfies the geodesic equation. Further, con-

traction of this one-form with the unit normal to constant ρ hypersurfaces is one.

Hence this one form could be identified with the null one form OAdX
A

Hence it follows that the metric in (5.12), which is an exact solution of (5.1), could be cast

in the form of our leading ansatz up to corrections subleading in
(

1
D

)
expansion. We could

also expand the metric in equation (5.12) around a given point on the horizon ρ = rH , the

same way we have done (see equation (5.9)) in the previous subsection with the following

set of identifications.

NA dX
A|ρ=1 =

dρ

rH
, OA dX

A|ρ=1 =
dρ

rH
− rH dt

nA dX
A =

NA dX
A

√
NANA

=
dρ

rH

(5.13)

The very leading term in this expansion, once written in terms of NA and OA would have

exactly the same form as that of the metric in equation (5.7). The main difference between

our leading ansatz, equation (5.4) and equation (5.12) is that in the laterNA and OA satisfy

equation (5.13) everywhere along the horizon, in the same {ρ, yµ} coordinates. For our

leading ansatz (5.4) also, it is true that we could always choose a local {ρ, t} coordinates by

reversing the equations in (5.13). But for a generic ψ and OA, this could not be done glob-

ally and this is the reason why our leading ansatz is not an exact solution of (5.1). However,

the deviation from the exact solution would clearly be proportional to the derivatives ofNA

and OA and therefore subleading. So finally we conclude that locally around a point on

the horizon, the leading ansatz for
(

1
D

)
expansion looks like a Schwarzschild black brane

written in a Kerr-Schild form with the local ρ and t coordinates, respectively oriented along

the direction of the normal NA and the direction OA projected along the membrane ψ = 1.

99



5 Comparison between ‘Fluid-Gravity’ and ‘Membrane-Gravity’ dualities

Now let us come to the leading ansatz for the metric in derivative expansion. As it

is explained in detail in [58], the leading ansatz in derivative expansion, equation (5.3) ,

reduces to Schwarzschild black brane in Eddington-Finkelstein coordinates if we choose

rH = constant and uµ = {1, 0, 0, · · · }. Also locally at any point {xµ0}, we could always

choose a coordinate system such that uµ(x0) = {1, 0, 0, · · · }, or in other words by appro-

priate choice of coordinates locally the metric described in (5.3) could always be made to

look like a Schwarzschild black brane, though in a different gauge than in equation (5.4).

Clearly, the starting point of these different expansions are ‘locally ’same and it is possible

to have an overlap regime.

But the difference lies in the concept of ‘locality’ and also in the space of defining data.

In case of ‘large-D’ expansion, the classifying data of the metric is specified on the horizon

whereas for ‘derivative expansion’ it is defined on the boundary of AdS space.

The range of validity for ‘large-D’ expansion is given in equation (5.10). If we replace

∂Aψ
−D|horizon by (−DNA) the condition (5.10) reduces to the existence of coordinate system

such that

∂A |horizon << D (5.14)

which looks very similar to the validity regime for ‘derivative expansion’ , as already men-

tioned in subsection (5.1.1)

r−1
H ∂µ << 1 (5.15)

If we could somehow map each point on the boundary to a point on the horizon (viewed as

a hypersurface embedded in the background), the same {xµ} coordinates could be used as

coordinates along the horizon. In that case, whenever rH is of orderO(1) in terms of ‘large-

D’ order counting, the inequality (5.15) would imply equation (5.14). In other words, as

D → ∞, all solutions of ‘derivative expansion’ could be legitimately expanded further in(
1
D

)
, though the reverse may not be true.
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Now we know that ∂A and ∂µ are simply related (without any extra factor ofD) for the

case of exact Schwarzschild black brane solutions. This is just the well-known coordinate

transformation one should use to go from Kerr-Schild to Eddington-Finkelstein form of the

black brane metric. This transformation also gives the required map from the horizon to

boundary coordinates. Once perturbations are introduced on both sides, we expect the rela-

tion between these two sets of coordinate systems would get corrected, but in a controlled

and perturbative manner, thus maintaining the above argument for the existence of overlap.

So in summary, there does exist a region of overlap between these two perturbative

techniques. In this chapter, our goal is to match them in the regime of overlap. As it is clear

from the above discussion, the key step involves determining the map between ∂A and ∂µ,

which we are going to elaborate in the next section.

5.2 Transforming to ‘large-D’ gauge

From the discussion of section - (5.1) it follows that if the spacetime dimension D is very

large, we could always apply ‘
(

1
D

)
expansion’ whenever ‘derivative expansion’ is appli-

cable. Therefore a metric, corrected in derivative expansion in arbitrary dimension, when

further expanded in
(

1
D

)
, should reproduce the metric generated independently using the

method of ‘
(

1
D

)
expansion’. More precisely if we take themetric of equation (4.1) from [61]

and expand it in
(

1
D

)
, it should match with the metric given in equation (8.1) of [65] after

appropriate transformation.

In this section, our goal is to understand what these ‘appropriate transformations’ are.

Let us explain it in little more detail.

As we have mentioned before, both of these two perturbative techniques generate black

brane geometries, in terms of a set of ‘dynamical data’, confined to a codimension one hy-

persurface. In the first case, it is the boundary of the Asymptotic AdS space and in the

second case, it is the event horizon viewed as a hypersurface embedded in pure AdS. So
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both the techniques require a map from the full spacetime geometry to a codimension one

membrane.

The details of this map are quite clear for the case of ‘derivative expansion’.

The data-set that distinguishes between different dynamical geometries, here is the profile

of a relativistic conformal fluid (its velocity and temperature). In other words, given a unit

normalized velocity field and temperature, defined on a (D−1) dimensional flat spacetime

and satisfying the relativistic Navier-Stokes equation, we should be able to uniquely con-

struct a D dimensional spacetime with a dynamical event horizon such that its metric is a

solution to (5.1). The (D−1) dimensional space is identified with the conformal boundary

of thisD dimensional black brane geometry, which we shall refer to as bulk. This construc-

tion [61] uses a very specific coordinate system, that encodes how a point in the bulk could

be associated with a point in the boundary. In [73], the authors have also explained how

to reverse the construction of [58], [61]. They have given an algorithm to read off the dual

fluid variables starting from any black brane geometry that admits derivative expansion but

written in arbitrary coordinates. This explicitly proves the claim of one-to-one correspon-

dence between the dynamical black brane geometry, admitting derivative expansion and

the fluid profile, satisfying relativistic Navier-Stokes equation. This algorithm has been

heavily used to cast the rotating black-holes in the ‘hydrodynamic form’ [61].

Similarly, according to [65], there exists a one-to-one correspondence between dynami-

cal black brane geometries in
(

1
D

)
expansion and a codimension-one ‘membrane dynamics’

in pure AdS space, though [65] shows the correspondence in only one direction. It starts

from valid membrane data and integrates it outward towards infinity to construct the cor-

responding black brane geometry. But to explicitly show this correspondence, we also

need to know the reverse. In other words, we should know how to associate a point on

the membrane to a point on the bulk and how to read off the membrane data, starting from

a dynamical black brane geometry that admits an expansion in
(

1
D

)
, but written in some
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arbitrary coordinates.

In the next subsection, we shall formulate an algorithm to determine this ‘membrane-

bulk map’, analogous to the discussion of [73] in the context of transforming the rotating

black holes to the hydrodynamic form.

5.2.1 Bulk-Membrane map

7

The ‘large-D expansion’ technique, as developed in [65], would always generate the dy-

namical black brane metric GAB in a ‘split’ form. This ‘split’ is specified in terms of an

auxiliary function ψ and an auxiliary vector field OA∂A. In terms of equation,

GAB = gAB +G
(rest)
AB

(5.16)

where gAB is the background andG(rest)
AB is such that there exists a null geodesic vector field

OA∂A in the background, satisfying

OA GAB = OA gAB ⇒ OA G(rest)
AB = 0 (5.17)

The normalization of this null geodesic vector is determined in terms of the function ψ,

defined as follows.

1.
(
ψ−D) is a harmonic function with respect to the metric gAB.

2. ψ = 1 hypersurface, when viewed as an embedded surface in full spacetime, becomes

the dynamical event horizon. This is how the boundary condition on ψ is specified.

After fixing ψ, the normalization of OA is fixed through the following condition.

OAnA = 1.

7This subsection has been worked out by Shiraz Minwalla in a different context. We sincerely thank
him for explaining it in detail to us. This ‘bulk-membrane’ map is the key concept needed for the required
‘matching’ of the two perturbative gravity solutions.
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where nA is the unit normal on the constant ψ hypersurfaces (viewed as hypersurfaces

embedded in the background).

The equations (5.16) and (5.17) together specify a map between two entirely different

geometries, with metric gAB andGAB respectively, both satisfying equation (5.1). So if we

want to recast an arbitrary dynamical black brane metric, which admits
(

1
D

)
expansion, in

the form as described in (5.16), the first step would be to figure out this map or the ‘split’

of the spacetime between ‘background’ and the ‘rest’, so that the equation (5.17) is obeyed.

Now from the discussion of the previous subsection, we see that this ‘map’ is crucially

dependent on the vector fieldOA∂A and the function ψ. But both of them are defined using

the ‘background’ geometry and we immediately face a problem, since given an arbitrary

black brane metric, it is the ‘background’ that we are after.

For example, given a black brane metric, we could always determine the location of the

event horizon, but we would never know its embedding in the background, unless we know

the ‘split’ and therefore we would not be able to construct the ψ function, by exploiting

the harmonicity condition on ψ−D. If we do not know ψ we would not be able to orient or

normalize OA, as required.

So, we must have some equivalent formulation of this ‘split’ just in terms of the full

spacetime metric. The following observation allows us to do it. We could show that ifGAB

admits a split between gAB and G(rest)
AB satisfying OAG

(rest)
AB = 0, then the vector - OA∂A ,

which is a null geodesic with respect to gAB, is also a null geodesic with respect to GAB.

Proof:

We know that

(O · ∇)OA = κ OA

where ∇ denotes the covariant derivative with respect to gAB and κ is the proportionality
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factor. We would like to show that

(O · ∇̌)OA ∝ OA, where ∇̌ is covariant derivative w.r.t. GAB

Suppose Γ̌ABC denotes the Christoffel symbol corresponding to ∇̌A and ΓABC denotes the

Christoffel symbol corresponding to∇A. These two would be related as follows [65].

Γ̌ABC = ΓABC +
1

2

(
∇B

[
G(rest)]A

C
+∇C

[
G(rest)]A

B
−∇A

[
G(rest)]

BC

)
︸ ︷︷ ︸

δΓA
BC

(5.18)

Here all raising and lowering of indices have been done using gAB. Note that

OBOC δΓABC = OB(O · ∇)
[
G(rest)]A

B
− 1

2
OBOC∇A

[
G(rest)]

BC

= −
[
G(rest)]A

B

[
(O · ∇)OB

]
+

1

2

(
∇AOC

) [
G(rest)]

BC
OB

= κ
(
OC
[
G(rest)]A

C

)
= 0

(5.19)

What we want to show simply follows from equation (5.19)

(O · ∇̌)OA = (O · ∇)OA = κ OA (5.20)

So we could determine OA by solving the null geodesic equation with respect to the

full spacetime metric GAB. But to determine it fully, we also need to know κ, fixed by the

normalization of OA. As mentioned before, the normalization used previously in the appli-

cation of ‘large-D’ technique is not suitable for our purpose, since it requires the knowledge

of the ‘background’ beforehand. But luckily the form of the ‘split’, which is defined by the

condition
[
OAG

(rest)
AB = 0

]
is independent of the normalization of OA.

So we shall first determine another null geodesic field (let us denote it by ŌA to remind

ourselves of the difference in normalization) which is affinely parametrized and whose

inner-product with the normal to event horizon (which, up to normalization, could again

be determined without any knowledge of the ‘split’) is one.

Now we are at a stage to define the map between the ‘background’ and the full spacetime

geometry.
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Suppose {Y A} denote the coordinates in the background geometry (in our case pure

AdS, the metric is denoted by gAB) and {XA} are the coordinates of the full spacetime (the

dynamical black brane, the metric is denoted by GAB). Let us denote the invertible func-

tions that give a one to one correspondence between these two spaces as {fA}.

Y A = fA({X}) (5.21)

The equations that will determine fA s are the following

ŌA GAB|{X} = ŌA

(
∂fC

∂XA

)(
∂fC

′

∂XB

)
gCC′ |{X} (5.22)

8 Here ŌA are affinely parametrized the null geodesics in the full spacetime geometries i.e.,

Ō · ∇̌ŌA = 0 (5.23)

Equation (5.23) would fix ŌA completely once we specify the angles it would make with

the tangents of the horizons, which is effectively a set of (D − 1) numbers. Now what we

are actually interested in is not ŌA but OA which is related to ŌA with a normalization.

Therefore we are free to choose the normalization of ŌA, since anyway, we have to re-

normalize it again. This will fix one of the (D − 1) initial conditions. Rest we shall keep

arbitrary.

We shall assume

ŌANA|horizon = 1

ŌAl
(i)
A |horizon = some arbitrary functions of horizon cordinates

(5.24)

where NA is the null normal to the event horizon (with some arbitrary normalization) and

lA(i)∂A s are the unit normalized space-like tangent vectors to the horizon.

It turns out that the hydrodynamic metric could be split for a very specific choice of these
8The subscript {X} in equation (5.22) denotes that both LHS and RHS of equation (5.22) have to be

evaluated in terms {XA} coordinates.

106



5 Comparison between ‘Fluid-Gravity’ and ‘Membrane-Gravity’ dualities

spatial initial conditions and we shall fix them order by order in derivative expansion by

matching the hydrodynamic and the ‘large-D’ metric. Once ŌA is fixed (in terms of these

arbitrary angles), we could determine fA s up to some integration constants by solving

equation (5.22).

Equation (5.22) further says that if we apply the map (5.21) as a coordinate transfor-

mation on the ‘background’, then in the new {XA} coordinates the map would just be an

‘identity’ map and the full spacetime metricGAB would admit the split as given in equation

(5.16) satisfying (5.17) 9.

Once we have figured out how to split the full spacetime metric into ‘background’ and the

‘rest’, we know how to view the event horizon as a surface embedded in the ‘background’

and therefore the auxiliary function ψ (by solving the harmonicity of ψ−D w.r.t the back-

ground) everywhere. Now we can normalize ŌA as it has been done in [65]. Using these

ψ and OA (appropriately normalized) one should be able to recast any arbitrary metric, that

admits large-D expansion, exactly in the form of [65].

5.3 Bulk-Membrane map in metric dual to Hydrodynam-
ics

In this subsection, we shall implement the above algorithm, described in the previous sub-

section, for the metric dual to hydrodynamics. For convenience, we are summarizing the

steps again.

• Determine the equation for the event horizon.

• Determine the null normal to the horizon.
9We would also like to emphasize that what we are describing here is not just a gauge or coordinate

transformation. The ‘split’ mentioned in equation (5.16) is a genuine point-wise map between two entirely
different geometries. Once we have figured out the ‘map’, we are free to transform the coordinates further;
both GAB and gAB would change, but the ‘map’ will still be there.
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• Solve equation (5.23) to determine ŌA everywhere. We need the normal, derived in

the previous step, to impose the boundary condition.

• Choose any arbitrary coordinate system {Y A}, where the ‘background’ has a smooth

metric gAB .

• Now solve the equation (5.22) to determine the mapping functions fA ’s.

For a generic dynamical metric, it is not easy to implement all these steps. But in this case

what would help us is the ‘derivative expansion’ and the fact that fA ’s are exactly known

at zero derivative order; it is simply the coordinate transformation between Eddington-

Finkelstein and Kerr-Schild form of a static black brane metric.

Though the zeroth order transformation is already known, as a ‘warm-up’ exercise we

shall re-derive it using the above algorithm. The condition of ‘staticity’ and translational

symmetry of the metric allow us to solve relevant equations exactly in this case.

5.3.1 Zeroth order in ‘derivative expansion’:

At zeroth order in derivative expansion, the metric dual to hydrodynamics has the following

form

ds2 = −2uµdx
µdr − r2f (r/rH)uµuνdx

µdxν + r2Pµνdx
µdxν

where Pµν ≡ ηµν + uµuν , f(z) ≡
[
1− z−(D−1)

]
, uµuνη

µν = −1
(5.25)

We could read off the components of the metric and its inverse.

Grr = 0, Gµr = −uµ, Gµν = −r2f (r/rH)uµuν + r2Pµν

Grr = r2f (r/rH) , Gµr = uµ, Gµν =
1

r2
P µν

(5.26)

At zero derivative order, both rH and uµ could be treated as constants, The event horizon

and the null normal to it are given by

Event Horizon : S = r − rH = 0, NA dX
A = dXA∂AS = dr (5.27)
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Now we shall figure out the ‘map’ that will lead to the desired ‘split’ between ‘background’

and ‘rest’.

We have already determined the event horizon. Next, we have to solve for ŌA, satisfying

the conditions

ŌB∇̌BŌ
A = 0, ŌAŌBGAB = 0, ŌANA|r=rH = Ōr|r=rH = 1

At zero derivative order, GAB has translational symmetry in all the xµ. The conditions

on ŌA does not break this symmetry. Hence ŌA must have the form

ŌA∂A = h1(r) ∂r + h2(r) u
µ∂µ (5.28)

Now we shall process the condition that OA is a null vector field.

ŌAŌBGAB = 0

⇒ 2h2(r)h1(r)Gµru
µ + h2(r)

2uµuνGµν = 0

⇒ h2(r)
[
2h1(r)− r2f (r/rH)h2(r)

]
= 0

⇒ h2(r) = 0

(5.29)

So finally ŌA∂A = h1(r)∂r
10.

Substituting this form of ŌA in the geodesic equation we could see that h1(r) has to be a

constant and then boundary condition simply says that h1(r) = 1

ŌA∂A = Ōr∂r = ∂r (5.30)

Now let us choose a coordinate system Y A = {ρ, yµ} for the ‘background’ where the

metric takes the following form

ds2background =
dρ2

ρ2
+ ρ2ηµν dy

µ dyν (5.31)

10Actually, there is two solutions to (5.29). If we assume h2(r) ̸= 0 and finite everywhere, then

h1(r) =
r2

2
f (r/rH)h2(r)

This implies that h1(r) will vanish at the horizon r = rH (which is a zero of the function f (r/rH)), contra-
dicting the boundary condition on Ōr.
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Again the symmetries motivate us to take the following form for the mapping, which gives

the one to one correspondence between the background coordinates {Y A} = {ρ, yµ} and

black brane coordinates {XA} = {r, xµ}

yµ = xµ + g(r)uµ, ρ = h(r) (5.32)

Let us apply the map (5.32) as a coordinate transformation on the background. In the new

coordinates (where the map is just an ‘identity’) the background metric takes the following

form

grr =

(
h′

h

)2

− (g′h)
2
, gµr = g′h2uµ, gµν = h2 ηµν (5.33)

Here we have suppressed the r dependence and derivative w.r.t r is denoted by prime (′).

In this coordinates equation (5.22) takes the form(
h′

h

)2

− (g′h)
2
= 0, g′h2 = −1 (5.34)

These two equation could be solved very simply. The general solution

h(r) = ±(r + c1), g(r) =
1

r + c1
+ c2 (5.35)

where c1 and c2 are two arbitrary constants.

We shall choose the plus sign in h(r) to make sure that whenever r increases, ρ also in-

creases.

Now we have to fix the integration constants. Note that once we know the map, we

know the form of G(rest)
AB , satisfying equation (5.17) by construction.

G(rest)
rr = G(rest)

rµ = 0

G(rest)
µν =

[
(r + c1)

2 − r2f(r/rH)
]
uµuν +

[
r2 − (r + c1)

2
]
Pµν

(5.36)

Now we further want that if D → ∞, the metric should reduce to its asymptotic form at

any finite distance from the event horizon or in other words, G(rest)
µν must vanish outside the
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‘membrane region’ (a region with ‘thickness’ of the order ofO
(

1
D

)
around the ‘membrane’,

see section (5.1.2)). This condition will force us to set c1 = 0. The other constant c2 is not

appearing in the final form of the metric at all, so this ambiguity will remain here at this

order and it is simply a consequence of the translational symmetry in xµ and yµ directions.

For simplicity, we shall also choose c2 = 0. So the final form of the map at zeroth order

ρ = r, yµ = xµ +
uµ

r
(5.37)

5.3.2 First order in derivative expansion

In this subsection, we shall extend the computation of the previous subsection up to the first

order in derivative expansion. Here uµ and rH depends on xµ but any term that has more

than one derivatives of uµ and rH has been neglected. All calculations presented in this

subsection generically will have corrections at order O(∂2).

At first order in derivative expansion themetric dual to hydrodynamics has the following

form [61]

ds2 = − 2uµdx
µdr − r2f (r/rH)uµuνdx

µdxν + r2Pµνdx
µdxν

+ r

[
− (uµaν + uνaµ) +

2Θ

D − 2
uµuν + 2F (r/rH) σµν

]
dxµdxν

(5.38)

Where,

F (r) = r

∫ ∞

r

dx
xD−2 − 1

x(xD−1 − 1)

And

aµ = (ηαβuα∂β)uµ , Θ = ηαβ∂αuβ , σµν = P µαP νβ

(
∂αuβ + ∂βuα

2

)
−
(

Θ

D − 2

)
P µν

(5.39)

We shall often refer to this metric, described in equation (5.38), as ‘hydrodynamic metric’.

Here both rH and uµ are functions of xµ; but they are not completely arbitrary. the hydrody-

namic metric will solve the Einstein’s equation (up to corrections of orderO(∂2)) provided
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the derivatives of rH and uµ satisfies the following equations11.

(ηαβuα∂β)rH
rH

+
Θ

D − 2
= 0, P µν

(
∂µrH
rH

)
+ aν = 0 (5.40)

We read off the components of the metric and its inverse

Gµr = − uµ, Grr = 0

Gµν = − r2f (r/rH)uµuν + r2Pµν

+ r

[
− (uµaν + uνaµ) +

(
2Θ

D − 2

)
uµuν + 2F (r/rH) σµν

] (5.41)

Grr = r2f(r/rH)− r

(
2Θ

D − 2

)
, Gµr = uµ − aµ

r

Gµν =
P µν

r2
− 2F (r/rH)

r3
σµν

(5.42)

The horizon is still given by the surface (no correction at first order in derivative, though

the normal gets corrected since ∂µrH is not negligible now.)

Event Horizon : S = r − rH = 0, NA dX
A = dXA∂AS = dr − dxµ ∂µrH (5.43)

We need the Christoffel symbols to compute the geodesic equation.

Γ̌rrr = 0, Γ̌µrr = 0

Γ̌rαr =

[
rf(r/rH) +

r2

2rH
f ′(r/rH)−

Θ

D − 2

]
uα

Γ̌µrδ =
1

2r2
[2rP µ

δ − ∂δu
µ − uδa

µ + ∂µuδ + uµaδ − 2F (r/rH)σ
µ
δ + 2 (r/rH)F

′(r/rH)σ
µ
δ ]

(5.44)

At first order in derivative expansion, the most general correction that could be added to

ŌA, maintaining it as a null vector with respect to the first order corrected metric:

ŌA∂A = ∂r + w1(r) Θ ∂r + w2(r) a
µ∂µ (5.45)

11These two equations are just the stress tensor conservation equation for a (D − 1) dimensional ideal
conformal fluid.
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We shall fix w1(r) and w2(r) using the geodesic equation.

The r component of the geodesic equation gives the following.

(Ō · ∇̌)Ōr = 0

⇒Ōr∇̌rŌ
r + Ōµ∇̌µO

r = 0

⇒Ōr∂rŌ
r + Γ̌rrrŌ

rŌr + 2ŌrŌαΓ̌rαr = 0

⇒(1 + w1(r)Θ)w′
1(r)Θ + 2(1 + w1(r)Θ)(w2(r)a

α)Γ̌rαr = 0

⇒w′
1(r) = 0

⇒w1(r) = A1, where A1 is a constant

From the µ component of the geodesic equation we find

(Ō · ∇̌)Ōµ = 0

⇒ Ōr∇̌rŌ
µ + Ōλ∇̌λŌ

µ = 0

⇒ Ōr∂rŌ
µ + ŌrŌrΓ̌µrr + 2ŌrŌδΓ̌µrδ = 0

⇒
[
w′

2(r) +
2w2(r)

r

]
aµ = 0

⇒ w2(r) =

(
A2

r2

)
, where A2 is another integration constant

At this stage

ŌA∂A = ∂r + A1Θ ∂r +

(
A2

r2

)
aµ∂µ (5.46)

We could partially fix the integration constants using the boundary conditions.

At horizon

ŌANA|r=rH = 1 ⇒ (1 + A1Θ) = 1 ⇒ A1 = 0

Ōµ∂µrH = O
(
∂2
)
⇒ No constraint on A2

(5.47)
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Hence it follows that .

ŌA∂A = ∂r +

(
A2

r2

)
aµ∂µ + terms 2nd order in derivative expansion

⇒ ŌA dX
A = −uµ dxµ + A2 aµ dx

µ + terms 2nd order in derivative expansion
(5.48)

Next, we have to solve for the ‘mapping functions’. Let us choose the same coordinates

{Y A}, as in the previous subsection so that the background takes the form of equation

(5.31). We expect that the mapping functions (5.37) will get corrected by first order terms

in derivative expansion.

yµ = xµ +
uµ(x)

r
+ f1(r)Θ uµ(x) + f2(r) a

µ(x), ρ = r + f3(r) Θ (5.49)

As before, we shall apply the map (5.49) as a coordinate transformation on the background.

In the new coordinates (where the map is just an ‘identity’) the background metric takes the

following form

grr = 2

(
f ′
1(r) +

f ′
3(r)

r2
− 2f3(r)

r3

)
Θ

gµr = −
[
1−

(
r2f ′

1(r)−
2f3(r)

r

)
Θ

]
uµ + r2f ′

2(r) aµ

gµν = r2
(
1 +

2f3(r)

r
Θ

)
ηµν + r (∂νuµ + ∂µuν)

(5.50)

Substituting equation (5.50) in equation (5.22) we find

gµr +

(
A2

r2

)
aνgνµ = −uµ + A2 aµ +O

(
∂2
)
, grr = 0

⇒ r2f ′
1(r)−

2f3(r)

r
= 0, f ′

2(r) = 0, f ′
1(r) +

f ′
3(r)

r2
− f3(r)

r3
= 0

(5.51)

The general solution for equation (5.51):

f3(r) = C3, f2(r) = C2, f1(r) = C1 −
C3

r2

where C1, C2 and C3 are arbitray constants
(5.52)

In the new XA = {r, xµ} coordinates the metric of the background takes the following
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form

ds2background = gABdX
AdXB

= − 2uµdx
µ dr + r2ηµνdx

µ dxν

+ r [2C3Θ ηµν + (∂µuν + ∂νuµ)] dx
µdxν

= − 2uµdx
µ dr + r2ηµνdx

µ dxν

+ 2r

[
−C3Θ uµuν +

(
C3 +

1

D − 2

)
Θ Pµν −

(
aµuν + aνuµ

2

)
+ σµν

]
dxµdxν

(5.53)

In the last step we have rewritten (∂µuν + ∂νuµ) using the following identity

∂µuν + ∂νuµ = 2σµν +

(
2Θ

D − 2

)
Pµν − (aµuν + aνuµ) (5.54)

Once we know the background, we could determine G(rest)
AB .

G(rest)
rr = 0, G(rest)

µr = 0

G(rest)
µν = r2

(rH
r

)D−1

uµuν − 2r C̃3 Θ ηµν + 2r [F (r/rH)− 1]σµν

where C̃3 ≡ C3 +
1

D − 2

(5.55)

5.4 Hydrodynamic metric in
(
1
D

)
expansion

In this section, we would like to expand the ‘hydrodynamic metric’ (already split into ‘back-

ground’ and ‘rest’ in the previous section) in an expansion in
(

1
D

)
and compare it against

the metric described in [65].

This comparison involves two steps. The first one is, of course, an exact match of the

two metrics up to the required order. The second step involves the mapping of the evolution

of the data. Let us explain it in a little more detail.

As we have mentioned before, both ‘hydrodynamic metric’ and ‘large -D’ metric is deter-

mined in terms of data, defined on a codimension one hypersurfaces - in the first case it is
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the velocity and temperature of a relativistic fluid living on the boundary of asymptotic AdS

and in the second case it is the horizon viewed as a membrane embedded in the background

with fluctuating shape and velocity. However, we cannot choose the data arbitrarily. The

hydrodynamic metric or the large D metric will solve Einstein’s equation only if the cor-

responding data satisfy certain evolution equation. For matching of these two metrics, the

evolution of the data also should match. More precisely, we should be able to re-express

the membrane velocity and shape in terms of fluid velocity and temperature and further,

we have to show that once hydrodynamic equations are satisfied, the membrane equation

is also true up to the required order.

Below we shall first compare the two metrics and in the next subsection, we shall prove

the equivalence of the evolution of these two sets of defining data.

5.4.1 Comparison between the two metrics

If the hydrodynamic metric has to match with the final metric described in [65], the first

requirement is that G(rest)
µν must vanish as one goes finitely away from the horizon. This

is possible provided C̃3 is zero and also the function [F (r/rH)− 1] has a certain type of

fall-off behavior at large r. Now C̃3 being an integration constant we could easily set it

to zero. In appendix (D.1) we have analyzed the integral (5.39) and therefore the function

[F (r/rH)− 1]. It turns out that at large D this integral could be approximated as follows.

F (z) = F

(
1 +

Z

D

)
= 1−

(
1

D

)2∑
m=1

(
1 +mZ

m2

)
e−mZ +O

(
1

D

)3

(5.56)

Hence [F (r/rH)− 1] vanishes12 up to corrections of order O
(

1
D

)2.
After substituting equation (5.56) and the value for the integration constant C̃3, the black

12 Also, note that the vanishing has appropriate fall-off behavior (exponential decay in the scaledZ variable)
as required by large D corrections
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brane metric dual to hydrodynamics takes the following form

dS2 = dS2
background + r2

(rH
r

)D−1

(uµ dx
µ)2 +O

(
1

D

)2

(5.57)

where dS2
background is given by equation (5.53)

As we have mentioned before, the metric in [65] is described in terms of one auxiliary

function ψ and one auxiliary null one-form OAdX
A. For convenience we are quoting the

metric here again.

dS2 = dS2
background + ψ−D (OA dX

A
)2

+O
(

1

D

)2

(5.58)

Here ψ−D is harmonic with respect to the background with ψ = 1 being the event horizon

of the full spacetime and OA is simply proportional to ŌA determined in the previous sub-

section. The proportionality factor (let us denote it by the scalar function Φ(X)) is fixed

using the condition that the component ofOA along the unit normal of ψ = constant hyper-

surfaces is one everywhere. In terms of equations, the above conditions could be expressed

as

ŌA = Φ(X) OA, Φ(X) =
ŌA ∂Aψ√
(∂Aψ)(∂Aψ)

where ∂Aψ ≡ gAB ∂Bψ (5.59)

Rewriting (5.58) in terms of ŌA,

dS2 = dS2
background +

(
ψ−D

Φ2

)(
ŌA dX

A
)2

+O
(

1

D

)2

= dS2
background +

(
ψ−D

Φ2

)
(uµ − A2 aµ) (uν − A2 aν) dx

µdxν +O
(

1

D

)2
(5.60)

The metric in (5.60) will match exactly with the metric in (5.57) provided we setA2 to zero

and identify
[
Φ2r2

(
rH
r

)D−1
]
with the harmonic function ψ−D up to corrections of order(

1
D

)2. Hence in terms of equation, what we finally have to verify is the following
ψ−D − Φ2r2

(rH
r

)D−1

= O
(

1

D

)2

(5.61)
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where ψ satisfies

∇2ψ−D = 0 (5.62)

with the boundary condition that ψ = 1 should reduce to the horizon, i.e., the hypersurface

given by r = rH , in an expansion in
(

1
D

)
.

Now we shall first determine ψ and then Φ. Note that both ψ and the norm of ∂Aψ are

scalar functions and it is much easier to compute them in a coordinate system where the

background metric has a simple form. Therefore we shall solve the equation in the {ρ, yµ}

coordinate system and then transform the answer to the {r, xµ} coordinates for final match-

ing. First, we need to know the position of the horizon in {Y A} coordinates since that will

provide the required boundary condition for ψ. We know that in {XA} = {r, xµ} coordi-

nates the horizon is at r = rH(x) +O(∂2). Now {XA} and {Y A} coordinates are related

as follows.

ρ = r − Θ(x)

D − 2
+O(∂2),

yµ = xµ +
uµ(x)

r
+

(
Θ(x)

D − 2

)(
uµ(x)

r2

)
+ C1 Θ(x) uµ(x) + C2 a

µ(x) +O(∂2)

(5.63)

The inverse transformation:

r = ρ+
Θ(y)

D − 2
+O(∂2)

xµ = yµ − uµ(x)

ρ
− C1 Θ(x) uµ(x)− C2 a

µ(x) +O(∂2)

= yµ − uµ(y)

ρ
+
aµ(y)

ρ2
− C1 Θ(y) uµ(y)− C2 a

µ(y) +O(∂2)

(5.64)

Therefore in terms of {Y A} coordinates the horizon is at

ρ = rH (xµ)−
(

Θ

D − 2

)
+O

(
∂2
)

= rH(y
µ)− (u · ∂) rH

rH
−
(

Θ

D − 2

)
+O

(
∂2
)
= rH(y

µ) +O
(
∂2
) (5.65)

Here, for any term that is of first order in derivative to begin with, this coordinate transfor-

mation will generate change of order O(∂2) and therefore negligible in our computation.
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In the last line, we have used equation (5.40).

Once we know the position of the horizon, we could solve for ψ. In {ρ, yµ} coordinates the

expressions for ψ and its norm are as follows (see appendix (D.2 for derivation).

ψ(ρ, yµ) = 1 +

(
1− 1

D

)(
ρ

rH(y)
− 1

)
+O

(
1

D

)3

⇒ dY A ∂Aψ =

(
1− 1

D

)(
dρ

rH(y)

)
− ρ

(
1− 1

D

)(
∂µrH(y)

r2H(y)

)
dyµ

⇒ ∂Aψ ∂Aψ =

(
ρ

rH(y)

)2(
1− 1

D

)2

+O(∂)2

(5.66)

Clearly this solution satisfies the boundary condition that ψ = 1 ⇒ ρ = rH(y) +O(∂2).

Now we have to transform these quantities in {XA} coordinates. We shall first transform

the quantity
[

ρ
rH(y)

]
.

ρ

rH(y)
=

r − Θ
D−2

rH(x) +
(ηαβuα∂β)rH

r

+O(∂2)

=

(
1

rH(x)

)(
r − Θ

D − 2

)(
1− (ηαβuα∂β)rH

r rH

)
+O(∂2)

=

(
1

rH(x)

)(
r − Θ

D − 2
− (ηαβuα∂β)rH

rH

)
+O(∂2) =

r

rH(x)
+O(∂2)

(5.67)

From equation (5.67) it follows that

ψ(r, xµ) = 1 +

(
1− 1

D

)(
r

rH(x)
− 1

)
+O

(
1

D3
, ∂2

)
⇒ dXA ∂Aψ =

(
1− 1

D

)(
dr

rH

)
− r

(
1− 1

D

)(
∂µrH
r2H

)
dxµ +O

(
1

D2
, ∂2

)
⇒ ∂Aψ ∂Aψ =

(
r

rH

)2(
1− 1

D

)2

+O
(

1

D2
, ∂2

)
(5.68)

Substituting this solution in equation (5.59) we find Φ(X) = 1
r
.

Now we have all the ingredients to verify equation (5.61). Let us introduce a newO(1)

variable R such that
r

rH
= 1 +

R

D
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In terms of R we find

ψ−D − Φ2r2
(rH
r

)D−1

= ψ−D −
(
r

rH

)−(D−1)

=

[
1 +

(
1− 1

D

)(
R

D

)]−D
−
(
1 +

R

D

)−(D−1)

= − 1

2

(
R

D

)2

e−R +O
(

1

D

)3

(5.69)

This is exactly what is required to have a match between the ‘hydrodynamic metric’ and

the ‘large-D’ metric up to the expected order.

5.4.2 Comparison between the evolution of two sets of data

As mentioned before, the ‘hydrodynamic metric’ is defined in terms of the velocity and

the temperature 13 of the relativistic conformal fluid moving in a flat Minkowski spacetime

of dimension (D − 1). In case of large - D expansion, the metric is given in terms of a

(D−1) dimensional time-like fluctuating membrane embedded in pure AdS spacetime with

a dynamical velocity field on it. Both of these two sets of data are controlled by separate

equations. For ‘derivative expansion’ , the governing equation of data is given in (5.40). In

‘large-D’ technique, the relevant equation is the following [65]

∇̄ · U = 0,

[
∇̄2Uα
K

− ∇̄αK
K

+ UβKβα − U · ∇̄Uα
]
Pα
γ = 0 (5.70)

Here the equation is written as an intrinsic equation on the membrane world-volume. All

raising, lowering and contraction of the indices are done with respect to the induced metric

on the dynamical membrane. Uα is the velocity of the membrane, expressed in terms of
13The temperature and the horizon radius are related by the following relation

rH =
4π T

(D − 1)

In our choice of units
rH ∼ O(1) ⇒ T ∼ O(D)
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its intrinsic coordinates. Kβα is the extrinsic curvature of the membrane, expressed as a

symmetric tensor on the membrane world-volume. K denotes its trace. Pα
γ is the projector

perpendicular to Uα.

In this subsection, our goal is to show that equation (5.40) implies equation (5.70) up to

corrections of order O
(

1
D

)2.
Our first job would be to express theUα andKαβ in terms of velocity uµ and temperature

(or rH) of the relativistic fluid. Remember that though both uµ and Uα are unit normalized

velocity vector, they are defined on completely different spaces, one being a flat Minkowski

metric and the other is the curved (both intrinsic and extrinsic curvature, being nonzero)

membrane world volume.

For convenience, we shall work in {Y A} = {ρ, yµ} coordinates where the background

metric is simple. We shall first compute the unit normal to the membrane and different

components of its extrinsic curvature, to begin with in terms of background coordinates

and then we shall re-express it as an intrinsic symmetric tensor on the membrane.

The unit normal to the membrane is given by

nA dY
A|membrane ≡ dY A

[
∂Aψ√
∂Aψ ∂Aψ

]
membrane

=
dρ− dyµ ∂µrH(y)

rH(y)

(5.71)

The extrinsic curvature is defined as follows.
KAB = ΠC

A ∇CnB = ΠC
A

(
∂CnB − ΓDCBnD

)
where ΠB

A = δBA − nA n
B and∇ is the covariant derivative w.r.t background

(5.72)

Now let us choose {yµ} as the intrinsic coordinate on the membrane world volume. In this

choice of coordinates, the extrinsic curvature Kαβ will have the following structure.

Kαβ = Kρρ (∂αrH) (∂βrH) + [Kρα (∂βrH) +Kρβ (∂αrH)] +Kαβ (5.73)

Note that the first term in the RHS of equation (5.73) does not contribute at first order

derivative expansion.
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After using equation (5.72) and (5.73), at this order the final expression for Kµν turns out

to be very simple (see appendix (D.3) for the details of the computation).

Kαβ = r2H ηαβ +O(∂2), K = (D − 1) (5.74)

The induced metric on the membrane is given by

gαβ = r2H ηαβ +O(∂2) (5.75)

Now we shall determine the velocity Uα. The velocity is defined as the projection ofOA on

the membrane which, by construction, would be unit normalized with respect to the induced

metric of the membrane. In {Y A} coordinates, OA dY
A takes the following form

OA dX
A|membrane = − [r uµ(x) dx

µ]membrane

= −
(
rH(y) +

Θ

D − 2

)[
uµ(y)−

aµ(y)

rH

] [(
∂xµ

∂ρ

)
dρ+

(
∂xµ

∂yν

)
dyν
]
ρ=rH(y)

= −
(
rH(y) +

Θ

D − 2

)[
uµ(y)−

aµ(y)

rH

] [(
uµ(y)

r2H(y)
− 2aµ(y)

r3H(y)

)
dρ+

(
δµν −

∂νu
µ

rH

)
dyν
]

=

(
1

rH(y)
+

Θ

(D − 2)r2H

)
dρ+

[
−rH(y) uµ(y)−

(
Θ

D − 2

)
uµ + aµ(y)

]
dyµ

=

(
1

rH(y)
+

Θ

(D − 2)r2H

)
dρ+

[
−rH(y) uµ(y)−

(
∂µrH
rH

)]
dyµ

(5.76)

In the last line, we have used equation (5.40), which is the governing equation for the data

in the hydrodynamic side of the duality.

From equations (5.76) and (5.71) it follows that

UA dY
A ≡− dY A [OA − nA]membrane = −

(
1

r2H

)(
Θ

D − 2

)
dρ+ rH uµ dy

µ (5.77)

Now Uα is just rewriting of UA in terms of the intrinsic coordinates of the membrane. Fol-

lowing the same method as in equation (5.73) we find

Uα dy
α ≡

[
rH uα +O(∂2)

]
dyα (5.78)
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Once we know Kαβ , Uα and the induced metric on the membrane, we could compute

each term in the equation (5.70).

∇̄ · U =

(
D − 2

rH

)[
Θ

D − 2
+

(ηαβuα∂β)rH
rH

]
+O

(
∂2
)
= O

(
∂2
)

∇̄2Uα = O
(
∂2
)

(U · ∇̄)Uβ = aβ +
Pα
β ∂α rH

rH
+O

(
∂2
)
= O

(
∂2
)

Uα Kαβ Pβ
γ = O(∂2)

∇̄αK = O(∂2)

(5.79)

As it is clear from the notation, in the LHS of each equation the relevant metric is the in-

duced metric on the membrane whereas in RHS it is the flat Minkowski metric ηαβ .

Substituting equations (5.79) in equation (5.70) we could easily show that membrane equa-

tion follows as a consequence of fluid equation.

In this context let us mention the work in [56]. Here the authors have computed the

boundary stress tensor dual to a slowly varying membrane embedded in AdS. They have

found the dual fluid velocity in terms of the membrane velocity. It could be easily checked

that equation (5.78) is indeed the inverse of what they have found up to correction of order

O(∂2).

5.5 Discussions

In this chapter, we have compared dynamical black brane solutions of Einstein’s equation

(in presence of negative cosmological constant) generated by two different perturbative

schemes, namely ‘derivative expansion’ and Large-dimension expansion. In both the cases,

the spacetime necessarily has an event horizon. We have shown that in a large number of

dimensions whenever ‘derivative expansion’ is applicable, we can expand themetric further

in
(

1
D

)
, (though the reverse may not be true always). We have found a perfect match in this

overlap regime of these two perturbative techniques up to first subleading order on both
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sides.

This calculation has been extended to the next order on both sides in [66]. This has also

been extended to Einstein-Maxwell system in presence of negative cosmological constant

in [67].

In some sense, our analysis serves as a consistency test for these two methods. But this

comparison could teach us something more. This is about the dual systems of these two

gravity solutions.

The dynamical black brane metric generated by ‘derivative expansion’ in D dimension is

dual to the relativistic conformal hydrodynamics living in (D − 1) dimensional flat space-

time. The variables of hydrodynamics are fluid velocity and temperature, which are the

data that label different black brane solutions in derivative expansion.

On the other hand, the metric generated in ‘large D expansion’ is dual to a co-dimension

one dynamical membrane embedded in pure AdS and coupled with a velocity field. Here

also the labeling data of the metric live on a (D − 1) dimensional hypersurface and they

consist of a scalar function - the shape of the membrane and a unit normalized velocity field.

This is very similar to hydrodynamics in terms of counting, though the governing equations

and the physical significance of the variables are entirely different.

However, we have already seen that these two systems of equations are approximately

equivalent after an appropriate field redefinition. In this chapter, we have verified it at the

very leading order and we expect that the project of comparing the two metrics up to second

subleading order would extend this equivalence to the next order on both sides.

In fact, it is expected that this equivalence is valid to all orders [56]. In other words,

in the overlap regime, these two equations must be exactly equivalent to each other if we

consider all orders on both sides [56], though to see this equivalence we need to re-express

the variables of one side in terms of the other [32, 46, 56].

This equivalence actually involves some interesting resummation of one series into the
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other. Even the leading term in derivative expansion can encode many terms of
(

1
D

)
ex-

pansion and on the other hand, the leading membrane equation might have information

about many higher order transport coefficients. At linearized level, this has been nicely

captured in the analysis in [29]. The frequencies of Quasi-normal modes do exhibit such

resummation. In [56], the authors have proposed a resummed stress tensor that could ex-

actly reproduce the fluid stress tensor exactly up to the first order in derivative expansion.

It would be very interesting to understand this structure in full detail, at a non-linear level.

This might lead to a fluid-membrane duality in large number of dimensions where gravity

does not have any role to play.
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Appendix A

Appendices for Chapter 2
A.1 Calculation of the homogeneous part - HAB

In this section we shall give details of the computation for (2.35), (2.36), (2.37), (2.38)

and their decoupled form as described in equations (2.40), (2.41), (2.42) and (2.43). As

mentioned before, we can determine the metric up toO
(

1
D

)
by solving the gravity equation

(2.18) up to order O (D). At this order G(1)
AB contributes simply as a linear fluctuation over

the zeroth order metric G[0]
AB = gAB +G

(0)
AB. So here we shall first compute the form of the

gravity equation (2.18), linearized about G[0]
AB.

Let us denote the perturbed metric as

gAB = G
[0]
AB +

1

D
G

(1)
AB = gAB + ψ−DOAOB +

1

D
G

(1)
AB

Also, as it is clear from our discussion, in this linearized calculation we need to compute

only the leading D piece.

The linearized variation of the Christoffel symbols and the Ricci Tensor take the form

δΓABC =
1

D

(
gAM − ψ−DOAOM

2

)(
DB G

(1)
MC +DC G

(1)
MB −DM G

(1)
BC

)
δRAB =

(
DC δΓ

C
AB −DB δΓ

C
AC

) (A.1)

In equation (A.1), DA denotes the covariant derivative w.r.t G[0]
AB . Now we can eas-

ily convert DA to ∇A (i.e. the covariant derivative w.r.t gAB) by introducing some new

terms to account for the correction to Christoffel symbols generated from the extra piece

(ψ−DOAOB) .
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δRAB = ∇C δΓ
C
AB︸ ︷︷ ︸

Term1

−∇B δΓ
C
AC︸ ︷︷ ︸

Term2

−
(
Γ̃MCAδΓ

C
MB + Γ̃MCBδΓ

C
MA

)
︸ ︷︷ ︸

Term3

+ Γ̃MABδΓ
C
MC︸ ︷︷ ︸

Term4

where

δΓABC =
1

D

(
gAM − ψ−DOAOM

2

)(
∇B G

(1)
MC +∇C G

(1)
MB

−∇M G
(1)
BC − 2Γ̃M

′

BC G
(1)
MM ′

)
Γ̃ABC = −ψ−D

(
DN

2ψ

)[
OA (nBOC + nCOB)− nAOBOC + ψ−DOAOBOC

]
(A.2)

A.1.1 Scalar sector

In this subsection we shall compute Hscalar
AB . The relevant part of δGAB has the following

form.

G
(1)
AB|scalar = OAOB

∑
n

fn(R) sn

R = D(ψ − 1)

(A.3)

To compute Hscalar
AB we have to substitute equation (A.2) in (A.3) and compute only the

leading D piece.

δΓCAB =

(
N

2

)∑
n

[ (
OCnAOB +OCnBOA − nCOAOB

)
f ′
n

+ (ψ−DOCOAOB) (f
′
n − fn)

]
sn + Subleading terms

δΓCAC = 0

(A.4)
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Now we shall substitute equation (A.4) in each of the four terms in equation (A.2).

Term1 = ∇C δΓ
C
AB

=

(
DN2

2

)∑
n

sn

[
(f ′′
n + f ′

n) (nBOA + nAOB −OBOA)

+ ψ−D (f ′′
n − f ′

n)OBOA

]
+ Subleading terms

Term2 = ∇B δΓ
C
AC = 0

Term3 =
(
Γ̃MCAδΓ

C
MB + Γ̃MCBδΓ

C
MA

)
= −

(
DN2

)
ψ−D

∑
n

[
f ′
n OBOA

]
sn + Subleading terms

Term4 = Γ̃MABδΓ
C
MC = 0

(A.5)

So finally

Hscalar
AB = Term1− Term3

=

(
DN2

2

)∑
n

sn (f
′′
n + f ′

n)

[
nBOA + nAOB −

(
1− ψ−D)OBOA

]
(A.6)

A.1.2 Vector sector

In this subsection we shall compute Hvector
AB . The relevant part of δGAB has the following

form.

G
(1)
AB|vector =

∑
n

vn(R)

(
[vn]AOB + [vn]BOA

)
, R ≡ D(ψ − 1) (A.7)

Now we shall substitute equation (A.8) in each of the four terms in equation (A.2).

δΓABC =

(
N

2

)∑
n

{
OA (nB[vn]C + nC [vn]B) v

′
n

−
(
nA − ψ−DOA

)
(OB[vn]C +OC [vn]B) v

′
n

+
[
v′n(nBOC + nCOB)− vn

(
ψ−DOBOC

)]
[vn]

A

}
+ Subleading terms

δΓCAC = 0

(A.8)
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Term1 = ∇C δΓ
C
AB

=

(
DN2

2

)∑
n

(
uB [vn]A + uA [vn]B

)
(v′′n + v′n)

+

(
DN2

2

)∑
n

ψ−D
(
OB [vn]A +OA [vn]B

)
v′′n

+

(
N

2

)∑
n

(∇ · vn)
[
v′n (nAOB + nBOA)− ψ−DvnOBOA

]
+ Subleading terms

Term2 = ∇B δΓ
C
AC = 0

Term3 =
(
Γ̃MCAδΓ

C
MB + Γ̃MCBδΓ

C
MA

)
= −

(
DN2

2

)
ψ−D

∑
n

v′n

(
OB [vn]A +OA [vn]B

)
+ Subleading terms

Term4 = Γ̃MABδΓ
C
MC = 0

(A.9)

So finally

Hvector
AB = Term1− Term3

=

(
N

2

)∑
n

(∇ · vn)
[
v′n (nAOB + nBOA)− ψ−DvnOBOA

]
+

(
DN2

2

)∑
n

(v′′n + v′n)

{(
uB [vn]A + uA [vn]B

)
+ ψ−D

(
OB [vn]A +OA [vn]B

)}
(A.10)
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A.1.3 Tensor sector

In this subsection we shall compute H tensor
AB . The relevant part of δGAB has the following

form.

G
(1)
AB|tensor =

∑
n

tn(R) [tn]AB, R ≡ D(ψ − 1) (A.11)

δΓABC =

(
N

2

)∑
n

t′n

{
[tn]

A
C nB + [tn]

A
B nC −

(
nA − ψ−DOA

)
[tn]BC

}
+ Subleading terms

δΓCAC = 0

(A.12)

Now we shall substitute equation (A.12) in each of the four terms in equation (A.2).

Term1 =∇C δΓ
C
AB

= −
(
DN2

2

)∑
n

[
t′′n(1− ψ−D) + t′n

]
[tn]AB

+

(
N

2

)∑
n

t′n

(
nB (∇C [tn]

C
A) + nA (∇C [tn]

C
B)

)
+ Subleading terms

Term2 =∇B δΓ
C
AC = 0

Term3 =
(
Γ̃MCAδΓ

C
MB + Γ̃MCBδΓ

C
MA

)
= Subleading terms

Term4 = Γ̃MABδΓ
C
MC = 0

(A.13)

So finally

H tensor
AB = Term1

= −
(
DN2

2

)∑
n

[
t′′n(1− ψ−D) + t′n

]
[tn]AB

+

(
N

2

)∑
n

t′n

(
nB (∇C [tn]

C
A) + nA (∇C [tn]

C
B)

) (A.14)
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A.1.4 Trace sector

In this subsection we shall compute H trace
AB . The relevant part of δGAB has the following

form.

G
(1)
AB|trace =

(
1

D

)
PAB

∑
n

hn(R)sn, R ≡ D(ψ − 1) (A.15)

As explained in section (2.5), we have an extra factor of
(

1
D

)
compared to the expressions

of δGAB in tensor, vector and the scalar sector.

δΓCAB =

(
N

2D

)∑
n

h′n

[ (
nAP

C
B + nBP

C
A − nCPAB

)
+
(
ψ−DOCPAB

) ]
sn

+ Subleading terms

δΓCAC =

(
N

2

)
nA
∑
n

h′n sn + Subleading terms

(A.16)

Now we shall substitute equation (A.16) in each of the four terms in equation (A.2).

Term1 =∇C δΓ
C
AB

= −
(
N2

2

)∑
n

sn

{[(
1− ψ−D)h′′n + h′n

]
PAB + 2h′n nAnB

}
+ Subleading terms

Term2 =∇B δΓ
C
AC

=

(
DN2

2

)∑
n

sn

[
h′′n nAnB

]
+ Subleading terms

Term3 =
(
Γ̃MCAδΓ

C
MB + Γ̃MCBδΓ

C
MA

)
= Subleading terms

Term4 = Γ̃MABδΓ
C
MC

=−
(
DN2

4

)
ψ−D

∑
n

snh
′
n

[
nBOA + nAOB −

(
1− ψ−D)OBOA

]
+ Subleading terms

(A.17)
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So finally
H trace
AB = Term1− Term2 + Term4

= −
(
DN2

4

)∑
n

sn

{
2h′′n nAnB + h′n

[
nBOA + nAOB −

(
1− ψ−D)OBOA

]
ψ−D

}
−
(
N2

2

)∑
n

sn

{
2h′n nAnB +

[
h′n +

(
1− ψ−D)h′′n]PAB}+O

(
1

D

)
(A.18)

Note that in the above equation, the second line is of orderO(1). Since in our calculation

we are only interested up to order O(D), we could ignore the second line. For our purpose
H trace
AB = Term1− Term2 + Term4

= −
(
DN2

4

)∑
n

sn

{
2h′′n nAnB + h′n

[
nBOA + nAOB −

(
1− ψ−D)OBOA

]
ψ−D

}
(A.19)

A.2 Calculation of the sources - SAB

In this section we shall give details of calculation of SAB. As mentioned in subsection

(2.5.6) we have to evaluate EAB on G[0]
AB .

EAB = RAB|G[0]
AB

− (D − 1)λG
[0]
AB

= R̄AB + δRAB − (D − 1)λG
[0]
AB

= (D − 1)λgAB + δRAB − (D − 1)λ
(
gAB +G

(0)
AB

)
= δRAB −Dλ G

(0)
AB + Subleading Terms

(A.20)

Where R̄AB is the Ricci tensor evaluated on the background metric gAB and δRAB is simply

the difference between the Ricci tensor evaluated on G[0]
AB and Ricci tensor evaluated on

gAB.

Using this notation

SAB = δRAB −Dλ G
(0)
AB (A.21)

Now for our case,

G
[0]
AB = gAB + ψ−DOAOB, G

(0)
AB = ψ−DOAOB (A.22)
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As the one form field ‘O’ is null, the inverse of the above metric (A.22) becomes very

simple.

G[0]AB = gAB − ψ−DOAOB (A.23)

Substituting lead ansatz in equation (2.25) we find

δΓABC =

[
gAM − ψ−DOAOM

2

] [
∇B

(
ψ−DOCOM

)
+∇C

(
ψ−DOBOM

)
−∇M

(
ψ−DOCOB

) ] (A.24)

Here ∇ is covariant derivative with respect to the background metric gAB.

For the convenience of computation we shall decompose δΓABC in two parts

δΓABC = δΓABC |lin. + δΓABC |non-lin. (A.25)

where

δΓABC |lin. =
1

2

{
∇B(ψ

−DOCO
A) +∇C(ψ

−DOBO
A)−∇A(ψ−DOBOC)

}
δΓABC |non-linear =

1

2
ψ−DOA(O · ∇)(ψ−DOBOC)

(A.26)

From (2.24) we know that Ricci tensor can be written as

RAB = R̄AB +∇C

[
δΓCAB

]
−∇B

[
δΓCCA

]
+
[
δΓCCE

] [
δΓEAB

]
−
[
δΓCBE

] [
δΓEAC

]︸ ︷︷ ︸
δRAB

(A.27)

From equation (A.24) it follows

δΓCCA =
1

2

{
∇C(ψ

−DOAO
C) +∇A(ψ

−DOCO
C)−∇C(ψ−DOCOA)

}
+

1

2
ψ−DOC(O · ∇)(ψ−DOCOA)

= 0

(A.28)

The expression for δRAB simplifies once we substitute equation (A.24)

δRAB = ∇C

[
δΓCAB

]
−
[
δΓCBE

] [
δΓEAC

]
= ∇C

[
δΓCAB|linear

]︸ ︷︷ ︸
δRAB |linear

+∇C

[
δΓCAB|non-linear

]︸ ︷︷ ︸
δR

(1)
AB |non-linear

−
[
δΓCBE

] [
δΓEAC

]︸ ︷︷ ︸
δR

(2)
AB |non-linear

(A.29)
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At first we present the calculation of δR(2)
AB|non-linear

δR
(2)
AB|non-lin. = −

[
δΓCBE|lin.

] [
δΓEAC |lin.

]︸ ︷︷ ︸
Term-1

−
[
δΓCBE|lin.

] [
δΓEAC |non-lin.

]︸ ︷︷ ︸
Term-2

−
[
δΓCBE|non-lin.

] [
δΓEAC |lin.

]︸ ︷︷ ︸
Term-3

−
[
δΓCBE|non-lin.

] [
δΓEAC |non-lin.

]︸ ︷︷ ︸
Term-4

(A.30)

Term-4 ≡ −
[
δΓCBE|non-lin.

] [
δΓEAC |non-lin.

]
= −

{
1

2
ψ−DOC(O · ∇)(ψ−DOBOE)

}{
1

2
ψ−DOE(O · ∇)(ψ−DOCOA)

}
= 0

(A.31)

Term-3 ≡ −
[
δΓCBE|non-lin.

] [
δΓEAC |lin.

]
= −

{
1

2
ψ−DOC(O · ∇)(ψ−DOBOE)

}
1

2

{
∇C(ψ

−DOAO
E) +∇A(ψ

−DOCO
E)−∇E(ψ−DOCOA)

}
= −1

4
ψ−D {(O · ∇)(ψ−DOBOE)

}{
(O · ∇)(ψ−DOAO

E)
}

= −1

4
ψ−3D{(O · ∇)OE}{(O · ∇)OE}OBOA

= 0

(A.32)

In the last step we have used (2.29).

Similarly,

Term-2 = 0 (A.33)
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Now we shall compute Term-1, which is non-zero and a bit complicated.

δR
(2)
AB|non-lin. =−

[
δΓCBE|lin.

] [
δΓEAC |lin.

]
=− 1

2

{
∇B(ψ

−DOEO
C) +∇E(ψ

−DOBO
C)−∇C(ψ−DOBOE)

}
1

2

{
∇C(ψ

−DOAO
E) +∇A(ψ

−DOCO
E)−∇E(ψ−DOCOA)

}
=− 1

4

{
ψ−2D(∇BOE)(∇CO

E)OCOA − ψ−2DOE(∇BO
C)OA(∇EOC)

+∇E(ψ
−DOBO

C)∇C(ψ
−DOAO

E) + ψ−2DOB(∇EO
C)OE(∇AOC)

− ψ−2DOB(∇EO
C)(∇EOC)OA − ψ−2DOB(∇COE)OA(∇CO

E)

− ψ−2DOB(∇COE)OC(∇AO
E) +∇C(ψ−DOBOE)∇E(ψ−DOCOA)

}
=

1

2
ψ−2D(∇EO

C)(∇EOC)OBOA − 1

2
∇E(ψ

−DOBO
C)∇C(ψ

−DOAO
E)

=− 1

2

[
(O · ∇)

(
ψ−DOB

)] [
(O · ∇)

(
ψ−DOA

)]
+ ψ−2D

(
DN

2ψ

)
2
[
nE(O · ∇)OE

]
OBOA

+

(
ψ−2D

2

)[
(∇EOC)

(
∇EOC −∇COE

)]
OBOA +O(1)

(A.34)

Now using the fact that

(∇EOC)
(
∇EOC

)
= (∇EOC)

(
∇COE

)
=
K2

D
+O(1)

we finally find

δR
(2)
AB|non-lin.

=− 1

2
(O · ∇)

[
ψ−DOB

]
(O · ∇)

[
ψ−DOA

]
+ ψ−2D

(
DN

ψ

)[
nE(O · ∇)OE

]
OBOA

=− 1

2
(O · ∇)

[
ψ−DOB

]
(O · ∇)

[
ψ−DOA

]
+ ψ−2DK

[
uC(O · ∇)nC

]
OBOA +O(1)

(A.35)

In the last line we have used the fact that(
DN

ψ

)
= K +O(1)
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Now we proceed to the calculation of δR(1)
AB|non-lin.

δR
(1)
AB|non-lin. = ∇C

[
δΓCAB|non-linear

]
= ∇C

{
1

2
ψ−DOC(O · ∇)(ψ−DOBOA)

}
=

(
ψ−D

2

)[
(∇ ·O) (O · ∇)

(
ψ−DOBOA

)
+OA(O · ∇)

[
(O · ∇)(ψ−DOB)

] ]
+

1

2

[
(O · ∇)

(
ψ−DOA

)] [
(O · ∇)

(
ψ−DOB

)]
+

1

2
(O · ∇)

[
ψ−2DOB(O · ∇)OA

]

=

(
ψ−2D

2

)(
DN

ψ
−∇ ·O

)[(
DN

ψ

)
OBOA − (O · ∇)(OBOA)

]
+

1

2

[
(O · ∇)

(
ψ−DOA

)] [
(O · ∇)

(
ψ−DOB

)]
−
(
ψ−2D

2

)
(O · ∇)

[
DN

ψ
OAOB

]
+O(1)

(A.36)

We can use identity(A.75) to simplify (A.36)

δR
(1)
AB|non-lin.

=

(
ψ−2D

2

)
[(n · ∇)K +K(∇ · u)]OBOA −

(
ψ−2D

2

)
(O · ∇) [K OAOB]

+
1

2

[
(O · ∇)

(
ψ−DOA

)] [
(O · ∇)

(
ψ−DOB

)]
+O(1)

=

(
ψ−2D

2

)
[(u · ∇)K +K(∇ · u)]OBOA − ψ−2D K

[
uC(O · ∇)nC

]
OAOB

+
1

2

[
(O · ∇)

(
ψ−DOA

)] [
(O · ∇)

(
ψ−DOB

)]
+O(1)

(A.37)

In the last step we have used the subsidiary condition on OA.

(O · ∇)OA =
[
uC(O · ∇)nC

]
OA (A.38)

Adding (A.35) and (A.37) we get the desired expression for δRAB|non-lin.

δRAB|non-lin. =
(
ψ−2D

2

)
[(u · ∇)K +K(∇ · u)]OBOA +O(1) (A.39)

136



A Appendices for Chapter 2

Finally, δRAB|non-lin. becomes
δRAB|non-lin.

=

(
ψ−2D

2

)[
DN

ψ
(∇ · u) + (u · ∇)

(
DN

ψ

)]
OAOB

=

(
ψ−2D

2

)(
DN

ψ
(∇̂ · u)

)
OAOB

(A.40)

Where, ∇̂ is defined as follows, for any general tensor with n indicesWA1A2···An

∇̂AWA1A2···An = ΠC
A ΠC1

A1
ΠC2
A2

· · ·ΠCn
An

(∇CWC1C2···Cn) (A.41)

Now, we shall calculate the linear terms in Ricci tensor
δRAB|lin. = ∇C

[
δΓCBA|lin.

]
=

1

2
∇C

{
∇B

(
ψ−DOAO

C
)}

︸ ︷︷ ︸
T1

+
1

2
∇C

{
∇A

(
ψ−DOBO

C
)}

︸ ︷︷ ︸
T2

−1

2
∇C

{
∇C

(
ψ−DOAOB

)}
︸ ︷︷ ︸

T3

(A.42)

T1 =
1

2
∇C

{
∇B

(
ψ−DOAO

C
)}

=
1

2
[∇C ,∇B]

(
ψ−DOAO

C
)
+

1

2
∇B∇C

(
ψ−DOAO

C
)

=

(
ψ−D

2

)
R̄EBO

EOA − 1

2
∇B

[
ψ−D

{(
DN

ψ
−∇ ·O

)
OA − (O · ∇)OA

}]
+O(1)

=

(
Dλ

2

)
ψ−DOAOB +

(
DN

2ψ

)
ψ−D

[
DN

ψ
−∇ ·O − uC(O · ∇)nC

]
nBOA

− ψ−D

2
OA∇B

(
∇̂ · u

)
+O(1)

(A.43)
In the last step we have used subsidiary condition on O and also the fact that(

DN

ψ
−∇ ·O

)
=

(
DN

ψ
−K

)
+O(1) ∼ O(1)

Similarly,

T2 =

(
Dλ

2

)
ψ−DOAOB +

(
DN

2ψ

)
ψ−D

[
DN

ψ
−∇ ·O − uC(O · ∇)nC

]
nAOB

− ψ−D

2
OB∇A

(
∇̂ · u

)
+O(1)

(A.44)
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T3 = −1

2
∇C∇C(ψ−DOBOA)

= −1

2

(
∇2ψD

)
OAOB −

(
∇Cψ

−D) (∇COAOB

)
− ψ−D

2
∇2(OAOB)

= ψ−D
[(

DN

ψ

)
(n · ∇) (OAOB)−

1

2
∇2(OAOB)

] (A.45)

Adding (A.43),(A.44),(A.45) we get the expression for [RL]AB

δRAB|lin.

= ψ−D
[(

DN

ψ

)
(n · ∇) (OAOB) +Dλ OAOB − 1

2
(OA∇B +OB∇A)

(
∇̂ · u

)
− 1

2
∇2(OAOB) +

(
DN

2ψ

)(
DN

ψ
−∇ ·O − uC(O · ∇)nC

)
(nBOA + nAOB)

]
+O(1)

= ψ−D
[
K (n · ∇) (OAOB)−

1

2
∇2(OAOB) +Dλ OAOB − 1

2
(OA∇B +OB∇A)

(
∇̂ · u

)
+
K

2

(
(n · ∇)K

K
+∇ · u− uC(O · ∇)nC

)
(nBOA + nAOB)

]
+O(1)

(A.46)

Using, the following identities

(n · ∇)(OAOB) = 2[uC(n · ∇)nC ]OAOB +
(
OAP

C
B +OBP

C
A

)
[(u · ∇)OC ] (A.47)

OB∇2OA +OA∇2OB = 2
[
K[uD(n · ∇)nD] + (u · ∇)K

]
OAOB + (OBP

C
A +OAP

C
B )∇2OC

− [
(
∇COD

)
(∇CO

D)][nAOB + nBOA]

(A.48)
We have used the identity (A.76) for the derivation of the above equation.

(OA∇B +OB∇A)
(
∇̂ · u

)
=
(
PE
AOB + PE

BOA

)
∇̂E

(
∇̂ · u

)
+ 2 OAOB(u · ∇)(∇̂ · u)

+ (nAOB + nBOA)(O · ∇)(∇̂ · u)

= (nAOB + nBOA)(n · ∇)(∇̂ · u) +O(1)

(A.49)
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The expression of δRAB|lin. becomes

δRAB|lin.

= ψ−D

[
D λ (OAOB) +

(
OBP

C
A +OAP

C
B

)(
K(u · ∇)OC − 1

2
∇2OC

)

+ (nAOB +NBOA)

{
K

2

(
n · ∇K
K

+∇ · u− uC(O · ∇)nC

)
+

1

2
KCDK

CD − 1

2
(n · ∇)

(
∇̂ · u

)}]
(A.50)

Substituting (A.50) and (A.40) in (A.21) we get the source term S
(−1)
AB

SAB = δRAB −DλG
(0)
AB = δRAB|lin. + δRAB|non-lin. −Dλ ψ−DOAOB

= ψ−D

[
ψ−D

(
K

2

)(
∇̂ · u

)
OBOA +

(
OBP

C
A +OAP

C
B

)(
K(u · ∇)OC − 1

2
∇2OC

)

+ (nAOB +NBOA)

{
K

2

(
n · ∇K
K

+∇ · u− uC(O · ∇)nC

)
+

1

2
KCDK

CD − 1

2
(n · ∇)(∇̂ · u)

}]

= ψ−D
(
K

2

){
ψ−D

(
∇̂ · u

)
OBOA +

(
OBP

C
A +OAP

C
B

) [∇̂2uC
K

− ∇CK

K
+ uDKDC − (u · ∇)uC

]

+ (nAOB + nBOA)

[
1

K
KCDK

CD − 1

K
(n · ∇)(∇̂ · u) + n · ∇K

K
+ ∇̂ · u− 2

u · ∇K
K

+ u ·K · u
]}

(A.51)

In the last line we have used the following identity (see appendix A.6 for derivation)

PC
B∇2OC = PC

B

[
∇CK − ∇̂2uC +K

(
uDKDC − (u · ∇)uC

) ]
+O(1) (A.52)
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Now,

SAB = ψ−D
(
K

2

){
ψ−D(∇̂ · u)OBOA +

(
OBP

C
A +OAP

C
B

) [∇̂2uC
K

− ∇CK

K
+ uDKDC − u · ∇uC

]

+ (nAOB + nBOA)

[
1

K
KCDK

CD − ∇̂2K

K2
+ 2

u · ∇K
K

− u ·K · u− 1

K
uDR̄DEu

E +
(n · ∇)K

K

+ ∇̂ · u− 2
(u · ∇)K

K
+ (u ·K · u)

]}
(A.53)

In the last line we have used the following identity

(n · ∇)
(
∇̂ · u

)
=

(
∇̂2K

K
− 2 (u · ∇)K +K (u ·K · u) + uDR̄DEu

E

)
(A.54)

Where
(
∇̂ · u

)
is given in appendix A.4.

We will use the following two identity to further simplify SAB

uCR̄DC u
D = −nCR̄DC n

D (A.55)

and, (n · ∇K) = −nAR̄AD n
D +

∇̂2K

K
−KABK

AB (A.56)

The first one (A.55) of the above two identities follows from the fact that R̄DC (Ricci tensor

evaluated on the background) is proportional to the background metric gDC and both u and

n are normalized time-like and space-like vectors respectively. For the derivation of the

second one (A.56) see A.6.4.

Using (A.55) and (A.56), we get SAB

SAB = ψ−D
(
K

2

)[
ψ−D

(
∇̂ · u

)
OBOA + (nAOB + nBOA)

(
∇̂ · u

)
+ (OBP

C
A +OAP

C
B )

(
∇̂2uC
K

− ∇CK

K
+ uDKDC − (u · ∇)uC

)] (A.57)

Let us note the presence of ‘K(∇̂ · u)’ term in SAB. From the leading order calculation

it follows that it is of order O(D) on ψ = 1 hypersurface(see eq (2.22)). This is sort of
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‘anomalous’, since naive order counting suggests that this term should be of order O(D2)

and this may not be the case once we are away from the membrane.

Now for any generic term, which is of orderO(1)when evaluated on (ψ = 1) hypersur-

face, will have corrections of order O
(

1
D

)
(or further suppressed) as one goes away from

ψ = 1. But, for ‘anomalous’ term like K(∇̂ · u) that is not the case. Below, we shall

examine this term in more detail. We can expand (∇̂ · u) in
[
ψ − 1 = R

D

]
as follows

∇̂ · u =
(
∇̂ · u

)
ψ=1

+
ψ − 1

N
(n · ∇)

(
∇̂ · u

)
ψ=1

=
(
∇̂ · u

)
R=0

+

(
R

K

)(
∇̂2K

K
− 2 (u · ∇)K +K (u ·K · u) + uDR̄DEu

E

)
R=0

=
(
∇̂ · u

)
R=0

− R

K

(
∇̂ · E

)
R=0

(A.58)

We don’t need to expand any other term since ∇̂ · u is the only ‘anomalous’ term in this

order. Substituting (A.58) in (A.57) we get the final expression for SAB

SAB = e−R
(
K

2

)[
e−R

((
∇̂ · u

)
R=0

− R

K

(
∇̂ · E

)
R=0

)
OBOA

+ (nAOB + nBOA)

((
∇̂ · u

)
R=0

− R

K

(
∇̂ · E

))
R=0

+ (OBP
C
A +OAP

C
B )

(
∇̂2uC
K

− ∇CK

K
+ uDKDC − (u · ∇)uC

)
R=0

] (A.59)

A.3 Intermediate steps for matching with AdS Black Hole

Since we know that the horizon is not at r = 1, this implies ψ(r = 1) ̸= 1.

We shall assume the following expansion of ψ around r = 1.

ψ(r) = 1 +
X1

D
+
X2

D2
+
(
a10 +

a11
D

)
(r − 1) + a20(r − 1)2 +O

(
1

D

)3

where X1, X2, a10, a11, a20 are constants and (r − 1) ∼ O
(

1

D

) (A.60)
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Substituting equation (A.60) in equation (2.86) and solving it order by order in
(

1
D

)
we

find the following solutions for the coefficients.

a10 = 1, a11 = X1 − 2, a20 = 0 (A.61)

To fix X1 and X2 we have to use the fact that ψ = 1 correspond to horizon. We can

determine the horizon of Schwarzschild-AdS black hole r0 order by order in
(

1
D

)
.

r0 = 1− log 2
D

+

(
1

D

)2 [
−2 log 2 +

(log 2)2

2

]
+O

(
1

D

)3

(A.62)

Noe setting ψ(r0) = 1 we find

X1 = log 2, X2 =
(log 2)2

2

So finally we found

ψ(r) = 1 +
log 2
D

+

(
1

D

)2 [
(log 2)2

2

]
+

[
1 +

(
log 2− 2

D

)]
(r − 1) +O

(
1

D

)3
(A.63)

A.4 The derivation of (∇ · u)

Note that to compute the full spacetime divergence of uA we also need to know the normal

derivative of uA away from the membrane.

∇ · u = PAB∇AuB + nB(n · ∇)uB

= PAB∇AuB − uB(n · ∇)nB

= PAB∇AuB − (u · ∇)K

K

(A.64)

In the last line we have used the identity
[
(n · ∇)nA =

ΠC
A∇CK

K

]
.

We know that the first term in equation (A.64) is of orderO(1) on the membrane. It follows

from the equation of motion at zeroth order. However, to determine the source term we
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need to know this expression even away from the (ψ = 1) hypersurface. Below we shall

determine this term in an expansion in (ψ − 1) and we shall see that the coefficient of the

linear term is also of order O(1).

Consider the expansion of uA from (ψ = 1) hypersurface.

uA = uA|ψ=1 +
ψ − 1

N
[(n · ∇)uA]|ψ=1 + · · · (A.65)

Substituting this expansion in first term of the equation (A.64) we find

(PAB∇AuB)

= PAB∇A

(
uB|ψ=1 +

ψ − 1

N
[(n · ∇)uB]|ψ=1 + · · ·

)
= PAB∇AuB|ψ=1 + PAB∇A

(
ψ − 1

N
[(n · ∇)uB]|ψ=1 + · · ·

)
= PAB∇AuB|ψ=1 +

(
ψ − 1

N

)
PAB∇A[(n · ∇)uB]|ψ=1 − PAB

(
ψ − 1

N2

)
(∇AN)[(n · ∇)uB]|ψ=1

= PAB∇AuB|ψ=1 +

(
ψ − 1

N

)
PAB∇A[(n · ∇)uB]|ψ=1 +O

(
1

D

)
(A.66)

Now we shall process the coefficient of (ψ − 1).

PAB∇A[(n · ∇)uB] = PAB∇A

[
−nB

(u · ∇)K

K
+ PD

B [(n · ∇)nD − (u · ∇)OD]

]
= −(u · ∇)K +K[nD(u · ∇)OD] + PAD∇A[(n · ∇)nD − (u · ∇)OD]

= −uDR̄DEn
E +K (u ·K · u)− 2 (u · ∇)K +

∇̂2K

K
+ uDR̄DEu

E

=
∇̂2K

K
− 2 (u · ∇)K +K (u ·K · u) + uDR̄DEu

E

(A.67)

Note that (ψ−1) is also of orderO
(

1
D

)
. Therefore combining equations (A.66) and (A.67)

we find

∇·u =
(
∇̂ · u

) ∣∣∣∣
ψ=1

−(u · ∇)K

K
+
ψ − 1

N

[
∇̂2K

K
− 2 (u · ∇)K +K (u ·K · u) + uDR̄DEu

E

]
+O

( 1

D

)
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A.5 The divergence of the vector constraint equation at 1st
order

The membrane equation at 1st order is given in equation (2.60). For convenience we are

quoting the equation here again.

PA
B

[
∇̂2uA
K

− ∇AK

K
+ uCK

C
A − (u · ∇)uA

]
= O

(
1

D

)
(A.68)

We could compute the divergence of each of the term separately.

Divergence ≡ ∇B

(
PA
B

∇̂2uA
K

)
︸ ︷︷ ︸

Term−1

−∇B

(
PA
B

∇AK

K

)
︸ ︷︷ ︸

Term−2

+∇B
(
PA
B uCK

C
A

)︸ ︷︷ ︸
Term−3

−∇B
(
PA
B (u · ∇)uA

)︸ ︷︷ ︸
Term−4

(A.69)

Term-1 ≡ ∇B

(
PA
B

∇̂2uA
K

)
= −nA[∇2uA −K(n · ∇)uA] +

1

K
PA
B∇B

[
∇2uA −K(n · ∇)uA

]
= (u · ∇)K +

1

K
PAB

[
−R̄BD(∇DuA) + R̄BEAD(∇EuD) +∇E(R̄BEAD u

D) +∇2(∇BuA)
]

− PAB∇B[(n · ∇)uA]

= (u · ∇)K +
1

K
∇2(∇ · u)− PAB∇B[(n · ∇)uA]

= (u · ∇)K

(A.70)

In the last line we have used (A.66) for the expression of (∇ · u)

Term-2 ≡ ∇B

(
PA
B

∇AK

K

)
=

∇2K

K
− (n · ∇)K

=
∇̂2K

K

(A.71)
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Term-3 ≡ ∇B
(
PA
B uCK

C
A

)
= PA

B uC∇B(ΠD
A∇DnC)

= −KuC(n · ∇)nC + uC∇2nC

= (u · ∇)K

(A.72)

Term-4 ≡ ∇B
(
PA
B (u · ∇)uA

)
= −K nA(u · ∇)uA + PAB(∇Bu

E)(∇EuA) + PABuE(∇B∇EuA)

= K (u ·K · u) + PABuER̄BEADu
D

= K (u ·K · u) + uER̄EDu
D

(A.73)

Adding equations (A.70), (A.71), (A.72) and (A.73) we get the divergence of the vector

constraint equation as

Divergence ≡ −uCR̄DCu
D − ∇̂2K

K
+ 2(u · ∇)K −K(uAKABu

B) = 0 (A.74)

A.6 Identities

In this appendix we shall prove some identities that we have used for our computation.

A.6.1 Proof of (2.21) from (2.26)
∇2(ψ−D) = 0

⇒ DN

ψ
−K =

(n · ∇)N

N
− N

ψ

=
(n · ∇)(ψ K)

ψ K
− N

ψ
+O

(
1

D

)
=

(n · ∇)K

K
+O

(
1

D

)
(A.75)
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A.6.2 Proof of equations (A.48)

We have used the following identity for derivation of (A.48)

uA∇2nA = uA∇C

[
nC(n · ∇)nA +KC

A

]
= K

[
uA(n · ∇)nA

]
+ uA∇CK

C
A +O(1)

= K
[
uA(n · ∇)nA

]
+ uA∇CK

C
A +O(1)

= K
[
uA(n · ∇)nA

]
+ (u · ∇)K +O(1)

= 2(u · ∇)K +O(1)

(A.76)

In deriving equation (A.76) we have used the following identity

(n · ∇)nA = ΠC
A

[
∇CK

K

]
+O

(
1

D

)
(A.77)

Proof of (A.77)

∇AN
2 = ∇A[(∇Bψ)(∇Bψ)]

⇒ 2N∇AN = 2(∇Bψ)(∇A∇Bψ)

⇒ N∇AN = (∇Bψ)(∇B∇Aψ)

⇒ N∇AN = NnB∇B(NnA)

⇒ ∇AN = (n · ∇)(NnA)

⇒ (n · ∇)nA = ΠC
A

(
∇CN

N

)
= ΠC

A

[
∇CK

K

]
+O

(
1

D

)

(A.78)

A.6.3 Proof of (A.52)

PC
B∇2OC = PC

B (∇2nC −∇2uC) (A.79)
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PC
B∇2nC = PC

B ∇D∇DnC

= PC
B ∇D∇D

(
∇Cψ

N

)
= PC

B ∇D

(
∇D∇Cψ

N
− 1

N2
(∇DN)(∇Cψ)

)
= PC

B

(
∇D∇C∇Dψ

N
− 2

N2
(∇DN)(∇D∇Cψ)

)
=

1

N
PC
B

(
[∇D,∇C ]∇Dψ +∇C∇D∇Dψ

)
+O(1)

=
1

N
PC
B

(
R̄ D
DCE ∇Eψ +∇C∇D(Nn

D)

)
+O(1)

=
1

N
PC
B∇C

(
nD∇DN +N∇DnD

)
+O(1)

= PC
B

(
N∇C∇DnD

N
+

(∇CN)(∇DnD)

N

)
+O(1)

= PC
B

(
∇CK +

∇CK

K
K

)
+O(1)

= 2PC
B∇CK +O(1)

(A.80)

PC
B (∇2uC) = PC

B ∇D∇DuC

= PC
B∇D

(
ΠE
C ∇DuE + nCn

E∇DuE

)
= PC

B∇D

(
ΠE
C ∇DuE

)
+O(1)

= PC
B∇D

(
ΠE
C ΠF

D ∇FuE +ΠE
C nD(n · ∇)uE

)
+O(1)

= PC
B∇D

(
ΠE
C ΠF

D ∇FuE

)
+ PC

BK(n · ∇)uC +O(1)

= PC
BΠ

D
N∇N

(
ΠE
C ΠF

D ∇FuE

)
+ PC

B n
D(n · ∇)

(
ΠE
C ΠF

D ∇FuE

)
+ PC

BK(n · ∇)uC +O(1)

= PC
BΠ

D
N∇N

(
ΠE
C ΠF

D ∇FuE

)
+ PC

BK(n · ∇)uC +O(1)

(A.81)

Adding(A.80) and (A.81) we get the expression for PC
B∇2OC
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PC
B∇2OC = PC

B [2∇CK − ΠD
N∇N

(
ΠE
C ΠF

D ∇FuE

)
−K(n · ∇)uC ] +O(1) (A.82)

Now from our subsidiary condition,

PC
B (O · ∇)OC = 0

⇒PC
B (n · ∇)uC = PC

B [(n · ∇)nC − (u · ∇)nC + (u · ∇)uC ]
(A.83)

Substituting (A.83) in (A.82) we get,

PC
B∇2OC = PC

B

{
2∇CK − ΠD

N∇N
(
ΠE
C ΠF

D ∇FuE
)

−K [(n · ∇)nC − (u · ∇)nC + (u · ∇)uC ]

}
+O(1)

= PC
B

{
∇CK − ΠD

N∇N

(
ΠE
C ΠF

D ∇FuE

)
+K

[
uDKDC − (u · ∇)uC

]}
+O(1)

= PC
B

{
∇CK − ∇̂2uC +K

[
uDKDC − (u · ∇)uC

]}
+O(1)

(A.84)

Where ∇̂ is defined in eq (A.41).

A.6.4 Proof of (A.56)
(n · ∇)K = (nA∇A)(∇Bn

B)

= nA
[
∇A,∇B

]
nB + nA∇B(∇An

B)

= −nAR̄ B
ABD nD +∇B

[
(n · ∇)nB

]
−KABK

AB

= −nAR̄ADn
D +∇B

[
ΠBA∇AK

K

]
−KABK

AB

= −nAR̄AD n
D +

∇̂2K

K
−KABK

AB

(A.85)
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Appendix B

Appendices for Chapter 3
B.1 Calculation of the sources - SAB

In this section we shall give the details of the calculation of SAB. As mentioned before, the

source will be given by EAB calculated on G[0]
AB = gAB + ψ−DOAOB.

We shall follow Appendix A.2 for computation. The first step would be to decompose

the source in the following way.

SAB ≡ EAB|G[0]
AB

= RAB|G[0]
AB

− (D − 1)λG
[0]
AB

= − (D − 1)λ ψ−DOAOB +∇C

[
δΓCAB|lin

]︸ ︷︷ ︸
δRAB |lin

+∇C

[
δΓCAB|non-lin

]︸ ︷︷ ︸
δR

(1)
AB |non-lin

−
[
δΓCBE

] [
δΓEAC

]︸ ︷︷ ︸
δR

(2)
AB |non-lin

(B.1)

where

δΓABC |lin. =
1

2

{
∇B(ψ

−DOCO
A) +∇C(ψ

−DOBO
A)−∇A(ψ−DOBOC)

}
δΓABC |non-lin =

1

2
ψ−DOA(O · ∇)(ψ−DOBOC)

δΓABC = δΓABC |lin. + δΓABC |non-lin.

(B.2)

At first we present the calculation of δR(2)
AB|non-linear

δR
(2)
AB|non-lin. = −

[
δΓCBE|lin.

] [
δΓEAC |lin.

]︸ ︷︷ ︸
Term-1

−
[
δΓCBE|lin.

] [
δΓEAC |non-lin.

]︸ ︷︷ ︸
Term-2

−
[
δΓCBE|non-lin.

] [
δΓEAC |lin.

]︸ ︷︷ ︸
Term-3

−
[
δΓCBE|non-lin.

] [
δΓEAC |non-lin.

]︸ ︷︷ ︸
Term-4

(B.3)

As previously, in this case also, Term-2=Term-3=Term-4=0;
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Now we need to calculate Term-1.

δR
(2)
AB|non-lin. = −

[
δΓCBE|lin.

] [
δΓEAC |lin.

]
=

1

2
ψ−2D(∇EO

C)(∇EOC)OBOA − 1

2
∇E(ψ

−DOBO
C)∇C(ψ

−DOAO
E)

= −1

2
[(O · ∇)(ψ−DOB)][(O · ∇)(ψ−DOA)] + ψ−2D

(
DN

ψ

)
Q OAOB

+
ψ−2D

2
(∇EOC)(∇EOC −∇COE)OBOA − ψ−2D Q2 OBOA

(B.4)

Where, Q ≡ uE(O · ∇)nE

δR
(2)
AB|non-lin. = −1

2
[(O · ∇)(ψ−DOB)][(O · ∇)(ψ−DOA)] + ψ−2DK Q OAOB

+
ψ−2D

2

[
(∇EOC)(∇EOC −∇COE)− 2 Q2 + 2 Q

(n · ∇)K

K

]
OBOA

(B.5)

In deriving (B.5) we have used,

DN

ψ
= K +

(n · ∇)K

K
(B.6)

Now we proceed to the calculation of δR(1)
AB|non-lin.
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δR
(1)
AB|non-lin.

= ∇C

[
1

2
ψ−DOC(O · ∇)

(
ψ−DOAOB

)]
=

(
ψ−D

2

)[
(∇ ·O) (O · ∇)

(
ψ−DOBOA

)
+OA(O · ∇)

[
(O · ∇)(ψ−DOB)

] ]
+

1

2

[
(O · ∇)

(
ψ−DOA

)] [
(O · ∇)

(
ψ−DOB

)]
+

1

2
(O · ∇)

[
ψ−2DOB(O · ∇)OA

]

=
1

2
[(O · ∇)(ψ−DOA)][(O · ∇)(ψ−DOB)]−

ψ−2D

2
(O · ∇)[K OAOB]

+
ψ−2D

2

(
DN

ψ
−∇ ·O

)(
DN

ψ
− 2 Q

)
OAOB

+
ψ−2D

2

[
3 Q2 + 2 (O · ∇)Q− (O · ∇)

(
(n · ∇)K

K

)
− (n · ∇)K

K
2 Q

]
OAOB

(B.7)

Now,(
DN

ψ
−∇ ·O

)(
D N

ψ
− 2 Q

)
=

[
(n · ∇)K

K
+

(n · ∇)2K

K2
− 2

[(n · ∇)K]2

K3
+ ∇̂ · u− 1

K
(u · ∇)

(
(n · ∇)K

K

)
− (u · ∇)K

K
+

1

K

(n · ∇)K

K

(u · ∇)K

K

] [
K +

(n · ∇)K

K
− 2 Q

]
= K

(
∇̂ · u

)
+ (O · ∇)K +

(n · ∇)2K

K
− 2

[
(n · ∇)K

K

]2
+

(O · ∇)K

K

(n · ∇)K

K

− 2Q
(O · ∇)K

K
− (u · ∇)

(
(n · ∇)K

K

)
+

(n · ∇)K

K

(u · ∇)K

K
+ (∇̂ · u)(n · ∇)K

K
− 2Q(∇̂ · u)

(B.8)

Where, ∇̂ is defined in (2.58)

In deriving (B.8) we have used (see B.2.3 for derivation),

∇ · u = ∇̂ · u− (u · ∇)K

K
− 1

K
(u · ∇)

(
(n · ∇)K

K

)
+

1

K

(n · ∇)K

K

(u · ∇)K

K
(B.9)
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Using, (B.8) we get the final expression of δR(1)
AB|non-lin.,

δR
(1)
AB|non-lin.

=
ψ−2D

2
K(∇̂ · u) OAOB − ψ−2DK Q OAOB +

1

2

[
(O · ∇)

(
ψ−DOA

)] [
(O · ∇)(ψ−DOB)

]
+
ψ−2D

2

[
3 Q2 + 2(O · ∇)Q− 2 Q

(
(n · ∇)K

K
+

(O · ∇)K

K

)
+ (∇̃ · u)

(
(n · ∇)K

K
− 2Q

)]
OAOB

(B.10)

Adding (B.5) and (B.10) we get

δRAB|non-lin.

≡ δR
(1)
AB|non-lin. + δR

(2)
AB|non-lin.

=
1

2
ψ−2D K(∇̂ · u) OAOB +

1

2
ψ−2D

[
(∇EO

C)(∇EOC −∇CO
E) +Q2 + 2(O · ∇)Q

− 2Q
(O · ∇)K

K
+ (∇̂ · u)

(
(n · ∇)K

K
− 2Q

)]
OAOB

(B.11)

Let us note the presence of ‘K(∇̂ · u) ’ term in δRAB|non-lin.. From the membrane equation

at first subleading order, it follows that this term is of order O(1) on ψ = 1 hypersurface.

This is sort of ‘anomalous’, since naive order counting suggests that this term should be or

order O(D2) and this may not be the case once we are away from the membrane.

Now for any generic term, which is of orderO(1)when evaluated on (ψ = 1) hypersurface,

will have corrections of orderO
(

1
D

)
(or further suppressed) as one goes away from ψ = 1.

While integrating the ODEs, this is the reason we could ignore all the implicitψ dependence

in the source. However from the above discussion we could see that such reasoning does

not work for ‘K(∇̂ · u) ’ (or in fact any such ‘anomalous’ term). Below we shall examine

this term in more detail.
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We can expand (∇̂ · u) in
[
ψ − 1 = R

D

]
as follows

∇̂ · u = (∇̂ · u)
∣∣∣∣
ψ=1

+
ψ − 1

N
(n · ∇)(∇̂ · u)

∣∣∣∣
ψ=1

+
(ψ − 1)2

2N2

[
(n · ∇)N

N

] ∣∣∣∣
ψ=1

[
(n · ∇)(∇̂ · u)

] ∣∣∣∣
ψ=1

+
(ψ − 1)2

2N2

[
(n · ∇)(n · ∇)

(
∇̂ · u

)] ∣∣∣∣
ψ=1

+O(ψ − 1)3

=
(
∇̂ · u

) ∣∣∣∣
R=0

− R

[
∇̂ · E
K

]
R=0

− R2

2

[(
(n · ∇)K

K3

)(
∇̂ · E

)]
R=0

+R2

[(
D2

K3

)
s2

]
R=0

+O
(

1

D

)2

=
(
∇̂ · u

) ∣∣∣∣
R=0

− R

[
∇̂ · E
K

]
R=0

+R2

[(
D2

K3

)
s2

]
R=0

+O
(

1

D

)2

(B.12)

Where EA is given in equation (3.16).

In the second line we have used the following two identities (to prove them we have used

Mathematica Version-11),

(n · ∇)(∇̂ · u)
∣∣∣∣
R=0

= −(∇̂ · E)
∣∣∣∣
R=0

+O
(

1

D

)
(n · ∇)(n · ∇)(∇̂ · u)

∣∣∣∣
R=0

= 2 D2
( s2
K

) ∣∣∣∣
R=0

+O(1)

(B.13)

Clearly the second and the third term in the last line of equation (B.12) (which encode the

value of (∇̂ · u) off the membrane) could contribute in δRAB|non-lin. at order O(1).
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Substituting (B.12) in equation (B.11) we find

δRAB|non-lin.

= ψ−2D

(
K

2

)[(
∇̂ · u

)
ψ=1

−R

(
∇̂ · E
K

)
ψ=1

− 1

2K

[
∇(EuF )∇(CuD)P

FCPED
]]
OAOB

+
ψ−2D

2
R2

(
D2

K2

)
(s2)OAOB

− ψ−2D

[
2uAKC

A

∇CK

K
− (∇CuA)(∇CuA)− (u ·K ·K · u) + 3

(
(u · ∇)K

K

)2

− K

D

(
(u · ∇)K

K

)
+
K

D
(u ·K · u)− 2

(u · ∇)K

K
(u ·K · u)− uEuF R̄EDFCO

COD

]
OAOB

= ψ−2D

(
K

2

)[(
∇̂ · u

)
ψ=1

−R

(
∇̂ · E
K

)
ψ=1

− 1

2K

[
∇(EuF )∇(CuD)P

FCPED
]]
OAOB

+
ψ−2D

2
R2

(
D2

K2

)
(s2)OAOB − ψ−2D

[(
u · ∇K
K

)2

+ 4 uAKB
A

∇BK

K
− (∇̂AuB)(∇̂AuB)

− (u ·K · u)2 − 2
∇̂AK

K
[(u · ∇)uA]−

[
(u · ∇̂)uA

] [
(u · ∇̂)uA

]
+ 2

[
(u · ∇)uA

]
(uBKBA)

− 3(u ·K ·K · u)− ∇̂AK

K

∇̂AK

K
− K

D

(
u · ∇K
K

− u ·K · u
)
+ uEuFnDnCR̄CEFD

]
OAOB

= e−2R

(
K

2

)[(
∇̂ · u

)
R=0

− 1

2K
(∇EuF +∇FuE) (∇CuD +∇DuC)P

FCPED

]
OA OB

+

(
e−2R

2

)[
−R

(
∇̂ · E

)
R=0

+R2

(
D2

K2
s2

)
R=0

]
OAOB − e−2R (s1)OAOB

(B.14)
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where

s1 = uEuFnDnCR̄CEFD +

(
u · ∇K
K

)2

+
∇̂AK

K

[
4 uBKA

B − 2 [(u · ∇)uA]−
∇̂AK

K

]
− (∇̂AuB)(∇̂AuB)− (u ·K · u)2 −

[
(u · ∇̂)uA

]
[(u · ∇̂)uA] + 2

[
(u · ∇)uA

]
(uBKBA)

− 3(u ·K ·K · u)− K

D

(
u · ∇K
K

− u ·K · u
)

s2 =
K2

D2

[
− K

D

(
u · ∇K
K

− u ·K · u
)
− 2 λ− (u ·K ·K · u) + 2

(
∇AK

K

)
uBKA

B −
(
u · ∇K
K

)2

+ 2

(
u · ∇K
K

)
(u ·K · u)−

(
∇̂DK

K

)(
∇̂DK

K

)
− (u ·K · u)2 + nBnDuEuF R̄FBDE

]
(B.15)

Now we shall calculate those terms in Ricci tensor that are linear in ψ−D

δRAB|lin. = ∇C

[
δΓCBA|lin.

]
=

1

2
∇C

{
∇B

(
ψ−DOAO

C
)}︸ ︷︷ ︸

T1

+
1

2
∇C

{
∇A

(
ψ−DOBO

C
)}︸ ︷︷ ︸

T2

−1

2
∇C

{
∇C

(
ψ−DOAOB

)}︸ ︷︷ ︸
T3

(B.16)

T1 =
1

2
∇C

{
∇B

(
ψ−DOAO

C
)}

=
1

2
[∇C ,∇B]

(
ψ−DOAO

C
)
+

1

2
∇B∇C

(
ψ−DOAO

C
)

=
ψ−D

2

(
R̄BDO

DOA + R̄CBADO
DOC

)
− 1

2
∇B

[
ψ−D

{(
DN

ψ
−∇ ·O

)
OA −Q OA

}]
=
ψ−D

2

(
R̄BDO

DOA + R̄CBADO
DOC

)
+

(
DN

2ψ

)
ψ−D

[
DN

ψ
−∇ ·O −Q

]
nBOA

− 1

2
ψ−D∇B

{(
DN

ψ
−∇ ·O −Q

)
OA

}
=
ψ−D

2

(
R̄BDO

DOA + R̄CBADO
DOC

)
+
ψ−D

2

[
(n · ∇)K +K(∇ · u−Q)

]
nBOA

+
ψ−D

2

[
(n · ∇)2K

K
− 2

(
(n · ∇)K

K

)2

− K

D

(
(n · ∇)K

K

)]
nBOA +

ψ−D

2

(
K

D

)
(∇BOA)

− ψ−D

2
OA∇B

[
(n · ∇)K

K
− 2

(u · ∇)K

K
+ u ·K · u+ ∇̂ · u

]
(B.17)
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Similarly, we will get T2 by interchanging A and B indices

T3 = −1

2
∇C∇C(ψ−DOBOA)

= −1

2

(
∇2ψD

)
OAOB −

(
∇Cψ

−D) (∇COAOB

)
− ψ−D

2
∇2(OAOB)

= ψ−D
[(

DN

ψ

)
(n · ∇) (OAOB)−

1

2
∇2(OAOB)

] (B.18)

Adding T1, T2, T3 we get the expression for δRAB|lin.

δRAB|lin

= ψ−D (D − 1) λ OAOB + ψ−DR̄CABDO
DOC + ψ−DK (n · ∇)(OAOB)

+
ψ−D

2
(nBOA + nAOB)[(n · ∇)K +K(∇ · u−Q)]− ψ−D

2

(
OA∇2OB +OB∇2OA

)

+
ψ−D

2

{
(n · ∇)2K

K
− 2

[
(n · ∇)K

K

]2
− K

D

(n · ∇)K

K

}
(nBOA +OBnA)

+ ψ−D
{[

(n · ∇)K

K

]
(n · ∇)(OAOB)− (∇COA)(∇COB)

}
+
ψ−D

2

K

D
[∇BOA +∇AOB]

− ψ−D

2
(OA∇B +OB∇A)

[
(n · ∇)K

K
− 2

(u · ∇)K

K
+ u ·K · u+ ∇̂ · u

]
(B.19)

Now, we shall decompose the source in the way as mentioned in (3.13). Note that the

decomposition of a general 2-index symmetric tensor (CAB) is the following

CAB = PD
A P

E
BCDE + (PE

AOB + PE
BOA)CEDu

D + (PE
A nB + PE

B nA)CEDO
D

+ (nAOB + nBOA)(O
ECEDu

D) +OAOB(u
ECEDu

D) + nAnB(O
ECEDO

D)

(B.20)

Using (B.20) we shall first decompose each of the tensor structure appearing in (B.19)

(n · ∇)(OAOB) = 2
[
uC(n · ∇)nC

]
OAOB + (OAP

C
B +OBP

C
A )(n · ∇)OC

= 2
[
uC(n · ∇)nC

]
OAOB + (OAP

C
B +OBP

C
A )(u · ∇)OC

(B.21)
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OB∇2OA +OA∇2OB

= 2

[
K[uD(n · ∇)nD] + (u · ∇)K − uDKC

D

(
∇CK

K

)
+ uD(n · ∇)2nD + (∇CuD)(∇CuD)

]
OAOB

− [
(
∇COD

)
(∇CO

D)][nAOB + nBOA] + (OBP
C
A +OAP

C
B )∇2OC

(B.22)

(∇COA)(∇COB) = (uD∇CnD)(u
E∇CnE)OAOB + (∇DOC)(∇DOC′)PC

A P
C′

B

+ (OBP
C
A +OAP

C
B )[(∇FOC)(u

D∇FnD)]
(B.23)

∇BOA +∇AOB = 2 (u ·K · u)OAOB + Q (nAOB + nBOA) + PC
A P

C′

B (∇COC′ +∇C′OC)

+ (OBP
C
A +OAP

C
B )[(u · ∇)OC + uDKCD]

(B.24)

(OA∇B +OB∇A)

[
(n · ∇)K

K
− 2

(u · ∇)K

K
+ u ·K · u+ ∇̂ · u

]
= −2

(u · ∇)K

D
OAOB −

(
OAP

C
B +OBP

C
A

) ∇CK

D

+ (OAnB +OBnA)(O · ∇)

[
(n · ∇)K

K
− 2

(u · ∇)K

K
+ u ·K · u+ ∇̂ · u

] (B.25)

R̄CABDO
DOC = PE

A P
F
B R̄CEFDO

DOC +OAOB u
EuF R̄CEFDO

DOC

+ (PE
AOB + PE

BOA)R̄CEFDO
DOCuF

(B.26)

Using (B.21), (B.22), (B.23), (B.24), (B.25) we can decompose δRAB|lin in the following

way

δRAB|lin = δR
(S1)
lin OAOB + δR

(S2)
lin (nAOB + nBOA) + δR

(S3)
lin nAnB + δR

(tr)
lin PAB

+ (OAP
C
B +OBP

C
A )
[
δR

(V1)
lin

]
C
+ (nAP

C
B + nBP

C
A )
[
δR

(V2)
lin

]
C
+
[
δR

(T )
lin

]
AB

(B.27)
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Where

δR(S1) = ψ−D(D − 1) λ+ ψ−D
[
uEuF R̄CEFDn

DnC − (u · ∇)

(
(n · ∇)K

K

)
+ uAKC

A

∇CK

K

− (n · ∇)K

K

(u · ∇)K

K
+ 2

(n · ∇)K

K
[uC(n · ∇)nC ]− (uD∇CnD)(u

E∇CnE)

− uA(n · ∇)2nA − (∇CuA)(∇CuA) +
K

D
(u ·K · u) + K

D

(u · ∇)K

K

]
= ψ−D(D − 1) λ+ ψ−D

[
2uAKC

A

∇CK

K
− (∇CuA)(∇CuA)− (u ·K ·K · u)− K

D

(u · ∇)K

K

+ 3

(
(u · ∇)K

K

)2

+
K

D
(u ·K · u)− 2

(u · ∇)K

K
(u ·K · u) + uEuF R̄CEFDn

DnC
]

= ψ−D(D − 1) λ+ ψ−D s1
(B.28)

Where,

s1 =

(
u · ∇K
K

)2

+
∇̂AK

K

[
4 uBKA

B − 2 [(u · ∇)uA]−
∇̂AK

K

]
− (∇̂AuB)(∇̂AuB)

− (u ·K · u)2 −
[
(u · ∇̂)uA

]
[(u · ∇̂)uA] + 2

[
(u · ∇)uA

]
(uBKBA)− 3 (u ·K ·K · u)

− K

D

(
u · ∇K
K

− u ·K · u
)
+ uEuF R̄CEFD n

DnC

(B.29)

δR(S2) =
ψ−D

2

[
K

{
∇̂ · u− (u · ∇)K

K
− 1

K
(u · ∇)

(
(n · ∇)K

K

)
+

1

K

(n · ∇)K

K

(u · ∇)K

K

}
+ (n · ∇)K −K Q+

(n · ∇)2K

K
− 2

(
(n · ∇)K

K

)2

− K

D

(n · ∇)K

K
+
K

D
Q

+ (∇COA)(∇CO
A)− (O · ∇)

(
(n · ∇)K

K
− 2

(u · ∇)K

K
+ u ·K · u+ ∇̂ · u

)]
(B.30)

We shall massage the above expression for δR(S2) a little more.

Let us note the presence of ‘K(∇̂ · u) ’ term in δR(S2). From the discussion just below the

equation (B.11) it is clear that we need to take the expansion of ∇̂ · u in ψ − 1. The ψ − 1
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expansion of (∇̂ · u) is given by (B.12)

∇̂ · u =
(
∇̂ · u

)
R=0

− R

[
∇̂ · E
K

]
R=0

+R2

[(
D2

K3

)
s2

]
R=0

+O
(

1

D

)2

(B.31)

Substituting equation (B.31) in equation (B.30) we find

δR(S2) =
ψ−D

2

[
K
(
∇̂ · u

)
R=0

− R
(
∇̂ · E

)
R=0

+R2

[(
D2

K2

)
s2

]
R=0

]

+
ψ−D

2

[
−K

{
(u · ∇)K

K
+

1

K
(u · ∇)

(
(n · ∇)K

K

)
− 1

K

(n · ∇)K

K

(u · ∇)K

K

}

+ (n · ∇)K −K Q+
(n · ∇)2K

K
− 2

(
(n · ∇)K

K

)2

− K

D

(n · ∇)K

K
+
K

D
Q

+ (∇COA)(∇CO
A)− (O · ∇)

(
(n · ∇)K

K
− 2

(u · ∇)K

K
+ u ·K · u+ ∇̂ · u

)]
(B.32)

Now it turns out that it is possible to rewrite the last three lines of equation (B.32) in terms

of the already defined scalar structures s1 plus few extra terms which could be expressed

as functions of membrane equation.

We have used Mathematica Version 11 for this purpose1

δR(S2) = e−R
[
−s1 +

K

2

(
(∇̂ · u)− 1

2K
∇(AuB)∇(CuD)P

ACPBD

)] ∣∣∣∣∣
R=0

+
e−R

2

[
−R

(
∇̂ · E

)
R=0

+R2

[(
D2

K2

)
s2

]
R=0

]
+O

(
1

D

)2
(B.34)

1More preciselyMathematica has been used to rearrange δR(S2) on R = 0 hypersurface . Away from the
membrane the calculation is relatively less tedious and could be done by hand. On ψ = 1 i.e., on R=0, δR(S2)

becomes

δR(S2)

∣∣∣∣
R=0

= e−R

[
−s1 +

K

2

(
(∇̂ · u)− 1

2K
∇(AuB)∇(CuD)P

ACPBD

)] ∣∣∣∣∣
R=0

(B.33)

Where, ∇(AuB) = ∇AuB +∇BuA

ForMathematica computation we do have to choose a specific background and coordinate system. Since we
have an independent proof that the final answer is ‘background-covariant’, such a choice does not imply any
loss of generality. However, we need to do an appropriate ‘geometrization’ of the answer that we get from
Mathematica, so that we could write it in a ‘background covariant form’ as desired. See [14], [3] for details
of this procedure.
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This type of rewriting helps to see the consistency of the set of coupled ODEs manifestly

(see section - 3.3.1).

Let us continue with derivation for the rest of the components of the source.

δR(S3) = 0 (B.35)

δR(tr) =
ψ−D

2

PCC′

D − 2

[
−2(∇DOC)(∇DOC′) +

K

D
(∇COC′ +∇C′OC)

]
=
ψ−D

2

1

D − 2

[
−2 PCC′

(∇DnC)(∇DnC′) +
K

D
PCC′

(∇CnC′ +∇C′nC)

]
+O

(
1

D

)
=
ψ−D

2

1

D − 2

(
−2

K2

D
+ 2

K2

D

)
+O

(
1

D

)
= 0

(B.36)

[
δR

(V1)
lin

]
A

=
ψ−D

2
PC
A

[
2K(u · ∇)OC −∇2OC

]
+
ψ−D

2
PC
A

[
2 R̄ECFD O

DOEuF

+ 2
(n · ∇)K

K
[(u · ∇)OC ] +

∇CK

D
2(∇FOC)(u

D∇FnD) +
K

D
(u · ∇)OC +

K

D
(uDKCD)

]

=
e−R

2
PC
A

[
2K(u · ∇)OC −∇2OC

] ∣∣∣∣
ψ=1

+
e−R

2

(
ψ − 1

N

)
(n · ∇)

[
PC
A

(
2K(u · ∇)OC −∇2OC

)] ∣∣∣∣
ψ=1

+
e−R

2
PC
A

[
2 R̄ECFD O

DOEuF + 2
(n · ∇)K

K
[(u · ∇)OC ] +

∇CK

D

− 2(∇FOC)(u
D∇FnD) +

K

D
(u · ∇)OC +

K

D
uDKCD

]
ψ=1

=

(
e−R

2

)[
K Evector

A − 2R

(
D

K

)
vA

]
(B.37)

In the last line we have used the following two identities (see appendix B.2.4 and B.2.5 for

160



B Appendices for Chapter 3

derivation)

(n · ∇)
[
PC
A

(
2K(u · ∇)OC −∇2OC

)]
R=0

= −2D vA (B.38)

PC
A

[
2K(u · ∇)OC −∇2OC + 2 R̄ECFD O

DOEuF + 2
(n · ∇)K

K
[(u · ∇)OC ] +

∇CK

D

− 2(∇FOC)(u
D∇FnD) +

K

D
(u · ∇)OC +

K

D
uDKCD

]
ψ=1

= K Evector
A

(B.39)

Where Evector
A is the subleading (see equation (3.16) ) membrane equation, and vA is given

by

vA = PB
A

[
K

D

(
nDuEOF R̄FBDE

)
+

K2

2D2

(
∇BK

K
+ (u · ∇)uB − 2 uDKDB

)

− P FD

(
∇FK

D
− K

D
(uEKEF )

)
(KDB −∇DuB)

] (B.40)

Note that the simplification of
[
δR

(V1)
lin

]
involves the same issues as in δR(S2). The first

line of the RHS of equation (B.37) is of order O(D) by naive order counting. However,

because of the membrane equation at first subleading order, this is of O(1) on ψ = 1

hypersurface. Away from the hypersurface this may not be the case and we have to expand

the first line around ψ = 1 and take into account at least the first term in the expansion.

This is what has been done in the second line of equation (B.37). In the final step we have

re-written
[
δR

(V1)
lin

]
in terms of already-defined vector structure vA plus terms proportional

to membrane equation.

The rest of the components of SAB are easy to compute without any further subtlety.

[
δR

(V2)
lin

]
C
= 0 (B.41)
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[
δR

(T )
lin

]
AB

=
ψ−D

2
PC
A P

C′

B

[
2 R̄FCC′DO

DOF − 2(∇DOC)(∇DOC′) +
K

D
(∇COC′ +∇C′OC)

]
− ψ−D

2

PAB
D − 2

PCC′
[
−2(∇DOC)(∇DOC′) +

K

D
(∇COC′ +∇C′OC)

]
=
ψ−D

2
PC
A P

C′

B

[
2 R̄FCC′DO

DOF − 2(∇DOC)(∇DOC′) +
K

D
(∇COC′ +∇C′OC)

]
= ψ−DPC

A P
C′

B

[
K

D

(
KCC′ − ∇CuC′ +∇C′uC

2

)
− PE

F (KEC −∇EuC)(K
F
C′ −∇FuC′)

]
+ ψ−DPC

A P
C′

B R̄FCC′DO
DOF

= ψ−D tAB
(B.42)

Where,

tAB = PC
A P

D
B

[
+ R̄FCDEO

EOF +
K

D

(
KCD − ∇CuD +∇DuC

2

)

− PEF (KEC −∇EuC)(KFD −∇FuD)

] (B.43)

In deriving (B.42) we have used the following identity

PC
A (∇DOC) = PE

DP
C
A (∇EOC)−OD[P

C
A (u · ∇)OC ] (B.44)

Which follows from the subsidiary condition.

B.2 Some identities

In this appendix we shall prove some of the identities that we have used to compute the

metric correction.

B.2.1 The derivation of the Identity (3.27)

[t1]CC′ = PA
C P

B
C′

[
K

D

(
KAB − ∇AuB +∇BuA

2

)
− PD

E (KDA −∇DuA)(K
E
B −∇EuB)

]
(B.45)
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∇C [t1]CC′

=
K

D
∇C

(
PA
C P

B
C′KAB

)︸ ︷︷ ︸
Term-1

−
[
∇C

{
PA
C P

D
F (KDA −∇DuA)

}] [
PB
C′PEF (KEB −∇EuB)

]︸ ︷︷ ︸
Term-2

− K

D
∇C

(
PA
C P

B
C′
∇AuB +∇BuA

2

)
︸ ︷︷ ︸

Term−3

−
[
PA
C P

D
F (KDA −∇DuA)

] [
∇C

{
PB
C′PEF (KEB −∇EuB)

}]︸ ︷︷ ︸
Term−4

(B.46)

After a bit of straight forward calculation the each of the above terms become

Term-1 ≡ K

D
PE
C′∇EK (B.47)

Term-2 ≡ PEAPB
C′ [∇EK −K(uDKDE)](KAB −∇AuB) (B.48)

Term-3 ≡ K

2D
PE
C′ [∇EK +K(u · ∇)uE] (B.49)

Term-4 ≡ K

D
P F
C′ [K uDKDF −K(u · ∇)uF ] (B.50)

Adding (B.47), (B.48), (B.49) and (B.50) we get

∇C [t1]CC′ =
K

2D
PB
C

[
∇BK +K(u · ∇)uB − 2K(uAKAB)

]
− PBDPA

C

(
∇BK −K(uEKEB)

)
[KDA −∇DuA]

(B.51)

B.2.2 The derivation of scalar structure s2 (3.24)

The scalar structure s2 is defined as

s2 =
∇ · v
D

(B.52)

vA = PB
A

[
K

D

(
nDuEOF R̄FBDE

)
+

K2

2D2

(
∇BK

K
+ (u · ∇)uB − 2 uDKDB

)

− P FD

(
∇FK

D
− K

D
(uEKEF )

)
(KDB −∇DuB)

] (B.53)
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Now,

∇AvA = −K

[
K2

2D2

(
(n · ∇)K

K
+ nB(u · ∇)uB

)
− P FD

(
∇FK

D
− K

D
uEKEF

)(
−nB∇DuB

)
+
K

D
nDuEOFnBR̄FBDE

]
+ PB

A

[
K2

2D2

(
∇A∇BK

K
+∇A[(u · ∇)uB]− 2 uD∇AKDB

)
−
(
∇AP FD

)(∇FK

D

)
KDB − P FD

(
∇A∇FK

D
− K

D
uE∇A(KEF )

)
KDB

− P FD

(
∇FK

D
− K

D

(
uEKEF

)) (
∇AKDB −∇A∇DuB

)
+
K

D

(
KAD

)
uEOF R̄FBDE

]

=
K2

D

[
− K

2D

(
(n · ∇)K

K
− u ·K · u

)
+ P FD

(
∇FK

K
− uEKEF

)(
uB∇DnB

)
+ nDuEuFnBR̄FBDE +

1

2D

(
∇2K

K

)
− λ

2
− 1

D

(
uD∇AKDA

)
+
K

D

(
(n · ∇)K

K

)
− P F

A

1

D

(
∇A∇FK

K
− uE∇AKEF

)
− P FD

(
∇FK

K
− uEKEF

)(
∇AKDA

K

)
− λ

]
(B.54)

Now using

∇2K

K2
=

∇̂2K

K2
+

(n · ∇)K

K
+O

(
1

D

)
and,

∇̂2K

K2
= 2

(
u · ∇K
K

)
− u ·K · u+ λ(D − 1)

K

(B.55)

We get the final expression

∇AvA =
K2

D

[
nBnDuEuF R̄FBDE − K

D

(
u · ∇K
K

− u ·K · u
)
− 2 λ

− (u ·K ·K · u) + 2

(
∇AK

K

)
uBKA

B −
(
u · ∇K
K

)2

+ 2

(
u · ∇K
K

)
(u ·K · u)−

(
∇̂DK

K

)(
∇̂DK

K

)
− (u ·K · u)2

]
= D s2

(B.56)
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B.2.3 The derivation of the Identity (B.9)

∇ · u = ∇̂ · u− (u · ∇)K

K
− 1

K
(u · ∇)

(
(n · ∇)K

K

)
+

1

K

(n · ∇)K

K

(u · ∇)K

K
(B.57)

∇ · u = ∇̂ · u+ nB(n · ∇)uB

= ∇̂ · u− uB
[
ψK + ψ

(n · ∇)N

N
−N

]−1

∇̂B

[
ψK + ψ

(n · ∇)N

N
−N

] (B.58)

In the last line we have used the following relation

ND = ψK + ψ
(n · ∇)N

N
−N (B.59)

∇ · u = ∇̂ · u− uB
[
ψK + ψ

(n · ∇)N

N
−N

]−1

∇̂B

[
ψK + ψ

(n · ∇)N

N
−N

]
= ∇̂ · u−

[
1− (n · ∇)N

NK
+

N

ψK

] [
(u · ∇)K

K
+

1

K
(u · ∇)

{
(n · ∇)N

N
− N

ψ

}]
= ∇̂ · u− (u · ∇)K

K
− 1

K
(u · ∇)

{
(n · ∇)N

N
− N

ψ

}
+

[
(n · ∇)N

NK
− N

ψK

]
(u · ∇)K

K

= ∇̂ · u− (u · ∇)K

K
− 1

K
(u · ∇)

[
(n · ∇)K

K

]
+

1

K

(
(n · ∇)K

K

)(
(u · ∇)K

K

)
(B.60)

In the last line we have used

(n · ∇)N

N
=

(n · ∇)K

K
+
K

D
(B.61)

B.2.4 The derivation of the identity (B.38)
(n · ∇)

[
PC
D

{
2K(u · ∇)OC −∇2OC

}]
= (n · ∇)

[
PC
D

{
−2K(n · ∇)uC +∇2uC

}]
=
[
(n · ∇)PC

D

] [
−2K(n · ∇)uC +∇2uC

]︸ ︷︷ ︸
1 st Term

+PC
D (n · ∇)

[
−2K(n · ∇)uC +∇2uC

]︸ ︷︷ ︸
2 nd Term

(B.62)
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1 st Term ≡
[
(n · ∇)PC

D

] [
−2K(n · ∇)uC +∇2uC

]
= −nD[(n · ∇)nC ]

[
−2K(n · ∇)uC +∇2uC

]
+ uD[(n · ∇)uC ]

[
−2K(n · ∇)uC +∇2uC

]
− [(n · ∇)nD]

[
−2KnC(n · ∇)uC + nC∇2uC

]
= 0

(B.63)

Where, we have used

(n · ∇)nD = −uD
[
uB(n · ∇)nB

]
+ PB

D (n · ∇)nB

(n · ∇)uD = nD
[
nB(n · ∇)uB

]
+ PB

D (n · ∇)uB

And, − 2K(n · ∇)uC +∇2uC = nC
[
2KuD(n · ∇)nD − uD∇2nD

] (B.64)

The third one follows from the fact that,

PC
B

[
−2K(n · ∇)uC +∇2uC

]
= PC

B

[
∇̂2uC − K(n · ∇)uC

]
= PC

B

[
∇̂2uC − ∇̂CK −K(u · ∇)uC +KuDKDC

]
= 0

(B.65)

Where, [E1]
vector
B is the leading order membrane equation.

2 nd Term ≡ PC
D (n · ∇)

[
−2K(n · ∇)uC +∇2uC

]
= PC

D

{
−2[(n · ∇)K][(n · ∇)uC ]− 2K (n · ∇)[(n · ∇)uC ] + (n · ∇)(∇2uC)

}
(B.66)

166



B Appendices for Chapter 3

Now,

PC
D (n · ∇)(∇2uC)

= PC
D nE∇E∇F∇FuC

= PC
D nE[∇E,∇F ]∇FuC + PC

D nE∇F∇E∇FuC

= PC
D

[
−λ (D − 1)(n · ∇)uC + nER̄EFCB

(
∇FuB

)
+ nE∇F [∇E,∇F ]uC + nE∇F∇F∇EuC

]
= PC

D

[
− λ (D − 1)(n · ∇)uC + nER̄EFCB

(
∇FuB

)
+ nEuB

(
∇F R̄EFCB

)
+ nER̄EFCB

(
∇FuB

)
+ ∇̂2[(n · ∇)uC ]− (∇2nE)(∇EuC)− 2 (∇Fn

E)(∇F∇EuC) +K (n · ∇)[(n · ∇)uC ]

]
= PC

D

[
∇̂2[(n · ∇)uC ]− (∇2nE)(∇EuC)− 2 (∇Fn

E)(∇F∇EuC) +K (n · ∇)[(n · ∇)uC ]

− λ (D − 1)(n · ∇)uC

]
= PC

D

[
∇̂2∇̂2uC

K
− 1

K2

(
∇̂2K

)
∇̂2uC −

(
∇̂2nC

) u · ∇K
K

− (∇2nE)(∇EuC)

− 2 (∇Fn
E)(∇F∇EuC) +K (n · ∇)[(n · ∇)uC ]− λ (D − 1)(n · ∇)uC

]
(B.67)

In the last line we have used,

PC
D ∇̂2[(n · ∇)uC ] = PC

D ∇̂2

[
PE
C

∇̂2uE
K

− nC
u · ∇K
K

]

= PC
D

[
∇̂2∇̂2uC

K
− 1

K2

(
∇̂2K

)
∇̂2uC −

(
∇̂2nC

) u · ∇K
K

] (B.68)

Using (B.67) in (B.66) we get,

2-nd Term

= −PC
Dλ(D − 1)(n · ∇)uC + PC

D

[
− 2[(n · ∇)K][(n · ∇)uC ]−K (n · ∇)[(n · ∇)uC ] +

∇̂2∇̂2uC
K

− 1

K2

(
∇̂2K

)
∇̂2uC −

(
∇̂2nC

) u · ∇K
K

− (∇2nE)(∇EuC)− 2 (∇Dn
E)(∇D∇EuC)

]
(B.69)

Using the following identity whose derivation is a bit lengthy, and we are skipping the
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derivation

PC
B (n · ∇)[(n · ∇)uC ]

= PC
B

[
− 4

u · ∇K
K

[(u · ∇)uC ] + [(u · ∇)uC ] (u ·K · u)− 7
u · ∇K
K

∇CK

K
+

∇̂2∇̂2uC
K2

+ 3 (u ·K · u)∇CK

K
− K

D
uDKDC + 4

(
uDKDC

) u · ∇K
K

− uDKDC(u ·K · u)− 2KD
C

∇DK

K

− 2(uEK
ED)(∇DuC) + 2 KAFKACuF − 2

λ(D − 1)

K

∇̂2uC
K

− 2 uFnEOAR̄EFCA

]
(B.70)

Now,

2-nd Term

= PC
B

[
−K

2

D

(
(u · ∇)uC − uDKDC +

∇CK

K

)]
+ PC

BK

[
2 uFnEOAR̄EFCA

+ 2 KD
C

∇DK

K
+ 2(uEK

ED)(∇DuC)− 2KAFKACuF − 2
∇̂EK

K
(∇EuC)

− 2
u · ∇K
K

(u · ∇)uC + 2
u · ∇K
K

uDKDC + 2(u ·K · u)[(u · ∇)uC ]− 2(u ·K · u)(uDKDC)

]
= −2 D vB

(B.71)

Finally, we get

(n · ∇)
[
PC
D

{
2K(u · ∇)OC −∇2OC

}]
= −2D vD (B.72)

B.2.5 The derivation of the identity (B.39)

We can divide the L.H.S. of (B.39) as follows

PC
B

[
2K(u · ∇)OC −∇2OC + 2 nDOEuF R̄ECFD + 2

(n · ∇)K

K
[(u · ∇)OC ] +

∇CK

D

− 2(∇FOC)(u
D∇FnD) +

K

D
(u · ∇)OC +

K

D
uDKCD

]
≡ PC

A ∇2uC − PC
A∇2nC +W

(B.73)

whereW is what we get by subtracting off PC
A ∇2uC−PC

A∇2nC from the LHS of equation

(B.73).
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First we shall simplifyW

W = PC
B

[
2K(u · ∇)OC + 2 nDOEuF R̄ECFD + 2

(n · ∇)K

K
[(u · ∇)OC ] +

∇CK

D

− 2(∇FOC)(u
D∇FnD) +

K

D
(u · ∇)OC +

K

D
uDKCD

]
= PC

B

[
2K
(
uDKDC

)
− 2K(u · ∇)uC + 2 uDKDC

(
(u · ∇)K

K
− u ·K · u

)
− 2[(u · ∇)uC ]

(
(u · ∇)K

K
− u ·K · u

)
+

∇CK

D
− 2 uDKFCK

FD

+ 2(∇FuC)
(
uDK

FD
)
+
K

D
[(u · ∇)uC ] + 2 nDOEuF R̄ECFD

]
(B.74)

Now, we shall simplify PC
A ∇2nC

PC
B∇2nC = PC

B∇D (∇DnC)

= PC
B∇D [KDC + nD(n · ∇)nC ]

= PC
B∇DKDC︸ ︷︷ ︸

T1

+PC
BK(n · ∇)nC︸ ︷︷ ︸

T2

+PC
B (n · ∇) [(n · ∇)nC ]︸ ︷︷ ︸

T3

(B.75)

T1 ≡ PC
B∇DKDC

= PC
B∇DKCD

= PC
B∇D

(
ΠE
C∇EnD

)
= PC

B

[
(∇DΠE

C)(∇EnD) + ΠE
C

(
∇D∇EnD

)]
= PC

B

{
−(∇DnC)[(n · ∇)nD] + ΠE

C∇E∇DnD
}
+ PE

B [∇D,∇E]n
D

= −PC
BK

D
C

(
∇DK

K

)
+ PC

B∇CK − PE
B R̄

D
DEC nC

= −PC
BK

D
C

(
∇DK

K

)
+ PC

B ∇CK

(B.76)
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T2 ≡ PC
BK[(n · ∇)nC ]

= PC
B K

∇C(ND)

ND

= PC
BK

1

ψK + ψ (n·∇)N
N

−N
∇C

(
ψK + ψ

(n · ∇)N

N
−N

)
= PC

B

(
1− (n · ∇)N

NK
+

N

ψK

)
∇C

(
K +

(n · ∇)N

N
− N

ψ

)
= PC

B ∇C

(
K +

(n · ∇)N

N
− N

ψ

)
+ PC

B

(
−(n · ∇)N

NK
+

N

ψK

)
∇CK

= PC
B∇CK + PC

B∇C

(
(n · ∇)K

K

)
− PC

B

(
(n · ∇)K

K

)(
∇CK

K

)

(B.77)

In the first line we have used

ND = ψK + ψ
(n · ∇)N

N
−N (B.78)

And, in the last line we have used

(n · ∇)N

N
=

(n · ∇)K

K
+
K

D
(B.79)
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T3 ≡ PC
B (n · ∇)[(n · ∇)nC ]

= PC
B

[
(n · ∇)ΠD

C

](∇DN

N

)
+ PC

B (n · ∇)

(
∇CN

N

)
= −PC

B [(n · ∇)nC ]

(
(n · ∇)N

N

)
− PC

B

1

N2
[(n · ∇)N ](∇CN) + PC

B

1

N
[(n · ∇)(∇CN)]

= −PC
B

(
∇CK

K

)(
(n · ∇)N

N

)
− PC

B

(
(n · ∇)N

N

)(
∇CK

K

)
+ PC

B

1

N
nD∇C∇DN

= −2PC
B

(
∇CK

K

)(
(n · ∇)N

N

)
+ PC

B

1

N
∇C [(n · ∇)N ]− PC

B

1

N

(
∇Cn

D
)
(∇DN)

= −2PC
B

(
∇CK

K

)(
(n · ∇)N

N

)
+ PC

B∇C

(
(n · ∇)N

N

)
+

1

N2
PC
B (∇CN)[(n · ∇)N ]

− PC
B

1

N

(
∇Cn

D
)
(∇DN)

= −2PC
B

(
∇CK

K

)(
(n · ∇)K

K
+
K

D

)
+ PC

B∇C

(
(n · ∇)K

K
+
K

D

)
+ PC

B

(
∇CK

K

)(
(n · ∇)K

K
+
K

D

)
− PC

BK
D
C

(
∇DK

K

)
= −2PC

B

(
∇CK

K

)(
2
(u · ∇)K

K
− u ·K · u

)
+ PC

B∇C

(
∇̂2K

K2

)
+ PC

B

∇CK

K

λ(D − 1)

K

+ PC
B

(
∇CK

K

)(
2
(u · ∇)K

K
− u ·K · u

)
− PC

BK
D
C

∇DK

K
(B.80)

In the last line we have used

(n · ∇)K

K
=

∇̂2K

K2
− (D − 1)λ

K
− K

D
(B.81)

And, divergence of leading order vector membrane equation

∇̂2K

K2
= 2

u · ∇K
K

− u ·K · u+ λ(D − 1)

K
(B.82)

Adding (B.76) (B.77) and (B.80) we get

PC
B∇2nC = PC

B

[
2∇CK − 2KD

C

(
∇DK

K

)
+

2

K2
∇C

(
∇̂2K

)
− 2

∇CK

K

λ(D − 1)

K

− 6

(
∇CK

K

)(
2
(u · ∇)K

K
− u ·K · u

)]
(B.83)
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Now, we shall simplify PC
B∇2uC

PC
B ∇̂2uC

= PC
B ∇̂E

(
ΠF
EΠ

D
C∇FuD

)
= PC

BΠ
E
M∇M

(
ΠF
EΠ

D
C∇FuD

)
= PC

BΠ
N
M

(
∇MΠF

N

)
(∇FuC) + PC

BΠ
F
M

(
∇MΠD

C

)
(∇FuD) + PC

BΠ
F
M∇M∇FuC

= PC
B

[
− ΠN

M nF
(
∇MnN

)
(∇FuC)− ΠF

Mn
D
(
∇MnC

)
(∇FuD) +∇2uC − nFnM∇M∇FuC

]
= PC

B

[
− nF K(∇FuC)− nD

(
∇MnC

)
(∇MuD) + nD[(n · ∇)nC ][(n · ∇)uD]

+∇2uC − nM∇M
(
nF∇FuC

)
+ nM

(
∇MnF

)
(∇FuC)

]
= PC

B

[
−K[(n · ∇)uC ]−

(
∇MnC

)
(nD∇MuD) + [(n · ∇)nC ][n

D(n · ∇)uD]

+∇2uC − (n · ∇)[(n · ∇)uC ] +
[
(n · ∇)nF

]
(∇FuC)

]
⇒ PC

B∇2uC = PC
B

[
∇̂2uC +K[(n · ∇)uC ] +

(
∇MnC

)
(nD∇MuD)

− [(n · ∇)nC ][n
D(n · ∇)uD] + (n · ∇)[(n · ∇)uC ]−

[
(n · ∇)nF

]
(∇FuC)

]
(B.84)

Now, PC
B

(
∇MnC

) (
nD∇MuD

)
= −PC

B

[
KM
C + nM(n · ∇)nC

] [
uDK

D
M + uDnM(n · ∇)nD

]
= −PC

BK
M
C K

D
MuD − PC

B [(n · ∇)nC ]
[
uD(n · ∇)nD

]
= −PC

BK
M
C K

D
MuD − PC

B

∇CK

K

(
u · ∇̂K
K

) (B.85)
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Putting (B.85) in (B.84) we get

PC
B∇2uC = PC

B ∇̂2uC + PC
B K[(n · ∇)uC ]− PC

BK
M
C K

D
MuD − PC

B

∇CK

K

(
u · ∇K
K

)
+ PC

B

∇CK

K

(
u · ∇K
K

)
+ PC

B (n · ∇)[(n · ∇)uC ]− PC
B

∇̂FK

K
(∇FuC)

⇒ PC
B∇2uC = PC

B ∇̂2uC + PC
B K[(n · ∇)uC ]− PC

BK
M
C K

D
MuD + PC

B (n · ∇)[(n · ∇)uC ]

− PC
B

∇̂FK

K
(∇FuC)

(B.86)

As we have mentioned before derivation of PC
B (n · ∇)[(n · ∇)uC ] is lengthy, we shall use

the result mentioned in eq(B.70)

Using (B.70) for PC
B (n · ∇)[(n · ∇)uC ] we get the final expression for PC

B∇2uC

PC
B∇2uC = PC

B

[
∇̂2uC +K[(n · ∇)uC ]− 4

(u · ∇)K

K
[(u · ∇)uC ] + [(u · ∇)uC ] (u ·K · u)

− 7

(
u · ∇K
K

)
∇CK

K
− ∇̂DK

K

(
∇DuC

)
+ 3 (u ·K · u)∇CK

K
+

∇̂2∇̂2uC
K2

− K

D
uDKDC

+ 4
(
uDKDC

) u · ∇K
K

− uDKDC(u ·K · u)− 2KD
C

∇DK

K
− 2(uEK

ED)(∇DuC)

+KAFKACuF − 2
(D − 1)λ

K

(
∇CK

K
− uEKEC + (u · ∇)uC

)
− 2 nEuFOAR̄EFCA

]
(B.87)

Adding (B.74) (B.83) and (B.87) we get the final expression

1

K

(
PC
B ∇2uC − PC

B∇2nC +W
)

=

[
∇̂2uC
K

− ∇̂CK

K
+ uEKEC − u · ∇̂uC

]
PC
B +

[
∇̂2∇̂2uC
K3

− uEKEDK
D
C

K
− (∇̂CK)(u · ∇̂K)

K3

− (∇̂EK)(∇̂EuC)

K2
− 2KDE∇̂D∇̂EuC

K2
− ∇̂C∇̂2K

K3
+

∇̂C(KEDK
EDK)

K3
+ 3

(u ·K · u)(u · ∇̂uC)
K

− 3
(u ·K · u)(uEKEC)

K
− 6

(u · ∇̂K)(u · ∇̂uC)
K2

+ 6
(u · ∇̂K)(uEKEC)

K2
+ 3

u · ∇̂uC
D − 3

− 3
uEKEC

D − 3
− (D − 1)λ

K2

(
∇̂CK

K
− 2uDKDC + 2(u · ∇̂)uC

)]
PC
B

≡ Evector
B

(B.88)

173



B Appendices for Chapter 3

Where, in the last step we have used the following identity

PC
B (n · ∇)uC =PC

B

[
∇CK

K
+

1

K
∇C

(
∇̂2K

K2
− (D − 1)λ

K
− K

D

)
− uDKDC + (u · ∇)uC

− 1

K

(
∇CK

K

)(
2
(u · ∇)K

K
− u ·K · u− K

D

)]
(B.89)
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Appendix C

Appendices for Chapter 4
C.1 Calculation of integrals (4.12) at linear order

t(R) = −2

(
D

K

)2 ∫ ∞

R

y dy

ey − 1

= −2

(
D

K

)2 [
−R Log

[
1− e−R

]
+ PolyLog

[
2, e−R

] ] (C.1)

Where PolyLog[n, z] is defined as

PolyLog[n, z] ≡ Lin(z) =
∞∑
k=1

zk

kn

We just want e−R term of the integration. Expand in e−R we get.

t(R) = −2

(
D

K

)2 [
R e−R + e−R

]
+O

(
e−2R

)
= −2

(
D

K

)2

e−R [R + 1]

(C.2)

t(R) = −2

(
D

K

)2

e−R [R + 1] +O
(
e−2R

)
(C.3)

v(R) = 2

(
D

K

)3 [∫ ∞

R

e−xdx

∫ x

0

y ey

ey − 1
dy − e−R

∫ ∞

0

e−xdx

∫ x

0

y ey

ey − 1
dy

]
(C.4)

Now, ∫ x

0

y ey

ey − 1
dy =

π2

6
+
x2

2
+ x Log

[
1− e−x

]
− PolyLog

[
2, e−x

]
(C.5)

⇒
∫ ∞

R

e−xdx

∫ x

0

y ey

ey − 1
dy

=

∫ ∞

R

e−x
(
π2

6
+
x2

2
+ x Log

[
1− e−x

]
− PolyLog

[
2, e−x

])
dx

= e−R
(
π2

6

)
+ e−R

(
R2

2

)
− (1− e−R)R Log

[
1− e−R

]
+ (1− e−R) PolyLog

[
2, e−R

]
(C.6)
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⇒
∫ ∞

0

e−xdx

∫ x

0

y ey

ey − 1
dy =

π2

6
(C.7)

Substituting (C.6) and (C.7) in (C.4) we get the final expression

v(R) = 2

(
D

K

)3 [
e−R

(
R2

2

)
− (1− e−R)R Log

[
1− e−R

]
+ (1− e−R) PolyLog

[
2, e−R

]]
(C.8)

Expanding as before in e−R we get

v(R) = 2

(
D

K

)3(
1 +R +

R2

2

)
e−R +O

(
e−2R

)
(C.9)

The f1(R) integration is very straightforward

f1(R) = 2

(
D

K

)2 [
−
∫ ∞

R

x e−xdx+ e−R
∫ ∞

0

x e−xdx

]
= −2

(
D

K

)2

R e−R
(C.10)

f1(R) = −2

(
D

K

)2

R e−R +O
(
e−2R

)
(C.11)

Calculation of f2(R) is a bit complicated

f2(R) =

(
D

K

)[∫ ∞

R

e−xdx

∫ x

0

v(y)

1− e−y
dy − e−R

∫ ∞

0

e−xdx

∫ x

0

v(y)

1− e−y
dy

]

−
(
D

K

)4
[∫ ∞

R

e−xdx

∫ x

0

y2 e−y

1− e−y
dy − e−R

∫ ∞

0

e−xdx

∫ x

0

y2 e−y

1− e−y
dy

]

First we will calculate the second line of f2(R)∫ x

0

y2 e−y

1− e−y
dy = x2 Log[1− e−x]− 2 x PolyLog[2, e−x]− 2 PolyLog[3, e−x] + 2 Zeta[3]

(C.12)
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Where Zeta[n] is the ‘Riemann Zeta function’ given by

Zeta[n] ≡ ζ[n] =
∞∑
k=1

1

kn

Now, we need to do the following integration∫ ∞

0

e−xdx

∫ x

0

y2 e−y

1− e−y
dy

=

∫ ∞

0

e−x
[
x2 Log[1− e−x]− 2 x PolyLog[2, e−x]− 2 PolyLog[3, e−x] + 2 Zeta[3]

]
dx

= 2 (−1 + Zeta[3])

Now, we want to calculate the following integration∫ ∞

R

e−xdx

∫ x

0

y2 e−y

1− e−y
dy

=

∫ ∞

R

e−x
[
x2 Log[1− e−x]− 2 x PolyLog[2, e−x]− 2 PolyLog[3, e−x] + 2 Zeta[3]

]
dx

We can expand the integrand in e−x and then can do the integration term by term. Doing

the integration term by term, we get∫ ∞

R

e−xdx

∫ x

0

y2 e−y

1− e−y
dy = 2 e−R Zeta[3] +O(e−2R) (C.13)

So, finally the second line of f2(R) becomes

−
(
D

K

)4
[∫ ∞

R

e−xdx

∫ x

0

y2 e−y

1− e−y
dy − e−R

∫ ∞

0

e−xdx

∫ x

0

y2 e−y

1− e−y
dy

]

= −2

(
D

K

)4

e−R

(C.14)

Now we will calculate the first line of f2(R)(
D

K

)[∫ ∞

R

e−xdx

∫ x

0

v(y)

1− e−y
dy − e−R

∫ ∞

0

e−xdx

∫ x

0

v(y)

1− e−y
dy

]
(C.15)

Using eq (C.8) we get∫ x

0

v(y)

1− e−y
dy = 2

(
D

K

)3 ∫ x

0

dy

[
y2 e−y

2(1− e−y)
− y Log

[
1− e−y

]
+ PolyLog

[
2, e−y

]]
= 2

(
D

K

)3 [
x2

2
Log[1− e−x]− 2xPolyLog[2, e−x]− 3 PolyLog[3, e−x] + 3 Zeta[3]

]
(C.16)
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Now we need to do the following integration∫ ∞

0

e−xdx

∫ x

0

v(y)

1− e−y
dy

= 2

(
D

K

)3 ∫ ∞

0

e−xdx

[
x2

2
Log[1− e−x]− 2 x PolyLog[2, e−x]− 3 PolyLog[3, e−x] + 3 Zeta[3]

]
= 2

(
D

K

)3

Zeta[3]

Now, we will calculate the following integration. Expanding the integrand in e−x and doing

the integration term by term we get∫ ∞

R

e−xdx

∫ x

0

v(y)

1− e−y
dy = 2

(
D

K

)3

3 e−R Zeta[3] +O(e−2R) (C.17)

So, finally the first line of f2(R) becomes(
D

K

)[∫ ∞

R

e−xdx

∫ x

0

v(y)

1− e−y
dy − e−R

∫ ∞

0

e−xdx

∫ x

0

v(y)

1− e−y
dy

]

= 4

(
D

K

)4

e−R Zeta[3] +O(e−2R)

(C.18)

f2(R) becomes

f2(R) = 2

(
D

K

)4

e−R (2 Zeta[3]− 1) +O(e−2R) (C.19)
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C.2 Some Details of Linearized Calculation

C.2.1 Outside (ψ > 1)

From (4.23)

− nA
∞∑
m=0

(ψ − 1)mM
(m)
AB

=
∞∑
m=0

[
− ND

ψ
(ψ − 1)mξ

(m)
B +m(ψ − 1)m−1Nξ

(m)
B + (ψ − 1)m(n · ∇)ξ

(m)
B

− ND

ψ
(ψ − 1)m nB

(
n · ξ(m)

)
+N m(ψ − 1)m−1 nB

(
n · ξ(m)

)
+ (ψ − 1)m nA∇Bξ

(m)
A

]
=

∞∑
m=0

[
−ND(ψ − 1)mξ

(m)
B [1 + (ψ − 1)]−1 +m(ψ − 1)m−1Nξ

(m)
B + (ψ − 1)m(n · ∇)ξ

(m)
B

−ND(ψ − 1)mnB(n · ξ(m))[1 + (ψ − 1)]−1 +Nm(ψ − 1)m−1 nB(n · ξ(m)) + (ψ − 1)mnA∇Bξ
(m)
A

]
Comparing coefficient of (ψ − 1)0 we get

nAM
(0)
AB = ND

[
ξ
(0)
B + nB

(
n · ξ(0)

)]
−
[
(n · ∇)ξ

(0)
B + nA∇Bξ

(0)
A

]
−N

[
ξ
(1)
B + nB

(
n · ξ(1)

)]
(C.20)

Comparing coefficient of (ψ − 1)1 we get

nAM
(1)
AB = ND

[
ξ
(1)
B − ξ

(0)
B

]
+ND

[
nB
(
n · ξ(1)

)
− nB

(
n · ξ(0)

)]
−
[
(n · ∇)ξ

(1)
B + nA∇Bξ

(1)
A

]
− 2N

[
ξ
(2)
B + nB

(
n · ξ(2)

)]
(C.21)

Comparing coefficient of (ψ − 1)2 we get

nAM
(2)
AB = ND

[
ξ
(2)
B − ξ

(1)
B + ξ

(0)
B + nB

(
n · ξ(2)

)
− nB

(
n · ξ(1)

)
+ nB

(
n · ξ(0)

)]
−
[
(n · ∇)ξ

(2)
B + nA∇Bξ

(2)
A

]
− 3N

[
ξ
(3)
B + nB

(
n · ξ(3)

)]
(C.22)

MAB is correct up to orderO
(

1
D

)2. So, we want ξA to be correct up to orderO ( 1
D

)3. This
implies we want ξ(0)A to be correct up to orderO

(
1
D

)3, ξ(1)A to be correct up to orderO
(

1
D

)2
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and ξ(2)A to be correct up to order O
(

1
D

)
. Now, using the following expansion

ξ
(0)
B = ξ

(0,0)
B +

1

D
ξ
(0,1)
B +

1

D2
ξ
(0,2)
B +

1

D3
ξ
(0,3)
B +O

(
1

D

)4

ξ
(1)
B = ξ

(1,0)
B +

1

D
ξ
(1,1)
B +

1

D2
ξ
(1,2)
B +O

(
1

D

)3

ξ
(2)
B = ξ

(2,0)
B +

1

D
ξ
(2,1)
B +O

(
1

D

)2

(C.23)

From (C.20) we get

ND
[
ξ
(0,0)
B + nB

(
n · ξ(0,0)

)]
= 0

⇒ ND
[(
n · ξ(0,0)

)
+
(
n · ξ(0,0)

)]
= 0

⇒
(
n · ξ(0,0)

)
= 0

⇒ ξ
(0,0)
B = 0

(C.24)

From (C.21), at leading order

ND
[
ξ
(1,0)
B − ξ

(0,0)
B + nB

(
n · ξ(1,0)

)
− nB

(
n · ξ(0,0)

)]
= 0

⇒ ND
[
ξ
(1,0)
B + nB

(
n · ξ(1,0)

)]
= 0

⇒ ξ
(1,0)
B = 0

(C.25)

Similarly, from (C.22)

ξ
(2,0)
B = 0 (C.26)

Now, we will calculate ξ(2,1)B . From (C.22) at O(1)

nAM
(2)
AB = N

[
ξ
(2,1)
B − ξ

(1,1)
B + ξ

(0,1)
B + nB

(
n · ξ(2,1)

)
− nB

(
n · ξ(1,1)

)
+ nB

(
n · ξ(0,1)

)]
(C.27)

From (C.21) at O(1)

nAM
(1)
AB = N

[
ξ
(1,1)
B − ξ

(0,1)
B + nB

(
n · ξ(1,1)

)
− nB

(
n · ξ(0,1)

)]
(C.28)
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Adding (C.28) and (C.27) we get

nAM
(2)
AB + nAM

(1)
AB = N

[
ξ
(2,1)
B + nB

(
n · ξ(2,1)

)]
⇒ n ·M (2) · n+ n ·M (1) · n = 2N

(
n · ξ(2,1)

)
⇒ n · ξ(2,1) = 1

2N

(
n ·M (2) · n+ n ·M (1) · n

) (C.29)

Finally we get,

ξ
(2,1)
B =

1

N

[
nAM

(2)
AB + nAM

(1)
AB − nB

2

(
n ·M (2) · n+ n ·M (1) · n

)]
(C.30)

Adding (C.20) and (C.21) we get,

nAM
(1)
AB + nAM

(0)
AB

= ND
[
ξ
(1)
B + nB

(
n · ξ(1)

)]
−
[
(n · ∇)ξ

(1)
B + (n · ∇)ξ

(0)
B

]
−
[
nA∇Bξ

(1)
A + nA∇Bξ

(0)
A

]
−N

[
ξ
(1)
B + nB

(
n · ξ(1)

)]
− 2N

[
ξ
(2)
B + nB

(
n · ξ(2)

)]
(C.31)

From (C.31), at order O(1) we get

nAM
(1)
AB + nAM

(0)
AB = N

[
ξ
(1,1)
B + nB

(
n · ξ(1,1)

)]
⇒ n ·M (1) · n+ n ·M (0) · n = 2N

(
n · ξ(1,1)

)
⇒ n · ξ(1,1) = 1

2N

(
n ·M (1) · n+ n ·M (0) · n

)
⇒ ξ

(1,1)
B =

1

N

[
nAM

(1)
AB + nAM

(0)
AB − nB

2

(
n ·M (1) · n+ n ·M (0) · n

)]
(C.32)

From (C.31) at order O
(

1
D

)
,

N
[
ξ
(1,2)
B + nB

(
n · ξ(1,2)

)]
−
[
(n · ∇)ξ

(1,1)
B + (n · ∇)ξ

(0,1)
B

]
−
[
nA∇Bξ

(1,1)
A + nA∇Bξ

(0,1)
A

]
−N

[
ξ
(1,1)
B + nB

(
n · ξ(1,1)

)]
− 2N

[
ξ
(2,1)
B + nB

(
n · ξ(2,1)

)]
= 0

⇒
(
n · ξ(1,2)

)
=

1

N

[
nB(n · ∇)ξ

(1,1)
B + nB(n · ∇)ξ

(0,1)
B

]
+ 2

(
n · ξ(2,1)

)
+
(
n · ξ(1,1)

)
⇒ ξ

(1,2)
B =

1

N

[
(n · ∇)ξ

(1,1)
B + (n · ∇)ξ

(0,1)
B

]
+

1

N

[
nA∇Bξ

(1,1)
A + nA∇Bξ

(0,1)
A

]
+ 2 ξ

(2,1)
B + ξ

(1,1)
B − nB

N

[
nA(n · ∇)ξ

(1,1)
A + nA(n · ∇)ξ

(0,1)
A

]
(C.33)
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Now, we will calculate ξ(0)A . From (C.20), at order O(1)

nAM
(0)
AB = N

[
ξ
(0,1)
B + nB

(
n · ξ(0,1)

)]
⇒ n ·M · n = 2N

(
n · ξ(0,1)

)
⇒ ξ

(0,1)
B =

1

N

[
nAM

(0)
AB − nB

2

(
n ·M (0) · n

)] (C.34)

From (C.20) at order O
(

1
D

)
N
[
ξ
(0,2)
B + nB

(
n · ξ(0,2)

)]
−
[
(n · ∇)ξ

(0,1)
B + nA∇Bξ

(0,1)
A

]
−N

[
ξ
(1,1)
B + nB

(
n · ξ(1,1)

)]
= 0

⇒ 2N
(
n · ξ(0,2)

)
= 2 nB(n · ∇)ξ

(0,1)
B + 2N

(
n · ξ(1,1)

)
⇒ ξ

(0,2)
B =

1

N

[
(n · ∇)ξ

(0,1)
B + nA∇Bξ

(0,1)
A

]
+ ξ

(1,1)
B − nB

N

[
nA(n · ∇)ξ

(0,1)
A

]
(C.35)

From (C.20) at order O
(

1
D

)2
N
[
ξ
(0,3)
B + nB

(
n · ξ(0,3)

)]
−
[
(n · ∇)ξ

(0,2)
B + nA∇Bξ

(0,2)
A

]
−N

[
ξ
(1,2)
B + nB

(
n · ξ(1,2)

)]
= 0

⇒ n · ξ(0,3) = 1

N

[
nB(n · ∇)ξ

(0,2)
B

]
+ n · ξ(1,2)

⇒ ξ
(0,3)
B =

1

N

[
(n · ∇)ξ

(0,2)
B + nA∇Bξ

(0,2)
A

]
+ ξ

(1,2)
B − nB

N

[
nA(n · ∇)ξ

(0,2)
A

]
(C.36)
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Using, (C.30) (C.32), (C.33), (C.34), (C.35) and (C.36) in (4.22) we get

M ′
AB =MAB + ψD∇A

[
ψ−DξB

]
+ ψD∇B

[
ψ−DξA

]
=M

(0)
AB + (ψ − 1)M

(1)
AB + (ψ − 1)2M

(2)
AB +∇AξB −

(
ND

ψ

)
nAξB︸ ︷︷ ︸

LAB

+LBA +O
(

1

D

)3

=M
(0)
AB + (ψ − 1)M

(1)
AB + (ψ − 1)2M

(2)
AB +∇A

[
ξ
(0)
B + (ψ − 1)ξ

(1)
B + (ψ − 1)2ξ

(2)
B

]
−ND[1 + (ψ − 1)]−1nA

[
ξ
(0)
B + (ψ − 1)ξ

(1)
B + (ψ − 1)2ξ

(2)
B

]
+ LBA

=M
(0)
AB + (ψ − 1)M

(1)
AB + (ψ − 1)2M

(2)
AB +∇Aξ

(0)
B +NnAξ

(1)
B + (ψ − 1)∇Aξ

(1)
B

+ (ψ − 1)2∇Aξ
(2)
B + 2N(ψ − 1)nAξ

(2)
B −ND nAξ

(0)
B −ND(ψ − 1)nAξ

(1)
B

−ND(ψ − 1)2nAξ
(2)
B +ND(ψ − 1)nAξ

(0)
B +ND(ψ − 1)2nAξ

(1)
B −ND(ψ − 1)2nAξ

(0)
B + LBA

=M
(0)
AB +∇Aξ

(0)
B +NnAξ

(1)
B −ND nAξ

(0)
B

+ (ψ − 1)

[
M

(1)
AB +∇Aξ

(1)
B + 2NnAξ

(2)
B −ND nAξ

(1)
B +ND nAξ

(0)
B

]
+ (ψ − 1)2

[
M

(2)
AB +∇Aξ

(2)
B −ND nAξ

(2)
B +ND nAξ

(1)
B −ND nAξ

(0)
B

]
+ LBA

(C.37)

Now writing the expression for LBA we finally get

M ′
AB =

[
M

(0)
AB +∇Aξ

(0)
B +NnAξ

(1)
B −ND nAξ

(0)
B +∇Bξ

(0)
A +NnBξ

(1)
A −ND nBξ

(0)
A

]
+ (ψ − 1)

[
M

(1)
AB +∇Aξ

(1)
B + 2NnAξ

(2)
B −ND nAξ

(1)
B +ND nAξ

(0)
B

+∇Bξ
(1)
A + 2NnBξ

(2)
A −ND nBξ

(1)
A +ND nBξ

(0)
A

]
+ (ψ − 1)2

[
M

(2)
AB +∇Aξ

(2)
B −ND nAξ

(2)
B +ND nAξ

(1)
B −ND nAξ

(0)
B

+∇Bξ
(2)
A −ND nBξ

(2)
A +ND nBξ

(1)
A −ND nBξ

(0)
A

]
(C.38)
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Now, we will simplify (C.38). First, we will simplify the first square bracketed terms.

∇Aξ
(0)
B −ND nAξ

(0)
B +NnAξ

(1)
B

= ∇Aξ
(0)
B −NnA

[
ξ
(0,1)
B +

1

D
ξ
(0,2)
B +

1

D2
ξ
(0,3)
B

]
+ nA

N

D

[
ξ
(1,1)
B +

1

D
ξ
(1,2)
B

]
+O

(
1

D

)3

= ∇Aξ
(0)
B − nA

[
nDM

(0)
DB − nB

2

(
n ·M (0) · n

)]
− nA

1

D

[
(n · ∇)ξ

(0,1)
B + nD∇Bξ

(0,1)
D

]
− N

D
nAξ

(1,1)
B + nAnB

1

D

[
nD(n · ∇)ξ

(0,1)
D

]
− nA
D2

[
(n · ∇)ξ

(0,2)
B + nD∇Bξ

(0,2)
D

]
− N

D2
nA ξ

(1,2)
B

+
1

D2
nAnB

[
nD(n · ∇)ξ

(0,2)
D

]
+
N

D
nAξ

(1,1)
B +

N

D2
nAξ

(1,2)
B

(C.39)

Using, (C.39) and it’s symmetric part the first square bracketed terms become

M
(0)
AB +∇Aξ

(0)
B +NnAξ

(1)
B −ND nAξ

(0)
B +∇Bξ

(0)
A +NnBξ

(1)
A −ND nBξ

(0)
A

= ΠC
AΠ

C′

B

[
M

(0)
CC′ +∇C

(
1

D
ξ
(0,1)
C′ +

1

D2
ξ
(0,2)
C′

)
+∇C′

(
1

D
ξ
(0,1)
C +

1

D2
ξ
(0,2)
C

)] (C.40)

Now, we will simplify the second square bracketed term of (C.38)

∇Aξ
(1)
B + 2NnAξ

(2)
B −ND nAξ

(1)
B +ND nAξ

(0)
B

= ∇Aξ
(1)
B + 2NnAξ

(2)
B −N nA

[
ξ
(1,1)
B +

1

D
ξ
(1,2)
B

]
+N nA

[
ξ
(0,1)
B +

1

D
ξ
(0,2)
B

]
+O

(
1

D

)2

= ∇Aξ
(1)
B +�����

2NnAξ
(2)
B − nA

[
nDM

(1)
DB +�����

nDM
(0)
DB − nB

2

(
n ·M (1) · n+((((((

n ·M (0) · n
)]

− nA
D

[
(n · ∇)ξ

(1,1)
B +�������

(n · ∇)ξ
(0,1)
B

]
− nA
D

[
nD∇Bξ

(1,1)
D +������

nD∇Bξ
(0,1)
D

]
−

������2

D
NnAξ

(2)
B −

������N

D
nA ξ

(1,1)
B + nAnB

1

D

[
nD(n · ∇)ξ

(1,1)
D +��������

nD(n · ∇)ξ
(0,1)
D

]
+
nA
D

[
�����
nDM

(0)
DB −

���������nB
2

(
n ·M (0) · n

)]
+
nA
D

[
�������
(n · ∇)ξ

(0,1)
B +������

nD∇Bξ
(0,1)
D

]
+

������N

D
nAξ

(1,1)
B

−
(((((((((((((
nAnB

1

D

[
nD(n · ∇)ξ

(0,1)
D

]
= ∇Aξ

(1)
B − nA

[
nDM

(1)
DB − nB

2

(
n ·M (1) · n

)]
− nA
D

[
(n · ∇)ξ

(1,1)
B

]
− nA
D

[
nD∇Bξ

(1,1)
D

]
+ nAnB

1

D

[
nD(n · ∇)ξ

(1,1)
D

]
(C.41)

184



C Appendices for Chapter 4

AddingM (1)
AB, (C.41) and it’s symmetric part we get

M
(1)
AB +∇Aξ

(1)
B + 2NnAξ

(2)
B −ND nAξ

(1)
B +ND nAξ

(0)
B

+∇Bξ
(1)
A + 2NnBξ

(2)
A −ND nBξ

(1)
A +ND nBξ

(0)
A +O

(
1

D

)2

= ΠC
AΠ

C′

B

[
M

(1)
CC′ +

1

D

(
∇Cξ

(1,1)
C′ +∇C′ξ

(1,1)
C

)]
+O

(
1

D

)2

(C.42)

Finally, we will try to simplify the third square bracketed term of (4.22)

∇Aξ
(2)
B −ND nAξ

(2)
B +ND nAξ

(1)
B −ND nAξ

(0)
B

= −N nAξ
(2,1)
B +N nAξ

(1,1)
B −N nAξ

(0,1)
B +O

(
1

D

)
= −nA

[
nDM

(2)
DB +�����

nDM
(1)
DB − nB

2

(
n ·M (2) · n+((((((

n ·M (1) · n
)]

+ nA

[
�����
nDM

(1)
DB +�����

nDM
(0)
DB − nB

2

(
((((((
n ·M (1) · n+((((((

n ·M (0) · n
)]

− nA

[
�����
nDM

(0)
DB −

���������nB
2

(
n ·M (0) · n

)]
= −nA

[
nDM

(2)
DB − nB

2

(
n ·M (2) · n

)]
(C.43)

Using, (C.43) and it’s symmetric part the third square bracketed terms become

M
(2)
AB +∇Aξ

(2)
B −ND nAξ

(2)
B +ND nAξ

(1)
B −ND nAξ

(0)
B

+∇Bξ
(2)
A −ND nBξ

(2)
A +ND nBξ

(1)
A −ND nBξ

(0)
A +O

(
1

D

)
= ΠC

AΠ
C′

B M
(2)
CC′ +O

(
1

D

) (C.44)

Finally, adding (C.40), (C.42) and (C.44) we get the final expression ofM ′
AB(4.28)

M ′
AB = ΠC

AΠ
C′

B

[
M

(0)
CC′ + (ψ − 1)M

(1)
CC′ + (ψ − 1)2M

(2)
CC′

]
+ ∇̂Aξ

(0)
B + ∇̂Bξ

(0)
A

+ (ψ − 1)
(
∇̂Aξ

(1)
B + ∇̂Bξ

(1)
A

)
+O

(
1

D

)3 (C.45)
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Now we will calculate different terms in (4.28). First we will calculate ξ(0,1)A

ξ
(0,1)
A =

1

N

[
nBM

(0)
BA − nA

2

(
n ·M (0) · n

)]
=

1

N

[
OA +

2

K2

{(
D

K

)2

(2 Zeta[3]− 1) s2OA +
D

K
vA

}
− nA

2

{
1 +

2

K2

(
D

K

)2

(2 Zeta[3]− 1) s2

}]
=

1

N

[nA
2

− uA

]
+O

(
1

D

)2

(C.46)

Next, we will calculate ξ(0,2)A

ξ
(0,2)
A =

1

N

[
(n · ∇)ξ

(0,1)
A + nB∇Aξ

(0,1)
B

]
− nA
N

[
nB(n · ∇)ξ

(0,1)
B

]
+

1

N

[
nBM

(1)
BA + nBM

(0)
BA − nA

2

(
n ·M (1) · n+ n ·M (0) · n

)] (C.47)

Now, we need to calculate different terms of (C.47)

1

N

[
nBM

(1)
BA + nBM

(0)
BA − nA

2

(
n ·M (1) · n+ n ·M (0) · n

)]
=

1

N

[nA
2

− uA

]
+O

(
1

D

)2

∇Aξ
(0,1)
B =

1

N

[
∇AnB

2
−∇AuB

]
− ∇AN

N2D

[nB
2

− uB

]
(n · ∇)ξ

(0,1)
B =

1

N

[
(n · ∇)nB

2
− (n · ∇)uB

]
− (n · ∇)N

N2

[nB
2

− uB

]
nB∇Aξ

(0,1)
B =

1

N

[
uB∇AnB

]
− 1

2ND

(
∇AN

N

)
nB(n · ∇)ξ

(0,1)
B =

1

N

[
uB(n · ∇)nB

]
− 1

2ND

(
(n · ∇)N

N

)
(C.48)

Using (C.48) in (C.47) we get

ξ
(0,2)
A =

1

N

[nA
2

− uA

]
+

1

N2

[
(n · ∇)nA

2
− (n · ∇)uA − (n · ∇)N

N

(nA
2

− uA

)
+ uB∇AnB − 1

2

(
∇AN

N

)
− nA

(
uB(n · ∇)nB − 1

2

(n · ∇)N

N

)]
=

1

N

[nA
2

− uA

]
+

1

N2

[
(n · ∇)nA

2
− (n · ∇)uA + uA

(n · ∇)N

N
+ uBKAB − 1

2

∇AN

N

]
=

1

N

[nA
2

− uA

]
− 1

N2

[
1

2
nA

(n · ∇)N

N
+ (n · ∇)uA − uA

(n · ∇)N

N
− uBKAB

]
+O

(
1

D

)
(C.49)
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Adding (C.46) and (C.49) we get the expression of ξ(0)A

ξ
(0)
A =

1

ND

[
nA
2

− uA

]
+

1

ND2

[
nA
2

− uA

]
− 1

N2D2

[
nA
2

(
n · ∇N
N

)
+ (n · ∇)uA − uA

(
n · ∇N
N

)
− uBKAB

]
+O

(
1

D

)3

Next, we will calculate ξ(1,1)A

ξ
(1,1)
A =

1

N

[
nBM

(1)
BA + nBM

(0)
BA − nA

2

(
n ·M (1) · n+ n ·M (0) · n

)]
+O

(
1

D

)2

=
1

N

[nA
2

− uA

]
+O

(
1

D

)2
(C.50)

So, expression of ξ(1)A we get

ξ
(1)
A =

1

ND

[nA
2

− uA

]
+O

(
1

D

)2

(C.51)

Now, we will calculate ΠA
CΠ

B
C′

(
∇Bξ

(0)
A

)
ΠA
CΠ

B
C′

(
∇Bξ

(0)
A

)
=

1

ND
ΠA
CΠ

B
C′uA

(
∇BN

N

)
+

1

ND
ΠA
CΠ

B
C′

[
∇BnA

2
−∇BuA

]
+ΠA

CΠ
B
C′

[
(∇BnA)

(
1

2ND2
− 1

2N2D2

(n · ∇)N

N

)
−∇B

( uA
ND2

)
+∇B

{
1

N2D2

(
−(n · ∇)uA + uA

(n · ∇)N

N
+ uEKAE

)}]
+O

(
1

D

)3

(C.52)

Using the identity (C.159) and (C.160) we can write the above equation as

ΠA
CΠ

B
C′

(
∇Bξ

(0)
A

)
=

1

ψK

(
1− (n · ∇)N

NK
+

N

ψK

)
ΠA
CΠ

B
C′

[
uA

(
∇BK

K

)
+

1

2
∇BnA −∇BuA

]
+

1

ψK2
ΠA
CΠ

B
C′

[
uA∇B

(
(n · ∇)K

K

)
− uA

(
∇BK

K

)
(n · ∇)K

K

]
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+
1

D2
ΠA
CΠ

B
C′

[
1

2N
KBA

(
1− 1

N

(n · ∇)N

N

)
+

1

N2
uA(∇BN)− 1

N
(∇BuA)

− 2

N3
(∇BN)

(
uEKAE − (n · ∇)uA + uA

(n · ∇)N

N

)
+

1

N2
∇B

(
uEKAE − (n · ∇)uA + uA

(n · ∇)N

N

)]
+O

(
1

D

)3

=
1

ψK

[
uC

(
∇̂C′K

K

)
+

1

2
KCC′ − ∇̂C′uC

]
− 1

K2

(
n · ∇K
K

)[
uC

(
∇̂C′K

K

)
+

1

2
KCC′ − ∇̂C′uC

]

+
1

K2

[
uC∇̂C′

(
(n · ∇)K

K

)
− uC

(
∇̂C′K

K

)
(n · ∇)K

K

]

+
1

K2

[
− 1

2
KCC′

(
(n · ∇)K

K

)
− 2

∇̂C′K

K

(
uEKCE − ΠE

C(n · ∇)uE + uC
(n · ∇)K

K

)
+ ∇̂C′

(
uEKCE − (n · ∇)uC + uC

(n · ∇)K

K

)]
+O

(
1

D

)3

(C.53)

Now,

ΠA
CΠ

B
C′

(
∇Bξ

(1)
A

)
=

1

K

[
uC

(
∇̂C′K

K

)
+

1

2
KCC′ − ∇̂C′uC

]
+O

(
1

D

)2

(C.54)

Calculation of h(0)CC′

From (4.32) we get

h
(0)
AB

∣∣
ψ=1

=M
′(0)
AB

∣∣
ψ=1

(C.55)

First we will write tAB and vA in a convenient way. From (4.13), tAB can be written as

tAB = YAB + uAXB + uBXA + ZuAuB (C.56)
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Where,

YAB =
K

D
KAB − K

2D

(
∇̂AuB + ∇̂BuA

)
−KF

AKFB +KF
A ∇̂FuB +KF

B ∇̂FuA −
(
∇̂FuA

)(
∇̂FuB

)
−
(
∇̂2uA
K

)(
∇̂2uB
K

)
+

(
∇̂2uA
K

)(
∇̂BK

K

)
+

(
∇̂2uB
K

)(
∇̂AK

K

)
−
(
∇̂AK

K

)(
∇̂BK

K

)
XA =

K

D

[
uCKCA − 1

2
(u · ∇̂)uA

]
− uCKCEK

E
A + uCKEC

(
∇̂EuA

)
+

(u · ∇)K

K

[
∇̂2uA
K

− ∇̂AK

K

]
Z =

K

D
u ·K · u− uCKF

CKFDu
D −

(
u · ∇K
K

)2

(C.57)

From (4.13), vA can be written as

vA = NA + J uA (C.58)

Where,

NA =
K2

2D2

[
∇̂2uA
K

− uDKDA

]
−
[
∇̂FK

D
− K

D
uEKEF

]
KF
A +

[
∇̂FK

D
− K

D
uEKEF

](
∇̂FuA

)
+

[
(u · ∇)K

D
− K

D
u ·K · u

]
∇̂2uA
K

−
[
(u · ∇)K

D
− K

D
u ·K · u

]
∇̂AK

K

J = − K2

2D2
u ·K · u− uBKBD

(
∇̂DK

D
− K

D
uEKD

E

)
− u · ∇K

K

(
u · ∇K
D

− K

D
u ·K · u

)
(C.59)

Using (C.56) and (C.58) we can write h(0)AB
∣∣
ψ=1

as

h
(0)
AB = S̃(0) uAuB + uAH̃(0)

B + uBH̃(0)
A +W(0)

AB (C.60)
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Where,

S̃(0) = 1− 2

K2

[
������K

D
u ·K · u− u ·K ·K · u−

(
u · ∇K
K

)2]
+

2

K2
(2 Zeta[3]− 1)

[
− K

D

(
u · ∇K
K

− u ·K · u
)
− 2 λ− (u ·K ·K · u) + 2

(
∇AK

K

)
uBKA

B

−
(
u · ∇K
K

)2

+ 2

(
u · ∇K
K

)
(u ·K · u)−

(
∇̂DK

K

)(
∇̂DK

K

)
− (u ·K · u)2 + λ

]

− 2

K2

[
�������
−K
D
u ·K · u− 2 uBKBD

(
∇̂DK

K
− uEKD

E

)
− 2

u · ∇K
K

(
u · ∇K
K

− u ·K · u
)]

= 1− 2

K2

[
u ·K ·K · u− 3

(
(u · ∇)K

K

)2

− 2 uBKBD

(
∇̂DK

K

)
+ 2 u ·K · u

(
u · ∇K
K

)]
+

2

K2
(2 Zeta[3]− 1)

[
− K

D

(
(u · ∇)K

K
− u ·K · u

)
− λ− u ·K ·K · u+ 2

(
∇AK

K

)
uBKA

B

−
(
u · ∇K
K

)2

+ 2
(u · ∇)K

K
(u ·K · u)−

(
∇̂DK

K

)(
∇̂DK

K

)
− (u ·K · u)2

]
(C.61)

H̃(0)
A =

1

K

∇̂AK

K
− 2

K2

[
K

D

(
uCKCA − 1

2
(u · ∇̂)uA

)
− uCKCEK

E
A + uCKEC

(
∇̂EuA

)
+
u · ∇K
K

(
∇̂2uA
K

− ∇̂AK

K

)]
− 2

K2

D

K

[
K2

2D2

(
∇̂2uA
K

− uDKDA

)
−
(
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D
− K

D
uEKEF

)
KF
A

+

(
∇̂FK

D
− K

D
uEKEF

)
∇̂FuA +

(
u · ∇K
D

− K

D
u ·K · u

)
∇̂2uA
K

−
(
u · ∇K
D

− K

D
u ·K · u

)
∇̂AK

K

]
− 4

K2

(
n · ∇K
K

)(
∇̂AK

K

)
+

2

K2
∇̂A

(
n · ∇K
K

)
(C.62)

Using the following two identity

∇̂A

(
n · ∇K
K

)
= ∇̂A

(
∇̂2K

K2

)
+ λ

D

K

(
∇̂AK

K

)
− ∇̂AK

D(
u · ∇̂

)
uA =

∇̂2uA
K

− ∇̂AK

K
+ uDKDA + uA

(
−(u · ∇)K

K
+ u ·K · u

) (C.63)
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we get,

H̃(0)
A =
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K

∇̂AK

K
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�
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K

2D
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+
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�
�
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�
�
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D
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�
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�
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(
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K

)
−

�
�
�
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K
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K2

(
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K

− u ·K · u
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+
∇̂AK

K

[
− 2

K2

K

2D
+

2
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(u · ∇)K

K
+

2
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(
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K
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)
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2
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K
− 2
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D
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2
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D
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+

2
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K
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(
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K
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1

K

(
∇̂AK
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)
+

2

K2
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(
∇̂2K
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)
+

2

K2
KF
A

(
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K

)
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K2

(
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)(∇̂FK

K

)
+

2
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(
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K

)[
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+

2
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(
∇̂AK
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)[
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+ λ

D

K
+

K
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]
+

2
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K

2D
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(
−u · ∇K

K
+ u ·K · u

)
(C.64)

W(0)
AB =

1

K

[
KAB − ∇̂AuB − ∇̂BuA

]
− 2

K2

[
K

D
KAB − K

2D

(
∇̂AuB + ∇̂BuA

)
−KF

AKFB +KF
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+KF
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(
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K
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K
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[
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K

(
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)]
+

1
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[
∇̂A

(
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K

)
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(
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)
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K

)
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K
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K

+

(
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K

)
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K
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]
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=
1

K

[
KAB − ∇̂AuB − ∇̂BuA

]
− 2

K2
KAB

[
(u · ∇)K

K
− u ·K · u

]
− 2

K2

(
∇̂AuB + ∇̂BuA

)[ K
2D
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K
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+

2

K2
KF
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[(
∇̂AK

K

)
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(
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]
+
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)
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(
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K

)]
(C.65)

Calculation of h(1)CC′

From (4.39) h(1)AB on ψ = 1 is given by

h
(1)
AB =M ′(1)

AB + C
(0)
AB

= C
(0)
AB − 2D

K2

[
tAB + s1 uAuB +

D

K

(
vAuB + vBuA

)]
+

1

K

[
uA

∇̂BK

K
+ uB

∇̂AK

K
+KAB − ∇̂BuA − ∇̂AuB

]
+O

(
1

D

)2

(C.66)

From (4.33)

C
(0)
CC′ =

1

N
ΠA
CΠ

B
C′(n.∇)M ′(0)

AB

=
1

N

[
uCΠ

E
C′(n · ∇)uE + uC′ΠE

C(n · ∇)uE
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K
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K
+KCC′ −

(
∇̂CuC′ + ∇̂C′uC

)]
+

1

NK
ΠE
CΠ

F
C′(n · ∇)

[
uEΠ

B
F

∇BK

K
+ uFΠ

B
E

∇BK

K
+KEF − ΠA

EΠ
B
F (∇AuB +∇BuA)

]
+O

( 1

D

)2
(C.67)
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To simplify the above expression we will use the following identity. We will not give the

derivations of these identities. The derivations are quite straightforward

ΠE
CΠ

F
C′(n · ∇)KEF = −∇̂CK

K

∇̂C′K

K
− λ ΠCC′ + ∇̂C

(
∇̂C′K
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)
−KE

CKEC′

ΠE
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F
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[
uEΠ

B
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]
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K
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n · ∇K
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)
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[
1

K2
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(
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)
− ∇̂C′K

K

(
2
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− λ

D

K
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)
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K

D

(
∇̂C′K

K

)
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C′

(
∇DK

K

)]
(C.68)

ΠE
CΠ

F
C′(n · ∇)

[
ΠA
EΠ

B
F∇AuB

]
= −∇̂CK

K

∇̂2uC′

K
+

∇̂C′K

K
uBKBC −KCC′

u · ∇K
K

+ ∇̂C

(
∇̂2uC′

K

)
−KD

C

(
∇̂DuC′

)
(C.69)

Using (C.68) and (C.69) we can write C(0)
CC′ as

C
(0)
CC′ = uC τC′ + uC′ τC + ΞCC′ (C.70)

Where,

τC =
1

N
ΠE
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1
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[
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C′

(
∇̂DuC

)
− ∇̂C

(
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K

)
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(
∇̂2uC
K

)]
(C.71)

Using (C.56), (C.58) and (C.70) we can write h(1)AB as

h
(1)
AB = Φ uAuB + uA ΩB + uB ΩA +W (1)

AB (C.72)
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Where,

Φ = −2
D

K2

[
K

D
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(
u · ∇K
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u · ∇K
K

)2

+
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D
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(C.73)
Using 2nd identity of (C.63) we can write the above equation as
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D

K2

[
− 2 u ·K ·K · u+ λ+

∇̂AK

K

(
2 uBKA

B − ∇̂AK

K

)
− (∇̂AuB)(∇̂AuB)

− (u ·K · u)2 −
(
∇̂2uA
K

− ∇̂AK

K
+ uEKEA

)(
∇̂2uA

K
+
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(C.74)
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ΩA = −2
D

K2
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(C.75)

To simplify the above expression we will use the following identity

1

N
ΠE
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D

K
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(C.76)
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To prove the above identity we have used subsidiary condition PA
B (O · ∇)OA = 0 and the

second order membrane equation( 2.17 in [64] ). Using (C.76) we get
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K

)
− K

D

(
∇̂2uA
K

−�����
uDKDA

)
+ 2 KF

A

(
∇̂FK

K
− uEKEF

)
− 2 (∇̂FuA)

(
∇̂FK

K
−����
uEKEF

)
− 2

∇̂2uA
K

(
u · ∇K
K

− u ·K · u
)

+ 2
∇̂AK

K

(
u · ∇K
K

− u ·K · u
)]

+ uA
D

K2

[
− (∇̂DuE)(∇̂DuE)− u ·K ·K · u

− ∇̂2uE
K

∇̂2uE

K
−
(
u · ∇K
K

)2

+
K

D

(
− u · ∇K

K
+ u ·K · u

)]

=
D

K

(
∇̂2uA
K

)
+

D

K2

(
∇̂AK

K

)[
− 5

(u · ∇)K

K
+ 2 u ·K · u− λ

D

K

]
+

D

K2

(
∇̂2uA
K

)[
− 12

(u · ∇)K

K
+ 6 u ·K · u− 2 λ

D

K
+ 2

K

D

]
+

D

K2

[
− uBKBDK

D
A +

1

K2
∇̂2
(
∇̂2uA

)
− 3

(
∇̂BK

K

)
∇̂BuA +

1

K2
∇̂A

(
∇̂2K

)
+KD

A

(
∇̂DK

K

)]
+ uA

D

K2

[
− (∇̂DuE)(∇̂DuE)− u ·K ·K · u− ∇̂2uE

K

∇̂2uE

K
−
(
u · ∇K
K

)2

+
K

D

(
− u · ∇K

K
+ u ·K · u

)]
(C.77)
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W(1)
AB = −2

D

K2

[
K

D
KAB − K

2D
(∇̂AuB + ∇̂BuA)−KF

AKFB +KF
A ∇̂FuB +KF

B ∇̂FuA − ∇̂FuA∇̂FuB

− ∇̂2uA
K

∇̂2uB
K

+
�������∇̂2uA
K

∇̂BK

K
+

�������∇̂2uB
K

∇̂AK

K
− ∇̂AK

K

∇̂BK

K

]
+

(((((((((((((((1

K

[
KAB − ∇̂BuA − ∇̂AuB

]
− 1

NK

[
��N +

(n · ∇)K

K

] [
KAB − ∇̂AuB − ∇̂BuA

]
+

D

K2

[
��������
2
∇̂2uA
K

∇̂BK

K
+��������
2
∇̂2uB
K

∇̂AK

K

− ∇̂AK

K

∇̂BK

K
− λ ΠAB + ∇̂A

(
∇̂BK

K

)
−KE

AKEB − ∇̂BK

K
uEKEA − ∇̂AK

K
uEKEB

+ 2 KAB
(u · ∇)K

K
+KD

A

(
∇̂DuB

)
+KD

B

(
∇̂DuA

)
− ∇̂A

(
∇̂2uB
K

)
− ∇̂B

(
∇̂2uA
K

)]

=
D

K2

[
u ·K · u− K

D

]
KAB +

D

K2

[
∇̂2K

K2
− λ

D

K

](
∇̂AuB + ∇̂BuA

)
+

D

K2
KF
AKFB

− D

K2
λ ΠAB − D

K2

(
KF
A ∇̂FuB +KF

B ∇̂FuA

)
+ 2

D

K2

(
∇̂FuA

)(
∇̂FuB

)
+ 2

D

K2

(
∇̂2uA
K

)(
∇̂2uB
K

)
+

D

K2

1

K
∇̂A

(
∇̂BK

)
− D

K2

[(∇̂AK

K

)
uEKEB +

(∇̂BK

K

)
uEKEA

]
− D

K2

1

K

[
∇̂A

(
∇̂2uB

)
+ ∇̂B

(
∇̂2uA

)]
+

D

K2

[(
∇̂AK

K

)(
∇̂2uB
K

)
+

(
∇̂BK

K

)(
∇̂2uA
K

)]
(C.78)

C.2.2 Inside(ψ < 1)

From (4.51)

⇒ ΠA
CΠ

B
C′

[
∇A∇E h̃

E
B +∇B∇E h̃

E
A︸ ︷︷ ︸

Part-1

−∇2h̃AB︸ ︷︷ ︸
Part-2

−∇B∇Ah̃︸ ︷︷ ︸
Part-3

+2 R̄EABC h̃
EC + R̄AC h̃

C
B + R̄BC h̃

C
A − 2(D − 1)λh̃AB︸ ︷︷ ︸

Part-4

]
= 0

(C.79)
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Now, we will simplify the above equation

Part-1 = ΠA
CΠ

B
C′

[
∇A∇E h̃

E
B +∇B∇E h̃

E
A

]
= ΠA

CΠ
B
C′

∞∑
m=0

[
∇A

(
(ψ − 1)m∇E[h̃

(m)]EB

)
+∇B

(
(ψ − 1)m∇E[h̃

(m)]EA

)]
= ΠA

CΠ
B
C′

∞∑
m=0

(ψ − 1)m
[
∇A∇E[h̃

(m)]EB +∇B∇E[h̃
(m)]EA

]
(C.80)

Part-2 = −ΠA
CΠ

B
C′∇2h̃AB

= −ΠA
CΠ

B
C′∇D

∞∑
m=0

[
m(ψ − 1)m−1NnDh̃

(m)
AB + (ψ − 1)m∇Dh̃

(m)
AB

]
= −ΠA

CΠ
B
C′

∞∑
m=0

[
m(m− 1)(ψ − 1)m−2N2h̃

(m)
AB +m(ψ − 1)m−1[(n · ∇)N ]h̃

(m)
AB

+m(ψ − 1)m−1NKh̃
(m)
AB + 2m(ψ − 1)m−1N(n · ∇)h̃

(m)
AB + (ψ − 1)m∇2h̃

(m)
AB

]
(C.81)

Part-3 = −ΠA
CΠ

B
C′

[
∇B∇Ah̃

]
= −ΠA

CΠ
B
C′∇B

∞∑
m=0

[
m(ψ − 1)m−1NnAh̃

(m) + (ψ − 1)m∇Ah̃
(m)
]

= −ΠA
CΠ

B
C′

∞∑
m=0

[
m(ψ − 1)m−1N(∇BnA)h̃

(m) + (ψ − 1)m∇B∇Ah̃
(m)
] (C.82)

Part-4 = ΠA
CΠ

B
C′

[
2 R̄EABC h̃

EC + R̄AC h̃
C
B + R̄BC h̃

C
A − 2(D − 1)λh̃AB

]
= ΠA

CΠ
B
C′

[
2λ (gEBgAC − gECgAB) h̃

EC + 2λ(D − 1)h̃AB − 2λ(D − 1)λh̃AB

]
= ΠA

CΠ
B
C′ 2λ

∞∑
m=0

(ψ − 1)m
[
h̃
(m)
AB − h̃(m)gAB

]
(C.83)

Collecting the coefficient of (ψ − 1)0 of (C.79)

ΠA
CΠ

B
C′

[
∇A∇E

[
h̃(0)
]E
B
+∇B∇E

[
h̃(0)
]E
A
− 2N2h̃

(2)
AB − [(n · ∇)N ]h̃

(1)
AB −NKh̃

(1)
AB

− 2N(n · ∇)h̃
(1)
AB −∇2h̃

(0)
AB −N KAB h̃

(1) −∇B∇Ah̃
(0) + 2 λ h̃

(0)
AB − 2 λ h̃(0) gAB

]
= 0

(C.84)
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Using (4.52), the leading order(O(D)) terms of (C.84)

ΠA
CΠ

B
C′

[
∇A∇E

[
h̃(0)
]E
B
+∇B∇E

[
h̃(0)
]E
A
−NKh̃

(1,1)
CC′ −∇2h̃

(0)
AB −NKABh̃

(1,1)

]
= 0

(C.85)

In the last equation, we have used the fact that h̃(0) can nowhere be O(D). Taking trace of

(C.85)

ΠAB

[
2 ∇A∇E

[
h̃(0)
]E
B
−∇2h̃

(0)
AB

]
− 2NKh̃(1,1) = 0

⇒ h̃(1,1) =
1

2NK
ΠAB

[
2∇A∇E

[
h̃(0)
]E
B
−∇2h̃

(0)
AB

] (C.86)

Now, from (C.85)

h̃
(1,1)
CC′ = ΠA

CΠ
B
C′

1

NK

[
∇A∇E

[
h̃(0)
]E
B
+∇B∇E

[
h̃(0)
]E
A
−∇2h̃

(0)
AB

]
− 1

K
KCC′h̃(1,1)

(C.87)

From, subleading order(O(1)) of (C.84)

ΠA
CΠ

B
C′

[
− 2N2h̃

(2)
AB − [(n · ∇)N ]h̃

(1,1)
AB − NK

D
h̃
(1,2)
AB − 2N(n · ∇)h̃

(1,1)
AB − N

D
KABh̃

(1,2)

−∇B∇Ah̃
(0) + 2 λh̃

(0)
AB − 2 λh̃(0)gAB

]
= O

(
1

D

)
(C.88)

Taking trace,

h̃(1,2) =
D

2NK

[
−2N2h̃(2)−[(n · ∇)N ]h̃(1,1)−2λh̃(0)(D−2)−ΠAB

{
2N(n·∇)h̃

(1,1)
AB +∇B∇Ah̃

(0)
}]

+O(1)

(C.89)

Now, from (C.88)

h̃
(1,2)
CC′ =

D

NK
ΠA
CΠ

B
C′

[
− 2N2h̃

(2)
AB − [(n · ∇)N ]h̃

(1,1)
AB − 2N(n · ∇)h̃

(1,1)
AB − N

D
KABh̃

(1,2)

−∇B∇Ah̃
(0) + 2 λh̃

(0)
AB − 2 λh̃(0)gAB

]
+O

(
1

D

)
(C.90)
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Collecting coefficients of (ψ − 1) of (C.79) at order(O(D))

ΠA
CΠ

B
C′

[
∇A∇E

[
h̃(1,1)

]E
B
+∇B∇E

[
h̃(1,1)

]E
A
− 2NKh̃

(2)
AB −∇2h̃

(1,1)
AB − 2NKABh̃

(2)

−∇B∇Ah̃
(1,1) − 2λh̃(1,1)gAB

]
= O(1)

(C.91)

Taking trace,

h̃(2) = ΠAB 1

4NK

[
2∇A∇E

[
h̃(1,1)

]E
B
−∇2h̃

(1,1)
AB −∇B∇Ah̃

(1,1) − 2λh̃(1,1)gAB

]
+O(1)

(C.92)

From (C.91)

h̃
(2)
CC′ = ΠA

CΠ
B
C′

1

2NK

[
∇A∇E

[
h̃(1,1)

]E
B
+∇B∇E

[
h̃(1,1)

]E
A
−∇2h̃

(1,1)
AB − 2NKABh̃

(2) −∇B∇Ah̃
(1,1)

− 2λh̃(1,1)gAB

]
+O

(
1

D

)
(C.93)

Calculation of h̃(1,1)CC′

From, (C.87)

h̃
(1,1)
CC′ = ΠA

CΠ
B
C′

1

NK

[
∇A∇E

[
h̃(0)
]E
B
+∇B∇E

[
h̃(0)
]E
A

]
︸ ︷︷ ︸

h̃
(1,1)

CC′ |part-1

−ΠA
CΠ

B
C′

1

NK
∇2h̃

(0)
AB︸ ︷︷ ︸

h̃
(1,1)

CC′ |part-2

− 1

K
KCC′h̃(1,1)︸ ︷︷ ︸
h̃
(1,1)

CC′ |part-3

(C.94)

h̃
(1,1)
CC′ |part-1 = ΠA

CΠ
B
C′

1

NK

[
∇A∇E

[
h(0)
]E
B
+∇B∇E

[
h(0)
]E
A

]
+O

(
1

D

)2

(C.95)

We want to calculate the above expression on ψ = 1. But to calculate h̃(1,1)CC′ |part-1 on ψ = 1

we need the (ψ − 1) dependent terms of h(0)AB. From (4.32)[
h(0)
]E
B
=
[
M ′(0)]E

B
− (ψ − 1)

[
C(0)

]E
B
+O(ψ − 1)2

⇒ ∇E

[
h(0)
]E
B
= ∇E

[
M ′(0)]E

B
+O(ψ − 1)

(C.96)

Now,[
M ′(0)]E

B
= uEuB+

1

K

[
uEΠC

B

(∇CK

K

)
+uBΠ

CE
(∇CK

K

)
+KE

B−ΠCEΠC′

B (∇CuC′+∇C′uC)

]
+O

( 1

D

)2
(C.97)
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After a bit of simplification divergence of the above equation becomes

∇E

[
M ′(0)]E

B
= uB (∇ · u) + (u · ∇)uB

+
1

K

[
uB

∇̂2K

K
+ ∇̂BK − nB K

ACKAC − ∇̂2uB −KuCKCB − λ DuB

]
+O

(
1

D

)
(C.98)

In the derivation of the above equation we have used the following identities

∇2K = ∇̂2K +K(n · ∇)K +O(D)

∇̂2uA = ΠD
A

[
∇2uD −K(n · ∇)uD

]
+O(1)

∇AKAB = ∇̂BK − nBK
ACKAC +O(1)

(C.99)

Now,

∇E

[
h(0)
]E
B
= uB (∇ · u) + uB

∇̂2K

K2
− nB

K

D
− λ

D

K
uB − nB(u ·K · u)

+

[
− ∇̂2uB

K
+

∇̂BK

K
− uEKEB + (u · ∇̂)uB

]
+O

(
1

D

)
= −2 uB

u · ∇K
K

+ uB
∇̂2K

K2
− nB

K

D
− λ

D

K
uB − nB(u ·K · u) + uB(u ·K · u)

= −nB
K

D
− nB(u ·K · u)

(C.100)

In the last line we have used the divergence of leading order membrane equation

∇̂2K

K2
= 2

u · ∇K
K

− u ·K · u+ λ
D

K
+O

(
1

D

)
(C.101)

From (C.100)

ΠA
CΠ

B
C′

1

NK
∇A∇E

[
h(0)
]E
B
= − 1

NK

[
K

D
+ u ·K · u

]
KCC′ (C.102)

So, finally we get

h̃
(1,1)
CC′ |part-1 = − 2

NK

[
K

D
+ u ·K · u

]
KCC′ +O

(
1

D

)2

(C.103)

Now, we will calculate

h̃
(1,1)
CC′ |part-2 = −ΠA

CΠ
B
C′

1

NK
∇2h

(0)
AB +O

(
1

D

)2

(C.104)
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We want to calculate the above expression on ψ = 1. But to calculate h̃(1,1)CC′ |part-2 on ψ = 1

we need the (ψ − 1) and (ψ − 1)2 dependent terms of h(0)AB.

h̃
(1,1)
CC′ |part-2 = −ΠA

CΠ
B
C′

1

NK
∇2M

′(0)
AB︸ ︷︷ ︸

Term-1

+ΠA
CΠ

B
C′

1

NK
∇2
[
(ψ − 1)C

(0)
AB

]
︸ ︷︷ ︸

Term-2

+ΠA
CΠ

B
C′

1

NK
∇2
[
(ψ − 1)2E

(0)
AB

]
︸ ︷︷ ︸

Term-3
(C.105)

Term-3 = ΠA
CΠ

B
C′

1

NK
∇2
[
(ψ − 1)2E

(0)
AB

]
=

2N

K
E

(0)
CC′

(C.106)

From (4.34)

E
(0)
CC′ = − 1

2N
ΠA
CΠ

B
C′(n.∇)C

(0)
AB

=
1

2N

(n · ∇)N

N2

[
uC

∇̂2uC′

K
+ uC′

∇̂2uC
K

]
− 1

2N2

[
2
∇̂2uC
K

∇̂2uC′

K
+ uC

(
∇̂C′K

K

)
(u · ∇)K

K

+ uC′

(
∇̂CK

K

)
(u · ∇)K

K
+ uCΠ

B
C′(n · ∇)(n · ∇)uB + uC′ΠB

C(n · ∇)(n · ∇)uB

]
+O

(
1

D

)
(C.107)

Using (C.107) we can write Term-3 as

Term-3 = A(3)
CC′ + uCB(3)

C′ + uC′B(3)
C (C.108)

Where,

A(3)
CC′ = −2

D

K2

(
∇̂2uC
K

)(
∇̂2uC′

K

)
B(3)
C =

D

K2

[
∇̂2K

K2
− λ

D

K

]
∇̂2uC
K

− D

K2

[
∇̂CK

K

(u · ∇)K

K
+ΠB

C(n · ∇)(n · ∇)uB

]
(C.109)

Now,

Term-2 = ΠA
CΠ

B
C′

1

NK
∇2
[
(ψ − 1)C

(0)
AB

]
+O

(
1

D

)2

= C
(0)
CC′ +

1

K

(n · ∇)N

N
C

(0)
CC′ +

2

K
ΠA
CΠ

B
C′(n · ∇)C

(0)
AB

(C.110)

Using (C.70) and (C.107) we can write Term-2 as

Term-2 = A(2)
CC′ + uCB(2)

C′ + uC′B(2)
C (C.111)
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Where,

B(2)
C =

1

N
ΠE
C(n · ∇)uE +

1

NK

[
− ∇̂CK

K

(
2
(n · ∇)K

K
+ 2

∇̂2K

K2
− λ

D

K

)
+

1

K2
∇̂C

(
∇̂2K

)
− 2

K

D

(
∇̂CK

K

)
−KD

C

(
∇DK

K

)]
+

1

NK

(n · ∇)N

N

[
ΠE
C(n · ∇)uE

]
+

2

K

[
− 1

N

(
n · ∇N
N

)
∇̂2uC
K

+
1

N

(
∇̂CK

K

)
u · ∇K
K

+
1

N
ΠB
C(n · ∇)(n · ∇)uB

]
A(2)
CC′ = − 1

NK

(n · ∇)N

N

[
KCC′ − ∇̂CuC′ − ∇̂C′uC

]
+

1

NK

[
2
∇̂2uC
K

∇̂C′K

K
+ 2

∇̂2uC′

K

∇̂CK

K

− ∇̂CK

K

∇̂C′K

K
− λ ΠCC′ + ∇̂C

(
∇̂C′K

K

)
−KE

CKEC′ − ∇̂C′K

K
uBKBC − ∇̂CK

K
uBKBC′

+ 2 KCC′
(u · ∇)K

K
+KD

C

(
∇̂DuC′

)
+KD

C′

(
∇̂DuC

)
− ∇̂C

(
∇̂2uC′

K

)
− ∇̂C′

(
∇̂2uC
K

)]
+

2

NK

[
2
∇̂2uC
K

∇̂2uC′

K

]
(C.112)

Term-1 = −ΠA
CΠ

B
C′

1

NK
∇2M

′(0)
AB +O

(
1

D

)2

(C.113)

Here,

M
′(0)
AB = uAuB+

1

ND

[
uAΠ

E
B

(
∇EK

K

)
+uBΠ

E
A

(
∇EK

K

)
+KAB−ΠE

AΠ
F
B(∇EuF+∇FuE)

]
+O

(
1

D

)2

(C.114)
ΠA
CΠ

B
C′∇2M

′(0)
AB

= uCΠ
B
C′∇2uB + uC′ΠB

C∇2uB + 2 ΠA
CΠ

B
C′(∇DuA)(∇DuB)

− 1

ND

(
∇2N

N

)[
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We will use the following identities to simplify (C.115). we are just stating the identities

without proof, proofs are quite straightforward.
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(C.116)

Using (C.116), we can write Term-1 as

Term-1 = A(1)
CC′ + uCB(1)

C′ + uC′B(1)
C (C.117)

Where,
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A(1)
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(
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]
(C.119)

Adding, (C.117), (C.111) and (C.108) we get final expression of h̃(1,1)CC′ |part-2

h̃
(1,1)
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(
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=
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(C.121)
In the derivation of (C.121) we have used the following identity

1

K
ΠAB∇̂A

(
∇̂2uB
K

)
=
u · ∇K
K

+O
(

1

D

)
(C.122)

Adding (C.103),(C.120) and (C.121) we get the final expression of h̃(1,1)CC′ as given in (4.53).
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Calculation of h̃(2)CC ′

From (C.93), the non-vanishing terms of h̃(2)CC′ are the following
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︸ ︷︷ ︸

h̃
(2)

CC′

∣∣
Part-1

−ΠA
CΠ

B
C′

1

2NK

[
∇2h̃

(1,1)
AB

]
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(C.123)

For the calculation of h̃(2)CC′ we need (ψ − 1) dependent terms of h̃(1,1)CC′ . The expression of

h̃
(1,1)
CC′ up to the relevant order is given by
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From, (C.123)
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(C.126)
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From, (C.123)
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Using the identity,
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we get,
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Adding (C.126) and (C.127) we get the final expression of h̃(2)CC′ as given in (4.61) after

using (C.130) and (C.131)
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Calculation of h̃(1,2)CC ′

From (C.90), the non-vanishing terms of h̃(1,2)CC′ are the followings
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Using the identity
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we get
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K
ΠA
CΠ

B
C′(n · ∇)

[
1

N

{
uAΠ

E
B(n · ∇)uE + uBΠ

E
A(n · ∇)uE

}]
= −2D

K
ΠA
CΠ

B
C′

(
−n · ∇N

N2

)[
uAΠ

E
B(n · ∇)uE + uBΠ

E
A(n · ∇)uE

]
− 2D

NK
ΠA
CΠ

B
C′

[{
(n · ∇)uA

}
ΠE
B(n · ∇)uE − uA

{
(n · ∇)nB

}
nE(n · ∇)uE

+ uA ΠE
B(n · ∇)(n · ∇)uE +

{
(n · ∇)uB

}
ΠE
A(n · ∇)uE − uB

{
(n · ∇)nA

}
nE(n · ∇)uE

+ uB ΠE
A(n · ∇)(n · ∇)uE

]
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=
2D

NK

[
N +

n · ∇K
K

] [
uC

∇̂2uC′

K
+ uC′

∇̂2uC
K

]
− 2D

NK

[
2
∇̂2uC
K

∇̂2uC′

K
+ uC

∇̂C′K

K

(u · ∇)K

K

+ uC′
∇̂CK

K

(u · ∇)K

K
+ uCΠ

E
C′(n · ∇)(n · ∇)uE + uC′ΠE

C(n · ∇)(n · ∇)uE

]
(C.137)

h̃
(1,2)
CC′

∣∣
Part-2 = − D

NK
ΠA
CΠ

B
C′

[
2N2h̃

(2)
AB + {(n · ∇)N}h̃(1,1)AB − 2λh̃

(0)
AB

]
= −2 h̃

(2)
CC′ −

D

K

[
n · ∇K
K

+N

]
h̃
(1,1)
AB + 2 λ

(
D

K

)2

uCuC′

= 2 λ
D2

K2
uCuC′ − 2

D2

K2

∇̂2uC
K

∇̂2uC′

K
+
D2

K2

[
∇̂2K

K2
− λ

D

K

][
uC

∇̂2uC′

K
+ uC′

∇̂2uC
K

]
− 2uC

[
D

K

{
− 1

2
− 2

D

K

∇̂2K

K2
+ λ

D2

K2

}
∇̂2uC′

K
+

D2

2K2

{
∇̂2∇̂2uC′

K2
− 2

∇̂EK

K

(
∇̂EuC′

)}]
− 2uC′

[
D

K

{
− 1

2
− 2

D

K

∇̂2K

K2
+ λ

D2

K2

}
∇̂2uC
K

+
D2

2K2

{
∇̂2∇̂2uC
K2

− 2
∇̂EK

K

(
∇̂EuC

)}]
(C.138)

Adding (C.133) and (C.138) we get the final expression of h̃(1,2)CC′ as given in (4.57) after

using (C.134) and (C.137)

C.3 Some Details of Stress Tensor Calculation

Outside(ψ > 1)

G(out)
AB = gAB + ψ−DhAB (C.139)

Inverse of (C.139) at linear order is

GAB
(out) = gAB − ψ−DhAB +O(h)2 here, hAB = gACgBDhCD (C.140)

Using, the gauge condition nAhAB = 0, we get

n
(out)
A = nA (C.141)
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Now,

p(out)AB = G(out)
AB − n(out)A n(out)B

= gAB + ψ−DhAB − nAnB

= ΠAB + ψ−DhAB

(C.142)

[
p(out)

]A
B
= δAB − nAnB = ΠA

B
(C.143)

Now, from (4.70)

K (out)
AB =

[
p(out)

]C
A

[
p(out)

]C′

B

(
∇̃CnC′

)
ψ=1

= ΠC
AΠ

C′

B

(
∂CnC′ − Γ̃ECC′nE

) ∣∣∣∣
ψ=1

(C.144)

Where,

Γ̃ECC′ = ΓECC′ + δΓ̃ECC′ (C.145)

Here, ΓECC′ is Christoffel symbol with respect to gAB and δΓ̃ECC′ is defined as

δΓ̃ECC′ =
1

2
[G(out)]EF

[
∇C(ψ

−DhC′F ) +∇C′(ψ−DhCF )−∇F (ψ
−DhCC′)

]
(C.146)

Here,∇C is covariant derivative with respect to gAB

K (out)
AB = KAB − ΠC

AΠ
C′

B nEδΓ̃
E
CC′

∣∣∣∣
ψ=1

(C.147)

Now,

− ΠC
AΠ

C′

B nEδΓ̃
E
CC′

∣∣∣∣
ψ=1

= −1

2
ΠC
AΠ

C′

B n
F
[
∇C(ψ

−DhC′F ) +∇C′(ψ−DhCF )−∇F (ψ
−DhCC′)

] ∣∣∣∣
ψ=1

= −1

2
ΠC
AΠ

C′

B n
F
[
ψ−D∇ChC′F + ψ−D∇C′hCF +NDψ−D−1nFhCC′ − ψ−D∇FhCC′

]
= −1

2
ΠC
AΠ

C′

B

[
−hC′F (∇Cn

F )− hCF (∇C′nF ) +NDhCC′ − (n · ∇)hCC′
]

= −1

2
ΠC
AΠ

C′

B

[
−h(0)C′F

(
∇Cn

F
)
− h

(0)
CF

(
∇C′nF

)
+NDh

(0)
CC′ −Nh

(1)
CC′ − (n · ∇)h

(0)
CC′

] ∣∣∣∣
ψ=1

= −1

2
ΠC
AΠ

C′

B

[
−h(0)C′FK

F
C − h

(0)
CFK

F
C′ +NDh

(0)
CC′ −Nh

(1)
CC′

]
(C.148)
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Finally, we get

K (out)
AB = KAB − ND

2
h
(0)
AB +

N

2
h
(1)
AB +

1

2

(
h
(0)
BDK

D
A + h

(0)
ADK

D
B

)
(C.149)

Trace of K (out)
AB

K (out) =
(
gAB − ψ−DhAB

)
K (out)
AB

∣∣∣∣
ψ=1

= K − ND

2
h(0) +

N

2
h(1) +

1

2
gAB

(
h
(0)
BDK

D
A + h

(0)
ADK

D
B

)
− h

(0)
ABK

AB

= K − ND

2
h(0) +

N

2
h(1)

(C.150)

Inside(ψ < 1)

As, in the previous subsection

n(in)A = nA, p(in)AB = ΠAB + h̃AB and,
[
p(in)
]A
B
= ΠA

B (C.151)

Now, from (4.76)

K
(in)
AB =

[
p(in)

]C
A

[
p(in)

]C′

B

(
∇̆Cn

(in)
C′

)
ψ=1

= ΠC
AΠ

C′

B

(
∂CnC′ − Γ̂ECC′nE

) ∣∣∣∣
ψ=1

(C.152)

Where,

Γ̂ECC′ = ΓECC′ + δΓ̂ECC′ (C.153)

Here, ΓECC′ is Christoffel symbol with respect to gAB and δΓ̂ECC′ is defined as

δΓ̂ECC′ =
1

2
[G(in)]EF

(
∇C h̃C′F +∇C′ h̃CF −∇F h̃CC′

)
(C.154)

Here,∇C is covariant derivative with respect to gAB Now,

K (in)
AB = KAB − ΠC

AΠ
C′

B nEδΓ̂
E
CC′

∣∣∣∣
ψ=1

(C.155)
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Now,

−ΠC
AΠ

C′

B nEδΓ̂
E
CC′

∣∣∣∣
ψ=1

= −1

2
ΠC
AΠ

C′

B n
F
(
∇C h̃C′F +∇C′ h̃CF −∇F h̃CC′

)
=

1

2
ΠC
AΠ

C′

B

[
h̃C′F (∇Cn

F ) + h̃CF (∇C′nF ) + (n · ∇)
∞∑
m=0

(ψ − 1)mh̃
(m)
CC′

]
ψ=1

=
1

2
ΠC
AΠ

C′

B

[
h̃
(0)
C′FK

F
C + h̃

(0)
CFK

F
C′ +Nh̃

(1)
CC′

]
ψ=1

=
1

2
h̃
(0)
BFK

F
A +

1

2
h̃
(0)
AFK

F
B +

1

2
Nh̃

(1)
AB

(C.156)

So, we get

K (in)
AB = KAB +

1

2

(
h̃
(0)
BFK

F
A + h̃

(0)
AFK

F
B +Nh̃

(1)
AB

)
(C.157)

Stress of extrinsic curvature is given by

K (in) =
(
gAB − h̃AB

)
K (in)
AB

∣∣∣∣
ψ=1

=
(
gAB − [h̃(0)]AB

)
K (in)
AB

= K +
1

2

(
h̃
(0)
AFK

FA + h̃
(0)
AFK

FA +Nh̃(1)
)
− [h̃(0)]ABKAB

= K +
N

2
h̃(1)

(C.158)

C.4 Important Identities

In this appendix we will mention the identities we have used in chapter 4. The identities

have been calculated on ψ = 1 hypersurface. We are not giving the derivations simply due

to the fact that the derivations are very lengthy but nevertheless the derivations are quite

straightforward.

Identity-1:

∇̂BN

N
=

∇̂BK

K
+

1

K
∇̂B

(
n · ∇K
K

)
− 1

K

(
∇̂BK

K

)(
n · ∇K
K

)
+O

(
1

D

)2

(C.159)

214



C Appendices for Chapter 4

Identity-2:

(n · ∇)N

N
=
K

D
+
(n · ∇)K

K
+

1

D

(n · ∇)K

K
+
(n · ∇)(n · ∇)K

K2
− 2

K

(
n · ∇K
K

)2

+O
(

1

D

)2

(C.160)

Identity-3:

ND = K +
(n · ∇)K

K
+

(n · ∇)(n · ∇)K

K2
− 2

K

(
n · ∇K
K

)2

+O
(

1

D

)2

(C.161)

Identity-4:

(n · ∇)K

K
=

∇̂2K

K2
− 1

K
KABK

AB − λ(D − 1)

K
+

1

K4
∇̂2
(
∇̂2K

)
− 2

K

(
∇̂2K

K2

)(
∇̂2K

K2

)
+ λ

D

K2

(
∇̂2K

K2

)
− 1

D

(
∇̂2K

K2

)
− 1

K

(
∇̂2K

K2
− λ

D

K
− K

D

)(
∇̂2K

K2

)
− 2

K

(
∇̂EK

K

)(
∇̂EK

K

)
+O

(
1

D

)2

(C.162)

Identity-5:

(n · ∇)(n · ∇)K

2K2
=

1

K

[
− 3

2

(
∇̂2K

K2

)(
∇̂2K

K2

)
+ λ

D

K

(
∇̂2K

K2

)
+

1

2K3
∇̂2
(
∇̂2K

)
−
(
∇̂EK

K

)(
∇̂EK

K

)
− 2

K

D

(
∇̂2K

K2

)
+ λ+

K2

D2

]
+O

(
1

D

)2

(C.163)
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Appendices for Chapter 5
D.1 Analysis of F (r/rH)

In this section, we shall evaluate the integral (5.39) in large D limit. For convenience we

are quoting the equation here.

F (y) = y

∫ ∞

y

dx
xD−2 − 1

x(xD−1 − 1)
(D.1)

We would like to evaluate this integral systematically for large D. Let us first evaluate the

integral for y ≥ 2. In this case, since D is very large, xD >> 1 throughout the range of

integration. So we shall expand the integrand in the following way.

xD−2 − 1

x(xD−1 − 1)
=

(
1

x2

)(
1− x−(D−2)

) (
1− x−(D−1)

)−1

=

(
1

x2

)(
1− x−(D−2)

)(
1 +

∑
m=1

x−m(D−1)

)

=

(
1

x2

)(
1 +

∑
m=1

[
x−m(D−1) − x−m(D−1)+1

])
(D.2)

Integrating (D.2) we find

y

∫ ∞

y≥2

dx
xD−2 − 1

x(xD−1 − 1)
= 1 +

∑
m=1

[(
1

(D − 1)m+ 1

)
y−(D−1)m −

(
1

(D − 1)m

)
y−(D−1)m+1

]
(D.3)

Clearly, the sums in the RHS of (D.3) are convergent for y ≥ 2. Let us denote the RHS as

k(y). However, the expansion in (D.2) is not valid inside the ‘membrane region’, i.e., when

y − 1 ∼ O
(

1
D

)
and naively k(y) is not the answer for the integral.
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But consider the function k̃(y) = F (y) − k(y). This function vanishes for all y ≥ 2

and also by construction, it is a smooth function at y = 2 (none of the derivatives diverge).

Hence k̃(y) must vanish for every y. So we conclude, for every allowed y (i.e., y ≥ 1)

F (y) = 1 +
∑
m=1

[(
1

(D − 1)m+ 1

)
y−(D−1)m −

(
1

(D − 1)m

)
y−(D−1)m+1

]
(D.4)

Note that F (y) reduces to 1 as y → ∞ as required in section (5.3.2).

Now we would like to expand F (y) in a series in
(

1
D

)
, where y is in the membrane regime.

y = 1 +
Y

D
, Y ∼ O(1)

In this regime F (y) takes the following form

F (y) = F

(
1 +

Y

D

)
= 1−

(
1

D

)2∑
m=1

(
1 +mY

m2

)
e−mY +O

(
1

D3

)
(D.5)

In chapter 5, we consider only the first subleading correction in
(

1
D

)
expansion. Therefore

F (y) could be set to 1 for our purpose.

D.2 Derivation of ψ in {Y A} = {ρ, yµ} coordinates

In this section, we shall give the derivation of ψ as mentioned in eq (5.62). We want to

solve ψ such that ∇2ψ−D = 0. Where ∇ is the covariant derivative with respect to the

background metric

ds2background =
dρ2

ρ2
+ ρ2ηµν dy

µ dyν (D.6)

we can expand ψ as follows

ψ = 1 +

(
A10 + ϵ B10 +

A11 + ϵ B11

D

)
(ρ− rH) + (A20 + ϵ B20)(ρ− rH)

2 +O
(

1

D3

)
(D.7)
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Here ϵ denotes that Bij’s are O(∂) terms.

∇2
(
ψ−D) = 0

⇒ ψ
(
∇2ψ

)
− (D + 1)(∇Aψ)(∇Aψ) = 0

⇒ ψ ρ2
[
∂ρ∂ρψ − Γρρρ(∂ρψ)− Γµρρ(∂µψ)

]
+
ψ

ρ2
ηµν
[
− Γρµν(∂ρψ)− Γαµν∂αψ

]
− (D + 1) ρ2 (∂ρψ)

2 +O(∂)2 = 0

(D.8)

The required Christoffel symbols are

Γρρρ = −1

ρ
; Γµρρ = 0; Γρµν = −ρ3ηµν ; Γαµν = 0; (D.9)

Using the above Christoffel symbol we get

ψ

[
ρ2 ∂2ρψ +Dρ ∂ρψ

]
− (D + 1) ρ2 (∂ρψ)

2 = 0 (D.10)

Now,

∂ρψ =

(
A10 + ϵ B10 +

A11 + ϵ B11

D

)
+ 2 (A20 + ϵ B20)(ρ− rH)

∂2ρψ = 2 (A20 + ϵ B20)

(D.11)

Solving, (D.10) order by order in derivative expansion we get the following solution

ψ(ρ, yµ) = 1 +

(
1− 1

D

)(
ρ

rH(yµ)
− 1

)
+O

(
1

D

)3

(D.12)

D.3 Computing different terms in membrane equation

In this section we shall give the details of calculations of different terms that appear in the

membrane equation. The different components of the projector defined in (5.72) are given

by

Πρ
ρ = 0; Πρ

µ = ∂µrH ; Πµ
ρ =

1

r4H
(∂µrH); Πµ

ν = δµν (D.13)
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The different components of the Christoffel symbol of the background metric in Y A =

{ρ, yµ} co-ordinates are given by

Γρρρ = −1

ρ
; Γρµρ = 0; Γρµν = −ρ3ηµν ; Γνµρ =

1

ρ
δνµ; Γαµν = 0; Γµρρ = 0;

(D.14)

From (5.73) it is clear that we need onlyKρα andKαβ component of extrinsic curvature

Kρµ = ΠC
ρ

(
∂Cnµ − ΓDCµnD

)
= Πν

ρ

(
∂νnµ − Γρνµnρ

)
=
∂µrH
r2H

Kµν = ΠC
µ

(
∂Cnν − ΓDCνnD

)
= Πρ

µ

(
∂ρnν − Γρρνnρ

)
+Πα

µ

(
∂αnν − Γρανnρ

)
= −δαµ Γρανnρ

= ρ2 ηµν

(D.15)

Now, as mentioned in (5.73) in terms of the intrinsic coordinates on the membrane the

extrinsic curvature will have the structure

Kαβ = Kρρ (∂αrH) (∂βrH) + [Kρα (∂βrH) +Kρβ (∂αrH)] +Kαβ

= r2H ηαβ +O(∂)2
(D.16)

The trace of the extrinsic curvature

K = (D − 1) +O(∂2) (D.17)

For the calculation of the extrinsic curvature we need background metric, where for the rest

of the calculation we require induced metric on the horizon. The induced metric on the

horizon is given by

g
(ind)
αβ = r2H ηαβ +O(∂2) (D.18)
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The Christoffel symbol of the induced metric

Γ̄δβα =

(
δδβ
∂αrH
rH

+ δδα
∂βrH
rH

− ηαβ
∂δrH
rH

)
(D.19)

Now we shall calculate all the terms mentioned in (5.79). First, we shall calculate

∇̄ · U = gαβ(ind) ∇̄αUβ

=
ηαβ

r2H

[
∂αUβ − Γ̄δαβUδ

]
+O(∂)2

=
ηαβ

r2H

[
∂α (rH uβ)− (rH uδ)

(
δδβ
∂αrH
rH

+ δδα
∂βrH
rH

− ηαβ
∂δrH
rH

)]
+O(∂)2

= (D − 2)

(
(ηαβuα∂β)rH

r2H

)
+
∂ · u
rH

+O(∂)2

(D.20)

Now we shall calculate ∇̄2Uµ and
(
U · ∇̄

)
Uα

∇̄2Uµ = gαβ∇̄α∇̄βUµ

= gαβ
[
∂α(∇̄βUµ)− Γ̄δαβ(∇̄δUµ)− Γ̄δαµ(∇̄βUδ)

]
= O(∂)2

(D.21)

(
U · ∇̄

)
Uα = Uβ(∂βUα)− Uβ Γ̄δβαUδ

=
uβ

rH

(
rH(∂βuα) + uα(∂βrH)

)
− uβ

rH
(rH uδ)

(
δδβ
∂αrH
rH

+ δδα
∂βrH
rH

− ηαβ
∂δrH
rH

)
+O(∂2)

= (ηµνuµ∂ν)uα + uα

(
(ηµνuµ∂ν)rH

rH

)
+
∂αrH
rH

+O(∂2)

(D.22)

Now,

Uα Kαβ Pβ
γ = (δβγ + Uβ Uγ)(U

α r2H ηαβ) +O(∂2)

= (δβγ + Uβ Uγ)Uβ +O(∂2)

= O(∂2)

(D.23)
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Appendix E

Notations
In this appendix, we shall summarize the notations we have used in this thesis.

Table E.1: Notations

Background spacetime indices Capital Latin (A,B,C,D)

Indices on the membrane Small Greek (α, β, µ, ν)

Induced metric on the membrane as embedded in gAB g
(ind)
µν

Full non-linear metric outside the membrane GAB

Linearized metric outside the membrane G
(out)
AB = gAB + ψ−DhAB

Linearized metric inside the membrane G
(in)
AB = gAB + h̃AB

Projector on the membrane as embedded in gAB ΠAB = gAB − nA nB

Projector perpendicular to both the normal of the PAB = gAB − nA nB + uAuB
membrane as embedded in gAB and the velocity

Projector on the membrane as embedded in G(out)
AB p

(out)
AB = G

(out)
AB − n

(out)
A n

(out)
B

Projector on the membrane as embedded in G(in)
AB p

(in)
AB = G

(in)
AB − n

(in)
A n

(in)
B

Covariant derivative w.r.t. gAB ∇A

Covariant derivative w.r.t. g(ind)µν ∇̄µ

Covariant derivative w.r.t. GAB ∇̌A

Covariant derivative w.r.t. G(out)
AB ∇̃A

Covariant derivative w.r.t. G(in)
AB ∇̆A
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Covariant derivative w.r.t. gAB projected ∇̂A

along the membrane see (2.58) for definition

Extrinsic curvature of the membrane K
(out)
AB

when embedded in G(out)
AB

Extrinsic curvature of the membrane K
(in)
AB

when embedded in G(in)
AB

Extrinsic curvature of the membrane KAB

when embedded in gAB

Pull back ofKAB Kµν

on ψ = 1 hypersurface see (2.62) for definition
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